
ColdFusionJournal.com 9CFDJ SEPTEMBER 2006

I
 remember a particularly long

weekend sitting in a computer lab

for 12 hours and trying to write an

assembler program on a VAX machine

that would read and write files. (A VAX is a

big archaic mainframe computer.)

 It took many days, but I was finally able to provide successful
results. Sometimes, I think we take for granted that ColdFusion
makes our lives extremely easy. (Even a novice CF developer
should be able to figure out how to read and write files in under
five minutes.) One tool that was integral to my success in the
project was the use of an interactive debugger. In my profession-
al career, I’ve used one for writing Pascal and Lotus Notes, but,
moving to the Web world, debuggers were noticeably vacant.
That is until now. The folks who brought us Fusion Reactor have
now brought us FusionDebug, the first interactive debugger for
ColdFusion MX.

Why Do You Need an Interactive Debugger?
 What is an interactive debugger? It is a tool that allows you to
view the results of your code, line by line. You can see the value
of variables, queries, CFC Instances, and change the values of
variables on the fly. If you slip back into the old days of your
memory, you probably remember a product called ColdFusion
Studio, right? Before CFEclipse, ColdFusion Studio was the tool
that (almost) everyone used for creating ColdFusion applica-
tions. A little known (and even lesser used) feature in CF Studio
was the availability of an interactive debugger. Unfortunately,
the product was hard to configure and even harder to use, so it
never became a staple of the ColdFusion developer’s toolbox.
Today, the landscape of ColdFusion development is much dif-
ferent than it was in the CF Studio days. In the old days, most
templates did multiple things and business logic code was
implemented right next to display logic. There was little thought
of code encapsulation, and templates were written the same
way they were processed (start at the top and work your way
down). Although CFML custom tags and User-Defined Func-
tions provided facilities for encapsulating code, it wasn’t until

ColdFusion Components were introduced that people started
to apply advanced programming principles to their ColdFu-
sion applications. Business logic is now put inside of CFCs.
Frameworks such as Model-Glue and Mach-II help us separate
business logic and presentation code. When a single ColdFu-
sion page loads, it may be performing actions where the code is
located across multiple files. It isn’t always easy to find the root
of your errors. FusionDebug is a tool that will help you find and
correct your troublesome code.
 I thought a good place to start might be to offer a definition
of debugging concepts and definitions:
• Breakpoint: A breakpoint is a spot in your code where you

want the debugger to stop, and can be any line with CFML
code (tags, variables, and so on). After starting a debug
session in FusionDebug, you’ll load the page you want to
debug in the browser and FusionDebug will intercept it at
your first breakpoint. (It can also intercept requests from
pages and CFCs called from Flex, AJAX, Flash Remoting, and
Web services.) If there are no breakpoints, the page will run
as normal. Breakpoints do not have to be in the page you
request, they can be located in CFCs, custom tags, includes,
or UDFs.

• Variables: You already know what a variable is and how to
use them. (If not, read “Creating Variables in CFML” from
CFDJ, Vol. 6, issue 2 [http://coldfusion.sys-con.com/
read/43790.htm]). The variable list of FusionDebug shows all
of the variables currently available to the template you are
in, at the point where you’re debugging. It will display local
variables (the variables scope), URL, Form, request, CGI, and
cookie variables, as well as shared-scope variables like ses-
sion and application, and more.

• Expressions: In the past I’ve always referred to these as
“watch variables.” Expressions, in its simplistic form, are
variables that you want to keep tabs on. However, the expres-
sion pane of FusionDebug will support any ColdFusion
expression. Perhaps you want to keep tabs on what the first
item of a list is, or the last element in an array? You can do
that with the Expression tab.

• Debug: The debug command means to starts a debugging
session. In other software I’ve seen this described as “run” or
“execute.”

• Step Into: A step is how you move from one line of code to
the next. There are three variations of the Step depending on
what you want to do. Step Into is probably what you’ll use

cf 101

Taking a First Look at FusionDebug
The first interactive debugger for ColdFusion MX

By Jeffry Houser

10 CFDJ SEPTEMBER 2006 ColdFusionJournal.com

cf 101

most of the time. It means to step over this line of code, but
jump into any functions, custom tags, or CFC method calls
that are called from the line of code you’re on. FusionDebug
will open the file that you step into and stop at the first line of
CFML code.

