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Abstract 

Monitoring mobility at home and in the community, and understanding the 

environment and context in which mobility occurred, is essential for rehabilitation medicine.  

This thesis introduces a Wearable Mobility Monitoring System (WMMS) for objective 

measurement of community mobility. This prototype WMMS was created using a 

smartphone-based approach that allowed for an all-in-one WMMS. The wearable system is 

worn freely on a person’s belt, like a normal phone. 

The WMMS was designed to monitor a user’s mobility state and to take a photograph when 

a change-of-state was detected. These photographs are used to identify the context of 

mobility events (i.e., using an elevator, walking up/down stairs, type of walking surface). 

Mobility evaluation using the proposed WMMS was performed on five able-bodied subjects. 

System performance for detecting changes-of-state and the ability to identify context from 

the photographs was analyzed. The WMMS demonstrated good potential for community 

mobility monitoring.  
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Chapter 1:   Introduction 

Mobility can be defined as the ability to move independently from one point to 

another [1] and is essential for maintaining independence. Mobility is required to perform 

many activities of daily life, such as cooking, dressing, shopping and visiting friends. 

According to Statistics Canada, mobility problems are one of the issues that affect the 

greatest number of adults [2]. The number of people with mobility issues has increased from 

10.5% to 11% since 2001, most likely due to Canada’s aging population [2]. Mobility 

disabilities can affect an individual’s quality of life, health, productivity, independence, and 

also affect the lives of their family and the people around them. Preserving mobility is 

paramount in order to stay independent and active at home and in the community.  

Accurate mobility assessment is required for decision-making in rehabilitation medicine. 

Such assessments can be used to determine mobility issues outside a hospital environment, 

evaluate the progress made during and after rehabilitation, and enhance clinical decision-

making about a rehabilitation program (i.e., assistive devices, exercises, treatment, etc.). 

Currently, many different types of mobility assessments are performed in clinical setting and 

are supervised by the rehabilitation physician. These assessments include clinical tests, 

quantitative measures, and subjective feedback from the client. Although clinical mobility 

tests have their value, these easy to apply assessment tools may not be appropriate for 

determining the contributing factors for independent community walking and the impact of 

the environment on the individual’s mobility [3, 4]. Monitoring the mobility outside a 

clinical setting is important because mobility in the real world is typically different from the 

mobility measured in the clinic [5]. 

Wearable technology can be developed to evaluate mobility in any location or environment. 

Wearable mobility monitoring systems are designed to be worn on the body and allow 

mobility monitoring in the person’s home and the community [6].  
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Many wearable mobility monitoring studies measure biomechanical and/or location 

parameters [5, 7-10], but most lack environmental or contextual information. In community 

mobility monitoring, contextual information is important since it could provide insight on 

where, how, and on what a person is moving. A camera could provide contextual 

information from a person’s surrounding environment.  

Example of wearable systems that use contextual information, are context-aware systems 

[11] and life logs [12], but they are not meant for community mobility monitoring for people 

with physical disabilities. Some context-aware wearable systems use context information to 

better recognize activities [13-15], but the environmental characteristics in which activities 

take place are not analyzed for their impact on mobility.  

There is a need for an assessment tool that could monitor mobility within the home envi-

ronment and the community for a long period, and provide information on the context in 

which mobility occurred. This tool could help clinical professionals and rehabilitation 

researchers to determine appropriate training to enhance mobility in the community and 

could help identify mobility challenges. The tool could also help monitor progress or 

deterioration, thereby providing an indication of treatment effectiveness.  

1.1 Contributions 

This thesis presents a Wearable Mobility Monitoring System (WMMS) to monitor a 

person’s mobility at home, outside the home, and in the community. Our proposed WMMS 

provides solutions to the limitations of current assessment tools by providing unsupervised 

objective mobility measurements in a cost-effective way. The WMMS also provides 

information on the context and environment in which mobility event takes place, which 

could identify mobility challenges in a person’s own environment.  

The WMMS was developed using a smartphone-based approach, which takes advantage of 

the smartphone’s available features such as GPS, camera, Bluetooth, and Wi-Fi, to create an 

all-in-one WMMS. The WMMS is worn comfortably and freely on a person’s belt, just like 

a normal phone. A Smart-Holster was developed to hold the phone at the hip and provide 
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additional sensor data; such as, accelerometer, light sensor, and temperature/humidity 

sensor. 

To the best of our knowledge, an all-in-one wearable system using a smartphone to monitor 

a person’s mobility in his or her everyday environment, as well as using a camera to provide 

insight on the environment and context, has not been explored. 

1.2 Scope of the Thesis   

The WMMS was designed to monitor a user’s mobility state and to take a 

photograph when a user’s change-of-state related to mobility was detected. The taken 

photographs assist in defining the context of the mobility event (i.e., using an elevator, 

walking up a ramp, type of walking surface, etc.) 

The changes-of-state that were evaluated in this thesis were starting or stopping an activity 

(e.g., walking, running, cleaning), sitting down, lying down, getting up (i.e., from chair, 

bed), going up and down stairs, using transportation (e.g., bus, car, biking), and moving 

between indoors and outdoors.  

The WMMS was intended for people with physical mobility disabilities, or at risk to develop 

mobility disabilities, but who are still mobile in the community. People with age related 

pathologies, such as stroke, osteoarthritis, and other physical illness, which are often 

associated with a reduction in mobility, could also benefit from this wearable system.  

The validation process was performed on five able-bodied subjects. The subjects were asked 

to do a series of predefined mobility tasks; such as walking, going up/down stairs, walking 

up/down a ramp, sitting, lying, walking outside, taking the elevator and riding in a car. The 

system was evaluated for sensitivity and specificity for detecting changes-of-state. The 

pictures were evaluated for their usefulness in defining the context of the mobility event. For 

this pilot study, the system was not intended to recognize all activities. However, from the 

different types of data that were collected, further algorithms could be developed to expand 

on the types of activities and improve context recognition.   
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1.3 Overview of the thesis 

After the introduction, Chapter 2 provides a literature review related to mobility 

assessment. From that review, Chapter 3 gives the rationale for this research. Chapters 4 to 8 

cover the methodology. Chapter 4 starts with the design criteria for the development of a 

wearable mobility monitoring system and gives an overview of the development and 

evaluation process. Chapter 5 covers a preliminary study that evaluated the BlackBerry 

smartphone as a hub for a WMMS. Chapter 6 presents the hardware design and evaluation. 

Chapter 7 describes the development of the WMMS, including the algorithms and methods 

used to detect a change-of-state. Chapter 8 presents the technical and mobility evaluation of 

the WMMS. Finally, Chapter 9 gives an overall conclusion of the thesis. 
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Chapter 2:   Literature Review 

This chapter reviews the literature on methods and technologies for monitoring and 

assessing a person’s mobility. This chapter is divided into four main sections: community 

mobility and the importance of the environment in which mobility takes place (2.1); current 

mobility measurement methods and technologies (2.2); wearable technologies (2.3); and data 

analysis techniques related to mobility monitoring studies (2.4).  

2.1 Community Mobility 

Independent ambulation within the home and the community is an important 

rehabilitation goal for a person with physical impairments [16]. Lord et al. defined 

community ambulation [16] as “independent mobility outside the home which includes the 

ability to confidently negotiate uneven terrain, private venues, shopping centres and other 

public venues”. This definition was based on the environments that participants considered 

the most important. Patla and Shumway-Cook [1] defined community mobility as “the 

locomotion in environments outside the home or residence”. The achievement of 

independent community mobility is dependent on various factors. Frank and Patla [17] 

mentioned that community mobility depends on:  

1. The skills and abilities of the performer 

2. Requirement of the task (activity)  

3. Challenges of the environment 

The importance to account for the environmental factors when assessing mobility has been 

previously emphasized by two well-known models. The International Classification of 

Functioning, Disability and Health (ICF) from the World Health Organisation [18] covers 

aspects of a person’s health, including mobility. The Dimensions of Mobility framework 

from Patla and Shumway-Cook [1] focuses on the person’s mobility. The main idea behind 

theses two models or frameworks is that a person’s health condition is not only a result of 
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the individual alone, but is a combination of relationships between the individual and 

external factors. The ICF model encourages clinicians to acknowledge elements in the 

physical environment that can facilitate or impede a client’s ability to ambulate in their 

community. The eight environmental mobility dimensions provide a framework for 

assessing the impact of the environment in specific areas. The two models are sometimes 

used, such as by Corrigan and McBurney [4], to evaluate the effectiveness of mobility 

assessment tools to determine community ambulation status. The following summarizes 

these two models. 

2.1.1 International Classification of Functioning, Disability and 

Health 

The International Classification of Functioning, Disability and Health (ICF), is a 

classification system that provides a unified and standard language and framework to 

describe health and health-related states [18]. The ICF belongs to the World Health 

Organization (WHO) family of international classifications [19]. The ICF has two parts, 

each divided into two components: 1) functioning and disability, which comprises body 

functions and structures, activities, and participation; 2) contextual factors, which comprises 

environmental factors and personal factors. The ICF is used to describe and evaluate 

disability using the complex relationships between an individual’s health condition and 

contextual factors. An illustration of the ICF model is presented in Figure 2.1, demonstrating 

the interaction between the different components.  

ICF environmental factors comprise “the physical, social, and attitudinal environment in 

which people live and conduct their lives” [18]. Understanding the impact that the physical 

environment can have on community mobility is important, because some environments may 

have barriers that could decrease a person’s mobility, or may also have facilitators that could 

increase mobility.  
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Figure 2.1: Interaction between ICF components (reproduced from [18]). 

 

2.1.2 Dimensions of Mobility Framework 

The Dimensions of Mobility framework was developed by Patla and Shumway-Cook 

[1] to define community ambulation with respect to the physical environment's impact on a 

person’s mobility (Figure 2.2). This framework consists of eight environmental factors, 

called dimensions, which determine the degree of complexity and difficulty of mobility. The 

dimensions are: minimum walking distance, time constraints on locomotion, ambient 

conditions, terrain conditions, physical load interaction, attention demands, postural 

transitions, and density of traffic (both vehicular and other individuals). These dimensions 

capture the external demands for independent community mobility. Therefore, with this 

model, disability level is expressed as the range of environmental contexts where the tasks 

required to perform daily activities can be carried out, as opposed to expressing disability 

level by the number of tasks a person can or cannot do [1]. 
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Figure 2.2: Dimensions of Mobility framework (reproduced from [1]). 

 

Interestingly, around the same timeframe, a study by Stanko et al. [20] used an open-ended 

questionnaire to ask 15 physiotherapists which tasks and destinations are important to 

include in a new outcome measure. The paper mentioned that the study was completed 

before the dimension of mobility model was published, and therefore the respondents were 

not influenced by that research. The responses obtained identified items in each of the eight 

dimensions, which clearly emphasized the role of the environment in defining mobility. 

The Dimension of Mobility framework was explored further by Shummay-Cook et al. [21] 

who examined environmental challenges that older adult, with and without mobility 

impairments, would encounter while walking in the community. The frequency of 

encounters for each of the eight dimensions was measured using a self-administrated 

questionnaire to collect information on activities and trips. Subjects were video-taped during 

three trips in the community to record the physical environment associated with community 

mobility. Older adults with mobility issues were characterized by a decrease in the number 

of trips taken in the community and the number of activities performed during these trips. 

The dimensions that distinguished between an older adult with mobility disability and an 

older adult without such disabilities were temporal factors, physical load, terrain, and 



   Literature Review 

  

Development of a Wearable Mobility Monitoring System  9 

postural transition. The dimensions that did not distinguish between groups were distance, 

traffic density, ambient conditions, and attentional demands.  

2.2 Mobility Measurement 

The following summarizes existing methods used to measure mobility; including, 

functional mobility, community ambulation, physical activity, and human motion analysis. 

The categories presented are observation and clinical tests, diaries and questionnaires, 

physiological measurements, and biomechanical measurements.  

2.2.1 Observation and Clinical Tests 

Observation and clinical tests are performance-based measures used to assess an 

individual’s functional mobility. These tests are usually easy to perform and are carried out 

in a clinical environment over a short period. However, they are highly dependent on the test 

administrator’s subjectivity and reaction time. Furthermore, as suggested by Myers et al. 

[22], the individual’s performance at the time of assessment may not be representative of 

their usual performance. As pointed out by Patla [23], the environment in which the 

assessment takes place is usually a flat, well-lit area, which is an exception in community 

mobility. The following describes some common observational and clinical tests that 

measure mobility. 

2.2.1.1 Dynamic Gait Index (DGI) 

The Dynamic Gait Index (DGI) evaluates postural stability in older adults over eight 

different tasks; including walking at different speeds, walking while turning the head, 

ambulating over and around obstacles, ascending and descending stairs, and making quick 

turns. Each task is scored on a scale of 0 to 3, with a maximum possible score of 24. A score 

less than 19 indicates a high risk of falling during gait [24-28].  

2.2.1.2 Functional Gait Assessment (FGA)  

The Functional Gait Assessment (FGA) is a 10-item gait assessment, based on the 

DGI. Wrisley et al. [29] created and validated the FGA. This test includes seven out of eight 

DGI tasks and three new tasks: gait with narrow base of support, ambulating backwards, and 
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gait with eyes closed. These new tasks were added since they were observed to be difficult 

for people with vestibular disorders. The walking around obstacles task from the original 

DGI was removed since this task was considered to be of insufficient difficulty. The FGA 

demonstrated similar reliability to the DGI and was considered to have acceptable reliability 

and validity as a clinical gait measure for patients with vestibular disorders [29]. 

2.2.1.3 Community Balance and Mobility Scale (CB&M) 

The Community Balance and Mobility Scale (CB&M) was designed to evaluate 

balance and mobility in high functioning ambulatory patients who have persistent balance 

problems [30]. CB&M is a multiple components test that measures performance on thirteen 

physical tasks: unilateral stance, tandem walking, 180 degree tandem pivot, lateral foot 

scooting, hopping forward, crouch and walk, lateral dodging, walking and looking, running 

with controlled stop, forward to backward walking, walk, look and carry, descending stairs, 

step-ups x 1 step. This measure was a reliable and a valid scale for the traumatic brain injury 

population [31], but could also be appropriated for clients with other diagnoses [32]. 

2.2.1.4 Berg Balance Scale 

The Berg Balance Scale (BBS) is a 14-item clinical tool developed to measure 

functional balance in an older population [33]. The items include: a sitting task, transfer 

tasks (sitting to standing, standing to sitting, and other), standing tasks (unsupported, with 

eyes closed, with feet together, tandem, on one leg), and other mobility tasks (turning trunk 

with feet fixed, retrieving object from floor, turning 360 degrees, stool stepping, and 

reaching forward while standing). Each item is scored on a scale from zero to four, with a 

maximum possible score of 56. A score of 0 to 20 represents balance impairment, 21 to 40 

represents acceptable balance, and 41 to 56 represents good balance. Although originally 

designed for older adults, a recent systematic review by Blum and Korner-Bitensky [34] 

about the BBS psychometric properties for stroke rehabilitation, suggested that the BBS is a 

valuable tool for assessing clinical change in balance after stroke.  

2.2.1.5 Timed Up and Go Test 

The “Timed Up and Go Test” was originally called “Get Up and Go Test” [35], but 

the name changed after the test was validated with a timed score [36]. This simple test 
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consisted of asking the patient, who is sitting in an armchair, to stand up, walk three meters, 

turn around, walk back to the chair, and sit down. The time taken to execute this task can 

predict the person’s ability to go outside alone safely. 

2.2.1.6 6-Minutes Walk Test 

The 6-minutes walk test was developed to measure functional capacity of people with 

respiratory and cardiac conditions. The test is usually performed indoors on a long, flat, and 

straight path, but could also be done outdoors if the weather is comfortable [37]. This test 

measures the distance that a patient can quickly walk for a period of 6 minutes. The 6-minute 

walk test was recently recommended as a clinical measure for community ambulation [38]. 

2.2.1.7 Tinetti Assessment Tool 

The Tinetti Assessment Tool [39] is a widely used tool to assess balance and gait in 

elderly patients and identify patients at risk of falling. The tool is divided into two parts: 

balance assessment and gait assessment. The balance part consists of evaluating the patient 

performing different static positions and position changes such as sitting balance, arising 

from a chair, immediate and prolonged standing balance, withstanding a nudge on the 

sternum, balance with eyes closed, turning balance, and sitting down. The gait part consists 

of observing different components of gait and scoring them as normal or abnormal [40, 41]. 

2.2.1.8 Functional Independence Measure 

The Functional Independence Measure (FIM) is a tool used to quantify physical and 

cognitive disability in terms of level of care required. FIM is a widely adopted tool in 

rehabilitation facilities [42]. The FIM consists of 18 items covering independence in self-

care, sphincter control, mobility, locomotion, communication, and cognition [43]. Each item 

can be rated from observations, patient interview, or medical records. The rating is based on 

performance rather than the capacity. Alternative forms of the FIM include the Functional 

Assessment Measure (FAM), which consists of the FIM plus 12 new items in the areas of 

cognition, behaviour, communication, and community functioning [44]. More details of FIM 

can be found in [45]. 



   Literature Review 

  

Development of a Wearable Mobility Monitoring System  12 

2.2.2 Diaries and Questionnaires 

Diaries and questionnaires are used to assess mobility disability or disability in 

activities of daily living (ADL) by having the participants report on whether they have 

difficulties or need help in performing ADL or mobility related tasks [46]. These two 

approaches provide complementary information to performance-based mobility tests, 

because these methods can capture a person’s perception of their ability to perform daily 

activities and capture details on the environmental impact on mobility. However, self-reports 

and questionnaires on ADL disability are known for their compromised reliability due to 

under or over reporting [47] and their limited reliability in a frail older population [48]. 

Despite these disadvantages, questionnaires remain one of the few ways to understand 

mobility performance in the community [49]. The following will describe some of these 

methods.  

2.2.2.1 Diaries 

Diaries have been used to assess mobility in the community. Follick et al. [50] asked 

patients to record, three times a day in half-hour blocks over 24 hours, the time spent lying, 

sitting, standing/walking, and sleeping. In a recent study by Moore et al. [51], the activity 

diary appeared to have greater promise than pedometers (step counters) for measuring free-

living daily activities in a chronic obstructive pulmonary disease (COPD) population. 

However, diaries require a high level of adherence from the patients and are retrospective 

and subjective [6, 52]. Diaries are known for their potential recall bias and misreporting of 

activity level, which affect their accuracy [53]. 

2.2.2.2   Functional Status Questionnaire 

The Functional Status Questionnaire (FSQ) is a comprehensive self-report functional 

assessment of patients receiving ambulatory care [54]. The FSQ is divided into five main 

sections: physical function of the activities of daily living, psychological function, role 

function, social function, and a variety of performance measures. In mobility studies, 

researchers sometimes used only FSQ subscales that relate to physical activities; such as, 

ADL, Instrumental Activity of Daily Living (IADL), and social activity [55-57]. The ADL 

subscale consists of questions about activities such as dressing, bathing, transfers, and 
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mobility. The IADL subscale covers activities such as shopping, using public transportation, 

and maintaining a household. The social activity subscale is related to social interaction such 

as the person’s ability to visit with family and friends.  

2.2.2.3 Health Assessment Questionnaire 

The Health Assessment Questionnaire (HAQ) was first developed to assess IADL in 

arthritis patients [58], but is now also used in research settings, patient care, and general 

population surveys [45]. The HAQ disability dimension consists of a self-report of 20 

questions that covers eight areas: dressing and grooming, arising, eating, walking, hygiene, 

reaching, gripping, and outdoor activities. The score on each question is averaged to create a 

global Functional Disability Index score [59].  

2.2.2.4 Environmental Analysis of Mobility Questionnaire 

The Environmental Analysis of Mobility Questionnaire (EAMQ) was developed by 

Shumway-Cook et al.[60] as a self-report questionnaire. EAMQ collects information on 24 

features of the physical environment, grouped within eight dimensions (Section 2.1.2). 

Subjects were asked to report the frequency of encounters or avoidance using a five-point 

ordinal scale (never, rarely, sometimes, often, always) for each of the features. Preliminary 

results indicated that mobility disability is characterized by a reduction in the number and 

type of environmental challenges. A reduction of encounters could lead to a reduction in 

movement for an individual, which could potentially lead to further deterioration in physical 

status and social interactions. The questionnaire was suggested to be a valid method for 

determining environmentally specific mobility disability [61]. EAMQ was validated using 

video camera and direct observation. Further research with a larger sample was still 

necessary to verify the findings from this study [61].  

2.2.3 Technologies for Biomechanical Measurements 

The following describes commonly used instruments to quantify different 

biomechanical parameters in laboratory settings. This includes gait and foot pressure 

analyses. Some of the following instruments have the advantage of being very accurate but 

are limited by space requirements, setup time, and cost.  
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2.2.3.1 Visual Motion Tracking System 

Visual motion tracking systems can be 

either a marker or marker-free system, based on 

whether they need markers to be affixed to body 

parts. Motion tracking systems can be integrated 

with force plates and electromyography (EMG) 

systems in a laboratory setting. In marker-based 

tracking systems, cameras record the motion of light-reflecting or light-producing markers 

attached to the human body. An example is the Vicon Motion System [62] (Figure 2.3). 

These video-based systems often represent the “gold standard” in human motion analysis 

[63]. In a marker-free system, human motion is analyzed with computer vision techniques 

and algorithms [64].  

For both marker and marker-free systems, the number of cameras used to capture three-

dimensional (3D) data will vary depending on the laboratory needs, size, and configuration. 

Major drawbacks include the time for setup, camera calibration, and marker placement. 

2.2.3.2 Non-Visual Motion Tracking System 

Non-visual motion tracking systems do not use 

cameras to detect human motion. Inertial sensor based 

systems are a commonly used non-visual system. These 

systems are based on inertial sensors such as 

accelerometers and gyroscopes, biomechanical models, 

and sensor fusion algorithms. An example is the XBus 

Kit (XSens Motion Technologies, Netherlands) which 

consists of a portable unit (XBus Master) collecting data 

from multiple or single motion tracker devices (MTx) [65]. MTx (Figure 2.4) are attached to 

different body segments and can measure 3D rate-of-turn, acceleration, and earth-magnetic 

field. These data are combined using a Kalman Filter technique to calculate 3D orientation 

of the MTx unit. A literature survey by Zhou and Hu [63] provides more details on these 

Figure 2.3: Vicon Motion System [62].  

Figure 2.4: Motion track (MTx) 
from Xsens Technologies 
(reproduced from [65]). 
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systems as well as other sensing techniques used for non-visual motion tracking systems, 

including magnetic, acoustic, ultrasonic, EMG, and data gloves.  

2.2.3.3 Force Plates 

Force plates, also called force platforms, are the most common force transducers in 

gait analysis. This instrument consists of a plate flush with the ground, instrumented with 

strain gauges or piezoelectric transducers, and measures 3D ground reaction forces and 

moment as the subject makes contact with the plate. Force plates are often found in gait 

analysis laboratories and come in different sizes and prices (Figure 2.5).  

  

Figure 2.5: Examples of Force Plates. On the left is model BP400600 from AMTI [66] with 
dimensions 8.26 x 60 x 40 cm. On the right is a smaller force plate from Bertec Corporation [67]. 

2.2.3.4 Foot Pressure Analysis  

Foot pressure analysis systems measure load distribution under the plantar surface of 

the foot. Two types of systems exist: pressure mat or pressure insole (Figure 2.6). A pressure 

mat is similar to a force plate since the mat is placed on the ground and the subject walks 

onto the mat. Pressure insoles are placed directly in the footwear, which provides portable 

pressure measurement between the foot and the shoe (i.e., forces are not dampened by the 

footwear). Examples of commercial manufacturers are TekScan Inc. (Massachusetts, USA) 

[68] and Novel (Munich, Germany) [69]. Both companies provide a variety of foot pressure 

systems including pressure mats and pressure insoles. 
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Figure 2.6: On the left, example of pressure mat and software analysis using the emed-at/m model 
from Novel [69]. On the right, example of foot pressure insole from the F-Scan Lite VersaTek 
System [68].  

2.2.4 Activity Monitoring 

A good level of physical activity is usually associated with positive health benefits. 

Therefore, the assessment of the physical activity is sometimes used as an indication of 

health status. The following presents monitoring devices used in research, clinical, and 

commercial settings. 

2.2.4.1 Pedometers 

Pedometers are a well known type of activity monitor [70]. These devices are usually 

worn at the waist, with some models worn on the ankle or the calf, and they estimate activity 

by sensing steps during walking. More advanced pedometer models may include 

synchronization of step count measurements to a 24-hour clock, such as the Step Watch 3 

Activity Monitor (Orthocare Innovation, Oklahoma City, OK, USA) [71]. However, 

pedometers may be poor at identifying other activities (e.g. bicycle riding). In addition, 

pedometers cannot provide information on static activities. Additionally, studies have found 

that pedometers are not a good choice when assessing physical activity in older adults at risk 

of mobility disability because pedometers underestimate the number of steps during slow 

walking [72, 73]. Despite these limitations, pedometers were still found to be a valid, simple, 

and inexpensive method for assessing physical activity in research and practice [74] and for 

detecting differences in ambulatory activity according to age and functional limitations [75]. 

Recently, a more precise step counter (<0.5% error) was developed by Giansanti et al. [76]. 

