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1.   SUMMARY 
 
The report describes the development of a Low-Cost Automated Crash 
Notification System for eventual field-testing on New Jersey highways.  The 
system was developed in response to national studies which show that nearly 
half of all traffic crash fatalities occur before the crash victim reaches a trauma 
center. Many of these deaths can be attributed to the inability of EMS personnel 
to locate and reach the victim during the so-called “Golden Hour” after the 
accident when emergency medical treatment is most effective.  The goal of this 
project was to dramatically reduce EMS response time by developing and testing 
an advanced in-vehicle system that automatically transmits the location and 
severity of a crash to EMS personnel. Specifically, the project has designed, 
developed, and tested a low cost functional system that combines wireless 
communications and Global Positioning Systems with a network of inexpensive 
sensors for crash detection. 
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2.  INTRODUCTION AND BACKGROUND  
 
 

 
 

Figure 2-1.  The Objective of Automated Crash Notification is to Improve 
Emergency Response Times. 

 
With the advent of trauma centers, the fatality rate of persons reaching a hospital 
after a car crash has dropped dramatically over the last twenty years. However, 
nearly 20,000 crash victims die every year before ever reaching the hospital 
[NHTSA, 1999].  Undoubtedly, some fraction of these deaths result from 
catastrophic crashes.  However, many of these deaths can be attributed to the 
failure of EMS personnel to reach the victim during the so-called “Golden Hour” 
after the accident when emergency medical treatment is most effective.   
National statistics clearly show that despite a growing wireless communications 
network and the availability of medivac transport, the time to notify emergency 
personnel of a crash and respond the crash victims can be quite lengthy.  For 
fatal crashes in the U.S., the average pre-hospital time is approximately 30 
minutes in urban areas and 1 hour in rural areas [NHTSA, 2000]. 
 
Currently, emergency personnel must rely on passing motorists, highway patrols, 
and traffic reporters to report crashes. Often the individual reporting the 
emergency may not know where he or she is, let alone be able to direct help to 
his or her location.   These delays can be especially lengthy in rural, relatively 
unpopulated, areas where a crash site may go undetected for hours – and 
occasionally days. 
 
Crucial to getting help to a crash victim is prompt notification that (a) a crash has 
occurred, (b) the location of the crash, and (c) some measure of the severity or 
injury-causing potential of the collision. Automated Crash Notification Systems 
capable of performing many of these tasks have been installed as expensive 
options on a limited number of high-end luxury cars.  The OnStar System, for 
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example, costs $700 for installation, carries a $200-400 annual fee, and is 
currently offered only for select General Motors models [Thomas, 2000]. 
 
The idea behind Automated Crash Notification is to equip cars with a crash 
sensor which can detect that an accident has taken place, and automatically 
notify the emergency medical personnel of the severity and precise location of 
the accident. Once activated, an Automated Crash Notification system would 
automatically transmit a signal to a 9-1-1 dispatch center, where an electronic 
map would pinpoint the signal location. Precise location of the traveler in trouble 
enables rapid emergency response.  More advanced sensors can also estimate 
the injury-producing capability of the crash.  The first estimates of the number of 
potential lives saved by ACN technology are 3000 lives per year [Champion et al, 
1998]. 
 
The National Highway Traffic Safety Administration has sponsored a trial ACN 
system [Preziotti et al, 2001]. This program is in the process of installing ACN in 
1,000 privately owned vehicles in upstate New York. The ACN system uses on-
board sensors to identify that a crash has taken place. It then uses the Global 
Positioning Satellite (GPS) system and conventional cellular phone systems to 
deliver a message, based on the sensors input, directly to 911 operators.  While 
promising, this system has proven to be extremely expensive. To date, the total 
Federal cost of the study has been about $3 million.  The technical approach 
used in this project has resulted in an estimated $500 cost per unit – motivating a 
search for a lower-cost approach to Automated Crash Notification. 
 
Objective 
 
The goal of this project is to develop and test an advanced in-vehicle system that 
determines that a serious automotive collision has occurred and automatically 
summons Emergency Medical Services (EMS) response. Specifically, the 
proposed project will design, develop, and test a low cost functional system that 
combines wireless communications and Global Positioning Systems with a 
network of inexpensive sensors for crash detection. The purpose of the system is 
not only to shorten the time it takes to notify authorities of the crash event, but to 
improve the quality of the response.  
 
This project will perform limited field tests of a prototype automated collision 
notification system (ACN).  A follow-on phase of this effort will seek to conduct an 
operational field test of the ACN system using up to 1000 privately- or publicly- 
owned cars in a representative cross-section of the State of New Jersey. 
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3.    System Requirements/Architecture 
 
The Automated Crash Notification system developed under this project is 
referred to as the Automated New Jersey Emergency Locator (ANJEL).  ANJEL 
is composed of two major subsystems:  (1) the Mobile Unit which is installed in 
the occupant compartment of the vehicle, and (2) the Base Station which is 
responsible for receiving distress calls from the Mobile Units and reporting their 
location to emergency response dispatch personnel.  This section describes the 
requirements of each of these subsystems. 
 
Mobile Unit 
 
The Mobile Unit is responsible for detecting a crash, determining the location of 
the crash, and communicating crash severity and crash site location to the Base 
Station. Figure 3-1 presents the system architecture of the proposed device.  The 
system consists of a single chip embedded microcomputer which is connected to 
a crash sensor, a Global Positioning System (GPS) sensor, and an embedded 
wireless modem. In the event of a crash, the crash sensor(s) will detect the 
vehicle impact, and output a signal proportional to the deceleration of the vehicle.  
The crash sensor signal output will be continuously monitored by the 
microprocessor which will decide whether or not a crash has taken place. Upon 
detecting a collision, the microprocessor will poll the GPS sensor to determine 
the final resting position of the car. The microprocessor will then use its wireless 
modem to establish a communications link with the Base Station.  Once a link 
has been established, the Mobile Unit will transmit crash site location and the 
crash severity to the Base Station.  Ideally, the entire process, including linkup, 
will be completed within 30 seconds after the crash occurred – giving EMS 
personnel a crucial edge in rapidly reaching the crash victim. 
 
The Mobile Unit will be installed either under the driver’s seat or in another 
occupant compartment location.  Locating the Mobile Unit in the occupant 
compartment will provide an accurate measure of the deceleration experienced 
by the occupants in a crash, and will protect the Mobile Unit with the same 
structural cage which protects the occupants. 
 
Note that there is some degree of overlap between the Mobile Unit and 
components in late model cars.   Since the early 1990’s, all passenger vehicles 
sold in the U.S. have been required to have airbags.  Increasingly, the sensors 
used in these systems are electronic sensors of the type used in this program.  
However, modification or connection to the airbag or any other safety systems of 
the car has been strictly avoided in the Mobile Unit for liability reasons.  
Eventually, automakers may choose to use the airbag sensor to drive an ACN 
systems of the type described here.  However, the Mobile Unit has been 
designed to be completely independent of all in-vehicle systems with the 
exception of the car battery.   
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Figure 3-1. System Architecture 

 
 
 
 
Base Station 
 
The Base Station system will (1) receive the emergency call over the Mobile Unit, 
(2) receive GPS data and the crash pulse from the crash site, and (3) display the 
location and severity of the crash using computerized maps for Emergency 
Response Team dispatch.  The prototype Base Station will (1) serve as a test 
bed for later development into a full-featured Base Station in later phases of the 
project, and (2) for checkout of the prototype in-vehicle device proposed here.  
Note that this system is intended only for laboratory use: it is not intended for use 
as a production system.  
 
 
Mobile Unit Functional Requirements 
 
Crash Detection.  Crash detection will be performed with an array of 
accelerometers.  Detection of frontal impacts requires an accelerometer aligned 
with the longitudinal axis of the car (x-axis) while detection of side impacts 
requires an accelerometer aligned with the lateral axis of the car (y-axis).  Note 
that the x-axis accelerometer will detect rear impacts in addition to frontal 
impacts, and a single y-axis accelerometer will detect both driver and passenger 
side impacts.  Angled impacts or frontal offset impacts would detect accelerations 
along both axes.   
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A minimum of two sensors is required to detect front, side, rear, angled, and 
offset impacts.  In the U.S. these accident modes account for the majority of all 
accidents.  The system developed under this program is a two-axis system.  
Depending on system cost constraints, additional sensors could be added to the 
system to complement this minimal sensor set.  Other sensors such as a third 
sensor in the vertical direction (z-axis) would provide a complete acceleration 
time history including vehicle pitching during impact.  However, a review of 
NHTSA frontal, side, and frontal-offset crash test data suggest that z-axis 
acceleration is negligible compared with the x-axis and y-axis acceleration.  It 
should be noted that the two-sensor system cannot detect rollovers.  Either a 
dedicated roll sensor, or a second sensor in the z-axis, separated from the first z-
axis sensor by a known distance would allow detection of rollover.   
 
The system uses a newly developed low-cost crash sensor – the Analog Devices 
ADXL-250.  These crash sensors are inexpensive silicon based accelerometers 
which were initially developed for airbag systems, and cost two orders of 
magnitude less than conventional accelerometers.  
 
GPS Sensor. The system uses a newly developed low-cost GPS sensors – the 
Trimble ACE-II system and the Conexant Zodiac System. These sensors can 
provide location resolution under 30 meters.  Two options were investigated for 
GPS data processing for the mobile unit.  The first option was to use a turn key 
single board system which processes the raw GPS data on board to determine 
the position of the car. The second option considered was to transmit the raw 
GPS data directly to the Base Station that will compute crash site location using 
a more powerful computer.  However, early concerns that the computationally 
more intensive first option might introduce unacceptable time delays proved to be 
unfounded.  All prototype development used the onboard GPS option. 
 
Wireless Communications Transceiver.  The system uses Cellular Digital Packet 
Data  (CDPD) wireless transmission technology.  CDPD is a cutting edge 
wireless communications protocol which allows direct connection of the remote 
devices to the Internet.   
 
Embedded Microprocessor.  System performance is controlled by an embedded 
single chip microcomputer.  Single chip microcomputers such as the MicroChip 
PIC series, Z-World series, or Motorola 68HC12 series combine onboard 
memory, reasonable clock rates, and onboard A/D capability into a low-cost 
package which is readily interfaced to sensors such as those used in the ANJEL 
system.   
 
Power.  Power for this system is provided by the passenger car 12-volt electrical 
system.  Note that per our design guidelines this is the only interconnection 
between Mobile Unit and the passenger car.  Power from the car battery will be 
conditioned as necessary before input to the Mobile Unit electronics.  Storage of 
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backup power in a small onboard battery permits successful operation of the 
Mobile Unit even if car battery power is lost as a consequence of the crash. 
 
Crash Algorithm.  A crash algorithm, a software module in the microprocessor, 
was developed to detect a crash while avoiding false alarms.  The Mobile Unit 
must be able to distinguish between actual crashes and low-severity crashes or 
non-crashes such as panic braking or backing into a shopping cart.  To detect a 
crash, the microprocessor samples the accelerometer output at 1000 Hz (1 
sample per millisecond). Based upon examination of National Highway Traffic 
Safety Administration crash tests coupled with crash test modeling, the crash 
detection algorithm was designed to signal that a crash has occurred if a 10-
miles/hour change in velocity occurs in under 50 milliseconds. To put these time 
intervals in perspective, the typical frontal-barrier crash has a duration of 
approximately 150 milliseconds while panic braking requires over 1000 
milliseconds. 
 
Message Content.  When a crash is detected, the Mobile Unit must transmit a 
message to the Base Station which describes the crash location and severity.  
Knowledge of the crash location allows the EMS center to dispatch EMS crews to 
rescue the crash victim. Knowledge of the crash severity provides the EMS 
center with an early snapshot of the seriousness and potential injury 
consequences of the accident.  The message to the Base Station must include 
both these data facets as well as information detailing the time of the crash and a 
description of the car.  Crash location can be as straightforward as the GPS 
location longitude and latitude.  Crash severity will be provided for each crash 
sensor, and will be either the change in velocity or the crash pulse along each 
axis.  It should be noted that while the crash pulse requires transmission of a 
longer message, the crash pulse typically provides sufficient information to infer 
whether the car struck a tree or another car (which may require additional EMS 
personnel).  Inclusion of crash severity for each axis allows the Base Station to 
distinguish between frontal and the potentially more serious side impacts. 
 