• Step Over: Step Over is the exact opposite of Step Into. It will
execute the code in any function, custom tag, or CFC Method
without opening it. It moves right onto the next line. It’s a
good idea to favor Step Over even on tags and expressions
that wouldn’t open a file, for reasons I’ll explain later.

• Step Return: Step Return is used when you’re inside a file
that you stepped into. It will execute the rest of the file, and
put you back to the place where the file was initially stepped
into

• Resume: Resume means to continue execution of code until
you run out of code, or find another breakpoint.

• Terminate: Terminate will end the debugging session with-
out completing your code’s execution. Usually I try to avoid
using this.

 These definitions should give you a good understanding of
what features the debugger offers. I’ll move on to the FusionDe-
bug install, and then an example.

Installing FusionDebug
 FusionDebug is created as an eclipse plug in. and you’ll need
Eclipse to install it. If you’re already using CFEclipse or Flex-
Builder, you must already have Eclipse installed. If not, you can
download Eclipse from http://www.eclipse.org/. It’s as simple as
extracting a zip file and running the Eclipse command. There’s
no installer.
 Speaking of CFEclipse, which is another plug-in for editing
CFML code, while you don’t need to use it with FusionDebug,
if you want to try it, I strongly recommend reading the ACME
(Apache, ColdFusion, MySQL, Eclipse) guide for detailed
instructions (http://www.stephencollins.org/acme/) on the
install. Even if you don’t use Apache or MySQL look at just the
final chapter on CFEclipse. It’s the best place to find detailed
installation instructions on CFEclipse.

There are two ways to install FusionDebug: using a manual
process or an automated one. The automated process uses
the “Find and Install Updates” feature built into Eclipse. This
is documented in the FusionDebug user guide, which (at the
time of this writing) is available at http://www.fusion-reactor.
com/fusiondebug/helpDocs/FusionDebug_User_Guide.pdf.
I’m going to step you through the process of the manual install,
so while you’re at it you may as well download the files for a
manual install. The zip archive includes the PDF documenta-
tion at “plugins\com.intergral.fusionreactor.debug.core_1.0.0\
FusionDebug – User manual.pdf”. No matter which way you
install, I recommend reading through the guide.
Plugins for Eclipse are located in a subdirectory of your Eclipse
installation named plugins. You can unzip the download to the
plugins directory if you wish. Restart Eclipse so the plugin is
found. If you don’t wish to extract into your Eclipse directory,
unzip somewhere else, and copy the directories manually. There
are two directories you need to put in “eclipseinstall\plugins”:
“com.intergral.fusionreactor.debug.core_1.0.0” and “com.
intergral.fusionreactor.debug.ui_1.0.0”. Restart Eclipse and you
should be good to go. Yes, the install really is as easy as copying
files.

Configuring ColdFusion and FusionDebug
 Your next step is to set up ColdFusion to allow for debugging
requests. In reality, you’re setting up the Java server, which un-
derlies your ColdFusion installation, and not making any direct
changes to ColdFusion settings. You need to change the argu-
ments that are used when launching the JVM. In most ColdFu-
sion installations, you’ll be using JRun, and the JVM settings are
located in a jvm.config file. For Windows installations, this file is
located in the CF install directory under “runtime/bin”. For Unix,
it’s just in “bin” under your CF install directory. If you are using
CF in any sort of multiserver configuration, your location may
vary slightly. Before editing the file, you may want to save a copy
of the current file, in case anything goes wrong with the one-line
edit I’m about to describe.
 Find the “java.args” line of the config file and remove this
argument:

• -XX:+UseParallelGC

Then add these options:

• -Djava.compiler=NONE
• -Xnoagent
• -Xdebug
• -Xrunjdwp:transport=dt_socket,server=y,suspend=n,address=8000

