
SIMetrix
SPICE and Mixed Mode Simulation

Simulator Reference Manual

Copyright ©1992-2004 Catena Software Ltd.

Trademarks
PSpice is a trademark of Cadence Design Systems Inc.
Star-Hspice is a trademark of Synopsis Inc.

Contact
Catena Software Ltd., Terence House, 24 London Road,
Thatcham, RG18 4LQ, United Kingdom

Tel.: +44 1635 866395
Fax: +44 1635 868322
Email: info@catena.uk.com
Internet http://www.catena.uk.com

Copyright © Catena Software Ltd 1992-2004
SIMetrix 5.0 Simulator Reference Manual 23/8/04

Catena Software Ltd. is a member of the Catena group of companies.
See http://www.catena.nl

Table of Contents
Table of Contents

Chapter 1 Introduction
The SIMetrix Simulator - What is it?10
A Short History of SPICE...10

Chapter 2 Running the Simulator
Using the Simulator with the SIMetrix Schematic Editor..12

Adding Extra Netlist Lines ..12
Displaying Net and Pin Names.................................12
Editing Device Parameters13
Editing Literal Values - Using shift-F713

Running in non-GUI Mode...14
Overview...14
Syntax...14
Aborting ..15
Reading Data..16

Configuration Settings ...16
Netlist Format ..18

File Format ...19
Language Declaration ..19
Comments ..20
Device Lines ...20
Simulator Controls ..22

Simulator Output..22
The List File ..22
The Binary Data File...23
Output Data Names..24

Chapter 3 Simulator Devices
Overview..26
Using XSPICE Devices..26

Vector Connections ..26
Connection Types...27

Using Expressions ...28
Overview...28
Using Expressions for Device Parameters29
Using Expressions for Model Parameters29
Expression Syntax..29
Optimisation..38
3

Simulator Reference Manual
Subcircuits... 39
Overview .. 39
Subcircuit Definition ... 39
Subcircuit Instance... 41
Passing Parameters to Subcircuits 41
Nesting Subcircuits .. 42
Global Nodes ... 42
Subcircuit Preprocessing ... 42

Model Binning.. 43
Overview .. 43
Defining Binned Models ... 43
Example ... 43

Language Differences ... 44
Inline Comment .. 44
Unlabelled Device Parameters................................. 44
LOG() and PWR() .. 45

Chapter 4 Analog Device Reference
Overview ... 46
Arbitrary Source .. 46

Notes on Arbitrary Expression 47
Charge and Flux Devices... 47
Arbitrary Source Examples 48
PSpice and Star-Hspice syntax................................ 50

Bipolar Junction Transistor (SPICE Gummel Poon)........ 50
Bipolar Junction Transistor (VBIC without self heating) .. 53
Bipolar Junction Transistor (VBIC with self heating) 57
Bipolar Junction Transistor (MEXTRAM) 58
Capacitor ... 58
Capacitor with Voltage Initial Condition........................... 60
Current Controlled Current Source.................................. 61

Polynomial Specification .. 62
Current Controlled Voltage Source 62
Current Source .. 63
Diode ... 64
GaAsFET... 68
Inductor (Ideal) .. 70
Inductor (Saturable)... 70
Inductor with Current Initial Condition 73
Insulated Gate Bipolar Transistor.................................... 74
Junction FET ... 75
Lossy Transmission Line... 77
MOSFET ... 79
4

Table of Contents
BSIM3 MOSFETs ..84
BSIM4 MOSFETs ..85
EKV MOSFETs..86
MOSFET GMIN Implementation......................................86
Resistor..87
S-domain Transfer Function Block88
Subcircuit Instance ..94
Transmission Line..94
Voltage Controlled Current Source..................................95
Voltage Controlled Switch..95
Voltage Controlled Voltage Source..................................96
Voltage Source ..97

Pulse Source ..98
Piece-Wise Linear Source ..99
PWL File Source...100
Sinusoidal Source...101
Exponential Source ..102
Single Frequency FM ...102
Noise Source ..103

Mutual Inductor ..103
Philips Compact Models ..104

Introduction...104
Using Philips Devices ...106
Examples..107
Documentation ...108

Chapter 5 Digital/Mixed Signal Device Reference
Digital Device Overview...109

Common Parameters ...109
Delays...110

And Gate..110
D-type Latch ..112
D-type Flip Flop ...114
Buffer ...116
Frequency Divider..117
Digital Initial Condition ...119
Digital Pulse...120
Digital Signal Source ...121
Inverter...124
JK Flip Flop..125
Arbitrary Logic Block..129
Nand Gate ...131
Nor Gate ..132
5

Simulator Reference Manual
Open-Collector Buffer.. 133
Open-Emitter Buffer .. 134
Or Gate.. 135
Pulldown Resistor.. 136
Pullup Resistor .. 137
Random Access Memory .. 137
Set-Reset Flip-Flop ... 138
SR Latch.. 141
State Machine ... 143
Toggle Flip Flop... 144
Tri-State Buffer .. 146
Exclusive NOR Gate ... 148
Exclusive OR Gate .. 149
Analog-Digital Converter ... 150
Analog-Digital Interface Bridge...................................... 153
Digital-Analog Converter ... 157
Digital-Analog Interface Bridge...................................... 160
Controlled Digital Oscillator ... 163
 Analog-Digital Schmitt Trigger...................................... 165

Chapter 6 Command Reference
Overview ... 167
General Sweep Specification .. 168

Overview .. 168
Syntax .. 169

Multi Step Analyses... 170
Overview .. 170
Syntax .. 170

.AC .. 171

.ALIAS ... 173

.DC .. 174

.FILE and .ENDF... 175

.FUNC ... 176

.GLOBAL ... 177

.GRAPH... 177
Parameters... 177
Using Multiple .GRAPH Controls 181
Creating X-Y Plots.. 181
Using .GRAPH in Subcircuits................................. 181
Using Expressions with .GRAPH 181
Plotting Spectra with .GRAPH................................ 182

.IC.. 183
Alternative Initial Condition Implementations 183
6

Table of Contents
.INC..184

.KEEP ..184

.LIB ..186
SIMetrix Native Form..186
HSPICE“ Form..187

.MODEL...187

.NODESET ..190

.NOISE...191

.OP...194

.OPTIONS..195

.PARAM...205

.PRINT...207

.PZ ...209

.SENS..209

.SUBCKT and .ENDS ..210

.TEMP..211

.TF ...211

.TRACE..213

.TRAN..213
Real Time Noise Analysis..216

Chapter 7 Monte Carlo Analysis
Overview..218
Specifying a Monte Carlo Run218
Specifying a Single Step Monte Carlo Sweep219
Log File ..219
Seeding the Random Number Generator220
Specifying Tolerances ...221

Overview...221
Distribution Functions ...221
TOL, MATCH and LOT Device Parameters225
Tolerance Models ...226

Chapter 8 Convergence and Accuracy
Overview..228
DC Operating Point..228

Overview...228
Source and GMIN Stepping....................................229
Pseudo Transient Analysis230
Junction Initialised Iteration232
Using Nodesets ..232

Transient Analysis ...233
7

Simulator Reference Manual
What Causes Non-convergence? 233
Fixes for Transient Non-convergence 234

DC Sweep ... 234
DC Operating Point Algorithms 235

Junction Initialised Iteration.................................... 235
Source Stepping... 235
Diagonal GMIN Stepping 236
Junction GMIN Stepping .. 236
Pseudo Transient Analysis..................................... 236
Controlling DC Method Sequence.......................... 237

Singular Matrix Errors.. 237
Transient Analysis - ‘Time step too small’ Error 238
Accuracy and Integration Methods................................ 238

A Simple Approach .. 238
Iteration Accuracy .. 238
Time Step Control .. 240
Accuracy of AC analyses 240
Summary of Tolerance Options 241
Integration Methods - METHOD option.................. 241

Chapter 9 Digital Simulation
Overview ... 244
Logic States... 244

State resolution table ... 245
Analog to Digital Interfaces ... 245

How A-D Bridges are Selected 247
Logic Families ... 247

Logic Family Model Parameters............................. 248
Logic Compatibility Tables 248
Logic Compatibility File Format.............................. 249
Supported Logic Families....................................... 250
Universal Logic Family ... 251
Internal Tables ... 251

Load Delay .. 251
Overview .. 251
Output Resistance.. 251
Input Delay ... 251
Wire Delay.. 252

Digital Model Libraries... 252
Using Third Party Libraries..................................... 252

Arbitrary Logic Block - User Defined Models................. 252
Overview .. 252
An Example.. 252
8

Table of Contents
Example 2 - A Simple Multiplier..............................255
Example 3 - A ROM Lookup Table.........................255
Example 4 - D Type Flip Flop256
Device Definition - Netlist Entry & .MODEL Parameters
256
Language Definition - Overview258
Language Definition - Constants and Names.........258
Language Definition - Ports258
Language Definition - Registers and Variables260
Language Definition - Assignments........................263
Language Definition - User and Device Values......266
Diagnostics: Trace File ...266

Mixed-mode Simulator - How it Works267
Event Driven Digital Simulator................................267
Interfacing to the Analog Simulator268

Enhancements over XSPICE...268

Chapter 10 SIMetrix vs SPICE
9

Simulator Reference Manual
Chapter 1 Introduction

This manual provides full reference documentation for the SIMetrix simulator.
Essentially the simulator receives a netlist as its input and creates a binary data file and
list file as its output. The netlist defines the circuit topology and also specifies the
analyses to be performed by the simulator. The netlist may directly include any device
models required or these may be automatically imported from a device model library.

The simulator may be operated in GUI mode or non-GUI mode. GUI mode is the
normal method of operation and requires the SIMetrix front end. In non-GUI mode the
simulator runs stand alone in a non-interactive fashion and may be set to run at low
priority in the background.

The SIMetrix Simulator - What is it?
The SIMetrix simulator core comprises a direct matrix analog simulator closely
coupled with an event driven digital simulator. This combination is often described as
Mixed-Mode and has the ability to efficiently simulate both analog and digital circuits
together.

The analog simulator is a derivation of SPICE 3 developed by the CAD/IC group at the
University of California at Berkeley while the event driven digital simulator is based
on XSPICE from the Georgia Technical Research Institute. However, only about 50%
of the SIMetrix simulator code can be directly traced to these programs. We have
rewritten some parts while added our own original code to others. The additions and
changes we have made are to improve speed, add new functionality and improve
convergence.

We have not, however, implemented all of the original SPICE3 features. We have
omitted items that we feel are of limited use. A summary of the differences between
SIMetrix, SPICE2 and SPICE3 can be found in “SIMetrix vs SPICE” on page 270

A Short History of SPICE
SPICE is an acronym for Simulation Program with Integrated Circuit Emphasis. It
was developed by the University of California at Berkeley and it's origins can be traced
back to the late 1960s. A number of research groups at that time were working on ways
to simulate integrated circuits as it was becoming increasingly obvious that traditional
breadboarding techniques could not be used. The first program to emerge from
Berkeley had the unattractive name of CANCER and this was then developed into
what is now known as SPICE1. SPICE1 was first released in 1972 but was fairly
primitive. SPICE2 followed in 1975 and was a considerable improvement and in fact
had all the major elements used in current SPICE and SPICE-like analog simulators.
The final version of SPICE2 was SPICE2G.6 and was released in April 1983. SPICE2
was just a simulator and had no user interface in the modern sense. The input was a
netlist, usually prepared by hand, and the output was a line printer listing containing
time point values or crude plots using asterix characters.

From the beginning SPICE was made publicly and freely available in source code form
(in FORTRAN) and this led to its wide acceptance throughout the industry. In the early
10

Chapter 1 Introduction
1980s it was run mainly on DEC VAX machines with PC versions for DOS appearing
in the mid 1980s

SPICE3 started to appear at around the same time. SPICE3 is written in 'C' and was
developed for UNIX machines. It features a front end known as Nutmeg which
consists of a graphical waveform viewer and interactive command shell but no
schematic entry. The simulator itself is an improvement on SPICE2 but not a vast one
with only small developments to improve convergence problems. The last version of
SPICE3 to be released was SPICE3f.5.
11

Simulator Reference Manual
Chapter 2 Running the Simulator

Using the Simulator with the SIMetrix Schematic Editor
Full documentation on using the SIMetrix schematic editor for simulation is described
in the SIMetrix User's manual. However, just a few features of the schematic editor are
of particular importance for running the simulator and for convenience their
description is repeated here.

Adding Extra Netlist Lines
The analysis mode selected using the schematic editor's Simulator|Choose Analysis...
menu is stored in text form in the schematic's simulator command window. If you
wish, it is possible to edit this directly. Users familiar with SPICE syntax may prefer
this approach. Note that the text entered in the simulator command window and the
Choose Analysis dialog settings remain synchronised so you can freely switch between
the two methods.

To open the simulator command window, select the schematic then press the F11 key.
It has a toggle action, pressing it again will hide it. If you have already selected an
analysis mode using the Choose Analysis dialog, you will see the simulator controls
already present.

The window has a popup menu selected with the right key. The top item Edit file at
cursor will open a text editor with the file name pointed to by the cursor or selected text
item if there is one.

The simulator command window can be resized using the splitter bar between it and
the schematic drawing area.

You can add anything you like to this window not just simulator commands. The
contents are simply appended to the netlist before being presented to the simulator. So,
you can place .PARAM controls, device models, inductor coupling specifications,
.OPTION controls or simply comments. The Choose Analysis dialog will parse and
possibly modify analysis controls and some .OPTIONS settings but will leave
everything else intact.

Displaying Net and Pin Names
It is sometimes necessary to know the name used for a particular net on the schematic
to be referenced in a simulator control (such as .NOISE) or for an arbitrary source
input. There are two approaches:

• Find out the default name generated by the schematic editor's netlist generator.
To do this, place the mouse cursor over the net of interest then press control-S.
The net name will be displayed in the command shell's message window.

• Force a net name of your choice. For this, use a terminal or small terminal
symbol. These can be found under the Parts|Connectors menu. After placing on
the schematic, select it then press F7 to edit its name. This name will be used to
name the net to which it is connected.
12

Chapter 2 Running the Simulator
Editing Device Parameters
To use any of the additional parameters in a schematic, use the Parameters button in
the dialog box opened by F7 or the equivalent menu. For example you see this box
when editing a resistor

Pressing the Parameters button will open another dialog from which you can edit
parameter values:

You can also bring up this box directly using the menu Parts|Edit Additional
Parameters....

Note you can only supply constant values by this method. If you wish to define a
parameter as an expression, you will need to use shift-F7 - see below.

Editing Literal Values - Using shift-F7
The above method is not infallible as it requires the schematic editor to know about the
device being edited. In some circumstances, this will require special properties to be
present on the symbol and these may have not been defined. (for example something to
tell the schematic what level a MOSFET is)
13

Simulator Reference Manual
Another situation where the usual device editing methods are unsuitable is when you
need to define a parameter as an expression.

In these situations you can use shift-F7. This will edit the device's literal value
including any model names exactly as it will be placed in the netlist. shift-F7 bypasses
all smart algorithms and presents you with the raw values and you must also supply
raw values. For example, here is what you might enter for a MOSFET referencing a
model called N1

N1 L={LL-2*EDGE} W={WW-2*EDGE}

Note the model name must be included.

Running in non-GUI Mode

Overview
The simulator can be run in a non-interactive non-GUI mode independently of the
front end. This is useful for running simulation ‘batches’ controlled by a proprietary
script or batch language such as shell scripts or DOS batch files.

Under Linux this allows a simulation to be run without an X-server.

Under Windows, the simulator will run as a ‘console mode’ application and no GUI
elements will be created.

When run in this mode, the simulator will read in the specified netlist, run the
simulation then close and return control to the calling program. It will generate a
binary data file and a list file.

Syntax
The command syntax is as follows:

SIM [/config "config_location"] [/check] [/an "analysis_line"]
[/list list_filename] [/options "options"] [/nolist] [/lowPriority] [/nodata]
[/k] netlist_file [data_file]

config_location Location of file holding configuration settings. Configuration
settings include global options and global model library
locations. The value must be of the form:

PATH;pathname

pathname may use system symbolic path values such as
%EXEPATH%. See User’s Manual for details.

If not specified, the configuration settings will be taken from the
Base.sxprj file. See the User’s Manual for details on where this
file is located.

Alternatively, you can specify the location using a setting in the
14

Chapter 2 Running the Simulator
startup.ini file. Add a value called SimConfig to the [Startup]
section and give it a value of:

PATH;pathname

The startup.ini file must be located in the same directory as the
SIMetrix executable binary. (SIMetrix.exe on Windows,
SIMetrix on Linux). See the User’s Manual for more
information on the startup.ini file.

Note that the /config switch if present must always appear be the
first argument to the command.

analysis_line If /an switch is specified, analysis_line specifies the analysis to
be performed and overrides all analysis lines specified in the
netlist.

list_filename Name of list file. Default is main netlist file name with
extension .OUT. Enclose path name in quotes if it contains
spaces.

options List of options valid for .OPTIONS control.

netlist_file File name of netlist.

data_file File to receive binary data output.

/check If specified, the netlist will be read in and parsed but no
simulation will be run. Used to check syntax

/nolist If specified, no list file will be created

/lowPriority If specified, the simulator will be run as a low priority process,
i.e. in the background. Recommended for long runs.

/nodata Only vectors explicitly specified using .KEEP or .PRINT will
be output to the binary file. Equivalent to ‘.KEEP /nov /noi
/nodig’ in the netlist.

/k If specified, the program will not finally terminate until the user
has pressed enter and a message to that effect will be displayed.
Under Windows, if the program is not called from the DOS
prompt but from another program, a console will be created for
receiving messages. The console will close when the program
exits sometimes before the user has had a chance to read the
messages. This switch delays the exit of the program and hence
the destruction of the console.

Aborting
Press cntrl-C - you will be asked to confirm. The simulation will be paused while
waiting for your response and will continue if you enter ‘No’. This is an effective
means of pausing the run if you need CPU cycles for another task, or you wish to copy
the data file. See “Reading Data” below.
15

Simulator Reference Manual
Reading Data
A data file will be created for the simulation results as normal (see “The Binary Data
File” on page 23). You can read this file with the waveform viewer using the Load
Data menu. However, it is strongly recommended that the simulation is paused first by
pressing cntrl-C.

Important: if you read the data file before the simulation is complete or aborted, the file
entries that provide the size of each vector will not have been filled. This means that
the waveform viewer will have to scan the whole file in order to establish the size of
the vectors. This could take a considerable time if the data file is large.

Configuration Settings
Configuration settings consist of a number of persistent global options as well as the
locations for installed model libraries.

When the simulator is run in GUI mode, its configuration settings are controlled by the
front end and stored wherever the front ends settings are stored. See the User's Manual
for more details.

When the simulator is run in non-GUI mode, these settings are stored in a .INI file
which is, by default, SIM.INI in the same directory as the executable file. This can be
changed with the /config switch detailed above (page 14)

The format of the configuration file is:

[Options]
option_settings

[Models]
model_libraries

Where:

option_settings These are of the form name=value and specify
a number of global settings. Boolean values are
of the form name= without a value. If the entry
is present it is TRUE if absent it is FALSE.
Available global settings are detailed below.

model_libraries A list of entries specifying search locations for
model libraries. These are of the form
name=value where name is a string and value
is a search location. The string used for name
is arbitrary but must be unique. Entries are
sorted alphabetically according to the name
and used to determine the search order. value is
a path name and may contain wildcards (i.e. '*'
and '?')
16

Chapter 2 Running the Simulator
Global Settings

Data Buffering

The simulator buffers data before writing it to disk. By doing so the binary data file can
be organised more efficiently allowing data to be recovered from it quickly. There is a
relationship between buffer size and read in time as illustrated by the following table.
This shows the time taken to read in a 1.2MByte vector from a 53MByte data file with
the system disk cache cleared. These tests were performed using a 500MHz P3 with an
IDE disk system.

Name Type Default Description

SearchDefaultTol Boolean false If true, the model
library will be
searched for
Monte Carlo
default models

NoStopOnUnknownParam Boolean false If true, unknown
model parameters
will be ignored

MaxVectorBufferSize Numeric 32768 See “Data
Buffering” below

TotalVectorBufferSize Numeric Available RAM/10 See “Data
Buffering” below

TempDataDir String %STARTDIR% Location of
temporary binary
data file if data_file
is not specified on
command line

LibraryDiagnostics String Full Controls output of
messages relating
to model library
search. Specify
None to disable

Vector buffer
size/bytes

Read in time seconds

256 26

512 18

1k 14.9

2k 6.5

4k 3.5
17

Simulator Reference Manual
Note that the buffer size referred to in the above table is for each vector.

By default, the simulator won't allocate more than 10% of your system RAM to vector
buffers. Clearly if you are running a large circuit and saving many vectors, the buffer
sizes could reduce to levels that would make data retrieval very slow. In this case you
may wish to consider increasing the memory that is allowed for these buffers. Two
configuration settings control the vector buffering. These are:

• MaxVectorBufferSize. This sets the maximum size that will be used for any
individual vector. The default is 32768 bytes. If you have a high performance
SCSI disk system, you may benefit from increasing this value.

• TotalVectorBufferSize. This sets the maximum amount of memory in bytes used
for all buffers. It defaults to a value equal to 10% of your system RAM. If your
system has a large memory - for example 2GBytes - you may like to set this to up
to about half of your available RAM

The disk will not be written to until the buffers are full. With an all analog circuit all
the buffers reach their full state at the same time so they all get written to disk at the
same time. If you have 256M of RAM and are simulating a largish circuit,
approximately 25M of data will be written to the disk at regular intervals. This will
result in a pause in the simulation coupled with a great deal of disk activity.

Note that both MaxVectorBufferSize and TotalVectorBufferSize may be set from the
front end using the Set command. See the User’s Manual for details.

Netlist Format
The SIMetrix netlist format follows the general format used for all SPICE and SPICE
compatible simulators. However, with so many SPICE derivatives and with two
significantly different versions of SPICE itself (SPICE 2 and SPICE 3) it is not
possible to define a standard SPICE format. SIMetrix has been developed to be as
compatible as possible with model libraries that can be obtained from external sources.
For discrete devices, models are usually SPICE 2 compatible but some use extensions
originally developed for PSpice. IC designers usually receive model files from
fabrication companies and these tend to be developed for Star-Hspice. SIMetrix is
compatible with all of these but simultaneous compatibility with all formats is not
technically possible due to a small number of syntax details - such as the character
used for in line comments. To overcome these minor difficulties, a language
declaration can be placed at the top of the netlist and any file included using .INC
(page 184) or the Star-Hspice variant of .LIB (page 186). This is described in the
following sections.

8k 2.3

16k 1.8

32k 1.2

64k 1.1

Vector buffer
size/bytes

Read in time seconds
18

Chapter 2 Running the Simulator
File Format
A complete netlist consists of:

• A title line
• Optional language declaration
• Device lines
• Control lines
• Comment lines
The title line must be the first line of the file and may be empty. The remaining lines -
with some exceptions - may be placed in any order

All other lines are defined by their first non-whitespace character as follows.

• Control lines begin with a period: '.'
• Comment lines begin with an asterix: '*'
• Device lines begin with a letter
A line is usually terminated with a new line character but may be continued using the
'+' continuation character. So if the first non-whitespace character is a '+' the line will
be considered to be an extension of the previous line. SPICE requires the '+' to be the
first character, SIMetrix allows whitespace (space or tab) to precede it.

Language Declaration
SIMetrix is able to read PSpice, Star-Hspice and native SIMetrix netlists, but in
some cases needs to be instructed what format netlist it is reading. Currently there are
three areas where simultaneous compatibility has not been possible. These are:

• Inline comment character.
• Unlabelled device parameters
• The meaning of LOG() and PWR() functions
SIMetrix can be instructed to use any of the three languages by using the language
declaration. This is one of:

*#SIMETRIX
*#HSPICE
*#PSPICE

The language declaration must be placed at the top of the file immediately below the
title line. It can also be placed in files referenced using .INC or the HSPICE version
of .LIB in which case it will apply only to that file and any others that it calls. A
language declaration placed anywhere else in a file will be ignored.

For details see “Language Differences” on page 44.

The *#SIMETRIX language declaration can also be supplied with a parameter to
specify the separator letter used for devices. See “Device Lines” section below for
details.
19

Simulator Reference Manual
Comments
Any line other than a language declaration beginning with a '*' is defined as a comment
and will be ignored. Also anything between a semi-colon ';' ('$' in HSPICE mode) and
the end of the line will be treated as comment and will also be ignored. Some SPICE
simulators require the '*' character to be the first character of the line. SIMetrix allows
it to be preceded by white space (spaces and tabs).

Device Lines
Device lines usually follow the following basic form but each type of device tends to
have its own nuances:

Name nodelist value [parameters]

value may be an actual number e.g. in the case of passive components such as resistors,
or it may be a model name in the case of semiconductor devices such as bipolar
transistors. Models are defined using a .MODEL control line.

nodelist is a list of netnames. The number and order of these is device dependent. The
netname itself may consist of any collection of non-control ASCII characters except
whitespace, '.' and '#'. All other ASCII characters are accepted although it is suggested
that the following characters are avoided if possible:

\ " % & + - * / ^ < > [] ' @ { }

If any of these characters are used in a netname, a special syntax will be needed to plot
any signal voltage on that net. This is explained in “Output Data Names” on page 24.

The name is the circuit reference of the device. The first letter of this name determines
the type of device as shown in the table below.

The Pin Names column in the following table is relevant to the vector name used for
values of device pin current. See “Output Data Names” on page 24.

Letter Number
of pins

Device Manual
Page

Pin Names

A Any XSPICE devices depends on
device

B 2 Arbitrary source 46 P, N

C 2 Capacitor 58 P, N

D 2 Diode 64 P, N

E 4 Voltage controlled voltage
source

96 P, N, CP, CN

F 2 Current controlled current
source

60 P, N
20

Chapter 2 Running the Simulator
To remove the naming restriction that this system imposes, SIMetrix supports an
extension to the above to allow the user to use any name for all devices. If the device
letter is followed by a dollar '$' symbol (by default but can be changed - see below), the
remainder of the name following the '$' will be used as the device name. E.g.:

Q$TR23

will define a bipolar transistor with the name TR23. All output generated by the
simulator will refer to TR23 not Q$TR23.

The above mechanism can be disabled and also the character can be changed by adding
a parameter to the language declaration (see page 19). To disable, add this to the top of
the netlist:

G 4 Voltage controlled current
source

95 P, N, CP, CN

H 2 Current controlled voltage
source

62 P, N

I 2 Fixed current source 63 P, N

J 3 JFET 75 D, G, S

K 0 Coupling for inductors 103

L 2 Inductor 70 P, N

M 4 MOSFET 79 D, G, S, B

N - Not used

O 4 Lossy transmission line 77 P1, N1, P2, N2

P - Not used

Q 3-5 Bipolar transistor 50 C, B, E, S, DT

R 2 Resistor 87 P, N

S 4 Voltage controlled switch 95 P, N, CP, CN

T 4 Lossless transmission line 94 P1, N1, P2, N2

U - Not used

V 2 Voltage source 97 P, N

W - Not used

X Any Subcircuit 94

Y - Not used

Z 3 GaAs FET
IGBT

68
74

D, G, S
C, G, E

Letter Number
of pins

Device Manual
Page

Pin Names
21

Simulator Reference Manual
*#SIMETRIX sep=none

To change the character use:

*#SIMETRIX sep=character

character must be a single letter, anything else will be ignored. Although any character
will be accepted it should clearly not be alpha-numeric.

The above mechanism will also be disabled if HSPICE or PSPICE languages are
specified.

Simulator Controls
Instructions to the simulator other than device definitions and comments are referred to
as controls and always begin with a period '.' .

Full documentation for SIMetrix controls see “Command Reference” on page 167

Simulator Output

The List File
SIMetrix produces a list file by default. This receives all text output except for the
Monte Carlo log. This includes operating point results, model parameters, noise
analysis results, sensitivity analysis results, pole-zero analysis results and tabulated
vectors specified by .PRINT.

The list file is generated in the same directory as the netlist. It has the same name as the
netlist but with the extension .OUT.

There are a number of options that control the list file output.
22

Chapter 2 Running the Simulator
The Binary Data File
The simulation data is stored in a binary data file. The format is proprietary to
SIMetrix and is not compatible with SPICE ‘raw’ files.

The name and location of the binary file depends on configuration settings and in what
mode the simulator is run. Usually, the file is located in the directory specified by the
TEMPDATADIR configuration setting (see page 16) and is named according to the
analysis type and appended with the extension .sxdat. E.g.tran1.sxdat, ac2.sxdat,
dc3.sxdat etc. The name and location can be overridden at the program command line
if operated in non-GUI mode or at the front end Run command line if run in GUI
mode.

Only the SIMetrix front end can read the simulator's binary data file. When run in GUI
mode, the file is automatically loaded and in fact it is not usually necessary to know
anything about it except perhaps when it grows very large and fills up your disk. If the
simulator is run in non-GUI mode, it becomes necessary to explicitly load the data into
the front end when the run is complete. This can be done with the command shell menu
File|Data|Load…. After the data is loaded, the results can be plotted in the usual
manner. See the User's Manual for further details.

Option name Description

PARAMLOG Valid values:

Full All instance and model parameter values reported
Given All user specified model parameters and

parameterised instance parameters
Brief Parameterised model and instance parameters
None None

Default = Given

EXPAND Flag. If specified, the netlist with all sub-circuits expanded will
be output to the list file

EXPANDFILE String. If specified the expand netlist will be output to the
specified file rather than the list file

NOMOD Same as PARAMLOG=none. Model parameters will not be
output

WIDTH Page width in number of characters. (The list file is formatted
assuming that it will be read or printed using a fixed width font
such as Courier.) The default is 80 but any value may be used
not just 80 and 132 as in SPICE 2.

OPINFO If set DC operating point info file is created for all analyses
(except .SENS). Normally it is created only for .OP analyses
23

Simulator Reference Manual
Output Data Names
For transient, DC and AC analyses, SIMetrix calculates and stores the circuit’s node
voltages and device pin currents and these are all given unique names. If using probing
techniques with the front end's schematic editor you don't usually need to know
anything about the names used. However there are situations where it is necessary or
helpful to know how these names are derived. An example is when compiling an
expression relating voltages and currents to be used in a .PRINT control. Another is
when plotting results created by simulating a netlist that was not generated using the
schematic editor. The names used are documented in the following notes.

Top Level Node Voltages

The vector names used for node voltages at the top level (i.e. not in a subcircuit) are
simply the name of the node used in the netlist.

Subcircuit Node Voltages

For nodes within a subcircuit, the name is prefixed with the subcircuit reference and a
'.'. For example:

X1 N1 N2 N3 SubName
X2 N4 N5 N6 SubName

.SUBCKT 1 2 3 SubName
X3 N1 2 N3 SubName2
R1 VIN 0 1k
...
.ENDS

.SUBCKT 1 2 3 SubName2
V1 VCC 0 5
...
.ENDS

The internal node VIN in definition SubName referenced by X1 would be called
X1.VIN. The same node referenced by X2 would be called X2.VIN. The node VCC
defined in subcircuit SubName2 would be named X1.X3.VCC and X2.X3.VCC for X1
and X2 respectively.

Nodes with Non-standard Names

A non-standard node name is one that begins with a digit or which contains one or
more of the characters:

\ " % & + - * / ^ < > [] ' @ { }

These are legal but introduce problems when accessing the voltage data that they carry.
The above characters can be used in arithmetic expressions so cause a conflict if used
as a node name. In order to access the voltage data on a node so named, use the Vec()
function:

Vec('node_name')
24

Chapter 2 Running the Simulator
Example with .PRINT and node called V+

.PRINT TRAN {Vec('V+')}

A similar syntax is required when using the front end plotting commands.

Device Pin Currents

Device pin currents are named in the following form:

device_name#pin_name

For primitive devices (i.e. not sub-circuits) pin_name must comply with the table on
page 20. For example the current into the collector of Q23 would be Q23#c.

The pin names for sub-circuits depend on whether the pinnames: specifier (see
“Subcircuit Instance” on page 94) is included in the netlist entry for the device. If it is
the pin current name will be the name listed after pinnames:. If it isn't then they are
numbered in sequence starting from 1. The order is the same as the order they appear
in the netlist device line. For example, if the subcircuit line is:

X$U10 N1 N2 N3 N4 N5 LM324 pinnames: VINP VINN VP VN VOUT

The current into the last pin (connected to N5) would be U10#VOUT

(Note that 'X$' is stripped off as explained above - page 20).

If the netlist line is:

X$U10 N1 N2 N3 N4 N5 LM324

The same current would be U10#5

Internal Node Voltages

Some devices have internal nodes and the voltages on these are output by the
simulator. These are named in a similar manner to pin currents i.e.

device_name#internal_node_name

The internal_node_name depends on the device. For example, bipolar transistors
create an internal node for each terminal that specifies a corresponding resistance
parameter. So if the RE parameter is specified an internal node will be created called
emitter.
25

Simulator Reference Manual
Chapter 3 Simulator Devices

Overview
This chapter is an introduction to the “Analog Device Reference” on page 46 and the
“Digital/Mixed Signal Device Reference” on page 109.

The device reference chapters describe all simulator devices at the netlist level. The
netlist consists of a list of component definitions, along with simulator commands,
which the simulator can understand. Simple components, such as resistors just need a
value to define them. Other more complicated devices such as transistors need a
number of parameters to describe their characteristics.

The device references includes details of all device and model parameters. Using the
schematic editor and model library you may not often need to read this section. Some
of the devices, however, have advanced options not directly supported by the user
interface. For example, many devices allow a local temperature to be specified. This
requires the component value to be appended with TEMP=…. This device parameter
and others are documented here.

Note that many parts either supplied with SIMetrix or available from component
manufacturers are implemented as subcircuits. These are circuit designs to simulate the
behaviour of high level devices such as opamps. SIMetrix (and all other SPICE
simulators) do not have an opamp device built in but use these macro models instead.
Full documentation for these devices is beyond the scope of this manual but can
sometimes be obtained from their suppliers.

Using XSPICE Devices
Some devices are implemented as part of the XSPICE ‘code modelling’ framework.
This framework introduces some new features at the netlist level not supported by
standard SPICE devices. These new features are described in this section.

Most of the devices that use this framework are digital or mixed signal devices and the
reference for these can be found at “Digital/Mixed Signal Device Reference” on
page 109. However there are three all analog devices that are also XSPICE devices.
These are:

• “Capacitor with Voltage Initial Condition” on page 60
• “Inductor with Current Initial Condition” on page 73
• “S-domain Transfer Function Block” on page 88

Vector Connections
Some models feature an arbitrary number of inputs or/and outputs. For example, an
AND gate can have any number of inputs. It would be inflexible to have a separate
model for every configuration of AND gate so a method of grouping connections
together has been devised. These are known as vector connections. Vector connections
are enclosed in square brackets. E.g. the netlist entry for an AND gate is:
26

Chapter 3 Simulator Devices
Axxxx [in_0 in_1 .. in_n] out model_name

The pins in_0 in_1 to in_n form a single vector connection. Any number of pins may
be placed inside the square brackets, in fact the same model may be used for devices
with different numbers of inputs.

Some devices have a minimum and/or maximum number of pins that may be used in a
vector connection. This is known as vector bounds and if they apply will be listed in
the vector bounds column of the Connection Details table provided with every device
definition.

Connection Types
In the device references that follow, each has a table titled Connection Details. Each
table have a “Type” column and some have an “Allowed types” column. The type
referred to here is the type of electrical connection e.g. voltage, current, differential or
single-ended. Some devices allow some or all of their connections to be specified with
a range of types. For example, the analog-digital converter described on page 150 has a
single ended voltage input by default. However, using a simple modification to the
netlist entry, an ADC can be specified with a differential voltage input or even a
differential current. Changing the type of connection involves no changes to the
.MODEL control, only to the netlist entry.

The following table lists all the available types. The modifier is the text used to alter a
connection type at the netlist level. This is explained below

With the models supplied with SIMetrix, only the first four in the above table are ever
offered as options. The others are used but are always compulsory, and an
understanding of their meaning is not necessary to make full use the system.

Description Modifier

Single ended voltage %v

Single ended current %i

Differential voltage %vd

Differential current %id

Digital %d

Grounded conductance (voltage input current output) %g

Grounded resistance (current input, voltage output) %h

Differential conductance (voltage input current output) %gd

Differential resistance (voltage input current output) %hd
27

Simulator Reference Manual
As well as type, all connections also have a flow referring to the direction of the signal
flow. This can be in, out or inout. Voltage, current and digital connections may be in or
out while the conductance and resistance connections may only be inout. Voltage
inputs are always open circuit, current inputs are always short circuit, voltage outputs
always have zero output impedance and current outputs always have infinite output
impedance.

The conductance connections are a combined voltage input and current output
connected in parallel. If the output is made to be proportional to the input, the
connection would be a conductor with a constant of proportionality equal to its
conductance, hence the name.

Similarly, the resistance connections are a combined current input and voltage output
connected in series. If the output is made to be proportional to the input, the connection
would be a resistor with a constant of proportionality equal to its resistance.

Changing Connection Type

If a model allows one or more of its connections to be given a different type, this can
be done by preceding the connection entry with the appropriate modifier listed in the
table above. For example if you wish to specify a 4 bit ADC with a differential voltage
input, the netlist entry would be something like:

A1 %vd ANALOG_INP ANALOG_INN CLOCK_IN [DATA_OUT_0
DATA_OUT_1 DATA_OUT_2 DATA_OUT_3] DATA_VALID ADC_4

Using Expressions
Overview
Expressions consist of arithmetic operators, functions, variables and constants and may
be employed in the following locations:

• As device parameters
• As model parameters
• To define a variable (see “.PARAM” on page 205) which can itself be used in an

expression
• As the governing expression used for arbitrary sources (see page 46).

They have a wide range of uses. For example:

• To define a number of device or model parameters that depend on some common
characteristic. This could be a circuit specification such as the cut-off frequency
of a filter or maybe a physical characteristic to define a device model.

• To define tolerances used in Monte Carlo analyses.
• Used with an arbitrary source, to define a non-linear device.
28

Chapter 3 Simulator Devices
Using Expressions for Device Parameters
Device or instance parameters are placed on the device line. For example the length
parameter of a MOSFET, L, is a device parameter. A MOSFET line with constant
parameters might be:

M1 1 2 3 4 MOS1 L=1u W=2u

L and W could be replaced by expressions. For example

M1 1 2 3 4 MOS1 L={LL-2*EDGE} W={WW-2*EDGE}

Device parameter expressions must usually be enclosed with either single quotation
marks (') double quotation marks (") or braces ('{' and '}'). The expression need not
be so enclosed if it consists of a single variable. For example:

.PARAM LL=2u WW=1u
M1 1 2 3 4 MOS1 L=LL W=WW

Using Expressions for Model Parameters
The rules for using expressions for device parameters also apply to model parameters.
E.g.

.MODEL N1 NPN IS=is BF={beta*1.3}

Expression Syntax
The expression describing an arbitrary source consists of the following elements:

• Circuit variables
• Parameters
• Constants.
• Operators
• Functions
• Look up tables
These are described in the following sections

Circuit Variables

Circuit variables may only be used in expressions used to define arbitrary sources and
to define variables that themselves are accessed only in arbitrary source expressions.

Circuit variables allow an expression to reference voltages and currents in any part of
the circuit being simulated.

Voltages are of the form:

V(node_name)
29

Simulator Reference Manual
Where node_name is the name of the node carrying the voltage of interest. If using the
schematic editor nodenames are normally allocated by the netlist generator. For
information on how to display and edit the schematic's node names, refer to
“Displaying Net and Pin Names” on page 12.

Currents are of the form:

I(source_name)

Where source_name is the name of a voltage source carrying the current of interest.
The source may be a fixed voltage source, a current controlled voltage source, a
voltage controlled voltage source or an arbitrary voltage source. It is legal for an
expression used in an arbitrary source to reference itself e.g.:

B1 n1 n2 V=100*I(B1)

Implements a 100 ohm resistor.

Parameters

These are defined using the .PARAM control. See page 205 for details. For example

.PARAM res=100
B1 n1 n2 V=res*I(B1)

Also implements a 100 ohm resistor.

For release 4 and later it is possible to put circuit variables in .PARAM controls. For
example:

.PARAM VMult = { V(a) * V(b) }
B1 1 2 V = Vmult + V(c)

Built-in Parameters

A number of parameter names are assigned by the simulator. These are:

Parameter
name

Description

TIME Resolves to time for transient analysis. Resolves to 0
otherwise including during the pseudo transient operation
point algorithm.

TEMP Resolves to current circuit temperature

HERTZ Resolves to frequency during AC sweep and zero in other
analysis modes

PTARAMP Resolves to value of ramp during pseudo transient operating
point algorithm.
30

Chapter 3 Simulator Devices
Constants

Apart from simple numeric values, arbitrary expressions may also contain the
following built-in constants:

If the simulator is run from the front end in GUI mode, it is also possible to access
variables defined on the Command Shell command line or in a script. The variable
must be global and enclosed in braces. E.g.

B1 n1 n2 V = V(n3, n3) * { global:amp_gain }

amp_gain could be defined in a script using the LET command. E.g. “Let
global:amp_gain = 100”

Operators

These are listed below and are listed in order of precedence. Precedence controls the
order of evaluation. So 3*4 + 5*6 = (3*4) + (5*6) = 42 and 3+4*5+6 = 3 + (4*5) + 6 =
29 as '*' has higher precedence than '+'.

Constant
name

Value Description

PI 3.14159265358979323846 π

E 2.71828182845904523536 e

TRUE 1.0

FALSE 0.0

ECHARGE 1.6021918e-19 Charge on an electron in
coulombs

BOLTZ 1.3806226e-23 Boltzman's constant

Operator Description

~ ! - Digital NOT, Logical NOT, Unary minus

^ or ** Raise to power.

*, / Multiply, divide

+, - Plus, minus

>=, <=, > < Comparison operators

==, != or <> Equal, not equal
31

Simulator Reference Manual
Comparison, Equality and Logical Operators

These are Boo lean in nature either accepting or returning Boo lean values or both. A
Boo lean value is either TRUE or FALSE. FALSE is defined as equal to zero and
TRUE is defined as not equal to zero. So, the comparison and equality operators return
1.0 if the result of the operation is true otherwise they return 0.0.

The arguments to equality operators should always be expressions that can be
guaranteed to have an exact value e.g. a Boo lean expression or the return value from
functions such as SGN. The == operator, for example, will return TRUE only if both
arguments are exactly equal. So the following should never be used:

v(n1)==5.0

v(n1) is never likely to be exactly 5.0. It may be 4.9999999999 or 5.00000000001 but
only by fluke will it be 5.0.

These operators are intended to be used with the IF() function described below.

Digital Operators

These are the operators '&', '|' and '~'. These were introduced in release 2.0 as a simple
means of implementing digital gates in the analog domain. Their function has largely
been superseded by gates in the event driven simulator but they are nevertheless still
supported.

Although they are used in a digital manner the functions implemented by these
operators are continuous in nature. They are defined as follows:

& Digital AND (see below)

| Digital OR (see below)

&& Logical AND

|| Logical OR

Operator Description
32

Chapter 3 Simulator Devices
Where:

vth = upper input threshold
vtl = lower input threshold
vh = output high
vl = output low

These values default to 2.2, 2.1, 5 and 0 respectively. These values are typical for high
speed CMOS logic (74HC family). They can be changed with four simulator options
set by the .OPTIONS simulator control. These are respectively,
LOGICTHRESHHIGH, LOGICTHRESHLOW, LOGICHIGH, LOGICLOW

To change the lower input threshold to 1.9, add the following line to the netlist:

.OPTIONS LOGICTHRESHLOW=1.9

To find out how to add additional lines to the netlist when using the schematic editor,
refer to “Adding Extra Netlist Lines” on page 12.

Expression Condition Result

out = x & y x<vtl OR y<vtl
x>vth AND y>vth
x>vth AND vth>y>vtl
vtl<x< vth AND y>vth
vtl<x< vth AND vth>y>vtl

out = vl
out = vh
out = (y-vtl)*(vh-vl)/(vth-vtl)+vl
out = (x-vtl)*(vh-vl)/(vth-vtl)+vl
out = (y-vtl)*(x-vtl)*(vh-vl)/(vth-
vtl)2+vl

out = x|y x<vtl AND y<vtl
x>vth OR y>vth
x<vtl AND vth>y>vtl
vtl<x< vth AND y<vtl
vtl<x< vth AND vth>y>vtl

out = vl
out = vh
out = vh-(vth-y)*(vh-vl)/(vth-vtl)
out = vh-(vth-x)*(vh-vl)/(vth-vtl)
out = vh-(vth-y)*(vth-x)*(vh-vl)/
(vth-vtl)2

out = ~x x<vtl
x>vth
vtl<x< vth

out = vh
out = vl
out = (vth-x)/(vth-vtl)*(vh-vl)+vl
33

Simulator Reference Manual
Functions

Function Description

ABS(x) Magnitude of x. if x>=0 result=x otherwise result=-x

ACOS(x) Arc cosine. Result is in radians

ACOSH(x) Inverse COSH

ASIN(x) Arc sine. Result is in radians

ASINH(x) Inverse SINH

ATAN(x) Arc tangent. Result is in radians

ATAN2(x,y) =ATAN(x/y). Valid if y=0. Result in radians

ATANH(x) Inverse TANH

COS(x) Cosine of x in radians

COSH(x) Hyperbolic cosine

DDT(x) Differential of x with respect to time

EXP(x) ex

FLOOR(x) Next lowest integer of x.

IF(cond, x, y) if cond is TRUE result=x else result=y

IFF(cond, x, y) As IF(cond, x, y)

LIMIT(x, lo, hi) if x<lo result=lo else if x>hi result=hi else result=x

LN(x) Log to base e of x. If x<10-100 result=-230.2585093

LOG(x) Log to base 10 of x. If x<10-100 result=-100

LOG10(x) Log to base 10 of x. If x<10-100 result=-100

MAX(x, y) Returns larger of x and y

MIN(x,y) Returns smaller of x and y

PWR(x,y) |x|y

PWRS(x,y) if x>=0 |x|y else -|x|y

SDT(x) Integral of x with respect to time

SGN(X) If x>0 result = 1 else if x<0 result = -1 else result = 0

SIN(x) Sine of x in radians

SINH(x) Hyperbolic sine

SQRT(x) if x>=0 √x else √-x

STP(x) If x<=0 result = 0 else result = 1
34

Chapter 3 Simulator Devices
Monte Carlo Distribution Functions

To specify Monte Carlo tolerance for a model parameter, use an expression containing
one of the following 12 functions:

A full discussion on the use of Monte Carlo distribution functions is given in
“Specifying Tolerances” on page 221

Look-up Tables

Expressions may contain any number of look-up tables. This allows a transfer function
of a device to be specified according to - say - measured values without having to
obtain a mathematical equation. Look-up tables are specified in terms of x, y value
pairs which describe a piece-wise linear transfer function.

Look up tables are of the form:

TABLE[xy_pairs](input_expression)

TAN(x) Tangent of x in radians

TANH(x) Hyperbolic tangent

U(x) as STP(x)

URAMP(x) if x<0 result =0 else result = x

Name Distribution Lot?

GAUSS Gaussian No

GAUSSL Gaussian Yes

UNIF Uniform No

UNIFL Uniform Yes

WC Worst case No

WCL Worst case Yes

GAUSSE Gaussian logarithmic No

GAUSSEL Gaussian logarithmic Yes

UNIFE Uniform logarithmic No

UNIFEL Uniform logarithmic Yes

WCE Worst case logarithmic No

WCEL Worst case logarithmic Yes

Function Description
35

Simulator Reference Manual
Where:
xy_pairs A sequence of comma separated pairs of constant values that

define the input and output values of the table. For each pair, the
first value is the x or input value and the second is the y or
output value. Only explicit numeric constants may be used.
Even internal constants such as PI may not be used.

input_expression Expression defining the input or x values of the table.

Example

The following arbitrary source definition implements a soft limiting function

B1 n2 n3 V=table[-10, -5, -5, -4, -4, -3.5, -3, -3, 3, 3, 4,
3.5, 5, 4, 10, 5](v(N1))

and has the following transfer function:

It is possible to assign expressions to component values which are evaluated when the
circuit is simulated. This has a number of uses. For example you might have a filter
design for which several component values affect the roll off frequency. Rather than
recalculate and change each component every time you wish to change the roll of
frequency it is possible to enter the formula for the component's value in terms of this
frequency.

v1/V 5V/div

-20 -15 -10 -5 0 5 10 15

:b
1_

p
/ V

-4

-2

0

2

4

36

Chapter 3 Simulator Devices
Example

The above circuit is that of a two pole low-pass filter. C1 is fixed and R1=R2. The
design equations are:

R1=R2=2/(2*pi*f0*C1*alpha)
C2=C1*alpha*alpha/4

where f0 is the cut off frequency and alpha is the damping factor.

