
I.J. Modern Education and Computer Science, 2015, 10, 1-11
Published Online October 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijmecs.2015.10.01

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

Development of a Novel Computer Application

to Teach Counting in K-2 Classroom using the

Unified Process Method

Jiang Li
Department of Computer Science and Information Technology Austin Peay State University, Clarksville, TN 37044,

USA

E-mail: lij@apsu.edu

Ling Wang
Department of Teaching and Learning Austin Peay State University, Clarksville, TN 37044, USA

E-mail: wangl@apsu.edu

Lacey L. Williams and Christina A. Allan
Department of Computer Science and Information Technology Austin Peay State University, Clarksville, TN 37044,

USA

E-mail: {lwilliams82, callan}@my.apsu.edu

Abstract—Classroom teachers of Kindergarten, 1st Grade,

or 2nd Grade often use the Hundreds Chart puzzles to

teach children the basic mathematical knowledge and

skills like counting. Computer programs have been

developed to help them to create puzzle sheets by cutting

out the numbers, but students still need to solve the

puzzles on the printed paper. This study designs and

implements a computer application named Hundred

Acorn Forest as an instructional method to teach basic

counting skills with the Hundreds Chart puzzles using the

Unified Process method. The application not only offers

an easy way for classroom teachers to create and edit

puzzles based on patterns, but also engages students in a

unique interactive game play environment, which helps to

maintain their interests of learning. In addition, the video

playback that demonstrates the process of students

solving the puzzle provides classroom teachers valuable

information to set up levels of control and consistency

that have not been available before.

Index Terms—Math Education, Teaching Counting,

Computer Application, Unified Process.

I. INTRODUCTION

Counting is a very important math skill taught in

Kindergarten through 2nd Grade. The Hundreds Chart,

which presents a continuous sequence of numbers from 1

to 100 with some numbers left out for the students to fill

in, is one of the most widely used puzzle tools for

classroom teachers to teach children counting [1].

Educators have dedicated their time into researching and

developing the most useful way for teachers to teach

mathematical methods to young children using the

Hundreds Chart [2]. While there are computer programs

that may help teachers to create sheets by cutting out the

numbers, students still have to solve the puzzles on the

printed paper, and it is inconvenient for the teachers to

observe each individual student and identify the

difficulties the student may have experienced during the

puzzle solving problem [3]. The goal of this study is to

develop a computer application named Hundred Acorn

Forest for classroom teachers to teach children in

Kindergarten, 1st grade, or 2nd grade mathematics using

the Hundreds Chart. The teachers will be able to create

puzzles freely or based on certain patterns, edit existing

puzzles, and save puzzles into a database that can be

utilized as a supplemental tool later. Meanwhile, students

will be able to practice lessons learned while

maneuvering through an interactive computer game that

has a storyline to keep them interested. In addition, this

new software will allow for classroom teachers to have

instant feedback to identify students who are struggling

with counting concepts.

As the Hundreds Chart is consistently used in K-2

classrooms, research have revealed that the need to view

how students complete the Hundreds Chart puzzles - the

process, rather than the final puzzle - the product, has

become more pertinent [4]. Therefore, the design of the

application should provide teachers with just that

feedback while presenting a fun interactive game for

students that reinforces the math lessons previously

taught. Hundred Acorn Forest allows teachers to create

different levels of Hundreds Chart puzzles. After a

student completes a puzzle by playing the game, the

teacher can view a video playback of how the student

completed the puzzle through a unique automatic screen

recording function. The playback will give teachers

insight on what parts of the lesson students are grasping

and what parts he or she may need to reinforce.

The development of such as an application requires

2 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

joint efforts from experts in both education and computer

science. For instance, the requirements of classroom

teachers who create and edit the puzzles can be collected

from a professor in math education who has had

experience in practical classroom activities using the

paper-based Hundreds Chart. On the other hand, the user

interface of the application, such as the onscreen

instructions, layout of buttons and pictures, user actions,

and animations, must consider the reading and

comprehension ability of children who are at the early

stage of their literacy development [5]. As a result, the

input from a professor in content reading can provide

useful insight of how students apply literacy knowledge

in content area - mathematics. In addition, the design and

implementation of the application demands experts with

strong programming knowledge as well as those who

know the principles of software engineering [6] and have

applied the software development models in real-world

projects.