Crash Survivability.  The Mobile Unit must be capable of surviving and properly 
functioning after a crash.  The unit, its enclosure, and necessary antennas must 
be designed to survive crash loadings (typically 30 G in a 35 mph crash) and 
potential of power after the crash.  Antennas for GPS and wireless transmission 
must survive the crash so that the crash location can be determined and 
notification of the crash event can be transmitted to the Base Station.  As not all 
transmissions between the Mobile and Base Unit may be received, the Mobile 
Unit must be designed to transmit multiple times.  Crash survivability can be 
increased through several means including (1) backup battery power, (2) locating 
the Mobile Unit inside the occupant compartment ‘cage’, (3) taking GPS 
measurements repeatedly during normal driving, and transmitting the last known 
location to the Base Station if the GPS lock is lost.  The post-crash operation of 
the system was evaluated in laboratory testing at Rowan University. 
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Base Station Functional Requirements 
 
The Base Station system must (1) receive the simulated emergency call over the 
Mobile Unit, (2) receive GPS data and crash severity from the simulated crash 
site, and (3) display the location and severity of the simulated crash using 
computerized maps for Emergency Response Team dispatch.   Design concerns 
include how to best present crash location and severity to the Base Station 
operators, and how to ensure that large numbers of calls can be handled 
simultaneously. 
 
The long-term objective of the ACN system, which will not be conducted under 
this research effort, will connect the Mobile Units with existing or expanded 911 
systems.  However, this effort will require coordination with existing 911 system 
operators and careful attention to how best to present crash information 
graphically to operators who are more accustomed to receiving voice-only calls.  
The Base Station developed here will provide an early evaluation of possible 911 
operator user interfaces.  The Base Station may also be suitable for limited field 
testing of the system for captive fleets such as the State Police or NJDOT 
vehicles. 
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4.   DEVELOPMENT APPROACH  
 
 
The ANJEL system required the development of two major components: (1) a 
Mobile Unit and (2) a Base Station.  This section describes the development 
strategy to design, build, and test each of these components. 

 
4.1 Mobile Unit: Development Approach 
 
The development strategy was to develop the Mobile Unit in two stages.  The 
first stage was to demonstrate proof of concept.  The second stage was to 
explore designs which would lead to a lower cost Mobile Unit.  While important, 
reduced cost was to be attempted only after successful proof of concept.  To 
attack these two design criteria, a series of prototype Mobile Units was planned 
for development.  The first prototype, Rev. A, would be designed to demonstrate 
proof-of-concept.  The second prototype, Rev. B, would extend Rev. A, and 
would be designed to explore consumer cost reductions. 
 
Proof of concept required the design, fabrication, and testing of a prototype 
Mobile Unit which could a) detect a crash, b) determine crash location, and c) 
transmit crash severity and location to a Base Station.  These were the primary 
design objectives for the first prototype, i.e. to demonstrate functionality.  
Although other design considerations, e.g., cost, size, power requirements, ease 
of installation, and crash survivability, would be important in the eventual 
production Mobile Unit, these design criteria were relaxed during pursuit of the 
first prototype.   
 
To facilitate demonstration of proof-of-concept and retain maximum design 
flexibility, Rev. A was envisioned as a ‘research prototype’.  Rev. A was intended 
to serve as a test bed for potential ACN technologies – including crash sensors, 
GPS chip sets, and wireless communication components.  Rev. A was designed 
to be as modular as possible so that alternate components, e.g. GPS boards, 
could be readily swapped into and out of the prototype Mobile Unit to investigate 
improved performance.  Rev. A was also designed with numerous internal 
diagnostics to track and allow debugging of system performance during operation 
in the field.  Finally, because this was to be a research prototype, cosmetic 
packaging concerns were postponed until the development of later prototypes.  
This allowed antennas, for example, to be placed where convenient for testing as 
opposed to attachment points more aesthetically pleasing to a consumer. 
Similarly, this approach allowed power for the Mobile Unit to be obtained from the 
car cigarette lighter adapter rather than directly connecting to the car’s electrical 
system.   
 
The second prototype, referred to as Rev. B, in this document, would be 
designed using a fully functional Rev. A prototype as a starting point.  While 
maintaining the functionality of Rev. A, Rev. B would explore the possibility of 
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lower cost approaches to Automated Crash Notification.  The objective was to 
design, build, and test a second prototype which could be fabricated in quantities 
suitable for field testing in New Jersey. 
 
4.2 Base Station: Development Approach 
 
To test both of these prototypes, a Base Station was developed which could field 
calls from the Mobile Units, and simulate the operation of a future automated 
crash notification 9-1-1 center.  A key objective of the Base Station was to 
provide a means to test Mobile Unit wireless communication,  i.e., to receive 
ACN messages from the Mobile Units, and to plot the location of these Mobile 
Units on a computerized map.  A second objective was for the Base Station to 
serve as the test bed for evaluating automated mapping products.  To limit 
development costs, the research team sought to use commercial-off-the-shelf 
software and mapping products whenever possible. 
 
Note that the Base Station developed under this project was intended solely as a 
means to test correct operation of the Mobile Unit.  While it is hoped that our 
Base Station design may provide some guidance for future 911 centers, the 
current Base Station is in no way intended to serve as a replacement for current 
911 dispatch centers. 
 
4.3 Crash Determination 
 
One of the key functions of an ACN system is its ability to determine whether a 
crash has occurred or not.  This makes the design of this sub-system very 
critical.  One possibility would be to monitor the airbag sensor in the car, and 
trigger the crash notification system in the event that the airbag deploys.  
However, modification or connection to the airbag or any other safety system of 
the car was avoided for liability reasons.  While automobile manufacturers may 
eventually choose to use the airbag sensor to drive an ACN system, it was 
decided to monitor the vehicle’s acceleration profile to determine whether or not 
a crash had occurred. 
 
An Analog Devices ADXL250 dual axis accelerometer was chosen to monitor the 
acceleration felt by the car.  This accelerometer was chosen for a number of 
reasons.  One main reason was the small size – a mere 0.4” x 0.3”.  Moreover, 
the fact that it is a dual axis accelerometer allows us to monitor the acceleration 
in both the x and y directions.  This allows the system to detect both frontal as 
well as side impacts.  Also, the accelerometer has a range of  +/- 50 g.  Even in 
30 mph accidents, the passenger compartment often feels up to 30 g’s.  Hence, it 
is important to make sure that the range of the accelerometer is sufficiently broad 
to avoid saturation. 
 
During normal operation, the acceleration values from the accelerometer will be 
logged by the micro-controller, which will then integrate these values over a 40 
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ms time interval to determine the change in velocity of the vehicle.  This change 
in velocity is then compared to a predetermined threshold, which allows the 
microcontroller to determine whether or not a crash has occurred.   
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Figure 4-1. Extracted Lump-Mass Model for a 1999 Dodge Intrepid 
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Figure 4-3.  Time required for a 10 km/hour change in velocity during a 
crash under various circumstances 

 
To determine the different possible threshold values for a crash, numerous 
crashes were simulated using the SISAME impact simulation code developed by 
NHTSA [Mentzer, 1999].  First, a model of a 1999 Dodge Intrepid was extracted 
using crash test data available from the NHTSA Vehicle Crash Test Database.  
The detailed SISAME model file is provided as an appendix to this report.  As 
shown in Figure 4-1, this model uses a system of non-linear springs and lump-
masses to simulate a vehicle’s structural response during a collision. Using this 
model a crash simulation was conducted.  Figure 4-2 shows the outputs from the 
program in terms of acceleration pulses for the impact.  These pulses were 
integrated to find the change in velocity of the vehicle.   These simulations were 
then repeated using a range of speeds varying from 25-70 mph.  By analyzing 
the results from each simulation, the time for a 10 km/h change in velocity during 
a crash was found.  Figure 4-3 shows that for the simulations run, the maximum 
time required for a 10 km/h change in velocity was 36 milliseconds.  If the driver 
in a car traveling at 60 mph slams on the brakes, it takes about 500 milliseconds 
to undergo a 10 km/h change in velocity.  Clearly, this method successfully 
differentiates between a crash-like situation (slamming on the brakes) versus an 
actual crash. 
 
Although this algorithm should be adequate for field-testing of the ANJEL system, 
additional test and simulation data should be evaluated prior to development of 
an algorithm for a production ACN system.  The final algorithm should set crash 
/no-crash threshold based on additional crash configuration, including different 
vehicle makes and models, side impacts, vehicle to vehicle impacts, and vehicle 
to rigid barrier impacts.    
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5.   MOBILE UNIT SYSTEM DESCRIPTION 
 
System Architecture 
 
The goal for the initial prototype was to investigate the feasibility and workability 
of the concept involved with the ACN. As a result, the first prototype (also 
referred to as Rev. A) adhered to the baselines established for the overall design. 
No major flaws were found during the prototyping efforts, and no major changes 
were necessary. Rev. A hence manifests the same system architecture and 
functionality as outlined earlier in Section 3.  An advanced prototype (Rev. B) has 
also been constructed based on the same architecture.  Rev. B is a more 
advanced, slightly less expensive version of the Mobile Unit which corrects minor 
flaws detected in during Rev. A testing. 
 
Crash Detection Subsystem 
 
Silicon Accelerometer 
 
The crash algorithm used in the ACN relies on measuring the acceleration of the 
vehicle (see “Crash Algorithm,” Section 4). Consequently, the accelerometer 
becomes a key component of the crash detection subsystem.  Several factors 
needed to be considered in determining which accelerometer to use: 
 
• Size.  The system should be as compact as possible, since it needs to be 

portable.  Additionally, several physical and spatial constraints are imposed 
by the potential location of the system in existing cars. 

 
• Dual axis.  Although Rev. A focuses on the detection of frontal impact, the 

long-term goal of the ACN is to be a fully functional crash detection system.  
Consequently, the ACN would need to detect two kinds of accidents: frontal 
as well as side impacts. The accelerometer, then, needs to acquire data in 
two directions as well. 

 
• Saturation.  Car accidents tend to take place over a wide range of impacts. 

For example, victims in 30 mph accidents may experience up to 30 g’s.  The 
range of the accelerometer needs to be wide enough to ensure the system 
does not saturate at low g’s. 

 
For Rev. A, it was decided to use an Analog Devices ADXL250 dual axis 
accelerometer. The component is small in size, measuring a mere 0.4” x 0.3”.  It 
possesses the ability to measure accelerations along both the X and Y axis, 
thereby enabling the system to detect both frontal and side impacts. Moreover, 
the accelerometer has a range of  +/- 50 g. Since Rev. A is concerned with 
crashes to about 30 g, the system is in no danger of saturating. 
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Since Rev. A has been limited to the detection of frontal crashes, readings from 
the accelerometer are only considered along the X-direction. The process can be 
modified, however, to allow for inclusion of readings along the Y-direction.   
 
 
Sample-and-hold Chip 
 
The A/D converter is continuously connected to the onboard accelerometer.  
However, the A/D converter samples the accelerometer only at discrete time 
intervals.  In addition, the analog-to-digital conversion process requires a finite 
amount of time. Since the voltage inputs to the A/D will change continuously, 
failure to “hold” a voltage sample during the A/D process may skew the data.  To 
rectify such an error, the SMP04E (which is a sample & hold chip) is used 
between the accelerometer and the A/D unit.  This will ensure all data points are 
properly recorded during the detection of a crash.  Moreover, by setting a high 
sample rate (1000 times per second), we can account for the discreteness of the 
data. 
 
 
A/D Converter (ADC) 
 
The ACN uses an external voltage comparator to compare readings from the 
accelerometer to certain threshold voltage values. Whenever the voltage 
exceeds the threshold, the ADC chip (ADC0809CCNA) sends an interrupt signal 
to the microcontroller, which processes this data to determine if a crash has 
occurred or not. The ADC has 8 analog input channels. Using the address latch 
in the ADC, the desired input can be converted to an 8-bit digital stream.  The 
stream is then assigned to the data bus and read to a particular address location 
on the micro-controller (the address used is 0x40C1). This acceleration data is 
stored in the RAM (Random Access Memory) in the form of a circular buffer of 
size 128. If the micro-controller detects a crash, the contents of the buffer are 
written out to the RS-232 output from where they can later be acquired by an 
external device. The ‘C’ code for this program is shown in the file “A_DACN.cpp,” 
which is included in Appendix C at the end of this report. 
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Microcontroller 
 

 
 

Figure 5-1. Z-World Microcontroller 
 
 
 
A Z-World CM7200 microcontroller was used for Rev. A. The specifications are 
as follows: 
 
Size 1.8” x 2.05” 
Microprocessor Z180 running at 9.216 MHz 
SRAM 32 K 
EPROM 128K flash EPROM 
I/O 
 

2 Serial Ports 
2 DMA Channels 
2 Programmable Timers 

 
 
One of the main reasons that this microcontroller was chosen was the support it 
offered for programming in Dynamic C, which is a variant of traditional C.  This 
along with the vast library support offered by Z-World has helped speed up 
development time. 
 
