
1

A test case generation approach for

conformance testing of SDL systems1

C. Bourhfir2, E. Aboulhamid2 , R. Dssouli2, N. Rico3

2 Département d’Informatique et de Recherche Opérationnelle,
Pavillon André Aisenstadt, C.P. 6128,

succursale Centre-Ville, Montréal, Québec, H3C-3J7, Canada.
E-mail: {bourhfir, dssouli, aboulham}@iro.umontreal.ca.

3 Nortel, 16 Place du commerce, Verdun, H3E-1H6

Abstract

This paper presents an approach for automatic executable test case and test sequence
generation for a protocol modeled by an SDL system. Our methodology uses a uni-
fied method which tests an Extended Finite State Machine (EFSM) based system
by using control and data flow techniques. To test an SDL system, it extracts an
EFSM from each process then the system is tested by incrementally computing a
partial product for each EFSM C, taking into account only transitions which influ-
ence (or are influenced by) C, and generating test cases for it. This process ends
when the coverage achieved by the generated test cases is satisfactory or when the
partial products for all EFSMs are tested. Experimental results show that this meth-
od can be applied to systems of practical size.

Keywords
CEFSM, Testing in context, Embedded testing, Partial product, Reachability
analysis, Control and data flow testing, Executability

1 INTRODUCTION

To ensure that the entities of a protocol communicate reliably, the protocol
implementation must be tested for conformance to its specification. Quite a number
of methods and tools have been proposed in the literature for test case generation
from EFSM specifications using data flow testing techniques and/or control flow
testing techniques [4, 6, 11, 16]. However, these methods are applicable when the
protocol consists only of one EFSM. For CEFSM specified protocols, other methods

1. This work is supported by Nortel grant.

2

should be used. To our knowledge, very few work has been done in this area, and
most existing methods deal only with communicating finite state machines
(CFSMs) where the data part of the protocol is not considered. An easy approach to
testing CFSMs is to compose them all-at-once into one machine, using reachability
analysis, and then generate test cases for the product machine. But we would run
into the well known state explosion problem. Also, applying this approach to
generate test cases for CEFSMs is unpractical due to the presence of variables and
conditional statements. To cope with the complexity, methods for reduced
reachability analysis have been proposed for CFSMs [8, 13, 14]. The basic idea
consists in constructing a smaller graph representing a partial behavior of the system
and allowing one to study properties of communication. In this paper, we present a
methodology which can be used to test a CEFSM based system or a part of it after
a correction or enhancement. Our method does not compose all machines but
decomposes the problem into computing a partial product (defined later) for each
CEFSM and generating test cases for it.

Another problem is that most existing methods generate test cases from
specifications written in the normal form [18] which is not a widely used
specification approach. For this reason, our test generation method should start from
specifications written in a high level specification language. Since we are interested
in testing communication protocols and since SDL is one of the most used
specification language in the telecommunication community, our method starts the
test generation process form SDL specifications.

The objective of this paper is to present a set of tools which can be used to
generate automatically executable test cases for SDL systems and to show the
architecture of each tool.

The organization of this paper is as follows. Section 2 presents some existing
tools for test generation from SDL systems most of which are semi-automatic.
Section 3 describes the EFSM and CEFSM models. In section 4, our methodology
for automatic test generation is presented. Section 5 describes the EFTG tool for
automatic test generation for EFSM based systems. In Section 6, the process of
testing an SDL system is presented as well as some examples. Finally, section 7
concludes the paper.

2 SOME TEST GENERATION TOOLS FOR SDL
SPECIFICATIONS

Over the past ten years, tools have become available that seek to automate the
software testing process. These tools can help to improve the efficiency of the test
execution process by replacing personnel with test scripts that playback
application behavior. However, it is the up-front process of deciding what to test
and how to test it that has the dominant impact on product quality. Likewise, the
cost and time to develop tests is an order of magnitude greater than that required
for test execution. Today, manual methods are still the primary tools for this
critical stage, however, tools exist which automate some parts of the testing

3

process. In the following, some existing tools for test case generation or tools that
help the test suite developer in the test generation process are presented.

TESDL [5] is a prototype tool for the automatic generation of test cases from
SDL specifications in the context of the OSI Conformance Testing Methodology
and Framework. TESDL implements a heuristic algorithm to derive the global
behavior of a protocol as a tree, called Asynchronous Communication Tree
(ACT), which is based on a restricted set of SDL diagrams (one process per block,
no two processes are able to receive the same kind of signal, etc.). The ACT is the
global system description as obtained using reachability analysis by perturbation.
In the ACT, the nodes represent global states. A global state contains information
about the states of all processes in the specification. Tests are derived from the
ACT of a specification by a software tool, called TESDL. Input for the tool is a
SDL specification (SDL-PR), the output are the test cases in TTCN-Notation.

TTCN Link (LINK for short) [12] is an environment for efficient development
of TTCN test suites based on SDL specifications in SDT3.0 (SDL Description
Tool) [15]. LINK assures consistency between the SDL specification and the
TTCN test suite. It increases the productivity in the development by automatic
generation of the static parts of the test suite and specification-based support for
the test case design. The intended user of the LINK tool is a TTCN test suite
developer. His inputs are an SDL specification and a test suite structure with test
purposes and his task is to develop an abstract TTCN test suite, based on this
input. This tool is semi-automatic.

SAMSTAG [9, 10] is developed within the research and development project
“Conformance Testing a Tool for the Generation of Test Cases” which is funded
by the Swiss PTT. The allowed behavior of the protocol which should be tested is
defined by an SDL specification and the purpose of a test case is given by an MSC
which is a widespread mean for the graphical visualization of selected system runs
of communication systems. The SaMsTaG method formalizes test purposes and
defines the relation between test purposes, protocol specifications and test cases.
Furthermore, it includes the algorithms for the test case generation.

TOPIC V2 [1] (prototype of TTC GEN) works by co-simulating the SDL
specification and an observer representing the test purpose. This co-simulation
enables to explore a constrained graph, i.e., a part of the reachability graph of the
specification, which enables to use this method for infinite graphs. The observer is
described in a language called GOAL (Geode Observation Automata Language).
In order to facilitate the use of TOPIC, it is possible to generate the observers from
MSC’s. From the constrained graph, some procedures are executed in order to
generate the TTCN test.

Tveda V3 [7] is a tool for automatic test case generation which incorporates
several features:
• A modular architecture, that makes it possible to choose between the

specification languages (Estelle or SDL), test description languages (TTCN or
Menuet) and test selection strategy (single transition, extended transition tour,
etc.)

4

• A semantic module, which can be called from the strategy modules to
compute feasible paths.

• Functional extensions, such as hypertext links between tests and specification,
test coverage analysis, etc.

To compute execution paths, two techniques can be used, symbolic computation
techniques or reachability analysis. Symbolic computation techniques put strong
restrictions on which constructs are accepted and the path computation requires an
exponential computation with respect to the length of the path to be computed. On
the contrary, reachability analysis puts almost no restriction on the Estelle or SDL
constructs which are accepted, and it is implemented by interfacing Tveda with a
powerful commercial tool for reachability analysis, Véda.

Most of these tools are semi-automatic. Also, the test purposes have to be defined
by the user. In our case, our tool is completely automatic and the specification is
used to generate test cases (instead of the observers). Also, it uses control flow and
data flow testing techniques to generate test cases.

Since we are interested in testing SDL protocols, we present, in the next section,
the EFSM and CEFSM models which are the underlying models for SDL systems.