The rest of the paper is organized as follows. Previous

work related to this study is listed in Section II. Section

III introduces the four phases of the software

development method used to design and implement the

functionalities of application. The experiments and results

are presented in section IV. Section V discusses the

contributions and implications of this research, and

section VI concludes with proposals for future work.

II. RELATED WORK

Computer applications have been widely used in

modern education, such as instructional method design,

course content delivery, and e-learning. A meta-analysis

of comparative studies on computer-managed instruction

(CMI) and interactive computer-assisted instruction (CAI)

showed that computer-based education has generally had

positive effects on the achievement of elementary school

students [7]. Studies have revealed the positive impact of

computer-based learning environments in different

mathematical domains, including arithmetic, algebra,

geometry, statistics, and calculus as the students are more

engaged in committed learning through computer-aided

instructions [8]. In addition, web-based computer

application has offered functionalities and tools to bring

students, teachers, and enormous Internet resources

together in online learning environments [9].

Although computer-based educational games as an

approach to enhancing student learning experience in a

variety of disciplines have drawn attention of educational

researchers and classroom teachers, no consensus has

been reached on the effects of computer games on the

achievements and outcomes of student learning due to the

lack of empirical research on differential effects of

diverse learners. The use of educational computer games

to facilitate elementary students’ cognitive math

achievement and attitudes toward math education have

been examined by case studies [10]. The results indicated

that students developed more positive attitudes toward

learning math through computer math gaming, which

highlighted the value of situating learning activities

within the game story and making games enjoyably

challenging in elementary math education.

Focusing on gender and language minority groups,

empirical studies investigating the effects of playing

computer games on math achievement of elementary

students have indicated that male language minority

students who daily played computer games in math

demonstrated higher math performance scores compared

with their male English-speaking counterparts who never

played [11]. Furthermore, studies examining the effects

of computer games on students’ math achievement and

motivation illustrated that students who played the games

in their classrooms and school labs reported greater

motivation compared to those who played the games only

in the school labs [12].

III. UNIFIED PROCESS METHOD

Commonly used software development models fall into

two categories: traditional models, such as Waterfall and

Evolutionary Prototyping for more static projects whose

requirements do not change much during the

development, and contemporary models like Scrum,

Adaptive Software Development and Unified Process that

may handle changing requirements and project goals

better [13]. In this study, we adopted the Unified Process,

a model based on the Unified Modeling Language (UML)

that has been widely accepted in industry [14]. The

programming language is Visual C# integrated with the

Visual Studio .NET platform that has a large collections

of tools and libraries [15, 16]. The development cycle of

the Unified Process model includes four major phases:

Inception, Elaboration, Construction, and Transition,

while each phase contains five workflows: Requirements,

Analysis, Design, Implementation, and Test [17]. The

following subsections discuss each phase in details with

emphasis on different workflows.

A. Inception Phase

The inception phase is to achieve agreement between

the development team and the user on the requirements,

the expectations for the functionality, and the procedural

approach that is to be taken to implement the application

[18]. After meeting with classroom teachers and

completing an initial requirement analysis, the team

decided to divide the Hundred Acorn Forest into two

major components: Teacher Module and Student Module.

The Teacher Module is where a teacher can manage his

or her student roster, create new puzzles or edit existing

puzzles, and view student attempts through automatically

recorded video playback. The Student Module is where a

student plays the puzzle game, i.e., a student can progress

through the game by solving puzzles created by the

teacher in the Teacher Module.

Requirement keys were captured to scope the

application in this phase (See Appendix A). In addition,

inception phase includes the use case analysis [19]. The

UML defines a use case as an objective users want to

achieve with an application. It aims at describing a

system from external usage viewpoint, rather than from

 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the 3

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

developer's perspective. Fig. 1 is the use case diagram for

the Teacher Module and Fig. 2 is the use case diagram for

the Student Module.

Fig.1. Use Cases of the Teacher Module.

Fig.2. Use Cases of the Student Module.

B. Elaboration Phase

The elaboration phase provides an architectural

baseline that implements a working application with

limited functionality, and to formulate a project

agreement with the user to further pursue the project [20].

