
F2O4/F2O5 – 3U CompactPCI® M-Module™ Carrier Board

Configuration example (F205)

User Manual

F204/F205 - 3U CompactPCI® M-Module™ Carrier Board

The F204/F205 is a 3U M-ModuleTM carrier board for universal I/O on the CompactPCI bus. It allows high flexibility in applications such as data acquisition or process control.

The F205 is slightly higher than standard 3U format, providing enough space for two M-ModulesTM while staying compatible with CompactPCI® housings through special guide rails already included in the delivery. F204 can carry one M-ModuleTM. M-ModulesTM are screwed tightly on the board and require no separately mounted transition panel.

The F204/F205 offers developers instant access to more than 70 different M-ModulesTM for I/O in fields such as process I/O, measurement, instrumentation, motion control, communication, and development.

Technical Data

M-Module[™] Slots

- F204: One M-ModuleTM slot
- F205: Two M-ModuleTM slots
- Compliant with M-ModuleTM standard
- Characteristics: A08, A24, D08, D16, D32, INTA, TRIGI, TRIGO

Peripheral Connections

• Via front panel

CompactPCI® Bus

- Compliance with CompactPCI® Specification 2.0 R2.1
- Only one slot required on the 3U CompactPCI® bus
- 32-bit/33-MHz PCI-to-M-Module[™] bridge
 - FPGA-based
 - Compliant with PCI Specification 2.2
 - Target on PCI bus
- V(I/O): +3.3 V (+5 V tolerant)

Electrical Specifications

- Supply voltage/power consumption:
 - +5 V (-3%/+5%), 20 mA typ.
 - +3.3 V (-3%/+5%), 20 mA typ.
- MTBF: 1 046 000 h @ 50°C (derived from MIL-HDBK-217F)

Mechanical Specifications

- F204:
 - Dimensions: conforming to CompactPCI® specification for 3U boards
 - Front panel: aluminum with 1 handle, cut-out for front connector of M-ModuleTM
 - Weight: 130 g (without M-ModulesTM)
- F205:
 - Dimensions: 111.7 mm x 160 mm standard
 - Front panel: aluminum without handles, cut-outs for front connectors of 2 M-ModulesTM
 - Weight: 125 g (without M-ModulesTM)

Environmental Specifications

- Temperature range (operation):
 - 0..+60°C or -40..+85°C
 - Airflow: min. 10m³/h
- Temperature range (storage): -40..+85°C
- Relative humidity (operation): max. 95% non-condensing
- Relative humidity (storage): max. 95% non-condensing
- Altitude: -300 m to + 3 000 m
- Shock: 15 g, 11 ms
- Bump: 10 g, 16 ms
- Vibration (sinusoidal): 2 g, 10..150 Hz
- Conformal coating on request

Safety

• PCB manufactured with a flammability rating of 94V-0 by UL recognized manufacturers

ЕМС

• Tested according to EN 55022 (radio disturbance), IEC61000-4-2 (ESD) and IEC61000-4-4 (burst)

Software Support

M-Module[™] drivers for Windows[®], VxWorks[®], Linux, QNX[®], OS-9[®] as supported

Block Diagram

- - - - -

Configuration Options

M-Module™ Slots

• 1 or 2

M-Module[™] Characteristics

• A08/D16 or A24/D32 support

Operation Temperature

- 0..+60°C
- -40..+85°C

Cooling Concept

• Also available with conduction cooling in MEN CCA frame

Please note that some of these options may only be available for large volumes. Please ask our sales staff for more information.

Solution For available standard configurations see online data sheet.

-

Product Safety

\wedge

Electrostatic Discharge (ESD)

Computer boards and components contain electrostatic sensitive devices. Electrostatic discharge (ESD) can damage components. To protect the board and other components against damage from static electricity, you should follow some precautions whenever you work on your computer.