This step counter uses calf muscle expansion measured with a force resistive sensor, to 

define a step for people with Parkinson’s disease. 
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2.2.4.2 Accelerometer-Based Activity Monitor 

Many commercially available systems for research and individual health care 

monitoring incorporating accelerometers are presented by Godfrey et al. [77]. Examples 

include a waist-mounted RT3 tri-axial device (Stayhealthy Inc., Monrovia, CA, USA) [78] 

for calorie monitoring and the activPAL (Pal Technologies Ltd, Glasgow, United Kingdom) 

[79] used to detect time-spent sitting/lying, standing and stepping. Inertial sensors 

applications in wearable system will be discussed in Section 2.3.4. 

2.2.4.3 Physiological Measurements 

Metabolic energy expenditure is a standard physical activity measure [80, 81]. 

Measurement of heart rates, muscle activity (EMG), and pulmonary ventilation volume are 

examples of physiological measures used for this purpose [82]. However, these objective 

measures usually have a high cost per measurement [6]. In addition, these methods might 

need sensors attached directly to the skin at precise locations on the body, such as for EMG. 

This might not be suitable for a wearable long-term monitoring mobility system.  

2.2.5 Summary of Mobility Measurement 

Observation and clinical mobility assessment tools are performance-based measures 

that evaluate functional mobility and predict how a person will perform in the community. 

However, good outcomes from standardized clinical measures do not always result in 

independent community ambulation [16]. The complexity of the person’s environment, 

found within and outside of the home, cannot be fully represented by these tools.  

Laboratory-based instruments to measure biomechanical parameters are usually very 

accurate, but are limited by space requirements, setup time, setup capabilities (i.e., may not 

accommodate stairs, inclines, uneven ground, etc.), and cost. Therefore, motion laboratory 

systems are seldom used for community mobility analysis applications. 

Activity motoring instruments have the advantage of being wearable and can monitor 

mobility for a long time in the person’s own environment. However, they usually measure 

one aspect of physical activity and they do not have information on where the activity took 

place (i.e., context).  



   Literature Review 

  

Development of a Wearable Mobility Monitoring System  18 

2.3 Wearable Mobility Monitoring Systems  

A wearable system is designed to be worn on the body and allow continuous 

monitoring of biomechanical and physiological data, regardless of the user’s location, while 

he or she goes about their normal daily activities [6, 72, 83]. Some advantages of using 

wearable systems to measure mobility are direct access to biomechanical parameters, data 

logging and processing can be done anywhere, and technological advances are leading to a 

reduced size, weight, and cost [6]. Compared to laboratory-based systems, wearable 

technologies take less setup time since multiple sensors and equipment do not have to be 

attached to the subject and software applications do not need to be started for every session 

[84]. However, technical and social challenges exist for wearable mobility monitoring. These 

challenges include:  

Privacy and security: Some of the big issues with wearable monitoring system are those of 

privacy and security, such as eavesdropping, identity spoofing, and redirection of private 

data to unauthorized persons [85]. Appropriate methods of data encryption can help improve 

security and privacy. However, developing security and privacy solutions for wireless sensor 

networks applied to biomedical applications are faced with many obstacles; such as limited 

resources, fault tolerance, interference and attacks, confidentiality and physical security [86]. 

Power requirements: For long-term monitoring, a wearable system must last long enough 

to capture all of the data. However, adding larger batteries creates a trade-off between more 

power and a small, lightweight wearable system. Another issue is with wireless 

communication that usually increases the system’s power requirements. Sending processed 

data instead of raw data could help decrease power consumption, creating a trade-off 

between communication and data computation [84]. 

Portability: For continuous and long-term monitoring, wearable systems need to be small, 

lightweight, and should not interfere with movement. The type of sensors, location of 

sensors, and transmission characteristics are important factors to consider when designing 

wearable systems as it could affect the portability [84].    
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Acceptance/adherence: User acceptance is an important determinant of operational 

feasibility [72]. A potential solution is integrating sensors into devices that people already 

use, such as mobile phones. As suggested by Lester et al. [87], the mobile phone approach is 

more likely to have better acceptance and adherence “as these consumer devices do not make 

them look ‘different’”. A wearable system that is easy to setup and start will improve the 

acceptance and adherence of the system. 

Recent technological advances in wireless communications, sensor miniaturization, and 

smartphone processing power offer great potential in the development of wearable systems 

for mobility monitoring, and also to overcome some of the challenges related to wearable 

systems. The following give an overview of technologies that are relevant for this research.  

2.3.1 Wireless Body Sensor Network (WBSN) 

Wireless body sensor networks (WBSN) and wireless body area networks (WBAN) 

can monitor human behaviour to allow the shift of health assessment from hospitals to the 

community [85]. Wearable health monitoring systems using technologies of WBSN and 

WBAN have been introduced in [84, 88-93].  

WBSN and WBAN typically consist of one or multiple sensors worn on the body, where the 

sensors can sample, process, log, and communicate wirelessly to send one or more 

physiological or environmental parameters to a personal server [84]. Figure 2.7 shows an 

example of a typical WBAN system architecture for patient monitoring as presented by 

Jovanov et al. [84]. The first level consists of physiological sensors, second level is the 

personal server, and the third level is the health care servers and related services.  

Another example is the WiMoCA from Farella et al. [89] that is a custom-made WBSN 

where the sensing node consists of a triaxial integrated MEMS (micro-electro-mechanical 

system) accelerometer. The WiMoCa system’s ability to handle diverse application 

requirements such as posture detection system, bio-feedback application, and gait analysis, 

was recently demonstrated by Farella et al. [94]. 
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Figure 2.7: Example of a Wireless Body Area Network of intelligent sensors for patient monitoring 
(reproduced from [84]). 

2.3.2 Personal Server 

The use of a PDA (personal digital assistant), mobile phone, and smartphone as the 

central node or personal sever in WBSN or WBAN is becoming very popular. PDAs have 

been used in WBAN for health care monitoring [84, 94] and in context awareness 

applications [14, 95, 96]. 

Mobile phone and smartphones (e.g., a mobile phone with advanced functionality [97]) have 

been used to compile information on a person’s location and health status [98], as well as 

wireless platforms to monitor mobility and fall incidents for elderly people [99]. Multiple 

sensors have been integrated in mobile phones allowing monitoring to happen at only one 

location on the body [87]. This makes it easier to use and less obtrusive to the user. With the 

constant increase in processing power, allowing for sophisticated real-time data processing, 

smartphones are a great choice as a central node of WBSN. They also take advantage of the 

user’s acquaintance with the mobile device [98]. Other advantages are that smartphones and 

handheld devices are often already integrated with sensors; such as accelerometers, camera, 

and global positioning system (GPS), which makes them attractive for a fully integrated 
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wearable mobility monitoring system. In addition, these devices come with a programming 

development platform for mobile devices usually based on Java ME (Java Platform, Micro 

Edition). The portability of Java has made Java ME an attractive platform in mobile medical 

application [94, 98, 100]. However, Java ME may not be as portable as advertised [101]. As 

mentioned by Xiaowei et al. [102], the diversity of mobile devices decreases the portability 

of Java ME applications. Some of the causative factors are the different device features, 

memory size limitations, function additions and deletions, and device-specific bugs [102]. 

Custom-made hubs have also been developed for wearable mobility monitoring. Dalton et al. 

[103] developed a mobility monitoring portable system that included a Global System for 

Mobile communications (GSM) modem and used short message service (SMS) to send 

accelerometer data to a remote server for further analysis and data storage. For other 

monitoring systems that do not use GSM networks, data loss could occur when the system 

devices are out of range of their receiver station. However, with a GSM modem, Dalton’s 

system did not suffer from this type of data loss. 

In the development of their WBAN, Montón et al. [92] designed a personal data processing 

unit (PDPU) for their hub. Advantages of PDPU are a better control of the device, ability to 

use the best wireless standards, and elimination of the other applications that a cell phone 

provides but are not required for the monitoring application. The disadvantages are the 

resources, time, and money it takes to design such a system.  

2.3.3 Wireless Standards 

Three popular wireless standards are typically used in WBAN design: Bluetooth, 

ZigBee, and Wi-Fi. These three standards operate in the unlicensed 2.4 GHz spectrum called 

ISM band (industrial, scientific, and medical band). Another common wireless standard is 

ultra-wideband (UWB), but it is less popular in the design of WBSN. Table 2.1 summarises 

the different standards.  

ZigBee was designed specifically for control and sensor networks. This standard is intended 

for short-range communication and is characterized by very low power consumption. A 

ZigBee node can run on batteries for several months or years. Data rate is limited to 
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250Kbps in the global 2.4 GHz spectrum. ZigBee also operates at the 915 MHz (America) 

and 868 MHz (Europe) spectrum. ZigBee appears to be a promising wireless standard for 

WBAN [84, 92]. Compared to Bluetooth, ZigBee is less complex and consumes less power. 

ZigBee is also less prone to interference with other devices in the same frequency range [85]. 

Table 2.1: Comparison of different features of common wireless technologies [85, 104]). 

Parameters 
Bluetooth (IEEE 

802.15.1) 

UWB (WiMedia or 

IEEE 802.15.3) 
ZigBee  

Wi-Fi (IEEE 

802.11) 

Battery Life Days Days Years Hours 

Cost per 
Module 

6$ 6$ 3$ 9$ 

Complexity of 
Mac and 
physical layer 

Complex Simple Simple Very Complex 

Radio spectrum 2.4 GHz 3.1-10.6 GHz 868 MHz, 915 MHz, 
2.4 GHz 

2.4 GHz 

Maximum data 
rate 

3 Mbps 1 Gbps 250 Kbps 54 Mbps 

Network size 7 nodes Unknown 64000 nodes  32 nodes 

Security 64, 128 bits 128 bits AES 128 bits AES WEP keys 

Range 10m 10m 30m 100m 

Application Low-bandwidth cable 
replacement 

High-bandwidth 
cable replacement 

Low-bandwidth 
sensors and 

automation, medical 
monitoring, home 

security 

High-bandwidth 
applications, 

sending data over 
wireless internet 

 

Another wireless protocol is IEEE 802.15.3, or UWB. This standard operates in the 3.1 -10.6 

GHz frequency band. Because of UWB’s large bandwidth, and since unlicensed and licensed 

frequencies are covered, UWB systems are constrained in their output power, which in turn 

limits their range [85]. For applications such as WBSN, this standard was found to be too 

complex in hardware and protocol. Having a wide bandwidth was also not required for 

WBSN applications [85]. 
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Bluetooth, also known as IEEE 802.15.1 standard, is designed for short-distance and small 

devices to replace cables between electronic lightweight devices (e.g. mouse, keyboard, and 

headset). Bluetooth can operate at a range of 10m and up to 100m depending of its class. 

This standard provides small, low cost, and low power radio modules, and is attractive for its 

technique of frequency hopping (which increases security and privacy in radio 

transmissions) [105, 106]. The maximum Bluetooth data rate is approximately 3Mbps [104]. 

Despite the advantages of ZigBee, Bluetooth is still a commonly used standard in WBAN 

design due to its present penetration in the market and its related commercial support [98]. 

Smartphones exclusively use Bluetooth to communicate with external sensors and a 

Bluetooth Java API (Application Programming Interface) already exists.   

Wi-Fi is based on the IEEE 802.11 family of standards. The Wi-Fi standard allows a 

personal server to connect to a WLAN (Wireless Local Area Network). In medical 

applications, Wi-Fi could be used to send data from a WBAN via the internet to a remote 

heath care server. Many recent smartphones have this wireless technology. Wi-Fi is usually 

not a good candidate for communication between sensors and a central node due to the 

power requirements [85]. A WBAN or WBSN usually requires sensor nodes to be ultra-low 

power, which implies that signals from stronger sources may interfere with the sensor signal 

and could result in sensor data loss [85]. 

2.3.4 Wearable Sensors 

Wearable sensors or body-fixed sensors are attached on the body to monitor the 

person’s kinematics and physiologic parameters, as well as contextual information. Recent 

technological advances have produced low-cost and miniature sensors, which have created 

great opportunities in designing a wearable system for health monitoring. 

Various wearable sensors have been used for tracking human posture and movement. Wong 

et al. [107] presented five sensor classes in their review: 1) accelerometers, 2) gyroscopes, 3) 

flexible angular sensor, 4) electromagnetic tracking systems, and 5) sensing fabrics, with 

accelerometers being the most commonly used. The main types of body-fixed sensors in 

elderly mobility monitoring were accelerometers, gyroscopes, magnetometers, and pressure 

sensors or foot switches [108].  
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The following gives an overview of four types of sensors that are the most relevant for 

mobility monitoring applications. They are accelerometers, gyroscopes, magnetometers, and 

pressure sensors. Other wearable sensors that are described below are those that could detect 

contextual information, such as GPS, camera, and ambient sensors. 

2.3.4.1 Accelerometers 

Accelerometers are low-cost, flexible, small devices 

that offer great potential in human motion detection and 

other clinical applications. These sensors are the most 

commonly used wearable sensor in the field of activity 

recognition [81, 109]. Accelerometers applications include 

movement classification, physical activity level 

assessment, metabolic energy expenditure estimation, and 

assessment of balance, gait, and sit-to-stand transfers [81]. 

Many of these applications use a single accelerometer 

attached to the waist. Accelerometers were suggested to be a suitable tool for long-term 

monitoring of free-living subjects [81]. Other applications in the rehabilitation field are gait 

analysis, balance evaluation, fall risk assessment, and mobility monitoring [77, 110, 111].  

An accelerometer detects acceleration or deceleration along each of its axes. A system can 

detect posture by measuring acceleration due to gravity or can detect motion by measuring 

dynamic acceleration. Different classes of accelerometers exist, but the common sensors for 

human motion detection are strain gauge, piezoresistive, capacitive, and piezoelectric [111]. 

Although each class has their own techniques to measure acceleration, the mass-spring 

system model is often used to describe the mechanism of accelerometers (Figure 2.8). 

Accelerometers operate under the principle of Hooke’s law (Equation 2.1), and Newton’s 2nd 

law of motion (Equation 2.2). When the mass-spring is subjected to a compression or 

stretching force due to movement, the spring generates a restoring force proportional to the 

amount of compression or stretch. With known values for mass (m) and spring stiffness (k), 

the resultant acceleration of the mass element can be determined from the displacement (x) 

characteristics (Equation 2.3). 

Figure 2.8: Mass-spring system. 
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kxF =  (2.1) 

maF =  (2.2) 

m

kx
a =  (2.3) 

Accelerometer performance may vary between the different classes. Piezoelectric 

accelerometers use the piezoelectric effect to measure acceleration. The piezoelectric effect 

generates voltage from mechanically stressing crystals, such as quartz. Accelerometers using 

this technique typically have higher frequency response than strain-gauge accelerometers, 

but poor static response. Therefore, piezoelectric accelerometers should not be used to 

calculate tilt or inclination angle since the gravitational force cannot be measured. However, 

many human motion applications use piezoresistive accelerometers or variable capacitance 

accelerometers [81]. These two types are capable of detecting both static and dynamic 

motion. Another advantage of having a DC response is that the accelerometer can be 

calibrated with the body segment by rotating the segment around the gravitational axis. 

However, the DC response adds an offset in the output signal that should be corrected to 

avoid over or under estimate of the measured acceleration [80].  

Variable capacitance accelerometers are typically made of a differential capacitor with their 

two central plates attached to the moving mass and external fixed plates. Acceleration 

applied to the mass modifies the distance between the capacitor’s plates, resulting in an 

output voltage change. The accelerometer output voltage is proportional to the applied 

acceleration.  

When using accelerometers to assess movement, their main limitation is that they give no 

indication of a body segment’s initial conditions, and they are sensitive to gravity. Therefore, 

additional information regarding segment orientation is needed to measure acceleration 

accurately [112]. Other limitations include the relative movement of the accelerometer 

against the body and signal drift over time [80, 112]. Calibration methods should be 

considered to correct for the drifts. 
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2.3.4.2 Gyroscope 

Gyroscopes sensors can measure angular rotation of body segments, when attached to 

the segment with their axis parallel to the segment axis. Gyroscopes that use a vibrating 

mechanical element to sense angular velocity have been used in mobility assessment 

applications [108]. These sensors can measure transitions between postures by measuring the 

Coriolis acceleration from rotational angular velocity. Unlike the accelerometer, 

gravitational acceleration has no effect on gyroscopes. Gyroscopes are often combined with 

accelerometers in human motion studies. Some recent examples of their applications are in 

recording of human body segment orientation [113], identification of gait event for drop foot 

[114], calculation of 3D knee joint angles [115], and also in the detection of pre-falls [116]. 

The drawbacks of vibrating element gyroscopes are power consumption, price, drift, and 

sensitivity to shock [109].  

2.3.4.3 Magnetometer 

Magnetometers can be used to measure a change in rotation of the body segment with 

respect to the earth’s magnetic field. The basic principle of these sensors corresponds to the 

magneto-resistive effect, which is the property to change the resistance with a change in 

magnetic induction. Magnetometer sensors are sometimes combined with inertial sensors 

(gyroscope and accelerometer) to correct gyroscopes drift about the vertical axis [117]. 

However, a drawback of magnetometers is their sensitivity to nearby iron and local magnetic 

fields. Magnetometers also need to be calibrated for any change of location [109].  

2.3.4.4 Foot Pressure  

Pressure sensors or foot switches can be used to measure gait temporal parameters 

when attached to the sole [118]. The pressure is measured from the force/deformation 

properties of a specific material. For instance, the deformation caused by pressure can be 

measured from capacitance and resistance changes, where both decrease with compression. 

Another example is piezoelectric polymers that generate more charge with compression 

[119]. Their applicability in pathological gait is limited by many problems, including the 

inability to measure shear forces, calibration issues (sensors change calibration when bent or 
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due to temperature effects), difficulty with sensor positioning and to connect attachments, 

mechanical failure, and subject acceptance [109]. 

2.3.4.5 GPS 

The global positioning system, or GPS, consists of a constellation of 24 satellites 

(plus 6 spare ones) orbiting the earth and continuously sending signals to ground stations. A 

GPS receiver will detect several GPS satellite signals and will calculate how far they are by 

comparing the time the signal was sent from the satellite and the time the signal was 

received. Using the triangulation principle, a user’s location on earth can be determined. 

GPS works anywhere on earth, any time and no subscription fee or setup charge is required 

to use GPS services. However, the performance of GPS receivers is reduced during situation 

where their view of the sky is obstructed (e.g., indoors, close to tall building, cloudy). 

Determining the speed of displacement from a GPS receiver is usually based on the Doppler 

Effect, which is the measurement of the rate of change in the satellite’s signal frequency 

caused by the movement of the GPS receiver. The speed of displacement can also be 

calculated by the change of distance divided by the change of time, but it is usually less 

accurate than using the Doppler Effect [120].  

Many mobility monitoring studies have used GPS systems. For human locomotion, non-

differential GPS receivers can provide accurate speed, displacement, and position 

information [120]. GPS was recently found to potentially provide valid information on 

walking capacity in patients with peripheral arterial disease [121]. In human tracking, GPS 

technology offers a great opportunity to help understanding how environmental factors can 

influence a person’s mobility. Frank and Patla [17] proposed a mobility envelope measured 

from excursions in the community over a week as a potential outcome measure for mobility. 

Frank and Patla’s mobility envelope is the length of the outer perimeter of spatial excursions 

made by the individual during the assessment period. The mobility envelope was found to be 

smaller for a frail individual compare to a healthy individual.  

GPS receivers can also be used to complement accelerometer data, by providing the 

locations where physical activity occurs [8] and also to help better recognize activities [122]. 
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Many smartphones and mobile phones are now integrated with GPS receivers, which offer a 

feasible way to collect location information for contextual health research. Using the GPS-

enabled BlackBerry 7520, Wiehe et al. [123] tracked adolescent travel patterns and gathered 

daily diary GPS data. MacLellan et al. [124] used a smartphone, GPS receiver, and the 

activPal [79] in order to help people to examine their activity pattern and potentially provide 

indications where environmental barriers could occur. GPS was found to be a promising tool 

to characterize exposure to social and physical environments in studies of older adults living 

in diverse communities [125].  

Other GPS applications are in wearable activity recognition systems to help detecting more 

types of activity, such as cycling outdoors [5]. Also, GPS can be used in life log applications 

[12] and to annotate text notes and photos to location in mobile phones [126].  

Despite all the advantages and uses of GPS, some limitations exist when recording positions 

for indoor, and for some outdoor environments, such as under heavy tree canopy and in 

dense urban areas [8]. GPS accuracy may vary based on atmospheric conditions as well as 

from signal deflection or obstruction. GPS was also found to be unable to detect static 

activity [127].   

2.3.4.6 Camera 

Many cell phones and smartphones include a digital camera. Applications that have 

used cameras in a wearable system are mostly for life log or diary purposes. A wearable 

system to capture audio and visual information corresponding to user experiences was 

presented in [128]. Yamazoe et al.’s system is worn below chest level and consists of a head-

detection camera, a wide-angle camera, a microphone, and possibly GPS. A method to 

extract meaningful context from life logs and a smartphone was proposed by Lee and Cho 

[12]. The life logs included GPS, SMS, call, charging, MP3, photos taken, images viewed, 

and weather information.  

SenseCam from Microsoft Research (Microsoft Corporation) [129] is an example of a 

wearable digital camera that takes pictures without the user intervention (Figure 2.9). The 

camera contains different sensors such as light-intensity and light-color sensors, a passive 
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infrared detector, temperature sensor, and 

accelerometers. Pictures are taken based on 

significant changes measured by the sensors 

and/or at specific time interval. Microsoft 

Research has also explored the use of audio 

level detection, audio recording, and GPS 

location. The camera can take up to 3000 

images per day. A recent study proposed an 

automatic event segmentation method for the 

SenseCam, using content and contextual 

information [130]. SenseCam has been particularly explored for its memory aid application 

[131-133]. A list of publications related to SenseCam is presented on the Microsoft research 

website [129]. 

In research applications, video cameras are often used to validate other mobility assessment 

methods. For instance, participants have been videotaped during community excursions to 

validate self-report mobility tools [61]. 

2.3.4.7 Ambient Sensors 

Ambient sensors are sensors that can measure different properties related to the 

surrounding conditions and environments. Light, humidity, temperature, acoustic, and 

barometric pressure sensors are example of ambient sensors. These sensors are used in 

context awareness systems to add more information about the context that can help to better 

identify location and recognize activity [14, 15]. Light sensors such as photodiodes, color 

sensors, IR, and UV sensors can help differentiate between indoors and outdoors. 

Temperature and humidity sensors can help detect weather characteristics, such as raining or 

cold, and differentiate between indoor and outdoor activities. 

2.3.5 Context Awareness 

A context-aware system was defined by Dey and Abowd [134] as a system that “uses 

context to provide relevant information and/or services to the user, where relevancy depends 

on the user’s task” and “any information that can be used to characterize the situation of an 

Figure 2.9: SenseCam images [129]. 



   Literature Review 

  

Development of a Wearable Mobility Monitoring System  30 

entity. An entity is a person, place, or object that is considered relevant to the interaction 

between a user and an application, including the user and application themselves”. In other 

words, context-aware systems could monitor a user’s activity, location and physiological 

parameters, and ambient conditions. Then the system could adapt its behaviour based on the 

information.  

Context-awareness wearable systems have been used in activity and location recognition 

[12, 14, 15], in health pervasive environments [135], and in recognizing emergency 

situations by distinguish user motion states [13]. Many context-awareness approaches related 

to activity recognition use multiple sensors to recognize a wide range of activities. However, 

they also need more complex classification approaches, such as artificial neural networks, 

Bayesian networks, and hidden Markov models [136].  

2.3.6 Summary of Wearable Systems 

In mobility monitoring, a wearable system worn on the body can be used to 

continuously monitor biomechanical parameters regardless of the user’s location. Many 

social and technical challenges exist with wearable systems, such as privacy and security, 

power requirements, portability, acceptance, and adherence. Recent technological advances 

in wireless communications, sensor miniaturization, and smartphone processing power could 

help overcome some of these challenges and offer great potential in the development of 

wearable systems for mobility monitoring.   

Research in the field of wireless body sensor networks (WBSN) and wireless body area 

networks (WBAN) could allow healthcare to be delivered outside the hospital (i.e., at the 

patient’s home and in the community) [84, 94]. The hub or personal server of a WBSN or 

WBAN could be a PDA, mobile and smartphone, or custom-made hub. Smartphones are 

particularly attractive in the development of wearable systems due to their increasing 

processing power, effective display and user interface, and features such as GPS, 

accelerometers, and camera. Wearable system using smartphones may also improve the user 

acceptance.  
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Advances in wireless technology could allow wearable systems to eliminate the use of 

cables. Wireless wearable systems could be more comfortable to wear, less obtrusive, and 

less encumbering with the user’s movement [85]. Many smartphones are equipped with 

wireless technologies such as Bluetooth to communicate between sensors and phones, and 

Wi-Fi to communicate with an external server via the internet [84, 137]. 

Commonly used wearable sensors for mobility monitoring are accelerometers, gyroscope, 

magnetometer, and foot switches, with accelerometers being the most commonly used. 

These sensors have been explored by many in applications such as movement classification, 

activity recognition, assessment of balance, gait and transitions, and fall detection. However, 

many of these studies are missing environmental or contextual information related to the 

user’s activities [5, 7, 9, 10, 110]. Other studies have used GPS to monitor mobility or 

travelling patterns in the community [17, 123], but details on the type of activities performed 

were not considered. GPS is also used to complement motion data and improve activity 

recognition [5, 8]. GPS can provide contextual information, such as location, but its accuracy 

depends of the number of satellites it can detect. GPS typically does not work indoors. 