 Make sure that all the options are on the same line. For ease,
you can copy these lines out of the FusionDebug documenta-
tion. Note the port 8000 that’s used. If you know that port to
be used is already in your system, choose a number that’s not
in use. I’ll explain its use shortly. Save the file and restart your
ColdFusion services. If it fails to start, revert to the saved copy
from above and study your changes to make sure you followed
the instructions carefully.
 The final step in getting yourself set up is to create an Figure 1: FusionDebug Configuration Window

ColdFusionJournal.com 11CFDJ SEPTEMBER 2006

instance of FusionDebug that points to the server you set up for
debugging:
1. Load up Eclipse, and select a project you want to debug with.

(If you don’t have any Eclipse projects, see the FusionDebug
User Guide for more information on creating one for the first
time.) Select “Debug” from the Run menu.

2. Select FusionDebug from the menu and Click New to create a

new FusionDebug instance. This will bring up a dialog similar
to Figure 1.

3. Enter a name for the FusionDebug instance. This can be any-
thing you want it to be. Specify the Web server folder. I used
the same folder as the project root for my Eclipse Project.

4. Specify the host and port. Note that the hostname can be
localhost or indeed any server you have access to, which has
been configured as per the steps above. Yes, FusionDebug can
debug remote servers. The port is not your Web server port,
but the port you specified in the Java arguments. It is 8000
by default. If you followed my instructions above, that didn’t
change.

5. Select your other options. In my case, my CF Server is on
Windows, I want CF to compile pages in debug friendly mode,
and my Eclipse folder mirrors the Web server. I have not yet
experimented with the “Detailed Java Information” option,
soI left that unchecked. These are explained in the User
Guide.

Now you are good to go, ready to debug.

You’re First Debugging Session
 If you’ve read my two articles on
creating an RSS Aggregator, you probably
noticed that I found a bug between part
one and part two. The code I wrote in
part 1 (http://coldfusion.sys-con.com/
read/235976.htm) supported only RSS
2. It turns out that the Macromedia XML
News Aggregator (http://weblogs.macro-
media.com/mxna/) was only providing

an RSS 1.0 feed. The XML was different in each feed. In part 2
(http://coldfusion.sys-con.com/read/264745.htm), I described
the error and explained the fix. I thought I’d step you through the
process I used to diagnose and fix the problem (without Fusion-
Debug) and then step you through the process using FusionDe-
bug.
 In my test database for the MyFriend RSS aggregator, I have
two RSS URLs. One points to my blog and the other to MXNA.
When trying to process the MXNA URL (by manually loading
the scheduled task), I was seeing an error, as shown in Figure
2. I wasn’t sure why I was receiving the error, since all RSS feeds
should contain an item as part of the channel (right?). The first
thing I did was add a cfdump tag to see why “xmlroot.channel.
item” did not exist. I reloaded and got nothing [insert two head
scratches and one look of utter confusion here]. Why wasn’t I
seeing any debug output? It turns out the CFFUNCTION had its
OUTPUT attribute set to false. No output means no output and
the cfdumps weren’t being sent back to the browser. I changed
that attribute to true and reloaded. Okay, now with the cfdump I
could drill down into the XML and see the problem. Items (AKA
Blog Posts) are stored differently in RSS 1 vs RSS 2. And the root
elements are different.
 Where would the debugger have helped? To debug this code
inside a component, I’m changing code. It’s one thing to add a
variable output or cfdumps so you can view variables. Those are
easy enough to comment out later. It’s quite another to have to
change code, such as the output parameter from false to true. I
don’t want to have different code for “production” versus “devel-
opment.” That defeats the purpose and allows too much margin
for error. How many of these output attributes have I forgotten
to change back? I have no idea. The problem gets worse when
you are dealing with nested components, because you have
trickle back up to the top of the tree and set all outputs to true.
Still another situation occurs with code within CFSILENT, which
I would have to find and remove to see any debugging output.
These are situations where an interactive debugger offers benefit.
To get to the root of the problem I don’t have to change any code.
 This is how I’ll debug this in FusionDebug:
1. First, I’m going to open up the project in Eclipse, and switch

to the debug perspective. You can switch perspectives using
“Window --> Open Perspective and selecting “Debug.” You
should see something similar to Figure 3. (Again, all this is de-
scribed very well in the User Guide, for those new to Eclipse.)