3 THE EFSM AND CEFSM MODELS

Definition1. An EFSM is formally represented as a 8-tuple <S, s0, I, O, T, A, , V>
where
1. S is a non empty set of states,
2. s0 is the initial state,
3. I is a nonempty set of input interactions,
4. O is a nonempty set of output interactions,
5. T is a nonempty set of transitions,
6. A is a set of actions,
7. is a transition relation : ,
8. V is the set variables.

Each element of A is a 5-tuple t=(initial_state, final_state, input, predicate,
block). Here “initial_state” and “final_state” are the states in S representing the
starting state and the tail state of t, respectively. “input” is either an input interaction
from I or empty. “predicate” is a predicate expressed in terms of the variables in V,
the parameters of the input interaction and some constants. “block” is a set of as-
signment and output statements.

Definition2 . A communicating system is a 2k-tuple (C1, C 2,...,C k, F1, F2,..., Fk)
where

• Ci = <S, s0 , I, O, T, A, , V> is an EFSM

• Fi is a First In First Out (FIFO) for Ci, i=1..k.
Suppose a protocol consists of k communicating EFSMs or CEFSMs for

short: C1, C 2 ,...,Ck . Then its state is a k-tuple <s(1), s(2) ,..., s(k) , m1 , m2,...,mk> where

δ

δ δ S A S→×

δ

Π

5

s(j) is a state of C j.and m j, j=1..k are set of messages contained in F1, F2,...,Fk respec-
tively. The CEFSMs exchange messages through bounded storage input FIFO chan-
nels. We suppose that a FIFO exists for each CEFSM and that all messages to a
CEFSM go through its FIFO. We suppose in that case that an internal message iden-
tifies its sender and its receiver. An input interaction for a transition may be internal
(if it is sent by another CEFSM) or external (if it comes from the environment). The
model obtained from a communicating system via reachability analysis is called a
global model. This model is a directed graph G = (V, E) where V is a set of global
states and E corresponds to the set of global transitions.

Definition 3. A global state of G is a 2k-tuple <s (1), s(2),..., s(k), m1, m2 ,...,mk>
where mj, j=1..k are set of messages contained in F1, F2,...,Fk respectively.

Definition 4 . A global transition in G is a pair t = (i,) where (set of ac-
tions). t is firable in s = <s (1), s(2),..., s(k), m1 , m2 ,...,mk> if and only if the following
two conditions are satisfied where = (initial_state, final_state, input, predicate,
compute-block).
• A transition relation is defined

• and or and ,

where W is a set of messages to C i, and .
After t is fired, the system goes to s’ = <s’(1), s’(2) ,..., s’(k),m’1 , m’2,...,m’k> and

messages contained in the channels are m’ j where

• and

• if and , then

• if and then (Cu is the machine which

receives b)

• if and then and

• if and then and

In the next section, our test case generation methodology is presented.

4 OUR METHODOLOGY FOR TEST GENERATION FROM SDL
SYSTEMS

Our methodology uses a set of tools developed at Université de Montréal. Some
of the tools use an underlying FSM model and were adapted so that they can be used
for an underlying EFSM model.

α α Ai∈

α

δi s α(,)

input null= predicate True= input a= mi aW=

predicate True=

s′ i() δ s i() α(,)= s′ j() s j()= j i≠()∀

input ∅= output ∅= m ′j m
j

=

input ∅= output b= m′u mub=

input ∅≠ output ∅= mi W= m′ j m
j

= j i≠()∀

input ∅≠ output b= mi W= m′u mub=

6

FIGURE 1. The process of test case generation from SDL specifications

Figure 1 shows the process of generating test cases from SDL systems. First, the
EFSMs corresponding to the processes of the SDL system are extracted. At the same
time, files containing SDL declarations of interactions (or signals) and channels are
created, as for CEFTG, it generates automatically executable test cases for CEFSM
based systems.

4.1 The extended finite state machine extraction
The process of extracting an EFSM form an SDL process is based on the FEX

tool [2]. This latter was developed at Université de Montréal in order to extract an
FSM representing a partial behavior of an SDL system by applying a normalization
algorithm. One or more transitions in the generated FSM correspond to a given input
at a given state in the SDL specification. This is due to the fact that the tool uses
partial unfolding to preserve constraints on the values of message parameters. In
addition, FEX generates additional files that can be used in order to complete the
test cases. For these reasons, and due to the availability of FEX, we decided to use
FEX and to modify the output of FEX so that it can be processed by CEFTG. Even
though FEX was originally built to extract an FSM from an SDL system, it can also
extract the corresponding EFSM from it. In [2], the output file generated by FEX
contains assignment statements as well as the predicates of the transitions but these
were not used by the tool described in the same paper, while this information will
indeed be used by CEFTG. Also, CEFTG does not use the Definition files generated
by FEX (which were used by the tools presented in [2]).

EFSM

Definition files

SDL Specification

EFSM specification

Test cases and
I/O sequences

CEFTG
CEFSM specifications

or

 extraction

7

FIGURE 2. The EFSM extraction

As we already mentioned before, the input of CEFTG is a specification in the
normal form, which is different from the output generated by FEX. For this reason,
the output of FEX, Specification (form 1), is transformed to the normal form
(Specification (form 2)).

To summarize this section, CEFTG was originally built to generate test cases
from normal form specifications. But as we want our tool to start form SDL systems,
we used the FEX tool which extracts the corresponding normal form specifications
from the SDL processes.

Figure 3 below shows an example of an SDL specification, the output generated
by FEX and the input accepted by CEFTG.

SDL specification

Extraction

TRANSFORMATION

Definition files Specification
(form 1)

Specification
(form 2)

8

FIGURE 3. Example of an SDL specification and its corresponding form1
and form2

SDL Specification:
state S0;

input I1;
output O1;
nextstate S1;

input I2(n);
decision n;
(0): output O2;

nextstate S2;
(1): output O3;

nextstate S3;
enddecision;

Transitions generated by FEX:
S0?I1!O1 > S1;
S0?I2(n = 0)!O2 >S2;
S0?I2(n = 1)!O3 >S3;

Transitions generated by Transformer and accepted by CEFTG:

When I1
From S0
To S1
Name t1: Begin
Output(O1);
End;

When I2(n)
From S0
To S2
Provided (n = 0)
Name t2: Begin
Output(O2);
End;

When I2(n)
From S0
To S3
Provided (n =1)
Name t3: Begin
Output (O3);
End;

9

The next section presents the architecture of the CEFTG tool. This latter
generates executable test cases for CEFSM based systems by generating test cases
for each CEFSM in context.

4.2 Test generation for communicating extended finite state machines

FIGURE 4. Architecture of CEFTG

CEFTG is the CEFsm Test Generator and can generate test cases for systems
modeled by one EFSM using the EFTG tool. For CEFSM based systems, the user
can generate test cases for the global system by performing a complete
reachability analysis, i.e., taking into consideration all transitions of all CEFSMs,
and generating test cases for the complete product (or reachability graph). CEFTG
can also generate test cases for each CEFSM in context. In that case, the process
ends when the coverage achieved by the generated test cases is satisfactory or after
the generation of the test cases for the partial products of all CEFSMs.