Other context information, such as light, temperature, and sounds, provides context-

awareness for wearable systems. Context-aware wearable systems used context information 

to better recognize activities [12-15], but the environmental characteristics in which 

activities took place were not analyzed for their impact on mobility.   

A camera is an interesting sensor to include in a wearable system since a picture or video can 

give information on the user’s surroundings. Studies that used camera, GPS, and other 

context data are mostly oriented to life log applications [12, 130]. To the best of our 

knowledge, the use of a camera in a wearable system to capture the context in which 

activities take place and to analyze mobility in the community has not yet been explored.  

2.4 Data Analysis Algorithms 

As previously mentioned, accelerometers are the most used wearable sensor to detect 

activity and to measure mobility. Many researchers have already explored algorithms and 

data analysis techniques to extract useful information from the raw acceleration data and to 
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classify activities. A review from Godfrey et al. [77] highlighted laboratory and clinical 

studies using accelerometers (Table 2.2).   

As mentioned by Mathie et al. [81], the output of an accelerometer when worn on the body 

will vary depending on four factors:  

1) Position at which it is placed 

2) Its orientation relative to the subject 

3) The posture of the subject  

4) The activity being performed by the subject 

 The following sections review concepts and techniques applied to accelerometers to detect 

human body activity. These sections focus on sensor placement and specifications, data 

calibration, filtering, windowing, feature extractions, and classification algorithms.  

2.4.1 Accelerometer Placement 

An accelerometer’s location and its orientation relative to the body will affect the 

way its output signal will vary. Deciding on the accelerometer placement on the body is 

important in human motion measurement. Normally, the sensor is attached to the body part 

whose movement is being studied [81]. Accelerometers have been attached to different parts 

of the body and in various numbers depending of the application.  

In studies using a single location to study whole body movement, the sensor is usually 

placed as close as possible to the center of mass (e.g. trunk, under arm, waist). One reason 

for this placement is that the body parts in that region move during most daily activities [80]. 

Bouten et al. [80] studied accelerometer placement at the trunk for physical activity 

assessment. Studies by Sekine et al. [138, 139] demonstrated that walking on level ground 

and walking on stairways could be distinguished with a single waist-mounted accelerometer. 

Work from Mathie et al. [7, 140] and Karantonis et al. [9] showed that, with only a waist-

mounted triaxial accelerometer, it is possible to detect between periods of rest and activity 

and also to identify postural orientation, falls, and estimate energy expenditure. Using a two-

axis accelerometer worn at the waist, Baek et al. [141] was able to obtain an overall 
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classification rate of 97.5% for activities; such as standing, sitting, lying, walking, running, 

upstairs and downstairs. The discrimination of falls from activity of daily living using a 

single triaxial accelerometer worn at the trunk was successfully (100%) demonstrated by 

Bourke et al. [142]. A wearable surveillance system developed by Yoshida et al. [143] for 

detection of various posture, falls and gait disabilities, used triaxial acceleration data taken at 

the abdominal level. 

Wearing a single sensor at other locations rather than the center of mass region has been 

explored as well. For example, one sensor on the thigh has been used to study leg movement 

during walking [144, 145], a triaxial accelerometer placed on the dorsum of the hand has 

recently been studied for the evaluation of Parkinson disease [146].   

Accelerometers placed at multiple locations on the body have also been used in many studies 

(Table 2.2). One common configuration is having one accelerometer placed on the chest or 

trunk and one on the thigh. This configuration has demonstrated capability in detecting 

sitting, standing, and lying, and in detecting walking and postural transitions [147-150]. 



 

 

Table 2.2: Example of laboratory and clinical studies using accelerometers for movement and mobility analysis. List modified from 
Godfrey et al. [77]. 

Year Author #Sensor placement 
Detection  

success 

Motivation and activity  

recognition 
Signal processing and algorithm 

1996 Vetlink et al. 
[147] 

1 sternum, 1 thigh Visual detection 
(errors 20% 
some cases) 

Physical Activity (PA): static/dynamic 
activities, stand, sit, lying supine, 
walking, cycling, ascending/descending 
stairs, speed of activity 

Threshold, mean values, standard 
deviation, signal morphology 
(correlations), cycle times 

1997 Bouten et al. 
[80] 

1 waist, lower back Correlations 
(r=0.77 and 
0.89) for IMAtot 

and EEact 

PA: bench test of device, correlation of 
activities of daily living (dressing, walk, 
lie, desk work, etc.) in respiration 
chamber to monitor output 

Time integrals from separate 
measurement direction (IMAtot) 
versus energy expenditure due to 
physical activity (EE act, chamber), 
mean, std deviation, FFTs 

1998 Bussmann et 
al. [151] 

2 upper legs, 2 
sternum, HR 

88% 
spontaneous, 
96% standard 
(video to 
monitor) 

Psychophysiological study in the young, 
static/dynamic activities, 40 activity 
protocols (sit, lie, stand, walk + 
variations, etc.), Electrocardiogram 
(ECG) 

Threshold, video analysis, 1 second 
resolutions, psychophysiological 
effect of benzodiazepines 

1999 Foerster et al. 
[152] 

1 sternum, 1 wrist, 
1 upper thigh, 
1lower leg, HR 

95% posture, 
67% ambulation 

Ambulatory monitoring: retests, 9 
postures (lab ref of sit, lie, walk, stairs, 
etc), recording in real world vs. observer, 
speech activity and heart rate 

Measured vs. observed readings (L1 
distances, standard deviations), 
resolutions of > 20s and > 40s 

2000 Yoshida et 
al.[153] 

1 centre of 
abdomen 

Visual detection PA: 11 postures (e.g., lying left, right, 
supine and prone) 

Rectified and integrate output of 
accelerometer. Activity obtained 
from addition of integrated outputs 
for 1 minute. 

2000 Najafi et al. 
[154] 

1 chest  
(gyroscopes 
+accelerometer) 

99% postural 
transition, >90% 
lie/walk 

Postures, posture transitions (gyroscope), 
walking periods 

Discrete wavelet transform (DWT), 
optical reference system (Vicon) 
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2003 Mathie et al. 
[7] 

1 front of waist Sensitivity 0.98, 
specificity 0.88-
0.94 

Activity of daily living (ADL): 11 
discrete dynamic activities (sit-to-stand, 
stand-to-sit, walk), 12 distinct rest 
periods (stand, sit) 

Various length of median filter, 
window widths and thresholds, 
mean, energy expenditure (integral 
area)  

2003 Najafi et al. 
[155]  

1 chest Postural 
transition 99%, 
average 
sensitivity and 
specificity 94% 
and  95% 

Sitting, standing, lying, walking, postural 
transitions (gyroscope) 

Wavelet transform ( DWT),  
thresholds, visual observation 

2004 Bao et al [156] 1 wrist, 1 waist, 1 
upper arm, 1 thigh, 
1 leg 

Ranging from 
41.42% to 
97.49% 

Walking, sit and relax, stand, watch 
television, run, stretch, scrubbing, fold 
laundry, brush teeth, ride elevator, walk 
+carry, read, cycle, climb stairs, 
vacuuming, lie down, strength training, 
etc. 

Mean, energy, frequency domain 
entropy, correlation of acceleration 
data, classifiers: C4.5 decision tree, 
decision table, naïve Bayers 
classifier, instance based learning 
(IBL) 

2004 Luinge et al. 
[157] 

1 upper back, 1 
pelvis 

98% Posture: inclination of trunk and pelvis Kalman filtering, optical reference 
system (Vicon) 

2004 Lyons et al. 
[149] 

1 sternum, 1 upper 
thigh 

Sit 93%, stand 
95%, lying 84% 

Posture and movement detection: static 
and dynamic activities, postures (sit, lie, 
stand) 

Best-estimate/mid-point thresholds, 
mean, standard deviation, observed 
comparison (1 minute resolution) 

2004 Baek et al 
[141] 

1 waist 97.5% Activity: retest, standing, sitting, lying 
back/on, walking, running, upstairs, 
downstairs 

Mean, standard deviation, 
skewness, kurtosis, eccentricity, 
histograms, neural networks 

2004 Culhane et al. 
[148] 

1 chest, 1 thigh >92% Mobility monitoring of elderly in clinical 
environment (stroke patient); sit, stand, 
lying, postures. 

Means and standard deviations, 
thresholding (best estimate and 
mid-point), comparison with 
manual recordings, of patient 
activity 
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2005 Barralon et al. 
[158] 

1 chest (under arm 
pit) 

Walk 76%, 
postures 80% 

Postural states, walking, postural 
transitions 

Angles/inclinations, frequency 
analysis (FFT, thresholds, video)  

2006 Barralon et al. 
[159] 

1 under left arm pit DWT* 78.5%  
sensitivity, 
67.7% 
specificity 

Six methods for walking periods Video analysis, thresholds 
applied/not to: short time Fourier 
transform (StFTT, StFTT/Tb), 
discrete wavelet transform (DWT, 
DWT*), continuous wavelet 
transform (CWT, CWT*) (*less 
coefficients) 

2006 NiScanaill et 
al. [150] 

1 trunk, 1 thigh  Remote sensor for home care: sit, stand, 
lie, walk 

Means, thresholds, SMS  message 
on GSM network 

2006  Hester et al. 
[160] 

1 wrist, 1 ankle, 1 
walking stick 

Sensitivity 95%, 
specificity 
>95% 

Stroke patients: Motor tasks at  home-
assessment of mobility assistive devices 
(cane) (accelerometers+gyroscopes) 

Dominant frequencies, energy 
aspects, cross-correlations, auto-
covariance’s, Neural Network(NN), 
threshold, wireless transmission 

2006 Parkka et al. 
[161] 

1 wrist, 1 chest CDT 82%, ADT 
86%, NN 82% 

Lie, row, cycling, sit/stand, run, Nordic 
walk, walk (includes heat rate, ECG, 
SaO2, skin temperature, skin resistance, 
light  intensity, compass, audio, GPS and 
altitude sensors) 

Mean, variance, median, skewness, 
kurtosis, percentiles, spectral 
centroid/spread, peak frequencies, 
power, power in frequency bands, 
custom decision trees (CDT), 
automatically generated decision 
tree (ADT), and neural  network 
(NN). 

2006 Karantonis et 
al. [9] 

1 waist Overall 90.8% 
(posture 94.1%, 
walk 83.3%, 
possible falls 
95%) 

Ambulatory monitoring: activity (12 
tasks), rest, posture, walking, falls, 
estimation of metabolic energy 

FFT, normalised signal magnitude 
area (SMA), signal magnitude 
vector (SMV), threshold 
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2.4.2 Frequency and Amplitude 

Accelerations produced by human movement vary across the body, and depend on 

the activity being performed. Acceleration amplitude decreases from ankle to head, with the 

greatest amplitude found in the vertical direction [162]. During walking and running, 

Bhattacharya et al. [162] found that acceleration amplitude could reach 12g at the ankle, 5g 

at the lower back, and 4g at the head (g = acceleration due to gravity). When selecting an 

accelerometer for human movement studies, the choice of the accelerometer amplitude range 

should be based on the type of activity being studied and the location of the sensor. Ermes et 

al. [5] found that an accelerometer of range ± 2g was insufficient for detecting vigorous 

exercises; therefore, they had to use an accelerometer of range ±10g instead. However, a 

larger range of acceleration results in a decrease in signal resolution, but this decrease had a 

negligible effect on the signal features in Ermes et al.’s study. 

During different walking speeds (0.99 to 2.35 m/s), the acceleration frequency spectra 

measured at the head, shoulder, and pelvis was between 0.75 to 4.8 Hz [163]. These results 

from Cappozzo also demonstrated that the maximum frequencies measured, increased from 

head to ankle, and were the greatest in the vertical direction. A study by Antonsson and 

Mann [164] found that in foot acceleration measurement during walking, 98% of the 

frequency spectra were less than 10 Hz and 99% were less than 15 Hz. The major energy 

band caused by daily activities was found by Sun and Hill to be between 0.3 to 3.5 Hz [165]. 

Many studies related to the measurement of frequency and amplitude spectra of human body 

accelerations, including the ones in the above, were reviewed by Bouten et al. [80] to 

determine the appropriate specifications to use for their accelerometer. For daily activity 

assessment, Bouten et al. concluded that body-fixed accelerometers placed at the waist must 

be able to measure acceleration with amplitude ranging from -6 to +6 g and frequencies up 

to 20 Hz.  

2.4.3 Calibration 

Accelerometer calibration is usually required to correct for DC offset and signal drift. 

Having a DC component in the signal allows for easier calibration of the sensor. One simple 
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calibration method is based on rotation of the sensor to known angles. For example, under 

static conditions, if the axis of interest is pointed towards the center of the Earth, the output 

should equal 1g. If the axis is then rotated by 180 degrees, its output should equal -1g. This 

±1g rotation method is often suggested by manufacturers to calculate the sensitivity s of a 

particular axis of the sensor [166]: 

2

)( minmax uu
s
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=  (2.4) 

 

The offset o can also be corrected using a similar equation: 

2
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Where umax and umin are the maximum and minimum acceleration measured during the 

rotation between ±1g. The output a of one accelerometer can then be expressed as: 

s

ou
a

)( −
=  (2.6) 

where u is the un-calibrated acceleration. However, this calibration method requires input 

from the user and should be performed in a controlled environment. Therefore, auto-

calibration procedures have been developed where a specific angular rotation is not required. 

These auto-calibration methods are based on the fact that the modulus of the acceleration 

signal during quasi-static movement is equal to g = 9.81 m/s2. For a triaxial accelerometer, 

this concept can be expressed as: 

gaaa zyx 1222 =++  (2.7) 

By replacing the three accelerations ax, ay, and az with Equation 2.6, Equation 2.7 can be 

rewritten as: 
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(2.8) 

This concept was used by Lotters et al. [167] to create a method for calibrating the 

sensitivity and the offset of a triaxial accelerometer while in use. The method calculated six 

elements ( zyxzyx ooosss ,,,,, ) after detecting quasi-static state, and only required random 

movements to be performed.  

Another example is an on-the-field auto-calibration procedure created by Frosio et al. [168]. 

Frosio et al.’s calibration model incorporated the bias (offset) ( zyx ooo ,, ) and scale factor 

(sensitivity) for each axis ( zzyyxx sss ,, ) and the cross-axis symmetrical scale factors 

( yzxzxy sss ,, ). The cross-axis scale factors describe two-axis misalignment and crosstalk 

between channels, caused by the sensor electronics [169]. This method of using nine 

elements resulted in higher accuracy than both the factory calibration and the six elements 

model [168]. 

The choice of calibration method depends of the type of application. When an application 

needs to estimate the distance traveled from double integration of the acceleration signal, the 

error from offset drift may cause the position measurement to diverge in just a few seconds 

[170]. A drift correction technique was studied by Yun et al. [170] where the drift was 

corrected by detecting periods where velocity is zero (i.e. stance phase during walking). 

Finally, in other cases, the application may only require an offset removal at the start of a 

data measurement session [148]. 

2.4.4 Filtering Techniques 

The output signal of an accelerometer worn on the body is composed of the 

acceleration due to body movement, gravitational acceleration, and noise. Undesirable 

accelerations could come from external vibration such as vehicle’s acceleration, bouncing of 

the sensor against objects, jolting of the sensor caused by loose attachment, etc. [80]. If the 

frequency range of the noise does not interfere with human body acceleration, filtering 

techniques could attenuate the noise in the accelerometer’s output signal [80]. For example, 
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Bouten et al. [80] used a 20 Hz low pass filter to attenuate frequencies not expected to be 

caused by body movement. Another common filtering technique such as used by Mathie et 

al. [7] is applying a median (low-pass) filter to the signal to remove noise spikes.  

Digital filtering techniques can be used to separate gravitational acceleration from the body 

movement acceleration. Since human movement will never correspond to a DC response, it 

is important to remove the DC offset from the accelerometer output; otherwise, the measured 

acceleration could over or underestimate the body movement acceleration [80]. Since most 

daily activity movements appear between 0.3 to 3.5 Hz [165], filters use a cut-off frequency 

between 0.1 to 0.5 Hz [81]. The DC component of the acceleration signal can also be 

represented by the mean of the acceleration over a certain window [156]. 

2.4.5 Data Window 

In an activity classification system, acceleration signals are usually divided into 

smaller time segments or windows prior to feature extraction. The feature set generated from 

each window can then be used as input to a classification algorithm. Preece et al. [171] 

found three windowing techniques that have been used for activity identification: sliding 

windows, event-defined windows, and activity-defined windows. The sliding windows 

technique divides the signal into small windows of the same length with no gap in-between, 

with the option to overlap windows. The sliding-window technique is one of the most used 

approaches in activity classification studies because of its simplicity [171]. Additionally, 

pre-processing of the sensor signal is not required with the sliding-window technique, 

making this approach effective for real-time applications [171].  

A non-overlapping window of approximately one second has often been used to detect static 

and dynamic states, identify postures and postural transitions, identify activities, and detect 

falls [5, 9, 148, 149]. Furthermore, Mathie et al. [7] found that the optimal size was between 

0.8 to 1.4 seconds for such classification systems. However, windows of different sizes and 

degree of overlap have been successful, such as non-overlapping 2 seconds window by Baek 

et al. [141], a 50% overlapping window of 5.12 seconds by Ravi et al. [96], and a 6.12 

seconds window by Bao and Intille [156]. An advantage of having a larger window is that 
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cyclic information could be captured for activities such as walking, running, and climbing 

stairs.   

The event-defined windows method needs pre-processing to detect specific events, for 

instance heel strike or toe off [171]. The windows are defined from the timing of these 

events; therefore, window length may vary depending on the location of the events in the 

signal. An example of a study detecting heel strike and toe off events is the one by Aminian 

et al. [145] where event timing was used to estimate temporal parameters of a gait cycle. 

More examples of event-defined window studies have been presented in Preece et al. [171]. 

The activity-defined window [171] technique detects the time when activity changes, and 

from these times data windows are identified. Every window corresponds to a specific 

activity. For example, Sekine et al. [139] used wavelet analysis to detect the time when 

changes in walking pattern occurred. These times were then used to classify walking pattern, 

such as walking on level ground or ascending and descending stairs. 

2.4.6 Feature Extraction 

Many different features can be extracted from an accelerometer signal and then used 

as inputs to classification algorithms. Preece et al. [171] presented different feature 

generation techniques applied to body-worn sensor data in the field of activity classification, 

including heuristic features, time-domain features, frequency-domain features, and time-

frequency domain. The following presents feature extraction techniques that have been 

applied to accelerometer data. 

The term “heuristics features” is referred by Preece et al. [171] as “the features which have 

been derived from a fundamental and often intuitive understanding of how a specific 

movement or posture will produce a characteristic body-worn sensor signal”. The first 

example is extracting the inclination angle from the DC or static component of an 

accelerometer signal. The inclination angle represents the orientation of the segment with 

respect to the gravitational field as illustrated in Figure 2.10. The inclination angle φ2 can be 

calculated using Equation 2.9: 
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)(cos 1
2

g

au−−=ϕ  (2.9) 

where au is the measured acceleration and g the gravitational acceleration (9.81 m/s2). This 

feature has been used to detect postures [9, 147-149] and also to identify postural transition 

[155]. However, the technique presented in Figure 2.10 and Equation 2.9 only uses one axis 

for the angle calculation and is subject to resolution problems when the measured 

acceleration is near +1g or -1 g [172]. The one axis technique only allows for a 180-degree 

range. To fix the resolution and range problem, Freescale Semiconductor [172] described a 

method of calculating inclination angle using two axes (Figure 2.11). Using basic 

trigonometry, the acceleration in the x-axis can be expressed with the following equation: 

 )sin(θ=XA  (2.10) 

Similarly, the acceleration in the y-axis can be expressed with the following equation: 

)cos(θ=YA  (2.11) 

then by combining Equation 2.10 and 2.11, the following equation is obtained: 

)tan(θ=
Y

X

A

A
 (2.12) 

With the two axes technique, a 360-degree range can be measured using the sign of the 

acceleration of both x and y-axis. From the sign of the accelerations, the quadrant in which 

the tilt occurred can be identified and the proper tilt angle can be determined.  
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Figure 2.10: Seismic uniaxial accelerometer measuring the component uau

v
of an equivalent 

acceleration eqa in the direction u
v

of the sensitive axis of the accelerometer. The equivalent 

acceleration is the sum of the acceleration a
v

of the sensor and the equivalent gravitational 
acceleration g

v
acting on the seismic mass. 1ϕ  is the angle between the sensitive axis of the 

accelerometer and the acceleration a
v

; 2ϕ  is the angle between the sensitive axis and the 
gravitational field (reproduced from [147]). 

 

Figure 2.11: Dual- or tri-axis accelerometer with two axes for measuring tilt (reproduced from [172]). 

Another example of heuristic features is the signal magnitude area (SMA) of the acceleration 

signal. This feature is extracted from the AC or dynamic component of the acceleration 

signal. SMA has been used to estimate the energy expenditure (EE) of physical activity and 

to quantify the acceleration amplitude. The relationship between SMA of a triaxial 

accelerometer signal and EE has been demonstrated by Bouten et al. [80]. SMA was further 

used to discriminate between rest and activity periods in similar studies such as Mathie et al. 
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[7] and Karantonis et al. [9]. Equation 2.13 represents the normalized SMA used by Mathie 

et al. [7] and Karantonis et al. [9]: 
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Since the amplitude and duration of the acceleration signal vary depending on the type of 

activity, between subjects, and even for the same subject and activity, calculating SMA is a 

good way to capture both amplitude and duration effects [7].  

Bourke et al. [142] studied fall detections from a triaxial accelerometer worn at the chest. 

The resultant or root sum of square (RSS) of the accelerometer signal was calculated 

(Equation 2.14) and compared to a threshold to detect falling with 100% success for 240 

falls. 

222
zyx aaaRSS ++=  (2.14) 

Bourke et al. [173] also examined vertical velocity for pre-impact detection of fall. The 

vertical velocity was calculated from the integration of the vertical acceleration during static 

and dynamic periods. Bourke et al.’s method was able to detect pre-impact of falls (before 

trunk and knee touch the ground) with an average lead-time of 323ms.  

The next sub-category as identified by Preece et al. [171] is time-domain features, which are 

typically statistic features. For example, Veltink et al. [147] calculated the standard deviation 

of an accelerometer signal to differentiate between static and dynamic movement. To 

distinguish between different dynamic activities, Veltink et al. also examined the signal 

morphology (correlations), mean, standard deviation, and cycle time. Other statistic features 

are skewness, kurtosis, and eccentricity of the accelerometer signal, which have been used 

by Baek et al. [141] to discriminate between walking, running, and walking up/down stairs. 

Percentiles of the acceleration signals have also been used by Maurer et al. [15] for similar 

applications.  
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Differentiation among activities that involve translation in just one dimension could be done 

by calculating the correlation of the accelerometer signal for each pair of axes, such as 

presented by Ravi et al. [96]. For example, walking and running can be distinguished from 

stair climbing using correlation. Walking and running usually involve translation in one 

dimension whereas climbing involves translation in more than one dimension. The 

correlation of the accelerometer signal corresponds to the ratio of the covariance and the 

product of the standard deviations (Equation 2.15): 

yx

yx
yxCorr

σσ

),cov(
),( =  (2.15) 

Despite the processing time efficiency of using time-domain features, they do not give 

information on the cyclic behaviour of the acceleration signal caused by dynamic activities 

(e.g. walking, running). Therefore, recent studies have used frequency-domain features. To 

generate these features, the signal must first be converted into the frequency-domain. A 

common technique used for this conversion is the Fast Fourier Transform (FFT). The FFT 

compares a family of sine functions at harmonically related frequencies by multiplying the 

waveform with sinusoidal functions and then averaging. From the FFT output, Bao and 

Intille [156] extracted the energy (sum of the squared FFT coefficient) and the frequency-

domain entropy (normalized information entropy of the FFT components). The dominant 

frequencies in the signal have also been observed by Barralon et al. [158] and Hester et al. 

[160]. Frequency-domain features give information about the frequency components 

contained in a signal; however, they do not provide the time at which those components 

occurred.  

Information on signal time and frequency content is important in signal analyses where 

frequency changes over time (e.g., human movement). Using wavelet analysis, time-

frequency features can be used to investigate both time and frequency characteristics. 

Similar to the Fourier transform, the use of wavelets also requires signal decomposition into 

simple elements but it is more efficient than the Fourier transform for signals dominated by 

transient behaviour or discontinuities, such as human movement [155]. Wavelet transforms 

also use simple basis functions instead of a sinusoidal signal. A variety of time-frequency 
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features using wavelet transform is presented in Preece et al. [171, 174] . Preece et al. [174] 

found that wavelet analysis was not as accurate as the frequency-domain features for 

classifying dynamic activities, although wavelet analysis can be used to characterize non-

stationary signals.  

2.4.7 Activity Classification 

After features have been extracted from the accelerometer signals, they can be used 

as input for activity classification algorithms. The following presents classification 

algorithms that have been used in activity identification.  

Thresholds are one of the simplest methods to extract activity information from the 

accelerometer signals. Signal properties or features (e.g., mean, standard deviation, vertical 

velocity) are compared with thresholds to determine if a particular activity is present in the 

data window. For example, static and dynamic movement can be distinguished by 

comparing the signal’s standard deviation with a threshold value, as demonstrated by Veltink 

et al. [147] and Mathie et al. [7]. Threshold methods applied to inclination angle can also 

detect different postures, as shown in the studies by Cuhrane et al. [148] and Najafi et al. 