The complete netlist for the above circuit is:

V1 V1_P 0 AC 1 0
C2 0 R1_P {C1*alpha*alpha/4}
C1 VOUT R1_N {C1}
E1 VOUT 0 R1_P 0 1
R1 R1_P R1_N {2/(2*pi*f0*C1*alpha)}
R2 R1_N V1_P {2/(2*pi*f0*C1*alpha)}

Before running the above circuit you must assign values to the variables. This can be
done by one of three methods:

• With the .PARAM control placed in the netlist.
• With Let command from the command line or from a script. (If using a script you

must prefix the parameter names with global:)
• By sweeping the value with using parameter mode of a swept analysis (page 168)

or multi-step analysis (page 170).
Expressions for device values must be entered enclosed in curly braces ('{' and '}').

Suppose we wish a 1kHz roll off for the above filter.

Using the .PARAM control, add these lines to the netlist

.PARAM f0 1k

.PARAM alpha 1

.PARAM C1 10n

For more information on .PARAM see page 205

E1

1

{C1}

C1

{2/(2*pi*f 0*C1*alpha)}

R1

 AC 1 0
V1

{2/(2*pi*f 0*C1*alpha)}

R2

{C1*alpha*alpha/4}
C2

VOUT
37

Simulator Reference Manual
Using the Let command, you would type:

Let f0=1k
Let alpha=1
Let C1=10n

If you then wanted to alter the damping factor to 0.8 you only need to type in its new
value:

Let alpha=0.8

then re-run the simulator.

To execute the Let commands from within a script, prefix the parameter names with
global:. E.g. “Let global:f0=1k”

In many cases the .PARAM approach is more convenient as the values can be stored
with the schematic.

Optimisation

Overview

An optimisation algorithm may be enabled for expressions used to define arbitrary
sources and any expression containing a swept parameter. This can improve
performance if a large number of such expressions are present in a design.

The optimiser dramatically improves the simulation performance of the power device
models developed by Infineon. See “Optimiser Performance” below.

Why is it Needed?

The simulator’s core algorithms use the Newton-Raphson iteration method to solve
non-linear equations. This method requires the differential of each equation to be
calculated and for arbitrary sources, this differentiation is performed symbolically. So
as well calculating the user supplied expression, the simulator must also evaluate the
expression’s differential with respect to each dependent variable. These differential
expressions nearly always have some sub-expressions in common with sub-
expressions in the main equation and other differentials. Calculation speed can be
improved by arranging to evaluate these sub-expressions only once. This is the main
task performed by the optimiser. However, it also eliminates factors found on both the
numerator and denominator of an expression as well as collecting constants together
wherever possible.

Using the Optimiser

The optimiser will automatically be enabled for any arbitrary source or swept
expression that uses a function defined using .FUNC (see “.FUNC” on page 176). To
enable for all expressions, use the following option setting:

.OPTIONS optimise=2

Conversely, optimisation can be disable completely with:
38

Chapter 3 Simulator Devices
.OPTIONS optimise=0

Optimiser Performance

The optimisation algorithm was added to SIMetrix primarily to improve the
performance of some publicly available power device models from Infineon. These
models make extensive use of arbitrary sources and many expressions are defined
using .FUNC.

The performance improvement gained for these model is in some cases dramatic. For
example a simple switching PSU circuit using a SGP02N60 IGBT ran around 5 times
faster with the optimiser enabled and there are other devices that show an even bigger
improvement.

Accuracy

The optimiser simply changes the efficiency of evaluation and doesn’t change the
calculation being performed in any way. However, performing a calculation in a
different order can alter the least significant digits in the final result. In some
simulations, these tiny changes can result in much larger changes in circuit solution.
So, you may find that switching the optimiser on and off may change the results
slightly.

Subcircuits

Overview
Subcircuits are a method of defining a circuit block which can be referenced any
number of times by a single netlist line or schematic device. Subcircuits are the method
used to define many device models such as op-amps.

Subcircuit Definition
Subcircuits begin with the .SUBCKT control and end with .ENDS. A subcircuit
definition is of the form:

.SUBCKT subcircuit_name nodelist [[params:] default_parameter_list]
definition_lines
.ENDS

subcircuit_name Name of the subcircuit and is used to reference
it in the main netlist.

nodelist Any number of node names and are used for
external connections. The subcircuit call (using
an ‘X’ device) would use a matching number
of nodes in the same order.

default_parameter_list List of parameters and their default values in
the form name=value. Subcircuit parameters
are explained in “Using Expressions” on
39

Simulator Reference Manual
page 28.

definition_lines List of valid device and model lines. In
addition, .NODESET, .IC and .KEEP lines
may also be placed in a subcircuit.

Example

This is an example of an opamp subcircuit called SXOA1000. VINP, VINN VOUT
VCC and VEE are its external connections. The three .model lines define devices that
are local, that is, they are only accessible within the subcircuit definition.

.subckt SXOA1000 VINP VINN VOUT VCC VEE
I2 D2_N VEE 100u
I1 Q3_E VEE 100u
C1 VOUT R1_P 10p
D1 Q7_C D1_N D1
D2 D1_N D2_N D1
D3 VEE Q3_E D1
Q2 VEE D2_N VOUT 0 P1
Q3 Q3_C R3_P Q3_E 0 N1
Q1 VCC Q7_C VOUT 0 N1
Q6 Q3_C Q3_C VCC 0 P1
Q7 Q7_C Q5_C VCC 0 P1
R1 R1_P Q5_C 100
Q4 Q5_C R2_N Q3_E 0 N1
R2 VINP R2_N 1K
Q5 Q5_C Q3_C VCC 0 P1
R3 R3_P VINN 1K

.model N1 NPN VA=100 TF=1e-9

.model P1 PNP VA=100 TF=1e-9

.model D1 D

.ends

Where to Place Subcircuit Definition

Subcircuit definitions may be placed in a number of locations.

• Directly in the netlist. This is the best place if the subcircuit is specific to a
particular design. If you are entering the circuit using the schematic editor, see
“Adding Extra Netlist Lines” on page 12. to find out how to add additional lines
to the netlist.

• Put in a separate file and pull in to the schematic with .INC (page 184) control
placed in the netlist.

• Put in a library file and reference in schematic with SIMetrix form of .LIB
(page 186) control placed in the netlist. Similar to 2. but more efficient if library
has many models not used in the schematic. Only the devices required will be
read in.

• Put in a library file and install as a model library. See User's Manual for full
details.
40

Chapter 3 Simulator Devices
Subcircuit Instance
Once a subcircuit has been defined, any number of instances of it may be created.
These are of the form:

Xxxxx nodelist sub_circuitname [[params:|:] parameters]

nodelist List of nodes, each of which will connect to its corresponding
node in the subcircuit's definition. The number of nodes in the
instance must exactly match the number of nodes in the
definition.

sub_circuitname Name of the subcircuit definition.

parameters List of parameter names and their values in the form
name=value. These may be referenced in the subcircuit
definition. Subcircuit parameters are explained below.

Passing Parameters to Subcircuits
You can pass parameters to a subcircuit. Consider the filter example provided in
“Using Expressions” above. Supposing we wanted to define several filters with
different characteristics. We could use a subcircuit to define the filter but the values of
the components in the filter need to be different for each instance. This can be achieved
by passing the parameter values to each instance of the subcircuit.

So:

** Definition
.SUBCKT Filter IN OUT params: C1=1n alpha=1 f0=1k
C2 0 R1_P {C1*alpha*alpha/4}
C1 OUT R1_N {C1}
E1 OUT 0 R1_P 0 1
R1 R1_P R1_N {2/(2*pi*f0*C1*alpha)}
R2 R1_N IN {2/(2*pi*f0*C1*alpha)}
.ENDS

** Subcircuit instance
X1 V1_P VOUT Filter : C1=10n alpha=1 f0=10k

** AC source
V1 V1_P 0 AC 1 0

In the above example the parameters after params: in the .subckt line define default
values should any parameters be omitted from the subcircuit instance line. It is not
compulsory to define defaults but is generally recommended.

Note

In the syntax definition for both subcircuit definitions and subcircuit instances, the
params: specifier is shown as optional. This is for compatibility with Star-Hspice
and is new for release 4. If params: is included the '=' separating the parameter names
and their values becomes optional.
41

Simulator Reference Manual
Nesting Subcircuits
Subcircuit definitions may contain both calls to other subcircuits and local subcircuit
definitions.

If a subcircuit definition is placed within another subcircuit definition, it becomes
local. That is, it is only available to its host subcircuit.

Calls to subcircuits may not be recursive. A subcircuit may not directly or indirectly
call its own definition.

Global Nodes
Sometimes it is desirable to refer to a node at the circuit's top level from within a
subcircuit without having to explicitly pass it. This is sometimes useful for supply
rails.

SIMetrix provides three methods.

• '#' prefix. Any node within a subcircuit prefixed with '#' will connect to a top
level node of the same name without the '#' prefix.

• '$g_' prefix. Any node in the circuit prefixed '$g_' will be treated as global
• Using .GLOBAL see page 177

The second approach is compatible with PSpice. The third approach is compatible
with Star-Hspice

Note the first two approaches are subtly different. In the second approach the '$g_'
prefix must be applied to all connected nodes, whereas in the first approach the '#'
prefix must be applied only to subcircuit nodes.

Subcircuit Preprocessing
SIMetrix features a netlist preprocessor that is usually used for SIMPLIS simulations
and was developed for that purpose. The preprocessor has some features that aren’t
available in the native simulator and for this reason it would be useful to be able to use
the preprocessor for SIMetrix simulations.

It is not necessary to apply the preprocessor to the entire netlist. Any subcircuit call
that defines preprocessor variables using the ‘vars:’ specifier will be passed to the
preprocessor. For example:

X$C1 R1_P 0 ELEC_CAP_L13 vars: LEVEL=3 CC=1m
+ RSH_CC=1Meg IC=0 RESR=10m LESL=100n USEIC=1

calls the ELEC_CAP_L13 subcircuit but passes it through the preprocessor first. This
model is a model for an electrolytic capacitor and uses a number of .IF controls to
select model features according to the LEVEL parameter.

The preprocessor also provides a means of generating multiple devices using .WHILE.
For information on the preprocessor, see the SIMPLIS Reference Manual. A PDF
version of this is available on the install CD.
42

Chapter 3 Simulator Devices
Model Binning

Overview
Some devices can be binned. This means that a number of different model definitions
can be provided for the same device with each being valid over a limited range of some
device parameter or parameters. The simulator will automatically select the
appropriate model according to the value given for the device parameters.

Currently only BSIM3 MOSFETs may be binned. The binning is controlled by the
length and width device parameters (L and W) while the LMIN, LMAX, WMIN and
WMAX model parameters specify the valid range for each model.

Important Note

The binned models should be placed directly in the netlist or called using either .INC
or the Star-Hspice form of .LIB. They will not work correctly when installed as a
model library or accessed with the SIMetrix form of .LIB.

Defining Binned Models
Binned models are defined as a set consisting of two or more .MODEL definitions.
Each of the definitions must be named using the following format:

root_name.id

root_name Name used by the device to call the model. Must be the same for
all model definitions in a set

id Arbitrary name that must be unique for each model in a set. This
would usually be a number but this is not a requirement

Each model definition must also contain a MIN/MAX parameter pair for each bin
control parameter. For the BSIM3 MOSFET there are two bin control parameters,
namely L and W with corresponding MIN/MAX pairs LMIN/LMAX and WMIN/
WMAX. For a binned BSIM3 model, all four must be present. These parameters define
the range of L and W over which the model is valid. When a model is required, the
simulator searches all models with the same root_name for a definition whose LMIN/
LMAX and WMIN/WMAX parameters are compatible with the device's L and W.

Example
.MODEL N1.1 NMOS LEVEL=49 ... parameters ...
+ LMIN=1u LMAX=4u WMIN=1u WMAX=4u

.MODEL N1.2 NMOS LEVEL=49 ... parameters ...
+ LMIN=4u LMAX=10u WMIN=1u WMAX=4u

.MODEL N1.3 NMOS LEVEL=49 ... parameters ...
+ LMIN=1u LMAX=4u WMIN=4u WMAX=10u

.MODEL N1.4 NMOS LEVEL=49 ... parameters ...
+ LMIN=4u LMAX=10u WMIN=4u WMAX=10u
43

Simulator Reference Manual
** This device will use N1.1
M1 1 2 3 4 N1 L=2u W=2u

** This device will use N1.2
M2 1 2 3 4 N1 L=6u W=2u

** This device will use N1.3
M3 1 2 3 4 L=2u W=7u

** This device will use N1.4
M4 1 2 3 4 L=6u W=7u

Language Differences
SIMetrix is compatible with some PSpice and Star-Hspice extensions mainly so
that it can read external model files. Some aspects of these alternative formats are
incompatible with the SIMetrix native format and in such cases it is necessary to
declare the language being used. See “Language Declaration” on page 19 for details on
how to do this.

The following sections describe the incompatibilities between the three languages.

Inline Comment
Star-Hspice uses the dollar ('$') symbol for inline comments while SIMetrix and
PSpice use a semi-colon (';'). The language declaration described above determines
what character is used.

Unlabelled Device Parameters
The problem with unlabelled device parameters is illustrated with the following
examples.

The following lines are legal in Star-Hspice mode but illegal in SIMetrix mode.

.PARAM area=2
Q1 C B E S N1 area

Q1 will have an area of 2. Conversely the following is legal in SIMetrix but is illegal in
Star-Hspice:

.PARAM area=2
Q1 C B E S N1 area area

Again Q1 has an area of 2.

The problem is that SIMetrix does not require '=' to separate parameter names with
their values whereas Star-Hspice does. area is a legal BJT parameter name so in the
first example SIMetrix can't tell whether area refers to the name of the BJT parameter
or the name of the .PARAM parameter defined in the previous line. Star-Hspice can
tell the difference because if area meant the BJT parameter name it would be followed
by an '='.

This line is legal and will be correctly interpreted in both modes
44

Chapter 3 Simulator Devices
.PARAM area=2
Q1 C B E S N1 area=area

Although Hspice always requires the '=' to separate parameter names and values, it
continues to be optional in SIMetrix even in Hspice mode. It only becomes
compulsory where an ambiguity needs to be resolved as in the second example above.

LOG() and PWR()
The LOG() function means log to the base 10 in SIMetrix but in PSpice and Star-
Hspice means log to the base e. PWR() in PSpice and SIMetrix means |x|y whereas
in Star-Hspice it means “if x>=0 |x|y else -|x|y”. The language declaration only affects
the definition when used in expressions to define model and device parameters. When
used in arbitrary source expressions, the language assumed is controlled by the method
of implementing the device as follows:

SIMetrix:
B1 1 2 V=expression

PSpice
E1 1 2 VALUE = {expression }

Star-Hspice
E1 1 2 VOL = 'expression'

Note that the function LN() always means log to base e and LOG10() always means
log to base 10. We recommend that these functions are always used in preference to
LOG to avoid confusion.
45

Simulator Reference Manual
Chapter 4 Analog Device Reference

Overview
This chapter provides the full details of every option and parameter available with
every primitive analog device that the simulator supports.

For documentation on digital and mixed signal devices supplied with SIMetrix, please
see “Digital/Mixed Signal Device Reference” on page 109.

Arbitrary Source

Netlist Entry

Voltage source:
Bxxxx n+ n- [MIN=min_value] [MAX=max_value] V=expression
Current source:
Bxxxx n+ n- [MIN=min_value] [MAX=max_value] I=expression
Charge source:
Bxxxx n+ n- Q=expression
Flux source:
Bxxxx n+ n- FLUX=expression

An arbitrary source is a voltage or current source whose output can be expressed as an
arbitrary relationship to other circuit voltages or currents.

expression Algebraic expression describing voltage or current output in
terms of circuit nodes or sources. See “Expression Syntax” on
page 29 for full details.

min_value Minimum value of source

max_value Maximum value of source

Bxxxx Component reference

n+ Positive output node.

n- Negative output node.

The small-signal AC behaviour of the non-linear source is a linear dependent source
with a proportionality constant equal to the derivative (or derivatives) of the source at
the DC operating point.

Note that if MIN and/or MAX parameters are specified, they must precede the defining
expression.
46

Chapter 4 Analog Device Reference
Charge and flux sources implement capacitors and inductors respectively. See “Charge
and Flux Devices” below for details.

If the source is a current, the direction of flow is into the positive node (n+).

Notes on Arbitrary Expression
It is generally beneficial if the expression used for an arbitrary source is well
conditioned. This means that it is valid for all values of its input variables (i.e. circuit
voltages and currents) and that it is continuous. It is also desirable - although rarely
absolutely necessary - for the function to be continuous in its first derivative; i.e. it
does not have any abrupt changes in slope.

If the expression is used in a feedback loop then these conditions are more or less
essential for reliable and rapid convergence. If the arbitrary source is used open loop
then these conditions can be relaxed especially if the input signal is well defined e.g.
derived directly from a signal source.

Some functions are not continuous in nature. E.g. the STP() and SGN() functions are
not. These may nevertheless be used in an expression as long as the end result is
continuous.

Similarly, the IF() function should be used with care. The following IF() function is
continuous:

IF(v1>v2, 0, (v1-v2)*2)

When v1=v2 both true and false values equate to zero so the function has no abrupt
change. The function still has a discontinuous first derivative with respect to both v1
and v2 which is still undesirable but will work satisfactorily in most situations.

The following example is not continuous:

IF(v1>v2, 0, 5)

The result of this will switch abruptly from 0 to 5 when v1=v2. This is not something
that the simulator can be guaranteed to handle and cannot be implemented in real life.

A better, albeit less intuitive method, of achieving the intent of the above is:

(TANH((v2-v1)*factor)+1)*2.5+2.5

where factor is some number that determines the abruptness of the switching action.
For a value of 147, 95% of the full output will be achieved with just 10mV overdrive.

Charge and Flux Devices
From release 4 it is possible to define capacitors and inductors directly using the
arbitrary source. Capacitors must be defined in terms of their charge and inductors by
their flux. These are defined in the same as voltage and current arbitrary sources but
using ‘q’ or ‘flux’ instead of ‘v’ or ‘i’. E.g. the following defines a simple linear
capacitor:

B1 n1 n2 Q = C*V(n1,n2)
47

Simulator Reference Manual
Similarly a linear inductor is:

B1 n1 n2 flux = L * i(B1)

The main benefit of this feature is that it makes it possible to define non-linear
capacitors and inductors directly. Previously, this was only possible by making up a
circuit consisting of a number of components including a primitive capacitor.

As with voltage and current arbitrary sources, it is possible to use any combination of
voltages and currents in the expression. So, for example, the following defines a
transformer:

Bprimary p1 p2 flux = Lp*i(Bprimary) + M*i(Bsecondary)
Bsecondary s1 s2 flux = Ls*i(Bsecondary) + M*i(Bprimary)

Arbitrary Source Examples

Example 1 - Ideal Power Converter

This examples also demonstrates the use of expressions within subcircuits. (See
“Using Expressions” on page 28)

The following subcircuit implements an idealised power converter with an efficiency
of eff and whose output voltage is proportional to the input voltage (vinn,vinp)
multiplied by the control voltage (vcp,vcn). It is intended to simulate the voltage/
current characteristics of a switching power converter.

.subckt powerconv voutp voutn vinp vinn vcp vcn
biin1 vinp vinn i=-v(voutp,voutn)/v(vinp,vinn)*i(vout1)/{eff}
vout1 bmult1_n voutn 0
bmult1 voutp bmult1_n v=v(vinp,vinn)*v(vcp,vcn)
r1 vcp vcn 1meg
.ends

Once again, with an appropriate schematic symbol, the device can be placed on the
schematic as a block as shown below:
48

Chapter 4 Analog Device Reference
Example 2 - Voltage Multiplier

The expression for an arbitrary source must refer to other voltages and/or currents on
the schematic. Currents are referenced as voltage sources and voltages as netnames.
Netnames are usually allocated by the netlister. For information on how to display and
edit the schematic's netnames, refer to “Displaying Net and Pin Names” on page 12.

In the above circuit the voltage across B1 will be equal to the product of the voltages at
nodes n1 and n2.

An alternative approach is to define the arbitrary source within a subcircuit. E.g.

.subckt MULT out in1 in2
B1 out 0 V=V(in1)*V(in2)
.ends

which can be added to the netlist manually. (To find out how to add additional lines to
the netlist when using the schematic editor, refer to “Adding Extra Netlist Lines” on
page 12). A symbol could be defined for it and then placed on the schematic as a block
as shown below:

R1
1K

powerconv : ef f =0.7

U1

v 1
pulse (100 0 0 1m)

D2

ideal

C1
270u

R5
1meg

E1

1000

V2
12

n2

10k

R4

1K
R2

1K
R1

1K
R3

n1

B1
V=V(n2)*V(n1)
49

Simulator Reference Manual
Example 3 - Voltage comparator

B3 q3_b 0 V=atan(V(n1,n2)*1000)

This can also be added to the schematic in the same way as for the multiplier described
above.

PSpice and Star-Hspice syntax
SIMetrix supports the PSpice and Hspice syntax for arbitrary sources. This is for
compatibility with some manufacturers device models. For PSpice the VALUE = and
TABLE = devices are supported and for Star-Hspice VOL= and CUR= are
supported.

Bipolar Junction Transistor (SPICE Gummel Poon)

Netlist Entry

Qxxxx collector base emitter [substrate] modelname [area] [OFF]
[IC=vbe,vce] [TEMP=local_temp]

collector Collector node name

base Base node name

emitter Emitter node name

substrate Substrate node name

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and ' . ' .

area Area multiplying factor. Area scales up the device. E.g. an area
of 3 would make the device behave like 3 transistors in parallel.
Default is 1.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as

R3
1K

R1
1K

X1

MULT

R2
1K

R4
1K
50

Chapter 4 Analog Device Reference
thyristors and bistables to induce a particular state. See “.OP” on
page 194 for more details.

vbe,vce Initial conditions for base-emitter and collector-emitter
junctions respectively. These only have an effect if the UIC
parameter is specified on the .TRAN control (see “.TRAN” on
page 213).

local_temp Local temperature. Overrides specification in .OPTIONS
(page 195) or .TEMP (page 211) controls.

NPN BJT Model Syntax

.model modelname NPN (parameters)

PNP BJT Model Syntax

.model modelname PNP (parameters)

Lateral PNP BJT Model Syntax

.model modelname LPNP (parameters)

BJT Model Parameters

The symbols ' × ' and ' ÷ ' in the Area column means that that parameter should be
multiplied or divided by the area factor respectively.

Name Description Units Default Area

IS Transport saturation current A 1e-16 ×

BF Ideal maximum forward beta 100

NF Forward current emission coefficient 1.0

VAF Forward Early voltage V ∞

IKF Corner for forward beta high current
roll-off

A ∞ ×

ISE B-E leakage saturation current A 0 ×

NE B-E leakage emission coefficient 1.5

BR Ideal maximum reverse beta 1

NR Reverse current emission coefficient 1

VAR Reverse Early voltage V ∞

IKR Corner for reverse beta high current
roll-off

A ∞ ×

ISC B-C leakage saturation current A 0 ×

NC B-C leakage emission coefficient 2
51

Simulator Reference Manual
RB Zero bias base resistance W 0 ÷

IRB Current at which base resistance falls
halfway to its minimum value

A ∞ ×

RBM Minimum base resistance at high
currents

W RB ÷

RE Emitter resistance W 0 ÷

RC Collector resistance W 0 ÷

CJE B-E zero-bias depletion capacitance F 0 ×

VJE B-E built in potential V 0.75

MJE B-E junction exponential factor 0.33

TF Ideal forward transit time Sec. 0

XTF Coefficient for bias dependence of TF 0

VTF Voltage describing VBC dependence of
TF

V ∞

ITF High-current parameter for effect on TF A 0 ×

PTF Excess phase at freq=1.0/(TF×2π) Hz degree 0

CJC B-C zero-bias depletion capacitance F 0 ×

VJC B-C built-in potential V 0.75

MJC B-C junction exponential factor 0.33

XCJC Fraction of B-C depletion capacitance
connected to internal base node

1

TR Ideal reverse transit time Sec. 0

ISS Substrate diode saturation current A 0 ×

NS Substrate diode emission coefficient 1

CJS Zero-bias collector substrate
capacitance

F 0 ×

VJS Substrate junction built-in potential V 0.75

MJS Substrate junction exponential factor 0

XTB Forward and reverse beta temperature
exponent

0

EG Energy gap eV 1.11

Name Description Units Default Area
52

Chapter 4 Analog Device Reference
Notes The bipolar junction transistor model in SPICE is an adaptation of the
integral charge control model of Gummel and Poon.

This modified Gummel-Poon model extends the original model to include
several effects at high bias levels. The model will automatically simplify to
the simpler Ebers-Moll model when certain parameters are not specified.

The dc model is defined by the parameters IS, BF, NF, ISE, IKF, and NE
which determine the forward current gain characteristics, IS, BR, NR, ISC,
IKR, and NC which determine the reverse current gain characteristics, and
VAF and VAR which determine the output conductance for forward and
reverse regions. Three ohmic resistances RB, RC, and RE are included,
where RB can be high current dependent. Base charge storage is modelled
by forward and reverse transit times, TF and TR, the forward transit time
TF being bias dependent if desired, and non-linear depletion layer
capacitances which are determined by CJE, VJE, and MJE for the B-E
junction, CJC, VJC, and MJC for the B-C junction and CJS, VJS, and MJS
for the C-S (Collector-Substrate) junction. The temperature dependence of
the saturation current, IS, is determined by the energy-gap, EG, and the
saturation current temperature exponent, XTI. Additionally base current
temperature dependence is modelled by the beta temperature exponent
XTB in the new model.

Bipolar Junction Transistor (VBIC without self heating)

Netlist Entry

Qxxxx collector base emitter [substrate] modelname [M=multiplier]
[AREA|SCALE=area]

collector Collector node name

base Base node name

emitter Emitter node name

substrate Substrate node name

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and ' . ' .

multiplier Device scale. Has an identical effect as putting multiplier
devices in parallel.

XTI Temperature exponent for effect on IS 3

KF Flicker noise coefficient 0

AF Flicker noise exponent 1

FC Coefficient for forward-bias depletion
capacitance formula

0.5

Name Description Units Default Area
53

Simulator Reference Manual
area Scales certain model parameters as described in the parameter
table under Area column. A × entry means the parameter is
multiplied by the area while a ÷ means the parameter is divided
by the area.

Model Syntax

.MODEL modelname NPN|PNP LEVEL=4 parameters

Model Parameters

Name Description Units Default Area

TNOM/
TREF

Nominal ambient temperature Celsius 27

RCX Extrinsic collector resistance Ohms 0.0 ÷

RCI Intrinsic collector resistance Ohms 0.0 ÷

VO Epi drift saturation voltage 0.0

GAMM Epi doping parameter 0.0

HRCF High-current RC factor 1.0

RBX Extrinsic base resistance 0.0 ÷

RBI Intrinsic base resistance 0.0 ÷

RE Emitter resistance 0.0 ÷

RS Substrate resistance 0.0 ÷

RBP Parasitic base resistance 0.0 ÷

IS Transport saturation current 1.0E-16 ×

NF Forward emission coefficient 1.0

NR Reverse emission coefficient 1.0

FC Forward bias junction capacitance
threshold

0.9

CBEO/
CBE0

Base-emitter small signal capacitance 0.0 ×

CJE Base-emitter zero-bias junction
capacitance

0.0 ×

PE Base-emitter grading coefficient 0.75

ME Base-emitter junction exponent 0.33

AJE Base-emitter capacitance smoothing
factor

-0.5

CBCO/
CBC0

Extrinsic base-collector overlap
capacitance

0.0 ×
54

Chapter 4 Analog Device Reference
CJC Base-collector zero-bias capacitance 0.0 ×

QCO/
QC0

Collector charge at zero bias 0.0 ×

CJEP Base-emitter extrinsic zero-bias
capacitance

0.0 ×

PC Base-collector grading coefficient 0.75

MC Base-collector junction exponent 0.33

AJC Base-collector capacitance smoothing
factor

-0.5

CJCP Base-collector zero-bias extrinsic
capacitance

0.0 ×

PS Collector-substrate grading coefficient 0.75

MS Collector-substrate junction exponent 0.33

AJS Collector-substrate capacitance
smoothing factor

-0.5

IBEI Ideal base-emitter saturation current 1E-18 ×

WBE Portion of IBEI from Vbei, (1-WBE) from
Vbex

1.0

NEI Ideal base-emitter emission coefficient 1.0

IBEN Non-ideal base-emitter saturation
current

0.0 ×

NEN Non-ideal base-emitter emission
coefficient

2.0

IBCI Ideal base-collector saturation current 1.0E-16 ×

NCI Ideal base-collector emission
coefficient

1.0

IBCN Non-ideal base-collector saturation
current

0.0 ×

NCN Non-ideal base- collector emission
coefficient

2.0

AVC1 Base-collector weak avalanche
parameter 1

0.0

AVC2 Base-collector weak avalanche
parameter 2

0.0

ISP Parasitic transport saturation current 0.0 ×

WSP Portion of Iccp from Vbep, (1-WSP)
from Vbci

1.0

NFP Parasitic forward emission coefficient 1.0

Name Description Units Default Area
55

Simulator Reference Manual
IBEIP Ideal parasitic base-emitter saturation
current

0.0 ×

IBENP Non-ideal parasitic base-emitter
saturation current

0.0 ×

IBCIP Ideal parasitic base-collector saturation
current

0.0 ×

NCIP Ideal parasitic base-collector emission
coefficient

1.0

IBCNP Non-ideal parasitic base-collector
saturation current

0.0 ×

NCNP Non-ideal parasitic base-collector
emission coefficient

2.0

VEF Forward Early voltage (0=infinity) 0.0

VER Reverse Early voltage (0=infinity) 0.0

IKF Forward knee current, (0=inifinity) 0.0 ×

IKR Reverse knee current, (0=infinity) 0.0 ×

IKP Parasitic knee current (0=infinity) 0.0 ×

TF Forward transit time 0.0

QTF Variation of TF with base width
modulation

0.0

XTF Coefficient of TF bias dependence 0.0

VTF Coefficient of TF dependence on Vbc 0.0

ITF Coefficient of TF dependence of Icc 0.0

TR Ideal reverse transit time 0.0

TD Forward excess phase delay time 0.0

KFN Flicker noise coefficient 0.0

AFN Flicker noise exponent 1.0

BFN Flicker noise frequency exponent 1.0

XRE Temperature exponent of emitter
resistance

0.0

XRB Temperature exponent of base
resistance

0.0

XRC Temperature exponent of collector
resistance

0.0

XRS Temperature exponent of substrate
resistance

0.0

Name Description Units Default Area
56

Chapter 4 Analog Device Reference
Notes

The VBIC model is only available with Micron versions.

The Vertical Bipolar Inter-Company (VBIC) model is an advanced bipolar junction
transistor model. This is the 4-terminal non-thermal version. There is also a version
that supports self-heating effects and has 5 terminals, see “Bipolar Junction Transistor
(VBIC with self heating)” below.

For more information about VBIC, please refer to this link:

http://www.designers-guide.com/VBIC/references.html

Bipolar Junction Transistor (VBIC with self heating)

Netlist Entry

Qxxxx collector base emitter substrate thermal_node modelname
[M=multiplier] [AREA|SCALE=area]

collector Collector node name

base Base node name

emitter Emitter node name

substrate Substrate node name

XV0/
XV0

Temperature exponent of Vo 0.0

EA Activation energy for IS 1.12

EAIE Activation energy for IBEI 1.12

EAIC Activation energy for IBCI/IBEIP 1.12

EAIS Activation energy for IBCIP 1.12

EANE Activation energy for IBEN 1.12

EANC Activation energy for IBCN/IBENP 1.12

EANS Activation energy for IBCNP 1.12

XIS Temperature exponent of Is 3.0

XII Temperature exponent of IBEI/IBCI/
IBEIP/IBCIP

3.0

XIN Temperature exponent of IBEN/IBCN/
IBENP/IBCNP

3.0

TNF Temperature coefficient of NF 0.0

TAVC Temperature coefficient of AVC 0.0

Name Description Units Default Area
57

Simulator Reference Manual
thermal_node See notes

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and ' . ' .

multiplier Device scale. Has an identical effect as putting multiplier
devices in parallel.

area Scales certain model parameters as described in the parameter
table under Area column. A × entry means the parameter is
multiplied by the area while a ÷ means the parameter is divided
by the area.

Model Syntax

.MODEL modelname NPN|PNP LEVEL=1004 parameters

Model Parameters

Model parameters are identical to the non-thermal version except for the addition of
the following:

Notes

The VBIC model is only available with Micron versions.

This model is the same as the VBIC non-thermal model except for the addition of self-
heating effects. Use the non-thermal version if you do not need self-heating as its
implementation is simpler and will run faster.

The thermal_node may be used to connect external thermal networks to model thermal
flow. Power in watts is represented by current and temperature rise in Kelvin is
represented by the voltage. Note that the voltage is temperature rise above the
simulation temperature, not an absolute value.

Bipolar Junction Transistor (MEXTRAM)
See “Philips Compact Models” on page 104

Capacitor

Netlist Entry

Cxxxx n1 n2 [model_name] value [IC=initial_condition]
[TEMP=local_temp] [TC1=tc1] [TC2=tc2] [VC1=vc1] [VC2=vc2]

Name Description Units Default Area

RTH Thermal resistance 0.0 ÷

CTH Thermal capacitance 0.0 ×
58

Chapter 4 Analog Device Reference
[BRANCH=0|1]

n1 Node 1

n2 Node 2

model_name (Optional) Name of model . Must begin with a letter but can
contain any character except whitespace and period '.'

value Capacitance (Farads)

initial_condition Initial voltage if UIC specified on .TRAN control (page 213).

local_temp Capacitor temperature (°C)

tc1 First order temperature coefficient

tc2 Second order temperature coefficient

vc1 First order voltage coefficient

vc2 Second order voltage coefficient

BRANCH May be 0 or 1. 0 is the default. This parameter determines the
internal formulation of the capacitor and affects how the IC
parameter is implemented. When BRANCH=0, the capacitor
looks like an open circuit during the DC operating point and the
IC parameter has no effect unless UIC is specified for a transient
analysis. If BRANCH=1, the capacitor looks like a voltage
source during dc operating point with a magnitude equal to the
value of the IC parameter. BRANCH=1 makes it possible to
specify circuit startup conditions. See “Alternative Initial
Condition Implementations” on page 183 for an example.

Capacitor Model Syntax

.model modelname CAP (parameters)
59

Simulator Reference Manual
Capacitor Model Parameters

Capacitor with Voltage Initial Condition

Netlist entry:

Axxxx cap_p cap_n model_name

Model format:

.MODEL model_name cm_cap parameters

Model parameters:

Description

This device is now obsolete. Use a standard capacitor with BRANCH=1.

This is like a standard capacitor but the internal implementation is different and
permits the specification of an initial condition which works without having to specify
the transient UIC switch. Also, unlike normal initial conditions, the initial voltage is
applied with a zero source resistance.

In some circumstances, large value capacitors are better implemented using this device
than the standard capacitor but note that during the DC operating point solution, the
device looks like a short circuit, not an open circuit as is the case with the normal
SPICE device.

Name Description Units Default

C Capacitor multiplier 1

TC1 First order temperature coefficient 1/°C 0

TC2 Second order temperature coefficient 1/°C2 0

VC1 First order voltage coefficient Volt-1 0

VC2 Second order voltage coefficient Volt-2 0

Name Description Type Default Limits

c Capacitance real none 1E-21 - ∞

ic Voltage initial condition real 0 none
60

Chapter 4 Analog Device Reference
Current Controlled Current Source

Netlist Entry: Linear Source

Fxxxx nout+ nout- vc current_gain

nout+ Positive output node

nout- Negative output node

vc Controlling voltage source

current_gain Output current/Input current

SPICE2 polynomial sources are also supported in order to maintain compatibility with
commercially available libraries for IC's. (Most operational amplifier models for
example use several polynomial sources). In general, however the arbitrary source
(page 46) is more flexible and easier to use.

Netlist Entry: Polynomial Source

Fxxxx nout+ nout- POLY(num_inputs) vc1 vc2 ...
+ polynomial_specification

vc1, vc2 Controlling voltage sources

num_inputs Number of controlling currents for source.

polynomial_specification See “Polynomial Specification” on page 62

The specification of the controlling voltage source or source requires additional netlist
lines. The schematic netlister automatically generates these for the four terminal device
supplied in the symbol library.

Example

In the above circuit, the current in the output of F1 (flowing from top to bottom) will
be 0.1 times the current in R2.

R2
1K

F1

0.1

R1
1K
61

Simulator Reference Manual
Polynomial Specification
The following is an extract from the SPICE2G.6 user manual explaining polynomial
sources.

SPICE allows circuits to contain dependent sources characterised by any of the four
equations

i=f(v)
v=f(v)
i=f(i)
v=f(i)

where the functions must be polynomials, and the arguments may be
multidimensional. The polynomial functions are specified by a set of coefficients p0,
p1, ..., pn. Both the number of dimensions and the number of coefficients are arbitrary.
The meaning of the coefficients depends upon the dimension of the polynomial, as
shown in the following examples:

Suppose that the function is one-dimensional (that is, a function of one argument).
Then the function value fv is determined by the following expression in fa (the function
argument):

fv = p0 + (p1.fa) + (p2.fa2) + (p3.fa3) + (p4.fa4) + (p5.fa5) + ...

Suppose now that the function is two-dimensional, with arguments fa and fb. Then the
function value fv is determined by the following expression:

fv = p0 + (p1.fa) + (p2.fb) + (p3.fa2) + (p4.fa.fb) + (p5.fb2) + (p6.fa3) + (p7.fa2.fb) +
(p8.fa.fb2) + (p9.fb3) + ...

Consider now the case of a three-dimensional polynomial function with arguments fa,
fb, and fc. Then the function value fv is determined by the following expression:

fv = p0 + (p1.fa) + (p2.fb) + (p3.fc) + (p4.fa2) + (p5.fa.fb) + (p6.fa.fc) + (p7.fb2) +
(p8.fb.fc) + (p9.fc2) + (p10.fa3) + (p11.fa2.fb) + (p12.fa2.fc) + (p13.fa.fb2) +
(p14.fa.fb.fc) + (p15.fa.fc2) + (p16.fb3) + (p17.fb2.fc) + (p18.fb.fc2) + (p19.fc3) +
(p20.fa4) + ...

Note If the polynomial is one-dimensional and exactly one coefficient is
specified, then SPICE assumes it to be p1 (and p0 = 0.0), in order to
facilitate the input of linear controlled sources.

Current Controlled Voltage Source

Netlist Entry: Linear Source

Hxxxx nout+ nout- vc transresistance

nout+ Positive output node
62

Chapter 4 Analog Device Reference
nout- Negative output node

vc Controlling voltage source

transresistance Output current/Input current (Ω)

SPICE2 polynomial sources are also supported in order to maintain compatibility with
commercially available libraries for IC's. (Most Op-amp models use several
polynomial sources). In general, however the arbitrary source is more flexible and
easier to use.

Netlist Entry: Polynomial Source

Hxxxx nout+ nout- POLY(num_inputs) vc1 vc2 ...
+ polynomial_specification

vc1, vc2 Controlling voltage sources

num_inputs Number of controlling currents for source.

polynomial_specification See “Polynomial Specification” on page 62.

The specification of the controlling voltage source or source requires additional netlist
lines. The schematic netlister automatically generates these for the four terminal device
supplied in the symbol library.

Current Source

Netlist Entry

Ixxxx n+ n- [DC dcvalue] [AC magnitude [phase]] [transient_spec]

n+ Positive node

n- Negative node

dcvalue Value of source for dc operating point analysis

magnitude AC magnitude for AC sweep analysis.

phase phase for AC sweep analysis

transient_spec Specification for time varying source. Can be one of following:

Pulse - see page 98
Piece wise linear - see page 99
Sine - see page 101
Exponential - see page 102
Single frequency FM - see page 102
63

Simulator Reference Manual
Diode

Netlist Entry

Dxxxx n+ n- model_name [area] [OFF] [IC=vd] [TEMP=local_temp]
+ [M=mult] [PJ=periphery] [L=length] [W=width]

n+ Anode

n- Cathode

model_name Name of model defined in a .MODEL control (page 187). Must
begin with a letter but can contain any character except
whitespace and ' . ' .

area Area multiplying factor. Area scales up the device. E.g. an area
of 3 would make the device behave like 3 diodes in parallel.
Default is 1.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See “.OP” on
page 194 for more details.

vd Initial condition for diode voltage. This only has an effect if the
UIC parameter is specified on the .TRAN control (page 213).

local_temp Local temperature. Overrides specification in .OPTIONS
(page 195) or .TEMP (page 211) controls.

mult Level 3 only. Similar to area. See below.

periphery Level 3 only. Junction periphery used for calculating sidewall
effects.

length Level 3 only. Used to calculate area. See below.

width Level 3 only. Used to calculate area. See below.

Examples

Diode Model Syntax

.model modelname D (LEVEL=[1|3] parameters)

D3
D1N914 TEMP=100

D2
5 BYT12

D1
D1N4148
64

Chapter 4 Analog Device Reference
Diode Model Parameters - Level = 1

The symbols ' × ' and ' ÷ ' in the Area column means that that parameter should be
multiplied or divided by the area factor respectively.

Notes The dc characteristics of the diode are determined by the parameters IS, N,
ISR, NR and IKF. An ohmic resistance, RS, is included. Charge storage
effects are modelled by a transit time, TT, and a non-linear depletion layer
capacitance which is determined by the parameters CJO, VJ, and M. The
temperature dependence of the saturation current is defined by the
parameters EG, the energy and XTI, the saturation current temperature

Name Description Units Default Area

IS Transport saturation current A 1e-14 ×

ISR Recombination current parameter A 0 ×

N Emission coefficient 1

NR Emission Coefficient for ISR 2

IKF High injection knee current A ∞ ×

RS Series resistance W 0 ÷

TT Transit time sec 0

CJO or
CJ0

Zero bias junction capacitance F 0 ×

VJ Junction potential V 1

M Grading coefficient 0.5

EG Energy gap eV 1.11

XTI Saturation current temperature
exponent

3

KF Flicker noise coefficient 0

AF Flicker noise exponent 1

FC Forward bias depletion capacitance
coefficient

0.5

BV Reverse breakdown voltage V ∞

IBV Current at breakdown voltage A 1e-10 ×

TNOM Parameter measurement
temperature

°C 27

TRS1 First order tempco RS /°C 0

TRS2 Second order tempco RS /°C2 0

TBV1 First order tempco BV /°C

TBV2 Second order tempco BV /°C2
65

Simulator Reference Manual
exponent. Reverse breakdown is modelled by an exponential increase in the
reverse diode current and is determined by the parameters BV and IBV
(both of which are positive numbers).
66

Chapter 4 Analog Device Reference
Diode Model Parameters - Level = 3

Name Description Units Default

AF Flicker noise exponent 1.0

BV Reverse breakdown voltage V ∞

CJO, CJ Zero bias junction capacitance F 0.0

CJSW Zero bias sidewall capacitance F 0.0

CTA CJO temp coefficient. (TLEVC=1) °C-1

CTP CJSW temp coefficient. (TLEVC=1) °C-1

EG Energy gap ev 1.11

FC Forward bias depletion capacitance
coefficient

0.5

FCS Forward bias sidewall capacitance
coefficient

0.5

GAP1 7.02e-4 - silicon (old value)
4.73e-4 - silicon
4.56e-4 - germanium
5.41e-4 - gallium arsenide

eV/° 7.02e-4

GAP2 1108 - silicon (old value)
636 - silicon
210 - germanium
204 - gallium arsenide

° 1108

IBV Current at breakdown voltage A 1E-3

IKF, IK High injection knee current A •

IKR Reverse high injection knee current A •

IS, JS Saturation current A 1E-14

ISR Recombination current A 0

JSW Sidewall saturation current A 0

KF Flicker noise exponent 0

MJ, M Grading coefficient 0.5

MJSW Sidewall grading coefficient 0.33

N, NF Forward emission coefficient 1.0

NR Recombination emission coefficient 2.0

PHP Sidewall built in potential PB

RS Series resistance W 0

SHRINK Shrink factor 1.0

TCV BV temp coefficient °C-1 0
67

Simulator Reference Manual
The parameters CJSW and JSW are scaled by the instance parameter PJ whose default
value is 0.0.

If L and W instance parameters are supplied, the diode is scaled by the factor:
M*(L*SHRINK-XW)*(W*SHRINK-XW)
otherwise it is scaled by M*AREA.

M and AREA are instance parameters which default to 1.0

GaAsFET

Netlist Entry

Zxxxx drain gate source modelname [area] [OFF] [IC=vds , vgs]

drain Drain node

gate Gate node

source Source node

modelname Name of model defined in a .model control. Must begin with a
letter but can contain any character except whitespace and
period '.' .

area Area multiplying factor. Area scales up the device. E.g. an area
of 3 would make the device behave like 3 transistors in parallel.
Default is one.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See “.OP” on
page 194 for more details.

TLEV Temperature model selector. Valid
values: 0, 1, 2

0

TLEVC Temperature model selector. Valid
values: 0 or 1

0

TNOM, TREF Parameter measurement temperature 27

TPB VJ temp coefficient (TLEVC=1) V/°C 0.0

TPHP PHP temp. coefficient (TLEVC=1) V/°C 0.0

TRS RS temp. coefficient °C-1 0.0

TT Transit time S 0.0

VJ, PB Built-in potential V 0.8

XW Shrink factor 0.0

Name Description Units Default
68

Chapter 4 Analog Device Reference
vds,vgs Initial conditions for drain-source and gate-source junctions
respectively. These only have an effect if the UIC parameter is
specified on the .TRAN control.

GaAsFET Model Syntax

.model modelname NMF (parameters)

GaAsFET Model Parameters

The symbols ' × ' and ' ÷ ' in the Area column means that parameter should be
multiplied or divided by the area factor respectively.

Notes The GaAsFET model is derived from the model developed by Statz. The
DC characteristics are defined by parameters VTO, B and BETA, which
determine the variation of drain current with gate voltage, ALPHA, which
determines saturation voltage, and LAMBDA, which determines the output
conductance. IS determines the gate-source and gate-drain dc
characteristics.

Two ohmic resistances are included. Charge storage is modelled by total
gate charge as a function of gate-drain and gate-source voltages and is
defined by the parameters CGS, CGD and PB.

Name Description Units Default Area

VTO Pinch-off Voltage V -2.0

BETA Transconductance parameter A/V2 2.5e-3 ×

B Doping tail extending parameter 1/V 0.3

ALPHA Saturation voltage parameter 1/V 2

LAMBD
A

Channel length modulation
parameter

1/V 0

RD Drain ohmic resistance W 0 ÷

RS Source ohmic resistance W 0 ÷

CGS Zero bias gate source capacitance F 0 ×

CGD Zero bias gate drain capacitance F 0 ×

PB Gate junction potential V 1

IS Gate p-n saturation current A 1e-14 ×

FC Forward bias depletion capacitance
coefficient

0.5

KF Flicker noise coefficient 0

AF Flicker noise exponent 1
69

Simulator Reference Manual
Inductor (Ideal)

Netlist Entry

Lxxxx n1 n2 value [IC=init_cond] [BRANCH=0|1]

n1 Node 1

n2 Node 2

value Value in henries

init_cond Initial current in inductor. Only effective if UIC option is
specified on .TRAN control.

BRANCH set to 0 or 1. 1 is default value. This parameter determines the
internal formulation of the inductor and affects how the IC
parameter is implemented. When BRANCH=1, the inductor
looks like a short circuit during DC operating point and the IC
parameter has no effect unless UIC is specified for a transient
analysis. If BRANCH=0, the inductor looks like a current
source during dc operating point with a magnitude equal to the
value of the IC parameter. BRANCH=0 makes it possible to
specify circuit startup conditions.

See Also

Mutual Inductance page 103

Inductor (Saturable)

Netlist Entry

Lxxxx n1 n2 modelname [N=num_turns] [LE=le] [AE=ae] [UE=ue]

n1 Node 1

n2 Node 2

modelname Model name referring to a .MODEL control describing the core
characteristics. See details below.

num_turns Number of turns on winding

le Effective path length of core in metres. Default = PATH/100.
PATH is defined in .MODEL.

ae Effective area of core in metres2. Default = AREA/10000 where
AREA is define in .MODEL.

ue Effective permeability of core. Overrides model parameter of
the same name.
70

Chapter 4 Analog Device Reference
Model format - Jiles-Atherton model with hysteresis

.MODEL model_name CORE parameters

Model format - simple model without hysteresis

.MODEL model_name CORENH parameters

Jiles-Atherton Parameters

Non-hysteresis Model Parameters

Name Description Units Default

PATH Effective path length cm 1

C Domain flexing parameter 0.2

K Domain anisotropy parameter amp.m-1 500

MS Magnetisation saturation 1E6

GAP Air gap (centi-metres) cm 0

GAPM Air gap (metres) m GAP/100

A Thermal energy parameter amp.m- 1000

AREA Effective area cm2 0.1

UE Effective permability. Overrides GAP and
GAPM if >0. See notes

AHMODE Anhysteric function selector (see notes) 0

Name Description Units Default

PATH Effective path length cm 1

MS Magnetisation saturation 1E6

GAP Air gap (centi-metres) cm 0

GAPM Air gap (metres) m GAP/100

A Thermal energy parameter amp.m- 1000

AREA Effective area cm2 0.1

AHMODE Anhysteric function selector (see notes) 0
71

Simulator Reference Manual
Notes on the Jiles-Atherton model

The Jiles-Atherton model is based on the theory developed by D.C. Jiles and
D.L.Atherton in their 1986 paper “Theory of Ferromagnetic Hysteresis”. The model
has been modified to correct non-physical behaviour observed at the loop tips whereby
the slope of the B-H curve reverses. This leads to non-convergence in the simulator.
The modification made is that proposed by Lederer et al. (See refs below). Full details
of the SIMetrix implementation of this model including all the equations are provided
in a technical note. This is located on the install CD at Docs/Magnetics/Jiles-Atherton-
Model.pdf.