- Power down and unplug your computer system when working on the inside.
- Hold components by the edges and try not to touch the IC chips, leads, or circuitry.
- Use a grounded wrist strap before handling computer components.
- Place components on a grounded antistatic pad or on the bag that came with the component whenever the components are separated from the system.
- Store the board only in its original ESD-protected packaging. Retain the original packaging in case you need to return the board to MEN for repair.

About this Document

This user manual is intended only for system developers and integrators, it is not intended for end users.

It describes the hardware functions of the board, connection of peripheral devices and integration into a system. It also provides additional information for special applications and configurations of the board.

The manual does not include detailed information on individual components (data sheets etc.). A list of literature is given in the appendix.

History

Issue	Comments	Date
E1	First edition	2003-12-19
E2	General update, minor errors corrected	2006-01-13
E3	New board versions with A24/D32 support	2006-10-27
E4	Corrected CompactPCI I/O voltage, cosmetics	2012-04-20
E5	Corrected CompactPCI I/O voltage in Chapter 3.3	2012-04-23

Conventions

This sign marks important notes or warnings concerning proper functionality of the product described in this document. You should read them in any case.

Folder, file and function names are printed in *italics*.

bold

italics

Bold type is used for emphasis.

Hyperlinks are printed in blue color.

monospace

A monospaced font type is used for hexadecimal numbers, listings, C function descriptions or wherever appropriate. Hexadecimal numbers are preceded by "0x".

comment Comments embedded into coding examples are shown in green color.

hyperlink

- The globe will show you where hyperlinks lead directly to the Internet, so you can look for the latest information online.
- IRQ# Signal names followed by "#" or preceded by a slash ("/") indicate that this signal is/IRQ either active low or that it becomes active at a falling edge.
- in/out Signal directions in signal mnemonics tables generally refer to the corresponding board or component, "in" meaning "to the board or component", "out" meaning "coming from it".

Vertical lines on the outer margin signal technical changes to the previous issue of the document.

Legal Information

Changes

MEN Mikro Elektronik GmbH ("MEN") reserves the right to make changes without further notice to any products herein.

Warranty, Guarantee, Liability

MEN makes no warranty, representation or guarantee of any kind regarding the suitability of its products for any particular purpose, nor does MEN assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including, without limitation, consequential or incidental damages. TO THE EXTENT APPLICABLE, SPECIFICALLY EXCLUDED ARE ANY IMPLIED WARRANTIES ARISING BY OPERATION OF LAW, CUSTOM OR USAGE, INCLUDING WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE OR USE. In no event shall MEN be liable for more than the contract price for the products in question. If buyer does not notify MEN in writing within the foregoing warranty period, MEN shall have no liability or obligation to buyer hereunder.

The publication is provided on the terms and understanding that:

1. MEN is not responsible for the results of any actions taken on the basis of information in the publication, nor for any error in or omission from the publication; and

2. MEN is not engaged in rendering technical or other advice or services.

MEN expressly disclaims all and any liability and responsibility to any person, whether a reader of the publication or not, in respect of anything, and of the consequences of anything, done or omitted to be done by any such person in reliance, whether wholly or partially, on the whole or any part of the contents of the publication.

Conditions for Use, Field of Application

The correct function of MEN products in mission-critical and life-critical applications is limited to the environmental specification given for each product in the technical user manual. The correct function of MEN products under extended environmental conditions is limited to the individual requirement specification and subsequent validation documents for each product for the applicable use case and has to be agreed upon in writing by MEN and the customer. Should the customer purchase or use MEN products for any unintended or unauthorized application, the customer shall indemnify and hold MEN and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim or personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that MEN was negligent regarding the design or manufacture of the part. In no case is MEN liable for the correct function of the technical installation where MEN products are a part of.

Trademarks

All products or services mentioned in this publication are identified by the trademarks, service marks, or product names as designated by the companies which market those products. The trademarks and registered trademarks are held by the companies producing them. Inquiries concerning such trademarks should be made directly to those companies.