[155]. Fall detection has also been studied by Bourke et al. [142] where heuristic features 

were used with thresholds. Threshold methods are often chosen for real-time processing 

applications to be performed by low memory and low processing capability devices, such as 

microcontroller embedded portable units [9]. 

Classification systems using a hierarchical approach are very popular. A hierarchical 

decision tree starts with a top level broad classification (e.g. rest and active) followed by 

more detailed sub-classifications at lower levels. The nodes of the tree are where questions 

are asked and the nodes are connected to other nodes through links (branches). Mathie et al. 

[175] developed a generic framework (Figure 2.12) using a binary tree structure to classify 

movements from a single triaxial waist accelerometer. The advantage of Mathie et al.’s 

framework was its flexibility to allow nodes to be added, removed, and reordered without 

affecting the rest of the tree. When applied to the classification of specific movements (e.g. 

upright, lying, sit-to-stand, stand-to-sit transitions, walking and fall) performed in a 

controlled laboratory setting, this generic classification framework demonstrated an average 
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classification performance of 97.7% for sensitivity and 98.7% for specificity [175]. This 

classification was well suited for real-time applications because it did not require a large 

amount of computational power. This was shown by Karantonis et al. [9] who implemented 

a simpler version of Mathie’s algorithm to create a real-time human movement classification 

system.  

A similar approach to hierarchical classification is the decision tree. The difference is that 

decision trees are automatically generated. Automatic generation of decision trees can be 

done using popular algorithms such as CART (classification and regression tree), ID3 

(iterative dichotomiser 3), and C4.5 [77]. These techniques require training data to generate 

the decision tree. Bao and Intille [156] have compared different classifiers such as decision 

tables, instance based-learning, C4.5, and naïve bayes. C4.5 had the best overall recognition 

accuracy of 84% for the detection of 20 daily activities. The custom decision tree, automatic 

generated tree (CART), and neural network were explored by Parkka et al. [161]. The 

custom decision tree had the best classification results in recognizing most activities, except 

walking and biking, but overall the automatic decision tree had a better result (total of 86% 

compared to 82% for custom tree, and 82% for neural network). 

The k-nearest neighbour approach for classifying activity was first used by Foester et al. 

[152]. With the k-nearest neighbour, a feature space is created from training data points. 

Each data point corresponds to a particular activity. An unknown window of sensor data can 

be classified by finding which training data point is the closest in the feature space. Although 

this method could detect a wide range of different activities, the execution time is slower 

than the decision tree [171]. In addition, in the study by Bao and Intille, the k-nearest 

neighbour obtained lower recognition accuracy than the decision tree approach.  

Lau et al. [176] demonstrated the high performance and consistency of the support vector 

machine (SVM) to classify different walking conditions using accelerometer and gyroscope 

sensors. Preece et al. [171] found that, although SVM method was a powerful classification 

method, few activity classification studies have used that approach. Classification system 

using SVM could also be slow to train.   
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Figure 2.12: Generic classification framework presented by Mathie et al. [175]. 

Research studies have also used artificial neural networks to recognize activity, such as 

Wang et al. [177] and Yang et al. [178]. An artificial neural network is a mathematical 

model based on the biological neural network. It consists of inputs and outputs with a 

processing layer or hidden layer in between [77]. Artificial neural networks are complex and 

required previous training data.  

Research studies have also used naïve bayes classifiers to recognize activity from 

accelerometer data [96, 156]. This type of classifier assumes that all attributes of the 

variables class are independent and learns, from training data, the probability of each 

attribute [77]. 

Fuzzy logic is another example of a classification technique that provides a way to arrive at a 

specific conclusion based upon vague, ambiguous, imprecise, noisy, or missing input 

information [179]. Recently Chen et al. [180] demonstrated that a classifier based on a fuzzy 

basic function was able to recognize different human daily activities using a tri-axial 
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accelerometer with a performance of 93% accuracy. In a context awareness system, Jin et al. 

[13] used fuzzy logic to detect user motion states such as lying, sitting, walking and running 

with a recognition rate of 98.9%, 98.9%, 99.7% and 99.9% respectively. Emergency 

situations, such as falling while walking and falling while running, were also recognized at a 

rate of 100%.  

Markov chain is a random process where future states depend on the present state and is 

independent of the past states [181]. The Hidden Markov model (HMM) is similar to 

Markov chain, but the present state is unknown. Once trained, a classification algorithm 

using HMM can identify a sequence of activities from a sequence of measured features and 

the likelihood of a transition from previous activity [171]. He et al. [182] used the HMM for 

real-time activity classification using data from three two-axis accelerometers. Data was 

collected from five subjects performing 11 different activity series: stable states such as 

standing, sitting, lying, and transition states such as standing to sitting, sitting to lying, sitting 

to standing, lying to sitting, and falling. The activity detection accuracy was 95.82%.  

HMM can also be combined with other classifiers. For example, Lester et al. [87] used 

HMM as a second classifier to differentiate a range of daily activities. The outputs of a static 

binary classifier were used as inputs to the HMM classifier. Adding that second HMM layer, 

Lester et al. improved their classification accuracy by approximately 10-15%.  

2.4.8 Summary of Data Analysis 

Accelerometers have been used in many studies to measure mobility, identify 

postures and posture transitions, detect falls, classify activity, and so on. Accelerometer 

specifications for human motion studies may depend on where the sensor is placed on the 

body and type of activity to be identified. Some studies placed sensors at multiple locations, 

but some also proved that it was possible to detect activity with a single accelerometer 

placed around the center of mass area. For an accelerometer placed at the waist for daily 

activity assessment, Bouten et al. [80] concluded that an accelerometer should be able to 

measure acceleration with amplitude ranging from -6 to +6 g and frequency up to 20 Hz. 
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Methods for calibrating accelerometers vary from simple DC offset removal to more 

complex automatic signal calibration to correct for drift. The DC offset can be removed with 

a low cut-off frequency filter. Filtering techniques were also used to remove spikes, noise, 

and undesirable frequencies from the raw signals. 

The raw filtered and calibrated acceleration signals are usually divided into small windows 

from which features can be extracted. The different categories of features are heuristic 

features, time-domain features, frequency-domain features and time-frequency domain. 

Usually the time-domain features do not required as much processing power as the 

frequency analysis methods, which is important when designing real-time portable 

application using low power and memory devices. However, frequency-domain features 

have the advantage of detecting cyclic motion such as in walking and running. Features 

showing both time and frequency characteristics can also be obtained from wavelet analysis 

methods. However, wavelet analysis may be inferior to frequency-domain features to detect 

dynamic activity. Data transfer to a personal computer is often required to perform more 

advanced signal processing techniques and to better analyze the signal [9, 155, 160]. 

After a set of features have been generated and selected, they can be used as inputs for a 

classification algorithm. Simple algorithms based on threshold and hierarchical tree 

configurations have been successfully used to detect different activities, postures, falls, etc. 

These methods are often implemented in applications using low memory and processing 

power devices. Other advanced methods have been used such as decision tree, k-nearest 

neighbor, support vector machine, neural network, naïve bayes, fuzzy logic, and Markov 

chains. Many of these methods have demonstrated good classification accuracy but may 

require more processing power or training data. 



   Rationale 

  

Development of a Wearable Mobility Monitoring System  51 

Chapter 3:   Rationale 

As noted in Chapter 1, mobility deficits are a large and increasing problem in our 

aging society. A decrease in mobility can reduce independence for activities of daily living, 

produce deterioration in health status, and diminish quality of life. One of the main 

rehabilitation program goals is to achieve independent community mobility. To understand 

how people move, we must be able to measure mobility at home, outside the home, and in 

the community. A better understanding of the challenges encountered in these three 

environments, and the skills required to overcome these challenges, can help healthcare 

providers make informed decisions that enable individuals to attain independent community 

mobility.  

Unfortunately, the current tools for measuring mobility outside of a laboratory or clinic are 

insufficient. Therefore, there is a need to develop assessment tools that can monitor mobility 

at home and in the community, and provide insight on the context/environment in which the 

activity takes place. Current mobility assessment methods include observational and clinical 

tests, diaries and questionnaires, biomechanical and physiological measurement, and activity 

monitoring. Mobility assessment limitations are presented in Section 2.2. 

A wearable system approach for mobility assessment presents many advantages and allows a 

person’s mobility to be measured anywhere. Challenges encountered with wearable systems 

include their portability, power consumption, privacy and security, acceptance, and 

adherence (Section 2.3.6). Recent technological advances in sensor miniaturization, wireless 

communication, power consumption, smartphones, and handheld devices have helped 

overcome many of these challenges. These advances lead to the development of wearable 

systems that detect and recognize a person’s activity and provide contextual information. 

However, many of the reviewed studies involving both activities and context measurement 

were not intended for mobility monitoring of a person with physical disabilities (Section 

2.3.6). 
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Smartphones are considered a viable wearable system platform to monitor mobility in the 

community. Such phones are small, lightweight and have good battery life, sufficient 

processing power, large memory capacity, and multiple networking capabilities. These 

phones can also include technologies appropriate for mobility monitoring; such as a camera, 

GPS, and accelerometer. The advantages of using accelerometers in mobility monitoring 

have been well documented (Section 2.3.4.1). Light, humidity and temperature sensors can 

also be included in the wearable system to add more details on weather and ambient 

condition. However, the use of the camera/video for wearable, context-sensitive mobility 

assessment has not been previously reported. Wearable video and/or still image analysis 

could greatly enhance accuracy and reliability over systems that only rely on inertial sensors. 

3.1 Application of a Wearable Mobility Monitoring System (WMMS) 

A wearable system that can validly monitor mobility in the community and capture 

the context associated with mobility could benefit people with physical disability by helping 

the rehabilitation medicine field. For instance, such a system could help evaluate the 

progress made during and after rehabilitation, help identify mobility issues outside a hospital 

environment, and enhance clinical decision-making about the rehabilitation program (i.e., 

assistive devices, exercises, etc.). Measurement of activities avoidance and categorizing 

activities are other useful information for physical rehabilitation that could be provided by a 

WMMS. 

A WMMS could also be used as a research tool to evaluate mobility interventions and 

assessment methods in the community. In addition, a WMMS could determine the skills 

required to overcome challenges found in different community environments (e.g., busy city 

street, farm, mall, etc.). These results could help improve training or advocate for changes to 

the environment.  

Additionally, exploration of the camera in smartphones to capture context will provide 

insight on this approach for mobility monitoring applications. 
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3.2 Objective of the thesis 

The purpose of the thesis is to develop and validate a wearable system that will 

monitor mobility in the community. The wearable system must be light and portable, easy to 

use, and contained at one body location. The WMMS was developed to meet the following 

objectives:  

• Detect, in real-time, a user’s change-of-state related to mobility and context. 

• Take a picture for every valid change-of-state to identify the mobility context and 

environment. 

• Validate the system with a normal population. 

 

From the WMMS developed in this research, it was hypothesised that a change-of-state can 

be identified with 95% specificity and 95% sensitivity, and that images can be correctly 

categorized 95% of the time.
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Chapter 4:   Methodology 

The following section contains the design criteria for a Wearable Mobility 

Monitoring System (WMMS). This chapter includes an overview of the system architecture, 

materials, data processing methods, and system evaluation methods.   

4.1 Design Criteria 

A high-compliance WMMS must be lightweight, wearable, easy to place on the 

person, easy to use, and located at one location on the body. The objectives of the system 

were also to identify changes-of-state and take pictures to capture the context. The following 

list of criteria was used in the design of a Wearable Mobility Monitoring System (WMMS): 

4.1.1 System Design Criteria 

• Minimum number of sensors to obtain valid data 

• Captures motion data, location data, and ambient/environmental data 

• Wearable, small, lightweight, does not interfere with range of motion 

• Integrated in one package so that the device is only worn at one location on the body 

• Power efficiency (system lasts one day on one charge) 

• Memory capacity should be at least one day 

• User friendly for consumer and health care provider 

• Uses commercially available technology 

• Follows wireless transmission standard protocols 

• Inexpensive 

• Reliable 

• Safe  

• Detect a change-of-state, within a 5% tolerance, for sensitivity and specificity 
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4.1.2 Software Design Criteria 

• Perform real-time processing of incoming data  

• Identify change-of-state 

• Obtain contextual information automatically when there is a change-of-state 

• Save processed data and pictures to a file 

• Data security on device and during transmission 

• Application easily upgradeable for future use 

4.2 System Architecture 

The proposed WMMS system architecture is illustrated in Figure 4.1. A smart-phone 

was used as the platform for the WMMS to perform functions such as capturing, processing, 

storing, and transmitting motion data and contextual information. The system could send 

community mobility data or emergency events (e.g. fall) to a hospital external server. Data 

received at the external server could be further analyzed and feedback could be given back to 

the user if required. 

 

Figure 4.1: System Architecture of a WMMS. 

In this research, the WMMS consisted of a central node or hub that captured, processed, and 

logged the motion and contextual data. An external sensor board was added to the design 

since the current central node (Blackberry Bold) did not provide access to raw accelerometer 
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data. The external board was designed to fit on the BlackBerry Bold holster to simulate an 

all-in-one WMMS (Figure 4.2). The board captured motion data (accelerometer), ambient 

data (light intensity), temperature, and humidity. The central node provided GPS location 

data and speed, time, and digital photo images (contextual information).  

The WMMS was designed to be worn on the waist, which is a common location to wear a 

mobile or smartphone and a validated site for accelerometer data collection for mobility 

measurement (Section 2.4.1). The WMMS determined the user’s state and took a digital 

picture whenever a change-of-state occurred. The mobility state was determined within a 

one-second window and then copied to a file along with contextual information for that 

second.   

 

Figure 4.2: Front and side view images of the WMMS. 
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4.3 Determination of Change-of-State  

In this research, a change-of-state was defined as the user’s change of movement, 

intensity of movement, and/or position. The WMMS was designed to detect the following 

changes-of-state: 

• Start/Stop moving (e.g., walking, running, cleaning) 

• Going up or down stairs/ramp/hill 

• Posture change (e.g., standing, sitting, lying) 

• Speed increase (e.g., bus, car) 

• Light intensity change (e.g., indoor, outdoor) 

• Posture transitions (e.g., stand-to-sit, sit-to-stand, stand-to-lie, lie-to-stand) 

• Increase in movement intensity (e.g., stairs) 

4.3.1 Mobility Tasks and Context Classification 

To detect mobility tasks and identify the context associated with the mobility tasks, 

the WMMS should detect a change-of-state when transitioning between mobility tasks, 

which signal the smartphone to take a picture to capture the context and help identify the 

mobility task. The WMMS was evaluated for its capability to detect the following list of 

mobility tasks and contexts:  

• Walking on a level ground 

• Walking on a ramp 

• Walking up and down stairs 

• Inside a building 

• Outside the building on paved pathway 

• Taking the elevator 

• Riding in car 

• Sitting  

• Lying 

• Standing 
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4.3.2 Algorithm Outline 

Figure 4.3 presents the outline of the WMMS signal-processing, algorithm and data 

flow. Data coming from the external board and the BlackBerry were pre-processed before 

extracting features from the signals. The features were then used as input to an algorithm that 

determined the state and took a picture if there was a change-of-state. All features extracted 

for every second of data, time stamp, and image name were saved to an output file. The 

digital images were stored on an SD card. 

 

Figure 4.3: WMMS signal processing and algorithm outline for each data window. 
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4.4 System Evaluation Outline 

One of the first steps in developing the WMMS was to select a hub or platform that 

met our design requirements. Therefore, a preliminary evaluation was performed to evaluate 

the BlackBerry smartphone as a hub of a mobility monitoring system. Chapter 5 presents the 

details about the preliminary BlackBerry evaluation. The next step, presented in Chapter 6, 

was to design and evaluate hardware for the WMMS. Then, everything was put together to 

create the WMMS and the software was developed to capture, process, and log data. Chapter 

7 presents the details about data processing and algorithm. Chapter 8 presents the technical 

evaluation and the mobility evaluation from five healthy subjects of the WMMS. 
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Chapter 5:   Preliminary Evaluation of 

the BlackBerry for WMMS 

A proof-of-concept WMMS system was assembled consisting of a Blackberry 8800 

handheld (Research In Motion, Ontario, Canada) serving as a hub or central node and a 

commercial motion capture system (Xbus Kit, Xsens Technologies, Netherland). The 

purpose was to evaluate the BlackBerry smartphone as a platform for a WMMS. The choice 

for the BlackBerry model 8800 was based on the currently available Java development 

environment and application programming interface (API).  

Figure 5.1 illustrates the proof-of-concept system architecture. Five motion trackers (MTx) 

were connected to the Xbus Master in a daisy chain configuration. The BlackBerry 8800 

used Bluetooth to communicate with the Xbus Master during motion capture to configure 

and initialize the Xbus Master and the five MTx sensors. Motion data was in orientation 

mode expressed in quaternion units. Another command was sent to the Xbus Master from 

the BlackBerry to start data capture. Processing the incoming motion data was performed by 

the BlackBerry to calculate Euler angles for both knees and hips (four sets of Euler angles in 

total). The processed data, the GPS coordinates, and the GPS acquisition time were saved to 

a file on the smart phone’s SD card. After completing data collection, the file was 

downloaded to a personal computer via USB to visualize the results. 

 

Figure 5.1: System architecture for the preliminary testing. 
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5.1 Biomechanical Parameters Calculations 

The proof-of-concept WMMS system calculated biomechanical parameters, such as 

joint angles of both knees and hips. The sensor placement for this application is shown on 

Figure 5.2 and Figure 5.3. The Cardan/Euler technique was used, which is one of the most 

widely used methods in biomechanics, to calculate 3D joint angles [183]. For each joint, the 

relative orientation between the distal sensor coordinate system and the proximal sensor 

coordinate system was determined by computing the rotation transformation matrix (RTM) 

of that particular joint. For the knee joints, the distal sensor was on the lower leg and the 

proximal sensor was on the upper leg. For the hip joints, the distal sensor was placed on the 

upper leg and the proximal sensor was on sacrum. 

 

Figure 5.2: Sensor placement for the calculation of biomechanical parameters. 
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Both sensors have a rotation matrix relative to the global coordinate system G ( R
G

S
): 
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where 
0 1 2 3, , ,q q q q  are the quaternion numbers of one MTx sensor. The subscript S represents 

the sensor coordinate system and G the global coordinate system. The RTM for one joint 

(i.e., knee or hip) is then calculated with matrix manipulation: 
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where proximalS and distalS  represent the coordinate systems of both the proximal and distal 

sensors respectively. Rproximal

distal

S

S  is the rotation matrix of the distal coordinate system relative to 

the proximal coordinate system. From the resulting RTM, the Euler angles can be calculated: 
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The Euler angles ψθφ ,,  are also called roll, pitch, and yaw, respectively. Roll is the rotation 

around the x-axis, pitch the rotation around the y-axis and yaw the rotation around the z-axis. 

 

Figure 5.3: Sensor placement. 

5.2 Xbus Kit 

The Xbus kit consists of an Xbus Master (XM-B-XB3) and five MTx motion trackers 

(MTx-49A53G25) [184-186]. The five MTx and the Xbus Master are interconnected in a 

daisy-chained configuration. The Xbus Master delivers power to the five motion trackers and 

retrieves the sampled data. With the output mode set to orientation mode with quaternion 

units, each MTx data record contains four float numbers. Each float number is 4 bytes long 

and corresponds with the single-precision floating-point value as defined in the IEEE 754 

standard. For every data sample, the packet sent is a total of 87 bytes ((4 bytes * 4 float 

number * 5 sensors) + 7 bytes for header). The message structure contains the following 

fields: 

PREAMBLE BID MID LEN DATA CHECKSUM 
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5.3 Java Programming 

A Java application was developed using the BlackBerry Java Development 

Environment version 4.5.0.7. The Java application was then uploaded to the BlackBerry 

platform through the BlackBerry Desktop Manager. The BlackBerry API (application 

programming interface) net.rim.device.api.bluetooth was used to initiate a Bluetooth serial 

port connection and to write and read data from the port. The Java application used one 

thread to read incoming data from the Bluetooth port and then parse the data. The checksum 

was calculated for every sample to verify that there were no errors. If the checksum was 

correct, data bytes were converted to float numbers and then the biomechanical parameters 

calculations were completed. The resulting joint angles were then put in a writing queue 

waiting to be copied to a file. A second thread took data from the writing queue and then 

copied the data to a file along with the most recent GPS data. Creating and writing files on 

the BlackBerry SD card were performed using the FileConnection interface from the 

javax.microedition.io.file package. The GPS data was obtained using the LocationListener 

interface from the javax.microedition.location package.  

5.4 Test Procedure 

Static and dynamic trials were performed. In the static trials, the Xbus kit and the 

BlackBerry were placed on a desk for the full duration. An adapter connected to the wall AC 

outlet powered the Xbus Master. In dynamic trials, the sensors were attached on a subject’s 

lower limbs and hip (Figure 5.3) to simulate real-world orientation angle measurements. The 

Xbus kit was battery powered for the dynamic trials. 

For the static trials, the Xbus Master was set to sample data at 50 Hz and at 25 Hz (5 trials 

per frequency). The Java application received the data from the Xbus for as long as there 

was no error sent by the Xbus Master. A timer overflow error (error code 28) typically 

occurred when the Xbus Master did not receive the Motion Tracker response within the 

measurement period [186]. This was an internal error with the XBus system. Following this 

error, the Xbus Master stopped sending data and the BlackBerry application had to be re-

started. When no error occurred after 2.5 hours and the application was still running, data 
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collection was stopped manually. For each trial, the time the system ran without error, the 

BlackBerry battery level before and after each trial, the amount of data loss, and the error 

that made the Xbus Master stop were evaluated.  

Following the 50 Hz and 25 Hz static data collection trials, another five static trials were run 

at 50 Hz but with minimal processing (e.g., static minimal trials). For these trials, the Java 

application was modified to only receive motion data; no biomechanical parameters were 

calculated, no GPS data were received, and no data file was created. This was to verify that 

the Java application was not causing the Xbus Master to stop early during data collection.  

Finally, dynamic trials were performed to simulate real orientation angle measurements. The 

sensors were attached on a subject’s lower limbs and hip (Figure 5.3). The Xbus Master was 

powered by battery. Five trials were run at 50 Hz and 25 Hz for as long as possible. This set 

of dynamic trials was compared to the first set of static trials.  

5.5 Preliminary Evaluation Results 

Table 5.1 shows the average time and the standard deviation for the static and 

dynamic trials, as well as the number of trials that stopped due to error. The timer overflow 

error caused the Xbus Master to stop sending motion data.  

For both the static and dynamic trials, the application was able to run longer without error at 

25 Hz than at 50 Hz. Only one trial at 50 Hz ran without error. The other 50 Hz trials 

stopped due to the same timer overflow error. At 25 Hz, the dynamic trials had only one stop 

due to this error, compared to two stops during the static trials. In addition, the averaged time 

was smaller during the dynamic rather than the static trials. The Xbus Master’s batteries 

were not able to last more than 1.5 hours, causing this smaller average time. For the static 

minimal trials, the average time was slightly better than the normal static trials at 50 Hz. 

However, the application still stopped due to the Xbus timer overflow error. No data were 

lost for all trials. 

The BlackBerry battery trials indicated an average usage of 12.1 ± 2.6% per hour. At this 

rate, the BlackBerry would run out of battery power after approximately 6.8 hours. 
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Table 5.1: Preliminary BlackBerry evaluation results 

Description of Trial 
Average Time 

(minutes) 

Standard  
Deviation  
(minutes) 

Number of stops 
due to Xsens  
Error 0x1C 

Static (50 Hz) 36.4 37.5 4 

Static (25 Hz) 99.6 47.3 2 

Static Minimal (50 Hz) 50.1 42.9 5 

Dynamic (50 Hz) 30.9 20.3 5 

Dynamic (25 Hz) 55.7 31.4 1 

5.6 Preliminary Evaluation Discussion  

The error sent by the Xbus Master was always error code 28, implying that a timer 

overflow occurred during measurement (i.e., the Motion Tracker response was not received 

by the Xbus Master within the measurement period [186]). Ignoring this error instead of 

having the application stopped would have been ideal. A few missing data points would have 

not been as critical as missing a large amount of data due to the application stopping. 

However, the Xbus kit was a commercial system that provided minimal control of error 

handling between the XBus and the MTx sensors. Since lowering the sampling frequency 

showed a decreased in error occurrence, a value lower than 25 Hz could have potentially 

avoided the error. However, in human motion measurement using accelerometers, a 

sampling frequency lower than 25 Hz might not be sufficient (Section 2.4.2). 

Results from the static minimal trials showed that removing processing, logging sensor data, 

and including GPS data, did not improve the total sampling time. The error code was always 

the same, i.e., timer overflow. The results suggest that the problems encountered during 

measurement were a result of external sensor errors.  

One of the design criteria for the WMMS is that battery should last at least one day on one 

charge (Section 4.1). However, the results from this preliminary study showed that the 

BlackBerry’s battery might last for less than seven hours. This issue could be resolved by 

upgrading the battery to a larger capacity.  
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Java programming problems with conversion of float numbers to a string resulted in 

excessively long execution times causing the Xbus Master to stop sending data. String 

conversion was required for data display purposes. To solve this problem, integer numbers 

were used instead of float numbers. The conversion of integer to string was less time 

consuming for the Java application.  

5.7 Summary 

A proof-of-concept system that calculated biomechanical parameters of the human 

body was created. The objective was to evaluate the BlackBerry as a Wearable Mobility 

Monitoring System platform.  

The BlackBerry device demonstrated capability and good potential as a WMMS hub. Many 

of the problems encountered during data collection were due to the motion capture system. 