The AHMODE parameter selects the equation used for the anhysteric function, that is
the non-linear curve describing the saturating behaviour. When set to 0 the function is
the same as that used by PSpice. When set to 1 the function is the original equation
proposed by Jiles and Atherton. See the Jiles-Atherton-Model.pdf technical note for
details.

If the UE parameters is specified either on the device line or in the model, an air gap
value is calculated and the parameters GAP and GAPM are ignored. See the Jiles-
Atherton-Model.pdf technical note for the formula used.

The parameter names and their default values for the Jiles-Atherton model are
compatible with PSpice, but the netlist entry is different.

Notes on the non-hysteresis model

This is simply a reduced version of the Jiles-Atherton model with the hysteresis effects
removed. The anhysteric function and the air-gap model are the same as the Jiles-
Atherton model.

Implementing Transformers

This model describes only a 2 terminal inductor. A transformer can be created using a
combination of controlled sources along with a single inductor. The SIMetrix
schematic editor uses this method.

The schematic editor provides a means of creating transformers and this uses an
arrangement of controlled sources to fabricate a non-inductive transformer. Any
inductor can be added to this arrangement to create an inductive transformer. The
method is simple and efficient. The following shows how a non-inductive three
winding transformer can be created from simple controlled sources:

F1 0 n1 E1 1
E1 W1A W1B n1 0 1
F2 0 n1 E2 1
E2 W2A W2B n1 0 1
F3 0 n1 E3 1
E3 W3A W3B n1 0 1

Connecting an inductor between n1 and 0 in the above provides the inductive
behaviour. This is in fact how the SIMetrix schematic editor creates non-linear
transformers.

Note that you cannot use the mutual inductor device with the saturable inductor.
72

Chapter 4 Analog Device Reference
Plotting B-H curves

Both models can be enabled to output values for flux density in Tesla and magnetising
force in A.m-1. To do this, add the following line to the netlist:

.KEEP Lxxx#B Lxxx#H

Replace Lxxx with the reference for the inductor. (e.g. L23 etc). You will find vectors
with the names Lxxx#B Lxxx#H available for plotting in the waveform viewer.

References

1. Theory of Ferrmagnetic Hysteresis, DC.Jiles, D.L. Atherton, Journal of
Magnetism and Magnetic Materials, 1986 p48-60.

2. On the Parameter Identification and Application of the Jiles-Atherthon
Hysteresis Model for Numerical Modelling of Measured Characteristics, D
Lederer, H Igarashi, A Kost and T Honma, IEEE Transactions on Magnetics, Vol.
35, No. 3, May 1999

Inductor with Current Initial Condition

Netlist entry

Axxxx ind_p ind_n model_name

Model format

.MODEL model_name cm_ind parameters

Model parameters

Description

This device is now obsolete. Use standard inductor with BRANCH=0.

This is like a standard inductor but the internal implementation is different and permits
the specification of a current initial condition which works without having to specify
the transient UIC switch.

In some circumstances, large value inductors are better implemented using this device
than the standard inductor but note that during the DC operating point solution, the
device looks like an open circuit, not a short circuit as is the case with the normal
SPICE device.

Name Description Type Default Limits

l Inductance real none 1e-18 - ∞

ic Current initial condition real 0 none
73

Simulator Reference Manual
Note that this type of inductor cannot be coupled using the 'K' device.

Insulated Gate Bipolar Transistor

Netlist Entry

Zxxxx collector gate emitter [AREA=area] [AGD=agd] [KP=kp]
[TAU=tau] [WB=wb]

collector Collector node

gate Gate node

emitter Emitter node

area Device area in m2 (overrides model parameter of the same
name)

agd Gate-drain overlap area in m2 (overrides model parameter of the
same name)

kp Transconductance (overrides model parameter of the same
name)

tau Ambipolar recombination lifetime (overrides model parameter
of the same name)

wb Base width in metres (overrides model parameter of the same
name)

Model syntax

.MODEL model_name NIGBT parameters

Name Description Units Default

AGD Gate-drain overlap area m2 5E-6

AREA Device active area m2 1E-5

BVF Breakdown voltage nonplanar junction factor 1.0

BVN Avalanche multiplication exponent 4.0

CGS Gate-source capacitance per unit area Fcm-2 1.24E-8

COXD Gate-drain overlap oxide capacitance per unit
area

Fcm-2 3.5E-8

JSNE Emitter electron saturation current density Acm-2 6.5E-13

KF Triode region MOSFET transconductance
factor

1.0
74

Chapter 4 Analog Device Reference
Notes

The IGBT model is based on the model developed by Allen R. Hefner at the National
Institute of Standards and Technology. The parameter names, default values and units
have been chosen to be compatible with the PSpice implementation of the same model.

For more information, please refer to:

Modelling Buffer Layer IGBT’s for Circuit Simulation, Allen R. Hefner Jr, IEEE
Transactions on Power Electronics, Vol. 10, No. 2, March 1995

An Experimentally Verified IGBT Model Implemented in the Saber Circuit Simulator,
Allen R. Hefner, Jr., Daniel M. Diebolt, IEE Transactions on Power Electronics, Vol. 9,
No. 5, September 1994

Junction FET

Netlist Entry

Jxxxx drain gate source modelname [area] [OFF] [IC=vds,vgs]
+ [TEMP=local_temp]

drain Drain node

gate Gate node

source Source node

modelname Name of model defined in a .model control. Must begin with a
letter but can contain any character except whitespace and
period '.' .

area Area multiplying factor. Area scales up the device. E.g. an area
of 3 would make the device behave like 3 transistors in parallel.

KP MOSFET transconductance factor AV-2 0.38

MUN Electron mobility cm-2(Vs)-1 1.5E3

MUP Hole mobility cm-2(Vs)-1 4.5E2

NB Base doping concentration cm-3 2E14

TAU Ambipolar recombination lifetime s 7.1E-6

THETA Transverse field transconductance factor V-1 0.02

VT MOSFET channel threshold voltage V 4.7

VTD Gate-drain overlap depletion threshold V 1E-3

WB Metallurgical base width m 9.0E-5

Name Description Units Default
75

Simulator Reference Manual
Default is 1.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See “.OP” on
page 194 for more details.

vds,vgs Initial conditions for drain-source and gate-source junctions
respectively. These only have an effect if the UIC parameter is
specified on the .TRAN control (page 213).

local_temp Local temperature. Overrides specification in .OPTIONS
(page 195) or .TEMP (page 211) controls.

N Channel JFET: Model Syntax

.model modelname NJF (parameters)

P Channel JFET: Model Syntax

.model modelname PJF (parameters)

JFET: Model Parameters

The symbols ' × ' and ' ÷ ' in the Area column means that parameter should be
multiplied or divided by the area factor respectively.

Name Description Units Default Area

VTO Threshold voltage V -2.0

VTOTC VTO temp coefficient V/°C 0

BETA Transconductance parameter A/V2 1e-4 ×

BETATC
E

BETA temperature coefficient % 0

LAMDA Channel length modulation
parameter

1/V 0

ALPHA Impact ionisation coefficient 0

VK Impact ionisation knee voltage V 0

RS Source ohmic resistance W 0 ÷

CGS Zero-bias G-S junction capacitance F 0 ÷

CGD Zero-bias G-D junction capacitance F 0 ÷

M Grading coefficient 1.0

PB Gate junction potential V 1

IS Gate junction saturation current A 1e-14 ×

N Gate junction emission coefficient 1
76

Chapter 4 Analog Device Reference
Examples

Q2 is a U430 with a local temperature of 100°C.

Lossy Transmission Line

Netlist Entry

Oxxxx p1 n1 p2 n2 modelname [IC=v1,i1,v2,i2]

p1 Positive input port 1

n1 Negative input port 1

p2 Positive input port 2

n2 Negative input port 2

modelname Name of model defined in a .MODEL control (page 187). Must
begin with a letter but can contain any character except
whitespace and period '.' .

v1,i1,v2,i2 Initial conditions for voltage at port 1, current at port 1, voltage
at port 2 and current at port 2 respectively. These only have an
effect if the UIC parameter is specified on the .TRAN control
(page 213).

Model Syntax

.model modelname LTRA (parameters)

ISR Recombination current 0

NR ISR emission coefficient

XTI IS temperature coefficient 3

KF Flicker noise coefficient 0

AF Flicker noise exponent 1

FC Coefficient for forward bias depletion
capacitance

0.5

TNOM Parameter measurement
temperature

°C 27

Name Description Units Default Area

Q2

U430 Temp=100

Q1

BF244
77

Simulator Reference Manual
Model Parameters

The parameters REL and ABS control the way the line is simulated rather than its
electrical characteristics. More accurate results (at the expense of simulation time) can
be obtained by using lower values.

Notes The uniform RLC/RC/LC/RG transmission line model (LTRA) models a
uniform constant-parameter distributed transmission line. The LC case may
also be modelled using the lossless transmission line model. The operation
of the lossy transmission line model is based on the convolution of the
transmission line's impulse responses with its inputs.

The following types of lines have been implemented:

RLC Transmission line with series loss only
RC Uniform RC line
LC Lossless line
RG Distributed series resistance and parallel conductance

All other combinations will lead to an error.

REL and ABS are model parameters that control the setting of breakpoints.
A breakpoint is a point in time when an analysis is unconditionally
performed. The more there are the more accurate the result but the longer it
will take to arrive. Reducing REL and/or ABS will yield greater precision.

Example

The above could represent a 10 metre length of RG58 cable. The parameters would be
described in a .model control e.g.

.model RG58_10m LTRA(R=0.1 C=100p L=250n LEN=10)

Name Description Units Default

R Resistance/unit length Ω/unit length 0.0

L Inductance/unit length Henrys/unit length 0.0

G Conductance/unit length Siemens(mhos)/unit length 0.0

C Capacitance/unit length Farads/unit length 0.0

LEN Length Required

REL Relative rate of change of derivative for breakpoint 1.0

ABS Absolute rate of change of derivative for breakpoint 1.0

RG58_10m

T1
78

Chapter 4 Analog Device Reference
MOSFET
Note Level 1,2,3 and 7 MOSFETs are described in this section. For BSIM3

devices see page 84 and for BSIM4 see page 85. For MOS9, MOS11 and
other Philips devices see page 104

Netlist Entry

Mxxxx drain gate source bulk modelname [L=length] [W=width]
+ [AD=drain_area] [AS=source_area]
+ [PD=drain_perimeter] [PS=source_perimeter]
+ [NRD=drain_squares] [NRS=source_squares]
+ [OFF] [IC=vds,vgs,vbs] [TEMP=local_temp] [M=area]

drain Drain node

gate Gate node

source Source node

bulk Bulk (substrate) node

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and period '.'

(The following 8 parameters are not supported by the level 7 MOSFET model)
length Channel length (metres).

width Channel width (metres).

drain_area Drain area (m2).

source_area Source area (m2).

drain_perimeter Drain perimeter (metres).

source_perimeter Source perimeter (metres).

drain_squares Equivalent number of squares for drain diffusion.

source_squares Equivalent number of squares for source diffusion.

OFF Instructs simulator to calculate operating point analysis with
device initially off. This is used in latching circuits such as
thyristors and bistables to induce a particular state. See page 194
for more details.

vds, vgs, vbs Initial condition voltages for drain-source gate-source and
bulk(=substrate)-source respectively. These only have an effect
if the UIC parameter is specified on the .TRAN control
(page 213).

local_temp Local temperature. Overrides specification in .OPTIONS
(page 195) or .TEMP (page 211) controls.

Notes SIMetrix supports four types of MOSFET model specified in the model
definition. These are referred to as levels 1, 2, 3 and 7. Levels 1,2, and 3 are
the same as the SPICE2 and SPICE3 equivalents. Level 7 is proprietary to
79

Simulator Reference Manual
SIMetrix. For further information see Level 7 MOSFET parameters below.

NMOS Model Syntax

.model modelname NMOS (level=level_number parameters)

PMOS Model Syntax

.model modelname PMOS (level=level_number parameters)

MOS Levels 1, 2 and 3: Model Parameters

Name Description Units Default Levels

VTO or
VT0

Threshold voltage V 0.0 all

KP Transconductance parameter A/V2 2.0e-5 all

GAMMA Bulk threshold parameter √V 0.0 all

PHI Surface potential V 0.6 all

LAMBD
A

Channel length modulation 1/V 0.0 all

RG Gate ohmic resistance W 0.0 1 & 3

RD Drain ohmic resistance W 0.0 all

RS Source ohmic resistance W 0.0 all

CBD B-D junction capacitance F 0.0 all

CBS B-S junction capacitance F 0.0 all

IS Bulk junction sat. current A 1.0e-14 all

PB Bulk junction potential V 0.8 all

CGSO Gate-source overlap capacitance F/m 0.0 all

CGDO Gate-drain overlap capacitance F/m 0.0 all

CGBO Gate-bulk overlap capacitance F/m 0.0 all

RSH Drain and source diffusion
resistance

Ω/sq. 0.0 all

CJ Zero bias bulk junction bottom
capacitance/sq-metre of junction
area

F/m2 0.0 all

MJ Bulk junction bottom grading
coefficient

0.5 all

CJSW Zero bias bulk junction sidewall
capacitance

F/m 0.0 all
80

Chapter 4 Analog Device Reference
MJSW Bulk junction sidewall grading
coefficient

0.5 - L1
0.33 - L2&3

all

JS Bulk junction saturation current/
sq-metre of junction area

A/m2 0.0 all

TOX Oxide thickness metre 1e-7 all

NSUB Substrate doping 1/cm3 0.0 all

NSS Surface state density 1/cm2 0.0 all

NFS Fast surface state density 1/cm2 0.0 2,3

TPG Type of gate material:
 +1 opposite. to substrate
 -1 same as substrate
 0 Al gate

all

XJ Metallurgical junction depth metre 0.0 2,3

LD Lateral diffusion metre 0.0 all

UO Surface mobility cm2/Vs 600 all

UCRIT Critical field for mobility V/cm 0.0 2

UEXP Critical field exponent in mobility
degradation

0.0 2

UTRA Transverse field coefficient
(mobility)

0.0 1,3

VMAX Maximum drift velocity of carriers m/s 0.0 2,3

NEFF Total channel charge (fixed and
mobile) coefficient

1.0 2

FC Forward bias depletion
capacitance coefficient

0.5 all

TNOM Parameter measurement
temperature

°C 27 all

KF Flicker noise coefficient 0.0 all

AF Flicker noise exponent 1.0 all

DELTA Width effect on threshold voltage 0.0 2,3

THETA Mobility modulation 1/V 0.0 3

ETA Static feedback 0.0 3

KAPPA Saturation field factor 0.2 3

W Width metre DEFW 1,2,3

L Length metre DEFL 1,2,3

Name Description Units Default Levels
81

Simulator Reference Manual
Notes for levels 1, 2 and 3:

The three levels 1 to 3 are as follows:

LEVEL 1. Shichman-Hodges model. The simplest and is similar to the
JFET model.

LEVEL 2 A complex model which models the device according to an
understanding of the device physics.

LEVEL 3 Simpler than level 2. Uses a semi-empirical approach i.e. the
device equations are partly based on observed effects rather than
the theory governing its operation.

The L and W parameters perform the same function as the L and W parameters on the
device line. If omitted altogether they are set to the option values (set with .OPTIONS
control - see page 195) DEFL and DEFW respectively. These values in turn default to
100 microns.

The above models differ from all other SIMetrix (and SPICE) models in that they
contain many geometry relative parameters. The geometry of the device (length, width
etc.) is entered on a per component basis and various electrical characteristics are
calculated from parameters which are scaled according to those dimensions. This is
approach is very much geared towards integrated circuit simulation and is
inconvenient for discrete devices. If you are modelling a particular device by hand we
recommend you use the level 7 model which is designed for discrete vertical devices.

MOS Level 7: Model Parameters

Name Description Units Default

VTO or
VT0

Threshold voltage V 0.0

KP Transconductance parameter A/V2 2.0e-5

GAMMA Bulk threshold parameter √V 0.0

PHI Surface potential V 0.6

LAMBDA Channel length modulation 1/V 0.0

RD Drain ohmic resistance W 0.0

RS Source ohmic resistance W 0.0

CBD B-D junction capacitance F 0.0

CBS B-S junction capacitance F 0.0

IS Bulk junction sat. current A 1.0e-14

PB Bulk junction potential V 0.8

CGSO Gate-source overlap capacitance F 0.0

CGBO Gate-bulk overlap capacitance F 0.0

CJ Zero bias bulk junction bottom capacitance F 0.0
82

Chapter 4 Analog Device Reference
Notes for level 7

The level 7 MOSFET was developed to model discrete vertical MOS transistors rather
than the integrated lateral devices that levels 1 to 3 are aimed at. Level 7 is based on
level 1 but has the following important additions and changes:

• New parameters to model gate-drain capacitance
• 2 new parameters to model rdson variation with temperature.
• All parameters are absolute rather than geometry relative. (e.g. capacitance is

specified in farads not farads/meter)
All MOSFET models supplied with SIMetrix are level 7 types. Many models supplied
by manufacturers are subcircuits made up from a level 1, 2 or 3 device with additional
circuitry to correctly model the gate-drain capacitance. While the latter approach can
be reasonably accurate it tends to be slow because of its complexity.

Gate-drain capacitance equation:

where v is the gate-drain voltage.
This is an empirical formula devised to fit measured characteristics. Despite this it has
been found to follow actual measured capacitance to remarkable accuracy.

MJ Bulk junction bottom grading coefficient 0.5

CJSW Zero bias bulk junction sidewall capacitance F 0.0

MJSW Bulk junction sidewall grading coefficient 0.5

FC Forward bias depletion capacitance
coefficient

0.5

TNOM Parameter measurement temperature °C 27

KF Flicker noise coefficient 0.0

AF Flicker noise exponent 1.0

CGDMAX Maximum value of gate-drain capacitance F 0.0

CGDMIN Minimum value of gate-drain capacitance F 0.0

XG1CGD cgd max-min crossover gradient 1.0

XG2CGD cgd max-min crossover gradient 1.0

VTCGD cgd max-min crossover threshold voltage V 0.0

TC1RD First order temperature coefficient of RD 1/°C 0.0

TC2RD Second order temperature coefficient of RD 1/°C2 0.0

Name Description Units Default

C v

v
gd = − − −

− −

−

−

(. . tan (().

(. . tan (().

0 5

0 5

1 1

1 1

π

π

VTCGD XG1CGD)).CGDMIN

+ VTCGD XG2CGD)).CGDMAX
83

Simulator Reference Manual
To model gate-drain capacitance quickly and to acceptable accuracy set the five Cgd
parameters as follows:

1. Set CGDMIN to minimum possible value of Cgd i.e. when device is off and drain
voltage at maximum.

2. Set CGDMAX to maximum value of Cgd i.e. when device is on with drain-source
voltage low and gate-source voltage high. If this value is not known use twice the
value of Cgd for Vgd=0.

3. Set XG2CGD to 0.5, XG1CGD to 0.1 and leave VTCGD at default of 0.

Although the parasitic reverse diode is modelled, it is connected inside the terminal
resistances, RD and RS which does not represent real devices very well. Further,
parameters such as transit time (TT) which model the reverse recovery characteristics
of the parasitic diode are not included. For this reason it is recommended that the
reverse diode is modelled as an external component. Models supplied with SIMetrix
are subcircuits which include this external diode.

BSIM3 MOSFETs

Notes

The BSIM3 model is only available with the Micron versions of SIMetrix. Two
versions are supplied namely 3.1 and 3.2. Our implementation of version 3.1 includes
all bug fixes applied to the latest version but the device equations and supported
parameters are for the original version 3.1. See below to find out how to switch
versions.

BSIM3 models can be accessed using one of three values for the LEVEL parameter:

LEVEL=8 specifies the standard Berkeley BSIM3 model.
LEVEL=49 specifies the Star-Hspice implementation using the Hspice junction
capacitance model.
LEVEL=53 is also a Star-Hspice version but uses the standard Berkeley junction cap
model.

The following Star-Hspice parameters are supported when using level 49/53:
CJGATE, HDIF, LDIF, WMLT, XL, XW, IS, N, NDS, VNDS, PHP,

LMLT, CTA, CTP, PTA, PTP, TREF, RD, RS, RDC, RSC, CBD, CBS, FC, TT,

LD, WD, EG, GAP1, GAP2, XLREF, XWREF, ACM, CALCACM, TLEV, TLEVC

The Star-Hspice noise model is also supported for NLEV=0,1 and 2.

The 'M' instance parameter has also been implemented. This specifies the number of
equivalent parallel devices.

Version Selector

The VERSION parameter can be specified to select which version is used. If omitted
or 3.2, the latest version will be used. If it is set to 3.1 or 3.0, version 3.1 will be used.
84

Chapter 4 Analog Device Reference
Further Documentation

Original Berkeley documentation is provided on the CDROM in PDF form.

Process Binning

BSIM3 devices may be binned according to length and width. Refer to “Model
Binning” on page 43 for details.

BSIM4 MOSFETs

Notes

The BSIM4 model is only available with the Micron versions of SIMetrix.

BSIM4 models are accessed using LEVEL=14.

Versions 4.2, 4.3 and 4.4 are currently supported. To set the version to be used, use the
VERSION parameter as defined in the following table:

If the version parameter is set to a value not listed above, SIMetrix will raise an error
condition. This can be overridden by setting .OPTION AnyVersion.

The implementation is standard Berkeley but with the addition of the 'M' instance
parameter which specifies the number of equivalent parallel devices.

Further Documentation

Original Berkeley documentation is provided on the CDROM in PDF form. Note the
document covers version 4.4 of the model. Earlier versions are available from the
BSIM3/4 web site at http://www-device.eecs.berkeley.edu/~bsim3.

Process Binning

BSIM4 devices may be binned according to length and width. Refer to “Model
Binning” on page 43 for details.

VERSION parameter value BSIM4 version used

4.3, 4.30, 4.3.0 4.3

4.4, 4.40, 4.4.0 4.4

4.0, 4.0.0, 4.1, 4.1.0, 4.10, 4.2,
4.2.0, 4.20, 4.2.1, 4.21

4.2

Omitted 4.2

Other See notes
85

Simulator Reference Manual
EKV MOSFETs

Notes

This is the Enz-Krummenacher-Vittoz MOSFET model version 2.6 and is only
available with the Micron versions of SIMetrix.

The models are accessed using LEVEL=44.

Our version implements the full charge conserving capacitance model but in the
absence of benchmark circuits this is not yet fully tested. The DC characteristics have
been successfully tested using published test circuits and results.

MOSFET GMIN Implementation
GMIN is a conductance added to all non-linear devices to improve DC convergence.
For LEVEL 1-3 and LEVEL 7 MOSFETs, the default GMIN is implemented as shown
below:

This is compatible with SPICE and earlier versions of SIMetrix.

For BSIM3, BSIM4 and EKV devices, and also for LEVEL1-3 and LEVEL 7 devices
if the NEWGMIN .OPTIONS setting is set, the GMIN implementation is:

OLDMOSGMIN is a .OPTIONS setting with the default value of zero. MOSGMIN is
also a .OPTIONS setting with the default value of GMIN. Using the above
configuration with OLDMOSGMIN =0 often converges faster especially if the
Junction GMIN stepping algorithm is used.

GMIN

GMIN

MOSGMIN

OLDMOSGMIN

OLDMOSGMIN
86

Chapter 4 Analog Device Reference
Resistor

Netlist Entry

Rxxxx n1 n2 [model_name] [value] [L=length] [W=width]
[ACRES=ac_resistance] [TEMP=local_temp] [TC1=tc1] [TC2=tc2]

n1 Node 1

n2 Node 2

model_name (Optional) Name of model. Must begin with a letter but can
contain any character except whitespace and ' . '

value Resistance (W)

length Length of resistive element in metres. Only used if value is
omitted. See notes below

width Width of resistive element in metres. Only used if value is
omitted. See notes below

ac_resistance Resistance used for AC analyses and for the calculation of
thermal noise. If omitted, value defaults to final resistance
value.

local_temp Resistor temperature (°C)

tc1 First order temperature coefficient

tc2 Second order temperature coefficient

Notes

• If model_name is omitted, value must be specified.
• If model_name is present and value is omitted, length and width must be

specified in which case the value of the resistance is RES * RSH * L/W where
RSH is the sheet resistance model parameter and RES is the resistance multiplier.
See model parameters below. If ACRES is specified and non-zero its value will
be used unconditionally for AC analyses and the calculation of thermal noise.

Resistor Model Syntax

.model modelname R (parameters)
87

Simulator Reference Manual
Resistor Model Parameters

Notes

The flicker noise parameters are proprietary to SIMetrix. Flicker noise voltage is:

Vn2 = KF * RSH2/(L*W) * Vr
2 * ∆f/fEF

Where:
Vr = Voltage across resistor.

The equation has been formulated so that KF is constant for a given resistive material.

If one of L, W is not specified, the flicker noise voltage becomes:

vn
2 = KF * R2 * Vr

2 * ∆f/fEF

Where R is the final resistance.

i.e. the noise current is independent of resistance. This doesn't have any particular basis
in physical laws and is implemented this way simply for convenience. When resistor
dimensions and resistivity are unavailable, the value of KF will need to be extracted
for each individual value.

S-domain Transfer Function Block

Netlist entry:

Axxxx input output model_name

Name Description Units Default

RES Resistance multiplier 1

TC1 First order temperature coefficient 1/°C 0

TC2 Second order temperature coefficient 1/°C2 0

RSH Sheet resistance Ω/sq 0

KF Flicker noise coefficient m2/Ω2 0

EF Flicker noise exponent 1
88

Chapter 4 Analog Device Reference
Connection details

Model format

.MODEL model_name s_xfer parameters

Model parameters

Description

This device implements an arbitrary linear transfer function expressed in the frequency
domain using the 'S' variable. The operation and specification of the device is
illustrated with the following examples.

Name Description Flow Default
type

Allowed
types

in Input in v v, vd, i, id

out Output out v v, vd, i, id

Name Description Type Default Limits Vector
bounds

in_offset Input offset real 0 none n/a

gain Gain real 1 none n/a

laplace Laplace expression
(overrides num_coeff
and den_coeff)

string none none n/a

num_coeff Numerator
polynomial coefficient

real
vector

none none 1 - ∞

den_coeff Denominator
polynomial coefficient

real
vector

none none 1 - ∞

int_ic Integrator stage initial
conditions

real
vector

0 none none

denormalized_freq Frequency (radians/
second) at which to
denormalize
coefficients

real 1 none n/a
89

Simulator Reference Manual
Example 1 - A single pole filter

Model for above device:

.model Laplace s_xfer laplace="1/(s+1)" denormalized_freq=1

This is a simple first order roll off with a 1 second time constant as shown below

Example 1 Frequency response

Example 2 - Single pole and zero

.model Laplace s_xfer
+ laplace="(1/s)/(1/s + 1/(0.1*s+1))"
+ denormalized_freq=1

The laplace expression has been entered how it might have been written down without
any attempt to simplify it. The above actually simplifies to (0.1*s+1)/(1.1*s+1)

LAP1-OUTP

LAP1
1/(s+1)

V1
 AC 1 0

1K
R1

Frequency / Hertz

10m 20m 40m 100m 200m 400m 1 2 4 10

20m

40m

100m

200m

400m

1

90

Chapter 4 Analog Device Reference
Example 2 Frequency response

Example 3 - Underdamped second order response

.model Laplace s_xfer
+ laplace="1/(s2+1.1*s+1)"
+ denormalized_freq=2k

The above expression is a second order response that is slightly underdamped. The
following graph shows the transient response.

Example 3 Frequency response

Frequency / Hertz

10m 20m 40m 100m 200m 400m 1 2 4 10

100m

200m

500m

1

Time/mSecs 2mSecs/div

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

91

Simulator Reference Manual
Example 4 - 5th order Chebyshev low-pass filter

The S-domain transfer block has a number of built in functions to implement standard
filter response. Here is an example. This is a 5th order chebyshev with -3dB at 100Hz
and 0.5dB passband ripple.

.model Laplace s_xfer
+ laplace="chebyshevLP(5,100,0.5)"
+ denormalized_freq=1

and the response:

Example 3 Frequency response

The Laplace Expression

As seen in the above examples, the transfer function of the device is defined by the
model parameter LAPLACE. This is a text string and must be enclosed in double
quotation marks. This may be any arithmetic expression containing the following
elements:

Operators:
+ - * / ^
^ means raise to power. Only integral powers may be specified.

Constants
Any decimal number following normal rules. SPICE style engineering suffixes are
accepted.

S Variable
This can be raised to a power with '^' or by simply placing a constant directly after it
(with no spaces). E.g. s^2 is the same as s2.

Filter response functions
These are:

Frequency / Hertz

1 2 4 10 20 40 100 200 400 1k1µ

10µ

100µ

1m

10m

100m

1

92

Chapter 4 Analog Device Reference
BesselLP(order, cut-off)Bessel low-pass
BesselHP(order, cut-off)Bessel high-pass
ButterworthLP(order, cut-off)Butterworth low-pass
ButterworthHP(order, cut-off)Butterworth high-pass
ChebyshevLP(order, cut-off, passband_ripple)Chebyshev low-pass
ChebyshevHP(order, cut-off, passband_ripple)Chebyshev high-pass

Where:
order Integer specifying order of filter. There is no maximum limit but

in practice orders larger than about 50 tend to give accuracy
problems.

cut-off -3dB Frequency in Hertz

passband_ripple Chebyshev only. Passband ripple spec. in dB

Other Model Parameters

• DENORMALISED_FREQ is a frequency scaling factor.
• INT_IC specifies the initial conditions for the device. This is an array of

maximum size equal to the order of the denominator. The right-most value is the
zero’th order initial condition.

• NUM_COEFF and DEN_COEFF are largely redundant but included for
compatibility with other XSPICE products. They allow the literal definition of
the numerator and denominator coefficients as an array.

• GAIN and IN_OFFSET are the DC gain and input offset respectively

Limitations

SIMetrix expands the expression you enter to create a quotient of two polynomials. If
the constant terms of both numerator and denominator are both zero, both are divided
by S. That process is repeated until one or both of the polynomials has a non-zero
constant term.

The result of this process must satisfy the following:

• The order the denominator must be greater than or equal to that of the numerator.
• The constant term of the denominator may not be zero.

The XSPICE S_XFER model

The SIMetrix Laplace transfer model is compatible with the original XSPICE version
but the transient analysis portion of it has been completely rewritten. The original
XSPICE version was seriously flawed and would only give accurate results if the
timestep was forced to be very small. Further, convergence would fail if the device was
used inside a feedback loop.

The ability to enter the laplace transform as an arbitrary expression is a SIMetrix
enhancement. The original version required the user to enter the coefficients of the
numerator and denominator explicitly. The filter response functions are also a SIMetrix
enhancement.
93

Simulator Reference Manual
Subcircuit Instance

Netlist Entry

Xxxxx n1 n2 n3 ... subcircuit_name [pinnames: pin1 pin2 pin3 ...]
[[params]: expression1 expression2]

n1, n2 etc. Subcircuit nodes

pin1, pin2 etc. If the pinnames: keyword is included the names following it
will be used to name subcircuit current vectors generated by the
simulator.

subcircuit_name Subcircuit name referred to in subcircuit definition (i.e. with
.SUBCKT control page 210)

expression1 etc. Parameter expressions. See “Using Expressions” on page 28.

See “Subcircuits” on page 39 for more information.

Transmission Line

Netlist Entry

Txxxx p1 n1 p2 n2 Z0=impedance [TD=delay] [F=frequency
[NL=norm_length]] [rel=rel] [abs=abs]

p1 Positive input port 1

n1 Negative input port 2

p2 Positive input port 1

n2 Negative input port 2

impedance characteristic impedance

delay Line delay (Seconds)

frequency Alternative means of specifying delay=norm_length/frequency

norm_length See frequency. Default 0.25 if omitted.

TD takes precedence over NL/F. Either TD or F must be specified.

These remaining parameters control the way the line is simulated rather than its
electrical characteristics. More accurate results (at the expense of simulation time) can
be obtained by using lower values.

rel Relative rate of change of derivative for breakpoint

abs Absolute rate of change of derivative for breakpoint
94

Chapter 4 Analog Device Reference
Example

The above line has an impedance of 50Ω and a delay of 1µS.

Voltage Controlled Current Source

Netlist Entry

Gxxxx nout+ nout- vc+ vc- transconductance

nout+ Positive output node

nout- Negative output node

vc+ Positive control node

vc- Negative control node

transconductance Output current/Input voltage (Siemens or mhos)

SPICE2 polynomial sources are also supported in order to maintain compatibility with
commercially available libraries for IC's. (Most operational amplifier models for
example use several polynomial sources). In general, however the arbitrary source (see
page 46) is more flexible and easier to use.

The netlist format for a polynomial source is:

Gxxxx nout+ nout- POLY(num_inputs) vc1+ vc1- vc2+ vc2- ...
+ polynomial_specification

vc1+ etc. Controlling nodes

num_inputs Number of controlling node pairs for source.

polynomial_specification See “Polynomial Specification” on page 62

Voltage Controlled Switch

Netlist Entry

Sxxxx nout1 nout2 vc+ vc- modelname

nout1 Switch node 1

nout2 Switch node 2

Z0=50 TD=1u

T1
95

Simulator Reference Manual
vc+ Positive control node

vc- Negative control node

modelname Name of model. Must begin with a letter but can contain any
character except whitespace and period '.' .

Voltage Controlled Switch Model Syntax

.model modelname VSWITCH (parameters)
OR

.model modelname SW (parameters)

Voltage Controlled Switch Model Parameters

Voltage Controlled Switch Notes

The voltage controlled switch is a type of voltage controlled resistor. Between VON
and VOFF the resistance varies gradually following a cubic law.

GMIN is a simulation parameter which defaults to 10-12 but which can changed using
the .OPTION control (page 195).

The SIMetrix voltage controlled switch is compatible with PSpice but is
incompatible with the standard SPICE 3 version. The latter has an abrupt switching
action which can give convergence problems with some circuits.

Voltage Controlled Voltage Source

Netlist Entry

Exxxx nout+ nout- vc+ vc- gain

nout+ Positive output node

nout- Negative output node

vc+ Positive control node

vc- Negative control node

Name Description Units Default

RON On resistance W 1

ROFF Off resistance W 1/GMIN

VON Voltage at which switch begins to turn on V 1

VOFF Voltage at which switch begins to turn off V 0
96

Chapter 4 Analog Device Reference
gain Output voltage/Input voltage

SPICE2 polynomial sources are also supported in order to maintain compatibility with
commercially available libraries for ICs. (Most opamp models for example use several
polynomial sources). In general, however the arbitrary source is more flexible and
easier to use.

The netlist format for a polynomial source is:

Exxxx nout+ nout- POLY(num_inputs) vc1+ vc1- vc2+ vc2- ...
polynomial_specification

vc1+ etc. Controlling nodes

num_inputs Number of controlling node pairs for source.

polynomial_specification See “Polynomial Specification” on page 62

Voltage Source

Netlist Entry

Vxxxx n+ n- [[DC] dcvalue] [DCOP] [INFCAP] [AC magnitude
[phase]] [transient_spec]

N+ Positive node

N- Negative node

DCOP If this is specified, the voltage source will only be active during
the DC operating point solution. In other analyses, it will behave
like an open circuit. This is an effective method of creating a
‘hard’ initial condition. See “Alternative Initial Condition
Implementations” on page 183 for an example.

INFCAP If specified, the voltage source will behave as an infinite
capacitor. During the DC operating point solution it will behave
like an open circuit. In the subsequent analysis, it will behave
like a voltage source with a value equal to the solution found
during the operating point. Note that the device is inactive for
DC sweeps - as all capacitors are.

dcvalue Value of source for dc operating point analysis

magnitude AC magnitude for AC sweep analysis.

phase phase for AC sweep analysis

transient_spec Specification for time varying source as described in the
following table.
97

Simulator Reference Manual
Pulse Source

PULSE (v1 v2 [td [tr [tf [pw [per]]]]])

Where:

SIMetrix deviates from standard SPICE in the action taken for a pulse width of zero.
Standard SPICE treats a zero pulse width as if it had been omitted and changes it to the
stop time. In SIMetrix a zero pulse width means just that.

Both the above examples give a pulse lasting 5µS with a period of 10µS, rise and fall
times of 100nS and a delay of 0. The voltage source has a 0V base line and a pulse of
5V while the current source has a 0mA base line and a pulse of 1mA.

Type Description Page

PULSE Pulse source. Also generates, ramps, sawtooths
and triangles

98

PWL Piece wise linear source. Can create any waveform 99

PWLFILE As PWL but get definition from a file 100

SIN Sine wave 101

EXP Exponential signal 102

SFFM Single frequency FM 102

NOISE Real time noise source 103

Name Description Default

v1 Initial value (V,A) Compulsory

v2 Pulsed value (V,A) Compulsory

td Delay time (S) Default if omitted = 0

tr Rise time (S) Default if omitted, negative or zero = Time
stepa

a. Time step is set up by the .TRAN simulator control which defines a transient
analysis. Refer to “.TRAN” on page 213

tf Fall time (S) Default if omitted, negative or zero = Time
step

pw Pulse width (S) Default if omitted or negative = Stop timeb

b. Stop time refers to the end time of the transient analysis.

per Period (S) Default if omitted, negative or zero = Stop
time
98

Chapter 4 Analog Device Reference
Examples

Piece-Wise Linear Source

PWL (t1 v1 [t2 v2 [t3 v3 [...]]])

Each pair of values (ti vi) specifies that the value of the source is vi at time = ti. The
value of the source at intermediate values of time is determined by using linear
interpolation on the input values.

Although the example given below is for a voltage source, the PWL stimulus may be
used for current sources as well.

Example

Gives:-

→ ← TD

→ ← TR

t=0

PW →← ← →

← →PER

TF

V1
pulse (0 5 0 100n 100n 5u 10u)

I1
pulse (0 1mA 0 100n 100n 5u 10u)

V1
pwl (0 -5 10n -5 11n -3 17n -3 18n -7 50n -7)
99

Simulator Reference Manual
PWL File Source

PWLFILE filename

This performs the same function as the normal piece wise linear source except that the
values are read from a file named filename.

The file contains a list of time voltage pairs in text form separated by any whitespace
character (space, tab, new line). It is not necessary to add the '+' continuation character
for new lines but they will be ignored if they are included. Any non-numeric data
contained in the file will also be ignored.

Notes

The PWLFILE source is considerably more efficient at reading large PWL definitions
than the standard PWL source. Consequently it is recommended that all PWL
definitions with more than 200 points are defined in this way.

The data output by Show /file is directly compatible with the PWLFILE source making
it possible to save the output of one simulation and use it as a stimulus for another. It is
recommended, however, that the results are first interpolated to evenly spaced points
using the Interp() function.

The use of engineering suffixes (e.g. k, m, p etc.) is not supported by PWLFILE.

The PWLFILE source is a feature of SIMetrix and does not form part of standard
SPICE.

Note, you can use the simulator controls .FILE and .ENDF to define the contents of the
file. E.g.

Vpwl1 N1 N2 PWLFILE pwlSource
...
.FILE pwlSource
...
...
.ENDF

Time/nSecs 20nSecs/div

0 20 40 60 80 100

V

-7

-6.5

-6

-5.5

-5

-4.5

-4

-3.5

1: :r1_p
100

Chapter 4 Analog Device Reference
This will be read in much more efficiently than the standard PWL and is recommended
for large definitions. See “.FILE and .ENDF” on page 175 .

Sinusoidal Source

SIN[E] (vo va [freq [delay [theta [phase]]]])

Where:

The shape of the waveform is described by:

0 to delay: vo

delay to Stop time vo + va.e-(t-delay)..theta.sin(2.π.(freq.(t - delay) + phase/360))

Example

Gives output of:

Name Description Default

vo Offset (V,A) Compulsory

va Peak (V,A) Compulsory

freq Frequency (Hz) Default if omitted or zero= 1/Stop timea

a. Stop time refers to the end time of the transient analysis.

delay Delay (seconds) Default if omitted = 0

theta Damping factor (1/
seconds)

Default if omitted = 0

phase Phase in degrees Default if omitted = 0

V1
sin (0 1 100meg 10nS)
101

Simulator Reference Manual
Exponential Source

EXP (v1 v2 [td1 [tau1 [td2 [tau2]]]])

Where:

Defined by:
td1 to td2: v1 + (v2 - v1). [1 - e-(t-td1)/tau1]
td2 to stop time: v1 + (v2 - v1). [1 - e-(t-td1)/tau1] + v1 + (v2 - v1). [1 - e-(t-td2)/tau2]

Single Frequency FM

SFFM (vo va [fc [mdi [fs]]])

Where:

Name Description Default

v1 Initial value (V,A) Compulsory

v2 Pulsed value (V,A) Compulsory

td1 Rise delay time Default if omitted or zero: 0

tau1 Rise time constant Default if omitted or zero: Time stepa

a. Time step is set up by the .TRAN simulator directive which defines a transient
analysis. Refer to “.TRAN” on page 213

td2 Fall delay time Default if omitted or zero: td1 + Time step

tau2 Fall time constant Default if omitted or zero: Time step

Time/nSecs 5nSecs/div

0 5 10 15 20 25

V

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1: :r1_p
102

Chapter 4 Analog Device Reference
Defined by: vo + va.sin[2.π.fc.t + mdi.sin(2.π.fs.t)]

Noise Source

noise interval rms_value [start_time [stop_time]]

Source generates a random value at interval with distribution such that spectrum of
signal generated is approximately flat up to frequency equal to 1/(2*interval).
Amplitude of noise is rms_value volts. start_time and stop_time provide a means of
specifying a time window over which the source is enabled. Outside this time window,
the source will be zero. If stop_time is omitted or zero a value of infinity will be
assumed.

Mutual Inductor
Specifies coupling between two inductors.

Netlist Entry

Kxxxx l1 l2 coupling_factor

l1 Component reference of first inductor

l2 Component reference of second inductor

coupling_factor Coupling factor, K

If mutual inductance is M then:

Name Description Default

vo Offset (V,A) Compulsory

va Amplitude (V,A) Compulsory

fc Carrier frequency (Hz) Default if omitted or zero = 1/Stop timea

a. Stop time refers to the end time of the transient analysis.

mdi Modulation index Default if omitted = 0

fs Signal frequency (Hz) Default if omitted or zero = 1/Stop time

L1
1mH

L2
1mH
103

Simulator Reference Manual
K cannot be greater than 1.

Notes

You can only couple ideal inductors using this method. The saturable inductor devices
may not be coupled in this way. See “Inductor (Saturable)” on page 70 for more
information.

To use the mutual inductor directly on a schematic you will need to add the device line
to the netlist. See “Adding Extra Netlist Lines” on page 12 for information about how
to do this.

If you wish to couple more than two inductors, the coupling coefficient (K value) must
be specified for every possible combination of two inductors. An error will result if
this is not done.

For iron cored transformers values of K between 0.99 and 0.999 are typical. For
ferrites lower values should be used. If the windings are concentric (i.e. one on top of
the other) then 0.98 to 0.99 are reasonable. If the windings are side by side on a
sectioned former, K values are lower - perhaps 0.9 to 0.95. The addition of air gaps
tends to lower K values.

Example

A transformer with 25:1 turns ratio and primary inductance of 10mH

** Inductors
Lprimary N1 N2 10m
Lsecondary N3 N4 16u

** Coupling of 0.99 typical for ungapped ferrite
K1 Lprimary Lsecondary 0.99

Philips Compact Models
Introduction
SIMetrix supports a range of device models developed by Philips the most important
of which are the MOS9 and MOS11 MOSFETs, the Mextram BJT and the JUNCAP
diode which is usually used with MOS9 and MOS11. These models are only available
with the Micron versions of SIMetrix. Fully supported modes are:

v L
i
t

M
i
tL

L L
1

1 2
d
d

d
d

= +1

v L
i
t

M
i
tL

L L
2

2 1
d
d

d
d

= +2

K M
L L

=
1 2.
104

Chapter 4 Analog Device Reference
MOS 9 MOSFET, version 9.02 and 9.03
MOS 11 MOSFET
Mextram BJT version 5.03 and 5.04
Juncap (used with MOS 9 and 11)
The following devices are also included but are not fully supported. Contact technical
support if you wish to use one of these devices.

Level 500 Diode
Level 30 and 30.02 MOSFET
Level 40 SOI MOSFET
Modella lateral BJT

These device have been implemented in SIMetrix by developing an interface between
the SIMetrix simulator and the original Philips source code which was developed for
their own PSTAR simulator. By using this method, we only needed to make small
changes to the original Philips code and most of these have been to implement real
time noise analysis which is not supported by the Philips interface.

The MOS9 and JUNCAP devices have been tested by comparing the simulations of a
benchmark design between SIMetrix and PSTAR. Simulations of bias point, DC
sweep, AC frequency sweep, transient and noise were carried out. The comparison
showed near identical results, in most cases within 0.01%.

Other devices were tested using supplied benchmark results
105

Simulator Reference Manual
Using Philips Devices

Notes

The geometric binned version of MOS 11.01 id not yet integrated with the library
binning system. So, to use the binning features of this model, you will need to
manually generate separate model names for each bin.

Some other simulator products add junction capacitance parameters to the original
Philips model. Star-Hspice level 50 is the most common of these. These parameters
need to be modelled with an external device using either a standard SPICE diode or a
JUNCAP device.

The Philips model uses JUNCAP and the usual procedure is to make up the complete
model using a subcircuit of MOS9/11 and JUNCAP devices.

Description Philips
name

SPICE
model
type

SPICE
Level

Device
letter

Number
of
terminals

MOS 9 Electrical,
version 9.02

MNE_902
MPE_902

nmos,
pmos

102 M 4

MOS 9 Electrical,
version 9.03

MNE_903
MPE_903

nmos,
pmos

103 M 4

MOS 9 Geometric,
version 9.02

MN_902
MP_902

nmos,
pmos

202 M 4

MOS 9 Geometric,
version 9.03

MN_903
MP_903

nmos,
pmos

203 M 4

MOS 11 Electrical MNE_1100
MPE_1100

nmos,
pmos

500 M 4

MOS 11 Geometric MN_1100
MP_1100

nmos,
pmos

600 M 4

MOS 11.01 Electrical MNE_1101
MPE_1101

nmos,
pmos

501 M 4

MOS 11.01 Geometric MN_11010
MP_11010

nmos,
pmos

601 M 4

MOS 11.01 Geometric
binned. Not fully
supported - see notes

MN_11011
MP_11011

nmos,
pmos

611 M 4

Juncap JC_1 d 101 D 2

Mextram 4 term 5.03 TNS_503,
TPS_503

npn, pnp 103 Q 4

Mextram 4 term 5.04 TNS_504,
TPS_504

npn, pnp 104 Q 4

Mextram 4 term 5.04,
thermal

TNST_504
TPST_504

npn, pnp 1104 Q 5
106

Chapter 4 Analog Device Reference
Currently, 3 terminal Mextram devices are not available, due to the confusion
regarding the optional substrate node in SPICE BJTs.

MOS9/11 and Real Time Noise

Currently the gate thermal noise of the MOS9/11 device is not implemented for real-
time noise analysis. In practice the effect of this noise component is usually small and
only occurs at high frequencies. To investigate the contribution of this component to
overall circuit behaviour, it can be disabled in AC noise analysis by setting the option
NoMos9GateNoise.