CEFTG includes all the activities starting from the specification and leading to
the test cases and to the input/output sequences. The first task performed by

EFTG

Normal form
specification(s)

Test cases for each
machine in

isolation

Test Case Generator

Executable test cases
and I/O sequences

+
Coverage metrics

10

CEFTG is to generate test cases for each CEFSM in isolation, i.e, without
considering its interaction with the other CEFSMs. During this first phase, the tool
EFTG is applied in order to generate test cases for each normal form specification
in isolation. The next section presents our method for test generation for EFSM
specified systems. The EFTG tool (Extended Finite state machine Test Generator)
presented in [4] implements this method. This latter uses control flow testing
techniques, data flow testing techniques and symbolic evaluation to generate test
cases for systems modeled by one EFSM.

5 EFSM TEST GENERATION

Our method generates executable test cases for EFSM specified protocols which
cover both control and data flow. The control flow criterion used is the UIO
(Unique Input Output) sequence [17] and the data flow criterion is the “all-defini-
tion-uses” criterion [20] where all the paths in the specification containing a defini-
tion of a variable and its uses are generated. A variable is defined in a transition if it
appears at the left hand side of an assignment statement or if it appears in an input
interaction. It is used if it appears in the predicate of the transition, at the right hand
side of an assignment statement or in an output interaction.

Step 1: From the normal form specification of the CEFSM, a dataflow graph is
built. During this step, all definitions and uses of all variables are identified.

Step 2: For each state S in the graph, EFTG generates all its executable preambles
(a preamble is a path such that its first transition’s initial state is the initial state of
the system and its last transition’s tail state is S) and all its postambles (a postamble
is a path such that its first transition’s start state is S and its last transition’s tail state
is the initial state). To generate the “all-definition-uses” paths, EFTG generates all
paths between each definition of a variable and each of its uses and verifies if these
paths are executable, i.e., if all the predicates in the paths are true. To evaluate the
constraints along each transition in a definition-use path, EFTG interprets
symbolically all the variables in the predicate backward until these variables are
represented by constants and input parameters only. If the predicate is false, EFTG
applies a heuristic in order to make the path executable. The heuristic uses “Cycle
Analysis” in order to find cycles (a sequence of transitions such that the start state
of the first transition and the ending state of the last transition are the same) which
can be inserted in the path so that it becomes executable. After this step, EFTG
removes the paths which are included in the already existing ones, completes the
remaining paths (by adding postambles) and adds paths to cover the transitions
which are not covered by the generated test cases. EFTG discovers more executable
test cases over the other methods [6, 11, 16] and enables to generate test cases for
specifications with unbounded loops.

11

Figure 5. Example of an EFSM specified protocol.

The following algorithm illustrates the process of generating automatically exe-

cutable test cases.

5.1 The EFTG algorithm
Algorithm EFTG (Extended Fsm Test Generation)
Begin

Read an EFSM specification
Generate the dataflow graph G form the EFSM specification
Choose a value for each input parameter influencing the control flow
Executable-Du-Path-Generation(G)
Remove the paths that are included in others
Add state identification to each executable du-path
Add a postamble to each du-path to form a complete path
For each complete path

Re-check its executability
If the path is not executable

Try to make it executable
EndIf

Idle

Wait
Conn-
ection

Wait
Discon
nected

Con-
nected

Wait
Sending

Blocked

Sending

t1

t17

t2

t3
t4

t5

t6

t7
t8

t9
t10

t11

t12

t13

t14

t15

t16

t10 ?L.resume
 not expire_timer and
 counter<=blockbound

t11 counter>blockbound
 !L.token_realease
 !U.monitor_incomplete

 !U.dis_request
t12 expire_timer
 counter<=blockbound
 !L.token_release

t13 ?L.resume

t14 ?L.block

t15 ?L.ack

t16 ?L.dis_request

t1 ?U.sendrequest
 ! L.cr

t2?L.cc
 ! U.sendconfirm

t3 ?U.datarequest(sdu, n,b)
 number:=0;
 counter:=0;
 no_of_segment:=n;
 blockbound:=b;

t4 ?L.tokengive
 ! L.dt(sdu[number])
 start timer
 number:=number+1;

t5 ?L/resume

t6 expire_timer
 ! L.tokenrelease

t7 ?l.ack()
 number==no_of_segment
 !U.monitor_complete(counter)
 !token_release
 !L.disrequest

t8 ?L.ack()
 number<no_of_segment
 not expire_timer
 !L.dt(sdu[number])
 number:=number+1

t9 ?L.block
 not expire_timer
 counter:=counter+1

 !U.disindication

t17 ?L.disrequest
 !U.disindication

 (number)

12

If the path is still not executable Discard it
EndIf

EndFor
For each uncovered transition T

Add a path which covers it (for control flow testing)
EndFor
For each executable path

Generate its input/output sequence using symbolic evaluation
EndFor

End;

Procedure Executable-Du-Path-Generation(flowgraph G)
Begin

Generate the shortest executable preamble for each transition
For each transition T in G

For each variable v which has an A-Use in T
For each transition U which has a P-Use or a C-Use of v

Find-All-Paths(T,U)
EndFor

EndFor
EndFor

End.

Table 1 presents the shortest executable preambles for the transitions in the
EFSM in figure 1 (both input parameters n and b are equal to 2).

The reason we start by finding the shortest executable preamble for each transi-
tion is as follow: Suppose we want to find all executable du-paths between t3 and

Table 1. Executable preambles for the EFSM’s transitions in figure 1

Trans Executable Preamble Trans Executable Preamble

t2 t1, t2 t10 t1, t2, t3, t4, t9, t10

t3 t1, t2, t3 t11 t1, t2, t3, t4, t9, t10, t9, t10, t9, t11

t4 t1, t2, t3, t4 t12 t1, t2, t3, t4, t9, t12

t5 t1, t2, t3, t5 t13 t1, t2, t3, t4, t8, t7, t13

t6 t1, t2, t3, t4, t6 t14 t1, t2, t3, t4, t8, t7, t14

t7 t1, t2, t3, t4, t8, t7 t15 t1, t2, t3, t4, t8, t7, t15

t8 t1, t2, t3, t4, t8 t16 t1, t2, t3, t4, t8, t7, t16

t9 t1, t2, t3, t4, t9 t17 t1, t17

13

t7. Since t3 needs a preamble, then any path from t3 to t7 cannot be made executable
unless an executable (or feasible) preamble is attached to it.

When finding the preambles and postambles, we try to find the shortest path
which does not contain any predicate. If we fail to find such a path, then we choose
the shortest path and try eventually to make it executable.

Procedure Find-all paths(T1, T2, var)
Begin

If a preamble, a postamble or a cycle is to be generated
Preamble:=T1

Else
Preamble:= the shortest executable preamble from the first transition to T1

EndIf
Generate-All-Paths(T1,T2,first-transition, var, preamble)

End;

The following algorithm is the algorithm used to find all executable preambles
and all executable du-paths between transition T1 and transition T2 with respect to
the variable var defined in T1.
Procedure Generate-All-Paths(T1, T2, T, var, Preamble)
Begin

If (T is an immediate successor of T1) (e.g. t3 is an immediate successor of t2)
If (T=T2 or (T follows T1 and T2 follows T in G)) (e.g. t4 follows t2)

If we are building a new path
Previous:= the last generated du-path (without its preamble)
If (T1 is present in the previous path)

Common:= the sequence of transitions in the previous path before
T1

EndIf
EndIf
If we are building a new path

Add Preamble to Path, Add var in the list of test purposes for Path
EndIf
If Common is not empty

Add Common to Path
EndIf
If (T = T2)

Add T to Path, Make-Executable(Path)
Else

If T is not present in Path (but may be present in Preamble) and T does
not have an A-use of var

Add T to Path
Generate-All-Paths(T, T2, first-transition, var, Preamble)

EndIf

14

EndIf
EndIf

EndIf
T:= next transition in the graph
If (T is not Null) Generate-All-Paths(T1, T2, T, var, Preamble)
Else

If (Path is not empty)
If (the last transition in Path is not an immediate precedent of T2)

Take off the last transition in Path
Else

If (Path is or will be identical to another path after adding T2)
Discard Path

EndIf
EndIf

EndIf
EndIf

End.