Thus, the choice of external sensors for long-term monitoring should be made with care. 

Based on this analysis, proceeding with BlackBerry as a development and WMM application 

platform was supported.
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Chapter 6:   Hardware Design and 

Evaluation 

6.1 Platform 

The BlackBerry 9000 (Bold) (Figure 6.1) was used as the platform or central node of 

the WMMS. As shown in Chapter 5, BlackBerry smartphones are appropriate for a WMMS 

and the BlackBerry 9000 met the design 

criteria as outlined in Section 4.1. BlackBerry 

is a commercially available technology, 

reliable, and user-friendly. The device is also 

small and lightweight, and does not interfere 

with movement when worn on the waist. 

Potential issues with power capacity and 

memory could be resolved by upgrading to a 

larger size battery and memory card.  

Other important features of BlackBerry smartphones are the built-in industry-leading 

security features that come with the use of the Blackberry Enterprise Solution. Additionally, 

newer BlackBerry smartphone models provide access to accelerometer raw data that could 

enable the design of an all-in-one WMMS. A mature Java environment and many secure 

API’s are also available with the BlackBerry devices.  

6.1.1 BlackBerry Bold Specifications and Features 

The following summarizes the BlackBerry 9000 specifications and features [187]. 

• Built-in GPS 

• 2.0 Mega Pixel Camera with flash and 3x digital zoom 

• Video Recording 

Figure 6.1: Front, side and back view of 
BlackBerry Bold [181]. 
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• Web browser 

• Corporate Data Access 

• Phone, SMS/MMS 

• Wi-Fi support: 802.11a/b/g enabled 

• Bluetooth v2.0; Serial Port Profile supported 

• Device password protected and keyboard lock 

• AES or Triple DES encryption when integrated with Blackberry Enterprise Server 

• Battery Life: 4.5 hours of talk time and 13.5 hours of standby time 

• Memory: 1 GB of onboard memory, 128 MB of Flash memory and expandable 

memory support for microSD card 

• Processor speed: 624 MHz 

• Operating System: 4.6.0.244 

6.2 External Board 

While the cutting edge and future smartphones have integrated accelerometers and 

the potential to test ambient light via the integrated camera, an external board with mobility 

analysis sensors was used in this thesis. The external sensors were required because a 

BlackBerry smartphone with all the required capabilities was not on the market during the 

development phase (i.e., accelerometer, GPS, Wi-Fi, Bluetooth, camera). The external board 

design, integrated into the phone’s holster, provided a flexible approach to add other 

measurement sensors or tools in the future.  

6.2.1 Design Criteria 

The custom-made external board design criteria were:  

• Bluetooth serial port profile communication to allow communication with the 

BlackBerry smartphone. 

• Rechargeable battery that can last at least a day. 

• Triaxial accelerometer with a range of ±6g, and able to detect frequency up to 20 Hz 

as discussed in Section 2.4.1.2. This is to detect motion of the user. 
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• Light sensor to help in differentiating indoor from outdoor (Section 2.3.4.7). 

• Temperature and humidity sensor to give weather information (Section 2.3.4.7). 

• Board shaped in such a way to be fixed on the BlackBerry’s holster and without 

obstructing the camera view of the BlackBerry. 

6.2.2 Parts Specifications 

A general system design of the board is presented in Figure 6.2. The complete 

electrical schematic is shown in Appendix A. An image of the board is presented in Figure 

6.3, indicating the location of the sensors and other main components. The board consists of 

a microcontroller CY8C27443 (Cypress Semiconductor Corporation, San Jose, CA, USA), a 

Bluetooth Module F2M03GLA (Free2Move AB, Halmstad, Sweden), a triaxial 

accelerometer LIS344alh (STMicroelectronics, Geneva, Switzerland), a light sensor APDS-

9005 (Avago Technologies Limited, San Jose, CA, USA), and a humidity and temperature 

sensor SHT71 (Sensirion AG, Staefa, Switzerland). The board is powered up with a lithium 

battery and has a USB rechargeable circuitry. This external board could run continuously for 

approximately 14 hours on one charge. Specifications for the main components are presented 

in Table 6.1.  

 

Figure 6.2: Block diagram of the external board. 
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Figure 6.3: Image of the board with all the sensors identified.  

 

Table 6.1: Summary of specifications for main component of the external sensors board. 

Device Type Manufacturer Part 

Number 

Summary of Specifications 

Microcontrol-
ler [188] 

Cypress 
Semiconductor 
Corporation 

CY8C27443
-24SXI 

• M8C Processor Speeds to 24MHz 
• 8x8 Multiply, 32-Bit Accumulate 
• Low Power at High Speed 
• 3.0V to 5.25V Operating Voltage 
• 12 Rail-to-Rail Analog PSoC blocks 
• 8 Digital PSoC Blocks 
• Programmable Clocking 
• 16K Flash Program Storage 
• 256 Bytes SRAM Data Storage 
• Watchdog and Sleep Timers 
• Physical size (LxWxH) [mm]: 18.1x7.6x0.1 
• Weight: 0.85grams 
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Bluetooth  
Module [189] 

Free2Move  F2M03GLA • Fully qualified end product with Bluetooth 
v2.0+EDR, CE, FCC, and IC 

• Low Power consumption 
• Nominal transmit power: +6dBm 
• Nominal sensitivity: -83dBm 
• Frequency: 2.4GHz ISM band 
• Range up to 250m (line of sight)  
• Integrated high output antenna 
• 8Mbit Flash for complete system solution 
• 10 digital and two 8bit analog I/O  
• Enhanced Data Rate (EDR) compliant for both 

2Mbps and 3Mbps modulation modes  
• Serial interface up to 4Mbps 
• No additional Bluetooth qualification needed  
• Physical size (LxWxH) [mm]: 28.5x15.2x2.0  
• Weight: 1.2grams 
• Supply voltage: regulated 3.1-3.6 VDC 

Accelerometer 
[166] 

ST 
Microelectronics 

LIS344ALH • 2.4 V to 3.6 V single supply operation 
• ±2 g / ±6 g user selectable full-scale 
• Maximum bandwidth of 1.8kHz 
• Low power consumption 
• Output voltage, offset and sensitivity are 

ratiometric to the supply voltage 
• Sensitivity at Full-scale ±6g: Typical Vdd/15 V/g 
• Sensitivity change Vs Temperature: ±0.01 %/ºC 
• Zero-g-Level (Voffset) at Full-scale ±2g: Vdd/2V  
• Zero-g-Level change Vs Temperature: ±0.4mg/ ºC 
• Weight: 0.040 grams 
• Physical size (LxWxH) [mm]: 4x4x1.5  

Light Sensor 
[190] 

Avago  
Technologies  
Limited 

APDS-9005 • VCC supply 1.8 to 5.5V 
• Low sensitivity variation across various light 

sources 
• Peak sensitivity wavelength: typical  500nm 
• Physical size (LxWxH) [mm]: 1.50x1.60x0.55 
• Photo current with Lux=100 from incandescent 

lamp: typical 44 uA 
• Dark current (Lux=0): typical 300 nA 

Digital 
Humidity and 
Temperature 
Sensor [191] 

Sensirion AG SHT71 Relative Humidity: 
• Resolution: typical 12bit (0.05 %RH) 
• Accuracy typical ±3.0 %RH 
• Repeatability ± 0.1 %RH 
• Response time typical 8s 
• Operating Rage: 0-100 %RH 
Temperature: 
• Resolution 14 bit (0.01 ºC) 
• Accuracy typical ± 0.4 ºC 
• Repeatability ± 0.1 ºC 
• Operating range: -40 to 123.8 ºC 
• Response time: 5 – 30 s  
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6.2.3 Board Functionality 

The board power is turned on by flipping a switch installed on the board. To start and 

stop sampling of the sensor data, commands that set the sampling delay are sent to the 

microcontroller. Communication with the external board is done via Bluetooth or the debug 

serial port. Data from the accelerometer and the light sensor are first sampled by the 

microcontroller at a rate of 130 Hz. The temperature and humidity sensors are sampled by 

the microcontroller at 0.25 Hz. These data are stored in a buffer on the microcontroller. 

Then, at every sampling delay, the last data stored in the buffer are sent to the host 

(BlackBerry) via Bluetooth.  In this thesis, the sampling delay was set to 20 ms (50 Hz).   

6.2.4 Packet Format 

The external board sends a 21-bytes data packet to the host (BlackBerry or personal 

computer) using Bluetooth Serial Port Profile (SPP) protocol or RS232 serial protocol:  

Header         
(2 bytes) 

Packet Type 
(1 byte) 

Packet Length 
(1 byte) 

Sample 
Number         
(1 byte) 

X-axis 
Acceleration 
(2 bytes) 

Y-axis 
Acceleration 
(2 bytes) 

 

Z-axis 
Acceleration 
(2 bytes) 

Light Intensity 
(2 bytes) 

Temperature 
(2 byte) 

Humidity      
(2 byte) 

Battery 
Voltage        
(2 bytes) 

CRC             
(2 bytes) 

 

The header bytes are 0xC3 and 0x42. The packet type can be either 0x01 for data packet, or 

0x02 for control packet. All the sensor data are sent to the host as integer values (2 bytes).  

6.2.5 Commands 

Commands available to control the external board were for setting the board’s 

sampling delay and to turn off sampling.  

Command – setting sampling delay 

• Packet: 0xC3 0x42 0x02 0x01 0x(delay)  

• “delay” is the delay between samples in milliseconds. For example, if the delay byte 

is set to 0x14, which means 20 milliseconds, then the sampling frequency is 50 Hz. 
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Command – Turning off sampling 

• Packet: 0xC3 0x42 0x02 0x01 0x00 

• This will turn off sampling 

6.2.6 Temperature and Humidity Sensors 

The temperature and humidity raw data coming from the board was converted using 

Equation 6.1 and 6.2 to get the temperature in Celsius and the humidity in percent of 

Relative Humidity [191].  

The two bytes received from the board (rxTemp) were processed using Equation 6.1 to give 

temperature T in Celsius: 

39)01.0( −×= rxTempT   (°C) (6.1) 

For humidity, the two bytes received (rxHum) were processed using Equation 6.2 to provide 

humidity H in % of Relative Humidity (RH): 

0468.2)]0367.0()5955.1[( 62 −×+−×= − rxHumerxHumH    (%RH) (6.2) 

6.2.7 Light sensor 

The board provided 3.3 volts and a load resistance of 2 kohms to the light sensor. 

Since the manufacturer did not provide calibration curves for VCC=3.3V, a calibration table 

of different light conditions versus voltage output of the light sensor was created (Table 6.2). 

These different lighting conditions were subjectively chosen based on common lighting 

conditions under which the WMMS will operate. Having different light condition associated 

with a real-world light intensity value helped determine classification threshold values for 

indoor and outdoor conditions.  

The board was worn on the right hip of one subject during testing. The subject was asked to 

stay in the same light condition within a circle of approximately 1.5-2 meters of diameter for 

the whole measurement period but to move and turn around within that circle. Five trials for 

each light condition were completed at different times, days, and locations. Each trial was 
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for one minute. The light sensor values were averaged for each light condition.  From these 

results, thresholds for indoor and outdoor conditions were set to 1000 and 300, respectively. 

More details on the algorithm using these thresholds are provided in Chapter 7. 

Table 6.2: Average output value of the light sensor (mV) for different light conditions (standard 
deviation in brackets). 

Light condition Average light sensor Vout (mV) 

Outdoor sunny day 1474.0 (16.3) 

Outdoor sunny day in the shade 1214.6 (334.4) 

Outdoor cloudy day 1185.9 (451.6) 

Indoor away from window 74.5 (83.9) 

Indoor cloudy in front of window 252.7 (236.1) 

Indoor sunny day in front of window 531.5 (387.5) 

Outdoor during the night 19.3 (7.3) 

Indoor during the night, light off 17.3 (0.5) 

Indoor during the night, light on 28.3 (13.5) 

Pitch dark (in black box) 17.3 (0.5) 

6.2.8 Accelerometer Calibration 

A variable capacitance accelerometer, which has the property to measure both DC 

and AC acceleration, was used for the WMMS (Section 2.3.4.1). An advantage of measuring 

DC acceleration is the ability to calculate inclination angle. However, having a DC 

component creates a signal offset, which, as mentioned by Bouten et al. [80], should be 

corrected to avoid over or under estimation of the measured acceleration. The other 

calibration parameter necessary for the acceleration calculation is sensor sensitivity. 

Sensitivity describes the accelerometer gain. Despite the factory calibration for offset and 

sensitivity, re-calibration was recommended after mounting the sensor onto the board 

because this process could have modified the factory values. Re-calibration also defined the 

orientation of the accelerometer axes with respect to the external board axes. 
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Accelerometer sensitivity and offset values for each axis (x,y,z) were calculated prior to the 

WMMS evaluation. The calibration method was described on the manufacturer datasheet 

[166]. The method is described here using the x-axis as an example (the same procedure 

applies to y and z-axis). The board was oriented such that its x-axis was pointing in the 

opposite direction to the gravity vector. With the board in that position, the acceleration was 

measured. The board was then rotated 180 degrees such that its x-axis was in the same 

direction as the gravity vector; the acceleration was again measured. The offset value of the 

x-axis was obtained by adding the maximum acceleration measured value (umax) and the 

minimum acceleration measured value (umin), divided by two (Equation 2.5). Then, the x-

axis sensitivity was obtained by subtracting the minimum acceleration measured value from 

the maximum acceleration measured value, and dividing by two (Equation 2.4). The 

calculated offset and the sensitivity values were used to calculate acceleration in g prior to 

data processing (Equation 2.6).  

Accelerometer calibration and re-calibration is often needed to correct for signal drift 

(Section 2.4.1.4). Drift of the acceleration DC component was tested during five trials of 2 

hours each. During each trial, acceleration data was collected where the WMMS was run 

without moving the external sensor board. The drift was calculated by subtracting the 

minimum value from the maximum value of the mean DC acceleration. The average drift 

value and the standard deviation for the three axes were:  0.0023 ± 0.0010 g/hour for x-axis, 

0.0029 ± 0.0008 g/hour for y-axis, and 0.0040 ± 0.0016 g/hour for z-axis. From these 

drifting rates, the inclination angle calculation might vary by no more than 5 degrees after 12 

hours.  From these results, it was determined that there was no need for re-calibrating the 

accelerometer during trials. These results were also expected since the external board used a 

low-drift accelerometer that has a trimming circuit to reset the device trimming value during 

power up.  Therefore, calibration of the accelerometer was performed once prior to the 

evaluation. 
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Figure 6.4: Examples of the drift acceleration versus time for x-, y- and z-axis. 
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6.2.9 Data Filtering 

The external board was designed such that each of the accelerometer output signals 

were passed through an analog low-pass filter with a cut-off frequency of approximately 

145 Hz before being sent to the BlackBerry. Each low-pass filter was located on the output 

of each axis and was composed of an internal output resistor of 110 kohms (typical value) 

and an external load capacitor of 10 nF.  

The light, temperature and humidity sensors signals were not analog filtered. Some digital 

filtering of the external board sensors data were performed by the Java application developed 

for the WMMS and will be described in the next Chapter.  

6.3 Hardware Evaluation 

6.3.1 Camera 

The BlackBerry Bold camera was evaluated for shutter lag, which is the time 

between calling the “take-a-picture” function and the time the picture was taken. The time 

before the camera is ready to take another picture was also evaluated. A Java application was 

developed to take a picture continuously until manually stopped. The picture encoding was 

set to jpeg with size 640x480 pixels and quality set to normal. The memory size of a picture 

with this encoding was 10 to 70 Kbytes. The time before and after the picture was taken was 

measured using the Java function System.currentTimeMillis(). Five trials were performed 

with 20 pictures taken per trial. During the trials, the BlackBerry was held by a user. The 

shutter lag values were averaged. From the same trials, the time before the camera was ready 

to take another picture was calculated by subtracting the time after the previous picture was 

taken from the time before taking the next picture. These time values were averaged. Table 

6.3 shows the results for camera performance evaluation. 

The time the function take-a-picture was executed and the time the camera was ready again 

to take a picture was almost 2 seconds. This is slow for application where real-time 

processing was one of the criteria. These time results will need to be taken into account 
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during WMMS design. If the user’s state changes between 1.02 seconds windows, 

consecutive pictures cannot be taken.  

Table 6.3: BlackBerry Bold camera performance evaluation results. 

 
Shutter Lag (s) Time before camera is ready (s) 

 
Average 

Standard  
Deviation 

Average 
Standard  
Deviation 

Trial 1 0.65 0.07 0.86 0.01 

Trial 2 0.63 0.12 0.86 0.01 

Trial 3 0.70 0.08 0.86 0.01 

Trial 4 0.66 0.08 0.86 0.01 

Trial 5 0.61 0.03 0.86 0.01 

          

TOTAL AVERAGE 0.65 0.07 0.86 0.01 

 

6.4 Summary 

The BlackBerry Bold was chosen as the platform for the WMMS. Since access to 

raw accelerometer data was not available with the 9000 model, an external board was added 

to the design. The external board, designed to fit on the BlackBerry holster, provides motion 

data and context data such as light intensity, humidity and temperature. The BlackBerry 

provides GPS, current time, and camera functions.  

The light sensor was calibrated with different lighting conditions present in everyday life. A 

threshold value of 1000 was a good estimate for detecting outdoors. The low threshold to 

reset back to the indoor state was 300. 

Accelerometer calibration was only required once prior to use. Testing for drift demonstrated 

that there was no need to recalibrate during use. This was expected since a low-drift 

accelerometer was placed on the board. 

The BlackBerry camera test indicated that a picture could not be taken for every window of 

1.02 seconds. This limited the real-time processing aspect of the WMMS. 
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Chapter 7:   Development of the 

Prototype WMMS  

This chapter describes the development of the prototype WMMS, including the 

methods to generate the different signal features and how each feature is used to determine 

the user’s state. For this prototype WMMS, the selected features were mostly time-domain 

features and some heuristic features (Section 2.4.6); such as inclination angle, standard 

deviation of y-axis, skewness of y-axis, signal magnitude area (SMA), light intensity, and 

GPS speed. Farther in this chapter, the algorithm to determine the state and the change-of-

state of the user is given.  

7.1 Data Pre-processing 

The raw acceleration data received on the BlackBerry were calibrated as explained in 

Section 6.2.8. The calibrated acceleration data were then passed through a median filter 

(n=3) to remove spikes [7]. Since the external board uses a variable capacitance 

accelerometer (Section 2.3.4.1), the acceleration signal was composed of accelerations 

caused by gravity (static) and accelerations caused by movement (dynamic). Mathie et al. 

[81] mentioned that these two acceleration components can be separated by filtering the 

signal with a cut off frequency between 0.1 to 0.5 Hz. In this thesis, a RC low-pass digital 

filter with a cut-off frequency of 0.25 Hz was applied to the median filtered acceleration 

signal to extract the static component. The dynamic component was then obtained by 

subtracting the static component from the median filtered signal. The pseudo code used to 

simulate the RC low-pass filter effect is [192]: 

for i from 1 to n 

y[i] := y[i-1] + α * (x[i] – y[i-1]) 

return y 

 

where x is the median filtered signal, y the static component, and α the smoothing factor. The 

smoothing factor can be expressed as:  
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RCdt

dt

+
=α  

(7.1) 

where dt is the sampling delay and RC the time constant.  The cutoff frequency is expressed 

as: 

RC
Fc

π2

1
=  

(7.2) 

For a cutoff frequency of 0.25 Hz and a sampling delay of 0.020 second, the time constant 

RC was 0.64 second and the smoothing factor α was 0.0304. 

To determine the state, features were extracted from the static and dynamic components over 

a non-overlapping sliding window of 1.02 seconds. With a sampling frequency of 50 Hz, 

1.02 seconds corresponds to 51 samples. As mentioned by Preece et al. [171], a sliding 

window is well suited for real-time processing application since signal pre-processing is not 

required to detect events or activity periods (Section 2.4.5). The 1.02 seconds window size 

was chosen based on the work from Mathie et al. [7] who found that the optimal window 

size for activity classification was between 0.8 to 1.4 seconds.  

For temperature and humidity sensor data, pre-processing corresponded to the conversion of 

these two data into a temperature value in Celsius and a humidity value in percentage of 

Relative Humidity. These conversions are explained in Section 6.2.6. Filtering was not 

required for the temperature and humidity data since these values were only updated every 4 

seconds (0.25 Hz). As for the light sensor, the non-overlapping sliding window of 1.02 

seconds was applied to the light sensor, which acted as a moving average filter.  

7.2 Accelerometer Feature Generation 

7.2.1 Inclination Angle 

The inclination angle was added to the algorithm to help classify posture [9, 147-

149] and identify postural transition [155]. For this prototype WMMS, the posture was either 

standing, lying on the back, or somewhere in between (e.g., sitting).  
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The static components of the acceleration signals, which were obtained from the RC low-

pass filter, were averaged over the 1.02 seconds window. The inclination angle was 

calculated for every window period. The angle calculation was based on the two-axes 

method presented in application note AN3461 from Freescale Semiconductor [172]. Using 

two axes instead of one to calculate inclination angle improved resolution and provided a 

360-degree range of inclination angle. The vertical (y-axis) and horizontal forward (z-axis) 

axes were used. Figure 7.1 illustrates the method. 

 

Figure 7.1: Inclination angle measurement method. In standing position, inclination angle is 180 
degrees. 

The Java function atand2 was used to calculate the inclination angle Φ (Equation 7.3): 

Φ=atand2(GAz, GAy)  (°) (7.3) 

where GAz and GAy are the averaged static accelerations of z-axis and y-axis respectively. 

The atand2 function returns the arctangent of GAz/GAy with the resulting angle ranging 
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between -180 to 180 degrees. However, for convenience, an offset of 180 degrees was added 

to the inclination angle to give a range of 0 to 360 degrees and to measure 0 degrees when 

the y-axis was pointing down (Figure 7.1). Another possible option was to use the Java 

function atan instead of atand2. However, the method using atan required more steps and 

more processing time to get the inclination angle Φ with a range of 0 to 360 degrees. The 

atan method had to identify in which quadrant the point (z, y) was in and then apply a 

certain offset based on the quadrant [172].  

 

Figure 7.2: Position classification method. 

For every 1.02 seconds window, the averaged inclination angle was compared with a high 

and low standing-threshold to verify if the person was in a standing position. If the person 

was not standing, the angle was compared with a high and low lying-threshold to verify if 

the person was lying on their back. If not, then the position was determined to be somewhere 

in between. Figure 7.2 demonstrates the two states and the range of angles. The threshold 

values to detect these two postures were based on the study by Culhane et al. [148] that 

found that their “best estimate” approach to determine thresholds demonstrated higher 

detection accuracy compared to using mid-point tolerances values. Therefore, with the 

assumption that the sensor is perfectly mounted on the person, the angular range for standing 

position was set to 200 to 160 degrees. Similarly, range for lying position was set to 300 to 

240 degrees. However, during preliminary testing, it was observed that certain sitting and 

lying positions had an angle value very close to the thresholds, causing false positive 
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changes-of-state to occur. The sitting posture was sometimes identified as lying and the 

lying position was outside the range. This was due to the way the WMMS is worn on the 

waist. During sitting, the leg may touch the WMMS which may caused extra inclination 

angle of the system. During lying, if the person had their legs bent this may also caused extra 

inclination. Therefore, the lying-thresholds were adjusted to 320 and 250.  

7.2.2 Standard Deviation  

Another feature that was chosen to determine the user’s state is the standard 

deviation [80, 141, 147-149]. The standard deviations for the three axes were calculated 

using the following equation:  
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where n is the number of point,  xi the acceleration at point i, and x the mean of the 

acceleration signal. The Equation 7.4 can then be rearranged to the following equation for 

programming purposes: 
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In this thesis, since most daily activities such as walking, sitting, lying down and going 

up/down stairs can be observed by a change of acceleration on the vertical axis, only the 

vertical acceleration (y-axis) was required to differentiate between static and dynamic states. 

The y-axis standard deviation was passed through a double threshold (DT) algorithm (Figure 

7.3). Figure 7.4 shows an example of the y-axis acceleration standard deviation during 

dynamic (walking) and static state. With the DT algorithm, if the state starts with static state, 

it will stay static until the signal cross the dynamic threshold. Then, the state will be set to 

dynamic and will stay dynamic until the signal goes below the static threshold. The dynamic 

threshold was set to 0.120g and the static threshold was set to 0.075g. These threshold values 

were estimated based on preliminary testing of the WMMS.  
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Figure 7.3: Flowchart of the double threshold (DT) algorithm applied to the standard deviation of the 
y-axis acceleration.  
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Figure 7.4: Standard deviation of y-axis acceleration during level ground walking (dynamic), 
followed by a short period of standing (static), and then back to walking. 

7.2.3 Skewness 

One of the changes-of-state that the WMMS was aiming to detect was going up or 

down stairs. The skewness value of the vertical acceleration is a time-domain feature that 

was used by Baek et al. [141] to differentiate walking/running from going up/down stairs. 

The skewness of the y-axis was calculated as follows: 
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where n is the number of point,  xi the y-axis acceleration at point i, and σ and x are the 

standard deviation and the mean of the y-axis acceleration signal, respectively. Equation 7.6 

can be rearranged as Equation 7.7 for programming purposes:  

Standard deviation of y-axis acceleration versus time 
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Figure 7.6 gives an example of the signal when walking and when walking up and down 

stairs. The top curve shows the skewness curve only. The bottom curve shows the same 

skewness curve, but with the dynamic level identified by the dashed line. A dashed curve 

value of 2 means the desired dynamic level was reached and the stairs detection algorithm 

determined if the state was stairs or no stairs. If the dashed curve value was 0, the state was 

determined as no stairs.  