The microprocessor used in Rev. B is the PIC17C756A processor. It has a clock 
speed of 33 MHz and is widely used in industry. The main features of the PIC 
chip as listed in the user manual are as follows: 
 

Speed 33 MHz 
Size 1.65” x 2.34” (68 pin PLCC) 
Approx Price $10.00 
I/O 2 USART interfaces 
Timers 4 + watchdog timer 
A/D converter 12 channel 10-bit ADC 
Brown-out Yes 
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reset  
SRAM 902 bytes 
EPROM None 

 
One of the main advantages of using the PIC micro-controller is that it is much 
less expensive than the Z-World processor. This makes it more suitable for 
applications such as the ACN where the cost of the final product is important. 
Additionally, the PIC17C756A has a 10-bit A/D converter which can be used to 
take in data directly from the accelerometer. This eliminates the need for an 
external ADC and reduces valuable board space requirements leading to a less 
expensive, more compact final product.  Just as with the Z-World processor, the 
PIC chip uses C, a widely used programming language.  
 
 
Functionality 
 
As mentioned earlier, the Rev. A microcontroller receives input from the A/D 
converter to a specific memory location (0x4104).  The micro-controller then 
assigns a value of ‘1’ to this address. This assignment serves as instruction to 
the ADC to hold the voltage sample that it currently sees on its X-axis input. 
Following this, a value of ‘0’ is written to the address 0x40C1, which initiates 
analog to digital conversion. When the conversion is completed, the ADC sends 
an interrupt signal to the microcontroller. It should be noted that the value on the 
data bus will hence represent the acceleration reading at that particular instant of 
time. After the interrupt signal, a value of ‘1’ is reassigned to the address 0x4104.  
This tells the ADC to release the held value of voltage. The acceleration reading 
acquired by the micro-controller is then stored in the circular data buffer. It is 
compared with preceding values to ascertain whether a crash has occurred or 
not. If a crash is detected, the data buffer is written out through the 
microcontroller’s serial I/O channel; if no crash has occurred, the above loop is 
repeated.  The ‘C’ code for algorithm is shown in the file “crastest.cpp,” included 
in Appendix C at the end of this report. 
 
The microcontroller continuously logs acceleration values from the accelerometer 
every millisecond.  It monitors the data in 40 millisecond pieces to determine if a 
crash has occurred.  It also updates the vehicle’s location from the GPS unit 
every second.  The software implemented for this is primarily interrupt-driven.  
Both the A/D unit and the GPS unit generate interrupts when the microcontroller 
needs to read a value.  In the event that the microcontroller detects that a crash 
has occurred, it proceeds to wake up the wireless modem from sleep mode, and 
instructs it to begin emergency transmissions. 
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Crash Site Location Subsystem 
 
 
GPS System 
 
System Description 
 
GPS is one of the only systems available today that can pinpoint one’s exact 
position on the earth anytime, in any weather, anywhere.   Twenty-four GPS 
satellites continuously orbit the earth at a height of 11,000 nautical miles. These 
satellites transmit signals that can be detected and used by anyone with a GPS 
receiver to determine one’s location with great precision. Consequently, the GPS 
system is an integral part of a crash notification system, as it is needed to 
determine the location of the vehicle during a crash. 
 
Various companies were researched before a GPS receiver was selected.  
These companies include Motorola (www.motorola.com), Trimble 
(www.trimble.com) and SiRF (www.sirf.com).  Important considerations in the 
purchase of the GPS receivers include their accuracy, locking time for a signal 
and their ruggedness to vibrations, g-force and so on.  All three companies have 
a host of GPS products that could be used for this application. 
 
After much consideration, the Trimble ACEII GPS core module was chosen for 
Rev. A.  Since the ACEII is a core module, it is designed for OEM applications.  
The specifications of this GPS module are as follows [Trimble, 1999]: 
 

 
Figure 5-2.  Trimble ACE-II GPS Unit 

 
Channels 8-channel continuous tracking receiver 
Update rate NMEA @ 1 Hz 
Accuracy 25 m (50%) without S/A 
Acquisition (typical) Cold start: < 130 seconds (90%) 

Warm start < 45 seconds (90%) 
Hot start: < 20 seconds (90%) 

Reacquisition after signal loss < 2 seconds (90%) 
Velocity 515 m/sec maximum  
Operating temp -40 C to +80 C 
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Power consumption Primary: 5 V DC, +/- 5% 
GPS board only; 155 mA, 0.78 watts 
With antenna: 180 mA, 0.9 watts  

I/O protocols 
 

TSIP (binary data) 
NMEA 0183 v2.1 (ASCII data) 
TAIP (ASCII data) 

 
The GPS board is capable of outputting coordinates using various I/O protocols.  
For our application, we will be using the NMEA protocol, as this protocol has 
been standardized.  One issue of concern here is the power consumption for this 
unit.  However, since the unit will be running off the car battery, this is not a major 
concern.  The acquisition times as well as the accuracy of this unit are 
reasonable. 
 
Functionality 
 
The GPS unit is triggered by the microcontroller as soon as the car is turned on.  
Within minutes, the GPS receiver locks onto the satellites and is able to pinpoint 
the location of the car.  Thereafter, the GPS unit updates the position of the 
vehicle every second as long as the car is on.  As a result, even if the GPS 
antenna is damaged and the satellite lock is lost during a crash, the 
microcontroller will have the position of the car to within a second before the 
crash.   
 
For testing purposes in Rev. A, the GPS output is read into a computer using RS-
232.  However, as the GPS actually outputs TTL logic levels, once the GPS unit 
is embedded into the system, no interface will be required between the GPS unit 
and the microprocessor. The ‘C’ code for this operation is shown in the file 
“CDPD_GPS.cpp,” included in Appendix C at the end of this report. 
 
Antennas 
 
A major concern related to the usage of GPS is its antenna. While special care 
can be taken to ensure to crashworthiness of the antenna, there is always the 
possibility that the antenna may be destroyed in a crash, thereby rendering the 
system useless. To combat any such issues, it was decided that the GPS unit 
should automatically update the vehicle location every second. As a result, even 
if the GPS antenna is lost in a crash, the system will still be able to transmit the 
last known position – which, given the sample rate, will be to within a second 
before the crash. Note that two antennas are required for the system: one fore 
the GPS, and one for CDPD communication.  For Rev. A, the two antennas 
received from the GPS and CDPD vendors were used in their modified form. 
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Rev. B 
To achieve lower costs, a Conexant Zodiac GPS receiver was used in Rev. B.  
The Zodiac receiver provides performance similar to the ACE-II receiver in a 
comparably sized package. 
 
 
Wireless Communication Subsystem 

 
 
Communication Technology 
 

 
Figure 5-3.  Novatel CDPD wireless modem 

 
There are a number of possible wireless technologies that can be used for the 
transmission of the vehicle’s location.  These technologies include Radio 
Frequency (RF), cellular and Cellular Digital Packet Data (CDPD) modems 
among others. Rev. A, uses a CDPD modem manufactured by Novatel Wireless.  
It is a 0.6 W full duplex wireless modem.  It supports maximum transfer rates of 
up to 19,200 bps and uses a mere 8 mA in sleep mode.  This is important 
because in a crash, if the ACN unit is operating on backup batteries, the system 
should use as little power as possible.   
 
While this approach seems sufficient, other possible communication means are 
possible and should be considered for a production system.  An important issue 
in determining the technology to use will be the available coverage for the given 
technology versus related cost.  While CDPD performs satisfactorily, it would 
require consumers to purchase a monthly plan in order to use the ACN.  Cellular 
seems to be advantageous in this sense because with the new E911 standards 
being enforced, any carrier that detects a 911 call must accept it.  This would 
save the consumer the cost of having to purchase a monthly plan of some sort 
with a cellular provider in order to use the crash notification system.  
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Antenna 
 
The cellular antenna is of even greater concern than the GPS antenna, for if this 
antenna is lost, no transmissions will be possible.  Multiple antennas for the 
cellular unit, possibly in the front and the back of the car would be advantageous, 
as this would give maximum antenna survivability in a crash.  However, there are 
other issues related to the number and location of antennas.  Wires must be run 
from each antenna to the crash notification box, and an excessive number of 
antennas would intensify the associated labor, thereby reducing the ease of 
installation of the system. Moreover, aesthetics is also a very important issue. 
The presence of antennas in safe but obscure locations might actually have an 
adverse affect on the marketability of the product as far as the consumer is 
concerned. More studies need to be conducted in this area to determine the 
consumer’s preferences. 
 
 
Power Requirements 
 
Rev. B 
 
The ACN power system consists of a power conditioning system of the various 
filters and regulators required to convert the 12V DC from the car battery into the 
necessary DC voltages vital to the internal circuitry. The power system also 
includes a back-up battery pack complete with its own charger and a mechanism 
for switching between primary and back-up power consumption modes. 
 
All of the circuitry relies on 5V DC with the exception of the CDPD modem for 
which 3.6V DC must be supplied. In addition, a 5V analog reference is needed 
for the A/D converter onboard the microcontroller. To provide each of these 
required voltage levels, a voltage regulator is used. Each regulator is supported 
by an EMI (electromagnetic interference) filter and bypass and bulk capacitors. 
An LM2940 linear voltage regulator provides the 5V DC supply, while an LM4040 
provides the 5V analog reference. An LT1098 sources the 3.6V DC supply. 
 
The back-up battery system is composed of 5AA NiCd batteries and the 
supporting charge system. Each battery has a cell voltage of 1.2V giving the total 
battery pack a voltage of 6V. The 12V input from the car battery and the battery 
pack outputs are both connected through power diodes to the to the inputs of the 
three regulators. When the 12V from the car battery is removed, the battery pack 
diode becomes forward biased and continues delivering power to the regulators. 
Specifically, Schottky diodes are used such that there will be a minimal voltage 
drop across the diodes. 
 
A p-MOS switch, installed between the battery pack and its diode, is the means 
for switching battery pack power into and out of the rest of the circuit. The p-MOS 
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switch is closed when presented with 0V at its gate and open when 5V is present 
at the gate. In this way, battery pack power is conserved when not needed.  
 
Under operating conditions, there are two circumstances that would result in the 
loss of the 12V supply to the circuit. Either the car has been turned off, or the car 
battery has been disconnected as the result of a crash. When the microcontroller 
senses the loss of the 12V supply, it checks to see if it is a valid crash state. If it 
is not, the microcontroller leaves the p-MOS switch open and the battery pack 
does not supply power to the circuit (system shutdown). If the microcontroller is 
in a valid crash state, the p-MOS switch is closed and the battery pack provides 
power to the circuit so that there is still power to continue transmitting the crash 
coordinates. 
 
The actual control of the p-MOS switch is accomplished through the use of a D-
type flip-flop. The clock and the D input are directly connected to port D of the 
microcontroller. A state change operation in the D-type flip-flop requires two 
occurrences. First, the data bit at the D input must be set (0V for on, 5V for off). 
Second, the clock must receive a rising edge. On start-up, the microcontroller 
sets the output of the D-type flip-flop to 0V, closing the p-MOS switch, and 
checks to be sure that back-up power will be available in the event of 12V supply 
loss. To prevent any leakage current from flowing into the microcontroller, 10kΩ 
resistors are installed between the flip-flop inputs and the port D terminals. 
 
As stated previously, the battery pack is supported by a charging network. The 
MAXIM 1640 charging chip is employed to PWM (pulse width modulate) a 1mH 
inductor to provide a constant current level for charging the battery pack. The 
charging chip has a two-bit interface with the microcontroller at port C. This 
allows the charging mode to be set by the microcontroller as outlined in the 
following table: 
 

Table 5-1.  Charging Modes 
 

D1 D0 Mode Output Current (A) 
0 0 Off 0 
0 1 Top-Off VSET/(13.3Rsense) 
1 0 Pulse-Trickle VSET/(13.3Rsense) 

12.5% Duty Cycle 
1 1 Fast Charge VSET/(13.3Rsense) 

 
The only mode that will be used in this design is the pulse-trickle mode, where 
VSET= 1.145V and Rsense= 0.56Ω so the output current is 154mA with a 12.5% 
duty cycle. This mode can be set during start-up of the microcontroller. 
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Conclusion 
 
Figure 5-4 shows a photograph of the completed Rev. A prototype.  Figure 5-5 
presents a overall schematic of the system.  Table 5-1 provides cost estimates 
for the Rev. A system.  A similar calculation of costs for Rev. B estimated Mobile 
Unit costs in quantities of 1000 at $400-450 per unit. 
 