The algorithm used to find the postambles and the cycles is also similar, except
that it does not call the procedure Make-Executable(Path).

Suppose P1=(t1,t2,..tk-1,tk). Make-Executable(P1) finds the non-executable tran-
sition tk in P1 if it exists. Then it finds if another executable du-path P2=(t1,t2,..,tk-

1 ,...,tk) exists. If such path exists, P1 is discarded. If not, the procedure Handle-
Executability(P1) is called (see next section). This verification enables to save time
generating the same path or an equivalent path (the same du-path with different
cycles in it) more than once. Handle-Executability(Path) starts by verifying if each
transition in Path is executable or not. In each transition, each predicate is inter-
preted symbolically until it contains only constants and input parameters and the
algorithm can determine if the transition is executable or not (especially for simple
predicates). However, for some specifications with unbounded loops, Handle-Exe-
cutability may not be able to make a non-executable path executable.

Table 2 shows all the du-paths (with the preamble (t1 , t2, t3, t4)) form t9 to t10
w.r.t the variable counter and the reason why some paths were discarded. All the
paths that were discarded because the predicate became (3=2) cannot be made exe-
cutable, because the influencing transition (t4 or t8) appears more than it should be.

Table 2. All du-paths form t9 to t7 w.r.t. counter

Du-Path Discarded Reason path is discarded

1,2,3,4,9,10,6,4,7 no -

1,2,3,4,9,10,6,4,8,7 yes predicate in t7 become (3=2)

15

In the next section, we will show what cycle analysis is and how it can be used
to make the non-executable paths executable.

5.2 Handling the executability of the test cases
The executability problem is in general undecidable. However, in most cases, it

can be solved. [11] overcame this problem by executing the EFSM. This method
does not cover the control flow and may not deal with large EFSMs. [6] used static
loop analysis and symbolic evaluation techniques to determine how many times the
self loop should be repeated so that test cases become executable. This method is
not appropriate for specifications where the influencing variable is not updated
inside a self loop, such as the EFSM in figure 1, and cannot be used if the number
of loop iterations is not known. For these reasons, the following heuristic was
developed in order to find the appropriate cycle to be inserted in a non-executable
path to make it executable.

Procedure Handle_Executability(path P)
Begin

Cycle:= not null
Process(P)

If P is still not executable Remove it
EndIf

End;
Procedure Process(path P)
Begin

1,2,3,4,9,10,6,5,4,7 no -

1,2,3,4,9,10,6,5,4,8,7 yes predicate in t7 become (3=2)

1,2,3,4,9,10,7 yes will be equivalent to the first
path after solving the executa-
bility

1,2,3,4,9,10,8,6,4,7 yes predicate in t7 become (3=2)

1,2,3,4,9,10,8,6,5,4,7 yes predicate in t7 become (3=2)

1,2,3,4,9,10,8,7 no -

1,2,3,4,9,12,4,7 no -

1,2,3,4,9,12,4,8,7 yes predicate in t7 become (3=2)

1,2,3,4,9,12,5,4,7 no -

1,2,3,4,9,12,5,4,8,7 yes predicate in t7 become (3=2)

Table 2. All du-paths form t9 to t7 w.r.t. counter

Du-Path Discarded Reason path is discarded

16

T:= first transition in path P
While (T is not null)

If (T is not executable)
Cycle:= Extract-Cycle(P,T)

EndIf
If (Cycle is not empty)

Trial:=0
While T is not executable and Trial<Max_trial Do

Let Precedent be the transition before T in the path P
Insert Cycle in the path P after Precedent
Interpret and evaluate the path P starting at the first transition
of Cycle to see if the predicates are satisfied or not
Trial:= Trial+1

EndWhile
Else

Exit
EndIf
T:= next transition in P

EndWhile
End.

 The heuristic “Handle-Executability” verifies if each non-executable path can
be made executable and uses the procedure “Extract-Cycle(P,T)” to find the
shortest cycle, if it exists, to be inserted in a non-executable path in order to make
it executable. For this purpose, we find the first non-executable transition T in the
path P. If the transition T cannot be executed because some predicate is not
satisfied, we find a transition tk, if it exists, among the transitions preceding
transition T, which has the same predicate with a different value. An influencing
cycle containing tk is generated (if it exists) and inserted in the path P before
transition T. If a variable is causing the predicate to be false, we find out, using
symbolic evaluation, what this variable is, and whether it should be increased or
decreased for the transition tk to be executable. This variable must be an
influencing one and transitions which update the variable must exist. If this is not
the case, an empty cycle is returned, and the path is discarded. If the variable in
the predicate is an influencing variable, we search among the transitions preceding
T, for a transition tk which updates properly the variable, generate a cycle
containing this variable and insert it in the path. If a path cannot be made
executable, it is discarded.

To illustrate the heuristic, suppose that in the EFSM of figure 5, both variables n
and b have the value 2. The shortest preamble for t11 is (t1, t2 , t3 , t4, t9, t11), but t11
is not executable because its predicate “counter>2” becomes “1>2” after interpreta-
tion. Our tool finds that the influencing variable is “counter” and that among the
transitions preceding t11 , t9 is an influencing transition which may be adequate,
because it increases the variable “counter”. The cycle (t10 ,t9) is generated and

17

inserted twice after transition t9. The path becomes (t1 , t2, t3, t4 , t9, t10 , t9 , t10, t9,
t11).

Figure 6. EFSM with unbounded loops and unary predicates.

Figure 6 presents an example of an EFSM with unbounded loops. Each loop is a
self-loop with a unary predicate. For this example, since transitions t2 and t3 are not
bounded, [6] cannot generate any executable test case for this example.

In table 3, the executable test cases (without state identification) and test
sequences for the EFSM in figure 6 are presented. Each test case is relative to one
value for the input parameter a.

For the EFSM in figure 6, our tool failed to generate any executable test case for
a=125. But when we increased the value of the variable Max-Trial (in the proce-
dure Process), a solution was found. Giving our tool more time to let it find a solu-
tion does not mean that a solution will be found. In these cases, out tool cannot
decide if a solution exists. After the generation of the executable paths, the input/
output sequences are generated. The inputs will be applied to the IUT, and the
observed outputs from the IUT will be compared to the outputs generated by our
tool. A conformance relation can then be drawn.

Table 3. Executable test cases for the EFSM in figure 2

Input
parameter Executable test case Input/Output sequence

1 t1, t4 ?1!1

5 t1, t3, t2, t2, t2, t2, t4 ?5! 16! 8! 4! 2! 1!1

100 t1, t2, t2, t3, t2, t2, t3, t2, t3, t2, t2,
t2, t3, t2, t3, t2, t2, t3, t2, t2, t2, t3,
t2, t2, t2, t2, t4

?100!50!25!76!38!19!58!29!
88!44!22!11!34!17!52!26!13,!40,
20!10!5!16!8!4!2!1!1

125 - -

s2

s1

t1

t2 t3

t4

t1: ?a

t2: Even(a)
 a:=a/2;
 Output(a);

t3: Not(Even(a))
 a:=3*a +1;
 Output(a);

t4: a=1
 Output(a);

18

5.3 Results
Table 4 presents the final executable test cases (without state identification) gen-

erated by our tool on the EFSM in figure 1. In many cases, the tool had to look for
the influencing cycle to make the test case executable. With state identification, the
first executable path will look like: (t1, t2, t3, t5 , t4 , t8, t7, t15, t16). The last two
paths are added to cover the transitions t13, t14 , t15 and t17 which were not covered
by the other paths.