Examples
The following is an example showing an nmos MOS 9 device

.MODEL M9 nmos LEVEL = 202,
+ LER = 0.203E-06, WER = 10.056E-06,
+ LVAR = 0.000E-00, LAP = 23.500E-09,
+ WVAR = 0.000E-00, WOT = -28.000E-09,
+ TR = 21.000E-00, VTOR = 0.500E-00,
+ STVTO = 0.000E-00, SLVTO = 35.400E-09,
+ SWVTO = 5.000E-09, SL2VTO = -8.260E-15,
+ KOR = 0.431E-00, SLKO = -3.230E-09,
+ SWKO = 3.610E-09, KR = 0.234E-00,
+ SLK = -93.200E-09, SWK = -68.800E-09,
+ PHIBR = 0.700E-00, VSBXR = -6.232E+00,
+ SLVSBX = -2.280E-06, SWVSBX = 0.000E-00,
+ BETSQ = 0.255E-03, ETABET = 0.000E-00,
+ THE1R = 0.739E-00, STTHE1R = 0.000E-00,
+ SLTHE1R = 0.103E-06, STLTHE1 = 0.000E-00,
+ SWTHE1 = -63.200E-09, THE2R = -0.164E-00,
+ STTHE2R = 0.000E-00, SLTHE2R = -0.064E-06,
+ STLTHE2 = 0.000E-00, SWTHE2 = 3.690E-09,
+ THE3R = 0.416E-00, STTHE3R = 0.000E-00,
+ SLTHE3R = 85.200E-09, STLTHE3 = 0.000E-00,
+ SWTHE3 = 12.400E-09, GAM1R = 90.460E-03,
+ SLGAM1 = 20.600E-09, SWGAM1 = 3.630E-09,
+ ETADSR = 0.600E-00, ALPR = 10.000E-03,
+ ETAALP = 0.000E-00, SLALP = 0.000E-00,
+ SWALP = 0.000E-00, VPR = 0.388E-00,
+ GAMOOR = 33.869E-03, SLGAMOO = 1.370E-15,
+ ETAGAMR = 1.000E-00, MOR = 0.337E-00,
+ STMO = 0.000E-00, SLMO = 20.500E-06,
+ ETAMR = 1.000E-00, ZET1R = 1.419E-00,
+ ETAZET = 0.500E-00, SLZET1 = -0.451E-03,
+ VSBTR = -0.109E-00, SLVSBT = -0.481E-06,
+ A1R = 28.876E-00, STA1 = 0.000E-00,
+ SLA1 = -1.940E-06, SWA1 = 12.400E-06,
+ A2R = 21.540E-00, SLA2 = -0.124E-06,
+ SWA2 = 0.523E-06, A3R = 0.441E-00,
+ SLA3 = -0.112E-06, SWA3 = -16.500E-09,
+ TOX = 5.800E-09, COL = 0.275E-09,
+ NTR = 21.000E-21, NFR = 130.450E-12,
+ W = 10.0e-6 , L = 0.13e-6
107

Simulator Reference Manual
Documentation
Original Philips documentation on these models can be found in a number of PDF files
on the installation CDROM.
108

Chapter 5 Digital/Mixed Signal Device Reference
Chapter 5 Digital/Mixed Signal Device Reference

Digital Device Overview
Common Parameters
A number of model parameters are common to most of the digital models. These are
described below.

Family Parameters

These identify the logic family to which the input and outputs belong. Logic families
are explained in detail on page 247. Most models have three family parameters:

Output Parameters

Family name Description

in_family Specifies family for inputs. If omitted, the input family is
specified by the FAMILY parameter

out_family Specifies family for outputs. If omitted, the output family is
specified by the FAMILY parameter

family Default value for IN_FAMILY and OUT_FAMILY

Parameter
name

Description

out_res This is used to calculate loading delay. It has dimensions of
Ohms so is referred to as a resistance. The additional
loading delay is calculated by multiplying OUT_RES by the
total capacitative load detected on the node to which the
output connects.

min_sink Used to calculate static loading effects. This is the current
that the device is able to sink. Current flowing out of the pin
is positive so this parameter is usually negative. If the total
sink load current is arithmetically smaller (i.e. more
negative) than this parameter then the output will be forced
to an UNKNOWN state. This is used to implement fan out
limitations in bipolar logic.

max_source Used to calculate static loading effects. This is the current
that the device is able to source. Current flowing out of the
pin is positive. If the total source load current is larger than
this parameter then the output will be forced to an
UNKNOWN state. This is used to implement fan out
limitations in bipolar logic.
109

Simulator Reference Manual
Input Parameters

Delays
Most digital devices have at least one model parameter that specifies a time delay.
Unless otherwise noted, all delays are inertial. This means that glitches shorter than the
delay time will be swallowed and not passed on. For example, the following
waveforms show the input and output of a gate that has a propagation delay of 10nS.
The first pulse is only 5nS so does not appear at the output. The second pulse is 20nS
so therefore is present at the output delayed by 10nS.

The Buffer device has an optional stored delay parameter that makes possible the
specification of pure delays.

And Gate

Netlist entry:

Axxxx [in_0 in_1 .. in_n] out model_name

Parameter
name

Description

sink_current Current that the input sinks. Positive current flows into the
device so this parameter is usually negative. The total of all
the input sink currents are added together when a node is in
the logic '0' state. If the total sink load current is
arithmetically smaller (i.e. more negative) than the
MIN_SINK parameter of the device driving the node, then it
will be forced to an UNKNOWN state. This is used to
implement fan out limitations in bipolar logic.

source_current Current that the input sources. Positive current flows into the
device. The total of all the input source currents are added
together when a node is in the logic '1' state. If the total
source load current is larger than the MAX_SOURCE
parameter of the device driving the node, then it will be
forced to an UNKNOWN state. This is used to implement
fan out limitations in bipolar logic.

Time/nSecs 20nSecs/div

0 20 40 60 80

Output

Input
110

Chapter 5 Digital/Mixed Signal Device Reference
Connection details

Model format

.MODEL model_name d_and parameters

Model parameters

Device operation

• If the model parameter OPEN_C is false, The output will be at logic '0' if either
input is at logic '0'. Otherwise, if any input is UNKNOWN, the output will be
UNKNOWN. Otherwise the output will be at logic '1'.

• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If either input is at logic '0' the output strength will be
STRONG. Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be HI-IMPEDANCE
allowing a pull-up resistor to force it to the logic '1' state.

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - ∞

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
111

Simulator Reference Manual
D-type Latch

Netlist entry

Axxxx data enable set reset out nout model_name

Connection details

Model format

.MODEL model_name d_dlatch parameters

Model parameters

Name Description Flow Type

data Input data in d

enable Enable in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

Name Description Type Default Limits

data_delay Delay from data real 1nS 1e-12 - ∞

enable_delay Delay from enable real 1nS 1e-12 - ∞

set_delay Delay from set real 1nS 1e-12 - ∞

reset_delay Delay from reset real 1nS 1e-12 - ∞

ic Output initial state
0: logic '0'
1: logic '1
2: UNKNOWN

integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

EN
QN

QD

RST

SET
112

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

The device is a level triggered latch with a single data input, complimentary outputs
and active high asynchronous set and reset. The operation of the device is illustrated in
the following diagram:

The asynchronous inputs (set and reset) override the action of the enable and data
lines.

data_load Data load value (F) real 1pF none

enable_load Enable load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Type Default Limits

Time/µSecs 1µSecs/div

0 1 2 3 4 5

OUTPUT

ENABLE

DATA

data_delay+fall_delay
enable_delay+fall_delay

data_delay+rise_delay
113

Simulator Reference Manual
D-type Flip Flop

Netlist entry

Axxxx data clk set reset out nout model_name

Connection details

Model format

.MODEL model_name d_dff parameters

Model parameters

Name Description Flow Type

data Input data in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 - ∞

set_delay Delay from set real 1nS 1e-12 - ∞

reset_delay Delay from reset real 1nS 1e-12 - ∞

ic Output initial state
0: logic '0'
1: logic '1
2: UNKNOWN

integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

data_load Data load value (F) real 1pF none

QN

QD

RST

SET
114

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

The device is an edge triggered D-type flip flop with active high asynchronous set and
reset. The operation of the device is illustrated by the following diagram

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Type Default Limits

Time/µSecs 1µSecs/div

0 1 2 3 4 5

RESET

Q

D

CLOCK

clk_delay+rise_delay

clk_delay+fall_delay

reset_delay+fall_delay
115

Simulator Reference Manual
Buffer

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name d_buffer parameters

Model parameters

Name Description Flow Type

in Input in d

out Output out d

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

stored_delay Stored delay (overrides
rise_delay and fall_delay)

real 0 0 - ∞

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

open_e Open emitter output boolean FALSE none
116

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

This device is a simple buffer with a single input and output. It can optionally be
specified to have an open collector (open_c parameter) or open emitter (open_e
parameter) output. Further, if the stored_delay parameter is specified, the device will
act as a pure delay. This means that it will pass pulses that are shorter than the delay
time whereas normally (delay specified by rise_delay and fall_delay) such pulse would
be swallowed.

The following table describes the device operation in detail

Note the difference between open emitter and open collector operation. These modes
have been designed to be as close to as possible to real devices, in particular their
behaviour into an open circuit. An open emitter output, when switching from high to
low is likely to follow the voltage on the device's base due to the base-emitter
capacitance so the output state follows the input state. An open collector (or open
drain) output on the other hand will remain in the low state when its input switches.

Frequency Divider

Netlist entry

Axxxx freq_in freq_out model_name

OPEN_C
parameter

OPEN_E
parameter

Input Output
state

Output strength

FALSE FALSE 0 0 STRONG

FALSE FALSE 1 1 STRONG

FALSE FALSE UNKNOWN UNKNOWN STRONG

FALSE TRUE 0 0 HI-IMPEDANCE

FALSE TRUE 1 1 STRONG

FALSE TRUE UNKNOWN UNKNOWN UNDETERMINED

TRUE FALSE 0 0 STRONG

TRUE FALSE 1 0 HI-IMPEDANCE

TRUE FALSE UNKNOWN 0 UNDETERMINED

TRUE TRUE 0 1 HI-IMPEDANCE

TRUE TRUE 1 0 HI-IMPEDANCE

TRUE TRUE UNKNOWN UNKNOWN UNDETERMINED

Freq. Div
117

Simulator Reference Manual
Connection details

Model format

.MODEL model_name d_fdiv parameters

Model parameters

Device Operation

This device is a positive edge triggered frequency divider. Three model parameters
allow arbitrary definition of the divide ratio, output duty cycle, output phase and initial
delay. Operation of the frequency divider is illustrated by the following diagram which
shows the output of a frequency divider with a DIV_FACTOR of 10 and two
alternative values of HIGH_CYCLES.

Name Description Flow Type

freq_in Frequency input in d

freq_out Frequency output out d

Name Description Type Default Limits

div_factor Divide factor integer 2 1 - ∞

high_cycles Number of high clock cycles integer 1 1 - ∞

i_count Output initial count value integer 0 0 - ∞

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

freq_in_load Freq_in load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
118

Chapter 5 Digital/Mixed Signal Device Reference
The above was carried out with I_COUNT=0. I_COUNT is the initial value of the
internal counter. The output first goes high when it attains a value of 1 or
1+DIVIDE_RATIO so when I_COUNT is zero (the default) the output first goes high
after the first rising edge. If I_COUNT is set to 5 the output first goes high after the 6th
rising edge and if I_COUNT is -20, the 21st rising edge.

Digital Initial Condition

Netlist entry

Axxxx out model_name

Connection details

Model format

.MODEL model_name d_init parameters

Model parameters

Name Description Flow Type

out Output out d

Name Description Type Default Limits

ic Initial state integer 0 none

is Initial strength
1 = STRONG
0 = RESISTIVE

integer 1 none

out_family Output logic family string UNIV none

Time/µSecs 10µSecs/div

0 10 20 30 40 50

high_cycles=4

high_cycles=1

Clock
119

Simulator Reference Manual
Device Operation

This device has the defined initial state (IC parameter) and initial strength (IS
parameter) during the DC operating point solution, then reverts to HI-IMPEDANCE
for the remainder of the analysis.

Digital Pulse

Netlist entry

Axxxx out model_name : parameters

Connection details

Instance parameters

Model format

.MODEL model_name d_pulse parameters

Model parameters

Name Description Flow Type

out Output out d

Name Description Type

period Pulse period real

delay Delay real

duty Duty cycle real

width Pulse width real

open_out Open emitter output boolean

Name Description Type Default Limits

duty Duty cycle real 0.5 1e-06 -
0.999999

delay Initial delay real 0 0 - ∞

period Period
If zero, a single pulse will be
output

real 1µS 1e-12 - ∞

width Pulse width (overrides duty if
specified)

real period *
duty

0 - ∞
120

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

This device supplies a repetitive or single pulse of defined period, delay and width.
Optionally, the device may be specified to have an open emitter output allowing
several pulse sources to be wire OR'ed to create complex pulses. All 5 main .MODEL
parameters may also be specified on the device line as instance parameters in which
case they override any values specified in the .MODEL control.

If OPEN_OUT is specified and true, a pull down resistor must be connected to the
output.

Digital Signal Source

Netlist entry

Axxxx [out_0 out_1 .. out_n] model_name

Connection details

Model format

.MODEL model_name d_source parameters

open_out Open emitter output boolean FALSE none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

Name Description Flow Type

out Output out d, vector

Name Description Type Default Limits
121

Simulator Reference Manual
Model parameters

Device Operation

The digital signal source provides a multi bit arbitrary digital signal defined in a file.

File Format

The file is in ASCII format and is in the form of a table each row being on a new line.
The first column defines the time values while the entries in the remaining columns
define the output value for each of the outputs. So the total number of columns must be
the number of outputs plus one. The output values must appear in the same order as the
outputs in the netlist entry. So, the values for out_0 will be in column 2, out_1 in
column 3 etc.

The file may include blank lines and comment lines beginning with a '*'.

The output values must specify the state as well as the strength using the following
codes:

Name Description Type Default Limits

input_file Digital input vector filename string none none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

Code State-Strength

0S LOW-STRONG

1S HIGH-STRONG

US UNKNOWN-STRONG

0R LOW-RESISTIVE

1R HIGH-RESISTIVE

UR UNKNOWN-RESISTIVE

0Z LOW-HI-Z

1Z HIGH-HI-Z
122

Chapter 5 Digital/Mixed Signal Device Reference
Note, these codes are not case sensitive.

Example

The following file:

* This is an example source file
0.0 0s 0s 0r 1s
1u 0s 0s 0r 0z
2u 0s 0s 1r 0z
5u 1s 0s 1r 0z
22e-6 1s 1s 1r 0z
50u 0s 1s 1r 0z
60u 0s 1s 1r 0z
70u 0s 1s 1r 0z
80u 0s 1s 1r 0z
90u Us Us Ur 0s

and this circuit:

Produces the following waveforms

UZ UNKNOWN-HI-Z

0U LOW-UNDETERMINED

1U HIGH-UNDETERMINED

UU UNKNOWN-UNDETERMINED

Code State-Strength

1n
C1

OUT_2

OUT_0U2
SOURCEOUT_1

OUT_3 4.7k

R1
V1
2.5
123

Simulator Reference Manual
An error will result if the file fails in any way to comply with the format. There must
be the exact number of entries in each row and the time values must be monotonic.
Totally blank lines or lines containing only white space are permitted but any other
non-comment line not complying with the format will fail.

Inverter

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name d_inverter parameters

Name Description Flow Type

in Input in d

out Output out d

Time/µSecs 20µSecs/div

0 20 40 60 80

OUT_3

OUT_2

OUT_1

OUT_0
124

Chapter 5 Digital/Mixed Signal Device Reference
Model parameters

Device Operation

If the OPEN_C parameter is not specified or is FALSE, this device simply inverts the
state of its input. I.e. if the input is logic '0' the output will be logic '1' and vice-versa. If
the input is UNKNOWN the output will also be UNKNOWN.

If OPEN_C is TRUE, the output state is always at logic '0' and the input determines its
strength. If the input is at logic '1' the output strength is STRONG and if it is at logic '0'
the output strength is HI-IMPEDANCE. The output strength will be
UNDETERMINED if the input is UNKNOWN.

JK Flip Flop

Netlist entry

Axxxx j k clk set reset out nout model_name

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none

family Logic family string HC none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
125

Simulator Reference Manual
Connection details

Model format

.MODEL model_name d_jkff parameters

Model parameters

Name Description Flow Type

j J input in d

k K input in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 - ∞

set_delay Delay from set real 1nS 1e-12 - ∞

reset_delay Delay from reset real 1nS 1e-12 - ∞

ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

jk_load J,k load values (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞
126

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

The following circuit and graph illustrate the operation of this device:

The following table describes the operation of the device when both inputs are at
known states: The output can only change on a positive edge of the clock.

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Type Default Limits

U1-CLK

U1-J

U1-QN

U1
JK_FlipFlop

QN

QJ

RST

SET

K

U2

U3
Counter_4

D3

D2

D1

D0

U1-Q

U1-K

Time/µSecs 2µSecs/div

0 2 4 6 8 10 12 14 16 18 20

U1-QN

U1-Q

U1-K

U1-J

U1-CLK

clk_delay+fall_delay

clk_delay+rise_delay
127

Simulator Reference Manual
When either input is UNKNOWN, the situation is more complicated. There are some
circumstances when a known state can be clocked to the output even if one of the
inputs is unknown. The following table describes the operation for all possible input
states. X means UNKNOWN.

J input K input Output

0 0 No change

0 1 0

1 0 1

1 1 toggle

J input K input old output new output

0 0 0 0

0 0 1 1

0 0 X X

0 1 0 0

0 1 1 0

0 1 X 0

0 X 0 0

0 X 1 X

0 X X X

1 0 0 1

1 0 1 1

1 0 X 1

1 1 0 1

1 1 1 0

1 1 X X

1 X 0 1

1 X 1 X

1 X X X

X 0 0 X

X 0 1 1

X 0 X X
128

Chapter 5 Digital/Mixed Signal Device Reference
Arbitrary Logic Block

Netlist entry

Axxxx [in_0 in_1 .. in_n] [out_0 out_1 .. out_n]
+ model_name : parameters

Connection details

Instance Parameters

Model format

.MODEL model_name d_logic_block parameters

X 1 0 X

X 1 1` 0

X 1 X X

X X 0 X

X X 1 X

X X X X

Name Description Flow Type

in Input in d, vector

out Output out d, vector

Name Description Type

trace_file Trace file string

user User device params real
vector

J input K input old output new output
129

Simulator Reference Manual
Model parameters

Device Operation

See “Arbitrary Logic Block - User Defined Models” on page 252.

Name Description Type Default Limits Vector
bounds

file Definition file name string none none n/a

def Definition string none none n/a

out_delay Default output delay real 1n 1p - ∞ n/a

reg_delay Default internal
register delay

real 1n 0 - ∞ n/a

setup_time Default level
triggered setup time

real 0 0 - ∞ n/a

hold_time Default edge
triggered hold time

real 0 0 - ∞ n/a

min_clock Default minimum
clock width

real 0 0 - ∞ n/a

trace_file Trace log file string none n/a

user User defined
parameters

real
vector

none none none

user_scale Scale of user values real 1 0 - ∞ n/a

input_load Input load value (F) real 1p none n/a

family Logic family string UNIV none n/a

in_family Input logic family string UNIV none n/a

out_family Output logic family string UNIV none n/a

out_res Digital output
resistance

real 100 0 - ∞ n/a

out_res_pos Digital output res.
pos. slope

real out_res 0 - ∞ n/a

out_res_neg Digital output res.
neg. slope

out_res 0 - ∞ n/a

sink_current Input sink current real 0 none n/a

source_current Input source current real 0 none n/a
130

Chapter 5 Digital/Mixed Signal Device Reference
Nand Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_nand parameters

Model parameters

Device operation

• If the model parameter OPEN_C is false, The output will be at logic '1' if either
input is at logic '0'. Otherwise, if any input is UNKNOWN, the output will be
UNKNOWN. Otherwise the output will be at logic '0'.

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - ∞

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope out_res 0 - ∞

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
131

Simulator Reference Manual
• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If either input is at logic '0' the output strength will be
HI-IMPEDANCE allowing a pull-up resistor to force it to the logic '1' state.
Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

Nor Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_nor parameters

Model parameters

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - ∞

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope real out_res 0 - ∞

open_c Open collector output boolean FALSE none
132

Chapter 5 Digital/Mixed Signal Device Reference
Device operation

• If the model parameter OPEN_C is false, The output will be at logic '0' if either
input is at logic '1'. Otherwise, if any input is UNKNOWN, the output will be
UNKNOWN. Otherwise the output will be at logic '1'.

• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If either input is at logic '1' the output strength will be
STRONG. Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be HI-IMPEDANCE
allowing a pull-up resistor to force it to the logic '1' state.

Open-Collector Buffer

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name d_open_c parameters

Model parameters

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Flow Type

in Input in d

out Output out d

Name Description Type Default Limits

open_delay Open delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none

Name Description Type Default Limits
133

Simulator Reference Manual
Device Operation

This device is included for compatibility with other XSPICE products. It is
recommended that you use the digital buffer device (see page 116) for new designs as
this supports the additional common parameters such as static input loads and families.

The logic description for the open-collector buffer is described by the following table

Open-Emitter Buffer

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name d_open_e parameters

Model parameters

Device Operation

This device is included for compatibility with other XSPICE products. It is
recommended that you use the digital buffer device (see page 116) for new designs as
this supports the additional common parameters such as static input loads and families.

Input Output state Output strength

0 0 STRONG

1 1 HI-IMPEDANCE

UNKNOWN UNKNOWN UNDETERMINED

Name Description Flow Type

in Input in d

out Output out d

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

open_delay Open delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none
134

Chapter 5 Digital/Mixed Signal Device Reference
The logic description for the open-collector buffer is described by the following table

Or Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_or parameters

Model parameters

Input Output state Output strength

0 0 HI-IMPEDANCE

1 1 STRONG

UNKNOWN UNKNOWN UNDETERMINED

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - ∞

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope real out_res 0 - ∞

open_c Open collector output boolean FALSE none
135

Simulator Reference Manual
Device operation

• If the model parameter OPEN_C is false, The output will be at logic '1' if either
input is at logic '1'. Otherwise, if any input is UNKNOWN, the output will be
UNKNOWN. Otherwise the output will be at logic '0'.

• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If either input is at logic '1' the output strength will be
HI-IMPEDANCE allowing a pull-up resistor to force it to the logic '1' state.
Otherwise if any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

Pulldown Resistor

Netlist entry

Axxxx out model_name

Connection details

Model format

.MODEL model_name d_pulldown parameters

Model parameters

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Flow Type

out Output out d

Name Description Type Default Limits

load Load value (F) real 0 none

strong Strong output boolean FALSE none

out_family Output logic family string UNIV none

Name Description Type Default Limits
136

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

This is a single terminal device that can provide either a RESISTIVE or STRONG
logic '0'. When resistive it can be used for wire-OR connected open emitter outputs. If
STRONG is specified (by the STRONG parameter) its main application is as a digital
ground connection.

Pullup Resistor

Netlist entry

Axxxx out model_name

Connection details

Model format

.MODEL model_name d_pullup parameters

Model parameters

Device Operation

This is a single terminal device that can provide either a RESISTIVE or STRONG
logic '1'. When resistive it can be used for wire-AND connected open collector outputs.
If STRONG is specified (by the STRONG parameter) its main application is as a
digital VCC connection.

Random Access Memory

Netlist entry

Axxxx [data_in_0 data_in_1 .. data_in_n] [data_out_0 data_out_1 ..
+ data_out_n] [address_0 address_1 .. address_n] write_en
+ [select_0 select_1 .. select_n] model_name

Name Description Flow Type

out Output out d

Name Description Type Default Limits

load Load value (F) real 0 none

strong Strong output boolean FALSE none

out_family Output logic family string UNIV none
137

Simulator Reference Manual
Connection details

Model format

.MODEL model_name d_ram parameters

Model parameters

Device Operation

This device is provided for compatibility with other XSPICE products and is not
recommended for new designs. In some circumstances, this device can consume large
quantities of system (i.e. your PC's) RAM as it uses an inefficient method of storing
state history. RAM's can also be implemented using the arbitrary logic block (see
page 252) which is much more efficient. An example of a simple 256X8 RAM can be
found amongst the supplied example circuits (Examples\ALB_Examples\RAM.sxsch
and RAM.ldf).

Set-Reset Flip-Flop

Netlist entry

Axxxx s r clk set reset out nout model_name

Name Description Flow Type Vector
bounds

data_in Data input line(s) in d, vector 1 - ∞

data_out Data output line(s) out d, vector 1 - ∞

address Address input line(s) in d, vector 1 - ∞

write_en Write enable in d n/a

select Chip select line(s) in d, vector 1 - 16

Name Description Type Default Limits

select_value Decimal active value for
select line comparison

integer 1 0 - 32767

ic Initial bit state @ DC integer 2 0 - 2

read_delay Read delay from address/
select/write_en active

real 1.00E-
07

1e-12 - ∞

data_load Data_in load value (F) real 1pF none

address_load Address line load value (F) real 1pF none

select_load Select load value (F) real 1pF none

enable_load Enable line load value (F) real 1pF none
138

Chapter 5 Digital/Mixed Signal Device Reference
Connection details

Model format

.MODEL model_name d_srff parameters

Model parameters

Name Description Flow Type

s S input in d

r R input in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 - ∞

set_delay Delay from set real 1nS 1e-12 - ∞

reset_delay Delay from reset real 1nS 1e-12 - ∞

ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

sr_load S,r load values (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope real out_res 0 - ∞

open_c Open collector output boolean FALSE none
139

Simulator Reference Manual
Device Operation

The SR flip flop is similar to a JK flip flop except that the output is UNKNOWN when
both S and R inputs are high. In a JK the output toggles in the same circumstances.

The following table describes the operation of the device when both inputs are at
known states: The output can only change on a positive edge on the clock.

When either input is UNKNOWN, the situation is more complicated. There are some
circumstances when a known state can be clocked to the output even if one of the
inputs is unknown. The following table describes the operation for possible input
states. X means UNKNOWN.

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

S input R input Output

0 0 No change

0 1 0

1 0 1

1 1 UNKNOWN

S input R input old output new output

0 0 0 0

0 0 1 1

0 0 X X

0 1 0 0

0 1 1 0

0 1 X 0

0 X 0 0

0 X 1 X

0 X X X

1 0 0 1

Name Description Type Default Limits
140

Chapter 5 Digital/Mixed Signal Device Reference
SR Latch

Netlist entry

Axxxx s r enable set reset out nout model_name

Connection details

1 0 1 1

1 0 X 1

1 1 0 X

1 1 1 X

1 1 X X

1 X 0 X

1 X 1 X

1 X X X

X 0 0 X

X 0 1 1

X 0 X X

X 1 0 X

X 1 1` X

X 1 X X

X X 0 X

X X 1 X

X X X X

Name Description Flow Type

s S input in d

r R input in d

enable Enable in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d

S input R input old output new output
141

Simulator Reference Manual
Model format

.MODEL model_name d_srlatch parameters

Model parameters

Device Operation

This device is identical to the SR flip flop except that it is level not edge triggered.
That is the output may change whenever the enable input is high.

Name Description Type Default Limits

sr_delay Delay from s or r input
change

real 1nS 1e-12 -
∞∞

enable_delay Delay from clk real 1nS 1e-12 - ∞

set_delay Delay from set real 1nS 1e-12 - ∞

reset_delay Delay from reset real 1nS 1e-12 - ∞

ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

sr_load S & r load values (F) real 1pF none

enable_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope real out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
142

Chapter 5 Digital/Mixed Signal Device Reference
State Machine

Netlist entry

Axxxx [in_0 in_1 .. in_n] clk reset [out_0 out_1 .. out_n] model_name

Connection details

Model format

.MODEL model_name d_state parameters

Model parameters

Name Description Flow Type Vector
bounds

in Input in d, vector none

clk Clock in d n/a

reset Reset in d n/a

out Output out d, vector 1 - no
upper
bound

Name Description Type Default Limits

clk_delay Delay from CLK real 1nS none

reset_delay Delay from reset real 1nS none

state_file State transition specification
file name

string none none

reset_state Default state on RESET & at
DC

integer 0 none

input_load Input loading capacitance (F) real 1pF none

clk_load Clock loading capacitance
(F)

real 1pF none

reset_load Reset loading capacitance
(F)

real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none
143

Simulator Reference Manual
Notes

Currently this model is unsupported as it has not undergone testing or analysis. It is
part of the original XSPICE system and should be compatible with other
implementations but this cannot be guaranteed.

The following is an example of a state transition specification file

* This is a simple example of a state machine state file
* It is a 2 bit up down counter with synchronous reset

*Present Outputs Inputs State destination
*State for state (reset, up/down)

0 0S 0S 0 0 -> 3
 0 1 -> 1
 1 0 -> 0
 1 1 -> 0

1 0S 1S 0 0 -> 0
 0 1 -> 2
 1 0 -> 0
 1 1 -> 0

2 1S 0S 0 0 -> 1
 0 1 -> 3
 1 0 -> 0
 1 1 -> 0

3 1S 1S 0 0 -> 2
 0 1 -> 0
 1 0 -> 0
 1 1 -> 0

See Examples\Digital_Devices\state_updown.sxsch

Toggle Flip Flop

Netlist entry

Axxxx t clk set reset out nout model_name

Connection details

Name Description Flow Type

t Toggle input in d

clk Clock in d

set Asynchronous set in d

reset Asynchronous reset in d

out Data output out d

nout Inverted data output out d
144

Chapter 5 Digital/Mixed Signal Device Reference
Model format

.MODEL model_name d_tff parameters

Model parameters

Device Operation

The operation of the toggle flip flop is illustrated by the following diagrams. When the
T input is high, the output toggles on each rising edge of the clock. If the T input is
UNKNOWN the output will be UNKNOWN.

Name Description Type Default Limits

clk_delay Delay from clk real 1nS 1e-12 - ∞

set_delay Delay from set real 1nS 1e-12 - ∞

reset_delay Delay from reset real 1nS 1e-12 - ∞

ic Output initial state integer 0 0 - 2

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

t_load Toggle load value (F) real 1pF none

clk_load Clk load value (F) real 1pF none

set_load Set load value (F) real 1pF none

reset_load Reset load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope real out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
145

Simulator Reference Manual
Tri-State Buffer

Netlist entry

Axxxx in enable out model_name

U1-CK

U1-QP

Toggle
U1

T

RST

SET
U2

U3 U1-T

Time/µSecs 2µSecs/div

0 2 4 6 8 10 12 14

U1-T

U1-QP

U1-CK

clk_delay+fall_delay
146

Chapter 5 Digital/Mixed Signal Device Reference
Connection details

Model format

.MODEL model_name d_tristate parameters

Model parameters

Device Operation

This is a three terminal buffer device. The output state is equal to the input state and the
output strength is determined by the enable input as follows:

Name Description Flow Type

in Input in d

enable Enable in d

out Output out d

Name Description Type Default Limits

delay Delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none

enable_load Enable load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope real out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Enable Output Strength

0 HI-IMPEDANCE

1 STRONG

UNKNOWN UNDETERMINED
147

Simulator Reference Manual
Exclusive NOR Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_xnor parameters

Model parameters

Device Operation

• If the OPEN_C parameter is FALSE, the output is at logic '1' if an even number
of inputs are at logic '1'. If any input is UNKNOWN the output will be
UNKNOWN, otherwise the output will be at logic '0'.

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - ∞

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

input_load Input load value (pF) real 1 0 - ∞

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope real out_res 0 - ∞

open_c Open collector output boolean FALSE none

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
148

Chapter 5 Digital/Mixed Signal Device Reference
• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If n even number of inputs are at logic '1' the output
strength will be HI-IMPEDANCE allowing a pull-up resistor to force it to the
logic '1' state. If any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

Exclusive OR Gate

Netlist entry

Axxxx [in_0 in_1 .. in_n] out model_name

Connection details

Model format

.MODEL model_name d_xor parameters

Model parameters

Name Description Flow Type Vector
bounds

in Input in d, vector 2 - ∞

out Output out d n/a

Name Description Type Default Limits

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

input_load Input load value (F) real 1pF none

family Logic family string UNIV none

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos. slope real out_res 0 - ∞

out_res_neg Digital output res. neg. slope real out_res 0 - ∞

open_c Open collector output boolean FALSE none
149

Simulator Reference Manual
Device Operation

• If the OPEN_C parameter is FALSE, the output is at logic '1' if an odd number of
inputs are at logic '1'. If any input is UNKNOWN the output will be
UNKNOWN, otherwise the output will be at logic '0'.

• If the model parameter OPEN_C is true the device will be open collector. In this
case the output logic state is always '0'. The state of the inputs instead determines
the strength of the output. If an odd number of inputs are at logic '1' the output
strength will be HI-IMPEDANCE allowing a pull-up resistor to force it to the
logic '1' state. If any input is UNKNOWN the output strength will be
UNDETERMINED. Otherwise the output strength will be STRONG.

Analog-Digital Converter

Netlist entry

Axxxx analog_in clock_in [data_out_0 data_out_1 .. data_out_n]
+ data_valid model_name

Connection details

Model format

.MODEL model_name ad_converter parameters

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

Name Description Flow Type Allowed
types

Vector
bounds

analog_in Analog input in v v, vd, i, id n/a

clock_in Clock input in d d n/a

data_out Data output out d, vector d 1 - 32

data_valid Data valid output out d d n/a

Name Description Type Default Limits
150

Chapter 5 Digital/Mixed Signal Device Reference
Model parameters

Device Operation

This is a 1-32 bit analog to digital converter. The operation of this device is illustrated
by the following diagrams:

Name Description Type Default Limits

input_offset Offset voltage real 0 none

input_range Input full scale signal range real 1 none

twos_complement Use 2's complement
output. (default - offset
binary)

boolean FALSE none

convert_time Total conversion time real 1µS 0 - ∞

min_clock Minimum clock period real 500n 0 - ∞

data_valid_delay Data valid inactive time real 100n 0 - ∞

in_family Input logic family string UNIV none

out_family Output logic family string UNIV none

family Logic family string UNIV none

input_load Input load real 1pF 0 - ∞

out_res Digital output resistance real 100 0 - ∞

out_res_pos Digital output res. pos.
slope

real out_res 0 - ∞

out_res_neg Digital output res. neg.
slope

real out_res 0 - ∞

min_sink Minimum sink current real -0.001 none

max_source Maximum source current real 0.001 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none
151

Simulator Reference Manual
U1-In

U1-Data_Valid

U1-D2

U1-D0
U1

ADC_4

Data_Valid

D3
D2
D1
D0In

V1
 Pulse(-2.5 2.5 0 160u 160u)

U2
U1-D1

U1-D3
U1-Clock

Time/µSecs 20µSecs/div

0 20 40 60 80 100 120 140 160

Analog in / V

-2

-1

0

1

2

U1-Data_Valid

U1-D3

U1-D2

U1-D1

U1-D0

U1-Clock

convert_time
152

Chapter 5 Digital/Mixed Signal Device Reference
Conversion timings.

The ADC starts the conversion at the rising edge of the clock. The analog input signal
is also sampled at this point. The output data changes in response to this,
CONVERT_TIME seconds later. At the same time the data_valid output goes low
(inactive) then high again after a delay equal to DATA_VALID_DELAY. It is possible
to start a new conversion before the previous conversion is complete provided it is
started later than MIN_CLOCK seconds after the previous conversion was started.
MIN_CLOCK must always be less than CONVERT_TIME. If the MIN_CLOCK
specification is violated, the conversion will not start.

Analog-Digital Interface Bridge

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name adc_bridge parameters

Name Description Flow Type

in Input inout g

out Output out d

Time/µSecs 1µSecs/div

19 20 21 22 23 24

U1-D0

U1-Data_Valid

U1-Clock

convert_time

data_valid_delay
153

Simulator Reference Manual
Model parameters

Device Operation

The analog-digital interface bridge is the main device used to connect analog signals to
digital inputs. The device produces a digital signal that is in the logic '1' state when the
analog input is above the high threshold (IN_HIGH) and a logic '0' state when it is
below the low threshold (IN_LOW). When the analog input is in between these two
states the output will be in the UNKNOWN state. The changes in state will be delayed
according to the RISE_DELAY and FALL_DELAY parameters.

Analog input load

The analog input presents a load to its driving circuit according to the digital load that
is being driven. In other words the digital load is reflected to the analog input. Both
static (i.e. DC) and dynamic (i.e. capacitance) elements of the load are reflected. To
accurately reflect the sink and source currents, the interface bridge needs to know the
voltage levels of the device it is driving. The digital device will (usually) have a
SINK_CURRENT and a SOURCE_CURRENT model parameter each of which apply
at defined logic voltage levels. These levels must be specified in the OUT_LOW and
OUT_HIGH parameters of the AD interface bridge model. The input is modelled by a
current source in parallel with a resistor. The values of these components are calculated
from the above mentioned parameters and the digital load.

Name Description Type Default Limits

in_low Maximum 0-valued analog
input

real 0.1 none

in_high Minimum 1-valued analog
input

real 0.9 none

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

time_tol Threshold time tolerance real 100pS 1e-12 - ∞

out_low Used to calculate reflected
static load. See text

real 0 none

out_high Used to calculate reflected
static load. See text

real 5 none

clamp_low Clamp threshold 'ZERO'
digital input. Default to
out_low

real out_low none

clamp_high Clamp threshold 'ONE' digital
input. Default to out_high

real out_high none

clamp_res Clamp minimum resistance real 1 1e-06 - ∞

clamp_bias Clamp voltage real 0.8 0.2 - 2

out_family Output logic family string UNIV none
154

Chapter 5 Digital/Mixed Signal Device Reference
Input clamp

The analog input is clamped at the voltages specified by CLAMP_LOW and
CLAMP_HIGH. The clamping device has a characteristic similar but not identical to a
junction diode in series with a resistance. Basically it has the characteristic of a diode
up to a voltage excess of CLAMP_BIAS after which it becomes resistive with a
dynamic resistance of CLAMP_RES. The diode characteristics are calculated so that
the transition between the two regions is smooth.

Time Step Control - TIME_TOL parameter

Consider the following circuit and waveform

The graph shows the input and output of the NAND gate. Because the input is analog
an implicit AD interface bridge will have been connected by the simulator. In the
above example the parameters for this bridge have been set to:

.model HC_adc adc_bridge
+ in_low=2.1
+ in_high=2.2
+ rise_delay=1e-12
+ fall_delay=1e-12

V1
 Pulse(0 5 0 5u 5u 50u 100u)

HC00

U1

U1-IN2 U1-OUT

Time/µSecs 5µSecs/div

30 35 40 45 50 55 60 65 700

1

2

3

4

5

U1-OUT
155

Simulator Reference Manual
+ out_family = "HC"
+ out_low = 0
+ out_high = 5
+ clamp_bias=0.5
+ clamp_res=10
+ time_tol=10u

The last parameter, TIME_TOL has been deliberately set ridiculously high to
demonstrate what happens without time step control on the input. The input thresholds
of the HC gate are 2.1 and 2.2 volts yet the output in the above example doesn't switch
until the input has reached 0V. Because there is little activity in the analog circuit, the
time steps are quite large. In fact in the above example the transient timepoints are at
55uS, 55.04uS, 56.2uS, 57.8uS and 60uS. The timepoint at 57.8u is just before the 2.2
volt threshold is reached and it isn't until the next time point, 2.2uS later that the lower
threshold is broken. The result is the location of the negative edge at the output is
delayed by approx. 2.2uS from where it should be. The problem is that the analog
system knows nothing of what is happening in the digital domain so carries on with
large timesteps oblivious to the errors in the digital system.

To overcome this problem. SIMetrix features a mechanism (not in the original XSPICE
system) that detects that the threshold has been passed and cuts back the time step to
ensure that the digital edge occurs at an accurate point. The accuracy of this
mechanism is controlled by the TIME_TOL parameter. The smaller this parameter, the
more accurately the exact threshold will be hit at the expense of short time steps and
longer simulation runs. TIME_TOL defaults to 100pS and in most applications this is a
good choice. The following shows the result when TIME_TOL is set to the default.

Here you can see the edge at the correct time.

The effect of not correctly simulating the threshold point has serious consequences
when attempting to simulate relaxation oscillators constructed with digital inverters as
the following graphs illustrate:

Time/µSecs 2µSecs/div

50 52 54 56 58 60 620

1

2

3

4

5

U1-OUT
156

Chapter 5 Digital/Mixed Signal Device Reference
The top trace is without threshold control and the bottom trace is with it.

Digital-Analog Converter

Netlist entry

Axxxx [digital_in_0 digital_in_1 .. digital_in_n]
+ analog_out model_name

Connection details

Model format

.MODEL model_name da_converter parameters

Name Description Flow Type Allowed
types

Vector
bounds

digital_in Data output in d d 1 - 32

analog_out Analog output out v v, vd, i, id n/a

-2

0

2

4

6

8

Time/mSecs 200µSecs/div

0 0.2 0.4 0.6 0.8 1

-2

0

2

4

6

8

157

Simulator Reference Manual
Model parameters

Device Operation

This device is a 1-32 bit digital to analog converter. Its operation is illustrated by the
following diagrams.

Name Description Type Default Limits

output_offset Offset voltage real 0 none

output_range Input signal range real 1 none

twos_complement Use 2's complement input.
(Default is offset binary)

boolean FALSE none

output_slew_time Output slew time real 10nS 1e-12 - ∞

in_family Input logic family string UNIV none

input_load Input load real 1pF 0 - ∞

sink_current Input sink current real 0 none

source_current Input source current real 0 none

U2-D3

U2-D1 U1-OUT

U2
Counter_4

D3

D2

D1

D0
U3

U4
DAC_4

D3

D2

D1

D0

OUT

U2-D0

U2-D2
158

Chapter 5 Digital/Mixed Signal Device Reference
DAC waveforms

DAC waveforms expanded to show output slew

Time/µSecs 10µSecs/div

0 10 20 30 40 50-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

U2-D3

U2-D2

U2-D1

U2-D0

Time/µSecs 5nSecs/div

7.985 7.99 7.995 8 8.005 8.01 8.015 8.02 8.025

-400

-200

0

200

400

U2-D3

U2-D2

U2-D1

U2-D0

output_slew_time
159

Simulator Reference Manual
The device illustrated above has the following model definition:

.model DAC_4 da_converter
+ output_slew_time 1e-08
+ output_range 5
+ output_offset 0

In offset binary mode the D-A converter produce an output voltage equal to:

-OUTPUT_RANGE/2 + OUTPUT_OFFSET + code * OUTPUT_RANGE/2n

where n is the number of bits and code is the digital input code represented as an
unsigned number between 0 and 2n-1.

In 2's complement mode the output is:

OUTPUT_OFFSET + code * OUTPUT_RANGE/2n

where n is the number of bits and code is the digital input code represented as a signed
number between -2n/2 and 2n/2-1.

Whenever the input code changes, the output is set on a trajectory to reach the target
value in the time specified by OUTPUT_SLEW_TIME. UNKNOWN states are
ignored. That is the input will be assumed to be at the most recent known state.

Digital-Analog Interface Bridge

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name dac_bridge parameters

Name Description Flow Type

in Input in d

out Output inout g
160

Chapter 5 Digital/Mixed Signal Device Reference
Model parameters

DC characteristics

This digital to analog interface bridge is the main device used to connect digital signals
to analog devices. The output provides an analog voltage and source resistance
according to the state and strength of the driving digital input. The output has a non-
linear characteristic that is a simplified model of a typical digital output stage. The
following graphs show the output characteristics for the supplied high speed CMOS
DA bridge. This has the following model parameters:

.model HC_dac dac_bridge
+ out_high=5 ; Logic high voltage
+ input_load=-31p ; Compensates for added rise and fall time
+ t_rise=2n ; Output rise time
+ t_fall=2n ; Output fall time
+ g_pullup=0.024 ; 1/(logic high output resistance)
+ g_pulldown=0.034 ; 1/(logic low output resistance)
+ g_hiz=1e-9 ; 1/(high impedance output res)
+ knee_low = 2.0 ; voltage at resistive/constant current

Name Description Type Default Limits

out_low Analog output for 'ZERO'
digital input

real 0 none

out_high Analog output for 'ONE'
digital input

real 5 none

g_resistive Output conductance for
'RESISTIVE' digital input

real 0.001 none

g_pullup Output conductance for
'STRONG' digital high input

real 0.01 none

g_pulldown Output conductance for
'STRONG' digital low input

real 0.01 none

g_hiz Output conductance for
'HI_IMPEDANCE' strength

real 1.00E-
09

none

input_load Capacitive input load (F) real 1pF none

t_rise Rise time 0 -> 1 real 1nS 1e-12 - ∞

t_fall Fall time 1 -> 0 real 1nS 1e-12 - ∞

knee_high Knee voltage logic high state real 3 none

knee_low Knee voltage logic low real 2 none

sink_current Input sink current real 0 none

source_current Input source current real 0 none

v_smooth Smoothing function offset
voltage

real 0 0 - ∞

in_family Input logic family string UNIV none
161

Simulator Reference Manual
+ ; knee logic low
+ knee_high =2.75 ; voltage at resistive/constant current

+ ; knee logic high
+ v_smooth = 0.5 ; Knee smoothing band
+ in_family="HC"

Logic '0' state - strength = STRONG

In the above graph, the slope of the curve at V=0 is determined by the
G_PULLDOWN parameter. The ‘knee smoothing band’ is a transitional area where
the output switches from a constant resistance to a constant current. The smoothing
characteristic is a quadratic and is calculated to be smooth at all points. This is required
for good convergence behaviour. The knee smoothing band starts at KNEE_LOW-
V_SMOOTH and finishes at KNEE_LOW+V_SMOOTH.

v1/V 500mV/div

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 50

10

20

30

40

50

60

knee_low

Slope = g_pulldown

Output
Current/mA

Knee smoothing band
162

Chapter 5 Digital/Mixed Signal Device Reference
Logic '1' state - strength = STRONG

If a state with RESISTIVE strength is applied to the input of a digital to analog
interface bridge, the output has the characteristic of a pure resistor connected to the
voltage associated with the input's state. In the example given above, this would be a
1k resistor connected to 0V for the logic '0' state and a 1k resistor connected to +5V for
the logic '1' state. (1k is 1/G_RESISTIVE)

For the HI-IMPEDANCE strength, the output will look like a resistor of value 1/
G_HIZ connected to a voltage half way between the two analog output states. (1G
connected to 2.5V in the above example.)

When the input state is UNKNOWN the output will be as if it were half way between
the two known states. This is a compromise solution. The UNKNOWN state does not
have a parallel in the analog domain so instead it is treated as a transitional state. In
some cases the UNKNOWN state occurs in transitional cases although this is not the
correct meaning of UNKNOWN.

Switching Characteristics

When the logic state at the input changes, the output will transition from the current
state to the target state in a time determined by T_RISE or T_FALL according to the
direction of the state change.

Controlled Digital Oscillator

Netlist entry

Axxxx cntl_in out model_name : parameters

v1/V 1V/div

0 1 2 3 4 5

-50

-40

-30

-20

-10

Output
Current/mA

Slope = g_pullup

knee_high
163

Simulator Reference Manual
Connection details

Instance Parameters

Model format

.MODEL model_name d_osc parameters

Model parameters

Name Description Flow Type Allowed
types

cntl_in Control input in v v, vd, i, id

out Output out d d

Name Description Type

init_phase Initial phase real

Name Description Type Default Limits Vector
bounds

cntl_array Control array real vector N/A none 2 - ∞

freq_array Frequency array real vector N/A 0 - ∞ 2 - ∞

duty_cycle Output duty cycle real 0.5 1µ -
0.999999

n/a

init_phase Initial phase of
output

real 0 -180 -
+360

n/a

rise_delay Rise delay real 1n 0 - ∞ n/a

fall_delay Fall delay real 1n 0 - ∞ n/a

phase_tol Phase tolerance/
degrees

real 10 0 - 45 n/a

out_family Output logic family string UNIV none n/a

out_res Digital output
resistance

real 100 0 - ∞ n/a

out_res_pos Digital output res.
pos. slope

real out_res 0 - ∞ n/a

out_res_neg Digital output res.
neg. slope

real out_res 0 - ∞ n/a
164

Chapter 5 Digital/Mixed Signal Device Reference
Device Operation

This device produces an output frequency controlled by an analog input signal
following an arbitrary piece-wise linear law. The input to output frequency
characteristic is defined by two parameters CNTL_ARRAY and FREQ_ARRAY. The
following is an example of a .MODEL control:

.model vco d_osc
+ cntl_array=[-1,0,1,2,3,4,5]
+ freq_array=[0,10000,40000,90000,160000,250000,360000]

The frequency characteristic described by the above example follows a square law. The
two arrays CNTL_ARRAY and FREQ_ARRAY must be the same length. These define
the frequency output for a given analog input.

Time Step Control

In order to control the accuracy of the phase of the output signal, this model may cut
back the analog time step. At each analog time point, the required frequency is
calculated and the digital output is set at that frequency. If the analog input changes by
too large an amount between time points, the digital output phase could be
substantially in error as the frequency is constant between analog time points. The
actual error is calculated and if this exceeds PHASE_TOL, the time point is rejected
and a time point at which the error will be in tolerance is estimated.

Note: This model was included with the original XSPICE code but the SIMetrix
version has been completely re-written. The original did not have any phase error
control and could not give accurate results unless the analog time step was artificially
kept small.

 Analog-Digital Schmitt Trigger

Netlist entry

Axxxx in out model_name

Connection details

Model format

.MODEL model_name adc_schmitt parameters

Name Description Flow Type Allowed
types

in Input inout g g, gd

out Output out d d
165

Simulator Reference Manual
Model parameters

Device Operation

This device is basically identical to the Analog-Digital Interface Bridge described on
page 153. The only difference is the behaviour of the device when the analog input lies
between the threshold voltages. With the interface bridge, the output is UNKNOWN
under these circumstances but with this Schmitt Trigger, the output retains its previous
value and so is always in a known state. In summary, the output will only switch from
low to high when the input exceeds the higher threshold (IN_HIGH) and will only
switch from high to low when the input descends below the lower threshold
(IN_LOW).