Conformity

MEN products are no ready-made products for end users. They are tested according to the standards given in the Technical Data and thus enable you to achieve certification of the product according to the standards applicable in your field of application.

RoHS

Since July 1, 2006 all MEN standard products comply with RoHS legislation.

Since January 2005 the SMD and manual soldering processes at MEN have already been completely lead-free. Between June 2004 and June 30, 2006 MEN's selected component suppliers have changed delivery to RoHS-compliant parts. During this period any change and status was traceable through the MEN ERP system and the boards gradually became RoHS-compliant.

WEEE Application

The WEEE directive does not apply to fixed industrial plants and tools. The compliance is the responsibility of the company which puts the product on the market, as defined in the directive; components and sub-assemblies are not subject to product compliance.

In other words: Since MEN does not deliver ready-made products to end users, the WEEE directive is not applicable for MEN. Users are nevertheless recommended to properly recycle all electronic boards which have passed their life cycle.

Nevertheless, MEN is registered as a manufacturer in Germany. The registration number can be provided on request.

Copyright © 2012 MEN Mikro Elektronik GmbH. All rights reserved.

Germany MEN Mikro Elektronik GmbH Neuwieder Straße 3-7 90411 Nuremberg Phone +49-911-99 33 5-0 Fax +49-911-99 33 5-901 E-mail info@men.de www.men.de

France

MEN Mikro Elektronik SA 18, rue René Cassin ZA de la Châtelaine 74240 Gaillard Phone +33 (0) 450-955-312 Fax +33 (0) 450-955-211 E-mail info@men-france.fr USA MEN Micro, Inc. 24 North Main Street Ambler, PA 19002 Phone (215) 542-9575 Fax (215) 542-9577 E-mail sales@menmicro.com

www.menmicro.com

.

Contents

1	Getting	g Started
	1.1	Map of the Board
	1.2	Integrating the Board into a System 14
	1.3	Installing M-Modules 15
	1.4	Installing Driver Software 15
2	Conne	cting the Board
	2.1	M-Module Connectors
	2.2	PXI Trigger Lines
3	Function	onal Description
	3.1	Power Supply
	3.2	Identifying the Board
	3.3	CompactPCI Interface
		3.3.1 Delayed Transactions 19
	3.4	M-Module Interfaces
		3.4.1 Configuring the M-Module Interfaces 20
	3.5	Using Triggers 21
4	Organi	ization of the Board
	4.1	PCI Configuration Registers 24
		4.1.1 Address Map
	4.2	M-Module Slot Address Spaces 25
5	Appen	dix
	5.1	Literature and Web Resources
	5.2	Finding out the Product's Article Number, Revision and
		Serial Number

Figures

Figure 1.	Map of the board – F204 – top view 13
Figure 2.	Map of the board – F205 – top view 14
Figure 3.	Installing an M-Module 15
Figure 4.	Trigger routing 21
Figure 5.	Trigger routing – examples
Figure 6.	Labels giving the product's article number, revision and
	serial number

Tables

Table 1.	Pin assignment of the 60-pin plug connectors	16
Table 2.	Signal mnemonics of the M-Module connector	17
Table 3.	PXI trigger lines on CompactPCI J2 (110-pin type "B" modified)	17
Table 4.	PCI configuration registers	24
Table 5.	M-Module address map for board versions with A08/D16 support	25
Table 6.	M-Module address map for board versions with A24/D32 support	26

1 Getting Started

This chapter will give an overview of the carrier board and some hints for first installation in a system as a "check list".