The sequence of input/outputs is extracted from the executable test cases, and
applied to test the IUT. For output parameters with variable (such as the output
“dt”), symbolic evaluation is used to determine the value of the variable number
which has an output use (see Table 3 for an example).

Table 4. Executable test cases for the EFSM of Figure 5

No Executable Test Cases Test Purposes

1 t1, t2, t3, t5, t4, t8, t7, t16, number, counter, no_of_segment

2 t1, t2, t3, t5, t4, t8, t9, t10, t7, t16 number, counter, no_of_segment, blockbound

3 t1, t2, t3, t5, t4, t9, t10, t8, t7, t16 number, counter, no_of_segment, blockbound

4 t1, t2, t3, t4, t8, t9, t10, t9, t10, t9, t11,
t16

number, counter, no_of_segment, blockbound

5 t1, t2, t3, t5, t4, t8, t9, t10, t9, t10, t9,
t11, t16

number, counter, no_of_segment, blockbound

6 t1, t2, t3, t5, t4, t9, t10, t9, t10, t9, t11,
t16

number, counter, blockbound

7 t1, t2, t3, t5, t4, t9, t12, t4, t7, t16 number, counter, blockbound

8 t1, t2, t3, t4, t6, t4, t7, t16 number, counter, no_of_segment

9 t1, t2, t3, t4, t6, t5, t4, t7, t16 number

10 t1, t2, t3, t4, t8, t7, t16 number, counter, no_of_segment

11 t1, t2, t3, t4, t8, t9, t10, t7, t16 number, counter, no_of_segment, blockbound

12 t1, t2, t3, t4, t9, t10, t6, t4, t7, t16 number, counter, no_of_segment, blockbound

13 t1, t2, t3, t4, t9, t10, t6, t5, t4, t7, t16 number, counter, blockbound

14 t1, t2, t3, t4, t9, t10, t8, t7, t16 number, counter, no_of_segment, blockbound

15 t1, t2, t3, t4, t9, t12, t4, t7, t16 number, counter, blockbound

16 t1, t2, t3, t4, t9, t12, t5, t4, t7, t16 number, counter, blockbound

17 t1, t2, t3, t4, t9, t10, t9, t10, t9, t11, t16 number, counter, blockbound

18 t1, t2, t3, t4, t9, t10, t6, t4, t9, t10, t9,
t11, 16

number, counter, blockbound

19 t1, t2, t3, t4, t9, t10, t6, t5, t4, t9, t10,
t9, t11, t16

number, counter, blockbound

19

FIGURE 7. Architecture of EFTG

When testing CEFSM based systems, the first task performed by CEFTG is to

20 t1, t2, t3, t4, t9, t10, t8, t6, t4, t9, t10,
t9, t11, t16

number, counter, no_of_segment, blockbound

21 t1, t2, t3, t4, t9, t10, t8, t6, t5, t4, t9,
t10, t9, t11, t16

number, counter, no_of_segment, blockbound

22 t1, t2, t3, t4, t9, t10, t8, t9, t10, t9, t11,
t16

number, counter, no_of_segment, blockbound

23 t1, t2, t3, t4, t9, t12, t4, t9, t10, t9, t11,
t16

number, counter, blockbound

24 t1, t2, t3, t4, t9, t12, t5, t4, t9, t10, t9,
t11, t16

number, counter, blockbound

25 t1, t2, t3, t4, t8, t7, t13, t14, t15, t16 -

26 t1, t17 -

Table 4. Executable test cases for the EFSM of Figure 5

No Executable Test Cases Test Purposes

Normal form
specification

Preamble + Postamble
Generator

Preambles &
Postambles

All definition-uses
paths Generator

All definition-
uses paths

Data flow
graph

Data flow graph
Generator

Input/Output sequence
Generator

Complete path
Builder

Complete Executable
paths

Input/Output
sequences

20

apply the EFTG tool to each CEFSM in order to generate its test cases in isolation,
i.e., when the communication of this CEFSM with the others is not considered.
After this latter is performed, CEFTG generates test cases for the global system.
The next section explains this part.

6 TEST CASE GENERATION

Before presenting the choices that the user have in the second step, we would
like to explain what a partial product for one CEFSM is and how it can be
computed.

6.1 Computing a partial product

The following steps summarizes the process of computing a partial product for
one CEFSM:

Step 1: Marking process. Suppose that the system to be tested is modeled by C1,
C2,...,Ck and suppose that we want to test the machine Cn in context. We use the test
cases generated by EFTG, for each machine in isolation, to mark the transitions in
all the paths which trigger Cn (or are triggered by Cn). We shall call the first set of
transitions Pr(Cn) and the latter Po(Cn). Determining Pr(Cn) and Po(Cn) can be very
costly if exhaustive reachability analysis is considered. For this purpose, our method
uses the test cases generated by EFTG for each machine in isolation as a guide. If a
transition in Cn receives (sends) a message from (to) a CEFSM Ci and since this
message is sent (received) by some transitions in C i which belong necessarily to test
cases generated by EFTG for C i in isolation, we mark all the transitions in these test
cases. By marking all the transitions in each test case, we insure that transitions
preceding (following) the transition which sends (receives) the message participate
in the partial product generation. When the test case which contains the transition
sending (receiving) a message to (from) Cn is marked, we verify if it contains
transitions receiving (sending) messages from (to) other CEFSMs. If this is the case,
for each such transition T, the same procedure is repeated in order to mark the paths
in the machine sending (receiving) the message received (sent) by T.

At the end of this step, all marked transitions will participate in the generation of
the partial product.

21

At this stage, we suppose that the test cases for each CEFSM in isolation are
already generated by EFTG (this step was explained in the previous section). The
goal of procedure Marking-Backward (Sender,Receiver,M) is to mark all the paths
in Sender which contain a transition sending M to Receiver (i.e., determine the set
Pr(Cn)).

In the same way, procedure Marking-Forward(Sender,Receiver,M) marks the
paths in Receiver which have transitions receiving message M from Sender (i.e.,
determine the set Po(Cn)).

At the end of this step, all marked transitions will participate in the generation of
the partial product.

Algorithm Marking (machine under test Cn)
Begin

For each transition T in C n Do
Mark T;
If T receives an internal input M from another machine

Marking-Backward(Sender of M,Cn,M)
For each internal output statement O in T Do

Marking-Forward(Cn ,Receiver of O,O)
End;

Procedure Marking-Backward(Sender,Receiver,M)
Begin

For each test case TC in Sender
If one or more transitions in TC send M to Receiver Then

For each unmarked transition T in TC Do
If T receives an internal message M’ and a call to the recursive
procedure was not made with (Sender of M’,Sender, M’) Then

Marking-Bakward(Sender of M’, Sender, M’)
Mark all the transitions in TC

End;

Procedure Marking-Forward(Sender,Receiver,M)
Begin

For each test case TC in Sender
If one or more transitions in TC receive M from Sender Then

For each unmarked transition T in TC Do

procedure was not made with (Receiver,Receiver of O, O) Do
Marking-Forward(Receiver,Receiver of O, O)

Mark all the transitions in TC
End;

For each internal output statement O in T such that a call to the recursive

22

Step 2: Partial product generation.