 
 
 
 

Figure 5-4.  Completed ACN Rev. A unit 
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Figure 5-5.  Basic Schematic of ANJEL Mobile Unit, Rev. A 
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Table 5-2.  Cost for ANJEL Mobile Unit, Rev. A 
 
ACCEL Bill of Materials                     acn_design_b1.sch 
============================================================================================================================ 
Count  ComponentName   RefDes          PatternName     Value           Description        Cost ($) 
------ --------------- --------------- --------------- --------------- ----------------------------------------------------- 
     1 CM7200          U1          CM7200 Core module (Z180)         99.00 
     1 EXPEDITE_MODEM  H2              IDC26M                        Novatel Expedite Modem         230.00 
     1 ANTENNA CABLE                                            Modem Antenna Cable          19.99 
     1 GPS_ACEII       U3              IDC8M_2MM                        GPS Unit                       160.00                
     1 MAGMOUNT ANTENNA                                              GPS Unit Antenna                      45.00                
 
     1 74HCT02         U9              DIP14                            Quad 2-Input NOR    0.39 
     1 74HCT32         U13             DIP14                            Quad 2-Input OR    0.41 
     2 LMC662          U22, U25        DIP8                             Dual Operational OpAmp    3.26 
     1 LP339NA         U19             DIP14                            Ultra-Low Power Dual Comparator  1.40 
     1 MAX232          U2              DIP16                            RS-232 Transciever    3.31 
     1 74HCT259        U12             DIP16                            8-Bit Addressable Latch   0.85 
     1 74HCT374        U8              DIP20                            Octal D-Type Register    0.83 
     1 74HCT541        U24             DIP20                            Octal Buffer/Line Driver   1.05 
     2 74LVX4245       U20, U23        SOIC_24                             3.3V/5V Level Shifter                  3.34 
 
     1 V33ZA2          U30             V33ZA2             MOV - 26 V     0.54 
     1 LT1086          U15             TO-220                        3.6V/1.5A Low Drpt. Regulator   3.75 
     1 LM2940          U16             TO-220                         5V/1A Low Drpt. Regulator   2.45 
     1 NJM7809         U17             TO-220                        9V/1.5A Regulator    0.63 
     1 LM4040          U14             TO-92                  5V Precision Reference    3.47 
     3 EMI_FILTER      L1, L2, L3      SMT             10000pF             10000pf/50V EMI Filter    2.10 
     1 IND             L5              IND400          275 uH           High Current Toroid    7.75 
     1 1N5404          D1              267_03                      400V/3A Silicon Rectifier   0.05 
 
     1 ADC0809CCNA     U4              DIP28                             8 Bit uP Compatible A/D   6.90 
     1 ADXL250_SOP     U7              SOIC_14                             Dual Axis Accelerometer  23.94 
     1 SMP04           U5              DIP16       Sample & Hold     8.15 
     1 LM34         U21            TO-92                   Temperature Sensor     8.44 
     1 MX7528          U26             DIP20                            DAC Unit     7.11 
     1 MXO45           U31             DIP8                             Crystal Oscillator (1 MHz)   2.78 
 
     2 CAP100          C2, C3          CAP100          10 pF            10 pF/100V Ceramic Capacitor   0.38 
    29 CAP200          C4,             CAP200          0.1 uF            0.1 uF/50V Ceramic Capacitor   3.48 
                       C5, C6, C7, C8,                                                              
                       C9, C10, C11, C12,                                                             
                       C13, C14, C15, C16,                                                             
                       C17, C18, C19, C20,  
                       C21, C24, C25, C26,  
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                       C29, C31, C35, C37,  
                       C39, C42, C43, C45 
     5 POLCAP          C32, C34, C41   CAP100RP        1 uF             1 uF/16V Tantalum    1.20 
                       C44, C49                                                             
     2 CAP_SMT_10UF    C48, C50        CAP_SMT_B       10 uF            10uF/16V Alum Elec. SMT   0.62 
     2 CAP_SMT_20UF    C27, C33        CAP_SMT_C       20 uF            20uF/16V Alum Elec. SMT   0.72 
     1 CAP_SMT_33UF    U27             CAP_SMT_D       33 uF            33uF/16V Alum Elec. SMT   0.42 
     6 CAP_SMT_100UF   C22, C23, C30,  CAP_SMT_G      100 uF            100uF/35V Alum Elec. SMT   4.80 
                       C36, C46, C47 
     3 RES400          R6, R7, R8      RES400          10k              Resistor 1/4W, 5%                      0.18 
     1 RES500          R1              RES500          400              Resistor 1/4W, 5%                 0.06 
    24 TEST_POINT      TP1, TP2, TP3,  TEST_POINT                       Test Points     3.52 
                       TP4, TP5, TP6,  
                       TP7, TP8, TP9,  
                       TP10, TP11, TP12, 
                       TP13, TP14, TP15 
                       TP16, TP17, TP18 
                       TP19, TP20, TP21 
                       TP22, TP23, TP24 
 
     3 JUMPER          H3, H4, H5      IDC8M_2MM                           2mm 8 pin Header    2.49 
     1 CM7000          U1              CONN40M                       40 Pin Connector for CM7200   3.63 
 
     1 26PIN_HEADER    H1              IDC26F                  26 Pin Header for External Box  1.66      
     1 26PIN_CONN              26 Pin Connector for External Box  2.07 
     1 93F1233                     Receptacle for outer box  30.40 
     1 91F8568                     Plug for outer box   58.64 
     1 93F1233                     Cable clamp for outer box   6.42 
 
     3                             Heat Sink – TO220     0.96 
     6          Backup battery (1.2 V, 600 mAHr)  18.00 
 
         SUB-TOTAL FOR ACN UNIT    786.54  
 
     3 906-3174                     Square post receptacle    10.89 
     1 EG1957         3 pos switch     5.07 
     1 226-1011        Switch knob     4.55 
     1 APPP-001        Cigarette Adapter plug    2.25 
     1 EG1500         Rocker switch (Power)    1.78 
 
         SUB-TOTAL FOR DEV UNIT          24.54  
 
                 
         TOTAL COST FOR ACN PROTOTYPE   811.08  
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ADDITIONAL COSTS INCLUDE PCB FABRICATION, RAW MATERIAL AND OTHER MECHANICAL COSTS (WASHERS, SCREWS, ETC.) 
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6.   BASE STATION SYSTEM DESCRIPTION  
 
In the event of a crash, the Mobile Unit will automatically notify the Base Station 
of the crash via a wireless communications link.  The functions of the Base 
Station system are to (1) receive the simulated emergency call from the Mobile 
Unit, (2) retrieve GPS data and crash severity as transmitted by the Mobile Unit, 
and (3) display the location and severity of the simulated crash using 
computerized maps for Emergency Response Team dispatch.   Design concerns 
include how best to present crash location and severity to the Base Station 
operators, and how to ensure that large numbers of calls can be handled 
simultaneously. 
 
The discussion below will detail the Crash Notification Message Content, 
approaches for Crash location mapping, the wireless web communication 
strategy, and the software implementation. 
 
 
Message Content 
 
After detecting a crash, the Mobile Unit must transmit a message to the Base 
Station which describes the crash location and severity.  Knowledge of the crash 
location allows the EMS center to dispatch EMS crews to rescue the crash 
victim. Knowledge of the crash severity provides the EMS center with an early 
snapshot of the seriousness and potential injury consequences of the accident.  
The message to the Base Station should include both these data facets as well 
as information detailing the time of the crash and a description of the car.  Crash 
location can be as straightforward as the GPS location longitude and latitude.  
Crash severity should be provided for each crash sensor, and can be either the 
delta-velocity or the crash pulse along each axis.  It should be noted that while 
inclusion of the crash pulse requires transmission of a longer message, the crash 
pulse typically provides sufficient information to infer whether the car struck a 
tree or another car (which may require additional EMS personnel).  Inclusion of 
crash severity for each axis allows the Base Station to distinguish between 
frontal and the potentially more serious side impacts. 
 
Crash Location 
The Crash Location is the single most important data facet transmitted by the 
Mobile Unit.  In order to extract meaning from the GPS messages sent from the 
Mobile Unit, the form of the data (i.e.: binary, ASCII, delimited, continuous, etc) 
and the interface it would require (i.e.: modem, serial port, etc) must be clearly 
defined.  Current GPS devices provide several different options for GPS 
coordinate output.  The most widely used format, however, is that set by the 
National Marine Electronics Association (NMEA).  Of the three versions of the 
NMEA standards that were found, the NMEA 0183 was the most recent and 
workable.  This standard, originally set for marine instrumentation, dictates both a 
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data and interface protocol. The NMEA transmissions consist of strings of 
printable ASCII characters, carriage returns, and line feeds. Comma delimited 
“sentences”, such as the one in Figure 6-1, are sent in succession through the 
serial port, typically at 4800 baud.  [Trimble, 1999; Conexant, 1999]   
 
 
  

 
 
 
 
 
 
 
 
 

 
 
      
       

$$GGPPGGLLLL,,33774444..995533,,NN,,1122222255..331199,,WW,,118822222200,,

37 degrees 
44.953 minutes 
North of equator A = valid 

V=invalid  

time 
18:22:20 

122 degrees 
25.319 minutes 

West of prime meridian Checksum 
(cumulative XOR sum  
that the base station should  
get if sentence is intact) 

  

string 
type  

device 
type 

indicates NMEA sentence  

Figure 6-1.  An NMEA 0183 sentence 
 
A dollar sign indicates the start of each new sentence. It is followed by two letters 
indicating the transmitting device (in this case GP indicates a Global Positioning 
device) and then three more letters representing the sentence type.  Each 
sentence type has specific fields of known length, separated by commas that 
remain in place even when a field is left empty. The GLL sentence shown here 
carries information about latitude in the second and third comma separated fields 
and longitude in the fourth and fifth fields.   Initially, the first latitude field looks as 
if it is divided into two sections at the decimal point, when in fact, the division 
occurs after the second digit.  This makes it read “37 degrees and 44.953 
minutes.”  The field directly following that indicates whether it is north or south of 
the equator (in this case, ‘N’ is indicative of north). The longitude fields behave in 
a similar way with the only major difference being that the separation comes after 
the third digit.  So, for example, the longitude in fig. 6-1 reads “122 degrees and 
25.319 minutes west of the Greenwich meridian.”  
 
Crash Severity 
One of the parameters most crucial to predicting crash victim injury level is crash 
severity.  Crash severity is a direct measure of the mechanical forces which lead 
to human injury.  The most important measure of impact severity is the crash 
acceleration / deceleration time history – frequently referred to simply as the 
crash pulse.  If the crash pulse is known, both delta-V and other impact severity 
measurements such as average acceleration level can be calculated.   
Measurement of the crash pulse is a key instrumentation requirement of the 
majority of full systems laboratory crash tests.  
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Crash severity is computed by the Mobile Unit by analysis of the crash pulse 
read by the onboard crash sensors.  It is this crash severity, in fact, which is 
evaluated to determine whether to initiate the emergency call from the Mobile 
Unit to the Base Station.  Initial tests of the Mobile Unit have included the crash 
location alone.  Future systems will include the delta-V and/or the crash pulse as 
read from each crash sensor.  In these future systems, the Base Station operator 
will be presented with a display, not only of where the collision took place, but 
also with a separate display which shows the crash severity.  Knowing the crash 
severity, the operator will then have an early warning of the expected level of 
injuries at the crash site. 
 
Other Information 
 
The message may also contain supplemental information to better identify the 
car to EMS personnel.  Fields such as the car VIN, make, model, model year, 
and car color should be considered for future systems.  It should be noted that 
many of these fields can be determined from the VIN.  If VIN is available from the 
Mobile Unit message, future systems may be able to tie into state Vehicle 
Registration databases to identify the owner of the vehicle to expedite notification 
of family members. 
 
 
 
Crash Location Mapping 
 
Upon receipt of an emergency message from the field, the Base Station will 
present a map to the operator showing the location of the crash site.  Numerous 
commercial GIS mapping products, e.g., ArcView, exist for providing this 
function.  However, these packages tend to be relatively expensive.   As a less 
expensive alternative, several consumer mapping products were investigated for 
their ability to provide this function.   None of these packages are of course 
designed for Automated Crash Notification.  However, they do provide a 
database of street-level maps for integration into a Base Station software 
package was written especially for this project. 
 
Of these consumer products, the most promising programs for the Base Station 
application were Street Atlas, Version 8.0 by DeLorme and Mappoint 2002 by 
Microsoft.  Both products provided the street level detail required for the Base 
Station operator to direct EMS teams to a crash site, and both products were 
capable of being controlled by an external program.  Street Atlas is the mapping 
product used by the APRS-SA, shareware amateur packet radio location server.  
Mappoint 2002 provides a suite of Active-X controls which allow external 
program access to mapping display functions. 
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Wireless Communication Subsystem Design 
 
One key enhancement of this system over existing ACN concepts is Mobile Unit-
to-Base Station communication over the wireless web.  Existing ACN systems 
are typically based upon circuit-switched communication in which the wireless 
network assigns a dedicated frequency to the call between the car and the Base 
Station. There are only a limited number of these frequencies.  When they are 
expended, as many mobile phone users have experienced, the result is that 
phone calls do not connect. In the Rowan system, on the other hand, each car 
has a unique IP address and wireless communication is conducted using packet 
switching as shown in Figure 6-2.  In packet-switching, the signal is divided up 
into individual packets of data, tagged with the address of the destination, and 
transmitted over a common channel shared with other users to the destination 
computer which reassembles the message.  The result is a continuous Web 
connection between the Mobile Unit and the Base Station which avoids the dial-
up delays which are inherent in circuit-switched designs.  Unlike the circuit-
switched design which has the potential for phone call contention problems, the 
number of accidents which can be handled by a Web based ACN Base Station 
is, in general, limited primarily by the bandwidth of the Base Station Internet 
connection. 
 