Based on preliminary work, a skewness value larger than 1 was observed when a person 

walked down stairs. Skewness increased when walking up stairs, but not as much as when 

going down stairs. The same skewness values as upstairs were sometimes observed during 

normal walking, which could result in a false positive change-of-state detection. The high 

and low thresholds were chosen to detect down stairs and allow the possibility to detect up 

stairs with minimal false positive stairs detection. The high stairs threshold was set to 0.6 

and the low stairs threshold was set to 0.2.  

Because the WMMS was not rigidly attached on the person’s waist, WMMS movement may 

add noise to the signal. Various smoothing techniques on the skewness signal were tried 

which seemed to improved the false positive, but the time resolution to detect true positive 

stairs was reduced. Therefore, since the goal was to take a picture when there was a change-

of-state, the skewness signal was not smoothed more than the 1.02 seconds sliding window 

already applied. More advanced data processing could be performed later on the WMMS 

output to improve stairs detection.   

A double threshold (DT) algorithm, such as the one used for the standard deviation, was also 

applied to the skewness value. However, since walking up or down stairs is a dynamic state, 

the DT was only applied to the skewness when the standard deviation of the vertical axis 

was verified to be in a sufficient dynamic level. Waiting to be in dynamic state to identify 
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stairs was also to decrease the false positives detection of stairs caused by peak in the 

skewness signal observed during the stop and start of dynamic motions. The high and low 

thresholds of the standard deviation used to determine the sufficient dynamic level for stairs 

detection were 0.3g and 0.2g respectively. Figure 7.5 illustrates the DT algorithm applied to 

the y-axis acceleration skewness. 

 

Figure 7.5: Algorithm flow chart for skewness of y-axis acceleration. 
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Figure 7.6: Example of a skewness curve for y-axis acceleration. The top graph is the skewness only. 
The bottom graph is the skewness curve but with some dynamic, static and stairs states identified. 
The dotted line shows when the dynamic level was identified (i.e., when the skewness values was 
analyzed for stairs or not stairs state). 

Skewness of y-axis acceleration versus time 
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7.2.4 Signal Magnitude Area (SMA) 

The SMA of the three acceleration signals (x, y, z) was used by Mathie et al. [7] and 

Karantonis et al. [9] to measure mobility. SMA was shown to detect both amplitude and 

duration variation in the acceleration signal, which could help detect the type of activity [7]. 

SMA normalized to the length t can be calculated using Equation 7.8: 
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where t is the time in seconds and ax, ay, and az are the acceleration of x-, y-, and z-axis 

respectively. The integration technique used to calculate SMA in Equation 7.8 was based on 

Simpson’s rule: 
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where n is the number of equal steps and y the acceleration ax, ay, or az. With a sampling 

frequency of 50 Hz, a 1-second window gives 50 samples and 49 steps. Since Simpson’s rule 

requires an even number of steps, 51 samples were used for the window size. Therefore, the 

window size is 1.02 seconds instead of 1 second. 

During preliminary testing, peaks occurred during transition when the person sat down, rose 

from a chair, or lay down (Figure 7.7). For this reason, SMA was added to the algorithm to 

determine the current state.  

Another reason to add SMA is to help identify activity intensity changes, which could mean 

a change-of-state. Therefore, three thresholds were used and three states were determined: no 

peak with normal intensity, no peak with increased in intensity, or a peak. The low threshold 

value was 0.100g and the high threshold value was 0.190g. The threshold for the peak was 

set to 0.320g. A DT algorithm was used to determine increases in intensity and peak 

detection. illustrates the DT algorithm flowchart applied to the SMA feature. When a peak 

was detected, the next data window was not classified as a peak again until the signal went 

below the low threshold. This avoided inappropriately switching from state “peak”, to state 

“no peak with increased in intensity”, and then to “no peak with normal intensity” since each 
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windows is independently analysed. However, if the transition was slow and a change 

happens across windows, it was possible to detect the state “no peak with increase in 

intensity” just before detecting the state “peak”. These false positives could be removed later 

with more offline processing.   

 

 

Figure 7.7: SMA of a person walking then sitting, standing up, walking, lying down on a bed, getting 
up from the bed, lying on the floor, and getting up again. 

A DT algorithm was used to determine increases in intensity and peak detection. Figure 7.8 

illustrates the DT algorithm flowchart applied to the SMA feature. When a peak was 

detected, the next data window was not classified as a peak again until the signal went below 

the low threshold. This avoided inappropriately switching from state “peak”, to state “no 

peak with increased in intensity”, and then to “no peak with normal intensity” since each 

windows is independently analysed. However, if the transition was slow and a change 

happens across windows, it was possible to detect the state “no peak with increase in 

intensity” just before detecting the state “peak”. These false positives could be removed later 

with more offline processing.   

Signal Magnitude Area (SMA) of acceleration signals versus Time 



Development of the Prototype WMMS 

  

Development of a Wearable Mobility Monitoring System  92 

During preliminary testing of the SMA algorithm, it was also observed that the state “no 

peak with increase in intensity” would occur during riding in a car. This false state was 

detected with the car’s stop-and-go motion, at a stop sign. Since an increase in intensity 

should happen when the person is moving, another threshold to verify that the person was in 

a certain active state was added to the algorithm. The algorithm verified that the standard 

deviation was above 0.1g in order to detect the state “no peak with increase in intensity”.  

 

Figure 7.8: Flowchart of the SMA algorithm.  

7.3 Light 

The light sensor on the external board measured light intensity of the ambient environment. 

Light intensity level detected indoor and outdoor states during the day. During preliminary 

hardware testing, the light sensor was calibrated with different light conditions (Table 6.2 in 

Section 6.2.7). From those results, it was estimated that a high threshold of 1000 mV and a 
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low threshold of 300 mV would differentiate outdoor from indoor states during the day. The 

same DT algorithm as the one applied to the standard deviation was applied to the light 

intensity feature (Figure 7.3). However, during preliminary testing while driving, many false 

changes of state were recorded due to the light intensity changes. To remove those false 

changes-of-state, the DT algorithm was only applied to the light intensity feature when the 

state was not detected as riding in a vehicle. 

 

 

Figure 7.9: Example of the light intensity feature signal while performing mobility tasks indoors and 
outdoors.  

7.4 GPS 

GPS data have been used in mobility monitoring to complement motion data, 

improve activity recognition, and provide contextual data (Section 2.3.4.5). Therefore, the 

GPS location coordinates and speed were collected and added to the WMMS output file. 

Light intensity versus Time 
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GPS data were provided by the BlackBerry Bold. Both data were extracted every 9 seconds, 

using the Java locationListener interface. The speed value was based on the Doppler Effect 

as explain in Section 2.3.4.5.   

For this WMMS prototype, only the speed was considered for the change-of-state detection 

algorithm. The speed feature was added for its potential to detect if the person is in a vehicle 

such as car, bus, train, and so on. This feature was passed through a DT algorithm such as 

the one used for standard deviation. The low threshold value was set to 1 m/s and the high 

threshold value was set to 7 m/s.  

With this algorithm, a change-of-state could be triggered when the car stops at a stop sign or 

slows down sufficiently. However, since the GPS data is refreshed every 9 seconds, the 

algorithm might miss some stopping instances. This could help in decreasing false positive 

changes-of-state while riding in a car. 

7.5 Unused Features 

Other features have been generated from the accelerometer data, but were not used in 

the algorithm to detect changes-of-state. The correlation between x and y, y and z, and x and 

z were generated. The correlation values have been used by Ravi et al. [96] since these 

features could detect activities that involve translations in one dimension (i.e. differentiation 

walking from going up/down stairs). However, in our research with a window of 1.02 

seconds, correlation values did not help to detect stairs. In the work from Ravi et al., the 

correlation values were calculated over a window of 5.12 seconds. This window size was not 

adequate for our research since we wanted real-time processing. Further data processing 

using correlation values could be done offline in the future. 

The skewness value of the forward axis (z-axis) and the kurtosis of the vertical axis (y-axis) 

were also calculated. The z-axis skewness was used by Baek et al. [141] to differentiate 

between walking/going up stairs from running. Baek et al. also used kurtosis to detect 

upstairs/downstairs from walking/running. From preliminary work in this thesis, these two 

features were combined with y-axis skewness to try and to improve upstairs detection and 

decrease the number of false positive. However, combining these two extra features was 
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ineffective. Therefore, they were not added in the algorithm but were kept in the output file 

for further data processing.  

For further data processing purposes, other features kept in the output file are the mean value 

of the body acceleration of all three axes, the temperature and humidity, and the GPS 

location coordinates.  

7.6 Determination of State and Change-of-State 

The algorithm developed determined the user’s state every 1.02 seconds and 

compared the current state with previous states to determine if a change-of-state occurred. 

The features extracted from the acceleration signals, GPS speed, and the light intensity were 

used to set the bits of an 8-bit number, representing the user’s state: 

STA-DYN STAIRS STAND LIE GPS LIGHT SMA-PEAK SMA-INT 

 

If the state was 160 in decimal value, which gives 10100000, the person was moving and in 

a standing position. Table 7.1 describes each bit. A flowchart including all selected features 

and their methods to determine the user’s state is presented in Figure 7.10. A change-of-state 

was determined by subtracting the three previous states from the current state. If the answer 

was different from zero for one of the subtractions, a change-of-state had occurred. As a 

result of a change-of-state, the algorithm determined if a picture should be taken.  
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Table 7.1: Description of the state bits. 

BIT NAME Definition Description 

STA-DYN 
Standard deviation of y-axis to 
determine if static or dynamic 

If 0, person in static mode (not 
moving);  

if 1, person in dynamic mode 
(moving) 

STAIRS 
Skewness of y-axis to 
determine if going up/down 
stairs 

If 0, person is walking;  

if 1, person is walking up/down 
stairs 

STAND 
Inclination angle indicating 
standing position 

If 0, person is not in standing 
position;  

if 1, person is in standing 
position 

LIE 
Inclination angle indicating 
lying position 

If 0, person is not in standing 
position;  

if 1, person is in standing 
position 

GPS GPS speed 

If 0, person is walking; 

 if 1, person could be in 
vehicle. 

LIGHT Light intensity value 
If 0, person is inside;  

if 1, person could be outside 

SMA-PEAK SMA peak detection 

If 0, no peak in SMA;  

if 1, peak occurred and person 
might be sitting, or getting up 

SMA-INT SMA intensity 

If 1, increased in acceleration 
intensity 

If 0, back to normal intensity 
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Figure 7.10: State determination algorithm. DT stands for “double threshold”. 
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From the camera performance test in Chapter 6, approximately 0.7 second was required to 

take a picture and the BlackBerry Bold camera needed another 0.9 second before it was 

ready to take another picture. During that time, the BlackBerry Bold was busy and no data 

was received and processed, causing the data to accumulate in a buffer. The affected timing 

could be demonstrated by observing the time frame of every window of data from the 

WMMS output file as presented in Table 7.2. The section of the WMMS output file in Table 

7.2 was recorded with a sampling rate of 50 Hz and a window size of 1.02 seconds. It can be 

observed that the elapsed time is approximately 1 second when no picture is taken and an 

extra second is added after a picture is taken. Another observation is that the second window 

of data after a picture is taken is smaller, but by the third window, the timing is back to 

normal. Therefore, it was decided to wait at least 2 windows (or 2.04 seconds) before taking 

another picture (i.e., 3 seconds later). 

Table 7.2: Section of a WMMS output file to demonstrate timing of the picture taken. 

Time Frame 
(s) 

Elapsed Time 
from previous 

window (s) 

Image Name 
or “0” if no 

image taken 

State of the 
User 

 

0 0 0 100000  
0.978 0.978 0 100000  
2.057 1.079 0 100000  
3.053 0.996 IMAGE9 10100000  Picture taken 
5.09 2.037 0 10100000  
5.269 0.179 0 10100000  
6.078 0.809 0 10100000  Ready to take   

picture again 7.055 0.977 0 10100000 

8.093 1.038 0 10100000  
9.111 1.018 0 10100000  
10.129 1.018 0 10100000  
11.147 1.018 IMAGE10 10100001  Picture taken 
12.964 1.817 0 100010  
13.183 0.219 0 10  
14.18 0.997 IMAGE11 0  Ready to take   

picture again and 
picture taken 

15.987 1.807 0 0 

16.207 0.22 0 0 

17.185 0.978 0 0  Ready to take   
picture again 18.232 1.047 0 0 

19.23 0.998 0 0  
20.248 1.018 0 0  
21.207 0.959 0 0  
22.204 0.997 0 0  
23.262 1.058 0 0  
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7.7 Software development 

The software part of the WMMS was developed using Java Eclipse and the 

BlackBerry Java Development Environment component package version 4.6.1. The Java 

application was then uploaded to the BlackBerry platform through the BlackBerry Desktop 

Manager. The BlackBerry APIs (application programming interface) and the Java packages 

that were used for this Java application are [193]: 

• net.rim.device.api.bluetooth to initiate a Bluetooth serial port connection and to write 

and read data from the port, 

• net.rim.device.api.math.Fixed32 to execute specific math functions such as arctan2, 

•  net.rim.device.api.ui to provide functionality to construct the user interface, 

•  net.rim.device.api.util to provide utility methods and interfaces, such as arrays and 

data buffer, 

•  net.rim.device.api.system to provide system-level functionality such as the control of 

the BlackBerry backlight and information on the battery level status, 

• javax.microedition.io.Connector and javax.microedition.io.FileConnection to copy 

data and images to output files stored on SDcard or device memory, 

• javax.microedition.media to take picture with the BlackBerry Bold integrated 

camera, 

• javax.microedition.location with the LocationListener interface to obtain GPS 

location coordinates and speed, 

• java.io to provide system input and output to data stream, 

• java.lang.math for other math functions such as squared root, and absolute value. 

 

Additionally, the BlackBerry data encryption built-in option was selected to ensure privacy 

and security of the data. Encryption was set so that reading and downloading the output file 

from the BlackBerry to the computer required a password, as well as the same handheld 

device used to store the data. The use of the BlackBerry Bold was also password protected. 

An overview of the programming flow chart for the WMMS Java application is presented in 

Figure 7.11. The BluetoothListener interface from the Bluetooth API, had a built-in method 
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called datareceived(), that was automatically run when data was detected on the Bluetooth 

port. When data were received, our data processing method was run. Every received byte 

was processed before reading more data from the Bluetooth port. The received bytes were 

first parsed to verify CRC (Cyclic Redundancy Check). If the CRC test passed, the data were 

parsed into six integer numbers: AccX, AccY, AccZ, Light, Temperature, Humidity, and 

Battery. At this point, depending on the selected option, the raw data could be copied in a 

circular queue, which could then be emptied by a separate thread to copy the data to a raw 

data output file stored on the BlackBerry SD card. The other option was to proceed with data 

processing.  

With the processing option selected, the acceleration integer values were calibrated, median 

filtered, and divided into the static and dynamic component using a low-pass filter. 

Calculation of different variables necessary to compute features as well as integration of 

acceleration signal were performed as well. When all the received bytes were processed, 

then more bytes were received on the Bluetooth port and the same process started again until 

the number of samples reached the selected window size. When one window of data was 

processed, other types of processing were performed. From the variables computed, the 

features were calculated. Then, these features were passed through the algorithm to 

determine the state and change-of-state of the user. From the change-of-state result, another 

Java function determined if a picture should be taken. Finally, an output sample object was 

created, which contained all the features computed, image name, user state, GPS data, and 

time frame. This sample object was put in a circular queue, which was emptied by a separate 

thread that copied the data to an output file stored on the BlackBerry SD card.   
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Figure 7.11: Overview of programming flow. 
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7.8 Summary  

The prototype WMMS was designed to determine a user’s state, detect changes-of-

state, and take a picture when a change-of-state occurred. The data used in the algorithm 

were coming from the external board and the BlackBerry. 

The raw acceleration signal was divided into its dynamic and static components using a 

digital low-pass filter. Signal features were extracted from these two components and then 

input to the algorithm. The features selected for this prototype WMMS were standard 

deviation of the y-axis acceleration, inclination angle, skewness of the y-axis acceleration, 

signal magnitude area (SMA), light intensity, and GPS speed.  

The standard deviation was selected to detect changes-of-state caused by start/stop actions; 

the inclination angle detected postural changes; skewness detected changes-of-state caused 

by walking on stairs; SMA detected a change in movement intensity and postural transition; 

light intensity differentiated between indoor and outdoor states; and GPS speed detected 

when a person was riding in a vehicle. 

The user’s state was determined for every data window of 1.02 seconds. When a change-of-

state was detected, a picture was taken. However, due to the limitations of the BlackBerry 

camera (Chapter 6), the WMMS had to wait at least 2.04 seconds before being able to take 

another a picture. Therefore, the current state was compared with the three previous states to 

determine if a change-of-state happened.  

The prototype WMMS software application was developed using the Java Development 

Environment and API version 4.6.1. All WMMS output data were saved to the BlackBerry 

SD card. 
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Chapter 8:   Technical and Mobility 

Evaluation of the Prototype 

WMMS 

The WMMS evaluation was divided into two main parts: the technical evaluation and 

the mobility evaluation. The technical evaluation examined the BlackBerry battery and the 

data loss.  The purpose of the mobility evaluation was to evaluate the performance of the 

WMMS for detecting changes-of-state. The mobility evaluation was also to evaluate the 

pictures taken by the WMMS for their usefulness in determining context associated with the 

mobility tasks. The following describes the method for the WMMS evaluations. 

8.1 Technical Evaluation 

The battery life of the BlackBerry Bold while running the full application (GPS, data 

processing, camera) was evaluated using the Java command DeviceInfo.getBatteryLevel(). 

This Java command was called every minute inside the WMMS application to verify the 

battery level of the BlackBerry. Five trials were run and the results are presented in Table 

8.1. The starting and ending battery levels were the first and last battery level value captured 

during a trial, respectively. Total battery usage was calculated by subtracting the ending 

level from the starting level and dividing by the starting level. Then, the battery usage per 

hour was calculated by dividing the total battery usage with the total time of the trial. The 

battery usage averaged 29% per hour. Figure 8.1 give an example of one of the battery-

voltage curve obtained during this evaluation. Table 8.1 presents the trials results.   

During battery tests, data loss was also evaluated. No data loss were observed in any of the 

trials. 
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Table 8.1: Results for the BlackBerry Bold battery evaluation. 

 Starting 
Battery Level 

(%) 

Ending 
Battery Level 

(%) 

Total Time 
(hours) 

Total 
Battery 

Usage (%) 

Battery Usage 
per hour 
(%/hour) 

Trial 1 100 58 1.54 42 27 

Trial 2 100 2 3.23 98 30 

Trial 3 99 6 3.20 94 29 

Trial 4 100 6 3.12 94 30 

Trial 5 100 6 3.12 94 30 
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Figure 8.1: BlackBerry battery with full WMMS application running (Trial 2). 

Battery usage curve of the BlackBerry Bold versus time 
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8.2 Mobility Evaluation 

8.2.1 Subjects 

A sample of five subjects (3 males, 2 females; age: 36.6 ± 6.4 years; height: 173.8 ± 

13.2 cm; weight: 69.3 ± 16.1 kg) was recruited from the staff at The Ottawa Hospital 

Rehabilitation Center, Ottawa, Canada and the community. Consent forms were obtained 

from all the participants prior to the trial. People with injuries or a gait deficit were excluded 

at this stage of the testing. All the participants were able-bodied without abnormal gait 

patterns.  

8.2.2 Data Collection 

Data collection took placed inside The Ottawa Hospital Rehabilitation Center 

(hallways, elevator, stairs, and Rehabilitation Technology Lab) and outside The Ottawa 

Hospital Rehabilitation Center, on the paved pathway. The last part of the data collection 

involved taking a car ride as a passenger or driver, around the Ottawa Hospital campus, on 

the Ring road. 

The subjects were asked to wear the WMMS on their waist, attached on a belt, on their right 

hip with the device pointing forward. No additional instructions were given for positioning 

the instrumented holster. The subjects were asked to follow a pre-determined path with a 

series of mobility tasks. Each subject followed verbal instructions indicating the next 

mobility task. For every trial, the subjects were filmed with a digital camera. The digital 

camera was synchronized with the WMMS by having the subject to block the light sensor 

with their hand for 5 seconds when starting data collection. Digital video was necessary to 

validate change-of-state detection, to determine the change-of-state timing, and to provide 

context information. 

The following is the list of tasks that the subjects were asked to perform. The list is divided 

to facilitate video time-segmenting of the different tasks: 
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1. From standing position, walk for 25 meters. 
a. Initiation: Start of forward walking progression 
b. Termination: End of forward walking progression 

2. Transition walk to stand-to-sit transition 
a. Initiation: End of forward walking progression 
b. Termination: Initiation of hip flexion at the start of stand-to-sit transition 

3. Stand-to-sit transition  
a. Initiation: Initiation of hip flexion at the start of stand-to-sit transition 
b. Termination: Seated position on chair 

4. Sitting for 30 seconds 
a. Initiation: Seated position on chair 
b. Termination: Initiation of trunk flexion and buttock lifting from chair 

5. Sit-to-stand transition 
a. Initiation: Initiation of trunk flexion and buttock lifting from chair 
b. Termination: Standing position 

6. Transition Sit-to-stand transition to walk 
a. Initiation: Standing position 
b. Termination: Start of forward walking progression 

7. Walk 60 meters until the elevator 
a. Initiation: Start of forward walking progression 
b. Termination: End of forward walking progression and moving to press elevator  

button 
8. Transition walk to wait for elevator  

a. Initiation: End of forward walking progression and moving to press elevator button 
b. Termination: Standing 

9. Standing waiting for elevator 
a. Initiation: Standing 
b. Termination: Start of forward walking progression to get inside the elevator 

10. Get in the elevator  
a. Initiation: Start of forward walking progression to get inside the elevator 
b. Termination: Standing inside the elevator 

11. Take the elevator to the second floor  
a. Initiation: Standing inside the elevator 
b. Termination: Start of forward walking progression to get outside the elevator 

12. Get out of the elevator and walk 15 meters  
a. Initiation: Start of forward walking progression to get outside the elevator 
b. Termination: End of forward walking progression 

13. Turn around 
a. Initiation: End of forward walking progression 
b. Termination: Facing elevator 

14. Transition turn around to walk  
a. Initiation: Facing elevator 
b. Termination: Start of forward walking progression 

15. Walk 15 meters towards the elevator 
a. Initiation: Start of forward walking progression 
b. Termination: End of forward walking progression and moving to press elevator  

button 
16. Transition walk to wait for elevator  

a. Initiation: End of forward walking progression and moving to press elevator button 
b. Termination: Standing 
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17. Standing waiting for elevator 
a. Initiation: Standing 
b. Termination: Start of forward walking progression to get inside the elevator 

18. Get in the elevator  
a. Initiation: Start of forward walking progression to get inside the elevator 
b. Termination: Standing inside the elevator 

19. Take the elevator to the first floor  
a. Initiation: Standing inside the elevator 
b. Termination: Start of forward walking progression to get outside the elevator 

20. Walk 50 meters  towards the stairwell 
a. Initiation: Start of forward walking progression get outside the elevator 
b. Termination: Start pushing on the door of the stairwell 

21. Open door and enter stairwell 
a. Initiation: Start pushing on the door of the stairwell 
b. Termination: Lead leg contacts a stair 

22. Walk up stairs (13 steps) 
a. Initiation: Lead leg contacts a stair 
b. Termination: Trail leg off of last stair 

23. Walk on stair intermediate landing (level ground for approx 1.5 meter) 
a. Initiation: Trail leg off of last stair 
b. Termination: Lead leg contacts a stair 

24. Walk up stairs (13 steps) 
a. Initiation: Lead leg contacts a stair 
b. Termination: Trail leg off of last stair 

25. Open door and turn right 
a. Initiation: Trail leg off of last stair 
b. Termination: Exit stairwell with start forward walking progression 

26. Walk 15 meters  
a. Initiation: Exit stairwell with start forward walking progression  
b. Termination: End of forward walking progression 

27. Turn around 
a. Initiation: End of forward walking progression 
b. Termination: Facing opposite direction 

28. Transition turn around to walk  
a. Initiation: Facing opposite direction 
b. Termination: Start of forward walking progression 

29. Walk 15 meters towards the stairwell 
a. Initiation: Start of forward walking progression 
b. Termination: Start pushing on the door of the stairwell  

30. Open door and enter stairwell 
a. Initiation: Start pushing on the door of the stairwell  
b. Termination: Lead leg contacts a stair 

31. Walk down stairs (16 steps) 
a. Initiation: Lead leg contacts a stair 
b. Termination: Trail leg off of last stair 

32. Walk on stair intermediate landing (level ground for approx 1.5 meter) 
a. Initiation: Trail leg off of last stair 
b. Termination: Lead leg contacts a stair 
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33. Walk down stairs (13 steps) 
a. Initiation: Lead leg contacts a stair 
b. Termination: Trail leg off of last stair 

34. Open door and turn right 
a. Initiation Trail leg off of last stair 
b. Termination: Start forward walking progression outside the stairwell 

35. Walk 20 meters inside the Rehab Technology Lab toward the bed 
a. Initiation: Start forward walking progression outside the stairwell 
b. Termination: End of forward walking progression 

36. Transition walk to stand-to-lie transition 
a. Initiation: End of forward walking progression 
b. Termination: Initiation of hip flexion at the start of stand-to-lie transition 