If initial input voltage lies between the hysteresis thresholds, the output state is
determined by the init_cond parameter.

Name Description Type Default Limits

in_low Maximum 0-valued analog
input

real 0.1 none

in_high Minimum 1-valued analog
input

real 0.9 none

rise_delay Rise delay real 1nS 1e-12 - ∞

fall_delay Fall delay real 1nS 1e-12 - ∞

time_tol Threshold time tolerance real 100pS 1e-12 - ∞

out_low Analog out for 'ZERO' input real 0 none

out_high Analog output 'ONE' input real 5 none

clamp_res Clamp minimum resistance real 1 1e-06 - ∞

clamp_bias Clamp voltage real 0.8 0.2 - 2

out_family Output logic family string UNIV none

init_cond Initial condition real 0 none
166

Chapter 6 Command Reference
Chapter 6 Command Reference

Overview
Simulator commands instruct the simulator how to read in and simulate the circuit. All
simulator commands begin with a period (.) .

For the remainder of this chapter and elsewhere in this manual, simulator commands
are referred to as ‘Controls’ to distinguish them from commands entered in the
command shell.

The schematic editor supports some of the controls described in this chapter but not all.
Unsupported analysis controls may be added manually to the schematic's netlist. See
“Adding Extra Netlist Lines” on page 12 for details.

.MODEL and .SUBCKT controls may also appear in model library files (in fact that is
where they would usually reside) see User's Manual for details. The .ALIAS control
may only appear in model library files.

The following simulator controls are recognised by SIMetrix.

Control Manual Page

.AC 171

.DC 174

.ENDF 175

.ENDS 210

.FILE 175

.GLOBAL 177

.GRAPH 177

.IC 183

.INC 184

.KEEP 184

.LIB 186

.MODEL 187

.NODESET 190

.NOISE 191

.OP 194

.OPTIONS 195

.PARAM 205
167

Simulator Reference Manual
The following control is only recognised in model library files.

.ALIAS page 173

General Sweep Specification
Overview
SIMetrix features a common sweeping algorithm which is used to define the swept
analysis modes: .DC, .AC, .NOISE and (now) .TF, along with multiple analyses such
as Monte Carlo.

The sweep algorithm has 6 modes:

• Device. Sweeps a single default value of a specified device. E.g. voltage of a
voltage source, resistance of a resistor or the capacitance of a capacitor.

• Temperature
• Parameter. Parameter can be referenced in an expression for a model or instance

parameter.
• Model parameter. Named model parameter.
• Frequency. (Not applicable to .DC)
• Monte Carlo. Perform a specified number of steps with distribution functions (i.e

tolerances) enabled.
Standard SPICE only provides a subset of the above. .DC can only sweep voltage and
current sources, .AC and .NOISE can only sweep frequency while .TF can't be swept at
all.

As well as providing 6 modes, each of the modes can sweep in four different ways.
These are linear, decade, octave and list.

.PRINT 207

.PZ 209

.SENS 209

.SUBCKT 210

.TEMP 211

.TF 211

.TRACE 213

.TRAN 213

Control Manual Page
168

Chapter 6 Command Reference
Syntax
All the swept analysis modes use the same general syntax to specify the sweep
parameters. However, to maintain compatibility with SPICE and its derivatives
including earlier versions of SIMetrix, each analysis mode allows variations to this
standard syntax. The general syntax is described below while the variations allowed
for each analysis mode are described in the section dedicated to that analysis mode.

All of the analysis modes can optionally be entered in a similar manner to .MODEL
statements i.e. as an unordered list of parameter names followed by their values. For
example, the following is a perfectly legal noise analysis specification:

.noise V=vout DEVICE=V1 VN=0 F=1k LIN=(100 -10m 10m)
+ INSRC=V1

In the various forms of the syntax described in the following sections, some of the
parameter names may be omitted as long as they are entered in a particular order. It is
sometimes, however, easier to remember parameter names rather than a default order,
so the method described above may be more convenient for some users.

General syntax for swept analyses

.AC|.DC|.NOISE|.TF sweep_spec [analysis specific parameters]

sweep_spec:
One of the following:

DEVICE device_name step_spec F frequency
TEMP step_spec F frequency
PARAM param_name step_spec F frequency
MODEL model [PARAM] mod_param_name step_spec F frequency
FREQ step_spec
MONTE num_steps F frequency

Where

device_name Name of device to be swept. The following components may be
swept:
Capacitors, all controlled sources, fixed current source, fixed
voltage source, inductors and resistors.

param_name Name of parameter used in expression. Expressions may be
used to define an instance or model parameter and may also be
used in arbitrary sources.

model Name of model containing parameter to be swept

mod_param_name Name of model parameter

num_steps Number of steps to be performed for Monte Carlo sweep.

frequency Specified frequency for which .NOISE, .AC and .TF analyses
169

Simulator Reference Manual
are to be performed. May be zero for .AC and .TF.

step_spec:
One of the following:

STP start stop step
LIN num_points start stop
DEC num_points_decade start stop
OCT num_points_octave start stop
LIST val1 [val2 ...]

Where:

start First value

stop Last value (inclusive)

step Interval

num_points Total number of points

num_points_decade Number of points per decade

num_points_octave Number of points per octave

STP and LIN modes are both linear sweeps but specified differently. STP specifies
start, stop and a step size, while LIN specifies start, stop and the total number of points.

Multi Step Analyses
Overview
The sweep specification described in “General Sweep Specification” on page 168 can
also be applied to define multiple analyses including Monte Carlo analysis. This can be
applied to the swept modes .DC, .AC, .NOISE and .TF along with .TRAN. The
analyses .SENS, .PZ and .OP cannot be run in multi-step mode. A multi-step .OP is in
fact the same as .DC so this is not required. Monte Carlo analysis is the subject of its
own chapter (see page 218) but it is invoked in the same way as other multi-step
modes. As well as the standard 6 sweep modes, small-signal multi-step analyses can be
run in snapshot mode which uses snapshots created by a previous transient analysis.

Syntax
The general form is:

.analysis_name analysis_parameters SWEEP
+ [sweep_spec] | [SNAPSHOT STP snapstart snapstop snapstep]

Where:

.analysis_name Dot control for analysis
170

Chapter 6 Command Reference
analysis_parameters Specific parameters for that analysis

sweep_spec See “General Sweep Specification” on page 168

SNAPSHOT Use snapshots created by a previous transient analysis. For full
details, see “Snapshots” on page 215

snapstart Index of first snapshot. Snapshots are counted in the order in
which they are created. The first is 0. Use STP 0 0 0 to specify
all available snapshots.

snapstep Index of last snapshot

snapstep Snapshot interval (usually 1)

Examples

Run 10 Monte Carlo runs for 1mS transient analysis

.TRAN 1m SWEEP MONTE 10

Sweep V1 from 0 to 5 volts in 0.1V steps for 200us transient

.TRAN 200u SWEEP DEVICE V1 STP 0 5 0.1

AC sweep of voltage source V5 from -300mV to 300mV. Repeat 6 times for parameter
restail from 450 to 550.

.AC DEVICE=V5 LIN 100 -300m 300m F=100000
+ SWEEP PARAM=restail LIN 6 450 550

Run AC sweep using all available snapshots

.AC DEC 100k 10G SWEEP SNAPSHOT STP 0 0 0

.AC
.AC inner_sweep_spec [F frequency] [SWEEP outer_sweep_spec]

Spice compatible frequency sweep:
.AC DEC|LIN|OCT num_points start stop

Instructs the simulator to perform a swept small signal AC analysis. SIMetrix AC
analysis is not limited to a frequency sweep as it is with generic SPICE and
derivatives. See “General Sweep Specification” on page 168 and examples below for
more details.

frequency Frequency at which analysis will be performed for non-
frequency sweeps. Default 0.

inner_sweep_spec See “General Sweep Specification” on page 168 for syntax.
Defines sweep mode. FREQ keyword is optional.

outer_sweep_spec If specified, analysis will be repeated according to this
171

Simulator Reference Manual
specification. See “General Sweep Specification” on page 168
for syntax.

num_points LIN: total number of points
DEC: number of points per decade
OCT: number of points per octave

start Start frequency for SPICE compatible mode

stop Stop frequency for SPICE compatible mode

Except for frequency sweep, the frequency at which the analysis is being performed
should be specified. If omitted, the frequency will be assumed to be zero.

For non-frequency sweeps, a new dc operating point may be calculated at each step
depending on what is being swept. If a capacitor, inductor or an ‘AC only’ model
parameter is being swept, then no new dc operating point will be required. Otherwise
one will be performed. An ‘AC only’ parameter is one that does not affect DC
operating point such as device capacitance.

Notes

An AC analysis calculates the small signal frequency response of the circuit about the
dc operating point. The latter is automatically calculated prior to commencing the
frequency sweep. One or more inputs may be specified for AC analysis by using
voltage or current sources with the AC specification (See “Voltage Source” on
page 97). The results of an AC analysis are always complex.

Examples

SPICE compatible. Sweep frequency from 1kHz to 1Meg

.AC DEC 25 1k 1MEG

Sweep voltage source V1 100 points from -100mV to 100mV. Frequency = 100kHz

.AC DEVICE V1 LIN 100 -100m 100m F=100k

Sweep parameter Rscale from 0.5 to 3 in steps of 0.1. Frequency=20Meg

.AC PARAM Rscale STP 0.5 3 0.1 F=20Meg

Sweep resistor R1 with values 10k 12k 15k 18k 22k 27k 33k, Frequency =1.1KHz

.AC DEVICE R1 LIST 10k 12k 15k 18k 22k 27k 33k F=1.1K

Monte Carlo sweep 100 steps. Frequency = 10K.
This is useful if - say - you are interested in the gain of an amplifier at one frequency
and it needs to lie within a defined tolerance. Previously you would need to repeat an
AC sweep at a single frequency to achieve this which could take a long time especially
if the circuit has a difficult to find operating point. The analysis defined by the
following line will take very little time even for a large circuit.

.AC MONTE 100 F=10K
172

Chapter 6 Command Reference
Examples of Nested Sweeps

As Monte Carlo above but repeated from 0 to 100C

.AC MONTE 100 F=10K SWEEP TEMP STP 0 100 10

... and at a number of frequencies

.AC MONTE 100 SWEEP FREQ DEC 5 1k 100k

.ALIAS
.ALIAS alias_name device_name device_type

This control may only be used in device model library files. It is not recognised by the
simulator. It permits a device model or subcircuit to be referenced by a different name.
This allows one model definition to be used for multiple part numbers.

alias_name Alias name

device_name Device to which alias refers

device_type Type of device to which alias refers. Must be one of the
following
C, D, LTRA, NJF, NMF, NMOS, NPN, PJF, PMF, PMOS, PNP,
R, SW or SUBCKT.
see “.MODEL” on page 187 for more details.

Example

.MODEL BC547C NPN
+ IS=7.59E-15 VAF=19.3 BF=500 IKF=0.0710 NE=1.3808
+ ISE=7.477E-15 IKR=0.03 ISC=2.00E-13 NC=1.2 NR=1 BR=5
+ RC=0.75 CJC=6.33E-12 FC=0.5 MJC=0.33 VJC=0.65
+ CJE=1.25E-11 MJE=0.55 VJE=0.65 TF=4.12E-10 ITF=0.4 VTF=3
+ XTF=12.5 RB=172 IRB=0.000034 RBM=65

.ALIAS BC549C BC547C NPN

The above would provide identical definitions for both BC547C and BC549C bipolar
transistors.

Notes .ALIAS definitions will recognise models defined in other files provided
the file in which the alias resides and the file in which the model definition
resides are part of the same library specification. A library specification is a
single pathname possibly with a wildcard ('?' or '*') to refer to multiple
files. E.g. \simetrix\models*.mod is a library specification and refers to all
files with the extension '.mod' in the directory \simetrix\models.

Aliases must refer directly to a model or subcircuit definition and not to
other aliases.
173

Simulator Reference Manual
.DC
.DC inner_sweep_spec [SWEEP outer_sweep_spec]

Spice compatible:
.DC device_name start stop step

The remainder are SIMetrix 2.5 - 3.1 compatible:
.DC TEMP start stop step
.DC PARAM param_name start stop step
.DC MODEL model [PARAM] mod_param_name start stop step

Instructs simulator to perform a DC sweep analysis. A dc analysis performs a dc
operating point analysis for a range of values according to the sweep specification.
SIMetrix DC analysis is not limited to sweeping a voltage or current source as with
generic SPICE. Any mode defined by the general sweep specification (page 168) may
be used although frequency sweep has no useful purpose.

inner_sweep_spec See “General Sweep Specification” on
page 168 for syntax. Defines sweep mode.
DEVICE keyword is optional.

outer_sweep_spec If specified, analysis will be repeated
according to this specification. See “Multi Step
Analyses” on page 170 for details.

device_name Component reference of voltage source,
current source, resistor or controlled source to
be swept. (Only voltage and current sources are
SPICE compatible)

start Start value for sweep

stop Stop value for sweep

step Increment at each point

param_name Parameter name. This would be used in an
expression to define a component or model
value.

model_name Model name e.g. Q2N2222

model_parameter_name Model parameter name e.g. IS

If start is arithmetically greater than stop then step must be negative.

It is not necessary to declare parameters with .PARAM if using parameter sweep.

Examples

SPICE compatible. Sweep V1 from 0 to 5 volts in steps of 0.1 volt
174

Chapter 6 Command Reference
.DC V1 0 5 0.1

SIMetrix 3.1 compatible temperature sweep

.DC TEMP 0 100 2

Decade (i.e. logarithmic) sweep. Sweep V1 from 1mV to 1V with 25 points per decade

.DC V1 DEC 25 1m 1v

Note that the DEVICE keyword has been omitted. This is the default sweep mode for
.DC.

Do 1000 Monte Carlo steps. This performs the same task as a Monte Carlo analysis
applied to a DC operating point. In other products and earlier versions of SIMetrix this
task would take a long time as the operating point is solved from scratch each time.
With the mode described by the following example, the operating point need only be
calculated from scratch once. All subsequent steps are seeded by the previous one and
usually require only a few iterations. The end result is a sometimes spectacular
increase in speed.

.DC MONTE 1000

Examples of Nested Sweeps

Decade sweep at temperatures 0 to 100 in steps of 10

.DC V1 DEC 25 1m 1v SWEEP TEMP STP 0 100 10

Note the STP keyword is necessary to signify the start-stop-step method of defining a
linear sweep. Alternatively LIN can be used which defines the sweep in terms of the
total number of points. The following is equivalent to the above:

.DC V1 DEC 25 1m 1v SWEEP TEMP LIN 11 0 100

Do 100 run Monte Carlo analysis for temperature sweep

.DC TEMP 0 100 2 SWEEP MONTE 100

.FILE and .ENDF
.FILE filename
file_contents
.ENDF

The .FILE control allows the contents of a file referenced in a .MODEL control to be
placed directly in the netlist. Files are referenced in arbitrary logic blocks (page 252),
PWLFILE voltage and current sources (page 100), digital sources (page 121) and
digital state machines (page 143). Each of these may refer to files defined using .FILE
and .ENDF.
175

Simulator Reference Manual
Example

.MODEL COUNT_8 d_logic_block file=counter_def

.FILE counter_def
PORT (DELAY = 10n) CountOut out[0:7] ;

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

Count = Count + 1 ;

CountOut = count ;
.ENDF

The .MODEL control refers to a file called ‘counter_def’. This could be a real disk file
called counter_def or counter_def.ldf, but in the above example it is instead defined
directly in the netlist using .FILE and .ENDF

Important Note

.FILE and .ENDF will not be recognised in library files.

.FUNC
.FUNC name (arglist) { body }

name Name of function. Must begin with a letter and not match one of
the built in functions.

arglist List of comma separated argument names

body Body of function. This is an expression referring to the names in
arglist that defines the operation performed by the function

.FUNC defines a function that can be used in a model or device parameter expression,
a parameter defined using .PARAM or in an arbitrary source expression.

Examples

.FUNC FREQ(V) { (V)*120K }

.FUNC SWEEP(V) { SIN(TIME*FREQ(v)*2*PI) }

Optimiser

Any expression that uses a function defined with .FUNC will be automatically
processed by an optimisation algorithm. For more information see “Optimisation” on
page 38

 The optimiser attempts to speed simulations by making the expression evaluation
more efficient. The optimiser is effective when .FUNC is used to create very complex
expressions perhaps to develop a semiconductor device. In simple applications it may
not make a noticeable improvement to performance. The optimiser can be enabled for
all expressions and can also be disabled completely. To enable for all expressions use:

.OPTIONS optimise=2
176

Chapter 6 Command Reference
To disable:
.OPTIONS optimise=0

.GLOBAL
.GLOBAL node [node...]

Identifies nodes as global. This allows nodes specified at the top level of a circuit to be
accessed within a subcircuit definition. For more information see “Subcircuits” on
page 39.

.GRAPH
Parameters

.GRAPH signal_name|"expression"
+ [persistence = persistence]
+ [axisname = axisname]
+ [graphname = graphname]
+ [axistype = digital|grid|axis|auto]
+ [curvelabel = curvelabel]
+ [xlabel = xlabel]
+ [ylabel = ylabel]
+ [xunit = xunit]
+ [yunit = yunit]
+ [xmin = xmin]
+ [ymin = ymin]
+ [xmax = xmax]
+ [ymax = ymax]
+ [analysis = analyses_list]
+ [ylog = lin|log|auto]
+ [xlog = lin|log|auto]
+ [nowarn = true|false]
+ [initXLims = true|false]
+ [complete = true|false]

.GRAPH instructs SIMetrix to plot a graph of the specified signal or expression. The
graph can be plotted incrementally as the simulation proceeds or may be delayed until
the run is complete.
177

Simulator Reference Manual
Parameter
name

Type Description

signal_name |
expression

string Specifies item to be plotted. If this is an
expression, then it must be enclosed in double
quotation marks or curly braces.

persistence integer Number of curves to be displayed at once. On
repeated runs, any curves from earlier runs
remain until the number of curves exceeds this
value at which point the oldest is deleted
automatically. If this parameter is absent or
zero, the curves are never deleted.

graphname string If specified, the curves will be directed to their
own graph sheet within the current window.
The value of graphname is arbitrary and is
used to identify the graph so that multiple
.graph controls can specify the same one. It
works in a similar way to axisname an example
of which is given below. This name is not used
as a label for display purposes but simply as a
means of identification.

axistype string Can be one of four values to specify type of y-
axis:
• DIGITAL. Use a digital axis. This is a

small axis that carries only one
curve. It is intended for digital
signals but may also carry analog
curves.

• GRID. Use a separate grid stacked
on top of the main one. The
AXISNAME parameter may be used
to identify a particular grid used by
another .GRAPH control.

• AXIS. Use a separate y-axis
alongside the main one. The
AXISNAME parameter may be used
to identify a particular axis used by
another .GRAPH control.

• AUTO. This is the default value. A
suitable axis is chosen
automatically.
178

Chapter 6 Command Reference
axisname string This is only used if AXISTYPE is specified.
The value of AXISNAME is arbitrary and is
used to identify the axis so that multiple .graph
controls can specify the same one. An
example of this is given below. This name is
not used as a label for display purposes but
simply as a means of identification. Axes can
be labelled using ylabel and xlabel.

curvelabel string Label for curve displayed in graph legend. If
omitted, the label will be the signal name or
expression.

xlabel string Label for x-axis. Default is reference of curve
being plotted (E.g. time, frequency etc.)

ylabel string Label for y-axis. If there is only a single curve,
this will default to the label for the curve
otherwise the default is blank.

xunit string Units for x-axis. Default is units of reference.

yunit string Units for y-axis. Default is units of curves
plotted provided they are all the same. If any
conflict, the default will be blank

xmin real Minimum limit for x-axis. Must be used with
xmax.

xmax real Maximum limit for x-axis. Must be used with
xmin.

ymin real Minimum limit for y-axis. Must be used with
ymax.

ymax real Maximum limit for y-axis. Must be used with
ymin.

analysis string Specifies for what analysis modes the plot
should be enabled. By default it will be enabled
for all analysis modes. Any combination of the
following strings, separated by a pipe ('|')
symbol.
• TRAN. Transient analysis
• AC. AC analysis
• DC. DC sweep analysis
• NOISE. Noise analysis
• POP. POP analysis - SIMPLIS only

Other analysis modes do not produce results
that can be probed

Parameter
name

Type Description
179

Simulator Reference Manual
ylog string One of three values

LIN Use linear axis
LOG Use log axis
AUTO Axis will be log if x values are log

spaced. (E.g for decade AC sweep)
and all values are positive.

Default if omitted: LIN

xlog string One of three values

LIN Use linear axis
LOG Use log axis
AUTO Axis will be log if x values are log

spaced. (E.g for decade AC sweep)
and all values are positive.

Default if omitted: AUTO

nowarn Boolean If true, no warnings are given if an attempt is
made to plot a non-existent signal. Default:
false.

initXLims Boolean When this is TRUE, the x-axis limits are
initialised according to the analysis. E.g. if the
analysis is transient and runs from 0 to 1mS,
the x-axis will start with these limits. If set to
FALSE, the x-axis limits are calculated to fit the
curve and updated incrementally. You should
set this to FALSE if you are plotting an
expression whose x values are not the same
as the x values for the analysis e.g. using the
XY() function for an X-Y plot.

The default value of this option is usually true
but can be changed using the option
NoInitXAxisLimits . Type at the command line:
“Set NoInitXAxisLimits” to change default to
false.

complete Boolean If true, the plot is not produced until the
analysis is completed. Otherwise the plot is
updated at a rate determined by the global
option ProbeUpdatePeriod. This is forced for
some types of plot as certain expressions
cannot be plotted incrementally.

This can be set using the options dialog box
(File|Options|General…). Default: false.

Parameter
name

Type Description
180

Chapter 6 Command Reference
The .GRAPH control is the underlying simulator mechanism used by the schematic's
fixed probes. See User's Manual for details.

.GRAPH supersedes the older and less flexible .TRACE (page 213). The latter is,
however, still supported and may sometimes be convenient for specifying multiple
signals on one line.

Using Multiple .GRAPH Controls
If specifying several .GRAPH controls to plot a number of curves on the same graph,
you should make sure that the various parameters are consistent. If for example, a
conflict arises if you specify xmin and xmax for two .GRAPHs that plot curves in the
same graph sheet, and the values for xmin and xmax are different for each. You can
specify xmin and ymin for just one of the .GRAPH controls or you can specify for all
and make sure they are all the same. The same applies to other non-Boolean
parameters i.e. ymin, ymax, xlabel, ylabel, xunits and yunits. The parameter
initXLims, however must be specified with the same value for all .GRAPH controls
specifying the same graph sheet.

Conflicting values of ylog and xlog are resolved by plotting the curves on separate
axes or graph sheets respectively.

Creating X-Y Plots
To create an X-Y plot, use the XY() function (See User's Manual or Script Reference
Manual for full details of available functions). You should also specify
"initXLims=false". E.g.

.GRAPH "XY(imag(vout), real(vout))" initXLims=false
+ xlog=LIN complete=true

The above will create a Nyquist plot of the vector VOUT.

Using .GRAPH in Subcircuits
.GRAPH maybe used in a subcircuit in which case a plot will be produced for all
instances of that subcircuit. Note, however, that it will only work for single values and
not for expressions when inside a subcircuit. The value of the curveLabel parameter
will be prefixed with the instance name so that the displayed curves can be correctly
identified.

Using Expressions with .GRAPH
You can enter an expression as well as single vectors to be plotted. A problem arises
when plotting expressions incrementally that are regularly updated while the
simulation is running. SIMetrix versions prior to v5 could not incrementally evaluate
expressions, so each time the plot of an expression was updated, the expression had to
be recalculated from the beginning. This was inefficient and it has always been
recommended that the complete=true flag was added in these circumstance to inhibit
incremental plotting.

SIMetrix - from version 5 - now has the ability to incrementally evaluate some
expressions and there is no longer a recommendation to set complete=true. However,
181

Simulator Reference Manual
certain expression cannot be incrementally evaluated and when such expressions are
entered, incremental plotting will automatically be disabled and the plot won't appear
until the run is complete.

A notable example of expressions that cannot be incrementally evaluated is anything
containing the phase() function. This is because the phase() function uses a state
machine to determine when the phase wraps from -180 to 180 and back. An offset is
then applied to make the phase plot continuous. Because of the state machine, it is
always necessary to evaluate this function from start to finish which makes
incremental evaluation difficult. An alternative is to use instead the arg() function. This
is the same as phase, but does not have the state machine and always gives an output
that lies between +/- 180 degrees.

Plotting Spectra with .GRAPH
You can use .GRAPH to create spectrum plots using FFTs or Fourier. However, FFT is
quite difficult to use on its own as it needs interpolated data. So, a new user defined
function called Spectrum() has been developed that is especially designed for use with
.GRAPH. Usage is:

Spectrum(vector, numPoints [, start [, stop]])
Where:

vector Vector or expression

numPoints FFT size - must be a binary power of 2

start Start time - default = 0

stop Stop time - default = end of data

Spectrum() cannot be incrementally evaluated and so incremental plotting will
automatically be disabled for any .GRAPH control that uses it. See above “Using
Expressions with .GRAPH”.

Examples

.GRAPH C2_P curveLabel="Amplifier output" nowarn=true

Plots the vector C2_P and gives it the label ‘Amplifier output’. As NOWARN is
TRUE, no warning will be given if C2_P does not exist.

.GRAPH vout_quad
+ axisType="grid"
+ axisName="grid1"
+ persistence=2
+ curveLabel="Quadrature"
+ nowarn=true
+ analysis = TRAN|DC

.GRAPH vout
+ axisType="grid"
+ axisName="grid1"
+ persistence=2
+ curveLabel="In Phase"
+ yLabel="Filter Outputs"
182

Chapter 6 Command Reference
+ nowarn=true
+ analysis = TRAN|DC

The above illustrates the use of the parameters AXISTYPE and AXISNAME. Both the
vectors specified by the above .GRAPH controls will be plotted on the same but
separate grid. Because both grids have been given the AXISNAME grid1, each curve
will be plotted on the same one. If the values of axisname for the above were different,
each curve would be plotted on a separate grid. The ANALYSIS parameter has been
specified in both cases, so plots will only be created for transient and dc sweep
analyses.

.IC
.IC V(node1)=val1 [V(node2)=val2]...

OR

.IC node1 val1 [node2 val2]

This control sets transient analysis initial conditions.

node1, node2 etc. Name of circuit node (or net) to which initial condition is to be
applied. See notes below.

val1, val2 etc. Voltage to be applied to net as initial condition.

If the UIC parameter is specified with the .TRAN control no DC operating point will
be calculated so an initial condition will set the bias point in the same way as an IC=...
parameter on a BJT, capacitor, diode, JFET or MOSFET.

If the UIC parameter is absent from the .TRAN control then a DC operating point is
calculated before the transient analysis. In this case the net voltages specified on the
.IC control are forced to the desired initial values during the DC operating point
solution. Once transient analysis begins this constraint is released. By default the
voltage force is effectively carried out via a 1Ω resistor. This can be changed with the
option setting ICRES. (page 195).

Alternative Initial Condition Implementations
An initial condition can also be specified using a voltage source with the DCOP
parameter specified. E.g.

VIC1 2 3 3.5 DCOP

Will force a voltage of 3.5 volts between nodes 2 and 3 during the DC operating point
solution. This has two advantages over .IC:

1. It has zero force resistance

2. It can be applied differentially

You can also use a capacitor with the BRANCH parameter set to 1. E.g.:

C1 2 3 10u BRANCH=1 IC=3.5
183

Simulator Reference Manual
This will behave identically to the voltage source in the above example during the DC
operating point but during a subsequent small-signal or transient analysis will present a
10µF capacitance to nodes 2 and 3.

See also: “Capacitor” on page 58 and “Voltage Source” on page 97.

.INC
.INC pathname

Insert the contents of the specified file.

pathname File system pathname for file to be included

The .INC control is replaced by the specified file in its entirety as if was part of the
original file. .INC controls may also be nested i.e. there may be .INC controls within
the included file. Nesting may be to any level.

.KEEP
.KEEP signal_spec [signal_spec ...]

This control tells the simulator what values to store during a simulation. By default, all
top level voltages and currents and digital data are stored.

signal_spec /TOP | /SUBS | /NOV | /NOI | /NODIG | *V | *I | *D | **V |
I | **D | subref.*V | subref.*I | subref.*D | subref.V |
subref.**I | subref.**D | ^wildcard_filter | signal_name

subref Sub-circuit reference

/NOV Don't store top level (i.e. not in a subcircuit) voltages.

/NOI Don't store top level currents

/NODIG Don't store top level digital data.

/SUBS Store all subcircuit data.

/TOP Overrides /subs. This is to inhibit storing signals in child
schematics in hierarchical designs.

^wildcard_filter General specification that selects values to store based on their
name alone. Would usually use one of the special characters '*'
and '?'. '*' means ‘match one or more characters’ while '?' means
‘match a single character’. Some examples:

* matches anything

X1.* matches any signal name that starts with the
three letters: X1.

X?.* matches any name that starts with an X and
with a '.' for the third letter.
184

Chapter 6 Command Reference
*.q10#c matches any name ending with q10#c.

*V Store all top level voltages. This is actually implicit and need
not be specified at the top level of the netlist. It can be usefully
used in sub-circuit definitions - see notes.

*I Store all top level currents. This is actually implicit and need not
be specified at the top level of the netlist. It can be usefully used
in sub-circuit definitions - see notes.

*D Store all top level digital data. This is actually implicit and need
not be specified at the top level of the netlist. It can be usefully
used in sub-circuit definitions - see notes.

**V Store all voltages including those inside sub-circuits descending
to all levels

**I Store all currents including those inside sub-circuits descending
to all levels

**D Store all digital data including those inside sub-circuits
descending to all levels

subref.*V Store all voltages within sub-circuit subref excluding voltages
within children of subref.

subref.*I Store all currents within sub-circuit subref excluding currents
within children of subref.

subref.*D Store all digital data within sub-circuit subref excluding digital
data within children of subref.

subref.**V Store all voltages within sub-circuit subref including voltages
within children of subref descending to all levels.

subref.*I Store all currents within sub-circuit subref including currents
within children of subref descending to all levels.

subref.*D Store all digital data within sub-circuit subref including digital
data within children of subref descending to all levels.

signal_name Explicit voltage or current.

This control instructs the simulator what values to store during a simulation. By
default, all voltages and currents not within subcircuits are stored.

/SUBS Store all available voltages and currents including subcircuit
data. (Overrides /NOV and /NOI).

/NOV Don't store currents in voltage sources and inductors or any
voltages.

/NOI Don't store currents. (Except those in voltage sources and
inductors)

/TOP If present, overrides /SUBS.

signalname. Name of explicit signal (e.g. voltage or current) to store.
185

Simulator Reference Manual
Notes

.KEEP may be used inside a sub-circuit definition in which case .KEEP operates at a
local level. For example .KEEP *v inside a sub-circuit definition specifies that all
voltages within that subcircuit (for all instances) will be saved. .KEEP **v does the
same but also includes any descendant sub-circuit instances.

In earlier versions, voltage also meant currents in voltage sources and inductors as
these values are obtained as part of the matrix solution. This is no longer the case,
voltage and current mean what they say.

Examples

Store only voltages and currents in sub-circuit X1 excluding descendants.

.KEEP /noi /nov /top X1.*v X1.*i

Store only voltages and currents in sub-circuit X1 including descendants.

.KEEP /noi /nov /top X1.**v X1.**i

Store voltages within U3.U12 along with VOUT and VIN

.KEEP /noi /nov /top U3.U12.*v VOUT VIN

Store all top level voltages and currents in U7

.KEEP /noi /top U7.*i

.LIB
There are two forms of .LIB and the behaviour of each is completely different from
each other. The SIMetrix Native Form specifies a file or group of files to be searched
for any model or subcircuit that has not yet been found. The HSPICE version is a
selective version of .INC but unlike .INC it doesn't include the whole file, just a
specified portion of it.

SIMetrix Native Form

.LIB pathname

pathname File system path name specifying a single file or, by using a
wildcard (* or ?), a group of files. If the path name contains
spaces, it must be enclosed in quotation marks (").

The SIMetrix form of this control specifies a pathname to be searched for model and
subcircuit libraries. Any number of .LIB controls may be specified and wildcards (i.e.
* and ?) may be used.

If a model or subcircuit is called up by a device line but that definition was not present
in the netlist, SIMetrix will search for it in files specified using the .LIB control.
186

Chapter 6 Command Reference
SIMetrix will also search for definitions for unresolved parameters specified in
expressions. These are defined using .PARAM (see page 205).

Example

The following control instructs the simulator to search all files with the .mod extension
in c:\Spice Model Library\ for any required subcircuits or device models.

.lib "c:\Spice Model Library*.mod"

HSPICE Form

.LIB 'filename' entryname

filename File system path name specifying a single file.

entryname Name used to identify sections within filename

When HSPICE the form of .LIB is encountered, SIMetrix will search the file
specified by filename for a section enclosed by:

.LIB entryname

and

.ENDL
.LIB calls may be nested as long as they are not recurrent. That is a .LIB call within a
.LIB .ENDL block may not call itself but it may call another block within the same
file. (HSPICE itself does not permit this).

This form of .LIB is commonly used in model files issued by semiconductor
fabrication plants which tend to be designed for use with HSPICE. The entry name
parameter is used for process corner and skew selection. Typically the model file
would have entries for - say - slow, nominal and fast models. These would reside under
entry names of, perhaps, SS, NOM, and FF respectively. You can very rapidly switch
between these model sets simply by changing the entry name on the .LIB line e.g.

.LIB 'c:\models\fab1\process_a\top.mod' NOM

would select the nominal models. Changing to:

.LIB 'c:\models\fab1\process_a\top.mod' SS

would switch to the slow models.

.MODEL
.MODEL modelname modeltype (param1=val1 [param2=val2]...)

This control specifies a set of model parameters that are used by one or more devices.
.model controls often reside in model libraries.
187

Simulator Reference Manual
modelname Model name. Any text string to uniquely identify model. Must
begin with a letter but may contain any legal ASCII character
other than a space and period '.' .

modeltype Model type. See tables below for possible values

param1, param2 etc. Parameter name.
Valid values depend on the model type.
(See “Simulator Devices” on page 26)

val1, val2 etc. Parameter value.

XSPICE Model Types

Model name Description

ad_converter analog-to-digital converter

adc_bridge analog-to-digital interface bridge

adc_schmitt analog-to-digital schmitt trigger

cm_cap Capacitor with voltage initial condition

cm_ind Inductor with current initial condition

d_and digital n-input and gate

d_buffer digital one-bit-wide buffer

d_cap Digital capacitor

d_dff digital d-type flip flop

d_dlatch digital d-type latch

d_fdiv digital frequency divider

d_init Digital initial condition

d_inverter digital one-bit-wide inverter

d_jkff digital jk-type flip flop

d_logic_block arbitrary logic block

d_nand digital n-input nand gate

d_nor digital n-input nor gate

d_open_c digital one-bit-wide open-collector
buffer

d_open_e digital one-bit-wide open-emitter buffer

d_or digital n-input or gate

d_osc controlled digital oscillator

d_pulldown digital pulldown resistor

d_pullup digital pullup resistor

d_pulse digital pulse
188

Chapter 6 Command Reference
SPICE Model Types

d_ram digital random-access memory

d_res Digital resistor

d_source digital signal source

d_srff digital set-reset flip flop

d_srlatch digital sr-type latch

d_state digital state machine

d_tff digital toggle flip flop

d_tristate digital one-bit-wide tristate buffer

d_xnor digital n-input xnor gate

d_xor digital n-input xor gate

da_converter digital-to-analog converter

dac_bridge digital-to-analog interface bridge

s_xfer s-domain transfer function block

Model name Description

C Capacitor

CORE Jiles-Atherton core model

CORENH Simple core model

D Diode

LTRA Lossy transmission line

NIGBT IGBT

NJF N-channel JFET

NMF N-channel GaAsFET

NMOS N-channel MOSFET

NPN NPN BJT (Bipolar junction transistor)

PJF P-channel JFET

PMF P-channel GaAsFET

PMOS P-channel MOSFET

PNP PNP BJT

R Resistor

SW Voltage controlled switch

Model name Description
189

Simulator Reference Manual
Example

The following is a model for a 1N5404 diode.

.MODEL D1n5404 D(Is=15.48f Rs=7.932m Ikf=0 N=1 Xti=3

+ Eg=1.11 Cjo=150p M=.3 Vj=.75 Fc=.5

+ Isr=120n Nr=2 Bv=525 Ibv=100u)

.NODESET
.NODESET V(node1)=val1 [V(node2)=val2]...

OR
.NODESET node1 val1 [node2 val2]

This control sets an initial guess voltage at the specified node for the dc operating point
solution.

node1, node2 etc. Name of circuit node (or net) to which nodeset is to be applied.
See notes below.

val1, val2 etc. Nodeset voltage to be applied.

Initially nodesets work exactly the same way as initial conditions. The nodeset voltage
is applied via a 1 Ohm (by default but can be changed using NODESETRES option -
see page 195) resistor and the solution is completed to convergence (by any of the
methods). The nodeset is then released and the solution repeated. If the nodeset voltage
is close to the actual solution the convergence of the second solution should be rapid.

Nodesets can be used to force a particular solution for circuits that have more than one
stable state. Consider the following circuit:
190

Chapter 6 Command Reference
A nodeset has been applied to the collector of Q1. This has forced Q1 to be on and Q2
to be off. If the nodeset were absent the solution would actually leave both Q1 and Q2
partially on. In real life this would not be stable but it is numerically accurate.

The other application of nodesets is to help convergence for the DC bias point. With
SIMetrix, it is rarely necessary to use nodeset's to find the DC solution of a circuit.
They can, however, be useful for speeding up the operating point analysis for circuits
that have already been solved. You may wish to do this for a Monte-Carlo analysis, for
example. SIMetrix features a method of creating nodesets for this purpose using the
SaveRhs command. See “Using Nodesets” on page 232.

Nodeset's should not be confused with initial conditions. (see “.IC” on page 183).
Initial conditions tie a node to a particular voltage and keep it there throughout the DC
operating point analysis. Nodesets merely suggest a possible solution but do not force
it.

.NOISE
.NOISE inner_sweep_spec [V] pos_node [VN] neg_node
+ [[INSRC] in_source]
+ [F frequency] [SWEEP outer_sweep_spec]

Spice Compatible
.NOISE V(pos_node [, neg_out_node]) in_source
 + DEC|LIN|OCT num_points start stop interval

0.0646829

100k
R4

4.60195

5V
V1

1K
R2

Q2
Q2N2222

Q1
Q2N2222

1K
R1

100k
R3

10k

R5

10k

R6 .nodeset
0

191

Simulator Reference Manual
This control instructs the simulator to perform a small signal noise analysis.

pos_node Node on circuit at which noise is measured.

neg_node Node to which outputnode is referenced. Defaults to ground if
omitted.

in_source Input source (i.e. voltage or current) to which the input noise
measurement is referred.

inner_sweep_spec See “General Sweep Specification” on page 168 for syntax.
Defines sweep mode. FREQ keyword is optional.

outer_sweep_spec If specified, analysis will be repeated according to this
specification. See “General Sweep Specification” on page 168
for syntax.

LIN Analysis points are linearly spaced.

DEC Analysis points are logarithmically spaced in decades

OCT Analysis points are logarithmically spaced in octaves

num_points LIN: Total number of points
DEC: Number of points per decade
OCT: Number of points per octave

start Start frequency

stop Stop frequency

interval Currently does nothing. Provided for backward compatibility.

Notes

During noise analysis the simulator calculates the total noise measured between
pos_node and neg_node at each frequency point. It also calculates and outputs this
noise referred back to an input specified by in_source. As for all other analysis modes
a DC operating point analysis is carried out first but, unlike AC analysis, the results of
this analysis are not made available. The simulator outputs vectors covering the
contribution from each noise generating device to the total output noise. The names of
these vectors begin with the component reference of the device followed by a suffix to
indicate the source of the noise within the device. A listing of the suffixes is given
below. It is important to note that it is not the noise being generated by each device that
is output but the proportion of that noise that is propagated to the output.

It is not necessary to specify a separate AC analysis alongside the noise analysis as it is
with SPICE2 and commercial derivatives of SPICE2.

The magnitude of any AC independent voltage or current source on the circuit has no
effect on the results of a noise analysis. Unlike SPICE and earlier versions of SIMetrix,
it is not necessary to specify an AC parameter for the source used for the noise input
source. For the first form shown above, the input source is in fact optional. If it is
omitted the input referred noise will not be calculated.

All noise results are in V/√Hz except input noise referred back to a current source
which is in A/√Hz. In standard SPICE3 the noise values produced for MOS2 and
BSIM3 devices are in V2/Hz. For consistency, these have now been changed to V/√Hz.
192

Chapter 6 Command Reference
The original SPICE3 behaviour can be restored by setting the simulator option
OldMosNoise (see “.OPTIONS” on page 195)

Device vector name suffixes

Creating Noise Info File

Noise analysis generates vectors in the same way as all other swept analyses.
Individual vectors may also be tabulated in the list file using the .PRINT control.

A noise output file may also be created from the front end. Select the command shell
menu Graphs and Data|Create Noise Output File to create a text file with a summary of
noise results. Included is a list of the integrated noise output for every device listed in
order of magnitude. Select Graphs and Data|View Noise Output File to view the file.
Note that this is a front end feature and is not implemented by the simulator.

Examples

Run noise analysis from 100Hz to 1MHz with 25 points per decade. Calculate noise at
node named vout and noise referred back to voltage source vin:

.NOISE V(vout) vin dec 25 100 1meg

Device Type Suffix and Description

BJT #rc Noise due to collector resistance
#rb Noise due to base resistance
#re Noise due to emitter resistance
#ic Shot noise in collector
#ib Shot noise in base
#1overf Flicker (1/f) noise
no suffix Total transistor noise

Diode #rs Noise due to series resistance
#id Shot noise
#1overf Flicker (1/f) noise
no suffix Total diode noise

JFET and MOSFETs level 1-3
and BSIM3

#rd Noise due to drain resistance
#rs Noise due to source resistance
#id Shot noise in drain
#1overf Flicker (1/f) noise
no suffix Total FET noise

Philips MOS9 (all types see
“Philips Compact Models” on
page 104)

#Sfl Flicker (1/f) noise
#Sth Drain thermal noise
#Sig Gate thermal noise
#Sigth Gate-drain correlated thermal noise
no suffix Total FET noise

Resistor #therm Resistor thermal noise
#1overf Flicker (1/f) noise
#noise Total resistor noise

Voltage controlled switch no suffix Total switch noise
193

Simulator Reference Manual
Decade sweep resistor RSource from 100 to 10K with 25 points per decade. Frequency
= 1kHz

.NOISE DEVICE RSource DEC 25 100 10k F=1K

.OP
.OP

This control instructs the simulator to perform a DC operating point analysis. Note that
a DC operating point analysis is carried out automatically for transient (unless the UIC
parameter is specified), AC, DC, transfer function and noise analyses.

DC operating point analysis attempts to find a stable bias point for the circuit. It does
this by first applying an initial guess and then uses an iterative algorithm to converge
on a solution. If it fails to find a solution by this method the simulator then attempts
three further strategies.

For the first, a method known as ‘source stepping’ is employed. For this all voltage and
current sources in the circuit are initially set to near zero and the solution found. The
sources are then gradually increased until they reach their final value.

If this approach fails a second strategy ‘GMIN stepping’ is invoked. This conditions
the solution matrix by increasing the diagonal term such that it is dominant. If large
enough, convergence is virtually guaranteed. If successful then the diagonal term is
reduced and a further solution sought using the previous solution as a starting point.
This procedure is repeated until the diagonal term is returned to its correct value.
Increasing the diagonal term is in a way similar, but by no means identical, to placing a
small resistance at each node of the circuit.

If source stepping fails a final strategy, ‘pseudo transient analysis’ is invoked. This is
the most powerful technique employed and nearly always succeeds. However, it is also
the slowest which is why it is left until last. For more information on DC convergence
see “Convergence and Accuracy” on page 228.

If the final approach fails then the analysis will abort.

IMPORTANT: It is not necessary to include .OP if other analyses are specified. All
other analysis modes will perform an operating point anyway so including .OP will
simply cause it to be done twice. However, with .NOISE, .TF, .SENS and .PZ the
results of the operating point analysis are not output. If the bias point of the circuit is
required when running one of these analysis modes, a .OP will be needed.

‘OFF’ Parameters

Some semiconductor devices feature the device parameter OFF. If there are devices in
the circuit which specify this parameter, the bias point solution is found in two stages.
In stage 1 the devices with OFF specified are treated as if their output terminals are
open circuit and the operating point algorithm completes to convergence. In stage 2,
The OFF state is then released and the solution restarted but initialised with the results
of stage 1.
194

Chapter 6 Command Reference
The result of this procedure is that OFF devices that are part of latching circuits are
induced to be in the OFF state. Note that the OFF parameter only affects circuits that
have more than one possible DC solution such as bistables. If the OFF parameter is
specified in - say - an amplifier circuit - with a unique solution, the final result will be
the same. It will just take a little longer to arrive at it.

Nodesets

Nodesets work in a similar way to the OFF parameter in that the solution is found in
two stages. In the first the nodeset is applied and the solution found. It is then released
and convergence continues. Nodeset are an aid to convergence and, like the OFF
parameter, can coerce a particular solution if there is more than 1 stable state. See
“.NODESET” on page 190 for details

Initial Conditions

Initial conditions force a particular voltage at a circuit node during bias point solution.
The force is released for any subsequent analysis. See “.IC” on page 183 for more
details.

Operating Point Output Info

During the operating point analysis, operating point values of every device in the
circuit are output to the list file (see page 22). This information is not usually output for
other analysis modes unless explicitly requested. The output of operating point
information is controlled by three simulator options:

NOOPINFO If set, the operating point info file is not created for .OP analysis

OPINFO If set, the operating point info file is created for other analyses
as well as .OP. (Does not apply to .SENS - operating point
information is not available for this mode at all)

OPINFOFILE Sets name of file to receive operating point info. Outputs to list
file if this option is not specified.

.OPTIONS
.OPTIONS [opt1 [=val1]] ...

This control allows the setting of various options specific to the simulator.

opt1 Option name. Must be one specified in list below.

val1 Option value. Not all options have a value.
195

Simulator Reference Manual
List of simulator options

Option name Default
value

Description

ABSTOL 1p Units = A
The absolute current error tolerance. It
is sometimes desirable to increase this
for circuits that carry large currents
(>1A) to speed the solution and aid
convergence.

ABSTOLMAX 1µ Units = A
ABSTOL selectively relaxed to this
value if needed to allow transient
analysis to continue.

ACCT false Full simulation timing statistics are
generated if this is enabled.

BINDIAG false If enabled, a report about selection of
binned models will be output to the list
file. See “Model Binning” on page 43

CHGTOL 1e-14 Units = Coulombs
The absolute charge tolerance.

DCOPSEQUENCE gmin|
source|
pta

Operating point strategy sequence
order. See “Controlling DC Method
Sequence” on page 237 for details

DEFAD 0 Unit = m2

Default value for MOSFET AD device
parameter. Applies to levels 1-3 and
level 49/53. Does not apply to level 8
or Philips MOS9 devices

DEFAS 0 Unit = m2

As DEFAD but for AS parameter

DEFL 100µ Unit = metres
As DEFAD but for L parameter

DEFNRD 0 As DEFAD but for NRD parameter

DEFNRS 0 As DEFAD but for NRS parameter

DEFPD 0 Unit = metres
As DEFAD but for PD parameter

DEFPS 0 Unit = metres
As DEFAD but for PS parameter

DEFW 100µ Unit = metres
As DEFAD but for W parameter

DIGMINTIME 1pS Unit = Seconds
Minimum digital resolution. Not yet
fully supported
196

Chapter 6 Command Reference
EXPAND false The netlist with subcircuits expanded
is output to the list file if this is
specified.

EXPANDFILE Only applies if EXPAND also
specified. Specifies a file instead of the
list file to receive the expanded netlist

FASTPOINTTOL 1.0 Value for POINTTOL used during ‘Fast
transient start’. See POINTTOL below.

FASTRELTOL 0.001 Value for RELTOL used during ‘Fast
transient start’

FLUXTOL 1e-11 Unit = V.secs
The absolute flux tolerance for
inductors.

FORCETRANOPGROUP off Forces a separate data group to be
created for transient analysis
operating point data. This happens
anyway if tstart>0. Use this option
when simulating a large circuit and
you wish to make extensive use of
schematic bias annotation. See User’s
Manual Chapter 9 “Viewing DC
Operating Point Results” for more
details

GMIN 1e-12 Unit = Siemens (mhos)
The minimum conductance allowed by
the program. This has the effect of
placing a resistor = 1/GMIN in parallel
with every branch of the circuit.

GMINMAXITERS 1000 Maximum total number of iterations
allowed for GMIN stepping operating
point algorithm. See “Source and
GMIN Stepping” on page 229 for
details.