 
 

 ACN Server 
(Base Station) 

CDPD (Wireless IP) 

ACN Clients 
(Mobile Units)

 
 

Figure 6-2.  Automated Crash Notification via Wireless Web 
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Base Station 
 
A Research Prototype Base Station was developed which implements the 
functional requirements described above.  As shown in Figure 6-3, the Research 
Prototype consisted of a Dell Dimension 600 MHz Pentium III running Windows 
98 equipped with a high speed Internet connection.  In the event of a crash, the 
Mobile Unit and Base Station will communicate using wireless Cellular Digital 
Packet Data (CDPD) technology over analog cellular networks.  CDPD is a new 
wireless Web access technology with widespread coverage in the eastern United 
States.  CDPD allows a direct TCP/IP link to be established between the Mobile 
Unit and Base Station.  Using CDPD, the Base Station is designed as a Web 
Server, and the Mobile Unit reports a crash to the Server via a wireless Internet 
connection.  This approach allows the Base Station to monitor multiple vehicles 
involved in crashes without the requirement for banks of dedicated phone lines. 
When the Base Station receives a message from a Mobile Unit, the Base Station 
displays the crash location and severity on a commercially available mapping 
product. 
 

 
 
 

Figure 6-3.  Base Station:  Research Prototype 
 
The system will use Cellular Digital Packet Data  (CDPD), sometimes referred to 
as a Wireless IP connection, to transmit data between the Mobile Unit and the 
Base Station.  CDPD is a cutting edge wireless communications protocol which 
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allows direct connection of remote devices to the Internet.  In addition to CDPD, 
the Mobile Unit has been designed for adaptation to other wireless 
communications options, including CDMA (Code Division Multiple Access) Data, 
GSM (Global System for Mobile Communications), and emerging third 
generation wireless protocols, e.g. GPRS (General Packet Radio Service) and 
W-CDMA (Wideband Code Division Multiple Access). 
 
 
Software Implementation 
 
The Research Prototype Base Station was implemented using the APRS-SA 
Packet Radio Location Software.  APRS-SA is a shareware software package 
which automatically plots the location of a transmitted GPS string on maps 
displayed under Street Atlas 8.0.  Figure 6-4 shows a map displayed by the Base 
Station running APRS-SA during a tracking test of the Mobile Unit near Rowan 
University. 
 

 
 

Figure 6-4.  Sample Base Station Display 
 
Normally the APRS-SA client software receives GPS strings from an APRS 
server via the TCP/IP protocol.  In setting up APRS-SA, the user is given the 
option to select their APRS Server of choice.  For the prototype Base Station, our 
approach was to develop an APRS Server look-a-like that received messages 
from the Mobile Units from a UDP port and served those messages to the APRS-
SA client from a TCP/IP port.  The messages, which were passed to APRS-SA, 
were formatted by our program to look like messages which would normally be 
received via packet radio.  This approach allowed the APRS-SA program to 
believe that it was receiving packet radio messages when in actually it was 
receiving messages from a Mobile Unit. 
 

 32  



 

The UDP protocol was selected for the wireless communications link between 
the Mobile Unit and the Base Station instead of the more typical TCP/IP.   The 
UDP protocol does not require verification of the transmitted message packets, 
and hence is a faster protocol than TCP/IP.  This approach removes the 
computational burden of verification on the limited computing resources of the 
Mobile Unit, and allows the Mobile Unit to transmit repeatedly to the Base Station 
without having to pause after each transmission and wait for an 
acknowledgement.   
 
The Base Station software was initially written as a Perl script, and later rewritten 
as a Java application.  The TCP/IP port was set as 9110, and the UDP port was 
9111.  The code for both versions is provided as an appendix to this report. 
 
 
Future Work 
 
The long-term objective of the ACN system is to connect the Mobile Units with 
existing or expanded 911 systems.  However, this effort will require coordination 
with existing 911 system operators and careful attention to how best to present 
crash information graphically to operators who are more accustomed to receiving 
voice-only calls.  The Base Station developed here will provide an early 
evaluation of possible 911 operator user interfaces.  The Base Station may also 
be suitable for limited field testing of the system for captive fleets such as the 
State Police or NJDOT vehicles. 
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7.    TESTING 
 
To evaluate the performance of the ANJEL system, the Mobile Unit was 
subjected to a battery of tests during development.  The tests included both non-
impact vehicle tracking test as well as low-severity impact tests.  This section 
describes the test strategy, test procedures, test apparatus, and test results. 
 
Tracking Test 
 
To check the communication between the Mobile Unit and the Base Station, the 
completed prototype was tested in tracking mode.  In this test, the Mobile Unit 
and associated antennas were mounted in a car, and the Mobile Unit was 
switched to its special diagnostic-tracking mode.  When in tracking mode, the 
Mobile Unit automatically reads the GPS and transmits its location every second.  
Note that tracking mode is a research diagnostic only: this mode will not be 
included in the production prototype.  During the test, the car with installed 
Mobile Unit was driven on a 10-mile circuit around Rowan University.   From the 
continuously updated map on the Base Station, we were able to track the student 
team as they drove from street to street, and were able to even identify which lot 
they parked in upon their return. 
 
Low-Severity Impact Testing Objectives 
 
The ANJEL Mobile Unit was tested in an impact test for two purposes: 
 

(i) To check if the unit can detect a crash, 
(ii) To ensure the system can survive a crash. 

 
The goal was to evaluate the performance of the Mobile Unit in low-severity 
crashes.  For this project, low severity was defined as that impact speed at which 
the airbag would normally deploy – approximately 12-15 mph.  Higher severity 
crashes, such as the NHTSA full-barrier 30 mph crash tests are expected to 
result in peak decelerations of 30G or higher.  Although the contractual 
requirements of the current project are limited to evaluation of the Mobile Unit at 
low-severity crashes, it is recommended that follow-on projects test the unit in 
higher-severity crash tests. 
 
 
Micro-drop Test 
 
A micro-drop tower design was chosen as the first impactor because of the 
simplicity of its design and ease of fabrication.  The micro-drop tower, shown in 
figure 7-1, was constructed by cantilevering a rope and pulley system from the 
top of the Rowan Drop Tower.  The Rowan Drop Tower, normally used in aircraft 
seat crash testing, allows freefall drops from heights up to 6 meters.  The Mobile 
Unit enclosure was fixed to a wooden platform which could be hoisted to the 
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desired drop height via a rope-pulley system.  During free fall, the platform and 
attached Mobile Unit was constrained by four guide cables which passed through 
four eye hooks attached to the corners of the platform.  
 
 

 
 
 

Figure 7-1.  Micro-drop Tower Apparatus 
 
 
 
Instrumentation 
 
The fixture holding the Mobile Unit during testing was instrumented with an 
external accelerometer as a check against the internal Mobile Unit 
accelerometer.  The major challenge was determining a location for the 
accelerometer so it would not get damaged. A second concern was how the 
accelerometer on a moving system would be connected to a stationary data 
acquisition system.  The accelerometer required a constant power source and a 
cable for transmitting data back to the A/D board.  The cable was mounted in a 
manner to avoid tangling during the drop tests. 
 
Experimental Setup 
 
The accelerometer was connected to a signal-conditioning unit through the use 
of an umbilical cable.  The signal-conditioning unit provided the required 
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excitation voltage to the accelerometer.  The signal-conditioning system also 
provided signal filtering and amplification prior to input to the data-acquisition 
board.  To implement the data acquisition system a PC was used with the 
DasyLab data acquisition software.   
 
 
Procedure 
 
The experimental procedure was drop the plate with accelerometer, from various 
heights on to different surfaces at the base.  The plate was dropped from three 
different heights: six feet, eleven feet, and seventeen feet.  Three different 
densities of foam, ranging from very soft to very dense, were used for the impact 
surface.  A total of eighteen drops were performed.  To evaluate test 
repeatability, two drops were performed for each height onto each of the foams. 
During testing, the accelerometer plate was pulled up to the required height, and 
the data acquisition system was started.  The plate was then allowed to freefall 
onto the foam.  The acceleration was recorded for each drop and plotted versus 
time.   
 
 
Results 
 
As shown in Figure 7-2, the drop tower was able to produce realistic 
accelerations when tested with the Mobile Unit enclosure.  However, while the 
absolute acceleration levels were realistic, the results of the test were not entirely 
representative of an actual crash.  For example, Figure 7-3 shows the results of a 
1999 Dodge Intrepid frontal crash test.  Comparison of the two types of tests 
shows that while the acceleration levels are similar the pulse shapes are quite 
different.  This would suggest that the way the forces are applied to the test 
articles differs in some manner.  Moreover, in the drop test, the impact speed is 
limited to a terminal velocity of approximately 20 miles per hour – which is at the 
lower range of real world injury-producing automotive crashes.  Consequently, a 
second impactor was explored to attempt to produce more “real world” impact 
conditions. 
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Figure 7-2.  Drop tower results. 
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Mini-Sled Impactor System 
 
To produce higher speed impacts, a bench-scale pneumatically driven sled was 
designed and evaluated for possible Mobile Unit testing.  To accelerate the 
Mobile Unit enclosure, the casing was mounted on a carriage placed between 
two guiding rails as shown in Figure 7-4.  A pneumatic cylinder was selected to 
generate sufficiently high forces to rapidly accelerate the Mobile Unit at target 
speeds up to 35 mph.  Once the ACN unit had been accelerated to sufficiently 
high speeds, it was crashed into a stationary wall at the end of the slide. The 
design and construction of the required apparatus is described below: 
 
 
 

 
Figure 7-4.  Concept Model of the Benchscale Impactor 

 
Air Cylinder 
In the design of the impactor, the biggest challenge was discovering how to 
accelerate the Mobile Unit until it reached a speed of about 35-mph. An air 
cylinder was used to accomplish this task.  In choosing an air cylinder there were 
two selection factors: the bore size of the cylinder, and the stroke length of the 
piston.  In the current design, the stroke length was fixed at 12 in, and the bore 
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size was adjusted accordingly. The major factor affecting the bore size would be 
the force to accelerate the load of the carriage.  Using Newton’s second law 
(F=ma), with an assumed Mobile Unit mass of 7lbm and an acceleration of 
12454.28in/s2 (30 G’s), the required force was found to be 225.6 lbf. In other 
words, the air cylinder must be able to produce a force of at least 225 lbf. 
 
The next task was accounting for any losses in the system.  The work 
requirements for the pneumatic cylinder were computed as follows:  
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To account for frictional and other losses in the system, a cylinder work effiency 
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However, in addition to accelerating the carriage up to 30g and overcoming 
frictional losses inside the piston, the cylinder must also ensure that the air can 
be evacuated prior to the next stroke (any backflow would prevent the process 
from being polytropic, a key assumption in the analysis above).  Consequently, a 
larger 3-inch bore diameter cylinder was used to ensure adequacy over the test.   
Figure 7-5 shows the air cylinder used for the apparatus. 
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Figure 7-5.  Air cylinder with a 3” bore diameter 
 
Despite the conservative design described above, initial testing of the apparatus 
revealed insufficient acceleration of the Mobile Unit.  To improve the impactor 
performance, the inside of the front plate was bored out to enhance air escape 
from the non-pressurized side of the cylinder.  This allowed the cylinder to let out 
the maximum amount of air, and completed the construction of a fast acting 
cylinder. 
 
 
 

 

Figure 7-6.  Test stand with mounted piston 

 40  



 

 

Figure 7-7.  Rails mounted to test stand 
 

 

Figure 7-8.  Carriage on rail system 
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Test Stand and Rails 

The test stand is one of the most integral parts of the impactor setup.  It is 
approximately 11 feet long, thereby allowing for 10-foot rails and a 1-foot wide 
cylinder. As shown in Figure 7-7, the test stand holds the cylinder in place and 
absorbs the recoil from firing. During testing, the test stand is constrained so that 
the platform does not slide along the floor.  Aluminum was chosen as the 
material of construction.  In order to ensure that the box experiences the proper 
acceleration forces, it is necessary to guide and support the box with as little 
interference as possible from the rails. Owing to its simplicity and ease of 
operation, a dry rail system was used.  For better lubrication, the rails were 
polished to a smooth finish.  To further reduce friction, Teflon pads were mounted 
on the inside of the carriage brackets.   
 
Carriage 

As shown in Figure 7-8, the carriage is supported by two brackets on either side. 
A common base connects the two brackets.  This platform is approximately 12 
inches long, and as wide as the rails dictate it to be. to reduce the friction 
between the support brackets and the polished rails, “felt” is glued to the inside.  
A wall is attached to the rear of the carriage so the ACN does not come in direct 
contact with the piston rod.  Moreover, at the end of the rails, there will be a wall 
so the carriage will not experience a “metal on metal” collision. 
 