2. Next, start a debugging session. You can re-open the debug
window (see Figure 2), select your Debug instance, and select
“Debug,” or you can start the debug session by clicking the
“debug” button from the toolbar. You should see the session

started up in the debug window (top left).
3. Open up a page in the project that you

want to debug, and set a breakpoint. (Note
that if you open a file from the file system
rather than from a project, the debugger
won’t enable you to step through code.)
With MyFriend, I am opening up the
scheduled task file (schedultedtask/sched-
uledtask.cfm) and putting a breakpoint
on the first CF line of the page. You can
add a breakpoint by selecting the line

Figure 2: MyFriend error

12 CFDJ SEPTEMBER 2006 ColdFusionJournal.com

cf 101

and choosing “Window --> Toggle Line Breakpoint” or using
Control + Shift + B, or right-click the line and choose “Toggle
Breakpoint.” You’ll now see the breakpoint was set because
of the blue dot in the grey bar to the left of the line number.
(You can see the dot on line 15 of Figure 3).

4. Open your favorite browser and launch the page you want to
debug. FusionDebug will intercept the page at the first break-
point. Again, note that you’re not opening the page “in” the
debugger but in whatever browser you want. There is a blue
arrow in the same grey bar to show you which template you
are currently running. (This is called the “Current Instruction
Pointer.”)

5. Click Step Over and you can step through the initialization
code to watch the component being created. Continue to
click Step Over until you reach the init method of the RSSAg-

gregator component. Around line 75 you should see code like
this:

<cfset MyXMLVar = xmlparse(cfhttp.filecontent)>

6. Click past the line that parses the XML content. Now take
a look at the variables tab shown in Figure 4. It should
be in the upper-right corner of the screen. You can view
all the variables available to the component. The one
we care about most is the local function variable that
holds the XML. The first time through the loop, you’ll see
that the XML is in proper RSS 2 format. The second time
through you’ll notice it uses “RDF” instead of XML. Drill-
ing down, you’ll realize that the items are different in the
RDF format than they are in the RSS format. And that is
the root of the problem.

 The bug was easily solved by adding an if statement (ex-
plained in the previous article) to decide which RSS format to
use, and how to access the item array. Both debugging methods
can bring you to the same end result, but I personally find the
use of FusionDebug to be much more elegant.
 I mentioned near the start to favor Step Over versus Step
Into, even on tags or function calls that don’t open a file. The
reason is that being a Java debugger, Eclipse will try to step
through the underlying Java code. FusionDebug is configured to
hide that by default, but the execution of the tag/function will
take longer than if you’d used “Step Over.”

What Next
 The folks who created FusionDebug created some Captivate
videos to help demonstrate what FusionDebug can do and some
uses of it. It is one thing to read about how to do things, it is
another to see it done, so I suggest checking them out at http://
www.fusion-reactor.com/fusiondebug/gettingStarted.html.
Charlie Arehart wrote a tips and tricks article for this edition of
ColdFusion Developer’s Journal. I’ve had a chance to preview
it and it contains a lot of information beyond the scope of this
article.
 The product is available as a free 20-day trial. Pricing
starts at US$299, with an 10% discount currently avail-
able with the code CFCOMMUNITY. Volume discounts
are also available. The company offers free support, at
support@fusion-reactor.com.
 The RSSAggregator code is downloadable from my blog
at www.jeffryhouser.com. I appreciate all the feedback I’ve
received from it. Thanks for reading, and let me know what you
think. I’ll see you next month.

About the Author
Jeffry Houser has been working with computers for over 20 years
and in Web development for over 8 years. He owns a consulting
company and has authored three separate books on ColdFusion,
most recently ColdFusion MX: The Complete Reference (McGraw-
Hill Osborne Media).

jeff@instantcoldfusion.com

Figure 3: FusionDebug Perspective

Figure 4: Variables Panel