Definition 4 . A partial product for Cn is defined as:

PP(Cn) = . PP(Cn) is also called Cn in context.

After the marking process, the partial product for C n is performed. At each time,
among the possible transitions which can be picked, only the marked ones are
chosen (in the partial reachability analysis).

The unmarked transitions do not participate in the partial product computation
because they do not influence the machine under test. Procedure ComputePP
computes a partial product for a certain CEFSM and is similar to an ordinary
algorithm for reachability analysis. The main difference is that among the possible
transitions which can be picked, only the marked ones are chosen.

Procedures AddGlobalState and AddGlobalTransition add a new global state and
a new global transition to the graph of the partial product respectively.

Step3: Test case generation for the partial product. After the partial product for
Cn is computed, its test cases are generated automatically with EFTG since the result
of the product of Cn with the marked transitions is also an EFSM. These test cases
the “all-definition-uses + all transitions” criterion in the partial product. We should
also note that our method is adapted to global systems made of more than two
CEFSMs because if the system is made of only 2 CEFSMs, then the partial product
for one CEFSM is in general the complete product.

6.2 An example
Consider the example in Figure 8.

Cn marked t– ransitions{ }×

Procedure ComputePP(CEFSM M)
Begin
Create a new global state NewState <s0(1), s0(2),..., s0(k), m1 , m2,...,mk>
AddGlobalState(NewState)
Push(NewState,Stack)
While Stack is not empty Do

If a marked firable transition T exists in some machine Ci then
Create a new Global State NewState
If transition T has an internal Input Then Remove the Input from its FIFO
If T has internal outputs Then Add the outputs to the corresponding FIFOs
AddGlobalState(NewState) if it does not exist , AddGlobalTransition(T)
Push(NewState)

Else Pop(Stack)
End;

CurrentState Head Stack()←

23

FIGURE 8. A system of CEFSMs: B1, B2 and B3.

We have 3 processes B1, B2 and B3 which communicate with each other and with
the environment.B1 reads an external input with parameter c and assigns c*c to R in
t1. In state s2, if B1 receives input Int1 from B3, it responds with Int2 containing the
value of R. R can be modified in t3 before being sent to B3. In t4, if R is even, a
message Int3 is sent to B2 with the computed value of L (“Ext” means a message to/
from the environment while “Int” means an internal message; also, “?msg” means an
input interaction while “!msg” means an output interaction). The next section
illustrates the process described in this section.

6.2.1 Test case generation for the partial product for B3

Step 1: Test case generation for each machine in isolation. Here are the test
cases generated by EFTG for each CEFSM in isolation.

• Test cases for B1: (t1, t2), (t1, t3, t2), (t1, t3, t4) and (t1, t4).

• Test case for B2: (k1).

• Test case for B3: (v1, v2).

Step 2: The marking process. First, all transitions in B3 are marked. Since v1
sends a message to B1, which can be received by t2 then all transitions in all test
cases of B1 which contain t2 are marked (i.e., t1, t2 and t3). Before marking these
transitions, we first take a look at the test cases containing t2. t1 receives an external
transition and does not receive nor send any internal message. t2 sends int2 to B3,
but since all transitions in B3 are marked, nothing happens. t3 does not contain any
internal input or output message. Transition k1 in B2 is not marked because it is not

s’1
s2

t1

t2

(a) B1 (b) B2 (c) B3

? Ext2v1:
!Int1

?Int2(R)v2:
!Ext3(R)

?Ext1(c)t1:
R:=c*c;

?int1t2:
!Int2(R);

t3:(R is odd)
R:=R+1;

t4: (R is even)
L:=R/2;

!Int3(L);

?Int3(L)

k1:

!Ext4(L);

k1
s1 s"2

v1

v2
s"1

t3
t4

24

influenced by any transition in B3, nor does it influence any transition in B1.

Step 3: Generation of the partial product for B3. After the Marking process, the
partial product for B3 is computed. This latter is shown in Figure 9.

FIGURE 9. The partial product for B3.

It contains 11 transitions and 6 states. For clarity purposes, we kept the old names
of the transitions. The detail about each transition can be found in Figure 8.

Step 4: Test cases of the partial product for B3. After the partial product for B3
is computed, its test cases are generated by EFTG. These test cases cover all the
definition-uses criterion in the partial product for B3. In term of transition coverage,
they cover all transitions in B3, 75% of transitions of B1 and no transition in B2.
These test cases are as follow:

In the same manner, to compute the partial product for B2, t1, t3, t4 and k1 are
marked. This partial product has 7 transitions and 4 states and 6 test cases. In terms
of transition coverage, the test cases cover 75% of the transitions in B1, 100% of the
transitions in B2 and 0% of the transitions in B3. If we consider both partial products
of B2 and B3, we find that they cover 100% of the transitions in each machine as
well as the “all-definition-uses” criterion for the partial products for B2 and B3.

1) t1, t3, v1, t3, t2, v2 6) t1, v1, t2, t1, v2, v1, t3, t2, v2

2) t1, t3, v1, t2, v2 7) t1, v1, t2, t1, v2, v1, t2, v2

3) t1, v1, t3, t2, v2 8) t1, v1, t2, v2

4) t1, v1, t2, t1, t3, v2, v1, t2, v2 9) v1, t1, t3, t2, v2

5) t1, v1, t2, t1, v2, t3, v1, t2, v2 10) v1, t1, t2, v2

s1

s2

s3

s4

s6

s5
v2

v2 v1

t1

t1

v1

t2

t1

t3

t3

t3

25

6.2.2 Test case generation for the complete product of B1, B2 and
B3

 We computed the complete product machine (see Figure 10).

FIGURE 10. The complete product of CEFSMs in Figure 8.

This latter has 30 transitions and 12 states and 1483 executable definition-uses
paths. This number corresponds to the product of 3 small CEFSMs. For big
communicating systems, testing the product machine becomes unpractical.
Therefore testing each CEFSM in context may be the only solution for large systems.

6.3 A test case generation algorithm for CEFSM specified protocols
In this section, we will present the general algorithm CEFTG for automatic test

generation for CEFSM based systems. CEFTG generates executable test cases
incrementally by generating test cases for the partial product for each CEFSM until
the desired coverage is achieved. The process of generating test cases for the global
system may stop after generating the partial product for some CEFSMs. In that case,
these test cases cover the all definition-uses criterion for the partial product
machines (this include all transitions in the CEFSM as well as transitions in other
CEFSMs). In term of transition coverage, these test cases cover 100% of the
transitions for each CEFSM for which a partial product was computed and p% of
the transitions of each other CEFSMs, where

 for some CEFSM.
First, lets take a look at the example in Figure 11. The example is inspired from

a real communicating system. The global system is made of two blocks A and B.
Block A communicates with block B and with the environment, while block B
communicates only with block A.

s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

s11

s12

t1

t4

t1

v1

k1

t3

t3

t3

t2

t1

k1

t4

v2

k1

t1

v2

v2

k1

t2

k1

v1

k1

t1

v1

t1

v1

v2

t3

t3

t3

p marked transitions–() all transitions–()⁄=

26

FIGURE 11. Architecture of a communicating system.