The project vision, business case, requirements, and

system scope were refined. The analysis workflow

describes what the application is supposed to do without

defining how it is done given that how to implement the

application will be completed in the design workflow of

the construction phase [21]. The design task in this phase

is to develop a stable architecture using UML. A detailed

project schedule was finalized, the initial UML class

diagrams were created, and the prototype of the

application was implemented.

The main documents developed in this phase were

Activity Diagrams and Sequence Diagrams. An activity

diagram describes procedural logic, business process, and

work flow, which is like a flowchart but supports parallel

behavior that allows the user to choose the order in which

to do things [22]. Fig. 3 shows the activity diagram for

the Teacher Module, which decomposes user actions

captured in the use case into detailed activities involving

conditional branches and concurrent flows.

A sequence diagram, which describes how groups of

objects collaborate in some behavior, is one of the several

forms of interaction diagrams defined in the UML [22]. It

usually shows a number of example objects and the

messages that are passed between these objects within the

use case. Fig. 4 indicates the interactions and messages

passed among the objects in the scenario that a student

plays a game in the Student Module. Similarly, Fig. 5

illustrates a scenario in the Teacher Module that involves

the actions of maintaining a student list, creating or

editing puzzles, and viewing recorded puzzle solving

actions of student attempts, which gives a good picture

about which objects are doing which processing.

Fig.3. Activity Diagram of the Teacher Module.

Fig.4. Sequence Diagram of the Student Module.

C. Construction Phase

The UML model with supporting documents, the

software product, the test suite, and the user manuals are

deliverables for the construction phase [17]. This phase

reveals and analyzes any requirement that has been

missed, and refines the requirements that have been

implemented [21]. The design task is to complete the

UML design model for functionalities to be implemented

in this phase. Fig. 6 shows the UML class diagram of the

Hundred Acorn Forest application, which defines classes,

their attributes, operations, and relationships including

aggregation, association, and inheritance.

The functionalities, as defined in the use cases and

requirement keys, were implemented through four

iterations. The first iteration was to implement the

4 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

administration feature in the Teacher Module which

allows a teacher to add, edit, or delete students and assign

student skill levels. It also let the teacher to view

students’ attempts of puzzles.

Fig.5. Sequence Diagram of the Teacher Module.

Fig.6. The UML Class Diagram of the Hundred Acorn Forest Application.

 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the 5

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

The second iteration implemented the features for

creating and editing puzzles in the Teacher Module. The

teacher may create two types of puzzles: Basic Puzzle or

Patterned Puzzle. A Basic Puzzle is one that includes all

100 number boxes, and the teacher may select which ones

are hidden freely. Creating a Patterned Puzzle is a two-

step process. The teacher needs to create a new pattern or

select an existing pattern with a certain sequence of

numbers, and then choose what numbers to hide.

Meanwhile, the teacher may assign a difficulty stage

ranging from 1 to 6 to each puzzle that will be loaded into

the game of the Student Module.

The third iteration implemented the game play of the

Student Module. As the student progresses through the

levels, puzzles will increase in difficulty according to the

stages teacher has chosen during the puzzle design.

The screen recording feature was completed in the

fourth and final iteration. Fig. 7 shows the code map of

the classes related to video streaming and recording. The

video file is in the standard AVI format which can be

played back on any computer system.

Fig.7. The Code Map of the Screen Recording Function.

During the entire construction phase, UnitTest, a

software testing framework integrated into Visual

Studio .NET, was used to verify that all the required

functionalities are actually implemented and that the

various components are working in isolation [23]. The

UnitTest is seamlessly integrated with Visual Studio to

take advantage of many .NET language features such as

custom attributes and other reflection related capabilities.

For example, UnitTest verified that the puzzles created

and saved in the Teacher Module can be successfully

loaded into the game in the Student Module. These tests

were further extended into the transition phase.

D. Transition Phase

This phase starts after the initial application testing has

been performed and the application is ready to be

deployed [21]. Bugs discovered during testing are fixed

or deferred to the next version, and the application is

prepared for release. An integration test [23] was

performed to verify each component and module work

correctly together, such as the interactions between the

Teacher Module and the Student Module. The defects on

the remaining components were analyzed and all the

known errors were fixed. A defect tracking sheet were

used to record this testing and fixing process.