37. Stand-to-lie transition 
a. Initiation: Initiation of hip flexion at the start of stand-to-lie transition 
b. Termination: Lying position on bed 

38. Lying on back for 30 seconds 
a. Initiation: Lying position on bed 
b. Termination: Initiation of upper body movement off the bed at the start of lie-to-stand 

transition 
39. Lie-to-stand transition  

a. Initiation: Initiation of upper body movement off the bed at the start of lie-to-stand 
transition 

b. Termination: Standing position 
40. Transition lie-to-stand transition to walk 

a. Initiation: Standing position 
b. Termination: Start of forward walking progression 

41. Walk 30 meters towards the hall way and keep walking in left direction 
a. Initiation: Start of forward walking progression 
b. Termination: End of forward walking progression 

42. Turn around 
a. Initiation: End of forward walking progression 
b. Termination: Facing opposite direction 

43. Transition turn around to walk  
a. Initiation: Facing opposite direction 
b. Termination: Start of forward walking progression 

44. Walk 25 meters inside the Rehab Technology towards the ramp 
a. Initiation: Start of forward walking progression 
b. Termination: Lead leg contacts the ramp 

45. Walk up the ramp 
a. Initiation: Lead leg contacts the ramp 
b. Termination: End of forward walking progression on the ramp 

46. Turn around 
a. Initiation: End of forward walking progression 
b. Termination: Facing opposite direction 

47. Transition turn around to walk  
a. Initiation: Facing opposite direction 
b. Termination: Lead leg contacts the ramp 

48. Walk down the ramp 
a. Initiation: Lead leg contacts the ramp 
b. Termination: Lead leg contacts level ground 
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49. Walk 15 meters towards the exit door 
a. Initiation: Lead leg contacts level ground 
b. Termination: End of forward walking progression and start pushing on the door to go 

outside 
50. Open the door to go outside and transition inside to outside 

a. Initiation: End of forward walking progression and start pushing on the door to go 
outside 

b. Termination: Person standing outside 
51. Transition open door to walk  

a. Initiation: Person standing outside 
b. Termination: Start of forward walking progression  

52. Walk 60 meters on paved path way towards the front door 
a. Initiation: Start of forward walking progression  
b. Termination: Pulling on the door to go inside  

53. Open the door to go inside and transition outside to inside 
a. Initiation: Pulling on the door to go inside 
b. Termination: Person standing inside 

54. Transition open door to walk  
a. Initiation: Person standing inside  
b. Termination: Start of forward walking progression  

55. Walk 20 meters 
a. Initiation: Start of forward walking progression 
b. Termination: End of forward walking progression 

56. Turn around 
a. Initiation: End of forward walking progression 
b. Termination: Facing opposite direction 

57. Transition turn around to walk  
a. Initiation: Facing opposite direction 
b. Termination: Start of forward walking progression 

58. Walk 20 meters towards the front door  
a. Initiation: Start of forward walking progression 
b. Termination: Inside stepping outside 

59. Transition inside to outside (automatic door) 
a. Initiation: Inside stepping outside 
b. Termination: Start of forward walking progression 

60. Walk 30 outside towards the car 
a. Initiation: Start of forward walking progression 
b. Termination: End of forward walking progression when arrive at the car 

61. Transition walk to open car door 
a. Initiation: End of forward walking progression when arrive at the car 
b. Termination: Start opening car door 

62. Opening car door 
a. Initiation: Start opening car door 
b. Termination: Initiation of hip flexion at the start of stand-to-sit transition 

63. Stand-to-sit transition (get in the car) 
a. Initiation: Initiation of hip flexion at the start of stand-to-sit transition 
b. Termination: Seated position in the car 

64. Sitting in the car 
a. Initiation: Seated position in the car 
b. Termination: Seated position, start to open the door. 
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65. Car ride – one loop around the Ottawa Hospital campus (Ring Road) 
a. Initiation: Car starts moving 
b. Termination: Car is in park mode 

66. Opening car door to get out 
a. Initiation: Seated position, start to open the door. 
b. Termination: From seated position, initiation of trunk flexion and buttock lifting from 

car seat 
67. Sit-to-stand transition (get out of the car) 

a. Initiation: From seated position, initiation of trunk flexion and buttock lifting from 
chair 

b. Termination: Standing position outside the car 
68. Transition get out of the car to walk 

a. Initiation: Standing position outside the car 
b. Termination: Start of forward walking progression 

69. Walk 30 meters towards the Ottawa Hospital Rehabilitation Center entrance 
a. Initiation: Start of forward walking progression 
b. Termination: End of forward walking progression 

70. Transition outside to inside (automatic door) 
a. Initiation: Outside stepping inside 
b. Termination: Start of forward walking progression 

71. Walk 5 meters  
a. Initiation: Start of forward walking progression 
b. Termination: End of forward walking progression 

72. Turn around 
a. Initiation: End of forward walking progression 
b. Termination: Facing opposite direction 

73. Standing 
a. Initiation: Facing opposite direction 
b. Termination: Standing 

 

8.2.3 Data Analysis  

Data collected with the digital video camera was used to determine the time value of 

when a change-of-state occurred. The timing for all tasks were determined based on the 

initiation and termination details given in the list presented above.  

For this thesis, the possible changes-of-state caused by opening a door and turning around 

were not evaluated. These possible changes-of-state were not in the scope of this WMMS 

prototype. In addition, to be able to compare one trial to another, changes-of-state created by 

extra mobility tasks were removed from the evaluation (i.e., subject movements not related 

to the protocol). The following list is the mobility tasks that were included in the evaluation 

of the WMMS; going from one task to another should trigger a change-of-state, providing 38 

changes-of-state per trial: 
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1. Standing  

2. Walking on level ground 

3. Stand-to-sit transition 

4. Sitting 

5. Sit-to-stand 

6. Walking on level ground 

7. Standing waiting for elevator 

8. Walking to get in the elevator 

9. Taking elevator to second floor 

10. Walking to get out of elevator and keep walking  on level ground 

11. Standing waiting for elevator 

12. Walking to get in the elevator 

13. Taking elevator to first floor 

14. Walking to get out of elevator and keep walking  on level ground 

15. Walking up stairs 

16. Walking on stair intermediate landing (level ground for 1.5 meters) 

17. Walking up stairs 

18. Walking on level ground 

19. Walking down stairs 

20. Walking on stair intermediate landing (level ground for 1.5 meters) 

21. Walking down stairs 

22. Walking on level ground 

23. Stand-to-lie transition 

24. Lying 

25. Lie-to-Stand transition 

26. Walking on level ground 

27. Walking on ramp 

28. Walking on level ground 

29. Transition indoor/outdoor and keep walking on level ground 

30. Transition outdoor/indoor and keep walking on level ground 

31. Transition indoor/outdoor and keep walking on level ground 

32. Stand-to-sit transition to get in the car 

33. Sitting in the car 
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34. Starts of car ride 

35. Stop of car ride 

36. Sit-to-stand transition 

37. Walking on level ground 

38. Transition outdoor/indoor and keep walking on level ground 

39. Standing 

 

Changes-of-state timing from digital video was compared with the WMMS change-of-state 

timestamps. WMMS data output was analyzed window by window. All data windows were 

analysed to determine if the state for that window was a true or false negative. True positives 

occurred when a change-of-state occurred, the algorithm identified a change-of-state, and 

WMMS took a picture. False positives occurred when the algorithm identified a change-of-

state but there was no real change-of-state. True negatives occurred when there was no 

change-of-state and the algorithm did not detect a change-of-state. Finally, false negatives 

occurred when there was a change-of-state but the algorithm did not detect the change.  

The number of true and false positives and true and false negatives were used to calculate 

WMMS sensitivity and the specificity (Equations 8.1 and 8.2). 

100
##

#
×

+
=

ivesFalseNegatsTruePosive

vesTruePositi
ySensitivit  

(8.1) 

100
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#
×

+
=
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ySpecificit  

(8.2) 

Two research assistants independently evaluated the BlackBerry Bold images. The 

evaluators were asked to identify the context (i.e. stairs, elevator, ramp, floor, outdoor, etc) 

from the digital images. Only the images taken due to a real change-of-state (true positives) 

were evaluated. The evaluators were given a list of context options to choose from. Figure 

8.2 show an example of the spreadsheet that the evaluators filled out for every trial. The 

evaluators were not informed of the mobility tasks represented by the images prior to 
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evaluation. The results from the two evaluators were then analyzed to determine if context 

was successfully identified from the pictures.  

Depending on the mobility task, context detection from the pictures was required to consider 

the context successfully identified. Table 8.2 gives the list of the context to identify for each 

mobility task. 

 Context 

 Indoor Outdoor   

Picture Floor  Ceiling Ramp Stairs Door Elevator Other Grass 

Pave-

ment In a Car Door Other Unknown 

IMAGE1                           

IMAGE2                           

IMAGE3                           

Figure 8.2: Example of the spreadsheet used by the pictures evaluators. 

 

Table 8.2: Changes-of-state and context to be identified from WMM pictures. 

Change of State Context to identify  

Walking on level ground Indoor, floor 

Stand-to-sit transition Indoor 

Sitting Indoor 

Sit-to-stand Indoor 

Walking on level ground Indoor, floor 

Standing waiting for elevator Indoor 

Walking to get in the elevator Indoor, elevator 

Taking elevator to 2 floor Indoor, elevator 

Walking to get out of elevator and keep 
walking  on level ground 

Indoor, floor 

Standing waiting for elevator Indoor 

Walking to get in the elevator Indoor, elevator 

Taking elevator to 1 floor Indoor, elevator 

Walking to get out of elevator and keep 
walking  on level ground 

Indoor, floor 
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Walking up stairs Indoor, stairs 

Walking on stair intermediate landing (level 
ground for 1.5 meter) 

Indoor, floor or stairs 

Walking up stairs Indoor, stairs 

Walking on level ground Indoor, floor 

Walking down stairs Indoor, stairs 

Walking on stair intermediate landing (level 
ground for 1.5 meter) 

Indoor, floor or stairs 

Walking down stairs Indoor, stairs 

Walking on level ground Indoor, floor 

Stand-to-lie transition Indoor 

Lying Indoor, ceiling 

Lie-to-Stand transition Indoor 

Walking on level ground Indoor, floor 

Walking on ramp Indoor, ramp 

Walking on level ground Indoor, floor 

Transition indoor/outdoor and keep walking 
on level ground 

Outdoor, pavement 

Transition outdoor/indoor and keep walking 
on level ground 

Indoor, floor 

Transition indoor/outdoor and keep walking 
on level ground 

Outdoor, pavement 

Stand-to-sit transition to get in the car Outdoor 

Sitting in the car Outdoor, car 

Starts of car ride Outdoor, car 

Stop of car ride Outdoor, car 

Sit-to-stand transition Outdoor 

Walking on level ground Outdoor, pavement 

Transition outdoor/indoor and keep walking 
on level ground 

Indoor, floor 

Standing Indoor 

8.2.4 Change-of-State Detection Results 

For every trial, WMMS sensitivity and specificity were calculated. The average 

values for each subject and the overall values are given in Table 8.3. An overall sensitivity of 



Technical and Mobility Evaluation of the Prototype WMMS 

  

Development of a Wearable Mobility Monitoring System  115 

77.7% (± 2.5%) and a specificity of 96.4% (± 2.2%) were obtained. Sensitivity and 

specificity results for each trial are given in Appendix B. The sensitivity and the specificity 

were also calculated for each of the mobility tasks and are given in Table 8.4. Results per 

mobility task for each trial are given in Appendix C.   

The lowest performances were obtained for going up stairs (13.3%), walking on a ramp 

(40.0%), and transitioning from indoor to outdoor (46.7% for the first time going outside and 

20.0% for the second time going outside), and outdoor to indoor (46.7% for first time going 

inside and 26.7% for second time going inside). For the first outdoor activity, the subjects 

walked through an unobstructed courtyard. In the second outdoor scenario, the subjects 

walked under a building overpass to the car. Lighting was different between the two 

scenarios.  

The subjects were walking indoors before and after these four activities. Therefore, if a 

change-of-state was not detected, the following “walking indoor change-of-state” was also 

not identified, since the system believed that the subject was still walking indoors. This 

resulted in lower performance values. If these low results were to be removed from the 

overall performance, a sensitivity of 93.2% (± 12.0 %) would have be measured.  

Very good algorithm performance was obtained for detecting changes-of-state produced by 

start/stop motions (sensitivity of 97.4% (± 5.3%)). Furthermore, as opposed to walking up 

stairs, walking down stairs was detected at 100.0%. However, the stair intermediate landing 

was not always detected, causing the lower stair section to have a sensitivity of 66.7%. 

However, the lower section would still be considered as stair descent since the state would 

not have changed from the upper stair section. 

A sensitivity of 97.8% (± 4.7%) was found for the change-of-state caused by postural change 

(i.e., stand-to-sit, sitting, sit-to-stand, lying, etc.). 

The start and stop of the car ride was detected at 66.7% and 64.3%, respectively. These 

results depended on the BlackBerry detecting the GPS satellites. 
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Table 8.3: Summary performance results for the each subject.  

Subject Sensitivity (% Average ± 
%Standard deviation) 

Specificity (% Average ± 
%Standard deviation) 

1 75.4 ± 4.0 96.4 ± 0.4 

2 79.7 ± 2.9 93.3 ± 0.7 

3 75.4 ± 1.5 96.7 ± 1.1 

4 80.9 ± 8.6 96.1 ± 1.6 

5 77.2 ± 1.5 99.5 ± 0.5 

Overall 77.7 ± 2.5 96.4 ± 2.2 

 

Table 8.4: Performance results for each of the mobility tasks 

Change of State True Positive False Negative Sensitivity 

Walking on level ground 15 0 100.0% 

Stand-to-sit transition 14 1 93.3% 

Sitting 15 0 100.0% 

Sit-to-stand 15 0 100.0% 

Walking on level ground 15 0 100.0% 

Standing waiting for elevator 14 0 100.0% 

Walking to get in the elevator 12 2 85.7% 

Taking elevator to 2 floor 13 2 86.7% 

Walking to get out of elevator and 
keep walking  on level ground 

15 0 100.0% 

Standing waiting for elevator 15 0 100.0% 

Walking to get in the elevator 15 0 100.0% 

Taking elevator to 1 floor 15 0 100.0% 

Walking to get out of elevator and 
keep walking  on level ground 

15 0 100.0% 

Walking up stairs 2 13 13.3% 
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Walking on  stair intermediate landing 
(level ground for 1.5 meters) 

6 9 40.0% 

Walking up stairs 6 9 40.0% 

Walking on level ground 4 11 26.7% 

Walking down stairs 15 0 100.0% 

Walking on  stair intermediate landing 
(level ground for 1.5 meters) 

10 5 66.7% 

Walking down stairs 10 5 66.7% 

Walking on level ground 15 0 100.0% 

Stand-to-lie transition 15 0 100.0% 

Lying 15 0 100.0% 

Lie-to-Stand transition 15 0 100.0% 

Walking on level ground 15 0 100.0% 

Walking on ramp 6 9 40.0% 

Walking on level ground 7 8 46.7% 

Transition indoor/outdoor and keep 
walking on level ground 

7 8 46.7% 

Transition outdoor/indoor and keep 
walking on level ground 

7 8 46.7% 

Transition indoor/outdoor and keep 
walking on level ground 

3 12 20.0% 

Stand-to-sit transition to get in the car 15 0 100.0% 

Sitting in the car 15 0 100.0% 

Starts of car ride 10 5 66.7% 

Stop of car ride 9 5 64.3% 

Sit-to-stand transition 13 2 86.7% 

Walking on level ground 14 1 93.3% 

Transition outdoor/indoor and keep 
walking on level ground 

4 11 26.7% 

Standing 14 0 100.0% 
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8.2.5 BlackBerry Image Evaluation Results 

Two evaluators evaluated each picture taken for true positive changes-of-state. Table 

8.5 gives the percentage of pictures where each evaluator identified the context successfully. 

An overall percentage of 74.3% (± 1.9%) was obtained. The results from each evaluator, for 

each of the trials, are given in Appendix D. 

Some contexts were frequently identified from the images (> 95%). Most successful image 

categorizations happened during good light condition and when fewer details had to be 

identified in the image (i.e., indoor). Walking while in the Rehab Technology Lab, which 

was a darker room, had 53.3% success rate for walking on level ground after getting up from 

the bed and 42.9% for walking on level ground after walking on the ramp. Also in the lab, 

the ramp was not well identified at 16.7%.   

Walking in the elevator had low results as well, 15.4% for the elevator going up and 21.4% 

the elevator going down. However, standing in the elevator obtained 75.0% for going up and 

71.4% for going down. For walking up stairs, the stairs could be identified from seven 

images out of eight for one evaluator and all eight images for the other evaluator. However, 

the WMMS pictures were unable to identify stairs descent.  

For images taken while sitting in a car, the vehicle context was identified at 86.7%. The 

pictures taken during the start of the car ride obtained a result of 100.0%. For the end of the 

car ride, after the car stopped, pictures was not always taken while sitting in the car due to 

the GPS sampling rate (i.e., the 9-second GPS analysis interval created a delay where the 

picture would be taken after the person left the car and was already starting to walk). 

Therefore, the evaluators had to identify the type of ground for those particular images. The 

success rate was 84.4%. 

Identifying the context from the images taken during the transition from outdoor/indoor were 

low at 57.1% for the first time going inside and 37.5% for the second time. The success rate 

for the indoor/outdoor transitions were better with 85.7% for the first time going outside and 

100.0% the second time. The low results for the transition outdoor/indoor could be caused 

from the decreased light intensity when approaching the door of the building from outside. 
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Outdoor/indoor transitions sometimes happened before the person actually stepped inside, 

which made identifying indoor or outdoor very difficult. 

Table 8.5: Summary results for the picture evaluation. 

Change of State 

Total 
Number 

of 
Pictures 

Successfully identifying context 

Evaluator 
1 

Evaluator 
2 

Average 
Standard 
deviation 

Walking on level ground 15 93.3% 86.7% 90.0% 4.7% 

Stand-to-sit transition 14 92.9% 100.0% 96.4% 5.1% 

Sitting 15 93.3% 100.0% 96.7% 4.7% 

Sit-to-stand 15 100.0% 100.0% 100.0% 0.0% 

Walking on level ground 15 73.3% 93.3% 83.3% 14.1% 

Standing waiting for elevator 14 85.7% 100.0% 92.9% 10.1% 

Walking to get in the elevator 13 7.7% 23.1% 15.4% 10.9% 

Taking elevator to 2 floor 14 78.6% 71.4% 75.0% 5.1% 

Walking to get out of elevator and 
keep walking  on level ground 15 100.0% 100.0% 100.0% 0.0% 

Standing waiting for elevator 15 93.3% 100.0% 96.7% 4.7% 

Walking to get in the elevator 14 7.1% 35.7% 21.4% 20.2% 

Taking elevator to 1 floor 14 85.7% 57.1% 71.4% 20.2% 

Walking to get out of elevator and 
keep walking  on level ground 15 86.7% 86.7% 86.7% 0.0% 

Walking up stairs 2 100.0% 50.0% 75.0% 35.4% 

Walking on stair intermediate 
landing (level ground for 1.5 m) 6 100.0% 100.0% 100.0% 0.0% 

Walking up stairs 6 100.0% 100.0% 100.0% 0.0% 

Walking on level ground 4 75.0% 75.0% 75.0% 0.0% 

Walking down stairs 15 0.0% 0.0% 0.0% 0.0% 
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Walking on stair intermediate 
landing (level ground for 1.5 m) 10 0.0% 0.0% 0.0% 0.0% 

Walking down stairs 10 0.0% 0.0% 0.0% 0.0% 

Walking on level ground 15 73.3% 73.3% 73.3% 0.0% 

Stand-to-lie transition 15 100.0% 100.0% 100.0% 0.0% 

Lying 15 100.0% 86.7% 93.3% 9.4% 

Lie-to-Stand transition 15 100.0% 100.0% 100.0% 0.0% 

Walking on level ground 15 60.0% 46.7% 53.3% 9.4% 

Walking on ramp 6 33.3% 0.0% 16.7% 23.6% 

Walking on level ground 7 42.9% 42.9% 42.9% 0.0% 

Transition indoor/outdoor and 
keep walking on level ground 7 100.0% 71.4% 85.7% 20.2% 

Transition outdoor/indoor and 
keep walking on level ground 7 71.4% 42.9% 57.1% 20.2% 

Transition indoor/outdoor and 
keep walking on level ground 3 100.0% 100.0% 100.0% 0.0% 

Stand-to-sit transition to get in 
the car 15 86.7% 80.0% 83.3% 4.7% 

Sitting in the car 15 93.3% 80.0% 86.7% 9.4% 

Starts of car ride  10 100.0% 100.0% 100.0% 0.0% 

Stop of car ride 9 88.9% 80.0% 84.4% 6.3% 

Sit-to-stand transition 13 92.3% 69.2% 80.8% 16.3% 

Walking outside on level ground 14 92.9% 73.3% 83.1% 13.8% 

Transition outdoor/indoor and 
keep walking on level ground 4 25.0% 50.0% 37.5% 17.7% 

Standing   14 100.0% 100.0% 100.0% 0.0% 

Total Number of Pictures   440 440     

Total Number of Success   333 321   

Total Percentage of Successfully 
Identifying Context    75.7% 73.0% 74.3% 1.9% 
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8.3 Mobility Task Discussion 

As previously emphasized by the ICF model [18] and the Dimensions of Mobility 

from Patla and Shumway-Cook [1], accounting for the environmental factors during 

mobility assessment is important. Our results suggest that BlackBerry smartphones have 

great potential for community mobility monitoring. The integrated camera can capture 

information on the context / environment in which mobility events take place. Additionally, 

the BlackBerry had the necessary processing power to process and log data, run algorithms, 

collect GPS data, and take pictures, all without data loss.  

8.3.1 Use of Images in WMMS 

Our approach of taking a photograph when a change-of-state occurred, demonstrated 

that mobility tasks such as taking an elevator or going up stairs could be identified from the 

images. For the photographs taken when the subjects took the elevator, the elevator context 

was identified from the images at 75.0% and 71.4% for going to the second floor and first 

floor, respectively. When entering the elevator, subjects usually stood and faced the door. A 

good image was usually obtained when the door was just starting to close. However, if an 

image was taken before the subject was facing the door, or if the door was already closed, 

the image was dark and not clear. These low quality images could be due to the BlackBerry 

camera not performing well under low-light conditions. A flash could have help, but the 

camera flash was not accessible through the Java API version 4.6.  

For stair ascent, the stairs context was identified in seven out of eight cases for one evaluator 

and all eight cases for the other evaluator. On the other hand, stairs could not be identified 

from images taken when walking down stairs. Since the camera was pointing forward from 

the pelvis, the WMMS did not provide the downward angle that would be required for 

viewing the stairs during downstairs walking. Using a wide-angle camera or a sphere camera 

could improve context identification by providing a larger view of the current environment. 

Having a short video of a few seconds, or being able to take multiple pictures of the same 

context, could potentially help in identifying the context. However, from our BlackBerry 

camera test (Chapter 6), a picture could only be taken every 1.5 seconds and that is with only 
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the camera program running. When the full program for the WMMS was running, the 

shortest time interval to take a picture was every 3 seconds (Table 7.2). 

Results from images taken when walking on a ramp did not match the criterion level of 

accuracy. Similar to the points made above, possible reasons were the low-light condition at 

the ramp’s location and possibly the angle of view. In addition, when walking on a ramp, it 

might not be possible to see an inclination, especially if the image only shows a small 

section of the ramp. As suggested for stairs descent, short video and multiple pictures might 

contribute to better identification of the context. 

The car was well identified from the images taken. During mobility monitoring, this could 

provide contextual information on the type of vehicle the person was using (i.e., bus, train, 

car, etc.). As an example, if a person with mobility deficits takes the bus to go to the store or 

see friends instead of staying at home, this could suggest some level of community mobility 

independence. 

Our results from the image evaluation demonstrated that the walking surface (i.e., floor, 

pavement) could be identified from the images. From the study by Shummay-Cook et al. 

[21], terrain was one of the factors that differentiated an older adult with mobility disability 

and an older adult without such disabilities. The type of terrain is also an important factor in 

accidental falls (i.e., icy path, unlevel ground). Injurious falls are related to many health 

problems and are a leading cause of hospitalization in the elderly [194]. Adding instability 

detection and capturing information on the type of terrain could be a valuable feature for a 

WMMS to help understanding the underlying causes of falls and help with fall prevention.  

The use of images to capture context and environment in mobility monitoring could also 

help to monitor activity avoidance. Mobility disability has been characterized by a reduction 

in the number and type of environment challenges [60]. Activity avoidance could lead to a 

reduction of movement, which could lead to further deterioration in physical status and 

social interactions.   
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8.3.2 WMMS Change-of-State Detection 

Some of the methods used in this thesis to identify a user’s state replicate results 

from previous studies. For instance, Lyons et al. [149] obtained an accuracy of 97% to detect 

static or dynamic states using the standard deviation of the vertical axis of a thigh 

accelerometer. For our WMMS, we used the standard deviation of the vertical acceleration at 

the waist and were able to detect if the subject started/stopped moving with a sensitivity of 

97.4% (± 5.3%). This is a good result, considering that the device holster was worn on a belt 

and not fixed-still to the person’s body. This finding suggests that a phone integrated with an 

accelerometer could detect changes from static to dynamic movement (i.e., start to walking, 

standing still, slowing down). We also used a double threshold algorithm instead of only one 

threshold, which provided a degree of variability in the signal and helped to decrease the 

number of false positive results. 