1.1 Map of the Board

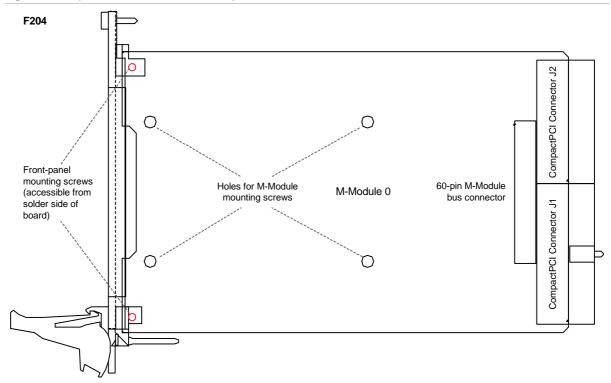
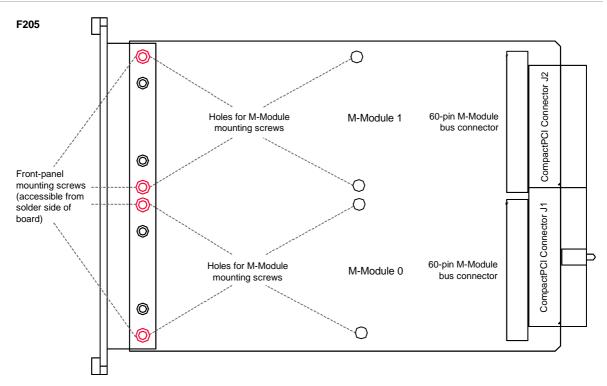



Figure 1. Map of the board - F204 - top view

- - -

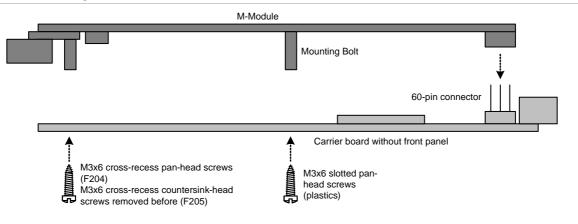
Figure 2. Map of the board - F205 - top view

1.2 Integrating the Board into a System

You can use the following "check list" when installing the F204 in a CompactPCI system for the first time.

- Note: The F204 **must not** be inserted into the system slot! The system slot of every CompactPCI system is marked by a \triangle triangle on the backplane and/or at the front panel.
- \blacksquare Power-down the system.
- ☑ Install an M-Module on the F204 as described in Chapter 1.3 Installing M-Modules on page 15.
- ☑ Insert the F204 into your CompactPCI system, making sure that the Compact-PCI connectors are properly aligned.
- \square Power-up the system.
- \blacksquare You can now install driver software for the F204 and M-Modules.

1.3 Installing M-Modules


Perform the following steps to install an M-Module:

- ✓ Loosen the front-panel mounting screws at the solder side of the board and remove the whole front panel (two screws with F204, four screws with F205) (see Figure 1, Map of the board F204 top view, on page 13 and Figure 2, Map of the board F205 top view, on page 14).
- \blacksquare Hold the M-Module over the target slot of the carrier board with the component sides facing each other.
- ☑ Align the 60-pin connectors of the M-Module and carrier board.
- ☑ Press the M-Module carefully but firmly on the F204, making sure that the connectors are properly linked.
- ☑ Turn the F204 upside down and use four M-Module mounting screws to fasten the M-Module on the solder side of the F204.
- \square Re-install the front panel of the F204.

- Note: You can order suitable mounting screws from MEN, see MEN's website. In any case, use only the screw types specified in the following figure!
- Note: Older M-Modules with a solder side cover may collide with the front panel. If you have any problems, please contact MEN's technical support: support@men.de.

Figure 3. Installing an M-Module

1.4 Installing Driver Software

For a detailed description on how to install driver software please refer to the respective documentation.

You can find any driver software available for download on MEN's website.

2 Connecting the Board

2.1 M-Module Connectors

Connector types:

- Three 20-pin plugs, 2.54mm pitch, square pins \varnothing 0.635mm gold
- Mating connector:
 - Three 20-pin receptacles, high-precision, 2.54mm pitch, for square pins \emptyset 0.635mm gold, 6.9mm height
- Note: Signals which are not bussed (i.e. which are applied to each M-Module slot independently) are indexed with "x". For each slot, replace "x" with the slot number (0..3).