 
Instrumentation 
 
The data acquisition system consisted of the following components: 
 

• Analog Device: ADXL150 single axis accelerometer (Figure 7-9) 
• Metraplex Series 300 signal-conditioning system 
• Iotech DBK11a screw terminal card 
• DasyLab data acquisition software 
• PC Workstation 

 
The carriage was instrumented with an ADXL150 single axis accelerometer.  The 
ADXL150 accelerometer was used to measure the acceleration experienced by 
the Mobile Unit during the impact.  This accelerometer was connected via an 
umbilical cable to the Metraplex signal conditioning system.  The signal 
conditioning system provides power for the accelerometer and amplifies the 
return signal.  The output from this device will then be fed to the Iotech DBK11A 
screw terminal card.  This is the device that will receive the conditioned, amplified 
signal, and in turn connect with the computer via a parallel port, sending the data 
to DasyLab. This data was then imported into Matlab for display.  Figure 7-10 
shows a block diagram of the complete system. 
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Figure 7-9.  Accelerometer mounted to testing plate 
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Figure 7-10.  Schematic for data acquisition 
 
Results 

After construction of the system, a series of twelve tests were conducted.   Tests 
were conducted with and without Teflon pads, and with and without the Mobile 
Unit Enclosure.  A table documenting all the tests is shown in Table 7-1.  An “X” 
denotes the use of the part, an “O” denotes the lack of the part. 
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Table 7-1.  List of Mini-Sled Tests Performed 
 

Trial Teflon 
Pads 

ACN 
Box 

1 O O 

2 O O 

3 O O 

4 X O 

5 X O 

6 X O 

7 X X 

8 X X 

39 X X 

10 O X 

11 O X 

12 O X 
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Figure 7-11.  Acceleration Pulses without the Mobile Unit Enclosure 
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Figure 7-12.  Acceleration Pulses with the Mobile Unit Enclosure 
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Graphs were obtained of the deceleration-time history of the carriage at the 
impact point at the end of the rails.  The first two graphs were taken without the 
Mobile Unit Enclosure (Figure 7-11).  The same tests were performed twice – 
first with the Teflon padding, then without.  These show that only about 8 g’s total 
acceleration was obtained.  Note that the use of Teflon pads produced only 
moderate increases in peak acceleration.  The procedure was then repeated with 
the ACN box (figure 7-12).  Figure 7-12 shows that similar results were obtained.  
In all cases, peak deceleration was below 10 G. 
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Figure 7-13.  Acceleration Pulse of the Air Piston 
 

In addition to these impact tests performed on the rails, tests were also 
performed on the air cylinder piston.  Figure 7-13 shows that the peak 
acceleration of the air cylinder piston was about 35 g’s.  The peak was attained 
early in the test when air cylinder pressure was at its highest.  As the piston shaft 
extended, the acceleration dropped back to zero as the cylinder air pressure 
dropped.  The entire event was observed to take place in approximately 35 
milliseconds.  
 
After tests on the Mobile Unit enclosure itself were completed, a test was 
performed with the Rev. A Mobile Unit in place.  When the Mobile Unit was 
plugged into the PC and slammed into the wall, the word “CRASH” appeared on 
the screen when appropriate, indicating the success of the system in detecting a 
crash.  Peak deceleration during the test was observed to be 9 Gs. 
 
Future Work 
Testing of the a Mini-Sled Impactor System showed the potential for improved 
performance, especially in three areas:  
 

• Rails Modifications.  If an air cushion were used to carry the system, 
friction could be greatly reduced.   
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• Carriage Modifications. Bearings and rollers/wheels should be added to 
facilitate motion of the Mobile Unit. 

 
• Air Cylinder Modifications.  To improve the speeds achieved, more air flow 

should be allowed to leave the piston on the outstroke. 
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8.   CONCLUSIONS 
 
This project has developed a Low-Cost Automated Crash Notification System for 
eventual field-testing on New Jersey highways.  The system was developed in 
response to national studies which show that nearly half of all traffic crash 
fatalities occur before the crash victim reaches a trauma center. Many of these 
deaths can be attributed to the inability of EMS personnel to locate and reach the 
victim during the so-called “Golden Hour” after the accident when emergency 
medical treatment is most effective.  The goal of this project was to dramatically 
reduce EMS response time by developing and testing an advanced in-vehicle 
system that automatically transmits the location and severity of a crash to EMS 
personnel.  Specific accomplishments of the project include: 
 
 

• The project has designed, developed, and tested a low cost functional 
system that combines wireless communications and Global Positioning 
Systems with a network of inexpensive sensors for crash detection.  The 
project has developed two Mobile Unit prototypes which have been 
demonstrated to communicate vehicle location to a remote Base Station 
via a Wireless Web communications link. 

 
• The project has developed a Base Station based upon commercially 

available mapping software which has been successfully demonstrated to 
communicate via wireless modem with Mobile Units in the field, receive 
vehicle coordinates from the Mobile Unit, and automatically indicate 
Mobile Unit location on the Base Station system. 

 
• Two impactors were developed for testing of the Mobile Unit:  (a) a Drop 

Tower and (b) a Pneumatic Benchscale Impactor.  Of the two the Drop 
Tower was found to be the more promising.  The Drop Tower was found 
capable of producing up to 100 G’s and produced crash pulse shapes 
which were observed to be similar to actual rigid barrier crash tests with 
production passenger cars.   

 
• In low severity impact tests, the research team has successfully tested the 

Mobile Unit at severities up to 9 G.  These tesst were designed to evaluate 
the survivability of the electronics to impact as well as testing the ability of 
the system to detect and report collisions of this magnitude.   
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9.   RECOMMENDATIONS 
 
This project has successfully demonstrated the feasibility of a Low-Cost 
Automated Crash Notification System.  The performance of both a Mobile Unit 
prototype and a prototype Base Station has been successfully tested in a series 
of laboratory low-severity impact tests.  Although system performance has shown 
unusual promise, it must be emphasized that the systems tests have been 
conducted solely in a controlled laboratory setting.  Prior to development of a 
production system, the following additional tasks are recommended: 
   

• Field Testing.  Future work should include a second research phase 
which will perform operational field testing of the ACN system.  A fleet test 
would evaluate the performance of the system in both crash and non-
crash modes, and would provide important consumer acceptance 
feedback from the motorists.  A fleet of 1000 ACN-equipped cars could be 
expected to incur approximately 10 collisions per year for evaluation of the 
system under crash conditions.  The location of the cars should be chosen 
to produce a fleet mix representative of the New Jersey’s mix of urban and 
rural highways.  Captive fleets such as those maintained by the New 
Jersey Department of Transportation or the New Jersey State Fleet would 
be ideal for such a field test. 

 
• Higher-severity impact testing.  Although the system has been 

demonstrated to be crashworthy in low-severity tests, we recommend that 
follow-on projects should conduct additional laboratory performance 
testing of the system at the higher impact severities attainable in staged 
crash tests and HyGe sled tests. 

 
• Integration of ACN into existing New Jersey Emergency Response 

Systems.  One of the most challenging and important questions 
confronting deployment of an Automated Crash Notification system is 
determining how to integrate an ACN system into existing 9-1-1 systems.  
Follow-on research should actively consult with the representatives of the 
emergency response community to address this issue.  

 
• Lower Cost Wireless Communication.  New 3rd Generation Wireless 

communications protocols will be introduced to the market in the coming 
months which should be actively investigated in follow-on studies.  
Currently, the Wireless Modem accounts for half the cost of the Mobile 
Unit.  These newer wireless protocols have the potential to tremendously 
wireless communication performance and further reduce the costs of the 
wireless link between the Mobile Unit and the Base Station.   

 
 

 49  



 

10.  REFERENCES 
 
 
1. National Highway Traffic Safety Administration, 1999 Fatality Analysis 

Reporting System, U.S. Department of Transportation (1999). 
 
2. National Highway Traffic Safety Administration, “Traffic Safety Facts 1999”, 

U.S. Department of Transportation (2000). 
 
3. Thomas, S.G., “Smart cars need fewer brains and more old-fashioned 

common sense”, U.S. News & World Report (February 14, 2000) 
 
4. Champion, HR, Augenstein, JS, Cushing, B, Digges, KH, Hunt, R, Larkin, R, 

Malliaris, AC, Sacco, WJ, and Siegel, JH, “Automatic Crash Notification: the 
Public Safety Component of the Intelligent Transportation System”, AirMed, 
(March/April 1998) 

 
5. Preziotti, G., Kanianthra, J., and Carter, A., “Enhancing Post-Crash Vehicle 

Safety through Automatic Collision Notification”, Proceedings of the 17th 
International Technical Conference on the Enhanced Safety of Vehicles, 
Amsterdam (June 2001) 

 
6. Mentzer, S. Sisame User’s Manual, National Highway Traffic Safety 

Administration (1999) 
 
7. Trimble Navigation Limited, ACE II GPS System Designer Manual (June 

1999) 
 
8. Conexant Systems, Zodiac GPS Receiver Family Designers’ Guide (February 

1999) 
 

 50  



 

Appendix A: 
SOURCE CODE FOR THE BASE STATION 

PROTOTYPE 
 
 

A.1 Base Station in Java 
 
Function.  The following stand-alone Java server received UDP messages from 
the Mobile Unit and served these messages from a TCP/IP socket to an APRS-
SA client. 
 
 
import java.net.*; 
import java.io.*; 
 
public class ACN_Server 
{ 
 
 public final static int MAX_PACKET_SIZE=65507; 
 
public static void main (String args[]) 
{ 
 
 System.out.println ("Base Station Server\n"); 
 
 String hostname="localhost"; 
 int port=8080; 
 byte[] buffer = new byte[MAX_PACKET_SIZE]; 
 
 
//*** Setup Datagram Socket. 
 try  
  { 
  DatagramSocket soc = new DatagramSocket (port); 
  DatagramPacket thePacket =  
   new DatagramPacket (buffer, buffer.length); 
 
 
 //*** Read keyboard messages and send them to the UDP Socket. 
  BufferedReader in = new BufferedReader (new 
InputStreamReader(System.in)); 
  while (true) 
   { 
   soc.receive (thePacket); 
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   String s = new String(thePacket.getData(), 0,  
    thePacket.getLength()); 
   System.out.println (thePacket.getAddress() 
    + " at port " + thePacket.getPort()  
    + " says " + s); 
   // reset the length for the next packet 
   thePacket.setLength(buffer.length); 
   } 
  } 
 catch (Exception e) 
  { 
  System.err.println (e); 
  } 
} 
 
} 
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A.2 Simulated Mobile Unit in Java 
 
Function.  The following code was developed to allow the Base Station to be 
tested from a simulated Mobile Unit.  The simulated Mobile Unit was a Java 
program running on a separate PC.  This program transmitted UDP messages 
containing GPS coordinates to the Base Station Server. 
 
 
import java.net.*; 
import java.io.*; 
 
public class Key2UDP 
{ 
public static void main (String args[]) 
{ 
 System.out.println ("Mobile Unit Simulator\n"); 
 
         String hostname="150.250.105.127";    // Address of ACN-Server 
 int port=8080; 
 
//*** Setup Datagram Socket. 
 try { 
  InetAddress dest = InetAddress.getByName (hostname); 
                System.out.println ("Destination: " + dest); 
  DatagramSocket soc = new DatagramSocket (); 
 
 //*** Read keyboard messages and send them to the UDP Socket. 