Transition phase also requires a way of distributing the

developed software. Installation packages, which include

executable binary code of the Hundred Acorn Forest

application together with supporting libraries and files,

were created using the Visual Studio .NET built-in setup

utilities and deployment tools. The application was

successfully deployed on computers in a lab.

In addition, the team manager collected and archived

all the documents including requirement keys, use case

diagrams, activity diagrams, sequence diagrams, UML

class diagram, and defect tracking sheet, etc. The

manager also exported the source code documentation

from the Visual Studio .NET and composed the help file

for the released software product. Archiving these

development documents is very important for code reuse,

software maintenance, new release, and future training.

The user manual was created to give users detailed

instructions of how to use the application. Since both

teachers and students will be using the application, the

instructions came in two versions, one for classroom

teacher’s use, and the other for student’s use. The

teacher’s version includes not only how to design and set

up the puzzles, but how to track students’ performance

through video playbacks.

The student’s version was developed with a more

children-friendly tone and the complexity of vocabulary

and sentence structure in the instructions were carefully

controlled to make sure they are at the appropriate

instructional reading level of the children. It is suggested

that when classroom teachers start to teach their students

how to use this application, they should gradually release

teacher’s responsibility by following these four steps [24]:

(1) teacher models how to use it; (2) teacher invites

students to join him or her to use it; (3) teacher

encourages students to use it on their own but is prepared

to offer timely support; (4) teacher observes students to

use it independently.

IV. EXPERIMENTS AND RESULTS

The design of this application adopted a document-

view architecture with traditional looking form-based

interface [16]. Although the implementation of the user

input and data storage is quite different for Teacher

Module and Student Module, the application shows the

characteristics of usability, robustness, and efficiency

based on the results of the acceptance test [23] that

verifies the user can complete all the tasks and actions

according to the requirements without problems.

A. Teacher Module

The Teacher Module has two major functionalities:

Puzzle Management and Administration. Puzzle

Management let the teacher to create, edit, and save

puzzles. As aforementioned, a puzzle can be a Basic

Puzzle created freely, or a Patterned Puzzle based on a

certain pattern that can be reused.

On the Basic Puzzle design form shown in Fig. 8, the

6 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

teacher may click on any number and it will be hidden by

an Acorn. Clicking an Acorn will remove it, and the

number will appear again. In the bottom left the teacher

may select a stage for this puzzle based upon the level of

difficulty, with 1 being the easiest and 6 being the hardest.

The default stage is set to 1. Once the teacher has set the

stage and hidden all the numbers he/she wishes to hide,

the puzzle can be saved and added to the game. The

teacher can continue to create new basic puzzles or return

to the previous menu.

Fig.8. The Basic Puzzle design in the Teacher Module.

With the option of Patterned Puzzle, the teacher should

first create a pattern, for example, the orange boxes in Fig.

9, which contain only a subset of numbers that the teacher

want their students to work on. As the teacher clicks a

number, the box will turn orange, indicating it belongs to

a pattern. Clicking it again will return it back to a number.

Once the teacher has the desired pattern, he/she may click

Set Pattern at the bottom of the screen so that only the

pattern will be displayed.

To create puzzles based on this pattern, the teacher can

click on which numbers to hide, similar to the process of

creating a Basic Puzzle. Clicking on a number will cause

an Acorn to appear and hide the number while clicking an

Acorn will remove it and the number will appear again.

In the bottom left, the teacher may select a stage for this

puzzle based upon the level of difficulty, with 1 being the

easiest and 6 being the hardest. The default stage is set to

1 like in the Basic Puzzle design. Once the teacher has set

the stage and all the numbers he/she wishes to hide, the

puzzle can be saved and added to the game. The teacher

can continue to create a new Patterned Puzzle or return to

the previous menu to create a new pattern.

One of the advantages of using a Patterned Puzzle is

that the teacher can quickly create similar puzzles without

repeating the same process as that in the Basic Puzzle

design. Additionally, in the situation when students have

trouble solving puzzles that contain a certain type of

sequences, the teacher may want the students to practice

more on similar sequences but with different numbers

and difficulty levels. Patterned Puzzle design offers the

teacher a more flexible way to group or arrange puzzles

of different difficulty level in each stage of a game to

reinforce the students’ ability to count similar sequences

of numbers.