		А	В	С	
	1	/CSx	GND	/AS	
	2	A01	+5V	D16	
	3	A02	+12V	D17	
	4	A03	-12V	D18	
	5	A04	GND	D19	
	6	A05	/DREQx	D20	
	7	A06	/DACKx	D21	
	8	A07	GND	D22	
	9	D08/A16	D00/A08	TRIGA	
	10	D09/A17	D01/A09	TRIGB	
	11	D10/A18	D02/A10	D23	
	12	D11/A19	D03/A11	D24	
	13	D12/A20	D04/A12	D25	
	14	D13/A21	D05/A13	D26	
	15	D14/A22	D06/A14	D27	
	16	D15/A23	D07/A15	D28	
	17	/DS1	/DS0	D29	
20	18	/DTACKx	/WRITE	D30	
	19	/IACKx	/IRQ <i>x</i>	D31	
	20	/RESET	SYSCLKx	/DS2	

Table 1. Pin assignment of the 60-pin plug connectors

Due to the characteristics, the following pins are not supported on the carrier board:

- /DREQx
- */DACKx*

Note: There are different board versions with A08/D16 or A24/D32 M-Module support. If you are not sure which type of addressing your carrier board supports, you can check the different models on MEN's website.

Name	Direction	Function
D00/A08D15/A23	in/out	Multiplexed data/address bus
D16D31	in/out	Most significant portion of data bus
A01A07	out	Address bus
/WRITE	out	Read/write enable
/CS	out	M-Module chip select
/DTACK	in	Data acknowledge
/DS01	out	Data bus select signals
/RESET	out	M-Module reset
/IRQ	in	Interrupt request
/IACK	out	Interrupt acknowledge
/DREQ	in	DMA request (not supported)
/DACK	out	DMA acknowledge (not supported)
SYSCLK	out	16-MHz clock
GND	-	Logical reference signal
+5V, +12V, -12V	out	Power supplies
/AS	out	Address strobe for multiplexed address/data bus
TRIGA, TRIGB	in/out	Trigger inputs/outputs

Table 2. Signal mnemonics of the M-Module connector

Note: The 24-pin receptacle connector of M-Module slot 0 is provided only for mechanical stability. The I/O signals from the M-Module at this connector are not used.

2.2 PXI Trigger Lines

The carrier board supports PXI trigger lines PXI_TRIG[7:0]. These are located on CompactPCI J2 as shown below:

Table 3. PXI trigger lines on CompactPCI J2 (110-pin type "B" modified)

_		F	E	D	С	В	А
F E D C B A	18	GND	PXI_TRIG6	GND	PXI_TRIG5	PXI_TRIG4	PXI_TRIG3
	17	GND	-	-	-	GND	PXI_TRIG2
16	16	GND	PXI_TRIG7	-	-	PXI_TRIG0	PXI_TRIG1

3 Functional Description

3.1 Power Supply

Power supply is fed via the CompactPCI backplane. The board operates on +5V and +3.3V. +12V/-12V may be required by one of the M-Modules installed. Power consumption is 20 mA typ. plus the current drawn by M-Modules stacked on the carrier board.

3.2 Identifying the Board

You can identify the carrier board as follows:

Note: MEN drivers will also identify the board in this way.

 \square Scan all PCI buses in the system for

- the vendor ID: 0x1172, and
- the FPGA's device ID:
 - 0xD203 with A08 M-Module access boards, or

0x203D with A24 M-Module access boards.

- Note: There are different board versions for A08 or A24 M-Module addressing. If you are not sure which type of addressing your carrier board supports, you can check the different models on MEN's website.
- ☑ Check if the Subsystem Vendor ID is set to 0xFF00 and the Subsystem ID is set to 0xFF00 in the PCI config state (see Table 4, PCI configuration registers, on page 24).