In this particular case, B1 controls all other processes in block B and none of the

processes Bi is influenced by another, i.e., none of the messages sent by
a process does influence the control flow of the other processes. Suppose we want
to compute the partial product for B1, when its context is B; then all the transitions
in B will be marked and will participate in the partial reachability analysis. In other
words, the partial product for B1 is equivalent to

.This is due to the fact that B1 communicates with
all the other processes in block B. To test block B, if instead of starting with B1, we
generate the partial products for B2,..,B6 then we can avoid generating the partial
product for B1, because after generating the partial product for B6, the test cases for
all the partial products cover all the transitions in all processes (even B1). In that
case, if our goal is to simply cover each transition in each process without generating
a partial product for each machine, then the order in which CEFSMs are chosen is
very important. In the next section, we present some metrics which help choosing,
among several CEFSMs, the CEFSM which has less interaction with the others.

6.3.1 Metrics for measuring complexity of communication
In Section 6.3.2, we present an algorithm which builds progressively the test

cases for a communicating system by generating test cases for the partial product for
each component machine. Normally, a partial product is generated for each
CEFSM. But in some cases, we may not need to do so because the test cases of the
partial product for certain machines may cover all transitions in all CEFSMs (in
term of transition coverage and not all-definition-uses coverage). For systems
having an architecture similar to that of block B in Figure 11, it is more interesting
not to generate a partial product for B1 and a method should be used to avoid
computing the partial product for the primary block which in this case is the
complete product of all machines.

Let M be a set of CEFSMs. We define the following metrics for each CEFSM C.

B1

B2
B3
B4
B5
B6

Block A

A1

A2

Block B

2 i 6≤ ≤

B1 B2 B3 B4 B5 B6×××××

27

• Input/Output Count (IOC): The number of internal input and output interactions
in C is considered as a metric for measuring the complexity of communication
that may take place during the composition of the CEFSMs in M. IOC of C is
defined as, IOC(C) = # of input/output messages involving CEFSMs in M
(number of internal input and output messages).

• CEFSM Count (CC): The CC for C is the number of CEFSMs which communi-
cate with C.

To prevent the generation of the complete product when the goal is to cover each
transition in each CEFSM, we first compute an IOC for each CEFSM. In each
iteration, the algorithm will compute the partial product for the machine with the
smallest IOC and eventually the smallest CC. After the partial product for a CEFSM
is computed, its test cases are generated and the user can stop the execution of the
algorithm when the desired coverage is achieved. In that case, for Block B, the
execution of the algorithm may stop after the partial products of B2, B3,.., B6 are
computed since, by that time, all transitions in B1 are already covered by the
generated test cases of the partial products of B2,..,B6. This is particularly
interesting if B1 is huge since it communicates with all machines. Also, the
architecture of the system presented in Figure 11 is very common, and the method
we are presenting in this paper can be very useful for such systems.

In the next section, we present an algorithm for automatic test generation for a
CEFSM based system which uses the metrics described above.

6.3.2 An incremental algorithm for test generation for CEFSM
based systems

The next algorithm presents our method to generate test cases for a
communicating system. The user can either let the algorithm generate a partial
product for each CEFSM and its test cases or stop the execution of the algorithm
when the coverage achieved by the test cases for some partial products is
satisfactory (“all definition-uses + all transitions” coverage for each partial product
and “transition coverage” only of each CEFSM for which a partial product was not
computed. After computing the partial product for one or many machines, Compute
Coverage determines how many transitions in each machine are covered by the
generated test cases (in term of transition coverage). Functions Push (resp. Pop) are
functions which add (remove) a global state to (from) the stack. Add Global State
and AddGlobalTransition add a new global state (resp. a new global transition) to
the graph of the partial product. After computing the partial products of all CEFSMs
and generating the test cases for them, we verify if some machines are still not
completely covered. If this is the case, this means that some transitions in these
machines may not be accessible when the communication between the machines is
considered (possible specification errors or an observability and controllability
problem).

28

6.4 Result analysis
First, we would like to mention that all algorithms presented in this paper were

implemented in C++. In the example in Figure 8, we can clearly see that k1 in B2
and t4 in B1 have no influence on B3. In this case, the marking algorithm marked
only the transition t1, t2, t3, v1 and v2. Now lets compare the partial product for B3
with the complete product of B1, B2 and B3. Removing k1 from the complete
product leads to remove states s8, s9, s10 and s12 and their transitions. Also,
removing t4 from the resulting machine leads to remove states s2 and s3 and their
transitions. The new resulting machine is nothing else but the partial product for B3
(Figure 4). In other words, the partial product for B3 is the projection of the complete
product on {t1, t2, t3, v1, v2.}. Also, if we consider the test cases of the partial
product and the test cases of the complete product, then removing all test cases
containing k1 and t4 leads to remove 1475 test cases. To test B3 in context, we only
need 10 test cases and not all 1483 test cases. The test cases of the partial products
for B2 and B3 can be used to test the global system, and we may not need to generate
the partial product for B1 which is the product of B1, B2 and B3. It is important to
note that the test cases generated by our method cover all the global states and global
transitions in each partial product (not global transitions in the complete product)
since not all transitions participate in the partial product generation. They also cover
all the “definition-uses” paths in each partial product since test case generation is
performed by EFTG. Compared to other methods [Lee 1996], our coverage criterion
is very strong. In that case, for huge systems, our incremental test generation strategy
can be combined with a reduced reachability analysis technique. In Procedure
ComputePP, at each step, we can choose a marked transition which has not been
tested yet to reduce the size of the partial product. But, the coverage criterion induced

Algorithm CEFTG(Nb: the number of CEFSMs)

Begin
For to Nb Do

Read each CEFSM specification
Generate Executable test cases for each CEFSM in isolation using EFTG

While Do
Choose the CEFSMi with the lowest IOC (and CC) which has not been

Marking(CEFSM i)

Generate executable test cases for Ai using EFTG
ComputeCoverage
If the user is satisfied with the coverage then Break
Else

End;

i Nb≤

Ai ComputePP CEFSMi()←

i i 1+←

i 1=

i 1←

chosen yet

29

by this method is weaker.
Since we divide the problem of generating test cases for a CEFSM based system

by incrementally generating test cases for each partial product, we divide also the
complexity of the problem by not considering all transitions in all CEFSMs at once.

6.5 Testing the global system
To test the global system (set of several CEFSMs), CEFTG generates executable

test cases incrementally by generating test cases for the partial product for each
CEFSM until the desired coverage is achieved. The process of generating test cases
for the global system may stop after generating the partial product for some
CEFSMs. In that case, these test cases cover the all definition-uses criterion for the
partial product machines (this include all transitions in the CEFSM as well as
transitions in other CEFSMs). In term of transition coverage, these test cases cover
100% of the transitions for each CEFSM for which a partial product was computed
and p% of the transitions of each other CEFSM, where

 for some CEFSM.

6.6 Test case generation

At this step, the user can make a choice among the following:

• Generate executable test cases for a certain CEFSM M in context: the marking
process explained in section 6.1 is performed. Once this process is over, a
reduced reachability analysis is performed considering only marked transitions.
The result of this analysis is a partial product for which test cases are generated
using EFTG. These latters test the machine M when its context is considered,
unlike the test cases generated for M in isolation.

• Generate test cases for the complete product of all CEFSMs of the system: in
that case, the marking process is not called because all transitions of all
CEFSMs participate in the reachability analysis. CEFTG builds the complete
product using a classical reachability analysis algorithm and generates test
cases for the complete product using EFTG. This option is used when the
CEFSMs as well as the complete product are small. However, The test case
generation for the complete product may be impossible due to state explosion.