BufferedReader in = new BufferedReader (new 
InputStreamReader(System.in)); 
  while (true) 
   { 
   String msg = in.readLine(); 
   if (msg.equals(".")) break; 
   byte msgbytes[] = msg.getBytes(); 
   DatagramPacket theOutput =  
    new DatagramPacket (msgbytes, msgbytes.length, 
dest, port); 
   soc.send (theOutput); 
   } 
  } 
 catch (Exception e) 
  { 
  System.out.println (e); 
  } 
} 
} 
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A.3 Base Station Server in Perl 

 
 
#!/usr/bin/perl 
`mode COM2: BAUD=19200 PARITY=N DATA=8 RETRY=N STOP=1`; 
$COUNTER = 0; 
$logfile = 'C:/acn/crash.log'; 
$crashfile = 'c:/acn/crash.txt'; # Set to '2' when an alert happens 
$nemafile = 'c:/acn/gps.nmea';  # Logs all valid NEMA with GPS data 
 
$chr10 = chr (10); 
$chr13 = chr (13); 
 
 
 
# Takes a TCP connection, echos it back - but several now! 
use IO::Socket; 
use IO::Select; 
   open (LOGGER, ">>$logfile") or &log ('WARNING - unable to log status 
msgs'); 
    open (NMEA, ">>$nemafile") or &log ('WARNING - unable to log NEMA 
string'); 
$listener = IO::Socket::INET->new(Proto=>'tcp', LocalPort=>'9111', 
        Listen=>10, Timeout=>500)    # Normal connect timeout = 60 
  or die ('Can not open port 9111 for listening!'); 
 
$selector = new IO::Select ($listener); 
 
&log ("STARTUP: Listening to port 9111 TCP for APRS systems"); 
 
# Set up UDP port, Add to selector here 
 
$udp = IO::Socket::INET->new (LocalPort => '9110', Proto => 'udp', 
      Reuse=>1) 
      or die "Can not open UDP socket"; 
 
$selector->add($udp); 
&log ("STARTUP: Listening to port 9110 UDP for Alerts"); 
 
while (@consready = $selector->can_read) { 
   for my $connection (@consready) { 
       if ($connection == $listener) { # Is it a new TCP connection? 
          my $newconn = $connection->accept; 
 
        # Say hi to our new friend 
        $newconn->autoflush(1); 
        print $newconn "# ROWAN ECE ACN PROJECT EXPERMENTAL SYSTEM / 
APRS RELAY$chr13$chr10"; 
        $newip = $newconn->peerhost; 
        $port = $newconn->peerport; 
        $time = scalar(localtime); 
        &log ("INFO: TCP APRS Connection from $newip port $port"); 
 
 
         # Add new connection to selector 
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                $selector->add($newconn); 
 
       } elsif ($connection == $udp)  { # UDP connection - possible 
alert? 
            $connection->recv ($udpdata, 250); 
            # Code to verify valid alert goes here 
            my @lines = split ('\n', $udpdata); 
            for my $line (@lines) { 
                $line =~ s/\r//go; 
                system ('echo', $line, '>', 'COM2'); 
                } # End for line of lines 
            if ($udpdata =~ 
/\$\w\wGGA,(\d\d)(\d\d)(\d[\d\.]+),(\d+.\d+),(\w),(\d+.\d+),(\w),(\d).*/
io)  
            { # Begin if valid GPS data 
                $hour = $1; $min = $2; $sec = $3; 
                $lat = $4;  $ns=$5; 
                $long = $6, $ew=$7; $quality = $8; 
                $ns = uc ($ns); $ew = uc ($ew); 
                my $ip = $udp->peerhost; 
                my $port = $udp->peerport; 
                &log ("ALERT - Alert Recieved $time from $ip port 
$port"); 
                &log ("ALERT - $ip GPS Data $lat$ns $long$ew"); 
                &log ("ALERT - $ip GPS Data Recorded $hour:$min:$sec 
GMT"); 
                &log ("ALERT - $ip GPS Quality Indicator: $quality"); 
               # Code to write to MS's stuff goes here... 
 
 
                print NMEA $udpdata; 
                if ($udpdata !~ /[\n\r]$/) {print NMEA "\n";} 
 
#                open (FLE, ">$crashfile") or &log ('WARNING - unable to 
trigger MS crash system via file!'); 
#                print FLE "2\n"; close (FLE); 
                # Code to alert all TCP via APRS goes here 
#                if (int ($lat) != $lat)  
#                   {$lat = sprintf ('%02d', int($lat))  
#                  . sprintf('%05.2f', ($lat - int($lat)) * 100/50*30); 
} 
#                  else {$lat = sprintf ('%07.2f', $lat * 100);} 
#                if (int ($long) != $long)  
#                   {$long = sprintf ('%03d', int($long))  
#                   . sprintf('%05.2f', ($long - int($long)) * 
100/50*30); } 
#                   else {$long = sprintf ('%08.2f', $long * 100);} 
$lat = sprintf ('%07.2f',$lat); 
$long = sprintf ('%08.2f',$long); 
 
    my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = 
gmtime(time); 
   $zulu = sprintf ('%02d%02d%02dz', $mday, $hour, $min); 
 
               my $string1 = 
"ALERT>APZ100,TCPIP*:/$zulu$lat$ns\\$long$ew" . "'TEST EXPERIMENTAL 
CRASH REP. SYS.$chr10$chr13"; 
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print "\n$string1\n"; 
#               my $string1 = "AL3RT>APZ100,TCPIP*:!$lat$ns\\$long$ew" . 
"'TEST EXPERIMENTAL CRASH REP. SYS.$chr10$chr13"; 
 
 
               my @aprssystems = $selector->can_write (1); 
                for my $wrcon (@aprssystems) { 
                   if (($wrcon != $listener)&&($wrcon != $udp)) 
                    {&log ("ALERT - Notifying APRS at ", $wrcon-
>peerhost); 
 
 
   print $wrcon "# ROWAN ECE ACN PROJECT EXPERMENTAL SYSTEM / APRS 
RELAY$chr13$chr10"; 
                      print $wrcon $string1; 
                    } # End if not TCP or UDP listeners 
                } # End For my wrcon of aprssystems 
            } # End if GGA NEMA string  
            else { &log ("WARNING - Wierd UDP string from " . $udp-
>peerhost. ":" . $udp->peerport); 
                   &log ("WARNING - $udpdata"); 
               my @aprssystems = $selector->can_write (1); 
                for my $wrcon (@aprssystems) { 
                   if (($wrcon != $listener)&&($wrcon != $udp)) 
                    {&log ("WARNING - Notifying APRS at ", $wrcon-
>peerhost); 
 
                    $udpdata =~ s/[$chr13$chr10]//go; 
                    print $wrcon "# $udpdata$chr13$chr10"; 
 
                    } # End If 
                } # End For 
            } # End else wierd string 
         } 
 
        else { # For TCP connections 
             $connection->recv ($a, 1); 
             if ($a ne undef) { # Got one in! 
                  $donothing = 1; 
              } # End if $a not equal to the undefined value 
             else { # Close connection 
  
                my $temp = $connection->peeraddr; 
                my $ip = $connection->peerhost; 
                my $left = $selector->count - 1 - 2 ; 
                &log ("INFO: Closing $ip port" , $connection->peerport); 
 
             $selector->remove ($connection); 
             close $connection; 
             &log ("INFO: $ip:$port gone - $left APRS client(s) 
remain."); 
 
              } # End else close connection 
 
       } # End else character or close 
   } # End for 
 

 56  



 

} # End while consready 
 
print "\nI exited wrong - timeout waiting for users, maybe?\n"; 
close LOGGER; 
close (NMEA); 
 
sub log { 
   $time = scalar (localtime); 
 
   print "$time: @_\n"; 
   print LOGGER "$time: @_\n"; 
 
 
} 
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APPENDIX B: 
SISAME MODEL OF A DODGE INTREPID 

 
 
The following SISAME model was used to develop the crash detection algorithm 
for the Mobile Unit. 
________________________________________________________________ 
 
SISAME Input File 
 
 
Run Information 
 
  RunID=INTREPIDFF  Title=INTREPID 1999 Full Frontal Model Weight Extraction 
    DimSys=Metric 
    DelTOut=.0001  FinTOut=.15 
 
 
Model Information 
 
  VehID=INTREPID  Make=DODGE  Model=INTREPID  Year=1999 
    Wt=1749  IniVel=40.23 
 
    MassID=OccComp  Descr=Occupant Compartment 
      Wt=1331.278 
 
    MassID=Engine  Descr=Engine 
      Wt=267.7219 
 
    MassID=Wheels  Descr=Front Wheels/Suspension 
      Wt=150 
 
    SprID=Occ-Bar  Descr=Occ-Bar 
      NegMass=OccComp  PosMass=.Barrier 
      StaType=SI  SU=15410.1  ST=0 
        X=            0      39.47368      78.94737      118.4211      157.8947 
               197.3684      236.8421      276.3158      315.7895      355.2632 
               394.7368      434.2105      473.6842      513.1579      552.6316 
               592.1053      631.5789      671.0526      710.5263           750 
        F=            0      9266.408      26253.13      61447.73      95652.23 
               114329.7      105060.7      89819.73      97692.63      119951.4 
               128010.6      152992.9        179145        188187      218022.6 
               317113.6      218785.2      203735.7        188647      173571.7 
      DynType=AM  MSlp=.02251986  MMax=243.0128 
 
    SprID=Radiator  Descr=Radiator 
      NegMass=Engine  PosMass=.Barrier 
      StaType=SI  SU=1028.647  ST=0 
        X=            0      32.14286      64.28571      96.42857      128.5714 
               160.7143      192.8571           225      257.1429      289.2857 
               321.4286      353.5714      385.7143      417.8571           450 
        F=            0             0             0             0             0 
               403.2021      1381.185      2854.973      4759.486      7668.291 
               11635.49      22504.78      22504.78      22504.78      22683.99 
      DynType=AM  MSlp=1.244783  MMax=22.17755 
 
    SprID=Wheels-Bar  Descr=Wheels-Bar 
      NegMass=Wheels  PosMass=.Barrier 
      StaType=SI  SU=21114  ST=0 
        X=            0      39.28571      78.57143      117.8571      157.1429 
               196.4286      235.7143           275      314.2857      353.5714 
               392.8571      432.1429      471.4286      510.7143           550 
        F=            0      .4361605      .4361605      3.291417      13.88973 
               36.24468      76.82959      186.8221      186.8221      186.8221 
               186.8221      249.3831      666.5682      666.5682      666.5682 

 58  



 

      DynType=AM  MSlp=8.050754  MMax=3863.411 
 
    SprID=Firewall  Descr=Firewall 
      NegMass=OccComp  PosMass=Engine 
      StaType=SI  SU=877.2985  ST=0  XSlk=92.60249 
        X=            0      21.78571      43.57143      65.35714      87.14286 
               108.9286      130.7143         152.5      174.2857      196.0714 
               217.8571      239.6429      261.4286      283.2143           305 
        F=            0             0             0             0             0 
                      0             0             0             0             0 
               768.7556      19880.03       38992.6      58105.17      76637.24 
      DynType=AM  MSlp=0  MMax=1 
 
    SprID=Occ-Wheels  Descr=Occ-Wheels 
      NegMass=OccComp  PosMass=Wheels 
      StaType=SI  SU=230.3747  ST=1066.072  XSlk=5.12806 
        X=            0      7.276681      14.55336      21.83004      29.10672 
               36.38341      43.66009      50.93677      58.21345      65.49013 
               72.76681      80.04349      87.32017      94.59685      101.8735 
        F=            0             0             0             0             0 
                      0             0             0             0             0 
                      0             0             0             0             0 
      DynType=AM  MSlp=0  MMax=1 
 
    SprID=Wheels-Eng  Descr=Wheels-Eng 
      NegMass=Wheels  PosMass=Engine 
      StaType=SI  SU=62.11453  ST=293.0707  XSlk=21.9767 
        X=            0      8.851277      17.70255      26.55383      35.40511 
               44.25638      53.10766      61.95894      70.81022      79.66149 
               88.51277      97.36405      106.2153      115.0666      123.9179 
        F=            0             0             0             0             0 
                      0             0             0             0      244.4115 
               794.2044      1343.997      1632.624      1632.624      1632.624 
      DynType=AM  MSlp=1.417269  MMax=420.6391 
 
 
Output Information 
 
  OutClass=MassTS  Qty=AVD  Mass=* 
 
 
Comments 
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APPENDIX C: 
SOURCE CODE FOR THE MOBILE UNIT PROTOTYPE 

 
 
1. A_DACN.cpp 
 
//This program tests the A/D and outputs the value read to the 
//  serial port for reading with the hyper terminal 
 
#define IBAUD0 4800/1200  // baud rate 
#define IBAUD1 9600/1200   

// with modem either 2400 or 1200 
    // without modem => 19200,9600, 4800, etc 
#define TBUFSIZE 384   // size of transmit buffer 
#define RBUFSIZE 384   // size of receive buffer 
 
#define CS4 0x40C0 
#define CS5 0x4100 
 
char MODE = 4;    // 8 data, no parity, 1 stop 
char NO_MODEM = 0;   // we don't want modem 
char ECHO  = 1;    // we do want character echo 
 
main(){ 
 
unsigned int input,upper,lower,i; 
int j,h; 
int  count; 
char tbuf[TBUFSIZE];  // transmit buffer 
char rbuf[RBUFSIZE];  // receive buffer 
char buf[RBUFSIZE+1]; // dummy buffer for receiving a 

//complete command 
char buf2[RBUFSIZE+1]; 
char output[3]; 
char reference[16]; 
 
//allows serial port 0 to work. 
#if ROM==0 
 reload_vec(14, Dz0_circ_int); 
#endif 
 
Dinit_z0(rbuf,tbuf,RBUFSIZE,TBUFSIZE, MODE, IBAUD0, NO_MODEM, 
ECHO ); 
Dinit_z1(rbuf,tbuf,RBUFSIZE,TBUFSIZE, MODE, IBAUD1, NO_MODEM, 
ECHO ); 
 
reference[0] = '0'; 
reference[1] = '1'; 
reference[2] = '2'; 
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reference[3] = '3'; 
reference[4] = '4'; 
reference[5] = '5'; 
reference[6] = '6'; 
reference[7] = '7'; 
reference[8] = '8'; 
reference[9] = '9'; 
reference[10] = 'A'; 
reference[11] = 'B'; 
reference[12] = 'C'; 
reference[13] = 'D'; 
reference[14] = 'E'; 
reference[15] = 'F'; 
 
input=0; 
       

for(;;){ // endless loop constantly monitoring for 
// new command line 

  runwatch(); 
  hitwd(); 
 
  //hold value 
  outport(CS5+4 ,1); 
     
  //begin conversion to A/D 
  outport(CS4+3,0); 
   
  //wait for A/D to finish converting 
  for(i=0;i<1000;i++); 
   
  //read A/D 
  input = inport(CS4+3); 
 
  //release held value 
  outport(CS5+4 ,0 ); 
   
  //compute hex values 
  upper = input/16; 
  lower = fmod(input,16 ); 
  
  //assign hex values 
  output[0] = reference[upper]; 
  output[1] = reference[lower]; 
  output[2] = ' ';  
   
  //write value to serial port 
  Dwrite_z1( output, strlen(output) ); 
    
  } 
  
} 
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2. CDPD_GPS.cpp 
 
//This program sends data through the CDPD 
//This program takes the serial data from GPS in from port 0 
//  and outputs it to port 1 for the CDPD to transmit. 
 