3.3 CompactPCI Interface

The F204 carrier board has a 32-bit CompactPCI interface on connectors J1/J2. It uses a 3.3 V signaling voltage on CompactPCI. For a pinout of the 32-bit CompactPCI interface on J1/J2 and a general description of CompactPCI, please refer to the CompactPCI specification.

Connector types of J1/J2:

• 110-pin shielded, 2mm-pitch, 5-row receptacle according to IEC 917 and IEC 1076-4-101

The interface is implemented using an FPGA and is compliant to the PCI Specification Rev. 2.2.

3.3.1 Delayed Transactions

The F204 supports delayed transactions across the CompactPCI bus, i.e. if the F204 cannot deliver (on a read cycle) or accept (for a write cycle) data within 16 PCI clock cycles, it responds to the current bus master with a retry. In response to the retry, the bus master relinquishes the CompactPCI bus, which can now be used by another bus master. In the meantime, the F204 processes the retried transaction on the M-Module interface. When the bus master retries the bus cycle on PCI, the F204 will terminate the cycle with zero wait states. This will improve overall system throughput. Even slow M-Modules do not tie up the whole CompactPCI bus.

3.4 M-Module Interfaces

The M-Module interfaces of the F204 comply with the M-Module specification. They support the following M-Module characteristics: D08, D16, D32, A08, A24, INTA, TRIGI, TRIGO. It depends on the board version whether the F204 supports A08/D16 or A24/D32 accesses.

If you are not sure which type of addressing your carrier board supports, you can check the different models on MEN's website.

The F204 does not support burst mode, since this leads to conflicts with the PCI architecture.

3.4.1 Configuring the M-Module Interfaces

	17	16					
	-						
	154	3	2	1	0		
	-	τουτ	PCI RET	IEN	IRQ		
GIEN	 Global interrupt enable bit (common to all M-Modules) 0 = Disable interrupt 1 = Enable interrupt 						
GIRQ	RQGlobal interrupt pending (common to all M-Modules) (read-only)1 = Interrupt pending)		
TOUT	Timeout 1 = Timeout occurred. Write 1 to clear.						
PCIRET	 PCI retries 0 = PCI retries during access (slower) 1 = No PCI retries during access (faster) (default) You should change this setting to 0 ("slower") if you can expect the M-Module access to be slower than 450 ns. Otherwise, leave the default setting as is. 						
IEN	Interrupt enable bit 0 = Disable interrupt 1 = Enable interrupt						
IRQ	Interrupt pending (read-only) 1 = Interrupt pending						

M-Module Control/Status Register (read/write)

3.5 Using Triggers

There are 8 internal trigger lines, the "internal trigger bus". Every PXI trigger line can drive one and can be driven by one dedicated internal trigger line. This is set in the PXI Trigger Source and Destination Registers for each M-Module.

Every M-Module trigger line (*TRIGA/TRIGB*) can be driven by and can drive every internal trigger line. If there is more than one source for an internal trigger, all connected sources are ORed.

There is one Trigger Source Register and one Trigger Destination Register per M-Module. Bits 31..16 of the Trigger Source and Trigger Destination Registers are global, i.e. the PXI trigger lines can only be accessed for all M-Modules together.

The maximum propagation delay between a trigger source and trigger destination amounts to 25 ns.