GMINMULT 10 During GMIN stepping the value of
GMIN is multiplied by a variable factor
at each step. This option is the starting
and maximum value of that factor.

GMINSTEPITERLIMIT 20 Iteration limit for each step in GMIN
stepping. Increase to 100 for
compatibility with SIMetrix 2.0x and
earlier.

ICRES 1 Unit = ICRES
Initial condition resistive force. See
“.IC” on page 183 for details

Option name Default
value

Description
197

Simulator Reference Manual
ITL1 100 DC iteration limit used for initial DC
operating point.

ITL2 50 DC iteration limit used for swept and
multi-step analyses.

ITL4 10 Normal transient timepoint iteration
limit. The behaviour of this parameter
is slightly different in SIMetrix than
other SPICE based simulators. See
“Convergence and Accuracy” on
page 228

ITL7 40 Upper transient timepoint iteration
limit. This is specific to SIMetrix.

LOGICHIGH 2.2 Unit = Volts
Upper threshold for logic inputs. Other
comments as for LogicThreshHigh

LOGICLOW 2.1 Unit = Volts
Lower threshold for logic inputs. Other
comments as for LogicThreshHigh

LOGICTHRESHHIGH 5 Unit = Volts
Output voltage for logic high level.
Used for & | and ~ operators for
arbitrary source. See “Arbitrary
Source” on page 46 for more details

LOGICTHRESHLOW 0 Unit = Volts
Output voltage for logic low level.
Other comments as for
LogicThreshHigh

MATCHEDSUBCIRCUITS off If set, components within subcircuits
are treated as matched for Monte
Carlo analysis. See “Monte Carlo
Analysis” on page 218 .

MAXEVTITER 0 (sets
internal
default)

Maximum number of event driven
passes allowed at each step. It is not
usually necessary to change this
value.

MAXOPALTER 0 (sets
internal
default)

Maximum number of alternations
between analog and event-driven
iterations. It is not usually necessary to
change this value

MAXORD 2 Maximum integration order. For
METHOD=TRAP maximum value is 2.
For METHOD=GEAR maximum value
is 6. There is rarely any reason to
change this value.

Option name Default
value

Description
198

Chapter 6 Command Reference
MC_ABSOLUTE_RECT Off If set Monte Carlo distribution will be
rectangular for absolute tolerances.
Otherwise the distribution will be
Gaussian.

MC_MATCH_RECT Off If set Monte Carlo distribution will be
rectangular for matched tolerances.
Otherwise the distribution will be
Gaussian.

MCLOGFILE mclog.txt File name to receive Monte Carlo log.
See “Log File” on page 219

METHOD trap Numerical integration method. Either
TRAP (default) or GEAR". More info:
See “Integration Methods - METHOD
option” on page 241

MINBREAK See notes Unit = Seconds
Minimum time between transient
analysis breakpoints. A breakpoint is a
point in time when an analysis is
forced regardless of whether it is
required by the timestep selection
algorithm. Typically they are set at
known turning points such as the start
and end of a rising pulse. If two
breakpoints are closer than
MINBREAK they are merged into one.
(there are exceptions to this e.g if the
two breakpoints were generated by a
single rising edge). Increasing
MINBREAK can sometimes help
convergence and simulation speed.
The default value is
MINTIMESTEP*100. (See below for
MINTIMESTEP)

MINGMINMULTIPLIER 1.000001 In GMIN stepping, the step size is
multiplied by variable factor at each
step. This step is reduced if
convergence fails. If it is reduced
below this value, the GMIN algorithm
will abort and the next DC operating
point strategy will be invoked.

MINTIMESTEP 1e-9 * Max
time step

Unit = Seconds
Minimum transient time step.
Simulation will abort if it reaches this
value. See “.TRAN” on page 213 for
value of Max time step

Option name Default
value

Description
199

Simulator Reference Manual
MOSGMIN GMIN Value of GMIN used between drain
and source of MOSFETs. See
“MOSFET GMIN Implementation” on
page 86

NEWGMIN false Changes the implementation of GMIN
for ‘old’ MOS devices i.e. LEVELs 1-3.
When this option is set, GMIN is
implemented as a conductance
between source and drain. Otherwise
two conductances are added between
drain and bulk and source and bulk.
See “MOSFET GMIN Implementation”
on page 86

NODELIMIT 1e50 Unit = Volts
Maximum value allowed for circuit
node during iteration. If exceeded,
iteration will abort. (This does not
usually mean the analysis will abort).
Reducing this value can sometime
solve floating point exceptions or
unexplained singular matrices.

NODESETRES 1.0 Unit = Ohms
Driving resistance of nodeset force.
See “.NODESET” on page 190 for
details

NOMCLOG false If specified, no Monte Carlo log file will
be created. See“Log File” on page 219
for details

NOMOD false If specified, no model parameter report
will be output to the list file.

NOMOS9GATENOISE false If specified, the drain induced gate
noise model for MOS9 devices will be
disabled. See “Philips Compact
Models” on page 104.

NOOPALTER false If specified, only a single pass will be
made to resolve the operating point for
event driven devices.

NOOPINFO Off Switches off creation of operating
point info file for .OP analyses. See
“.OP” on page 194 for more details

NOOPITER off Use GMIN stepping for DC operating
point analysis first. (i.e skip normal
iteration method)

Option name Default
value

Description
200

Chapter 6 Command Reference
NORAW off Output transient analysis values at
intervals of tstep only. See “.TRAN” on
page 213

NOSENSFILE Off Switches off creation of sensitivity
analysis data file.

NUMDGT 10 Column width used for display of all
values in list file and Monte Carlo log
file. Minimum value is 8, maximum is
30. Note this value is column width not
the number of significant digits.

OLDLIMIT Off If set SPICE 2 MOS limiting algorithm
is used.

OLDMOSGMIN 0 Value of conductance placed between
drain-bulk and source-bulk for BSIM3,
BSIM4 and EKV devices. Also applies
to LEVEL 1-3 and LEVEL 7 MOSFETs
if NEWGMIN parameter is set. See
“MOSFET GMIN Implementation” on
page 86

OLDMOSNOISE Off MOS2 and BSIM3 devices return
device noise in V2/Hz for SPICE3 and
earlier versions of SIMetrix whereas
other device's noise is returned in V/
√Hz. From release 3 onwards all
devices return noise in V/√Hz. Setting
this option restores to behaviour of
earlier versions.

OPINFO Off If set DC operating point info file is
created for all analyses (except
.SENS). Normally it is created only for
.OP analyses.

OPINFOFILE Off Specify name of operating point info
file. This is OP.TXT by default.

OPTIMISE 1 Controls expression optimiser. 0=off,
1=on for .FUNC defined expressions,
2=on always. See “Optimisation” on
page 38

Option name Default
value

Description
201

Simulator Reference Manual
PARAMLOG Given Control amount of detail for parameter
log in list file.
Choices:
None: no parameters listed
Brief: only parameters specified

using an expression are
listed

Given parameters explicitly
specified in the netlist are
listed

Full all parameters are listed

PIVREL 1e-3 This affects the matrix solution and
rarely needs to be altered. Setting this
parameter to a high value e.g, 0.99
can sometimes fix convergence
problems but may slow down the
simulation. Valid values lie between 0
and 1.

PIVTOL 1e-13 This affects the matrix solution and
rarely needs to be altered. It is the
absolute minimum value for a matrix
entry to be accepted as a pivot.
Unexplained singular matrix errors can
sometimes be overcome by lowering
this value. (But note that singular
matrix errors are usually caused by
errors in the circuit such as floating
nodes or shorted voltage sources).

POINTTOL 0.001 A factor used to control the extent to
which the maximum value attained by
a signal is used to control its tolerance.
This is new from release 4; set it to
zero for pre release 4 behaviour.
Increasing this value will speed up the
simulation at the expense of precision.
See “Accuracy and Integration
Methods” on page 238

PTAACCEPTAT 0 If > 0, specifies a time when pseudo
transient analysis results will be
accepted unconditionally. This is
useful when a circuit comes close to
convergence during pseudo transient,
but doesn’t quite make it due to an
oscillation. See “Pseudo Transient
Analysis” on page 230

Option name Default
value

Description
202

Chapter 6 Command Reference
PTACONFIG 0 Integer from 0 to 15 sets internal
parameters for pseudo transient
algorithm used to find DC operating
point. See “Pseudo Transient
Analysis” on page 230

PTAMAXITERS 20000 Maximum total number of iterations
allowed for pseudo transient algorithm
used to find DC operating point. See
“Pseudo Transient Analysis” on
page 230

PTAOUTPUTVECS false If specified, signal vectors will be
output during pseudo transient
analysis. This may be used to
diagnose a failure. See “Pseudo
Transient Analysis” on page 230

RELTOL 0.001 This is the relative tolerance that must
be met for each analysis point.
Reducing this number will improve
accuracy at the expense of simulation
time or/and convergence reliability.
Simulation results can not be relied
upon if its value is increased beyond
0.01. A more detailed discussion is
given in “Accuracy and Integration
Methods” on page 238

RELTOLMAX 0.01 RELTOL selectively relaxed to this
value if needed to allow transient
analysis to continue

RSHUNT Infinite If specified a resistor of the specified
value is placed from every node to
ground. This can resolve problems
with floating nodes.

SEED 0 Integer value. If non-zero will be used
to initialise random number generator
used for Monte Carlo analysis
distribution functions. See “Seeding
the Random Number Generator” on
page 220

SENSFILE SENS.TXT Specify name of sensitivity data file.

SOURCEMAXITERS 1000 Maximum total number of iterations
permitted for source stepping
algorithm. Set to zero to disable limit

Option name Default
value

Description
203

Simulator Reference Manual
TEMP 27 Unit = °C
Operating temperature of circuit. Note
this value can be overridden locally for
some devices. You can also use
.TEMP for this.

TIMESTATS false Equivalent to ACCT

TLMINBREAK See note Minimum break point for transmission
lines. Works in the same way as
MINBREAK but only for break points
generated by lossless transmission
lines. Default = MINTIMESTEP * 5e-5

TNOM 27 Unit = °C
Temperature at which model
parameters are defined. This can be
overridden in the model control.

TRTOL 7 This only affects transient analysis. It
is a relative value that is used to
determine an acceptable value for the
‘local truncation error’ before an
analysis point is accepted. Reducing
this value cause the simulator to
model the effects of energy storage
elements more accurately at the
expense of simulation time. See
“Accuracy and Integration Methods”
on page 238

TRYTOCOMPACT Off Forces compaction of data for lossy
transmission lines. This speeds up
simulation at the expense of accuracy.

Option name Default
value

Description
204

Chapter 6 Command Reference
.PARAM
.PARAM parameter_name [=] parameter_value [parameter_name [=]
parameter_value]...

Defines a simulation variable for use in an expression. Expressions may be used to
define device parameters, to define model parameters, for arbitrary sources and to
define variables themselves. See “Using Expressions” on page 28 for details.

parameter_name Sequence of alpha-numeric characters. Must begin with a letter
or underscore. May not contain spaces.

parameter_value Either:

A constant

OR

An expression enclosed by '{' and '}'. See “Using Expressions”
on page 28

Examples

.PARAM Vthresh = 2.4

.PARAM Vthresh = {(Vhigh+Vlow)/2}

.PARAM F0 1k Alpha 1 C1 {2*c2}

.PARAM R1 {2/(2*pi*freq*C1*alpha}

VNTOL 1µ Unit = V
The absolute voltage error tolerance.
Circuits with large voltages present
(>100) may benefit from an increase in
this value. See “Accuracy and
Integration Methods” on page 238

VNTOLMAX 1m Unit = V
VNTOL selectively relaxed to this
value if needed to allow transient
analysis to continue.

WIDTH 80 Number of columns used for list file
output. This may be set to any
reasonable value and not limited to the
choice of 80 or 132 as with SPICE2

WIRETABLE none Define filecontaining wire table used
for the digital simulator’s wire delay.
See “Wire Delay” on page 252

Option name Default
value

Description
205

Simulator Reference Manual
Netlist Order

.PARAM controls that resolve to a constant are order independent; they can be placed
anywhere in a netlist. They can even be placed after another .PARAM expression that
depends on its value (but note this does not apply in subcircuits). .PARAM controls
that are defined as an expression that depends on other .PARAMs also defined as an
expression must be placed in sequential order. For example, the following is OK:

.PARAM C2 {C1*alpha*alpha/4}

.PARAM C1 1n

.PARAM alpha 1

.PARAM R1 {2/(2*PI*F0*C2*alpha}

The first .PARAM depends on alpha and C1 which are defined later in netlist. This is
OK (as long as it is not in a subcircuit) because alpha and C1 are constants. The
fourth .PARAM depends on C2 which is defined as an expression. The definition for
must - and does in the above example - come before the definition of R1. The
following would yield an error as the definition for C2 comes after the definition of
R1:

.PARAM R1 {2/(2*PI*F0*C2*alpha}

.PARAM C1 1n

.PARAM alpha 1

.PARAM C2 {C1*alpha*alpha/4}

Note that .PARAMs inside subcircuits are local to the subcircuit. This is explained in
next section.

Subcircuit Parameters

Parameters may be declared within sub circuits. E.g

.subckt ADevice n1 n2 n3 n4

.PARAM Vthresh 3.5

...

...
ends

In the above example, in reference to Vthresh within the subcircuit would use the value
declared by the .PARAM declared inside the subcircuit. That value would not be
available outside the subcircuit definition. Parameters may also be passed to
subcircuits. E.g.

X1 1 2 3 4 ADevice : threshold=2.4

or

X1 1 2 3 4 ADevice params: threshold=2.4

Any reference to threshold within the subcircuit definition would use that value.

Default values for parameters may also be specified in subcircuit definition:

.subckt ADevice n1 n2 n3 n4 params: threshold=2.4

...
206

Chapter 6 Command Reference
.ends

If that subcircuit is called without specifying threshold the default value of 2.4 will
be used. Note that it is not compulsory to declare default values.

Using .PARAM in Schematics

.PARAM controls may be appended to the netlist created by the schematic editor. For
information on how to do this, refer to “Adding Extra Netlist Lines” on page 12.

.PARAM in Libraries

.PARAM controls may be included in libraries specified using .LIB or by global
definitions. SIMetrix will search such libraries for any parameters used in expressions
that are not found in the netlist.

.PRINT
.PRINT TRAN|AC|DC|NOISE|TF vector|{expression} ...

Instructs the simulator to output selected simulation data to the list file in tabulated
form.

Where:

vector Name of vector to print. May be in SIMetrix native format or
traditional SPICE format (see notes below).

expression Arithmetic expression of vectors

Notes

A traditional SPICE2 command, this was not supported by SIMetrix until release 4.0.
It is SPICE2 compatible but also supports some additional features:

• NOISE and TF results may be output as well as TRAN, AC and DC
• You can put expressions as well as single values enclosed in '{' and '}'. E.g.

.PRINT TRAN {vout-q5_c}
You can use the SPICE2 style method of accessing single voltages, differential
voltages and device currents. These are of the form:

Single ended voltage

funcname(nodename)

Differential voltage

funcname(nodename, nodename)

Device current
207

Simulator Reference Manual
funcname(device_name)

Where:

funcname Function to be applied. For available list, see below.

nodename Node name as specified in the netlist.

device_name Name of device for current.

Available functions:

Function
name

Argument Analysis
mode

Meaning

V node name Transient Voltage at node

V node name AC Voltage magnitude at
node

VM node name AC Voltage magnitude at
node

VP node name AC Voltage phase at
node

VR node name AC Real voltage at node

VDB node name AC dbV at node

VG node name AC group delay at node

I two term. device name TRAN Current in device

IB BJT name TRAN Base current

IB MOSFET name TRAN Bulk current

IC BJT name TRAN Collector current

ID MOSFET/JFET name TRAN Drain current

IE BJT name TRAN Emitter current

IG MOSFET/JFET name TRAN Gate current

IS MOSFET/JFET name TRAN Source current

IS BJT name TRAN Substrate current

IM Two term device AC Device current

IP Two term device AC Current phase
208

Chapter 6 Command Reference
.PRINT controls may be placed inside a subcircuit definition in which case the device
and node names refer to local devices and nodes. Output will be listed for every
instance of the subcircuit.

For transient analysis the results are displayed at the interval specified by the time step
parameter on the .TRAN control. If this is zero or omitted, it defaults to (tstop-tstart)/
50. The data is created by interpolation unless the NORAW option (see page 195) is
specified in which case a time step is forced at the time step interval.

Examples

.PRINT TRAN V(VOUT)

.PRINT TRAN VOUT

.PRINT TRAN V(VPos, VNeg)

.PRINT TRAN {Vpos-VNeg}

.PRINT AC VDB(VOUT)

.PZ
.PZ N1 N2 N3 N4 CUR|VOL POL|ZER|PZ

N1, N2 Input nodes

N3, N4 Output nodes

CUR transfer function is of the type (output voltage)/(input current)

VOL transfer function is of the type (output voltage)/(input voltage)

Usually the last parameter would be PZ which instructs the simulator to find both poles
and zeros. The alternatives instruct it to find one or the other. This may be used if the
simulator aborts because it didn't converge on poles or on zeros, at least it can be
instructed to find the other.

To view the results of the pole-zero analysis select the command shell menu Graphs
and Data|List Pole-zero results. The poles and zeros will be listed in complex form.

.SENS
.SENS V(nodename [,refnodename])| I(sourcename)

IR Two term device AC Current real part

II Two term device AC Current imaginary
part

IDB Two term device AC Current dB

IG Two term device AC Current group delay

Function
name

Argument Analysis
mode

Meaning
209

Simulator Reference Manual
This control instructs the simulator to perform a DC sensitivity analysis. In this
analysis mode, a DC operating point is first calculated then the linearised sensitivity of
the specified circuit voltage or current to every model and device parameter is
evaluated. The results are output to a file (SENS.TXT by default but can be changed
with SENSFILE option) and they are also placed in a new data group. The latter allows
the data to be viewed in the message window (type Display) at the command line and
can also be accessed from scripts for further analysis.

.SUBCKT and .ENDS
.SUBCKT subcktname n1 [n2]...
+ [[params:] param_name1 [=] param_value1
+ [param_name2 [=] param_value2]...]

This control begins a subcircuit definition.

subcktname Subcircuit name. This must begin with a letter
but may contain any legal ASCII character
except any whitespace (space, tab) or ' . ' . The
name must be unique i.e. no other subcircuits
may have the same name.

n1, n2 etc. Node names available externally. Must not be
zero.

param_name, param_value Parameter name and value. This sets default
values for parameters used within the
subcircuit. These values can be overridden for
each subcircuit instance. See “Using
Expressions” on page 28 for more info. Note
that it is not compulsory to declare default
values for subcircuit parameters.

IMPORTANT: Either the params: specifier or the first '=' may be omitted but not both.
If both are omitted it becomes impossible for the netlist scanner to tell the difference
between parameter names and node names.

.ENDS

Terminates a subcircuit definition.

A subcircuit consists of a .subckt control followed by a series of device or model
descriptions and terminating in a .ends control. A subcircuit is a circuit that can be
called into the main circuit (or indeed another subcircuit) by reference to its name. The
.subckt control is used to define the subcircuit while a subcircuit call - an 'X' device - is
used to create an instance of that subcircuit. Subcircuits have a number of uses:

• To repeat a commonly used section of circuit.
• To hide detail from the main circuit to aid circuit readability.
• To distribute models of integrated devices such as op-amps.
For a detailed discussion see “Subcircuits” on page 39
210

Chapter 6 Command Reference
Subcircuit definitions usually reside in a text file and are read in as libraries. See User's
Manual for further details.

.TEMP
.TEMP temperature

This control sets the default simulation temperature. Some devices can override this on
a per instance basis. Units are degrees centigrade.

.TF
.TF inner_sweep_spec [V] pos_out_node [VN] neg_out_node
+ [[INSRC] in_source] [F frequency] [SWEEP outer_sweep_spec]

.TF inner_sweep_spec I source [INSRC in_source]
+ [F frequency] [SWEEP outer_sweep_spec]

Spice Compatible:
.TF V(pos_out_node [, neg_out_node]) in_source

.TF I (source) [INSRC] in_source

This control instructs the simulator to perform a small signal transfer function analysis.

pos_out_node Output node.

neg_out_node Output reference node. Defaults to ground if omitted for
standard SPICE syntax.

in_source Name of input source to which input noise will be referred.

inner_sweep_spec See “General Sweep Specification” on page 168 for syntax.
Defines sweep mode.

outer_sweep_spec If specified, analysis will be repeated according to this
specification. See “General Sweep Specification” on page 168
for syntax.

frequency Frequency at which analysis will be performed for non-
frequency sweeps. Default 0.

source Voltage source to specify output current.

Notes

The SIMetrix transfer function analysis remains syntax compatible with the SPICE
version but is substantially enhanced. The SPICE version performs the analysis at a
211

Simulator Reference Manual
single point with frequency = 0. The SIMetrix implementation performs a swept
analysis using the same sweep algorithm used for AC, DC and NOISE.

Transfer function analysis is similar to AC analysis in that it performs a swept small
signal analysis. However, whereas AC analysis calculates the response at any circuit
node from a (usually) single input source, transfer function analysis calculates the
individual responses from each source in the circuit to a single specified output node.
This allows, for example, the series mode gain, common mode gain and power supply
rejection of an amplifier to be measured in one analysis. The same measurements could
be performed using AC analysis but several of them would need to be run. Transfer
function mode also calculates output impedance or admittance and, if an input source
is specified, input impedance.

The names of the output vectors will be of the form
Input voltage, output voltage
source_name#Vgain

Input voltage, output current
source_name#Transconductance

Input current, output voltage
source_name#Transresistance

Input current, output current
source_name#Igain

Output impedance for voltage out will be called Zout. For a current output, the output
admittance will be calculated and will be named Yout.

If an input source is specified the input impedance will be calculated and called Zin.

Note that although the syntax for .TF retains compatibility with SPICE and earlier
versions of SIMetrix, the output provided is slightly different. Firstly, the data is
complex even if F=0 and secondly the names of the output vectors are different as
detailed above.

Examples

SPICE compatible. Outputs results at DC.

.TF V(Vout) Vin

As above but decade sweep from 1k to 100k

.TF FREQ DEC 25 1K 100K V(Vout, 0) Vin

Note that in the above example the '0' in V(Vout, 0) is compulsory. If is omitted, Vin
will be assumed as the reference node.
212

Chapter 6 Command Reference
.TRACE
.TRACE vector_name [vector_name ...] graph_id

Set up a trace. This is graph plot that is updated as the simulation runs.

Where vector_name is the name of a net or pin
graph_id is an integer between 1 and 999 to specify which
graphs traces should use - see explanation below

graph_id is an arbitrary number that makes it possible to direct traces to different
graphs. Two traces with the same id will be always be put in the same graph. Traces
from subsequent simulations with that id will also go to that graph if it still exists
otherwise a new one will be created. To force two traces to go to separate graphs, use
different id's. Note that it doesn't matter what the id's value actually is - it could be 1 or
100 - as long as traces that must go to the same graph use the same value.

Note that the AutoAxis feature available for normal plotting also works for Traces. So
if a current and voltage trace are both directed to the same graph, separate axes will be
created for them.

Examples

.trace v1_p 1 q1#c 1

In the above example a voltage - v1_p - and a current - q1#c - will both be traced on the
same graph. As they have different units, the AutoAxis feature will force the curves to
two different y axes.

.trace v1_p 1 q1#c 2
In this example the voltage and current traces will be directed to different graph sheets.

Notes

The .TRACE control has now been largely superseded by the .GRAPH control
(page 177) which is much more flexible. However, the .TRACE control is still useful
for specifying multiple traces on a single line. .GRAPH can only specify one signal at
a time.

.TRAN
.TRAN tstop

OR
.TRAN tstep tstop [tstart [tmaxstep]] [UIC]
+ [SNAPSTEP sstart sstop sstep]
+ [SNAPSHOT slist]
+ [SNAPMODE=DCOP|SAVESTATE|ALL]
+ [FAST=fast_start] [RTNSTEP=rtnstep [RTNSTOP=rtnstop]
+ [RTNSTART=rtnstart]] [SWEEP sweep_spec]
213

Simulator Reference Manual
This control instructs the simulator to perform a transient analysis. In this mode the
simulator computes the behaviour of the circuit over the specified time interval. The
circuit's currents and voltages are calculated at discrete time points separated by a
variable time step. This time step is adjusted automatically by the simulator according
to circuit activity. The circuit may contain any number of time varying voltage and
current sources (stimuli) to simulate external signals, test generators etc.

tstep This defines the interval for tabulated results specified by the
.PRINT control. It also defines the output interval for all data if
the NORAW option is specified. If there are no .PRINT controls
in the netlist and NORAW is not being used, this can be set to
zero or omitted altogether as in form 1 above. If set to zero it
defaults to (tstop-tstart)/50

tstep is also used to define default values for pulse and
exponential stimuli.

Note that if tstep and NORAW are specified a time point is
forced at tstep intervals to calculate the output. This differs from
other SPICE programs which generate output at tstep by
interpolation.

tstep does not control the time step used by the simulator. This is
controlled automatically according to circuit activity.

tstop Stop time. Note that if running in GUI mode, a transient analysis
can be restarted from the front end using the RestartTran
command. See User's Manual for details.

tstart Start time. This is the time at which the storage of transient
analysis outputs commences. It is not the time at which the
analysis begins; this is always zero. tstart is zero if it is omitted.

tmaxstep Maximum time step. The simulator uses the largest time step
possible to achieve the required accuracy but will not increase it
beyond this value. If not specified it is set to (tstop-tstart)/50 .

UIC If specified a DC operating point is not calculated and initial
condition specifications are used instead

fast_start If specified, the simulation will run at reduced accuracy but
higher speed for the time specified by this parameter. The
reduced accuracy is implemented by altering a number of
tolerances and internal parameters. See notes below for more
details.

rtnstep If this parameter is specified, Real Time Noise analysis will be
enabled. Note that this feature is not available with all versions
of the program. rtnstep specifies the step size of the noise
generators. See “Real Time Noise Analysis” on page 216.

rtnstart Specifies time at which real time noise generators are switched
on.

rtnstop Specifies time at which real time noise generators are switched
off.
214

Chapter 6 Command Reference
sstart Time at which snapshot saving begins. See below for
information on snapshots.

sstop Time at which snapshot saving stops. See below for information
on snapshots

sstep Interval between snapshot points. See below for information on
snapshots

slist One or more values defining absolute times at which snap shots
are saved. See below for information on snapshots

DCOP, SAVESTATE, ALL
Snapshot mode.
DCOP: Saves bias point information only.
SAVESTATE: Saves state of circuit for subsequent reload for
small signal analysis
ALL: Both of the above

The default is DCOP

Fast Start

If the FAST parameter is specified, the simulation will begin with a number of
tolerances and internal parameters altered to speed up the simulation at the expense of
accuracy. Just before the end of the fast start period, these tolerances and parameters
will be gradually restored to their normal values. Fast start is an aid for simulating
circuits such as switching power supplies and oscillators for which the initial start up
period is not of interest but takes a long simulation time. Note that although the fast
start interval can run sometimes as much as twice as quickly as normal, the fact that
accuracy is impaired can mean that the final steady state reached may not be very
accurate. This means that after the fast start period, an additional settling time may be
required for full accuracy to be reached.

Fast start sets the values of POINTTOL and RELTOL according to the value specified
by FASTPOINTTOL and FASTRELTOL respectively.

Snapshots

This feature allows the state of a simulation to be saved at user specified times during a
transient analysis. The states saved can subsequently be reloaded to perform small
signal AC analyses.

This allows the small signal response of a circuit to be examined at any point during a
transient analysis. This is especially useful in situations where a circuit is found to be
unstable in a transient run but this instability cannot be reproduced at the operating
point usually derived for an AC analysis.

The bias point information at the snapshot time may also optionally be saved. This
information is output to the list file.

To specify snapshot output, specify either the SNAPSHOT or SNAPSTEP keywords
with their associated parameters.
215

Simulator Reference Manual
To initialise a small signal analysis with snapshot data, you must specify the
SNAPSHOT step mode of a multi-step analysis. See “Multi Step Analyses” on
page 170 for details

Real Time Noise Analysis
This is an extension of transient analysis rather than a separate analysis mode. When
activated, real time noise sources are added to all noisy devices with a magnitude and
frequency distribution calculated using the same equations used for small signal
analysis. This allows noise analysis to be performed on sampled data systems and
oscillators.

To use real time noise analysis, the following parameters may be added to the .TRAN
analysis line.

RTNstep Source step size in seconds. This will need to be small enough
to cover the frequency range of interest. The noise magnitude
starts rolling off at about 1/3*stepsize. Default=0 i.e. real time
noise analysis disabled.

RTNstart Optional. Time after analysis start at which the noise sources
will be enabled. Default = zero

RTNstop Optional. Time after analysis start at which the noise sources
will be disabled. Default = stop time.

The parameters added to the .TRAN line must be named in the same way as .MODEL
parameters are named.

Example

.TRAN 0 1m RTNstep=1u RTNstart=500u

Analysis time 1m, RTN step size 1u, real time sources start at 500u. The step size
parameter - i.e. the first parameter on the .TRAN line - must be supplied if real time
noise parameters are to be included. This is only to comply with the syntax rules not
because the step size is needed for any other purpose. In most cases, just set it to zero
as in the above example.

Test Results

To test real time noise and verify it's accuracy we ran a test on a number of circuits
which compare AC noise with real time noise. The procedure was to run real time
noise analysis 50 times then plot the averaged Fourier spectrum. This test was repeated
for different transient run times and step sizes to build a noise spectrum over several
decades. The graph below is the result of one such test. This was carried out on the
BSIM3 buffer circuit provided in one of the examples except that a value for AF - the
flicker noise parameter - was added to the models. As can be seen in the graph below
the real time noise results strongly follow the AC noise results.

Similar tests were performed on circuits containing each of the major noise generating
devices including diodes, BJTs, JFETs, resistors (including its flicker noise parameter)
and also the Philips MOS9 and MEXTRAM devices. All showed results similar to
below with a close similarity between AC noise and real time noise.
216

Chapter 6 Command Reference
These tests were performed using a simple script. This script is called rtntest.sxscr and
can be found on the installation CD at SCRIPTS\EXAMPLES.

Frequency / Hertz

1k 10k 100k 1M 10M 100M 1G

20n

40n

100n

200n

400n

1µ

2µ

4µ

10µ

AC Noise result

20uS RTNstep=20nS

2mS RTNstep=2uS

200n RTNstep=100p
217

Simulator Reference Manual
Chapter 7 Monte Carlo Analysis

Overview
Monte Carlo analysis is a procedure to assess manufacturing yields by repeating
simulation runs with varying applied random variations to component parameters. The
technique is very powerful and usually gives a more realistic result than worst-case
analysis which varies component values to their extremes in a manner which produces
the worst possible result.

The implementation of Monte Carlo analysis in SIMetrix has been designed to be
quick to set up for simple cases while still providing the required flexibility for more
advanced requirements as might be required for integrated circuit design.

SIMetrix offers a level of flexibility for tolerance specification that cannot be found in
other products including some high priced UNIX based applications. It is possible, for
example, for different model parameters to be dependent on a single random variable.
This makes it possible to model the fact that a number of model parameters might be
dependent on a single physical characteristic, for example, the base width of a bipolar
transistor. Of course, lot tolerances are also implemented accounting for the matching
of devices in integrated circuits and other multiple components built onto a common
substrate. However, in many products, lot tolerances can only be applied to the same
type of device. In SIMetrix it is possible to model parametric relationships between
different types of device which occur in integrated circuits but which are rarely taken
into account.

As well as conventional multiple step Monte Carlo analysis, single step Monte Carlo
sweeps may also be performed. These are available for the four swept modes, .AC,
.DC, .NOISE and .TF. For example, a Monte Carlo analysis of the DC offset voltage of
an amplifier can be performed using a single run of .DC using a special sweep mode.
This is dramatically faster than the alternative of repeated .OP runs. This type of
analysis can also be used to analyse the gain of an amplifier at a single frequency using
.AC or .TF or even the noise, again at a single frequency, using .NOISE.

Specifying a Monte Carlo Run
Monte Carlo runs are invoked in the same way as multi-step analyses (see “General
Sweep Specification” on page 168). The basic syntax is:

.analysis_name analysis_parameters SWEEP MONTE num_runs

Where:

.analysis_name Dot control for analysis. Either .TRAN, .AC, .DC, .NOISE, .TF

analysis_parameters Specific parameters for that analysis

num_runs Number of runs
218

Chapter 7 Monte Carlo Analysis
Examples

Run 10 Monte Carlo runs for 1mS transient analysis

.TRAN 1m SWEEP MONTE 10

100 Runs of a DC Sweep

.DC V1 0 5 0.01 SWEEP MONTE 100

AC sweep of voltage source V5 from -300mV to 300mV. Repeat 50 times

.AC DEVICE=V5 LIN 100 -300m 300m F=100000 SWEEP MONTE 50

Specifying a Single Step Monte Carlo Sweep
Monte Carlo sweep is one of the six modes available to the swept analysis modes, .AC,
.DC .NOISE and .TF. The other modes are explained in “General Sweep Specification”
on page 168. The general syntax is:

.analysis_name MONTE num_points analysis_parameters

Where:

.analysis_name Dot control for analysis. Either .AC, .DC, .NOISE, .TF

analysis_parameters Specific parameters for that analysis

num_points Number of points in sweep

Examples

1000 point Monte Carlo sweep.

.DC MONTE 1000

AC Monte Carlo sweep 100 steps. Frequency = 10K.
This is useful if - say - you are interested in the gain of an amplifier at one frequency
and it needs to lie within a defined tolerance. Previously you would need to repeat an
AC sweep at a single frequency to achieve this which could take a long time especially
if the circuit has a difficult to find operating point. The analysis defined by the
following line will take very little time even for a large circuit.

.AC MONTE 100 F=10K

Log File
Unless explicitly disabled with the NOMCLOG option, a log file will always be
generated for Monte Carlo analyses. It has the default name of MCLOG.TXT but this
can be changed with the MCLOGFILE option. Here is an example of an actual output

Run 1: Seed=1226978751
Run 2: Seed=1521158126
219

Simulator Reference Manual
 Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q10.D1:bv 5.9 5.9185638 (0.314641%) 5.8463766 (-0.90887%)
Q10.Q1:bf 220 283.10907 (28.68594%) 130.81497 (-40.5386%)
Q10.Q1:is 380a 368.7899a (-2.95004%) 219.7988a (-42.1582%)
Q11.D1:bv 5.9 5.9425623 (0.721395%) 5.8262401 (-1.25017%)
Q11.Q1:bf 220 285.27225 (29.66921%) 129.91303 (-40.9486%)
Q11.Q1:is 380a 354.1045a (-6.8146%) 220.1177a (-42.0743%)
Q12.D1:bv 5.9 5.8957932 (-713ppm) 5.787891 (-1.90015%)
Q12.Q1:bf 220 280.37304 (27.44229%) 130.28208 (-40.7809%)
Q12.Q1:is 380a 359.6985a (-5.34249%) 225.8706a (-40.5604%)
Q13.D1:bv 5.9 5.9020281 (343.74ppm) 5.8132485 (-1.47036%)
Q13.Q1:bf 220 280.04731 (27.29423%) 129.20488 (-41.2705%)
Q13.Q1:is 380a 367.7199a (-3.2316%) 222.1358a (-41.5432%)
Q14.D1:bv 5.9 5.9178142 (0.301936%) 5.8096709 (-1.531%)
Q14.Q1:bf 220 276.57192 (25.71451%) 129.93424 (-40.939%)
Q14.Q1:is 380a 364.6015a (-4.05223%) 222.7107a (-41.3919%)
Q4.D1:bv 5.9 5.9398543 (0.675496%) 5.8354342 (-1.09434%)
Q4.Q1:bf 220 277.08078 (25.94581%) 127.82878 (-41.896%)
Q4.Q1:is 380a 362.7751a (-4.53287%) 225.9888a (-40.5293%)
Q7.D1:bv 5.9 5.9281884 (0.47777%) 5.8421649 (-0.98026%)
Q7.Q1:bf 220 276.66227 (25.75558%) 129.29449 (-41.2298%)
Q7.Q1:is 380a 360.4184a (-5.15304%) 227.0065a (-40.2614%)
Q8.D1:bv 5.9 5.8811702 (-0.31915%) 5.8260238 (-1.25383%)
Q8.Q1:bf 220 280.33672 (27.42578%) 131.98533 (-40.0067%)
Q8.Q1:is 380a 361.0834a (-4.97804%) 218.837a (-42.4113%)
Q9.D1:bv 5.9 5.9001842 (31.215ppm) 5.8517296 (-0.81814%)
Q9.Q1:bf 220 281.41183 (27.91447%) 128.02565 (-41.8065%)
Q9.Q1:is 380a 358.8014a (-5.57857%) 221.6128a (-41.6809%)

The ‘Device’ column provides the name of the device and its model or instance
parameter that is being reported. Q10.D1 is a diode ref D1 inside subcircuit Q1, BV is
the model parameter.

The ‘Nom’ column displays the nominal value for that parameter.

Two columns are listed for each run. ‘Value’ is the actual value of the parameter and
‘(Dev.)’ is the deviation from the nominal.

The ‘Seed’ values displayed for each run at the top are the values used to seed the
random number generator. These can be used to set the SEED option in order to repeat
a particular random set. See below for more details.

Seeding the Random Number Generator
The random variations are created using a pseudo random number sequence. The
sequence can be seeded such that it always produces the same sequence of numbers for
a given seed. In Monte Carlo analysis, the random number generator is seeded with a
new value at the start of each run and this seed value is displayed in the log file (see
above). It is also possible to fix the first seed that is used using the SEED option. This
makes it possible to repeat a run. To do this, note the seed value of the run of interest
then add the line:
220

Chapter 7 Monte Carlo Analysis
.OPTIONS SEED=seed_value

For example if you wanted to repeat run 2 in the above example you would add this
line:

.OPTIONS SEED=1521158126

The first run of each Monte Carlo analysis will use the same random values as run 2
above. Note this assumes that only changes in values are made to the circuit. Any
topology change will upset the sequence.

Specifying Tolerances

Overview
Tolerances for Monte Carlo analysis may be specified by one of the following
methods:

1. Using a distribution function in an expression.

2. Using the device parameters TOL, MATCH and LOT

3. Using a tolerance model

1. above is new to release 4 and is the most general and flexible. 2 and 3 are provided
primarily for backward compatibility but may also be more convenient in some
circumstances.

Distribution Functions
To specify Monte Carlo tolerance for a model or device parameter, define the
parameter using an expression (see “Using Expressions” on page 28) containing one of
the following 12 functions:

Name Distribution Lot?

GAUSS Gaussian (3-sigma) No

GAUSSL Gaussian (3-sigma) Yes

UNIF Uniform No

UNIFL Uniform Yes

WC Worst case No

WCL Worst case Yes

GAUSSE Gaussian logarithmic (3-
sigma)

No

GAUSSEL Gaussian logarithmic (3-
sigma)

Yes
221

Simulator Reference Manual
The logarithmic versions are included for compatibility with release 3.1 and earlier but
are nevertheless useful for some parameters which are logarithmic in nature such as the
IS parameter for PN junctions.

The graphs below show the characteristics of the various distributions. The curves
were plotted by performing an actual Monte Carlo run with 10000 steps.

UNIFE Uniform logarithmic No

UNIFEL Uniform logarithmic Yes

WCE Worst case logarithmic No

WCEL Worst case logarithmic Yes

Name Distribution Lot?

k

0

1

2

3

4

5

V 500mV/div

0 0.5 1 1.5 20

50

100

150

200

250

300

350

Gauss

Unif

GaussE

UnifE

WC

WCE
222

Chapter 7 Monte Carlo Analysis
Examples

Apply 50% tolerance to BF parameter of BJT with gaussian distribution.

.MODEL NPN1 NPN IS=1.5e-15 BF={180*GAUSS(0.5)}

Lot Tolerances

The lot versions of the functions specify a distribution to be applied to devices whose
tolerances track. These functions will return the same random value for all devices that
reference the same model.

Alternatively, a device can be given a lot value as was required with earlier versions of
SIMetrix. Devices must have the same lot value, and also reference the same model, in
order to track. This allows, for example, two or more chips using the same process to
be simulated together without having to rename the models.

Examples

Specify 50% uniform lot tolerance and 5% gaussian device tolerance for BF parameter

.MODEL NPN1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

Here is an abbreviated log file for a run of a circuit using 2 devices referring to the
above model:

 Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 93.308486 (-48.162%) 241.3287 (34.0715%)
Q2:bf 180 91.173893 (-49.3478%) 245.09026 (36.16126%)

 Run 3 Run 4
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 185.95824 (3.310133%) 210.46439 (16.92466%)
Q2:bf 180 190.8509 (6.02828%) 207.04202 (15.02335%)

For the four runs BF varies from 91 to 245 but the two devices never deviate from each
other by more than about 2.7%.

Notes

The tracking behaviour may not be as expected if the model definition resides within a
subcircuit. When a model is defined in a subcircuit, a copy of that model is created for
each device that calls the subcircuit. Here is an example:

XQ100 VCC INN Q100_E 0 NPN1
XQ101 VCC INP Q101_E 0 NPN1

.SUBCKT NPN1 1 2 3 SUB
Q1 1 2 3 SUB N1
Q2 SUB 1 2 SUB P1

.MODEL N1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

.ENDS
223

Simulator Reference Manual
In the above, XQ100 and XQ101 will not track. Two devices referring to N1 inside the
subcircuit definition would track each other but different instances of the subcircuit
will not. To make XQ100 and XQ101 track, the definition of N1 should be placed
outside the subcircuit. E.g.

XQ100 VCC INN Q100_E 0 NPN1
XQ101 VCC INP Q101_E 0 NPN1

.SUBCKT NPN1 1 2 3 SUB
Q1 1 2 3 SUB N1
Q2 SUB 1 2 SUB P1

.ENDS

.MODEL N1 NPN IS=1.5E-15 BF={180*GAUSS(0.05)*UNIFL(0.5)}

Arguments to Distribution Functions - the ‘key’ Value

Each of the distribution functions takes 1 or 2 arguments. The first argument is the
tolerance while the second is an optional key value. The key is an arbitrary number -
preferably an integer - which, in effect, names a random variable for which the results
of that distribution function will be based. Another call to the same distribution
function in the same model and with the same key value, will also be based on the
same random variable and return the same value for each Monte Carlo step. The key
make it possible to accommodate parameters that tend to track each other possibly
because they depend on the same physical characteristic of the device.

Example

Suppose the BF and TF parameters of a BJJT tend to track each other. That is a 50%
increase in BF tends to be accompanied by a 50% increase in TF (there is no physical
basis for this; it's just an example). The following model definition would implement
this:

.MODEL NPN1 NPN BF={UNIF(0.5,1)*180} TF={1e-11*UNIF(0.5,1)}

For all devices using that model, BF and TF will always have a fixed relationship to
each other even though each parameter can vary by +/-50% from one device to the
next.

Here is the log of a run carried out on a circuit with two of the above devices:

 Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 226.52869 (25.84927%) 117.2733 (-34.8482%)
Q1:tf 10p 12.58493p (25.84927%) 6.515184p (-34.8482%)
Q2:bf 180 179.58993 (-0.22782%) 164.21785 (-8.76786%)
Q2:tf 10p 9.977218p (-0.22782%) 9.123214p (-8.76786%)

Notice that the BF and TF parameters always deviate by exactly the same amount for
each device. However, the two devices do not track each other. If this were needed, the
lot versions of the functions could be used instead. E.g.

.MODEL NPN1 NPN BF={UNIFL(0.5,1)*180} TF={1e-11*UNIFL(0.5,1)}

This is the log for such an example:
224

Chapter 7 Monte Carlo Analysis
 Run 1 Run 2
Device Nom. Value (Dev.) Value (Dev.)
Q1:bf 180 104.57858 (-41.9008%) 93.855425 (-47.8581%)
Q1:tf 10p 5.809921p (-41.9008%) 5.21419p (-47.8581%)
Q2:bf 180 104.57858 (-41.9008%) 93.855425 (-47.8581%)
Q2:tf 10p 5.809921p (-41.9008%) 5.21419p (-47.8581%)

Distribution Functions and .PARAM

The key mechanism described above only works for parameters within the same
model. If you wish to define a fixed relationship between parameters of different
models then you can define a random variable using .PARAM.

Using a distribution function in a .PARAM expression in effect creates a global
random variable. .PARAM expressions are only evaluated once for each Monte Carlo
step so the parameter it defines will be the same value wherever it is used.

Note that .PARAM values used for this purpose should be defined at the top level i.e.
not in a sub-circuit. If defined in a sub-circuit they will be local to that sub-circuit so
each instance of the sub-circuit will use its own random variable.

TOL, MATCH and LOT Device Parameters
These parameters may be used as a simple method of applying tolerances to simple
devices such as resistors. The TOL parameter specifies the tolerance of the device's
value. E.g.

R1 1 2 1K TOL=0.05

The above resistor will have a tolerance of 5% with a gaussian distribution by default.
This can be changed to a uniform distribution by setting including the line:

.OPTIONS MC_ABSOLUTE_RECT

 in the netlist.

Multiple devices can be made to track by specifying a LOT parameter. Devices with
the same LOT name will track. E.g.

R1 1 2 1K TOL=0.05 LOT=RES1
R2 3 4 1k TOL=0.05 LOT=RES1

R1 and R2 in the above will always have the same value.

Deviation between tracking devices can be implemented using the MATCH parameter.
E.g.

R1 1 2 1K TOL=0.05 LOT=RES1 MATCH=0.001
R2 3 4 1k TOL=0.05 LOT=RES1 MATCH=0.001

R1 and R2 will have a tolerance of 5% but will always match each other to 0.1%.
MATCH tolerances are gaussian by default but can be changed to uniform by
specifying
225

Simulator Reference Manual
.OPTIONS MC_MATCH_RECT

Distributions are always the logarithmic versions as described in “Distribution
Functions” on page 221

If using device tolerance parameters, note that any absolute tolerance specified must be
the same for all devices within the same lot. Any devices with the same lot name but
different absolute tolerance will be treated as belonging to a different lot. For example
if a circuit has four resistors all with lot name RN1 but two of them have an absolute
tolerance of 1% and the other two have an absolute tolerance of 2%, the 1% devices
won't be matched to the 2% devices. The 1% devices will however be matched to each
other as will the 2% devices. This does not apply to match tolerances. It's perfectly OK
to have devices with different match tolerances within the same lot.

Tolerance Models
Overview

Tolerance models are an alternative method of applying tolerances to device models to
the distribution function method described in an earlier section. The distribution
function method is in general more flexible and is recommended for most applications.
However, the tolerance model method has some advantages as follows:

• It is compatible with earlier SIMetrix versions from 2.0 to 3.1
• It allows tolerances to be applied to devices without modifying the main model.

Definition

The format for a tolerance model:

.MODEL modelname modeltype.tol parameter_list

modelname must be the same name as the normal model for the device while
modeltype must be the same type. So for example a tolerance model for a Q2N2222
transistor might be:

.MODEL Q2N2222 npn.tol BF=0.5

This will vary the BF parameter over a +/- 50% range for all BJTs referring to the
Q2N2222 model. The above model only specifies one parameter but you can place any
parameter specified for that device in a tolerance model.

For MOSFETs the level number must be included with the tolerance model otherwise
the model will be ignored.

Important note

Note that tolerances will only be applied to parameters explicitly specified in the base
model for the device. Tolerances will not be applied to default values. If the base
model for the Q2N2222 device in the above example is:
226

Chapter 7 Monte Carlo Analysis
.MODEL Q2N2222 npn (IS=2.48E-13 VAF=73.9 NE=1.2069
+ TF=4.00E-10)

The BF parameter in the tolerance model would not be used as it is not specified in the
base model. If the base model was modified to:

.MODEL Q2N2222 npn (IS=2.48E-13 VAF=73.9 NE=1.2069
+ TF=4.00E-10) BF=400

Then the BF tolerance would be applied.

Matching Devices Using Tolerance Models

To match devices with tolerances defined using a tolerance model, specify the LOT
parameter on the device line. E.g.

Q1 1 2 3 0 Q2N2222 LOT=lot1
Q2 4 5 6 0 Q2N2222 LOT=lot1

.MODEL Q2N2222 npn.tol BF=0.5

In the above example the BF parameter for Q1 and Q2 will always be the same.

To specify a deviation for matched devices requires a match tolerance model
definition. This is of the form:

.MODEL modelname modeltype.match parameter_list

modelname must be the same name as the base model for the device while modeltype
must be the same type. So for example a matching tolerance model for a Q2N2222
transistor might be:

.MODEL Q2N2222 npn.match BF=0.5

Note that the components will only be matched if they all refer to the same model. Any
components with the same lot name but referring to a different model treated as if they
belong to a different lot.
227

Simulator Reference Manual
Chapter 8 Convergence and Accuracy

Overview
In transient and DC analyses, an iterative method is used to analyse the circuit.
Generally, iterative methods start with an initial guess for the solution to a set of
equations and then evaluate the equations with that guess. The result of that evaluation
is then used to derive a closer estimate to the final solution. This process is repeated
until a solution is found that is within the error tolerance required. SIMetrix and SPICE
use a technique known as Newton-Raphson1 iteration which usually converges
extremely rapidly. However, there are occasions when this process is either
unreasonably slow or fails altogether. Under these circumstances the simulation will
abort.