#define IBAUD0 9600/1200  // baud rate 
#define IBAUD1 9600/1200   

// with modem either 2400 or 1200 
    // without modem => 19200,9600, 4800, etc 
#define TBUFSIZE 384   // size of transmit buffer 
#define RBUFSIZE 384   // size of receive buffer 
 
char MODE = 4;    // 8 data, no parity, 1 stop 
char NO_MODEM = 0;   // we don't want modem 
char ECHO  = 1;    // we do want character echo 
 
main(){ 
 
int  i,j,h; 
int  count; 
char tbuf[TBUFSIZE];  // transmit buffer 
char rbuf[RBUFSIZE];  // receive buffer 
char buf[RBUFSIZE+1]; // dummy buffer for receiving a  

// complete command 
char buf2[RBUFSIZE+1]; 
 
//allows serial port 0 to work. 
#if ROM==0 
 reload_vec(14, Dz0_circ_int); 
#endif 
 
// communication with Dynamic C is lost when the Z1 port is  
// initialized  
 
 Dinit_z0(rbuf,tbuf,RBUFSIZE,TBUFSIZE, MODE, IBAUD0, 
NO_MODEM, ECHO ); 
 Dinit_z1(rbuf,tbuf,RBUFSIZE,TBUFSIZE, MODE, IBAUD1, 
NO_MODEM, ECHO ); 
      

for(;;){ // endless loop constantly monitoring 
// for new command line 

  runwatch(); 
  hitwd(); 
 
  if( Dread_z0(buf,ENTER) != 0 ){  // wait for 
string terminated with CR 
   Dwrite_z1( buf, strlen(buf) );  
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  } 
 } 
} 
3. crastest.cpp 
 
//physical crash test code 
//ACN Rowan University 
 
// # define sets named constants 
#define IBAUD 19200/1200 // baud rate 
    // with modem either 2400 or 1200 
    // without modem => 19200,9600, 4800, etc 
#define TBUFSIZE 384   // size of transmit buffer 
#define RBUFSIZE 384   // size of receive buffer 
 
char MODE = 4;    // 8 data, no parity, 1 stop 
char NO_MODEM = 0;   // we don't want modem 
char ECHO  = 1;    // we do want character echo 
 
#define CS4 0x40C0 
#define CS5 0x4100 
#define ticks 461    // (18.432 MHz/20)* 0.001  
//#define ticks 921    // (18.432 MHz/20)* 0.001 
 
void PRT0_init(int tc); 
 
int status;  
 
main() 
{ 
 
 unsigned int input,upper,lower; 
 char tbuf[TBUFSIZE];  // transmit buffer 
 char rbuf[RBUFSIZE];  // receive buffer 
 int circbuffer[50]; 
 int runningtotal; 
 int index; 
 
 int crash; 
 int i; 
// declare an array coordinate of size 1 greater than buffer 
 char coordinate[RBUFSIZE+1]; 
 int time_index; 
 int maxruntotal; 
 int minruntotal; 
 int maxruntotal_bk; 
 int minruntotal_bk; 
 char output[7]; 
 char reference[16]; 
 
 // fill reference array with some values 
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 reference[0] = '0'; 
 reference[1] = '1'; 
 reference[2] = '2'; 
 reference[3] = '3'; 
 reference[4] = '4'; 
 reference[5] = '5'; 
 reference[6] = '6'; 
 reference[7] = '7'; 
 reference[8] = '8'; 
 reference[9] = '9'; 
 reference[10] = 'A'; 
 reference[11] = 'B'; 
 reference[12] = 'C'; 
 reference[13] = 'D'; 
 reference[14] = 'E'; 
 reference[15] = 'F'; 
 
 //runningtotal = 0; 
 
 runningtotal = 6375;   
 maxruntotal = runningtotal; 
 minruntotal = runningtotal; 
  
 status = 0x0000; 
 coordinate[0]='c'; 
 coordinate[1]='r'; 
 coordinate[2]='a'; 
 coordinate[3]='s'; 
 coordinate[4]='h'; 
 coordinate[5]=' '; 
 coordinate[6]='\0'; 
 
 PRT0_init(ticks); 
 // Initializes Port 1 of the Z180 for writing 
 Dinit_z1(rbuf,tbuf,RBUFSIZE,TBUFSIZE, MODE, IBAUD, 
NO_MODEM, ECHO ); 
 input = 0; 
 index = 0; 
 time_index = 0; 
 crash = 0; 
 for (i=0; i<50; i++) 
 { 
  circbuffer[i] = 128; 
 } 
  
 runwatch(); 
 
 while(1) 
 { 
  hitwd(); 
 
  //hold value 
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  outport(CS5+4 ,1); 
     
  //begin conversion to A/D 
  outport(CS4+1,0); 
   
  //wait for interrupt 
  while(status != 0x0100); 
 
  //read A/D value 
  input = inport(CS4+1); 
 
  status = 0x0000; 
 
  //release held value 
  outport(CS5+4 ,0 ); 
   
  //place algorithm here 
  runningtotal = runningtotal + input - 
circbuffer[index];       
  if (runningtotal > maxruntotal) 
  { 
   maxruntotal = runningtotal; 
  } 
  if (runningtotal < minruntotal) 
  { 
   minruntotal = runningtotal; 
  } 
 
  if (time_index == 2000) 
  { 
   // Reduce values to under 255 
   maxruntotal_bk = maxruntotal; 
   minruntotal_bk = minruntotal; 
    
   maxruntotal = maxruntotal / 100; 
   minruntotal = minruntotal / 100; 
 
   upper = minruntotal/16; 
   lower = fmod(minruntotal,16 ); 
  
   //assign hex values 
   output[0] = reference[upper]; 
   output[1] = reference[lower]; 
   output[2] = ' ';  
   
   upper = maxruntotal/16; 
   lower = fmod(maxruntotal,16 ); 
  
   //assign hex values 
   output[3] = reference[upper]; 
   output[4] = reference[lower]; 
   output[5] = ' ';  
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   output[6] = '\0';  
   
   //write value to serial port 
   Dwrite_z1( output, strlen(output) ); 
   Dz1send_prompt(); 
 
   time_index = 0; 
 
   if (crash == 1) 
   { 
    Dwrite_z1( coordinate, strlen(coordinate)); 
    Dz1send_prompt(); 
   } 
   maxruntotal = maxruntotal_bk; 
   minruntotal = minruntotal_bk; 
  } 
   
  //if( (runningtotal < 110 ) || (runningtotal > 139) ) 
  if( (runningtotal < 5610 ) || (runningtotal > 7089) ) 
  { 
   crash = 1; 
  } 
   
  circbuffer[index] = input; 
  index++; 
  time_index++; 
  if( index == 50 ) 
  {  
   index = 0; 
  } 
 } 
} 
 
void PRT0_init(int load_value) 
{ 
 DI(); 
 outport( TCR,    inport(TCR) & '\B11101110');  

// inhibit TIMER0 interrupt 
 outport( TMDR0L, load_value   ); 
 outport( TMDR0H, load_value >> 8); 
 outport( RLDR0L, load_value   ); 
 outport( RLDR0H, load_value >> 8 ); 
 outport( TCR,    inport(TCR) | '\B00010001'); 
 EI(); 
} 
 
#INT_VEC PRT0_VEC ISR_readAD 
 
interrupt ISR_readAD() 
{ 
 inport(TCR); 
 inport(TMDR0L); 
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 status = 0x0100; 
} 
 
4. fullprog_mod.c 
 
//ACN Rowan University 
//this program is the first complete alpha prototype program for 
//ACN 
//Z1 writes Z0 reads 
 
void PRT0_init(int tc); 
void crashtransmission(); 
 
#define IBAUD 19200/1200 // baud rate 
    // with modem either 2400 or 1200 
    // without modem => 19200,9600, 4800, etc 
#define TBUFSIZE 384   // size of transmit buffer 
#define RBUFSIZE 384   // size of receive buffer 
 
char MODE = 4;    // 8 data, no parity, 1 stop 
char NO_MODEM = 0;   // we don't want modem 
char ECHO  = 1;    // we do want character echo 
 
#define CS4 0x40C0 
#define CS5 0x4100 
#define ticks 921 // ((18.432mhz/20)* 0.001)  
 
char buf[RBUFSIZE+1];  
// dummy buffer for receiving a complete command 
int status;  
 
main(){ 
 
 unsigned int input,upper,lower; 
 int  i; 
 int  j; 
 char tbuf[TBUFSIZE];  // transmit buffer 
 char rbuf[RBUFSIZE];  // receive buffer 
 int circbuffer[50]; 
 int runningtotal; 
 int index; 
 char coordinate[RBUFSIZE+1]; 
  
 status = 0x0000; 
 runningtotal = 0; 
 index = 0; 
   
 //allows serial port 0 to work. 
 #if ROM==0 
  reload_vec(14, Dz0_circ_int); 
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 #endif 
 
 //initialize interrupt 
 PRT0_init(ticks); 
 //initialize serial ports 
 Dinit_z1(rbuf,tbuf,RBUFSIZE,TBUFSIZE, MODE, IBAUD, 
NO_MODEM, ECHO ); 
 Dinit_z0(rbuf,tbuf,RBUFSIZE,TBUFSIZE, MODE, IBAUD, 
NO_MODEM, ECHO ); 
 
 input = 0; 
 j = 0; 
 
 while(1){ 
  runwatch(); 
  hitwd(); 
 
   
   //hold value 
   outport(CS5+4 ,1); 
     
   //begin conversion to A/D 
   outport(CS4,0); 
    
   //read buffer for new coordinates 
   if( Dread_z0(buf,ENTER) != 0 ){ 
    while(j<RBUFSIZE+1){ 
     coordinate[j] = buf[j]; 
     j = j+1; 
    } 
   } 
    
   //wait for interrupt 
   while(status != 0x0100); 
 
   //read A/D value 
   input = inport(CS4); 
 

//return status register to normal and awaiting 
// the next interrupt 

   status = 0x0000; 
 
   //release held value 
   outport(CS5+4 ,0 ); 
 
   //place algorithm here 
   runningtotal = runningtotal + input - 
circbuffer[index];       
   if((runningtotal<110 ) || (runningtotal>139) ){ 
    crashtransmission(); 
   } 
   circbuffer[index] = input; 
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   index++; 
   if (index == 50){ 
    index = 0; 
   } 
 } 
} 
 
 
//this is the initialization function for the programable  
// interrupt 
void PRT0_init(int load_value){ 
 DI(); 
 outport( TCR,    inport(TCR) & '\B11101110');  

// inhibit TIMER0 interrupt 
 outport( TMDR0L, load_value   ); 
 outport( TMDR0H, load_value >> 8); 
 outport( RLDR0L, load_value   ); 
 outport( RLDR0H, load_value >> 8 ); 
 outport( TCR,    inport(TCR) | '\B00010001'); 
 EI(); 
} 
 
 
 
//this points the interrupt vector to the interrupt handler 
#INT_VEC PRT0_VEC ISR_readAD 
 
//this is the interrupt handler 
interrupt ISR_readAD(){ 
 
 inport(TCR); 
 inport(TMDR0L); 
 
 status = 0x0100; 
} 
 
//this function calls the CDPD and transmits the gps coordinates 
void crashtransmission(){ 
 
 //disable all interrupts 
 DI(); 
  
 //wake up CDPD 
 outport(CS5+1,1);  
  
 //begin and continously transmit 
 while(1){ 
  Dwrite_z1( buf, strlen(buf) ); 
 } 
 
}  
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