Fig.9. (a) The Patterned Puzzle Design in the Teacher Module

Fig.9. (b) The Puzzle Created based on the Pattern.

The Administration function in the Teacher Module

loads the Student List form as shown in Fig. 10 (a), with

which the teacher can add or delete students and view

student attempts of solved puzzles. The Add command

displays a new Student information form where the

teacher may fill out student information, such as Student

ID and Student Name, and meanwhile choose a Student

Level (See Fig. 10 (b)). Student Levels are set at 1 to 6

corresponding to the difficulty of the puzzles appropriate

for this student. The Ok command dismisses the Student

 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the 7

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

information form and puts the student in the Student List.

The teacher may select a student in the list to view the

information. When deleting a student, a warning message

will pop up to ask the teacher to confirm the deletion

operation if the student has attempted any puzzle.

Fig.10. (a) Student List Form

Fig.10. (b) Student Information Form

With the View Attempts command, the teacher may

view a list of attempts in order of completion by the

selected student (See Fig. 11). This list will be empty if

the student has yet to complete a puzzle. The teacher can

select an attempt labeled by a sequence number, date,

time, and score. The Play command starts the recorded

video showing how the student was completing the level.

When finished playing, the teacher may select another

attempt to view or exit this screen and return to the

previous menu.

Fig.11. The Attempt Browser and Viewer in the Teacher Module.

B. Student Module

Selecting Student from the application’s starting screen

will take the student to the Player menu where the student

will select their name from the Player list as shown in Fig.

12 (a). Once their name is highlighted the user may click

Play to access the game menu. However, if this is the first

time the student plays the game, he/she will be asked to

set up a nickname as shown (See Fig. 12 (b)) before

continuing to the Game menu. Nickname will be saved

and will appear in the Player List the next time he/she

returns to play. If the nickname the student selected is

already being used, he/she will be asked to enter a

different name.

Fig.12. (a) Player Menu

Fig.12. (b) Player’s Nickname Creation

The game interface combines a quick access menu and

easy-to-identify metaphors as shown in Fig. 13. The

buttons to the left allow the student to change options and

obtain help if they get stuck on a certain level.

Fig.13. Game Menu and Level Selection in the Student Module.

The game has some notable features. On the Game

map, the student can select what level to play. Clicking

on any level he/she has attempted already will display the

highest score achieved so far for that level. The student

may replay any previous level to improve his/her score.

However, the student is not allowed to play any levels

past the first un-played level.

After choosing the level he/she wishes to play, the

student clicks on the Go button to start the puzzle game.

The game will randomly load a puzzle from the library of

puzzles with the same difficulty created in the Teacher

Module based on the level the student is currently at (See

Fig. 14).

8 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

Fig.14. Game play screen in the Student Module.

Fig. 15 illustrates a typical puzzle solving process. To

play, the student will click on a number from the number

bank to the left and then click on the acorn where the

number belongs. If correct, the acorn will crack, the

number will be placed, and the score will pops up (see

Fig. 15 (a), (c), and (d)). If incorrect, the tile will turn red

(see Fig. 15 (b)). Each player is given 3 hints per level.

As hints are used, the acorns will disappear from the hint

box. When the hint is clicked, the board will highlight a

number in the bank and then highlight either the row or

the column it belongs in (See Fig. 15 (e)). The faster a

student places a number in the correct spot, the more

points are awarded. The score for the level is

accumulated, and at the end of the game the score and

time are saved together with the highest score of each

level (see Fig. 15 (f)). The student can replay the level to

improve the score or continue on to the next level.

Fig.15. (a) Correct Placement of Number 12.

Fig.15. (b) Incorrect Placement of Number 26 on 7.

Fig.15. (c) Correct Placement of Number 7.

Fig.15. (d) Correct Placement of Number 26.

Fig.15. (e) Hint for the Placement of Number 67.

Fig.15. (f) Game Ending Screen.