SIMetrix offers superior convergence to all other products in its price bracket and
possibly all PC based simulators generally. SIMetrix passes 100% of the circuits in the
CircuitSim90 benchmark suite compared with about 60% for unmodified SPICE3.
This performance has been achieved as a result of the following developments to the
simulator core.

• Automatic pseudo transient analysis algorithm for operating point solution. See
below for details.

• Enhancements to GMIN and source stepping algorithms to use a variable step
size. (The standard SPICE3 variants use a fixed step).

• Junction GMIN DCOP Convergence Method
• Proprietary enhancements to transient analysis algorithm.
• Improvements to device models to remove discontinuities.
With these improvements, convergence failure with SIMetrix is extremely rare.
However, it is impossible to eliminate this problem altogether and there still remain
some circuits which fail.

In this chapter we explain some of the causes of non-convergence and some of the
strategies SIMetrix uses to prevent it. Also explained is what to do in the rare event
that convergence fails.

DC Operating Point

Overview
As explained in “DC Operating Point Algorithms” on page 235 SIMetrix has four
different algorithms at its disposal to solve the DC operating point. For this analysis
mode to fail, and assuming the default settings are being used, all four algorithms must
fail.

1. Sir Isaac Newton 1674-1721 and Joseph Raphson 1648-1715. This algorithm has been
around somewhat longer than circuit simulators!
228

Chapter 8 Convergence and Accuracy
The following sections describe the possible reasons for failure of each mode and what
can be done about them.

The general procedure is as follows:

1. Check your circuit. Check that all components are the correct way around and
have the correct values. Make sure you haven't used 'M' when you meant 'Meg'.

2. Refer to section “Source and GMIN Stepping” and see if GMIN or source
stepping can be made to work.

3. Refer to section “Pseudo Transient Analysis” to get pseudo transient analysis
converging.

4. Contact technical support. We don't officially offer a convergence fixing service
and reserve the right to decline help. However, we are always interested in non-
converging circuits and usually we will look at your circuit to see if we can
identify the problem.

Source and GMIN Stepping
By default, if these modes fail, SIMetrix will carry on and attempt pseudo transient
analysis. It will not do so only if instructed not to using the dcopSequence option (See
“Controlling DC Method Sequence” on page 237). Pseudo transient analysis usually
succeeds but sometimes can take a long time so you may prefer to get one of these
methods working instead. Also, if pseudo transient analysis fails it is desirable to first
see if GMIN or source stepping can be made to work.

There are a few options you can set to encourage these modes to converge. These are

It is only worth changing gminMaxIters or sourceMaxIters if the iteration limit is
actually being reached. Often GMIN and source stepping fail to converge before the
iteration limit is reached. To find out, select the command shell menu Simulator|Show
Statistics. This displays, amongst other things, the number of iterations used for GMIN
and/or source stepping. If they exceed 1000 then the iteration limit has been reached.
This means that GMIN/source stepping may have succeeded if it had been given a
chance.

Name Default Set to What it does

GMINSTEPITERLIMIT 20 100 The number of iterations
attempted for each
GMIN step

GMINMAXITERS 1000 0 (equivalent to
infinity)

Total number of
iterations allowed for
GMIN stepping

SOURCEMAXITERS 1000 0 (equivalent to
infinity)

Total number of
iterations allowed for
source stepping
229

Simulator Reference Manual
Pseudo Transient Analysis
Pseudo transient analysis is the most powerful method known and it is rare for it to fail.
It is not however infallible and can go wrong for the following reasons:

1. The transient analysis itself failed to converge. (This is rare)

2. The circuit oscillates

Convergence failure in pseudo transient analysis

You will get the error message

Cannot find DC operating point
No convergence in pseudo transient analysis

The reasons why this may happen are the same as for transient analysis and are
covered in “Fixes for Transient Non-convergence” on page 234.

Circuit oscillation

You will see the message

Cannot find DC operating point
Iteration limit exceeded in pseudo transient analysis

The circuit can oscillate because:

1. It is designed to i.e. it is or has an oscillator

2. It is supposed to be stable but passes an unstable region during supply ramping

3. It is supposed to be stable but has a fault in its design

4. It is stable but is made unstable by the capacitors added during the pseudo
transient analysis

If the circuit is an oscillator

If 1. then you must disable the oscillator during the DC solution. You can do this by
one of the following methods:

1. Apply an initial condition to a point on the circuit that will break the oscillator's
feedback loop.

2. Use the capacitor/inductor PTAVAL parameter to change its value during pseudo
transient analysis. This parameter can be applied to a component or components
that form part of the oscillator. In the netlist the parameter is applied at the end of
the component line. E.g for a capacitor:

C12 N2 N6 1.2n PTAVAL=1

In the above a 1.2n capacitor will take the value of 1 farad during pseudo
transient analysis.
230

Chapter 8 Convergence and Accuracy
The circuit is not supposed to be an oscillator

If the circuit does not have any intentionally unstable elements then diagnosis of the
problem is a little harder. Firstly, you need to rule out 4. above as a possible cause. As
explained in “DC Operating Point Algorithms” on page 235, SIMetrix adds its own
capacitors to your circuit during pseudo transient analysis in order to overcome
potential problems with regenerative action. The problem is that these added capacitors
can themselves make a circuit unstable. So the first thing to try is to inhibit the addition
of these capacitors. To do this, add the following line to the netlist (See “Adding Extra
Netlist Lines” on page 12 to find out how to add to a schematic).

.OPTIONS PTACONFIG=1

then re-run the simulation.

The circuit is not supposed to be an oscillator but it is

If this fails, then life gets even more complicated! If it fails with the message

Iteration limit exceeded in pseudo transient analysis

then it is very likely that the circuit is oscillating or entering an unstable region. If a
different message is displayed go to “The circuit doesn't oscillate but still doesn't
converge” below. To allow diagnosis of what is happening SIMetrix provides a method
of analysing the circuit during the pseudo transient ramp. By default, no data is output
during pseudo transient analysis but this can be changed as follows:

1. Set the analysis mode to DC operating point only.

2. Add the simulator option ptaOutputVecs by adding the following line to the
netlist:

.OPTIONS PTAOUTPUTVECS

3. Now run the simulation for a while or until it stops.

You can now probe the circuit in the normal way to see what is oscillating. Once the
oscillation has been fixed, you should be able to simulate the circuit successfully.

The circuit doesn't oscillate but still doesn't converge

As there are no added capacitors, there is a risk that pseudo transient analysis can fail
for the same reason that GMIN and source stepping sometimes fail. In this case you
will get the message:

No convergence in pseudo transient analysis

If this happens your only recourse is the final desperation measure. This is to repeat the
simulation with all valid values of ptaConfig from 2 to 15. (You can skip 7 as this is the
default). ptaConfig is a simulator option that controls some of the parameters used in
pseudo transient analysis. Most circuits pass for all settings but a few are more
selective.
231

Simulator Reference Manual
Accept Pseudo Transient Unconditionally

You can specify pseudo transient analysis to be accept unconditionally at some time
after it has started. This is often a good soultion to problems caused by circuit
oscillation especially if the oscillation is small and unintended. To accept pseud
transient unconditionaly, set the option:

.OPTIONS PTAACCEPTAT=time

Specify a time value that is adequate for the circuit state to settle as much as possible.

Junction Initialised Iteration
By default, this is the first method to be tried. If it fails, SIMetrix will then attempt
source stepping, GMIN stepping and finally pseudo transient analysis. Usually one of
these other methods will succeed and it is not worth spending time getting this method
to work.

If it does work, however, this is usually the fastest method and this can be put to good
use for repetitive runs e.g. Monte Carlo. It can be made to succeed using nodesets (see
next section) and with a wisely chosen selection it is possible to speed up repetitive
runs. Assuming one of the other methods does complete to a solution, the best way of
creating nodesets is by using the SaveRHS command. This is explained in the next
section.

Using Nodesets
Nodesets have two uses, one to aid convergence and the other to bias the solution in
circuits that have more than one stable state.

Initially nodesets work exactly the same way as initial conditions. The nodeset voltage
is applied via a 1 Ohm (by default) resistor and the solution is completed to
convergence (by any of the methods). The nodeset is then released and the solution
repeated. If the nodeset voltage is close to the actual solution the convergence of the
second solution should be rapid.

With SIMetrix, it is rarely necessary to use nodeset's to find the DC solution of a
circuit. They can, however, be useful for speeding up the operating point analysis for
circuit that have already been solved. You may wish to do this for a Monte-Carlo
analysis, for example.

SIMetrix provides a means of creating nodeset's using the SaveRHS command. To
make use of this, proceed as follows:

1. Run a DC operating point analysis

2. Save the solution to a file using the SaveRhs command as follows:

SaveRhs /nodeset RHS.TXT

This will save to the file RHS.TXT a .nodeset control specifying the solution at
each node.
232

Chapter 8 Convergence and Accuracy
3. Paste the contents of RHS.TXT to the netlist. Alternatively, include the file using
the .INC control. (See “Adding Extra Netlist Lines” on page 12 to find out how
to add to a schematic).

If you now repeat the DC analysis, you should now find that the solution is very rapid.
Depending on the nature of your circuit, you may also find that the solution is found
easily even if you modify the circuit. This is not, however, guaranteed.

Transient Analysis

What Causes Non-convergence?
Fundamentally there are four reasons for convergence failure in transient analysis.

1. There is no solution to the circuit within the numerical range of the computer
(approx. +/- 10308).

2. One or more device models contains a discontinuity or (less of a problem) a
discontinuity in its first derivative.

3. The circuit has a discontinuity caused by undamped regenerative action.

4. The solution matrix is ill-conditioned and the machine does not have sufficient
accuracy to solve it to the required tolerance.

1. and 3. above are circuit problems. A trivial example of 1. is a PN junction biased by
a large voltage. Without any series resistance, the voltage does not need to be very high
for the current in the device to exceed the range of the machine. An example of 3. is a
bistable circuit where the device capacitances are not modelled. The action of
switching state would theoretically occur in zero time, a situation the simulator cannot
be guaranteed to handle. Note also that negative valued components can cause 1. or 3.
to occur.

2. is usually a software problem that the user can do little about. However, we are not
aware of any discontinuities in the standard devices and have removed the ones we
have found in the original SPICE3 code. It is possible to create a device with the
arbitrary source that contains discontinuities. If your circuit has any of these devices in
it you should check the equations for discontinuous behaviour. In particular the
functions SGN() and U() are discontinuous and should be avoided.

4. is probably the most common cause of convergence failure in most other SPICE
products but is rare in SIMetrix. This is because we have done an extensive amount of
work to eradicate the problem.

Nevertheless we still occasionally see circuits that fail. Usually they have one, or more
likely, a combination of the following:

Very small resistors especially if they are not connected to ground.
Very large capacitors especially if they are not connected to ground.
Very large inductors especially if they are not connected to ground.
Circuit forced to use very small time steps perhaps because of fast rise/fall times.
Very large currents/voltages
Very high gain loops.
233

Simulator Reference Manual
By ‘very’ in the above we mean extreme. 1000V is not a very large voltage but
1000MV volts is. 1mΩ is not particularly small but 1pΩ is. If your circuit has any
extreme values, try and moderate them. Don't use non-physical values of components
if you can avoid it.

Fixes for Transient Non-convergence
1. As with DC operating point, check your circuit. In particular, check that you are

not doing anything which might cause numerical difficulties such as forward
biasing a zero resistance PN junction with a large zero source impedance voltage
source.

2. Do anything that will prevent small time steps being needed. Gross non-
linearities, regenerative loops and high gain loops all require small time-steps if
not well damped. It may be that you have left out damping components to
simplify the circuit and speed the simulation. It is worth noting that an accurately
modelled circuit frequently converges more easily than an idealised circuit.

3. Avoid using unrealistically large capacitors or inductors and unrealistically small
resistors if at all possible. You should especially avoid such components if non-
grounded.

4. Try setting the PIVREL option to 0.999.

5. If all else fails you can try relaxing some of the tolerances. If your circuit does
not have any small (sub-µA) currents then set ABSTOL to 1e-9 or 1e-6. You can
also increase VNTOL (default 1e-6) to say 1e-3 if your circuit only has large
voltages. Increasing RELTOL is the very last thing you should try. In our
experience, increasing RELTOL beyond its default value (0.001) is rarely a
reliable solution and can make matters worse.

6. Contact technical support. We don't officially offer a convergence fixing service
and reserve the right to decline help. However, we are always interested in non-
converging circuits and usually we will look at your circuit to see if we can
identify the problem.

DC Sweep
DC sweep is basically a repeated DC operating point and so the issues relating to that
mode also apply to DC sweep. However, if you are sweeping a voltage or current
source, then an altogether better way of dealing with DC sweep problems is to simulate
the DC sweep using transient analysis with a slow ramp.

Using transient analysis to perform DC sweep also resolves problems that can occur
with circuits that have regions where there is more than one stable state e.g. bistables
or schmitt triggers. Consider sweeping the input voltage of a schmitt trigger circuit.
When the input voltage is between the lower and upper thresholds, the circuit has two
stable states and the DC algorithm could find either of them. As each step in a DC
analysis is initialised with the previous step, it will usually find the correct solution but
this is not guaranteed. This means that the output could change state even though the
input has not passed either threshold. This problem doesn't occur in transient analysis
as in this mode the circuit is running as it would in real life.
234

Chapter 8 Convergence and Accuracy
DC Operating Point Algorithms
SIMetrix uses five alternative strategies to resolve the DC operating point. These are:

1. Junction initialised iteration. This is our name for the standard algorithm
sometimes simply known as ‘DC Iteration’.

2. Source stepping.

3. Diag GMIN stepping.

4. Junction GMIN stepping.

5. Pseudo transient analysis.

These are described in the following sections.

Junction Initialised Iteration
This is the standard algorithm and is sometimes known simply as ‘DC iteration’. Each
semiconductor junction is initialised with a small voltage and iteration then proceeds
until convergence (or otherwise). This method often succeeds and is usually the
quickest. However, the starting point is only a bit better than an educated guess and can
be so far removed from the real solution that it never has a chance of succeeding.
(‘Junction initialised iteration’ is a name we have coined and you may see it referred to
as JI2 elsewhere in this manual and also in messages output by SIMetrix)

Source Stepping
Source stepping. This method - as with all the remaining methods to be described -
belong to a class of convergence strategies known as continuation methods. These all
work by repeating the iterative process while gradually varying some circuit parameter.
The circuit parameter is chosen so that at its start value the solution is known or trivial
and at its final value the solution is the operating point that is required. In source
stepping, all the circuit's power sources are gradually ramped up from zero to their
final value. While at zero, the circuit's solution is trivial; all the voltages and currents
are zero. At the first step, the supplies might be ramped up to 10% of their maximum
and the solution iterates to convergence. Then the supplies are increased and the
process is repeated. At each step the solution is initialised with the previous solution
which, if the steps are small, will be close to the new solution that is required and
convergence will therefore be relative easy to achieve.

This method is quite effective and is included in all SPICE based simulators including
those derived from SPICE2. However the SPICE versions use a fixed step size,
whereas in SIMetrix (since version 2.0), the step size is variable so if a step fails, the
step size is reduced and it tries again.

However, even with an arbitrarily small step size, this method can fail if the circuit
contains some kind of regenerative action. As the supplies are ramped it is possible for
the circuit to abruptly switch from one state to another as in a schmitt trigger. Although
circuits such as schmitt triggers do give difficulty, even circuits that do not have such
elements can also give trouble.
235

Simulator Reference Manual
Diagonal GMIN Stepping
In this method, a large conductance term is added to every diagonal entry of the
solution matrix and gradually reduced. This is similar to placing a low value resistor
from every node of the circuit to ground but is by no means equivalent. The high
conductance term (=low resistance) in the matrix effectively swamps non-linearities
and as a result the solution is easy to find. The term is gradually reduced until it is zero.

This method is also effective and sometimes works for circuits for which source
stepping fails. It is included with all SPICE3 derived simulators but, as with source
stepping, the SPICE variants use a fixed step while SIMetrix uses a variable step.

GMIN stepping suffers from the same problems as source stepping but not always with
the same circuits so it always worth trying both approaches.

The received wisdom has always been that GMIN stepping is more effective than
source stepping. This has not however been borne out by our own research which has
shown the source stepping converges more often and more quickly. For this reason,
SIMetrix attempts source stepping before GMIN stepping. This is the reverse of
SPICE3 and its derivatives.

Junction GMIN Stepping
The junction GMIN stepping method incrementally steps the conductance across
semiconductor junctions. This in effect sweeps the GMIN option parameter.

This method is effective for CMOS IC designs as long as GMIN is implemented as a
conductance between drain and source. This is not the default configuration for
LEVEL 1 to 3 MOSFETs in which GMIN is implemented as two conductances
between the drain and bulk and source and bulk. For other MOSFET models such as
BSIM3 and EKV, the default GMIN is now between source and drain. For designs
containing these devices, Junction GMIN Stepping is the first method attempted after
JI2. For circuits that do not contain such devices, this method is not attempted at all.

Pseudo Transient Analysis
This method finds the solution using transient analysis. In SIMetrix, a transient
analysis is conducted while ramping up all power sources, in effect simulating the
action of switching on the power supplies. This is not the same as source stepping as
the latter is a pure DC method with all reactive components set to zero. Because
reactive components - i.e. capacitors and inductors - are included in transient analysis,
effects such as abrupt changes are damped and occur gradually over a finite time. This
eliminates the problem - described above - that the DC continuation methods suffer
from.

The above assumes, however, that the circuit is well modelled with all reactive
elements correctly specified. With integrated circuit design this is usually the case, but
for discrete circuits frequently is not. Opamp macro models, for example, consist of
many idealised elements that are not always damped by reactive elements. Without
such damping, pseudo transient analysis can fail for the same reason as source and
GMIN stepping. So, SIMetrix automatically adds additional capacitance to the circuit
to prevent this situation from arising.
236

Chapter 8 Convergence and Accuracy
The end result is a convergence strategy that nearly always succeeds. However, it is
generally the slowest method so in SIMetrix it is, by default, attempted last.

Although pseudo transient analysis is very powerful it is not completely infallible. Its
Achilles Heel is oscillation. Because a transient analysis is being performed it is
possible for the circuit to oscillate. If this happens, pseudo transient analysis can end
up going on forever without ever finding a stable solution. In our experience, however,
this is actually rare. A number of steps are taken to damp oscillators so that even
circuits that are designed to oscillate still succeed with pseudo transient analysis.

SIMetrix provides a number of facilities to inhibit circuit oscillation during pseudo
transient analysis. These are described in “Pseudo Transient Analysis” on page 230.

Controlling DC Method Sequence
You may have a circuit that only succeeds with - say - pseudo transient analysis and so
attempting the other methods just wastes time. In this situation, you can force the
simulator to attempt this method first, or even exclusively. To do this you need to set
the two simulator options noOpiter and dcopSequence. noOpiter inhibits the first
method (junction initialised iteration) while dcopSequence controls which and what
order the remaining methods are attempted. The value of dcopSequence consists of any
combination of SOURCE, GMIN, JUNCGMIN and PTA separated by the pipe
symbol: '|'. SOURCE, GMIN, JUNCGMIN and PTA refer respectively to ‘source
stepping’, ‘DIAG GMIN stepping’, ‘Junction GMIN stepping’ and ‘pseudo transient
analysis’. The order in which these words appear in the value of dcopSequence,
determines the order in which the corresponding methods will be attempted. So for
example:

.OPTIONS NOOPITER DCOPSEQUENCE=PTA|GMIN

will force pseudo transient analysis to be attempted first followed by GMIN stepping.
Junction initialised iteration and source stepping won't be attempted at all.

Singular Matrix Errors
A singular matrix error occurs when the circuit does not have a unique and finite
solution. For example, a circuit containing a floating capacitor does not have a unique
DC solution as the capacitor can be at any voltage. Also circuits with shorted
inductors, voltage sources or a combination of both will fail with this error.

If you get this error, you must first check your circuit. The simulator will tell you
where the problem is either as a node name or a device name.

If you think you circuit is OK then it is possible that the error is occurring because
during the course of iterating to a solution, some node voltages or device currents
reached very high values and the limited accuracy of the machine made it seem that the
matrix was singular. This can happen with junction initialised iteration. If this is the
case, try setting the option:

.OPTIONS NOOPITER

This will inhibit this mode and the simulator will start with source stepping. This
method, and the others that follow, don't generally suffer from this problem.
237

Simulator Reference Manual
Note that the simulation will abort if a singular matrix is detected in junction initialised
iteration. It will not automatically attempt the other methods. This is because, by far
the most common reason for singular matrices is circuit error.

Transient Analysis - ‘Time step too small’ Error
The message:

Timestep too small

is not actually due to non-convergence. It means that, because of the nature of your
circuit, to achieve the required accuracy, a time step smaller than the minimum
permissible was needed. This can happen if you perform a very long transient analysis
on a circuit with relatively short time constants. If you get this message, you can try
reducing the minimum time step with the MinTimeStep simulator option. The default
value for MinTimeStep is 1e-9*max time step and the max time step defaults to (Tstop-
Tstart)/50 where Tstop and Tstart are respectively the stop and start times of the
transient analysis. This option can be set in the user interface. See “Time Step” on
page 162 of the User’s Manual

Accuracy and Integration Methods

A Simple Approach
The accuracy of the simulation can be a complicated subject. So we will start with
simple advice. If you wish to increase the accuracy of a simulation, reduce the value of
RELTOL. This defaults to 0.001 so to reduce it to say 1e-5 add the following line to the
netlist:

.OPTIONS RELTOL=1e-5

(The setting of RELTOL is supported by the front end. See User's Manual for details.)

The simulation will run slower. It might be a lot slower it might be only slightly slower.
In very unfortunate circumstances it might not simulate at all and fail with a
convergence error.

Conversely, you can speed up the simulation by increasing RELTOL, but we don't
recommend it. Increasing RELTOL beyond its default value often degrades accuracy to
an unacceptable level.

To increase speed with a reasonably controlled loss of precision, increase POINTTOL
to 0.1 or even 1.0 but no higher.

Iteration Accuracy
For DC and transient modes, the simulator essentially makes an approximation to the
true answer. For DC analysis an iterative method is used to solve the non-linear
equations which can only find the exact answer if the circuit is linear. The accuracy of
the result for non-linear circuits is determined by the number of iterations; accuracy is
improved by performing more iterations but obviously this takes longer. In order to
238

Chapter 8 Convergence and Accuracy
control the number of iterations that are performed an estimate is made of the error by
comparing two successive iterations. When this error falls below a predetermined
tolerance, the iteration is deemed to have converged and the simulator moves on the
next step or completes the run. Most SPICE simulators use something similar to the
following equations to calculate the tolerance:

For voltages:
TOL = RELTOL * instantaneous_value + VNTOL

For currents:
TOL = RELTOL * instantaneous_value + ABSTOL

"instantaneous_value" is the larger of the current and previous iterations. VNTOL has
a default value of 1µV so for voltages above 1mV, RELTOL dominates. ABSTOL has
a default of 1pA so for currents above 1nA, RELTOL dominates.

The above method of calculating tolerance works fine for many circuits using the
default values of VNTOL and ABSTOL. However, SPICE was originally designed for
integrated circuit design where voltages and currents are always small, so the default
values of ABSTOL and VNTOL may not be appropriate for - say - a 100V 20A power
supply. Suppose, that such a PSU has a current that rises to 20A at some point in the
simulation, but falls away to zero. When at 20A it has a tolerance of 20mA but when it
falls to zero the tolerance drops to ABSTOL which is 1pA. In most situations the 1pA
tolerance would be absurdly tight and would slow down the simulation. Most other
SPICE products recommend increasing ABSTOL and VNTOL for PSU circuits and
indeed this is perfectly sound advice. However, In SIMetrix the tolerance equation has
been modified to make this unnecessary in most cases. Here is the modified equation:

For voltages:
TOL = RELTOL * MAX(peak_value * POINTTOL, instantaneous_value) + VNTOL

For currents:
TOL = RELTOL * MAX(peak_value * POINTTOL, instantaneous_value) +
ABSTOL

peak_value is the magnitude of the largest voltage or current encountered so far for the
signal under test. POINTTOL is a new tolerance parameter and has a default value of
0.001. So for the example we gave above, peak_value would be 20 and when
instantaneous_value falls to zero the tolerance would be:

0.001 * MAX(20 * 0.001, 0) + 1p = approx. 20µA

20µA is a much more reasonable tolerance for a signal that reaches 20A.

The above method has the advantage that it loosens the tolerance only for signals that
actually reach large values. Parts of a circuit that only see small voltages or currents -
such as the error amplifier of a servo-controlled power supply - would still be
simulated with appropriate precision.

POINTTOL can be increased to improve simulation speed. It is a more controlled
method than increasing RELTOL. POINTTOL can be raised to 0.1 or even 1.0 but
definitely no higher than 1.0.
239

Simulator Reference Manual
Time Step Control
The tolerance options mentioned above also affect the time step control algorithm used
in transient analysis. In SIMetrix, as with all SPICE based simulators, there are two
mechanisms that control the time step. The first - iteration control - reduces the time
step by a factor of 8 if convergence to the specified accuracy cannot be achieved after
10 iterations. (10 by default but can be changed with ITL4 option). If convergence is
successful, the time step is doubled. As this mechanism is controlled by the success or
otherwise of the iteration it is also affected by the same tolerance options described in
the above section.

The second method used is called LTE time step control. The theory behind this
method is beyond the scope of this manual but essentially it controls the accuracy of
the numerical integration method used to model reactive devices such as inductors and
capacitors. These devices are governed by a differential equation. It is not possible in a
non-linear circuit to solve these differential equations exactly so a numerical method is
used and this - like the iterative methods used for non-linear devices - is approximate.
In the case of numerical integration, the accuracy is determined by the time step. The
smaller the time step the greater the accuracy but also the longer the simulation time.

The accuracy to which capacitors are simulated is controlled by RELTOL, POINTTOL
and two other options namely TRTOL and CHGTOL. The latter is a charge tolerance
and has a similar effect to VNTOL and ABSTOL but instead represents the charge in
the capacitor. It's default value is 1e-14 which, like ABSTOL and VNTOL is
appropriate for integrated circuits but may be too low for PSU circuits with large
capacitors. However, the peak detection mechanism controlled by POINTTOL
described in the above section also works for the LTE time step control algorithm and
it is therefore rarely necessary to alter CHGTOL.

TRTOL is a dimensionless value and has a default value of 7. It affects the overall
accuracy of the numerical integration without affecting the precision of the iteration.
So reducing TRTOL will increase the accuracy with which capacitors and inductors are
simulated without affecting the accuracy of the iterative method used to simulate non-
linear elements. However, in order for the simulation of reactive devices to be
accurate, the non-linear iteration must also be accurate. So, reducing TRTOL much
below unity will result in a longer simulation time but no improvement in precision.
Increasing TRTOL to a large value, however, may be appropriate in some
circumstances where the accuracy to which reactive devices are simulated is not that
important. This may be the case in a circuit where there is an interest in the steady state
but not in how it was reached.

Inductors are controlled by the same tolerances except CHGTOL is replaced by
FLUXTOL. This defaults to 1e-11.

The default LTE time step algorithm used in SIMetrix is slightly different to that used
by standard SPICE. The standard SPICE variant is also affected by ABSTOL and
VNTOL. The SIMetrix algorithm controls the time step more accurately and as a result
offers better speed-accuracy performance.

Accuracy of AC analyses
The small-signal analysis modes .AC, .TF and .NOISE do not use approximate
methods and their accuracy is limited only by the precision of the processor's floating
point unit. Of course the DC operating point that always precedes these analysis modes
240

Chapter 8 Convergence and Accuracy
is subject to the limitations described above. Also, the device models used for non-
linear devices are also in themselves approximations. So these modes should not be
seen as exact but they are not affected by any of the tolerance option settings.

Summary of Tolerance Options

RELTOL

Default = 0.001. This affects all DC and transient simulation modes and specifies the
relative accuracy. Reduce this value to improve precision at the expense of simulation
speed. We do not recommend increasing this value except perhaps to run a quick test.
In any case, you should never use a value larger than 0.01.

POINTTOL

Proprietary to SIMetrix. Default = 0.001. Can increase to a maximum of 1.0 to
improve speed with loss of precision. Reduce to 0 for maximum accuracy but note this
may just slow down the simulation without really improving precision where it is
needed.

ABSTOL

Default = 1pA. This is an absolute tolerance for currents and therefore has units of
Amps. This basically affects the tolerance for very low values of current. Sometimes
worth increasing to resolve convergence problems or improve speed for power circuits.

VNTOL

Default = 1µV. Same as ABSTOL but for voltages.

TRTOL

Default = 7. This is a relative value and affects how accurately charge storage elements
are simulated. Reduce it to increase accuracy of reactive elements but there is no
benefit reducing below about 1.0. In circuits where there is more interest in the steady
state rather than how to get there, simulation speed can be improved by increasing this
value.

CHGTOL

Default = 1e-14. Minimum tolerance of capacitor charge. Some convergence and speed
improvement may be gained by increasing this for circuits with large capacitors.
Generally recommended to leave it alone.

FLUXTOL

Default = 1e-11. Same as CHGTOL except applied to inductors.

Integration Methods - METHOD option
SIMetrix, along with most other SPICE products use three different numerical
integration methods to model reactive elements such as capacitors and inductors.
241

Simulator Reference Manual
These are Backward Euler, Trapezoidal Rule and Gear. Backward Euler is used
unconditionally at various times during the course of a simulation but at all other times
the method used is controlled by the METHOD option (as long as ORDER is set to 2
or higher - see below).

The METHOD option can be set to TRAP (trapezoidal - the default) or GEAR. Gear
integration can solve a common problem whereby the solution seems to oscillate
slightly. An example is shown below.

The grey curve was simulated with the default trapezoidal integration method whereas
the black used Gear integration. Note that gear integration introduces a slight
overshoot. This is a common characteristic. To find out whether such overshoots are a
consequence of the integration or are in fact a real circuit characteristic, you should
simulate the circuit with much smaller values of RELTOL (see above). It is also
suggested that you switch back to trapezoid integration when using tight tolerances;
the oscillating effect shown above will vanish if the tolerance is tight enough.

Note, you should not use Gear integration if you are simulating strongly resonant
circuits such as oscillators. Gear integration introduces a numerical damping effect
which will cause resonant circuits to decay more rapidly than they should. For
example:

Time/µSecs 200nSecs/div

3.8 4 4.2 4.4 4.6 4.8 5 5.2 5.4 5.6

µA

3

3.5

4

4.5

5

5.5

6

6.5

7

1: :q1#b 2: tran2:q1#b
242

Chapter 8 Convergence and Accuracy
The above curves are the result of simulating a simple LC circuit that is completely
undamped. The top trace was the result of Gear integration and the bottom, trapezoidal.
The bottom curve is correct and agrees with theory. The top curve is inaccurate. If the
analysis was done with Gear integration but with a smaller value of RELTOL, the
damping effect would be less, so for all methods the result is ultimately accurate if the
tolerance is made small enough. But trapezoidal gives accurate results without tight
values of RELTOL.

ORDER option

This defaults to 2 and in general we recommend that it stays that way. Setting it to 1
will force Backward Euler to be used throughout which will degrade precision without
any speed improvement. It can be increased up to a value of 6 if METHOD=GEAR but
we have not found any circuits where this offers any improvement in either speed or
precision.

-30

-20

-10

0

10

20

Time/µSecs 2µSecs/div

0 2 4 6 8 10
-30

-20

-10

0

10

20
243

Simulator Reference Manual
Chapter 9 Digital Simulation

Overview
As well as an analog simulator, SIMetrix incorporates an event driven digital simulator
tightly coupled to the analog portion. This system can rapidly and accurately simulate
mixed signal circuits containing both analog and digital components. Of course, an
analog only simulator can simulate a mixed signal circuit using digital models
constructed from analog components, but this approach is slow. The advantage of this
mixed-mode approach is that it is dramatically faster, typically in the order of 100
times for pure digital circuits.

The SIMetrix mixed mode simulator is based on the XSPICE system developed by the
Georgia Technical Research Institute. Although based on XSPICE, SIMetrix features
many enhancements over the original system. See “Enhancements over XSPICE” on
page 268 for details of these improvements.

If you only use digital models supplied in the device library, then you don't need to
know much about the digital simulator in order to use it. Just select the devices you
need from the parts browser and simulate in the normal way. This chapter describes
some of the inner workings of the simulator including how it interfaces to the analog
system. More importantly, perhaps, this chapter also describes how you can design
your own digital models.

Logic States
The digital simulator is described as ‘12-state’ which means that a digital signal can be
in 1 of 12 states. These 12 states are combined from 3 levels and 4 strengths as follows:

Logic levels HIGH and LOW are self-explanatory. UNKNOWN means the signal
could be either HIGH or LOW but which is not known at this stage. The start up state
of a flip-flop is an example of an UNKNOWN state. Strength refers to the driving
force behind the signal. STRONG is the highest with HI-IMPEDANCE the lowest. It
is used to resolve conflicts when two outputs are connected together. For example
consider a LOW-RESISTIVE signal (as possessed by a pull-down resistor) connected
to a HIGH-STRONG signal There is a conflict between the two logic levels but as they
are different strengths, the stronger wins and therefore the resulting level is HIGH.

Logic levels Strengths

HIGH STRONG

LOW RESISTIVE

UNKNOWN HI-IMPEDANCE

UNDETERMINED
244

Chapter 9 Digital Simulation
State resolution table
The following table defines how a state is decided when two outputs are connected:

0S = LOW-STRONG
1S = HIGH-STRONG
XS = UNKNOWN-STRONG
0R = LOW-RESISTIVE
1R = HIGH-RESISTIVE
XR = UNKNOWN-RESISTIVE
0Z = LOW-HI-Z
1Z = HIGH-HI-Z
XZ = UNKNOWN-HI-Z
0U = LOW-UNDETERMINED
1U = HIGH-UNDETERMINED
XU=UNKNOWN-UNDETERMINED

Analog to Digital Interfaces
At the simulator level, there are two types of node namely analog and digital and they
cannot be connected together. At the netlist level it is possible to connect analog
components to digital outputs and inputs. When SIMetrix sees an analog component
connected to a digital signal, it automatically interconnects them using an interface
bridge. It will use an analog-digital bridge to connect an analog signal to a digital input
and a digital-analog bridge to connect to a digital output. If you connect an analog
component to a signal which connects to both digital inputs and outputs both types of
bridge will be used and the digital inputs and outputs will be separated from each other
as illustrated in the following diagrams.

0S 1S XS 0R 1R XR 0Z 1Z XZ 0U IU XU
0S 0S XS XS 0S 0S 0S 0S 0S 0S 0S XS XS
1S XS 1S XS 1S 1S 1S 1S 1S 1S XS 1S XS
XS XS XS XS XS XS XS XS XS XS XS XS XS
0R 0S 1S XS 0R XR XR 0R 0R 0R 0U XU XU
1R 0S 1S XS XR 1R XR 1R 1R 1R XU 1U XU
XR 0S 1S XS XR XR XR XR XR XR 1U XU XU
0Z 0S 1S XS 0R 1R XR 0Z XZ XZ 0U XU XU
1Z 0S 1S XS 0R 1R XR XZ 1Z XZ XU 1U XU
XZ 0S 1S XS 0R 1R XR XZ XZ XZ XU XU XU
0U 0S XS XS 0U XU XU 0U XU XU 0U XU XU
1U XS 1S XS XU 1U XU XU 1U XU XU 1U XU
XU XS XS XS XU XU XU XU XU XU XU XU XU
245

Simulator Reference Manual
Circuit entered in schematic editor

Circuit that is actually simulated

One problem with the above approach is that the A-D and D-A bridges introduce an
additional delay to the signal path which would therefore alter the performance of the
digital system even if the analog node does not present any significant load. This is
overcome by assigning a negative load to the input of the digital bridge which in effect
reduces the delay of the driving gate. In the above example U2 has a negative input
load which reduces the delay of U3.

VN

VP

X1

TL072

U4
HC74

QN

QD

RST

SET

HC00

U3

VCC

VCC

HC00

U3

U4
HC74SET

RST

D Q

QN

X1

TL072

VP

VN

D_A

U2 U1

A_D

Analog-digital bridges implicitly connected by simulator
246

Chapter 9 Digital Simulation
How A-D Bridges are Selected
When SIMetrix implicitly places an AD bridge in a circuit, it must choose an
appropriate model for the bridge. All AD bridges are based on DAC_BRDIGE and
ADC_BRIDGE models described in “Analog-Digital Interface Bridge”, and “Digital-
Analog Interface Bridge” starting page 153. The model is chosen according to the
FAMILY parameter assigned to the digital device to which the bridge is connected.
The FAMILY parameter along with the associated OUT_FAMILY and IN_FAMILY
parameters are explained more fully in “Logic Families” on page 247. Basically the
FAMILY parameter specifies the logic family to which the device belongs e.g. ‘HC’
for high speed CMOS.

The name of the model used to interconnect digital to analog is always of the form:

family_name_dac

and to interconnect analog to digital

family_name_adc

For example if the family name is HC the D-A bridge is called HC_DAC. There is a
selection of A-D and D-A bridges in the model library supplied with SIMetrix. (In
BRIDGES.LB).

Logic Families
The digital simulator only knows about the 12 logic states described in section “Logic
States” on page 244, It doesn't know anything about threshold voltages or output
impedances and consequently cannot directly handle the effects of interconnecting
devices from different logic families. It does however feature a mechanism of
determining the level of compatibility between families and will raise an error if
incompatible devices are interconnected. For example, ECL and high speed CMOS
operate at completely different thresholds and cannot be connected except via a special
interface gate. SIMetrix knows this so that if you attempt to connect such devices, an
error message will be displayed and the simulation will not run. Conversely, it is
perfectly OK to drive an LSTTL input from an HC output and SIMetrix will operate
normally if you do so. If you drive an HC input from an LSTTL output SIMetrix will
issue a warning as, although this may work in practice, it cannot be guaranteed to do so
under all circumstances.

Another problem arises when connecting inputs from different logic families together.
SIMetrix deals with this by treating groups of inputs as if they were all from the same
logic family provided they are compatible. This selected logic family is then used to
resolve any output-input conflict as described above. It is also used to select an analog-
digital interface bridge as described in “Analog to Digital Interfaces” on page 245

Groups of outputs from different families are dealt with in the same way as inputs
described above.

SIMetrix knows how to resolve these situations by referring to a set of three tables
called the ‘Logic Compatibility Tables’. A standard set of tables is built in to the
simulator but they can also be redefined. See “Logic Compatibility Tables” on
page 248.
247

Simulator Reference Manual
Logic Family Model Parameters.
There are three model parameters used to specify the logic family to which a device
belongs. These are:

The parameters are text strings. Any name may be used that is defined in the logic
compatibility tables but you must not use the underscore character in a family name.
The families supported by the internal tables are listed in “Supported Logic Families”
on page 250

The underscore character is used to define a sub-family that has the same
characteristics as the main family as far as logic compatibility is concerned but which
will call a different interface bridge when connected to an analog node. This is used to
define schmitt trigger devices such as the 74HC14. In an all-digital circuit this behaves
exactly like a normal inverter with a slightly longer delay. When the input is connected
to an analog system an interface bridge with the appropriate hysteresis is called up
instead of the normal interface.

Logic Compatibility Tables
As explained in the above section, there are three of these. Each table has a row and
column entry for each of the logic families supported. These are:

• Resolve In-Out table. Decides what to do when an output is connected to an input
from a different family. Possible responses are OK, ERR (error - not permissible)
and WARN (OK but give warning to user)

• Resolve In-In table. Decides how to treat the situation when two inputs from
dissimilar families are connected. As described above SIMetrix must treat a
group of inputs connected together as all belonging to the same logic family for
the purpose of deciding an analog interface bridge (see “Analog to Digital
Interfaces” on page 245) and to resolve in-out family conflicts. Possible
responses are ROW, COLUMN and ERR. ROW means that the family defining
the ROW entry has priority and COLUMN means that the family defining the
COLUMN entry has priority. ERR means that it is an error to interconnect these
two inputs. You can also enter OK which signifies that the two families are
equivalent and it doesn't matter which is chosen. Currently this response is
exactly equivalent to ROW.

• Resolve Out-Out table. Works the same way as the Resolve In-In table but used
to define output priorities.

The tables can be redefined by specifying a file containing the new definition. If
running in GUI mode a new file can be specified at any time using the
ReadLogicCompatibility command (see User's Manual or Script Reference Manual).

Parameter name Description

IN_FAMILY Family for inputs

OUT_FAMILY Family for outputs

FAMILY Family for both inputs and outputs if IN_FAMILY/
OUT_FAMILY not specified
248

Chapter 9 Digital Simulation
It can also be specified as the configuration setting CompatTable. The format of this
file is described in the following section.

Logic Compatibility File Format
For an example of a compatibility table, see the file COMPAT.TXT which you will
find in the SCRIPT directory. This file is actually identical to the built-in definitions
except for the UNIV family which cannot be redefined.

The file format consists of the following sections:

1. Header

2. In-Out resolution table

3. In-In resolution table

4. Out-Out resolution table

Header

The names of all the logic families listed in one line. The names must not use the
underscore ('_') character.

In-Out resolution table:

A table with the number of rows and columns equal to the number of logic families
listed in the header. The columns represent outputs and the rows inputs. The entry in
the table specifies the compatibility between the output and the input when connected
to each other. The entry may be one of three values:

In-In resolution table

A table with the number of rows and columns equal to the number of logic families
listed in the header. Both column and rows represent inputs. The table defines how
inputs from different families are treated when they are connected. The entry may be
one of four values:

Value Meaning

OK Fully compatible

WARN Not compatible but would usually function. Warn user
but allow simulation to continue.

ERR Not compatible and would never function. Abort
simulation.
249

Simulator Reference Manual
Out-out resolution table

A table with the number of rows and columns equal to the number of logic families
listed in the header. Both column and rows represent outputs. The table defines how
outputs from different families are treated when they are connected. The entry may be
one of four values:

Supported Logic Families
The following logic families are supported by the internal Logic Compatibility Tables.

Value Meaning

ROW Row take precedence

COL Column takes precedence

OK Doesn't matter. (Currently identical to ROW)

ERR Incompatible, inputs cannot be connected.

Value Meaning

ROW Row take precedence

COL Column takes precedence

OK Doesn't matter. (Currently identical to ROW)

ERR Incompatible, outputs cannot be connected.

Family name Description

TTL TTL - 74 series

HC High speed CMOS - 74HC series

HCT TTL compatible High speed CMOS - 74HCT series

FAST FAST TTL - 74F series

LS Low power schottky TTL - 74LS series

ALS Advanced low power schottky TTL - 74ALS series

4000-5 4000 series CMOS - 5V operation

4000-10 4000 series CMOS - 10V operation

4000-15 4000 series CMOS - 15V operation

ECL10K ECL 10K series
250

Chapter 9 Digital Simulation
Universal Logic Family
The internal tables support the concept of a ‘Universal logic family’. This is called
UNIV and can connect to any logic family without error. This is the default if no
FAMILY parameter is supplied.

Internal Tables
The internal tables are documented in the on-line help system. Refer to topic “Internal
Tables” which is listed as a keyword in the index tab.

Load Delay

Overview
The digital simulator includes mechanisms to model the delay introduced when an
output is loaded. Two sources of delay are provided for, namely ‘input delay’ and ‘wire
delay’. Input delay is determined by the capacitive input while wire delay is an
additional delay caused by the capacitance of the interconnection.

Both input delay and wire delay are affected by the driving outputs ‘resistance’.

Output Resistance
Most devices that have digital outputs have three parameters to define output
resistance. Note that the resistance we are referring to here is not an actual analog
resistance but a conceptual value that when multiplied by load capacitance provides a
delay value.

The three output resistance parameters are: out_res, out_res_pos, out_res_neg.
out_res_pos and out_res_neg define the output resistance for positive and negative
transitions respectively. out_res provides a default value for out_res_pos and
out_res_neg.

Input Delay
Most digital inputs include an ‘input_load’ capacitance parameter. The total input
delay is obtained by multiplying the sum of all connected input capacitances by the
driving output’s output resistance as described above.

ECL10KE ECL Eclipse series

AC Advanced CMOS - 74AC series

ACT TTL compatible Advanced CMOS - 74ACT series

FORCE5 Used for 5V VCC rails.

UNIV Universal family - see below

Family name Description
251

Simulator Reference Manual
Wire Delay
Wire delay is derived from the number of connected inputs following a non-linear
relationship defined in a look-up table.

Defining Look-up Table

The wire delay look-up table must be defined in a file containing pairs of values with
one pair per line. The first value in the pair is the number of connections and the
second is the capacitance. For example:

0 0
1 0
2 1e-12
5 10e-12
10 30e-12

Linear interpolation is used to derive missing values.

To specify the wire table used for a simulation, add the line:

.OPTIONS WireTable=filename

where filename is the path of the wire table file.

Digital Model Libraries

Using Third Party Libraries
The SIMetrix digital simulator is based on XSPICE and all the XSPICE digital devices
have been implemented. Virtually all of these have been enhanced in a number of ways
but all remain backward compatible with the original XSPICE. Consequently any
100% XSPICE compatible digital model will work with SIMetrix.

Arbitrary Logic Block - User Defined Models

Overview
The arbitrary logic block is an internal component that can be defined to perform any
logic function. Using a simple descriptive language it is possible to define
combinational logic elements, synchronous and asynchronous registers as well as look-
up table (ROMs) and arrays (RAMs).

Each ALB device is defined as a normal .MODEL control which refers to a separate
file containing the logic description. This section is mostly concerned with the
descriptive language used in the definition file.

An Example
We start with a simple example. The following is a description of a simple 8 bit
synchronous counter. (This definition would be put into a file referred to in a .MODEL
252

Chapter 9 Digital Simulation
control. This is described later). A circuit using this model is supplied as an example.
See EXAMPLES\ALB_Examples\count.sch

PORT (DELAY = 10n) CountOut out[0:7] ;
EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;
Count = Count + 1 ;
CountOut = count ;

We will go through this line by line.

The first line:

PORT (DELAY = 10n) CountOut out[0:7] ;

is a PORT statement and in this case defines the characteristics of an output.

(DELAY = 10n)

says that the output delay is 10nS that is the actual output pins will change state 10nS
after the output is assigned.

CountOut

names the output CountOut.

out[0:7]

defines the port as an output and specifies the actual pins used on the device. This
specifies the first 8 pins on the output port. There are two sets of pins on an ALB one
assigned for inputs and referred to as "in[a:b]" and the other assigned for outputs and
referred to as "out[a:b]". The line ends in a semi-colon which terminates the statement.
All statements must end in a semi-colon.

The next line:

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

defines an edge triggered register.

CLOCK=in[0]

 specifies the pin used for the clock (it must always be an input pin). This is always
positive edge triggered.

DELAY=5n

This is the clock to output delay. (See illustration below)

WIDTH=8

This specifies the width of the register i.e. 8 bits

The next line:

Count = Count + 1 ;
253

Simulator Reference Manual
defines the operation to be performed at each clock edge. In this case the value in the
register is simply incremented by one. When it reaches 255 it will reset to 0.

The final line

CountOut = count ;

defines what appears at the output. This says that the output equals the count register.

The following diagram illustrates the internal structure of the counter.

Reset Count at 200

We will now make a small modification to the counter so that the counter only counts
up to 199 before resetting back to zero. Change the line:

Count = Count + 1 ;
to:

Count = Count==199 ? 0 : Count + 1 ;

This says ‘If the count equals 199 set to zero otherwise increment by one’. As before,
this will happen on each clock edge.

Add an Asynchronous Reset

The logic definition language supports the addition of asynchronous controls to
synchronous registers. Here we will add an asynchronous reset. The complete
definition becomes:

PORT (DELAY = 10n) CountOut out[0:7] ;
PORT Reset in[1] ;

EDGE (DELAY=5n, WIDTH=8, CLOCK=in[0]) Count ;

Count := !Reset ? 0 ;
Count = Count==199 ? 0 : Count + 1 ;

CountOut = count ;

To add the reset signal we have to add two lines to the definition. The first:

PORT Reset in[1] ;

CLOCK IN

Delay=5n
Edge triggered register

D7

D6

D5

D4

D3

D2

D1

D0

Delay=10n
Output stage

D7

D6

D5

D4

D3

D2

D1

D0

A7

A6

A5

A4

A3

A2

A1

A0
254

Chapter 9 Digital Simulation
defines the signal pin to be used for the reset and the second:

Count := !Reset ? 0 ;

defines the action to be taken. This is an asynchronous action statement. The '!' means
NOT so the line says ‘If Reset is NOT TRUE (i.e. low) set the count to zero otherwise
do nothing’. Asynchronous action statements are always of the form:

register_name := condition ? action ;

The ':' signifies that the statement is asynchronous and that the action should happen
immediately.