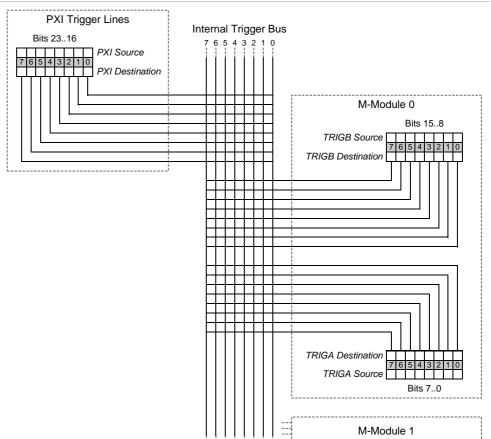


Figure 4. Trigger routing

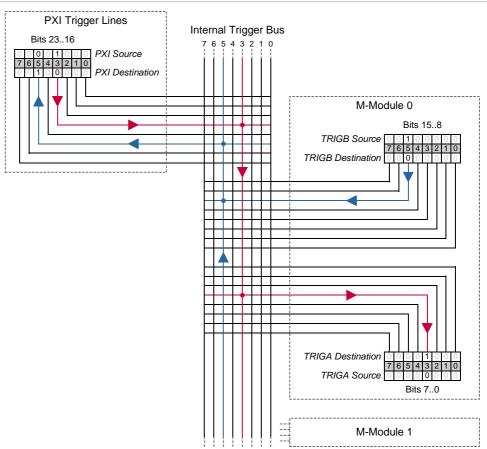


Figure 5. Trigger routing – examples

Trigger Source Register (read/write)

3124		2316	
-		PXI Source 70	
158		70	
M-Module Source TRIGB 7.0		M-Module Source TRIGA 7.0	
PXI Source		orresponding PXI input is connected to al trigger line 70. (Common to all dules)	
M-Module Source TRIGB	M-Mo	r input <i>TRIGB</i> of the addressed dule is connected to the corresponding il trigger line 70.	
M-Module Source TRIGA	M-Mo	r input <i>TRIGA</i> of the addressed dule is connected to the corresponding l trigger line 70.	

Trigger Destination Register (read/write)

3124	2316
-	PXI Destination 7.0
158	70
M-Module Destination TRIGB 7.0	M-Module Destination TRIGA 7.0
co be	e corresponding internal trigger line is nnected to PXI trigger line 70. This line comes an output and no longer an input line. ommon to all M-Modules)
co M	e corresponding internal trigger line is nnected to <i>TRIGB</i> of the addressed Module. This <i>TRIGB</i> line becomes an output d no longer an input line.
co M	e corresponding internal trigger line is nected to <i>TRIGA</i> of the addressed Module. This <i>TRIGA</i> line becomes an output d no longer an input line.
Note: It is not forbiddon but may mak	a na sansa ta activata a triggar lina as an out

Note: It is not forbidden but may make no sense to activate a trigger line as an output and use this line as an input as well. Care shall be taken to prevent loops! Using PXI 0 as an input connected to internal line 0, and activating PXI as an output as well might cause heavy oscillation or any other non-deterministic behavior.

-

4 Organization of the Board

The F204 complies with PCI specification 2.2. All resources requested by the F204 are mapped through the PCI configuration space. For a detailed description of the PCI configuration space, please refer to the PCI specification.

4.1 PCI Configuration Registers

4.1.1 Address Map

The following register map is shown for reference only.

Address	D31D24	D23D16	D15D8	D7D0	R/W	
0x00	Device ID (A08: 0xD203 / A24: 0x203D) ¹ Vendor ID (0x1172)					
0x04	Status (0x0400)		Command (0x000	7)	R/W	
0x08	Class Code (0x06	8000)		Revision ID	R	
0x0C	BIST (0×00)	Header Type (0×00)	Latency Timer (0x40)	Cache Line Size	R/W	
0x10	PCI Base Address	0 for Memory Mapp	ed FPGA Registers		R/W	
0x14	PCI Base Address	1 — Not used			R/W	
0x18	PCI Base Address	PCI Base Address 2 — Not used				
0x1C	PCI Base Address 3 — Not used					
0x20	PCI Base Address 4 — Not used					
0x24	PCI Base Address 5 — Not used					
0x28	CardBus CIS Point	CardBus CIS Pointer (0x0000000)				
0x2C	Subsystem ID (0x)	F00)	Subsystem Vendor	ID (0xFF00)	R	
0x30	Expansion ROM R	Expansion ROM Register (0x0000000)				
0x34	Reserved (0x0000000)					
0x38	Reserved (0x0000000)				R	
0x3C	Max_Lat (0×00)	Min_Gnt (0×00)	Interrupt Pin (0×01)	Interrupt Line	R/W	

Table 4. PCI configuration registers

¹ There are different board versions for A08 or A24 M-Module addressing. If you are not sure which type of addressing your carrier board supports, you can check the different models on MEN's website.