 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the 9

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

V. DISCUSSION

The Hundred Acorn Forest application is the first

computer game developed to teach counting skills with

Hundreds Chart puzzles. Its intelligence lies in the

creation of the puzzle as well as the process of how the

game is played. Not only has it allowed the teacher to

make basic puzzles like those of the traditional paper-

based Hundreds Chart, only without the hassle of cutting

papers, but provided the teacher a handy tool to create

more challenging puzzles based on the same pattern that

can be reused. The interactive play with animated

presentation following a story line should keep the

student interested. The hint feature adds another level of

control by giving the student a better chance to solve the

puzzle, and therefore helps to avoid the frustration of the

student who might otherwise get stuck on a level with

difficult puzzles.

Furthermore, the teacher is able to efficiently manage

the difficulty level of each puzzle and game as well as the

skill stage of individual students. The puzzles with same

difficulty levels are randomly selected to generate a

sequence of game plays appropriate for a student at a

certain stage. The achievement score, which should be a

good measurement to reevaluate the skill stage of the

student, is awarded according to how quickly a student

solves a puzzle as well as whether the student uses hints

in the process.

One of the unique feature of the Hundred Acorn Forest

application is the video playback for the teacher to review

the attempts by the students. Besides showing the score

and time it takes a student to solve a certain level of

puzzle, the automatically recorded video reveals what

missteps the student have taken in the process of game

play, whether the student has used any hints, etc., which

helps the teacher to identify the specific area of the

problems the student may have and therefore to enforce

the learning with follow-up instructions.

VI. CONCLUSION

A complete cycle of using the Unified Process method

to develop a computer-based Hundreds Chart puzzle

game for teaching K-2 students basic counting skills has

been presented. The success of this project demonstrates

the effectiveness of the Unified Process method in the

design of a math education application which integrates

modules for both teachers and students. The teacher will

benefit from the application by efficiently creating and

editing puzzles, managing the difficulty of the game,

evaluating the student skill levels, and reviewing the

attempts by the students, while the student will enjoy the

game experience to build their counting skills.

Our future work will look into encoding the recorded

videos in a compressed file format, such as MP4 [25],

which demands much less storage space than the AVI

format. Additionally, given the unstructured information

in the application, such game maps, puzzles, videos, etc.,

we will investigate object-oriented databases [26] that

offer better indexing and searching functions than the

traditional relational databases.

APPENDIX A REQUIREMENT KEYS

Requirement Key Description

Puzzle_Create A teacher should be able to design his or her

own Hundreds Chart puzzle by selecting which

numbers will be hidden.

Puzzle_Delete A teacher should be able to delete any saved

user-created puzzles but not the default puzzles

supplied in the program.

Puzzle_Load A teacher should be able to load a puzzle from

the database in order to edit it or use it as a

template to create more puzzles.

Puzzle_Save A teacher should be able to save a puzzle into a

database once he or she is finished creating it.

It should be possible to overwrite existing

puzzles.

Pattern_Create A teacher should be able to design his or her

own Hundreds Chart puzzle by first creating a

pattern of squares in the puzzle, and then

choosing which numbers in the pattern will be

hidden.

Pattern_Delete A teacher should be able to delete any saved

user-created patterns but not the default

patterns supplied in the program.

Pattern_Load A teacher should be able to load a pattern from

the database in order to edit it or use it as a

template to create more patterns.

Pattern_Save A teacher should be able to save a pattern into

a database once he or she is finished creating

it. It should be possible to overwrite existing

patterns.

Bank_Generate When a student begins a level, the program

must generate a number bank of Hundreds

Chart blocks that contains all of the missing

number blocks from the puzzle or pattern and

additional random number blocks that will not

be inserted into the puzzle or pattern.

Level_Edit A teacher should be able to enable or disable

certain features, like hints, for various levels.

Level_Generate When a student begins a level, the program

must load a stored puzzle or pattern of

appropriate difficulty.

Level_Load Upon continuing a game, if the student 's last

play ended on a level that was not completed,

that level should be loaded into play so that the

student may complete the level.

Level_Lobby Upon continuing a game, if the student's last

play did not end on an incomplete level, the

student should be taken to a level lobby, from

which they may select a level.

Level_Map The student's level lobby should contain a map

of all levels, both complete and incomplete,

that should be displayed. The student should be

able to scroll through the map, but only to view

levels already completed.

Level_Score Upon selecting a level in the map, the student

should be able to see their current highest score

and the associated completion time and be

given to the option to play the level.