• Generate test cases for each CEFSM in context until the generated test cases
reach a certain coverage or until test cases are generated for each partial
product: this choice can be taken when the user wants to generate test cases
which cover each transition of each CEFSM instead of each global transition
(of the global system). In that case, CEFTG generates the partial products,
starting by the CEFSM which has less interactions with the other machines.
The goal here is to avoid generating large partial products. Each time, test cases
are generated for a partial product, the tool computes the coverage achieved in

p marked transitions–() all transitions–()⁄=

30

order to determine how many transitions are covered by the generated test
cases. If the user is satisfied with the coverage, the algorithm ends. Otherwise,
CEFTG computes another partial product and generates test cases for it until the
user is satisfied or all partial products are generated.

Once test cases for the partial products are generated, input/output sequences are
extracted and used to test the conformance of the implementation against the
specification. For the input and output messages with parameters, symbolic
evaluation is used in order to determine their values.

6.7 Experimentation
We tried the algorithm CEFTG on a real SDL system whose architecture is similar

to that of figure 11 and we obtained the following results: the first CEFSM of the sys-
tem, with 2 states and 17 transitions, communicates with all other CEFSMs and when
computing its partial product, all transitions were marked. Its partial product is also
the complete product, i.e., the reachability graph for the global SDL system and this
latter could not be computed due to state explosion. The second CEFSM has 1 state
and 3 transitions and its partial product has 8 states, 13 transitions and 9 executable
def-use paths. The third CEFSM has 4 states, 10 transitions and its partial product
has 24 states, 55 transitions and 43 executable def-use paths. The fourth machine has
5 states, 12 transitions, and its partial product has 75 states,139 transitions and 95 ex-
ecutable all-use paths. The fifth CEFSM has 11 states and 24 transitions. Its partial
product has 1027 states and 3992 transitions. CEFTG could not generate test cases
for the partial product.This is because the criterion used by CEFTG, the all-defini-
tion-uses (or def-use) criterion is too expensive. For this reason, weaker criteria
should be implemented so that test case generation may be possible for large systems
or for large partial products. In fact, this solution may be more practical for the in-
dustry. Such criterion may be the “all-uses criterion” which generates one path from
one definition to a use of a variable instead of all paths as in the “all-definition uses”
criterion used in this paper.

7 CONCLUSION

In this paper, we presented an approach for test generation from SDL systems.
Unlike other methods or tools, our method is completely automatic and does not
need any assistance from the user. It enables the user to generate the complete
reachability graph of the system. The user can also test the SDL system by testing
each of its processes in context. Also, he can test one process in context after a
modification or enhancement without testing the entire system. Our method has
many advantages. First, it may take less time and space than the all-at-once
reachability analysis. Second, incremental test generation can significantly reduce
the effort for re-testing of a large protocol due to a correction or enhancement so that
we won’t have to re-test the entire system. To find the paths containing transitions
triggering (or triggered by) the machine under test, our method uses some of the

31

information already generated by EFTG when used to test the machines in isolation.
This method can be used to detect inaccessible transitions, by detecting the
transitions which are not covered by the generated test cases. Moreover, it computes
the coverage achieved by the generated test cases. As we mentioned earlier, our
method can easily incorporate a reduced reachability analysis technique such as [13]
which will decrease the size of the partial product for each CEFSM. Finally, since
many published methods can only be applied to simple examples or to CFSM based
systems, we consider this work as a step towards data-flow testing of real
communicating systems. We are currently working in transforming the test cases
generated by CEFTG in TTCN to test the implementation under test. The next step
consists in improving the FEX tool so that more complex SDL systems can be
processed by CEFTG. We also intend to link our tool to a set of tools such as
ObjectGeode [19] or SDT.

8 REFERENCES

[1] Bernard Algayres, Yves Lejeune, Florence Hugonnet (Verilog), “GOAL:
Observing SDL behaviors with ObjectGeode”, 7th SDL Forum, Oslo, Nor-
way, September 1995, 26-29.

[2] G. v. Bochmann, A. Petrenko, O. Bellal, S. Maguiraga, “Automating the
process of test derivation from SDL specifications”, SDL forum, Elsevier,
1997, pp. 261-276.

[3] C. Bourhfir, R. Dssouli, E. Aboulhamid, N. Rico, “A guided incremental test
case generation method for testing CEFSM based systems”, IWTCS’98,
1998.

[4] C. Bourhfir, R. Dssouli, E. Aboulhamid, N. Rico, “Automatic executable test
case generation for EFSM specified protocols”, IWTCS, Chapman & Hall,
1997, pp. 75-90.

[5] Lars Bromstrup, Dieter Hogrefe, “TESDL: Experience with Generating Test
Cases from SDL Specifications”, Fourth Proc. SDL Forum, 1989, pp. 267-
279.

[6] Chanson, S. T. and Zhu, J., “A Unified Approach to Protocol Test Sequence
Generation”, In Proc. IEEE INFOCOM, 1993.

[7] Marylene Clatin, Roland Groz, Marc Phalippou, Richard Thummel, “Two
approaches linking a test generation tool with verification techniques”,
International Workshop on Protocol Test Systems (IWPTS), Evry, 4-6
September, 1995.

[8] M. G. Gouda, Y. T. Yu, “Protocol Validation by Maximal Progressive
Exploration”, IEEE Trans. on Comm. Vol. 32, No. 1, January, 1984.

[9] Jens Grabowski, Dieter Hogrefe, Robert Nahm, “A Method for the
Generation of Test Cases Based on SDL and MSCs”, Institut fur Informatik,
Universitat Bern, April, 1993.

[10] Jens Grabowski, “SDL and MSC Based Test Case Generation: An Overall
View of the SaMsTaG Method”, Institut fur Informatik, Universitat Bern,

32

May, 1994.
[11] Huang, C.M. Lin, Y.C. and Jang, M.Y., “An Executable Protocol Test

Sequence Generation Method for EFSM-Specified Protocols”, (IWPTS),
Evry, 4-6 September, 1995.

[12] “ITEX User Manual”, Telelogic AB, 1995.
[13] David Lee, Krishan K. Sabnani, David M. Kristol, Sanjoy Paul,

“Conformance Testing of Protocols Specified as Communicating Finite
State Machines- A Guided Random Walk Based Approach”, IEEE Trans.
on Comm. Vol. 44, No. 5, May, 1996.

[14] J. Rubin, C. H. West (1982), “An Improved Protocol Validation Technique”,
Computer Networks, 6, April.

[15] “SDT User Manual”, Telelogic Malmö AB, 1995.
[16] Ural, H. and Yang. B., “A Test Sequence Selection Method for Protocol

Testing”, IEEE Transactions on Communication, Vol 39, No4, April, 1991.
[17] K.Sabnani, A.Dahbura (1985), “A new Technique for Generating Protocol

Tests”, ACM Comput. Commun. Rev. Vol 15, No 4, September.
[18] B.Sarikaya, G.v. Bochmann, “Obtaining Normal Form Specifications for

Protocols”, In Computer Network Usage: Recent Experiences, Elsevier Sci-
ence Publishers, 1986.

[19] Verilog, Geode Editor- Reference Manual, France, 1993.
[20] Weyuker, E.J. and Rapps, S., “Selecting Software Test Data using Data Flow

Information”, IEEE Transactions on Software Engineering, April, 1985.