4.2 M-Module Slot Address Spaces

Each M-Module slot is provided with a 1-KB address space with A08 access or a 32-MB address space with A24 access. (See also Chapter 3.4 M-Module Interfaces on page 20.) The base address within the PCI address space is set by the corresponding base address registers in the PCI configuration space. Each of the M-Module address spaces is divided into three distinct areas:

- An area for A24 access cycles (depending on the board version).
- An area for A08 access cycles.
- An area for accesses to additional control registers.

M-Module	Offset Address Range	Function
M-Module 0	0x00000x00FF	Reserved
	0x01000x01FF	Reserved
	0x02000x02FF	A08/D16 access
	0x03000x0303	A08/D16 IACK
	0x03040x0307	Control/Status Register
	0x03080x030B	Trigger Source Register
	0x030C0x030F	Trigger Destination Register
M-Module 1	0x04000x04FF	Reserved
(only F205)	0x05000x05FF	Reserved
	0x06000x06FF	A08/D16 access
	0x07000x0703	A08/D16 IACK
	0x07040x0707	Control/Status Register
	0x07080x070B	Trigger Source Register
	0x070C0x070F	Trigger Destination Register

Table 5. M-Module address map for board versions with A08/D16 support

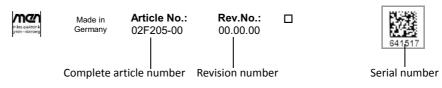
M-Module	Offset Address Range	Function
M-Module 0	0x000 00000x0FF FFFF	A24/D32 access
	0x100 00000x1FF FCFF	A24/D16 access
	0x1FF FD000x1FF FDFF	A08/D32 access
	0x1FF FE000x1FF FEFF	A08/D16 access
	0x1FF FF000x1FF FF03	A08/D16 IACK
	0x1FF FF040x1FF FF07	Control/Status Register
	0x1FF FF080x1FF FF0B	Trigger Source Register
	0x1FF FF0C0x1FF FF0F	Trigger Destination Register
M-Module 1 (only F205)	0x200 00000x2FF FFFF	A24/D32 access
	0x300 00000x3FF FCFF	A24/D16 access
	0x3FF FD000x3FF FDFF	A08/D32 access
	0x3FF FE000x3FF FEFF	A08/D16 access
	0x3FF FF000x3FF FF03	A08/D16 IACK
	0x3FF FF040x3FF FF07	Control/Status Register
	0x3FF FF080x3FF FF0B	Trigger Source Register
	0x3FF FF0C0x3FF FF0F	Trigger Destination Register

Table 6. M-Module address map for board versions with A24/D32 support

5 Appendix

5.1 Literature and Web Resources

- F204 data sheet with up-to-date information and documentation: www.men.de
- F205 data sheet with up-to-date information and documentation: www.men.de
- M-Module Standard: ANSI/VITA 12-1996, M-Module Specification; VMEbus International Trade Association www.vita.com
- CompactPCI Specification Revision 2.0 R2.1: 1997; PCI Industrial Computers Manufacturers Group (PICMG) www.picmg.org


5.2 Finding out the Product's Article Number, Revision and Serial Number

MEN user documentation may describe several different models and/or design revisions of the F204. You can find information on the article number, the design revision and the serial number on a label attached to the board.

- Article number: Gives the product's family and model. This is also MEN's ordering number. To be complete it must have 9 characters.
- Revision number: Gives the design revision of the product.
- Serial number: Unique identification assigned during production.

If you need support, you should communicate these numbers to MEN.

Figure 6. Labels giving the product's article number, revision and serial number