10 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

Level_Load_Saved When a student user leaves an unfinished level,

the level should be saved exactly as is so that

the student may continue the level when he or

she next plays the game.

Level_Scoring Upon completing a level, a student must be

awarded a score for the level that is the

summation of all action scores achieved during

the level play.

Level_Select From the level map, a student may select to

play the next incomplete puzzle or a puzzle

that he or she has already completed in order to

attempt to achieve a better score.

Action_Click In order to place number blocks into empty

blocks on the hundreds chart, a student should

be able to click the block from the block bank

and click the desired location on the Hundreds

Chart.

Action_Hint For certain difficulties of puzzles, when a

student attempts to place a block incorrectly, if

the block is in the correct horizontal or vertical

row, that row will light up to give the student a

hint.

Action_Record When a student completes an action, that

action, as well as any score awarded for

completing it, must be recorded into a video

file of all the actions completed in the

particular attempt at completing the puzzle.

Action_Scoring Action that is completed during a level by a

student must be scored.

Attempt_Database A database containing all attempts files of all

students must be maintained.

Attempt_Save Once a puzzle is completed, all of the actions

completed by the student during the level will

be saved as an attempt file in a database so that

it may be reviewed by a teacher.

Attempt_View A teacher should be able to view the actions

completed by a student in any one of their

attempts.

Student_Add A teacher should be able to add a student to the

student list.

Student_Delete A teacher should be able to delete a student

from the student list.

Student_Edit A teacher should be able to edit a student's

current stage level.

Report_Generate A teacher should be able to generate a report

on a given student that displays their overall

score and the student's scores and times for all

completed levels.

Player_Create A student should be able to begin a new game

and create a username if they have been added

by a teacher into the student list and have not

yet begun a game.

Player_Save Upon leaving or logging out of the game, the

player's score (only taking into account the

highest score achieved for each level), and

current level state must be saved.

Player_Select Upon opening the game, a student must select

his or her username from a list to start playing.

Teacher_Login A teacher must be able to access the program

with a password.

ACKNOWLEDGMENT

The authors wish to thank faculty in the Department of

Mathematics and Statistics for their support on the

requirements analysis of the application. This research

was also supported by faculty in the Martha Dickerson

Eriksson College of Education at Austin Peay State

University.

REFERENCES

[1] R. E. Reys, et al, Helping Children Learn Mathematics,

Danvers, MA: John Wiley & Sons, 2014.

[2] N. N. Vacc, “Gaining number sense through a

restructured Hundreds Chart,” Teaching Exceptional

Children, vol. 28, pp. 50–55, 1995.

[3] D. S. Niederhauser and T. Stoddart. “Teachers’

instructional perspectives and use of educational

software,” Teaching & Teacher Education, vol. 17, pp.

15–31, 2001.

[4] P. D. Pearson and J. A. Dole. “Explicit comprehension

instruction: A review of research and a new

conceptualization of instruction,” The Elementary

School J., vol. 88, pp. 151–165, 1987.

[5] D. Ogle and J. W. Beers, Engaging in the Language

Arts: Exploring the Power of Language, Boston, MA:

Pearson Publishers, 2012.

[6] C. Ghezzi, M. Jazayeri, and D. Mandrioli,

Fundamentals of Software Engineering. NJ: Prentice

Hall PTR, 2002.

[7] J. A. Kulik, C. C. Kulik, and R. L. Bangert-Drowns,

“Effectiveness of computer-based education in

elementary schools,” Computers in Human Behavior,

vol. 1, pp. 59–74, 1985.

[8] N. Balacheff and J. J. Kaput, “Computer-based learning

environments in mathematics,” International Handbook

of Mathematics Education, Springer Netherlands, pp.

469–501, 1996.

[9] A. I. Khan, S. Mahaboob, A. M. Ali, and C. V. Bebi.

"Study of blended learning process in education

context." Int. J. Modern Edu. & Comp. Sci. (IJMECS),

vol. 4, pp. 23–29, 2012, DOI:

10.5815/ijmecs.2012.09.03.

[10] S. Kim and M. Chang, “Computer games for the math

achievement of diverse students,” J. Educational

Technology & Society, vol. 13, pp. 224–232, 2010.

[11] F. Ke, “A case study of computer gaming for math:

Engaged learning from gameplay?” Computers &

Education, vol. 51, pp. 1609–1620, 2008.