Changes-of-state due to postural change (i.e., stand-to-sit, sitting, lie-to-stand, etc.) were 

detected with a sensitivity of 97.8% (± 4.7%). These results compared favourably with 

previous studies, such as Karantonis et al. [9] where a 94.2% accuracy was found for 

detecting tasks related to postural orientation. Using threshold methods, Culhane et al. [148] 

detected sitting at 92%, standing at 95%, and lying at 98%. However, their results were 

obtained from two accelerometers (one on the trunk and one on the thigh). Even though our 

algorithm detected changes-of-state due to postural change, our approach was not evaluated 

for its accuracy to classify the posture. From our observations, our methods might not be 

precise enough to classify all posture. The way the WMMS was worn on the hip may have 

caused false positives during sitting and lying due to the device holster’s free movement, the 

leg pushing on the device, the person’s belt location, and sitting angle. However, our 

evaluation protocol provided a real-time situation where the mobility tasks were performed 

consecutively and freely, instead of performing discrete mobility tasks in a controlled 

laboratory setting [9]. Furthermore, to better validate our smartphone approach, only one 

accelerometer was used and our protocol did not control the fixation and location of the 

WMMS. Wearing the WMMS on the right hip, attached to the belt was the only requirement 

given to the subject.   
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The change-of-state caused by walking on level ground to walking down stairs was detected 

at 100%. However, the stair intermediate landing was not detected all the time; therefore, the 

following walking down stairs was detected at a lower rate since it was considered the same 

stair descent event as the top stair section. If a subject was walking on stairs at a faster speed, 

the WMMS may not have enough time to detect a change within a one-second window. 

While the detection of stairs landing could be of interest, our currents methods did detect the 

entire stair descent. 

For walking up stairs, the WMMS performed poorly at detecting the change of state 

(13.3%). As with stair descent, skewness was used to detect stair ascent. The choice of the 

skewness feature was based on the work by Baek et al. [141], which obtained a classification 

rate of 93% for upstairs and 87% for down stairs. The evaluation by Baek et al. was 

performed on a single subject and involved the subject performing discrete tasks, as opposed 

to the real-world evaluation employed in this thesis. Therefore, the results from Baek et al. 

may have been overstated. Other differences with our methods are that the location of their 

accelerometer was worn on the lateral side of the pelvis instead of the front side. Baek et al. 

also used a 2-second window, more features, and more complex algorithms such as a neural 

network. To improve the stairs ascent detection, other time-domain features have been 

explored such as skewness of the forward axis and kurtosis (based on Baek et al. [141]), but 

they did not provide better results. A study by Ravi et al. [96] also suggested calculating 

correlation values between two axes to detect activity that involved 2D translations. Again, 

these values did not show improvement for detecting stairs ascent. Another method that 

could be explored is double-integration of the vertical acceleration to evaluate changes in 

height, triggering a change-of-state due to stairs or inclines. More complex algorithms could 

be added to the design, since the newer generation of smartphones have greatly enhanced 

processing power. 

Currently, literature is lacking on ramp detection using accelerometer signals. Therefore, the 

stair detection methods were explored for the ramp detection application (i.e., skewness). 

However, the skewness approach was poor for detecting a change of state from level ground 

walking to ramp ascent or descent. Since the evaluation was performed on subject with no 

physical disability, walking speed or gait pattern showed minimal change from walking on 
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level ground to walking on the ramp (observed from video data). The ramp inclination angle 

was also moderate (approx 7-degree angle). In older populations or individuals with mobility 

disabilities, a slow/almost-stopping movement could be present before attempting walking 

up a ramp or even stairs. As mentioned earlier, our WMMS was accurate in detecting static 

and dynamic movement; therefore, a picture could be taken to help identifying the mobility 

task. Change in posture angle could be explored since pelvic tilt may be present as the 

person leans forward and backward during ramp ascent or descent. A change in height, such 

as proposed for stairs ascent, could be appropriate for larger inclines (i.e., hill). Adding other 

sensors could be explored as well. Sensors on the thigh or even the calf might give more 

biomechanical information when walking on a ramp.  

The light sensor was added to the WMMS to detect outdoor and indoor conditions. Our 

approach of selecting outdoor/indoor thresholds did not perform as well as anticipated. A 

change in light intensity level could have been a better measure instead of using fixed 

outdoor/indoor thresholds since changes could be detected on overcast/cloudy days. The 

smartphone approach worn at the waist might also have caused problems with the light 

sensor since the view could potentially be blocked by the user’s clothing. As seen in the 

images evaluation results, pictures could be used to detect indoors/outdoors.  

GPS speed was used to detect if a person was in a vehicle. For the trials where the GPS 

satellites were detected, the change caused by being in a vehicle was well detected. While 

the initiation of being in a vehicle can be identified using the camera images, WMMS 

classification was delayed by the 9-second sampling interval for GPS speed and the 7 m/s 

threshold. The main problem with the BlackBerry GPS during evaluation was the time 

required to detect satellites and initiate GPS data acquisition. Based on preliminary tests, the 

BlackBerry Bold 9000 could take 30 minutes to detect GPS satellites, depending on the 

exterior conditions. The BlackBerry was set to autonomous mode to detect location, which is 

slower but more precise than using cell-site mapping. For our WMMS, GPS speed was 

required for the detection of vehicle riding. Cell tower-based location could be investigated 

since location estimation occurs faster and would work indoors and in cloudy weather, 

although this method is of lower precision. 
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8.3.3 Limitations 

Some limitations of the study were that the BlackBerry Bold 9000 did not have an 

internal accelerometer. Since a smartphone with all necessary features was unavailable at the 

start of this thesis, an external board was added to the design. The external board could make 

the device slightly heavier and less comfortable for the user. There is also the possibility of 

losing the Bluetooth connection and missing important data. However, new smartphones 

have emerged that could solve this problem by providing raw acceleration data.  

GPS signals were not always present during data collection. A waiting period of more than 

30 minutes to get signal was not always practical. Using cell-site methods to improve GPS 

detection should be explored. New smartphones could potentially perform better as well.  

BlackBerry Bold 9000 battery usage was 29% per hour (Table 8.1). This is not sufficient for 

long term monitoring because, at this rate, only 3 hours of monitoring can be expected. A 

larger capacity battery would be required for longer monitoring. Not using Bluetooth could 

potentially slow down the battery usage; however, accessing raw accelerometer data from 

the BlackBerry would be expected to draw additional power from the battery. 

BlackBerry camera performance showed that a picture could only be taken after 3 seconds 

(i.e., during the third one-second window). This delay may cause some images to miss 

details related to the mobility task. Additionally, the camera did not perform well under low 

light conditions, causing images to be blurry and dark.  

The location of WMMS on the body could be an issue for the camera and the light sensor. 

Since the WMMS was worn on the waist, the user’s clothes could cover the camera view and 

the light sensor unintentionally, especially during winter.  

Limitations during image evaluation were also present. All the images were always in order 

and the same scenes were evaluated for each trial. The evaluators could have become  better 

at identifying the context from the pictures after evaluating results from several subjects.  
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Chapter 9:   Conclusion 

Maintaining independent mobility at home and in the community plays an important 

role in an individual’s independence, quality of life and health, and in the lives of their 

family and the people around them. Measuring mobility and the environment in which 

mobility events takes place can help with these roles. Our WMMS approach to respond to 

the need for community mobility assessment tools shows great potential.  

The BlackBerry handheld device proved to be a viable platform for this WMMS application. 

In addition to industry standard tools for development, secure communications, and image 

capture, the multitasking device demonstrated good capability for data capture, real-time 

processing, and data storage.  

Adding the camera to the WMMS suggested that images could help identify mobility tasks 

such as walking up stairs and taking an elevator. The images also helped to identify the type 

of ground or terrain, which is important for mobility monitoring. The algorithms developed 

to detect change-of-state were satisfactory; however, with increased processing power in the 

next generation of smartphones, more complex signal processing methods could be 

employed to improve results. 

Overall, our WMMS has good potential for community mobility monitoring. The 

smartphone approach provides an accessible and cost effective option that can easily be 

implemented in society. However, the limitations should be addressed to improve 

performance. Interesting future work exists for the WMMS. 

9.1 Future Work 

Improvement to the change-of-state algorithm is necessary to detect going up stairs, 

the ramp, and the indoor/outdoor. Additional signal processing could be added offline to 
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improve classification of the raw data. An automated process to identify context from the 

images can also be considered in future research.  

Developing a better software interface would be important, as well as post processing 

software for data and images, so that rehabilitation specialists could easily interpret the 

community mobility data. 

Implementing the change-of-state algorithm to the new generation of BlackBerry 

smartphones should be considered since new versions provide raw accelerometer data and 

improved camera performance. This will remove the need for the external board for the 

activities evaluated in this thesis. However, other external sensors could be integrated into 

the WMMS using the new WMMS software and Bluetooth communications, such as for 

pressure or electromyography analyses.
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Appendix A 

Final schematics of the external board used for the WMMS.  
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Appendix B 

Table B.1: Compiled results for each trial of the five subjects.  

Subject Trial# 

True 

Positive 

False 

Positive 

True 

Negative 

False 

Negative Sensitivity Specificity 

1 

1 27 26 808 11 71.05% 96.88% 

2 30 32 807 8 78.95% 96.19% 

3 29 30 768 9 76.32% 96.24% 

  Total     Average 75.44% 96.44% 

        Standard Deviation 4.02% 0.39% 

2 

1 29 47 683 9 76.32% 93.56% 

2 30 61 754 7 81.08% 92.52% 

3 31 51 775 7 81.58% 93.83% 

  Total     Average 79.66% 93.30% 

        Standard Deviation 2.91% 0.69% 

3 

1 29 28 967 9 76.32% 97.19% 

2 29 22 820 9 76.32% 97.39% 

3 28 43 887 10 73.68% 95.38% 

  Total     Average 75.44% 96.65% 

        Standard Deviation 1.52% 1.11% 

4 

1 26 47 846 10 72.22% 94.74% 

2 30 18 807 7 81.08% 97.82% 

3 34 38 843 4 89.47% 95.69% 

  Total     Average 80.93% 96.08% 

        Standard Deviation 8.63% 1.58% 

5 

1 29 3 917 9 76.32% 99.67% 

2 30 1 883 8 78.95% 99.89% 

3 29 10 914 9 76.32% 98.92% 

  Total     Average 77.19% 99.49% 

        Standard Deviation 1.52% 0.51% 

        

  OVERALL     Average 77.73% 96.39% 

        Standard Deviation 2.49% 2.20% 



    

 

Appendix C 

Table C.1: Sensitivity values for each of the mobility tasks for each of the trials. 

Change of State 
Subject 1 Subject 2 Subject 3 Subject 4 Subject5 

True 
Positive 

False 
Negative 

Sensitivity 
per 

mobility 
task 

  
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Walking on level ground 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Stand-to-sit transition 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 14 1 93.33% 

Sitting 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Sit-to-stand 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Walking on level ground 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Standing waiting for elevator 1 1 1 1 1 1 1 1 1 NA 1 1 1 1 1 14 0 100.00% 

Walking to get in the elevator 1 1 1 1 1 1 0 0 1 NA 1 1 1 1 1 12 2 85.71% 

Taking elevator to 2 floor 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 13 2 86.67% 

Walking to get out of elevator and keep 
walking  on level ground 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Standing waiting for elevator 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Walking to get in the elevator 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Taking elevator to 1 floor 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 
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Walking to get out of elevator and keep 
walking  on level ground 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 

 
100.00% 

Walking up stairs 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 2 13 13.33% 

Walking on stair intermediate landing (1.5 
meter of level ground) 

0 1 1 0 0 0 0 0 0 0 0 1 1 1 1 6 9 40.00% 

Walking up stairs 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 6 9 40.00% 

Walking on level ground 1 0 1 0 1 0 0 0 1 0 0 0 0 0 0 4 11 26.67% 

Walking down stairs 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Walking on stair intermediate landing (1.5 
meter of level ground) 

0 0 0 1 1 1 1 1 0 1 1 0 1 1 1 10 5 
 

66.67% 

Walking down stairs 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 10 5 66.67% 

Walking on level ground 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Stand-to-lie transition 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Lying 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Lie-to-Stand transition 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Walking on level ground 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Walking on ramp 1 1 1 0 0 0 0 1 0 1 1 0 0 0 0 6 9 40.00% 

Walking on level ground 1 1 0 0 0 0 0 1 1 0 1 1 0 1 0 7 8 46.67% 

Transition indoor/outdoor and keep 
walking on level ground 

0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 7 8 46.67% 

Transition outdoor/indoor and keep 
walking on level ground 

0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 7 8 46.67% 

 D
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Transition indoor/outdoor and keep 
walking on level ground 

0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 3 12 

 
20.00% 

Stand-to-sit transition to get in the car 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Sitting in the car 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 0 100.00% 

Starts of car ride  0 1 0 0 1 1 1 1 1 0 0 1 1 1 1 10 5 66.67% 

Stop of car ride 0 1 0 0 NA 1 1 1 1 0 0 1 1 1 1 9 5 64.29% 

Sit-to-stand transition 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 13 2 86.67% 

Walking on level ground 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 14 1 93.33% 

Transition outdoor/indoor and keep 
walking on level ground 

0 0 0 0 0 1 0 0 0 1 1 1 0 0 0 4 11 26.67% 

Standing   1 1 1 1 1 1 1 1 1 1 NA 1 1 1 1 14 0 100.00% 

 D
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Appendix D 

Table D.1: Picture evaluation results from evaluator 1. 

Change-of-State 

Subject 1 Subject 2 Subject 3 Subject 4 Subject5 # of 
Pic-
ture

s 

# of 
Suc-
cess 

% of 
Success in 
identifying 

context 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Walking on level 
ground 

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 15 14 93.3% 

Stand-to-sit 
transition 

0 1 1 1 1 1 1 1 1 
NOP

IC 
1 1 1 1 1 14 13 92.9% 

Sitting 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 93.3% 

Sit-to-stand 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Walking on level 
ground 

0 1 1 1 1 1 1 0 1 0 1 0 1 1 1 15 11 73.3% 

Standing waiting 
for elevator 

1 1 1 1 1 1 1 1 1 NA 1 1 0 1 0 14 12 85.7% 

Walking to get in 
the elevator 

0 0 0 0 0 0 
NOP

IC 
0 0 NA 1 0 0 0 0 13 1 7.7% 

Taking elevator to 
2 floor 

1 1 1 0 1 1 
NOP

IC 
1 1 1 0 1 0 1 1 14 11 78.6% A
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Walking to get out 
of elevator and 
keep walking  on 
level ground 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Standing waiting 
for elevator 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 15 14 
93.3% 

Walking to get in 
the elevator 

0 0 0 0 0 0 0 
NOP

IC 
0 0 0 1 0 0 0 14 1 

7.1% 

Taking elevator to 
1 floor 

1 1 1 1 1 0 1 
NOP

IC 
1 0 1 1 1 1 1 14 12 85.7% 

Walking to get out 
of elevator and 
keep walking  on 
level ground 

1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 15 13 86.7% 

Walking up stairs 
NOP

IC 
NOPI

C 
1 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

1 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
2 2 100.0% 

Walking on stair 
intermediate 
landing (level 
ground for approx 
1.5 meter) 

NOP
IC 

1 1 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
1 1 1 1 6 6 100.0% 

Walking up stairs 1 1 1 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
1 1 1 

NOP
IC 

6 6 100.0% 

Walking on level 
ground 

1 
NOPI

C 
1 

NOP
IC 

0 
NOP

IC 
NOP

IC 
NOP

IC 
1 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

4 3 75.0% 

Walking down 
stairs 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0.0% 

Walking on stair 
intermediate 
landing (level 
ground for approx 
1.5 meter) 

NOP
IC 

NOPI
C 

NOP
IC 

0 0 0 0 0 
NOP

IC 
0 0 

NOP
IC 

0 0 0 10 0 

 
 
 

0.0% 
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Walking down 
stairs 

NOP
IC 

NOPI
C 

NOP
IC 

0 0 0 0 0 
NOP

IC 
NOP

IC 
0 0 0 0 0 10 0 

0.0% 

Walking on level 
ground 

1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 15 11 73.3% 

Stand-to-lie 
transition 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Lying 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Lie-to-Stand 
transition 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Walking on level 
ground 

0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 15 9 60.0% 

Walking on ramp 0 1 0 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
1 

NOP
IC 

0 0 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
6 2 

33.3% 

Walking on level 
ground 

1 0 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
0 0 

NOP
IC 

1 0 
NOP

IC 
1 

NOP
IC 

7 3 42.9% 

Transition 
indoor/outdoor 
and keep walking 
on level ground 

NOP
IC 

NOPI
C 

NOP
IC 

1 1 1 1 
NOP

IC 
NOP

IC 
1 1 1 

NOP
IC 

NOP
IC 

NOP
IC 

7 7 100.0% 

Transition 
outdoor/indoor 
and keep walking 
on level ground 

NOP
IC 

NOPI
C 

NOP
IC 

1 1 0 1 
NOP

IC 
NOP

IC 
1 0 1 

NOP
IC 

NOP
IC 

NOP
IC 

7 5 71.4% 

Transition 
indoor/outdoor 
and keep walking 
on level ground 

NOP
IC 

NOPI
C 

NOP
IC 

1 
NOP

IC 
NOP

IC 
1 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

1 
NOP

IC 
NOP

IC 
NOP

IC 
3 3 

 
 
 

100.0% 

 D
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Stand-to-sit 
transition to get in 
the car 

0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 15 13 

86.7% 

Sitting in the car 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 14 93.3% 

Starts of car ride  
NOP

IC 
1 

NOP
IC 

NOP
IC 

1 1 1 1 1 
NOP

IC 
NOP

IC 
1 1 1 1 10 10 100.0% 

Stop of car ride 
NOP

IC 
1 

NOP
IC 

NOP
IC 

NA 1 1 1 0 
NOP

IC 
NOP

IC 
1 1 1 1 9 8 88.9% 

Sit-to-stand 
transition 

0 1 1 1 1 1 1 1 1 1 1 1 
NOP

IC 
NOP

IC 
1 13 12 92.3% 

Walking outside 
on level ground 

NOP
IC 

1 1 1 1 1 1 1 1 1 1 1 1 0 1 14 13 92.9% 

Transition 
outdoor/indoor 
and keep walking 
on level ground 

NOP
IC 

NOPI
C 

NOP
IC 

NOP
IC 

NOP
IC 

0 
NOP

IC 
NOP

IC 
NOP

IC 
0 0 1 

NOP
IC 

NOP
IC 

NOP
IC 

4 1 25.0% 

Standing   1 1 1 1 1 1 1 1 1 1 NA 1 1 1 1 14 14 100.0% 

Total Number of 
Pictures 

27 30 29 29 30 31 29 29 28 26 30 34 29 30 29 440     

Total Number of 
Success 

16 25 23 23 23 22 23 23 23 15 22 28 22 24 21   333   

Total % of 
Successfully 
Identifying Context  

59.3
% 

83.3% 
79.3
% 

79.3
% 

76.7
% 

71.0
% 

79.3
% 

79.3
% 

82.1
% 

57.7
% 

73.3
% 

82.4
% 

75.9
% 

80.0
% 

72.4
% 

    75.7% 
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Table D.2: Picture evaluation results from evaluator 2. 

 

Change-of-State Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 # of 
Pic-
ture

s 

# of 
Suc-
ces
s 

% of Success 
in identifying 

context 

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 

Walking on level 
ground 

0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 15 13 86.7% 

Stand-to-sit 
transition 

1 1 1 1 1 1 1 1 1 
NOP

IC 
1 1 1 1 1 14 14 100.0% 

Sitting 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Sit-to-stand 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Walking on level 
ground 

1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 15 14 93.3% 

Standing waiting 
for elevator 

1 1 1 1 1 1 1 1 1 NA 1 1 1 1 1 14 14 100.0% 

Walking to get in 
the elevator 

0 0 0 0 0 0 
NOP

IC 
0 0 NA 0 1 1 1 0 13 3 23.1% 

Taking elevator to 
2 floor 

1 1 1 0 0 0 
NOP

IC 
1 1 1 1 1 0 1 1 14 10 71.4% 

Walking to get out 
of elevator and 
keep walking  on 
level ground 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Standing waiting 
for elevator 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 
 

100.0% 
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Walking to get in 
the elevator 

0 0 0 0 0 0 1 
NOP

IC 
0 1 0 1 0 1 1 14 5 

 
35.7% 

Taking elevator to 
1 floor 

1 1 1 0 0 0 1 
NOP

IC 
0 0 1 0 1 1 1 14 8 

 
57.1% 

Walking to get out 
of elevator and 
keep walking  on 
level ground 

1 1 0 1 1 1 1 1 1 0 1 1 1 1 1 15 13 86.7% 

Walking up stairs NOP
IC 

NOPI
C 

0 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
1 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

2 1 50.0% 

Walking on stair 
intermediate 
landing (level 
ground for approx 
1.5 meter) 

NOP
IC 

1 1 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
1 1 1 1 6 6 100.0% 

Walking up stairs 0 1 1 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
0 1 1 

NOP
IC 

4 4 100.0% 

Walking on level 
ground 

1 
NOPI

C 
0 

NOP
IC 

1 
NOP

IC 
NOP

IC 
NOP

IC 
1 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

4 3 75.0% 

Walking down 
stairs 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15 0 0.0% 

Walking on stair 
intermediate 
landing (level 
ground for approx 
1.5 meter) 

NOP
IC 

NOPI
C 

NOP
IC 

0 0 0 0 0 
NOP

IC 
0 0 

NOP
IC 

0 0 0 10 0 0.0% 

Walking down 
stairs 

NOP
IC 

NOPI
C 

NOP
IC 

0 0 0 0 0 
NOP

IC 
NOP

IC 
0 0 0 0 0 10 0 0.0% 

Walking on level 
ground 

1 1 1 1 1 0 0 1 1 0 1 1 1 1 0 15 11 
 

73.3% 

Stand-to-lie 
transition 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 
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Lying 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 15 13 
 

86.7% 

Lie-to-Stand 
transition 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 15 15 100.0% 

Walking on level 
ground 

0 0 0 0 0 1 1 1 1 0 0 0 1 1 1 15 7 46.7% 

Walking on ramp 0 0 0 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
0 

NOP
IC 

0 0 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
6 0 0.0% 

Walking on level 
ground 

1 0 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
NOP

IC 
1 0 

NOP
IC 

0 0 
NOP

IC 
1 

NOP
IC 

7 3 42.9% 

Transition 
indoor/outdoor 
and keep walking 
on level ground 

NOP
IC 

NOPI
C 

NOP
IC 

1 0 0 1 
NOP

IC 
NOP

IC 
1 1 1 

NOP
IC 

NOP
IC 

NOP
IC 

7 5 71.4% 

Transition 
outdoor/indoor 
and keep walking 
on level ground 

NOP
IC 

NOPI
C 

NOP
IC 

0 0 0 0 
NOP

IC 
NOP

IC 
1 1 1 

NOP
IC 

NOP
IC 

NOP
IC 

7 3 
42.9% 

Transition 
indoor/outdoor 
and keep walking 
on level ground 

NOP
IC 

NOPI
C 

NOP
IC 

1 
NOP

IC 
NOP

IC 
1 

NOP
IC 

NOP
IC 

NOP
IC 

NOP
IC 

1 
NOP

IC 
NOP

IC 
NOP

IC 
3 3 100.0% 

Stand-to-sit 
transition to get in 
the car 

0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 15 12 80.0% 
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Sitting in the car 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 15 12 
 

       80.0% 

Starts of car ride  
NOP

IC 
1 

NOP
IC 

NOP
IC 

1 1 1 1 1 
NOP

IC 
NOP

IC 
1 1 1 1 10 10 100.0% 

Stop of car ride 
NOP

IC 
1 

NOP
IC 

NOP
IC 

NA 1 1 0 1 
NOP

IC 
NOP

IC 
1 1 1 1 10 8 80.0% 

Sit-to-stand 
transition 

0 0 1 1 0 0 1 1 1 1 1 1 
NOP

IC 
NOP

IC 
1 13 9 

 
69.2% 

Walking outside 
on level ground 

NOP
IC 

1 1 0 0 1 1 1 1 1 1 1 1 0 1 15 11 73.3% 

Transition 
outdoor/indoor 
and keep walking 
on level ground 

NOP
IC 

NOPI
C 

NOP
IC 

NOP
IC 

NOP
IC 

0 
NOP

IC 
NOP

IC 
NOP

IC 
0 1 1 

NOP
IC 

NOP
IC 

NOP
IC 

4 2 50.0% 

Standing   1 1 1 1 1 1 1 1 1 1 NA 1 1 1 1 14 14 100.0% 

Total Number of 
Pictures 

27 30 29 29 30 31 29 29 28 26 30 34 29 30 29 440     

Total Number of 
Success 

16 23 18 18 18 19 24 23 23 15 22 28 24 26 24   321   

Total % of 
Successfully 
Identifying Context  

59.3
% 

76.7% 
62.1
% 

62.1
% 

60.0
% 

61.3
% 

82.8
% 

79.3
% 

82.1
% 

57.7
% 

73.3
% 

82.4
% 

82.8
% 

86.7
% 

82.8
% 

    73.0% 

 D
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Appendix E 

This appendix contains the ethics approval letters from University of Ottawa Research 

Ethics Board and the Ottawa Hospital Research Ethics Board. 
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