Example 2 - A Simple Multiplier
PORT (DELAY=10n) MultOut out[0:7] ;
PORT in1 in[0:3] ;
PORT in2 in[4:7] ;

MultOut = in1*in2 ;

The above defines a simple combinational circuit, that of a 4X4 digital multiplier. The
inputs in1 and in2 are treated as 4 bit unsigned values so if both are zero the output will
be zero and if both are 1111 (i.e. 15) the result will be 11100001 (i.e. 225). See the
circuit EXAMPLES\ALB_Examples\Mult.sch.

Example 3 - A ROM Lookup Table
The following definition is that of a lookup table to define a sine wave:

PORT (DELAY=10n) ROMout out[0:7] ;
PORT input in[0:7] ;

READONLY (WIDTH=8) ROM[256] =

128, 131, 134, 137, 140, 143, 146, 149, 152, 156, 159, 162,
165, 168, 171, 174, 176, 179, 182, 185, 188, 191, 193, 196,
199, 201, 204, 206, 209, 211, 213, 216, 218, 220, 222, 224,
226, 228, 230, 232, 234, 236, 237, 239, 240, 242, 243, 245,
246, 247, 248, 249, 250, 251, 252, 252, 253, 254, 254, 255,
255, 255, 255, 255, 255, 255, 255, 255, 255, 255, 254, 254,
253, 252, 252, 251, 250, 249, 248, 247, 246, 245, 243, 242,
240, 239, 237, 236, 234, 232, 230, 228, 226, 224, 222, 220,
218, 216, 213, 211, 209, 206, 204, 201, 199, 196, 193, 191,
188, 185, 182, 179, 176, 174, 171, 168, 165, 162, 159, 156,
152, 149, 146, 143, 140, 137, 134, 131, 128, 124, 121, 118,
115, 112, 109, 106, 103, 99, 96, 93, 90, 87, 84, 81, 79, 76,
73, 70, 67, 64, 62, 59, 56, 54, 51, 49, 46, 44, 42, 39, 37,
35, 33, 31, 29, 27, 25, 23, 21, 19, 18, 16, 15, 13, 12, 10,
9, 8, 7, 6, 5, 4, 3, 3, 2, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1, 1, 2, 3, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 15, 16,
18, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 42, 44, 46,
49, 51, 54, 56, 59, 62, 64, 67, 70, 73, 76, 79, 81, 84, 87,
90, 93, 96, 99, 103, 106, 109, 112, 115, 118, 121, 124 ;

ROMout = ROM[input] ;
255

Simulator Reference Manual
See the example circuit EXAMPLES\ALB_Examples\SineLookUp.sch

Example 4 - D Type Flip Flop
The following is the definition for the 74X74 Dtype flip flop supplied with the
standard SIMetrix model library. This model is somewhat more complicated as it
models a number of timing artefacts such as setup time and minimum clock width.
Each line below has been annotated to describe its function. Full details are explained
in the following sections.

// Input port definitions
PORT D in[0] ; // D input
PORT CK in[1] ; // Clock
PORT SR in[2:3] ; // Set/reset inputs. r bit 3 s bit 2

PORT out out[0:1] ; // Outputs Q and !Q

// Edge triggered register.
// HOLD is hold time i.e. time after clock edge that data
// must remain stable. Setup time is implemented by
// delaying the D input

// MINCLOCK is minimum clock width.
// USER[n] references values supplied in the .MODEL control
// The final '=2' initialise the register with the value 2
// i.e. Q=0 and Q!=1
EDGE (WIDTH=2, DELAY=USER[4], HOLD=USER[2], MINCLOCK=USER[3],
CLOCK=in[1]) DTYPE=2;

// COMB defines a combinational register. This is effectively
// a delay element. These delay the D input (to implement
// setup time) and the set/reset inputs to implement minimum
// set and reset times
COMB (DELAY=USER[0], WIDTH=1) D_DEL ;
COMB (DELAY=USER[1], WIDTH=2) SR_DEL ;

// These assign the combinational registers
SR_DEL = SR ;
D_DEL = D ;

// asynchronous action
DTYPE := SR_DEL==1||SR_DEL==2 ? (SR_DEL==2 ? 1 : 2) ;

// synchronous action
DTYPE = D_DEL ? 1 : 2 ;

// Both outputs are forced high if S and R are both active
// Output will be restored to previous value when one of
// S and R becomes inactive
out = SR_DEL==0 ? 3 : DTYPE ;

Device Definition - Netlist Entry & .MODEL Parameters

Netlist entry

Axxxx [in_0 in_1 .. in_n] [out_0 out_1 .. out_n] model_name
256

Chapter 9 Digital Simulation
+ : parameters

Connection details

Instance parameters

Model format

.MODEL model_name d_logic_block parameters

Model parameters

Name Description Flow Type

in Input in d

out Output out d

Name Description Type

trace_file Trace file string

user User device parameters real vector

Name Description Type Default Limits Vector
bounds

file Definition file name string none none n/a

def Definition string none none n/a

out_delay Default output delay real 1n 1e-12 -
∞

n/a

reg_delay Default internal
register delay

real 1n 0 - ∞ n/a

setup_time Default level
triggered setup time

real 0 0 - ∞ n/a

hold_time Default edge
triggered hold time

real 0 0 - ∞ n/a

min_clock Default minimum
clock width

real 0 0 - ∞ n/a

trace_file Trace log file string none n/a

user User defined
parameters

real
vector

none none none

user_scale Scale of user values real 1 0 - ∞ n/a

input_load Input load value (F) real 1p none n/a
257

Simulator Reference Manual
Notes

Usually the logic block definition would be placed in a file referred in the FILE
parameter. Alternatively the definition may be placed directly in the .MODEL control
as the value of the DEF parameter. In this case the definition must be enclosed in
quotation marks (").

The USER_SCALE parameter scales all values found in the USER parameter.

Language Definition - Overview
The following sections describe the full details of the arbitrary logic block language.

All logic definitions are divided into two sections. The first contains the ports and
register definitions and the second section consists of the assignment statements. (The
first section can be empty in very simple cases).

Language Definition - Constants and Names
Constants follow the usual rules. Any decimal number with optional sign and exponent
or engineering suffix is permitted. In addition, numbers in hexadecimal are also
allowed. The format is the same as for the 'C' programming language i.e. prefixed with
'0X'. E.g.:

0X10 = 10 hex = 16.

Identifiers used for register, port and variable names must begin with an alphabetic
character or underscore and consist of alphanumeric characters and underscores.

Language Definition - Ports
Port statements define the inputs and outputs to the logic device. They are of the form

family Logic family string UNIV none n/a

in_family Input logic family string UNIV none n/a

out_family Output logic family string UNIV none n/a

out_res Digital output
resistance

real 100 0 - ∞ n/a

min_sink Minimum sink
current

real -0.001 none n/a

max_source Maximum source
current

real 0.001 none n/a

sink_current Input sink current real 0 none n/a

source_current Input source current real 0 none n/a

Name Description Type Default Limits Vector
bounds
258

Chapter 9 Digital Simulation
PORT (DELAY=output_delay) port_name OUT [pin1| pin1:pin2]
or
PORT port_name IN|OUT [pin1| pin1:pin2]

Ports define a label to a single pin or sequence of pins so that they can be treated as a
single entity in the remainder of the logic definition. In the case of outputs they can
optionally also define an output delay. (If this is not specified a default output delay
defined in the devices .MODEL control is used).

port_name Any name to reference the port. Must start with a letter or
underscore and consist only of letters numbers and underscores.
Names are not case sensitive.

pin1,pin2 Identifies pin or range of pins that port accesses. See next
section for more details.

output_delay Output delay in seconds. When an output port is assigned a
value, the actual output is updated after this delay has elapsed (+
any loading delay). You may use engineering units in the normal
way. E.g. 10n is 10e-9.

Relationship between ports, netlist entry and symbol definition

The netlist entry for an arbitrary logic block is of the form:

Axxx [input_node_list] [output_node_list] model_name

The pin numbers in the port statements above, i.e. pin1 and pin2 are the positions
within the input_node_list for input ports and output_node_list for output ports.

So if the netlist entry is:

A12 [1 2 3 4] [A B C D] ARB1

the port definition:

PORT output OUT[0:3] ;

assigns the label output to the netlist pins A B C and D. If, for example, the value 7
is evaluated and assigned to output, pins A B and C would be set to a logic '1' and
pin D would be set to a logic '0'. Pins 1 2 3 & 4 would be used for input ports in a
similar way.

The netlist entry relates directly to a symbol definition for an arbitrary logic block.
When defining a symbol to be used with an ALB you should observe the following
rules

• The first input pin's name and the first output pin's name should both be prefixed
with a '['.

• The last input pin's name and the last output pin's name should both be suffixed
with a ']'.
259

Simulator Reference Manual
• Use Property/Pin|Edit Pin Order… to define the pin order with input pins first
then output pins.

• You should assign a MODEL property with the value 'A'.

Language Definition - Registers and Variables
Registers are the main working elements of the arbitrary logic block. There are four
main types. These are:

• Edge triggered. The value of these change on the rising edge of an assigned
clock.

• Level triggered. The value of these change when an assigned enable is at a logic
'1' level.

• Combinational. The value of these change after a specified delay.
• Read-only. These are given a fixed value which cannot be changed. These would

usually be arranged in indexable arrays to implement a read only memory.
Edge and level triggered registers may be arranged in indexable arrays. Level or edge
triggered arrays form a read-write memory or RAM.

In addition to registers there are also local variables. These can be assigned a value that
can later be used in a register assignment.

All registers must be declared. Local variables are declared by simply assigning a
value to them.

The syntax for register declarations follow:

Edge Triggered Register Declaration

EDGE (CLOCK=input_pin_spec
[, DELAY=reg_delay]
[, WIDTH=reg_width]
[, MINCLOCK=reg_minclock]
[, HOLD=reg_hold_time]
[, ASYNCDELAY=reg_asyncdelay]
[, BITWISE=0|1]) name [[array_size]]
[= initial_condition *[, initial_condition]] ;

input_pin_spec This specifies which input pin is the clock and must be of the
form: IN[n] where n is a pin number. See “Relationship between
ports, netlist entry and symbol definition” on page 259 for
details on how pin numbers relate to netlist entries and symbol
definitions.

reg_delay Register delay in seconds. This is the delay between the clock
rising edge and the register value changing. You can use
engineering units in the normal way.
Default: REG_DELAY parameter in .MODEL control defines
default value. This is turn has a default value of 1nS.
260

Chapter 9 Digital Simulation
reg_width Register width in bits. This has a maximum of 32.
Default: 32

reg_minclock Minimum clock width. This must be less than or equal to
reg_delay. The register value will not update if the clock width
is less than this value.
Default: MIN_CLOCK parameter in .MODEL control defines
default value. This in turn has a default value of 0.

reg_hold_time Register hold time. This is the time that the input data (i.e.
assignment value) must remain stable after the clock edge, for
the new value to be accepted. If the BITWISE parameter is set
to '1' (which it is by default) the hold time is applied on a bit by
bit basis. That is any individual bit in the register that remains
stable during the hold period will attain the new value even if
other bits violate the hold time. If BITWISE is '0' then if a single
bit violates the hold time, the whole register will remain
unchanged even if some bits remain stable during the hold
period. Setting BITWISE to '0' saves system memory which can
be important for large arrays (i.e. RAMs).
Default: HOLD_TIME parameter in .MODEL control defines
default value. This in turn has a default of 0.

reg_asysncdelay Time the register takes to acquire a value set by an
asynchronous assignment. This must be less than or equal to
reg_delay.
Default: reg_delay

BITWISE value See reg_hold_time
Default: '1' for single registers, '0' for arrays.

name Register name.

array_size If specified, the register is arranged as an addressable array of
size array_size.
Default: 1

initial_condition Value assigned to register when simulation starts.
Default: 0

Notes:
To implement register setup time, assign a value to reg_hold_time equal to the sum of
the register setup and hold times then delay the input data by a period equal to the setup
time.

Level Triggered Register Declaration

LEVEL (CLOCK=input_pin_spec
[, DELAY=reg_delay]
[, WIDTH=reg_width]
[, SETUP=reg_setup_time]
[, ASYNCDELAY=reg_asyncdelay]
[, BITWISE=0|1] name [[array_size]]
[= initial_condition *[, initial_condition]] ;
261

Simulator Reference Manual
input_pin_spec This specifies which input pin is the enable and must be of the
form: IN[n] where n is a pin number. See “Relationship between
ports, netlist entry and symbol definition” on page 259 for
details on how pin numbers relate to netlist entries and symbol
definitions.

reg_delay Register delay in seconds. If the enable is already high, this is
the time taken for the register to acquire new data. Otherwise it
is the delay between enable rising edge and the register value
changing. You can use engineering units in the normal way.
Default: REG_DELAY parameter in .MODEL control defines
default value. This is turn has a default value of 1nS.

reg_width Register width in bits. This has a maximum of 32.
Default: 32

reg_setup_time Register hold time. This is the time that the input data (i.e.
assignment value) must remain stable prior to an enable falling
edge, for the new value to be accepted. If the BITWISE
parameter is set to '1' (which it is by default) the setup time is
applied on a bit by bit basis. That is any individual bit in the
register that remains stable during the setup period will attain
the new value even if other bits violate the setup time. If
BITWISE is '0' then if a single bit violates the setup time, the
whole register will remain unchanged even if some bits remain
stable during the setup period. Setting BITWISE to '0' saves
system memory which can be important for large arrays (i.e.
RAMs).
Default: SETUP_TIME parameter in .MODEL control defines
default value. This in turn has a default of 0.

reg_asysncdelay Time the register takes to acquire a value set by an
asynchronous assignment. This must be less than or equal to
reg_delay.
Default: reg_delay

BITWISE value See reg_setup_time
Default: '1' for single registers, '0' for arrays.

name Register name.

array_size If specified, the register is arranged as an addressable array of
size array_size.
Default: 1

initial_condition Value assigned to register when simulation starts.
Default: 0

Combinational Register Declaration

COMB ([, DELAY=reg_delay]
[, WIDTH=reg_width]
[, BITWISE=0|1]) name [= initial_condition] ;

reg_delay Register delay in seconds. You can use engineering units in the
normal way. If BITWISE is '1' (the default) this delay is applied
262

Chapter 9 Digital Simulation
on a bit by bit basis. If BITWISE is '0' then the delay is applied
to the whole register. That is the output will not change until all
inputs have remained stable for the delay time. Setting
BITWISE to '0' is useful when using combinational registers to
implement asynchronous state machines as it eliminates race
conditions.
Default: REG_DELAY parameter in .MODEL control defines
default value. This is turn has a default value of 1nS.

reg_width Register width in bits. This has a maximum of 32.
Default: 32

name Register name.

initial_condition Value assigned to register when simulation starts.
Default: 0

Read-only Register Declaration

READONLY ([, WIDTH=reg_width] name[[array_size]]
[= initial_condition *[, initial_condition]] ;

reg_width Register width in bits. This has a maximum of 32.
Default: 32

array_size If specified, the register is arranged as an addressable array of
size array_size.
Default: 1

name Register name.

initial_condition Value assigned to register when simulation starts.
Default: 0

Read-only registers are usually arranged as an addressable array. When reading a read-
only register, the value returned is the value defined by the initial conditions. As the
name implies it is not possible to assign read-only registers.

Language Definition - Assignments
Registers and output ports can be assigned using the assignment operator '='.
Assignment values can be constants, input ports, other registers, local variables or
expressions of any or all of these. Assignments are of the form:

register | output_port | OUT[pin1:pin2] | OUT[pin1] | local_var = expr ;
or
clocked_register[index] = expr ;

register Combinational, edge triggered or level triggered register name.

output_port Output port name

pin1, pin2 Output pin numbers. OUT[pin1:pin2] and OUT[pin1] allow
outputs to be assigned with having to declare them in a PORT
263

Simulator Reference Manual
statement.

local_var Any name not already used for a port or register. This defines
the value for a local variable that can be used in subsequent
expressions. A local variable may not be used in an expression
that precedes its definition.

expr Local variables, input ports, registers and constant values
combined using arithmetic, Boolean, bitwise Boolean, shift,
conditional and relational operators. See “Expression operators”
below for detailed documentation on all operators.

clocked_register Edge or level triggered register.

index Array index. This must be smaller than the array size. Arrays are
based at 0. That is the first element is zero and the last is (array
length-1).

Expression operators

The following table lists all operators available. These are listed in order of
precedence. Precedence determines the order of evaluation. For example in the
expression:

var1<var2 && var3<var4

The sub-expressions var1<var2 and var3<var4 are evaluated first and the result of that
those evaluations combined using && to yield the final result. This is because < has
higher precedence than &&. The precedence can be altered using parentheses in the
usual way.

Class Operators Description

Index [] E.g. var1[4]. Index operator to
access array element.

Unary + - Operator to single value e.g. -5

Arithmetic multiplicative * / % Arithmetic multiply/divide/
modulus treating all values as
unsigned integers. % returns
remainder after division

Arithmetic additive + - Arithmetic operation treating all
values as unsigned integers

Shift << >> Shift-left and shift right. E.g. reg1
<< 2 will shift reg1 left by two bits

Relational < > <= >= If condition met result is 1
(=TRUE) otherwise result is zero
(=FALSE)
264

Chapter 9 Digital Simulation
Note that the operators and their precedence are a subset of those used in the 'C'
programming language with the exception of <>.

Controlling Output Enables

An output can be set into a high impedance state using a modification to an output port
variable. Use the suffix .EN after the output port or port identifier to signify that the
result of the expression should control the output enable. E.g. the following is
extracted from the 74XX244 definition:

PORT (DELAY=USER[0]) Output out[0:3] ;
Output.En = Out_En_Del ? 0 : 0xf ;

Examples

Y = !Enable ? A_Del != B_Del : 1 ;

If Enable is 0 then Y will be the result of A_Del != B_Del otherwise the result will be
1.

Shift = !Par_En_Del ? Par_Data_Del :(Shift<<1) | Ser_Data_Del;

This describes the action of a parallel loadable shift register.

Equality == <> != == means EQUAL
<> and != both mean NOT
EQUAL
Return 1 when condition met and
0 when condition is not met

Bitwise AND & Performs a Boolean AND bit by
bit

Bitwise XOR ^ Performs a Boolean exclusive
OR bit by bit

Bitwise OR | Performs a Boolean OR bit by bit

Logical AND && Returns 1 if both values are non-
zero (TRUE) otherwise returns
zero (FALSE)

Logical OR || Returns 1 if either value is non-
zero (TRUE) otherwise return
zero (FALSE)

Conditional expression cond ? res1 :
res2

Returns res1 if cond is non-zero
(TRUE) otherwise returns res2

Example A<B ? 16 : 0

returns 16 if A is less than B
otherwise returns 0

Class Operators Description
265

Simulator Reference Manual
out[0]= !in[1]&!in[2] | in[1]&!in[2]&in[0] |
!in[1]&in[2]&in[0]

An example of referencing inputs and outputs directly without needing PORT
statements.

Language Definition - User and Device Values
Sometimes it is convenient to use the logic description to define the functionality of a
block but have the timing and other specifications specified separately. This is
achieved by USER and DEVICE values. USER values are specified in the .MODEL
control while DEVICE values are specified on the device at the netlist (or schematic
device) level. The values are referenced in the logic definition in the form:

USER[index]
and
DEVICE[index]

These can replace any constant value in an expression, register qualifier or port
qualifier. (Register and port qualifiers are the values in parentheses after the register/
port keyword. E.g. DELAY, HOLD, SETUP etc.).

To set USER values in a .MODEL control, assign the parameter USER. This is a vector
parameter, that is it can have any number of values and these must be enclosed in
square brackets '[' and ']'. For example:

.MODEL Counter8 d_logic_block file=counter_8.ldf
+ user=[10n, 5n]

The logic definition to which this model refers - counter_8.ldf - can use USER[0] and
USER[1] to refer to the values 10n and 5n respectively.

To set DEVICE values in a netlist, the netlist entry for the device must be appended
with:

: USER=[values]

For example:

A$U3 [clock] [Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7] Counter8 :
+ USER=[10n, 5n]

The logic definition for this device can use DEVICE[0] and DEVICE[1] to access the
USER values in the netlist i.e. 10n and 5n respectively. Always remember to include
the colon. This acts as a separator between the device name and any parameters.

Diagnostics: Trace File
In order to debug models, a tracing facility is provided. If the .MODEL TRACE_FILE
parameter or instance parameter of the same name is specified, a file will be created
which lists the values of all internal registers at each time point.
266

Chapter 9 Digital Simulation
The file will usually have a number of lines of the form:
Roll back to <time>

For example the following is an extract from an actual trace file

 5.00022e-05 2696 9 2696 0
 5.09397e-05 2696 9 2696 0
 5.09407e-05 2692 10 2692 0

Roll back to 5.08599e-05

 5.09397e-05 2696 9 2696 0
 5.09407e-05 2692 10 2692 0
 5.09657e-05 2692 10 2692 0

Roll-back occurs when an analog time step is rejected but the digital simulation has
already advanced past the new analog time. In this case the digital simulator has to
back-track events. This mechanism is central to the operation of the mixed-mode
system and is explained in more detail in “Mixed-mode Simulator - How it Works”
below.

Mixed-mode Simulator - How it Works

Event Driven Digital Simulator
The digital simulator is said to be Event Driven. An event is essentially a change of
state e.g. a gate output changing from logic '0' to logic '1'. When an event occurs on an
output, all devices with inputs connected to that output are notified of the event and
can respond appropriately by generating new events.

For example, consider the following circuit fragment.

HC00

U2

U1

HC04

HC02

U3

LOGIC '1'

LOGIC '0'
267

Simulator Reference Manual
U1 receives an event, a rising edge at its input at time = T. U1 has a propagation delay
of 5.5nS, so on receipt of the event at its input, U1 posts an event at its output with a
time T+5.5nS. At that time this event is received by U2 and U3. U3 does not respond
to this event because one of its inputs is permanently at logic '1' so its output will
always be low. U2, however, does respond and creates a low-high event at a time
delayed by its propagation delay of 6.5nS i.e. T+5.5nS+6.5nS. Any device with an
input connected to the output of U2 will process this new event and so the process
continues.

In addition to the propagation delays described above, there are also additional delays
caused by loading effects. Each input has an effective input capacitance and each
output a resistance. For each event, an additional delay is added equal to the sum of all
capacitances on the node multiplied by the driving output's resistance.

Interfacing to the Analog Simulator
Connections between the analog and digital system are made via special interfaces
bridges. (As described in “Analog to Digital Interfaces” on page 245 these bridges are
implicitly included by the simulator and it isn't necessary for the user to wire them in.)
The digital to analog interface has an output that looks like - to a first approximation -
an analog representation of a digital gate. This output changes voltage at a specified
rise and fall time when the digital input changes state. More importantly, the analog
system is notified when an event occurs at the input to a D-A interface bridge and a
timestep is forced at that time. This is known as a breakpoint and is the analog
equivalent of an event. The analog system is only notified of events that occur at the
input of D-A bridges. It knows nothing of events that are internal to the digital system.

Analog to digital interface bridges are much like a comparator. When the analog input
passes a threshold, the output state changes appropriately and a digital event is
generated.

Time Step Control

With two simulators running largely independently, something is needed to
synchronise the timesteps. Basically the analog system is in control. It tells the digital
system to process events up to a certain time, that time being the analog system's next
anticipated time point. A problem arises, however in that the next analog timestep is
not guaranteed to be accepted. The analog system frequently rejects timesteps either
because of slow convergence or because a shorter timestep is needed to maintain the
required accuracy. If the analog system has to cut back the timestep to a point prior to
the most recent digital event, then the digital system has to back-track. This process is
known as roll-back and the need for the digital simulator to be able to perform it
substantially increases its complexity. In order to roll-back the digital simulator has to
store its past history back to the most recent accepted analog timepoint

Enhancements over XSPICE
• Gate delays in XSPICE are stored i.e. like a transmission line not like a real gate.

SIMetrix gate delays are inertial so if a pulse shorter than the propagation delay
is received, it is swallowed not transmitted.

• Automatic interface creation. In XSPICE you have to explicitly join digital and
analog nodes via interface bridges. In SIMetrix this is done automatically.
268

Chapter 9 Digital Simulation
• Fan out implemented. The underlying mechanism for load dependent delay was
there but none of the models supported it. Static loading effects (as in bipolar
logic) was not supported at all. In SIMetrix it is.

• Input load reflected in analog to digital interfaces. The AD interfaces in XSPICE
have infinite input impedance regardless of what the digital output is driving.
SIMetrix AD interfaces reflect the digital capacitative and static load at their
inputs.

• Output strength reflected in digital to analog interfaces. The DA interfaces in
XSPICE have zero output impedance regardless of what is driving them.
SIMetrix DA interfaces reflect the strength of the digital output driving the input.
A hi-z logic state will look like a hi-z logic state when transferred to the analog
domain. This is not the case with XSPICE.

• AD interface threshold detection. All AD interfaces switch at a particular input
threshold. In the XSPICE system the output switched at the first analog timepoint
that exceeded the threshold. This could be a long way passed the threshold if the
analog time steps are large. In SIMetrix a mechanism has been implemented that
cuts back the time step so that the threshold is hit within a specified time
tolerance.

• Arbitrary logic block device. This allows the definition of any logic device using
a simple descriptive language. The language accommodates combinational logic,
synchronous and asynchronous registers as well as look up tables (i.e. ROMS)
and arrays (i.e. RAMs)

• Arbitrary analog to digital converter. Up to 32 bits with specified input range and
offset, conversion time and maximum conversion rate. Output may be in two's
complement or offset binary.

• Arbitrary digital to analogue converter. Up to 32 bit with specified input range
and offset and output slew time. Input may be in two's complement or offset
binary.

• Voltage controlled oscillator (analog in digital out). There was one of these in the
original XSPICE code but it suffered a number of problems and was scrapped.
The SIMetrix version is all new.
269

Simulator Reference Manual
Chapter 10 SIMetrix vs SPICE

Below is a list of incompatibilities between SIMetrix and SPICE

Capacitors

SIMetrix: Allows two temperature coefficients of capacitance and two
voltage coefficients on device line and model. (TC1, TC2, VC1,
VC2).

SPICE 2 Allows polynomial voltage coefficients. Temperature
coefficients not supported.

SPICE 3 Has capacitor model allowing specification in terms of process
parameters. Does not support voltage or temperature
coefficients.

Inductors

SIMetrix Inductance value only

SPICE 2 Allows polynomial current coefficients.

SPICE 3 Inductance value only

MOSFETs

SIMetrix Supports levels 1, 2 & 3 and new proprietary level 7 designed
for vertical devices. Supports specification for L and W as
model parameters for compatibility with PSpice.

SPICE 2 Supports levels 1, 2 & 3

SPICE 3 Supports levels 1-6. Levels 4 and 5 are BSIM1 and BSIM2
respectively. Level 6 is a new empirical model

Resistors

SIMetrix Supports 2 temperature coefficients on device line and in model.

SPICE 2 Supports 2 temperature coefficients on device line only.

SPICE 3 Supports 2 temperature coefficients in model only. Also allows
specification of resistance in terms of process parameters.

Voltage Controlled Switches

SIMetrix Switch specified in terms of model describing on resistance
(RON), off resistance (ROFF), turn on voltage (VON) and turn
off voltage (VOFF). Resistance between VON and VOFF varies
continuously following a cubic law. Switch model is compatible
with PSpice

SPICE 2 Switches not implemented.
270

Chapter 10 SIMetrix vs SPICE
SPICE 3 Switch specified in terms of on resistance, off resistance,
threshold voltage and hysteresis voltage. Device switches
abruptly at appropriate voltage.

Additional model parameters have been added to some devices for compatibility with
other commercial simulators. Devices affected are:

Diodes
BJTs
JFETs
MOSFETs

The following devices are implemented in SPICE 3 but are not available with
SIMetrix.
Current controlled switch
Uniform Distributed RC Line

Analysis Modes

Two analysis modes available in standard SPICE 3 have not been implemented in
SIMetrix. Details follow:

Distortion analysis. (.DISTO) This has not been implemented primarily because the
usefulness of this mode is limited. The analysis only provides 2nd and 3rd harmonics
which would is inadequate for the majority of applications. SIMetrix is supplied
instead with a comprehensive suite of spectral analysis post processing functions.

Fourier analysis (.FOUR). This isn't really an analysis mode at all but a post processing
function. SIMetrix is supplied with a script - FOUR - which performs the same action
as this analysis mode. In fact it is superior because it can be applied to any signal after
the run is complete whereas the standard SPICE .FOUR analysis requires the user to
specify the signal in advance of the simulation.
271

Simulator Reference Manual
272

Index
Index

.ALIAS 173

.DC 174

.ENDF 175

.ENDS 39

.FILE 175

.FUNC 176

.GRAPH 177

.INC 184

.LIB 186

.MODEL 187

.NODESET 190

.OPTIONS 195

.OUT file 22

.PARAM 30, 37, 205

.SUBCKT 39, 210

.SXDAT files 23

.TEMP 211

.TRACE 213

A
ABS (function) 34
ABSTOL (simulator option) 196, 241
ABSTOLMAX (simulator option) 196
AC analysis 171
ACCT (simulator option) 196
ACOS (function) 34
ACOSH (function) 34
ad_converter model 150
adc_bridge model 153
adc_schmitt model 165
Analog-digital converter 150
Analog-digital interface bridge 153
Analog-digital schmitt trigger 165
And gate 110
Arbitrary logic block

language definition 252
model 129

Arbitrary source 46
charge devices 47
examples 48
273

Simulator Reference Manual
flux devices 47
look-up tables 35
non-linear capacitors and inductors 47

ASIN (function) 34
ASINH (function) 34
ASYNCDELAY - arbitrary logic block keyword 260, 261
ATAN (function) 34
ATAN2 (function) 34
ATANH (function) 34

B
Batch mode 14
B-H curves 73
BINDIAG (simulator option) 196
Bipolar junction transistor 50, 53, 57
BITWISE - arbitrary logic block keyword 260, 261, 262
BJT 50, 53, 57

model parameters 51
BSIM3 84
BSIM4 85
Buffer (digital) 116

C
Capacitor 58

model parameters 60
Capacitor with voltage initial condition 60
CCCS 61
CCVS 62
CHGTOL (simulator option) 196, 241
CLOCK - arbitrary logic block keyword 260, 261
cm_cap model 60
cm_ind model 73
COMB - arbitrary logic block keyword 262
Comments 20

inline 44
Configuration 16
Connection types 27
Constant parameters 30
Controlled digital oscillator 163
Convergence 228
COS (function) 34
COSH (function) 34
Current controlled current source 61
Current controlled switch 271
Current controlled voltage source 62
274

Index
Current source 63

D
d_and model 111
d_buffer model 116
d_dff model 114
d_dlatch model 112
d_fdiv model 118
d_inverter model 124
d_jkff model 126
d_nand model 131
d_nor model 132
d_open_c model 133
d_open_e model 134
d_or model 135
d_osc model 164
d_pulldown model 136
d_pullup model 137
d_pulse model 120
d_ram model 138
d_source model 121
d_srff model 139
d_srlatch model 142
d_state model 143
d_tff model 145
d_tristate 147
d_xnor model 148
d_xor model 149
da_converter model 157
dac_bridge model 160
Data file 23
Data names 24
DC analysis 174
DCOPSEQUENCE (simulator option) 196
DDT (function) 34
DEFAD (simulator option) 196
DEFAS (simulator option) 196
DEFL (simulator option) 196
DEFNRD (simulator option) 196
DEFNRS (simulator option) 196
DEFPD (simulator option) 196
DEFPS (simulator option) 196
DEFW (simulator option) 196
Delay

load 251
275

Simulator Reference Manual
wire 252
DELAY - arbitrary logic block keyword 260, 261, 262
Delay time (pulse source) 98
DEVICE - arbitrary logic block keyword 266
Digital devices 109

delays 110
family parameters 109, 248
input parameters 110
output parameters 109

Digital model libraries 252
Digital pulse 120
Digital signal source 121
Digital simulation 244

analog to digital interfaces 245
logic families 247
logic states 244

Digital-analog converter 157
Digital-analog interface bridge 160
DIGMINTIME (simulator option) 196
Diode 64

model parameters 65, 67
Distortion analysis 271
D-type flip flop 114
D-type latch 112

E
Ebers-Moll 53
EDGE - arbitrary logic block keyword 260
EKV 86
Embedding files in netlist 175
Exclusive NOR gate 148
Exclusive OR gate 149
EXP (function) 34
EXPAND (simulator option) 23, 197
EXPANDFILE (simulator option) 23, 197
Exponential source 102
Expressions 28–38

.PARAM 30
circuit variables 29
for arbitrary source 47
for device parameters 29
for model parameters 29
functions 34
operators 31
parameters 30
276

Index
syntax 29

F
Fall time

pulse source 98
FAMILY (model parameter) 248
FASTPOINTTOL (simulator option) 197
FASTRELTOL (simulator option) 197
Files - embedding in netlist 175
Filter response functions 92
Flicker noise, resistor 88
FLOOR (function) 34
FLUXTOL (simulator option) 197, 241
Fourier analysis 271
Frequency divider 117

G
GaAsFET 68

model parameters 69
Gate-drain capacitance 83
GAUSS (function) 35
GAUSSE (function) 35
GAUSSEL (function) 35
GAUSSL (function) 35
GEAR 199
Gear integration 242
Global nodes 42
GMIN (simulator option) 197
GMIN, MOSFET implementation 86
GMINMAXITERS (simulator option) 197
GMINMULT (simulator option) 197
GMINSTEPITERLIMIT (simulator option) 197
Gummell Poon 50
Gummel-Poon 53

H
HIGH (logic state) 244
HI-IMPEDANCE (logic strength) 244
HOLD - arbitrary logic block keyword 260

I
ICRES (simulator option) 197
IF (function) 34
IFF (function) 34
IGBT 74
IN_FAMILY (model parameter) 248
277

Simulator Reference Manual
Inductor 70
saturable 70
with hysteresis 70

Inductor with current initial condition 73
Initial conditions 183
Initial value (pulse source) 98
Integration methods 241
Internal nodes 25
Inverter (digital) 124
ITL1 (simulator option) 198
ITL2 (simulator option) 198
ITL4 (simulator option) 198
ITL7 (simulator option) 198

J
JFET 75
Jiles-Atherton 72
JK flip-flop 125
JUNCAP 104
Junction FET 75

model parameters 76

L
Language 44
Language declaration 19
Laplace block 88
LEVEL - arbitrary logic block keyword 261
LIMIT (function) 34
List file 22
LN (function) 34
Load delay 251
LOG (function) 34
LOG10 (function) 34
Logic compatibility tables 248
Logic families 247
Logic states 244
LOGICHIGH (simulator option) 33, 198
LOGICLOW (simulator option) 33, 198
LOGICTHRESHHIGH (simulator option) 33, 198
LOGICTHRESHLOW (simulator option) 33, 198
Look-up tables 35
Lossy transmission line 77

model parameters 78
LOW (logic state) 244
278

Index
M
MATCHEDSUBCIRCUITS (simulator option) 198
MAX (function) 34
MAXEVTITER (simulator option) 198
MAXOPALTER (simulator option) 198
MAXORD (simulator option) 198
MaxVectorBufferSize (global setting) 17
MC_ABSOLUTE_RECT (simulator option) 199
MC_MATCH_RECT (simulator option) 199
MCLOGFILE (simulator option) 199
METHOD (simulator option) 199, 241
Mextram 106
MIN (function) 34
MINBREAK (simulator option) 199
MINCLOCK - arbitrary logic block keyword 260
MINGMINMULTIPLIER (simulator option) 199
MINTIMESTEP (simulator option) 199
Model parameters

analog-digital bridge 154
analog-digital converter 151
arbitrary logic block 130
BJT 51
Buffer 116
capacitor 60
controlled digital oscillator 164
digital initial condition 119
digital pulse 120
digital signal source 122
digital-analog bridge 161
digital-analog converter 158
diode 65, 67
D-type flip-flop 114
D-type latch 112
exclusive NOR gate 148
exclusive OR gate 149
frequency divider 118
gaAsFET 69
inverter 125
JK flip-flop 126
junction FET 76
laplace block 89
lossy transmission line 78
MOSFET 82
NAND gate 131
279

Simulator Reference Manual
NOR gate 132
open-collector buffer 133
open-emitter buffer 134
OR gate 135
pulldown resistor 136
pullup resistor 137
resistor 88
schmitt trigger 166
set-reset flip-flop 139
SR latch 142
state machine 143
toggle flip-flop 145
tri-state buffer 147
voltage controlled switch 96

Monte Carlo
distribution functions 35

MOS9 104
MOSFET 79

model parameters 80, 82
MOSGMIN (simulator option) 200
Multi step analyses 170
Mutual inductor 103

N
Names, vector 24
Nand gate 131
Netlist 18
NEWGMIN (simulator option) 200
NODELIMIT (simulator option) 200
Nodes, internal 25
NODESETRES (simulator option) 200
Noise analysis

creating noise info file 193
real time 216

Noise source 103
NOMCLOG (simulator option) 200
NOMOD (simulator option) 23, 200
NOMOS9GATENOISE (simulator option) 200
Non-GUI mode 14
NOOPALTER (simulator option) 200
NOOPINFO (simulator option) 200
NOOPITER (simulator option) 200
Nor gate 132
NORAW (simulator option) 201
NOSENSFILE (simulator option) 201
280

Index
NoStopOnUnknownParam (global setting) 17
NUMDGT (simulator option) 201

O
OLDLIMIT (simulator option) 201
OLDMOSGMIN (simulator option) 201
OLDMOSNOISE (simulator option) 201
Open-collector buffer 133
Open-emitter buffer 134
Operating point analysis

output file 195
OPINFO (simulator option) 23, 201
OPINFOFILE (simulator option) 201
OPTIMISE (simulator option) 201
Or gate 135
OUT - arbitrary logic block keyword 263
OUT_FAMILY (model parameter) 248
out_res 251
out_res_neg 251
out_res_pos 251

P
Parameters

.PARAM 205
built-in constants 30
in circuits 36
model 205
passing to subcircuits 206

PARAMLOG (simulator option) 23, 202
Period (pulse source) 98
Philips models 104
Piece-wise linear source 99
PIVREL (simulator option) 202
PIVTOL (simulator option) 202
POINTTOL (simulator option) 202, 241
POLY 61, 63
Polynomial specification 62
PORT - arbitrary logic block keyword 258
PSpice 19
PTAACCEPTAT 202
PTACONFIG (simulator option) 203
PTAMAXITERS (simulator option) 203
PTAOUTPUTVECS (simulator option) 203
Pulldown resistor 136
Pullup resistor 137
281

Simulator Reference Manual
Pulse (digital) 120
Pulse source 98
Pulse width (pulse source) 98
Pulsed value (pulse source) 98
PWL file source 100
PWR (function) 34
PWRS (function) 34

R
Random access memory 137
READONLY - arbitrary logic block keyword 263
Real time noise analysis 216
RELTOL (simulator option) 203, 241
RELTOLMAX (simulator option) 203
RESISTIVE (logic strength) 244
Resistor 87

model parameters 88
Rise time

pulse source 98
RSHUNT (simulator option) 203

S
s_xfer model 89
SDT (function) 34
SearchDefaultTol (global setting) 17
SEED (simulator option) 203
SENSFILE (simulator option) 203
Sensitivity analysis 209
Set-reset flip-flop 138
SETUP - arbitrary logic block keyword 261
SGN (function) 34
SIMULATOR CONTROLS

.FILE 101, 175
Simulator controls

.AC 171

.ALIAS 173

.DC 174

.ENDF 175

.GRAPH 177

.IC 183

.INC 184

.LIB 186

.MODEL 187

.NODESET 190

.OP 194
282

Index
.OPTIONS 195

.PARAM 205

.SENS 209

.SUBCKT 210

.TEMP 211

.TRACE 213

.TRAN 213
SIN (function) 34
Single frequency FM 102
SINH (function) 34
Sinusoidal source 101
Snapshots 215
SOURCEMAXITERS (simulator option) 203
Spectrum (function) 182
SQRT (function) 34
SR latch 141
Star-Hspice 19
State machine (model) 143
States - logic 244
Stimulus

exponential source syntax 102
noise source syntax 103
piece wise linear syntax 99
pulse source syntax 98
PWL file source syntax 100
sine source syntax 101
single frequency FM syntax 102

STP (function) 34
STRONG (logic strength) 244
Subcircuits 39

.SUBCKT control 210
calling from a netlist 41
global nodes 42
nesting 42
passing parameters 41

T
Tables, look-up 35
TAN (function) 35
TANH (function) 35
TEMP (simulator option) 204
TempDataDir (global setting) 17
TIMESTATS (simulator option) 204
TLMINBREAK (simulator option) 204
TNOM (simulator option) 204
283

Simulator Reference Manual
Toggle flip-flop 144
TotalVectorBufferSize (global setting) 17
Trace file (arbitrary logic block) 266
Transient analysis 213

fast start 215
snapshots 215

Transmission line (lossless) 94
Transmission line (lossy) 77
Tri-state buffer 146
TRTOL (simulator option) 204, 241
TRYTOCOMPACT (simulator option) 204

U
U (function) 35
UIC 214
UNDETERMINED (logic strength) 244
UNIF (function) 35
UNIFE (function) 35
UNIFEL (function) 35
UNIFL (function) 35
Uniform distributed RC line 271
UNIV - universal logic family 251
UNKNOWN (logic state) 244
URAMP (function) 35
USER - arbitrary logic block keyword 266

V
VBIC 53, 57
VCVS 95
Vector connections 26
Vector names 24
VNTOL (simulator option) 205, 241
VNTOLMAX (simulator option) 205
Voltage controlled current source 95
Voltage controlled switch 95

model parameters 96
Voltage source 97

exponential 102
noise source 103
piece wise linear 99
pulse 98
PWL file 100
sine 101
single frequency FM 102
284

Index
W
WC (function) 35
WCE (function) 35
WCEL (function) 35
WCL (function) 35
WIDTH - arbitrary logic block keyword 260, 261, 262, 263
WIDTH (simulator option) 23, 205
Wire Delay 252
WIRETABLE (simulator option) 205

X
XSPICE

devices 109
285

	Chapter 1 Introduction
	The SIMetrix Simulator - What is it?
	A Short History of SPICE

	Chapter 2 Running the Simulator
	Using the Simulator with the SIMetrix Schematic Editor
	Adding Extra Netlist Lines
	Displaying Net and Pin Names
	Editing Device Parameters
	Editing Literal Values - Using shift-F7

	Running in non-GUI Mode
	Overview
	Syntax
	Aborting
	Reading Data

	Configuration Settings
	Netlist Format
	File Format
	Language Declaration
	Comments
	Device Lines
	Simulator Controls

	Simulator Output
	The List File
	The Binary Data File
	Output Data Names

	Chapter 3 Simulator Devices
	Overview
	Using XSPICE Devices
	Vector Connections
	Connection Types

	Using Expressions
	Overview
	Using Expressions for Device Parameters
	Using Expressions for Model Parameters
	Expression Syntax
	Optimisation

	Subcircuits
	Overview
	Subcircuit Definition
	Subcircuit Instance
	Passing Parameters to Subcircuits
	Nesting Subcircuits
	Global Nodes
	Subcircuit Preprocessing

	Model Binning
	Overview
	Defining Binned Models
	Example

	Language Differences
	Inline Comment
	Unlabelled Device Parameters
	LOG() and PWR()

	Chapter 4 Analog Device Reference
	Overview
	Arbitrary Source
	Notes on Arbitrary Expression
	Charge and Flux Devices
	Arbitrary Source Examples
	PSpice and Star-Hspice syntax

	Bipolar Junction Transistor (SPICE Gummel Poon)
	Bipolar Junction Transistor (VBIC without self heating)
	Bipolar Junction Transistor (VBIC with self heating)
	Bipolar Junction Transistor (MEXTRAM)
	Capacitor
	Capacitor with Voltage Initial Condition
	Current Controlled Current Source
	Polynomial Specification

	Current Controlled Voltage Source
	Current Source
	Diode
	GaAsFET
	Inductor (Ideal)
	Inductor (Saturable)
	Inductor with Current Initial Condition
	Insulated Gate Bipolar Transistor
	Junction FET
	Lossy Transmission Line
	MOSFET
	BSIM3 MOSFETs
	BSIM4 MOSFETs
	EKV MOSFETs
	MOSFET GMIN Implementation
	Resistor
	S-domain Transfer Function Block
	Subcircuit Instance
	Transmission Line
	Voltage Controlled Current Source
	Voltage Controlled Switch
	Voltage Controlled Voltage Source
	Voltage Source
	Pulse Source
	Piece-Wise Linear Source
	PWL File Source
	Sinusoidal Source
	Exponential Source
	Single Frequency FM
	Noise Source

	Mutual Inductor
	Philips Compact Models
	Introduction
	Using Philips Devices
	Examples
	Documentation

	Chapter 5 Digital/Mixed Signal Device Reference
	Digital Device Overview
	Common Parameters
	Delays

	And Gate
	D-type Latch
	D-type Flip Flop
	Buffer
	Frequency Divider
	Digital Initial Condition
	Digital Pulse
	Digital Signal Source
	Inverter
	JK Flip Flop
	Arbitrary Logic Block
	Nand Gate
	Nor Gate
	Open-Collector Buffer
	Open-Emitter Buffer
	Or Gate
	Pulldown Resistor
	Pullup Resistor
	Random Access Memory
	Set-Reset Flip-Flop
	SR Latch
	State Machine
	Toggle Flip Flop
	Tri-State Buffer
	Exclusive NOR Gate
	Exclusive OR Gate
	Analog-Digital Converter
	Analog-Digital Interface Bridge
	Digital-Analog Converter
	Digital-Analog Interface Bridge
	Controlled Digital Oscillator
	Analog-Digital Schmitt Trigger

	Chapter 6 Command Reference
	Overview
	General Sweep Specification
	Overview
	Syntax

	Multi Step Analyses
	Overview
	Syntax

	.AC
	.ALIAS
	.DC
	.FILE and .ENDF
	.FUNC
	.GLOBAL
	.GRAPH
	Parameters
	Using Multiple .GRAPH Controls
	Creating X-Y Plots
	Using .GRAPH in Subcircuits
	Using Expressions with .GRAPH
	Plotting Spectra with .GRAPH

	.IC
	Alternative Initial Condition Implementations

	.INC
	.KEEP
	.LIB
	SIMetrix Native Form
	HSPICE“ Form

	.MODEL
	.NODESET
	.NOISE
	.OP
	.OPTIONS
	.PARAM
	.PRINT
	.PZ
	.SENS
	.SUBCKT and .ENDS
	.TEMP
	.TF
	.TRACE
	.TRAN
	Real Time Noise Analysis

	Chapter 7 Monte Carlo Analysis
	Overview
	Specifying a Monte Carlo Run
	Specifying a Single Step Monte Carlo Sweep
	Log File
	Seeding the Random Number Generator
	Specifying Tolerances
	Overview
	Distribution Functions
	TOL, MATCH and LOT Device Parameters
	Tolerance Models

	Chapter 8 Convergence and Accuracy
	Overview
	DC Operating Point
	Overview
	Source and GMIN Stepping
	Pseudo Transient Analysis
	Junction Initialised Iteration
	Using Nodesets

	Transient Analysis
	What Causes Non-convergence?
	Fixes for Transient Non-convergence

	DC Sweep
	DC Operating Point Algorithms
	Junction Initialised Iteration
	Source Stepping
	Diagonal GMIN Stepping
	Junction GMIN Stepping
	Pseudo Transient Analysis
	Controlling DC Method Sequence

	Singular Matrix Errors
	Transient Analysis - ‘Time step too small’ Error
	Accuracy and Integration Methods
	A Simple Approach
	Iteration Accuracy
	Time Step Control
	Accuracy of AC analyses
	Summary of Tolerance Options
	Integration Methods - METHOD option

	Chapter 9 Digital Simulation
	Overview
	Logic States
	State resolution table

	Analog to Digital Interfaces
	How A-D Bridges are Selected

	Logic Families
	Logic Family Model Parameters.
	Logic Compatibility Tables
	Logic Compatibility File Format
	Supported Logic Families
	Universal Logic Family
	Internal Tables

	Load Delay
	Overview
	Output Resistance
	Input Delay
	Wire Delay

	Digital Model Libraries
	Using Third Party Libraries

	Arbitrary Logic Block - User Defined Models
	Overview
	An Example
	Example 2 - A Simple Multiplier
	Example 3 - A ROM Lookup Table
	Example 4 - D Type Flip Flop
	Device Definition - Netlist Entry & .MODEL Parameters
	Language Definition - Overview
	Language Definition - Constants and Names
	Language Definition - Ports
	Language Definition - Registers and Variables
	Language Definition - Assignments
	Language Definition - User and Device Values
	Diagnostics: Trace File

	Mixed-mode Simulator - How it Works
	Event Driven Digital Simulator
	Interfacing to the Analog Simulator

	Enhancements over XSPICE

	Chapter 10 SIMetrix vs SPICE
	Index