[12] M. Kebritchi, A. Hirumi, and H. Bai, “The effects of

modern mathematics computer games on mathematics

achievement and class motivation,” Computers &

Education, vol. 55, pp. 427–443, 2010.

[13] L. A. Maciaszek and B. L. Liong, Practical Software

Engineering. A Case Study Approach, Harlow England:

Addison-Wesley, 2005.

[14] G. Lenz and T. Moeller, .NET - A Complete

Development Cycle, Boston, MA: Addison-Wesley,

2003.

[15] A. Troelsen, Pro C# 5.0 and the .NET 4.5 Framework,

Berkeley, CA: Apress, 2012.

[16] D. Esposito and A. Saltarello, Microsoft .NET:

Architecting Applications for the Enterprise, Redmond,

WA, Microsoft Press, 2008.

[17] P. Kruchten, The Rational Unified Process: An

Introduction, Boston, MA: Addison-Wesley, 2003.

[18] D. R. Windle and L. R. Abreo, Software Requirements

 Development of a Novel Computer Application to Teach Counting in K-2 Classroom using the 11

Unified Process Method

Copyright © 2015 MECS I.J. Modern Education and Computer Science, 2015, 10, 1-11

Using the Unified Process: A Practical Approach, NJ:

Prentice Hall PTR, 2002.

[19] F. Armour and G. Miller, Advanced Use Case Modeling,

Boston, MA: Addison-Wesley, 2000.

[20] J. Li, “Teaching unified process in software design and

development courses – a case study,” The Journal of

Computing Sciences in Colleges, vol. 24, pp. 5–11,

2009.

[21] J. Arlow and I. Neustadt, UML 2 and the Unified

Process: Practical Object-Oriented Analysis and

Design, Boston, MA: Addison-Wesley, 2005.

[22] M. Fowler, UML Distilled: A Brief Guide to the

Standard Object Modeling Language, Boston, MA:

Addison-Wesley Professional, 2003.

[23] L. Copeland, A Practitioner's Guide to Software Test

Design, Norwood, MA: Artech House Publishers, 2004.

[24] P. D. Pearson and M. C. Gallagher, “The instruction of

reading comprehension,” Contemporary Educational

Psychology, vol. 8, pp. 317–344, 1983.

[25] R. Koenen, F. Pereira, and L. Chiariglione, “MPEG-4:

Context and objectives,” Signal Processing: Image

Communication, vol. 9, pp. 295–304, 1997.

[26] K. R. Dittrich, “Object-oriented database systems: the

next miles of the marathon,” Information Systems, vol.

15, pp. 161–167, 1990.

Authors’ Profiles

Jiang Li received his Ph.D. in Electrical

Engineering from the University of

Nebraska – Lincoln, USA. He also holds

B.S. and M.S. degrees in Electronics

Engineering from Beijing Institute of

Technology, China.

He is a Professor in Computer Science

and Information Technology at Austin Peay

State University, USA. His research interest is in image

processing, machine learning, data mining, software

engineering, and distributed computing. He has published over

20 refereed articles in international journals and conference

proceedings. Dr. Li is a member of ACM and he currently

serves on the ODBMS.ORG's Panel of Experts.

Ling Wang received her Ph.D. in Literacy

Studies from the Middle Tennessee State

University, USA. She also holds a M.A. Ed.

Degree in Reading from Austin Peay State

University, USA and a M.A. degree in

Foreign Languages and Applied

Linguistics from Shandong University of

Finance, China.

She is an Assistant Professor in Education at Austin Peay

State University, USA. Her research interest is in educational

multimedia, literacy studies, and foreign language acquisition.

She has published several refereed journal and conference

articles. Dr. Wang is a member of International Literacy

Association and she currently serves on the Editorial Boards of

Journal of Educational Multimedia and Hypermedia and Journal

of Technology and Teacher Education.

Lacey L. Williams holds a B.S. degree in

Computer Science and Information Systems

from Austin Peay State University, USA.

Christina A. Allan holds a B.S. degree in

Computer Science and Information Systems

from Austin Peay State University, USA. She

is currently a Professional Science Masters

student in Data Management and Analysis at

Austin Peay State University, USA.

