

USER'S MANUAL

S3C84MB/F84MB

8-BIT CMOS MICROCONTROLLERS

January 2009

REV 1.00

Confidential Proprietary of Samsung Electronics Co., Ltd Copyright © 2009 Samsung Electronics, Inc. All Rights Reserved

Important Notice

Information in this publication has been carefully checked and is believed to be entirely accurate at the time of publication. Samsung assumes no responsibility, however, for possible errors or omissions, or for any consequences resulting from the use of the information contained herein.

Samsung reserves the right to make changes in its products or product specifications with the intent to improve function or design at any time and without notice and is not required to update this documentation to reflect such changes.

This publication does not convey to a purchaser of semiconductor devices described herein any license under the patent rights of Samsung or others.

Samsung makes no warranty, representation, or guarantee regarding the suitability of its products for any particular purpose, nor does Samsung assume any liability arising out of the application or use of any product or circuit and specifically disclaims any and all liability, including without limitation any consequential or incidental damages.

S3C84MB/F84MB 8-Bit CMOS Microcontrollers User's Manual, Revision 1.00 Publication Number: 21-S3-C84MB/F84MB-012009

Copyright © 2006~2009 Samsung Electronics Co., Ltd.

"Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by the customer's technical experts.

Samsung products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, for other applications intended to support or sustain life, or for any other application in which the failure of the Samsung product could create a situation where personal injury or death may occur.

Should the Buyer purchase or use a Samsung product for any such unintended or unauthorized application, the Buyer shall indemnify and hold Samsung and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, expenses, and reasonable attorney fees arising out of, either directly or indirectly, any claim of personal injury or death that may be associated with such unintended or unauthorized use, even if such claim alleges that Samsung was negligent regarding the design or manufacture of said product.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electric or mechanical, by photocopying, recording, or otherwise, without the prior written consent of Samsung Electronics.

Samsung Electronics' microcontroller business has been awarded full ISO-14001 certification (BSI Certificate No. FM24653). All semiconductor products are designed and manufactured in accordance with the highest quality standards and objectives.

Samsung Electronics Co., Ltd. San #24 Nongseo-Dong, Giheung-Gu, Yongin-City, Gyunggi-Do, Korea C.P.O. Box #37, 446-711

TEL: (82)-(31)-209-5238 FAX: (82)-(31)-209-6494

Home Page: http://www.samsung.com

Printed in the Republic of Korea

NOTIFICATION OF REVISIONS

ORIGINATOR:	Samsung Electronics, LSI Development Group, Gi-Heung, South Korea
PRODUCT NAME:	S3C84MB/F84MB 8-bit CMOS Microcontroller
DOCUMENT NAME:	S3C84MB/F84MB User's Manual, Revision 1.00
DOCUMENT NUMBER:	21.00-S3-C84MB/F84MB - 012009
EFFECTIVE DATE:	January, 2009

REVISION HISTORY

Revision No	Description of Change	Refer to	Author(s)	Date
0.00	_	-	_	_
1.00	In a tool program mode, user must connect TEST pin to Vdd.	-	Th.Kim	January 2009

REVISION DESCRIPTIONS FOR REVISION 1.0

Chapter		Subjects (Major changes comparing with last version)	
Chapter Name	Page		
21. Flash Memory MCU	1~6	Flash Memory MCU sector is added.	

Preface

The S3C84MB/F84MB Microcontroller User's Manual is designed for application designers and programmers who are using the S3C84MB/F84MB microcontroller for application development. It is organized in two main parts:

Part I Programming Model

Part II Hardware Descriptions

Part I contains software-related information to familiarize you with the microcontroller's architecture, programming model, instruction set, and interrupt structure. It has six chapters:

Chapter 1	Product Overview	Chapter 4	Control Registers
Chapter 2	Address Spaces	Chapter 5	Interrupt Structure
Chapter 3	Addressing Modes	Chapter 6	Instruction Set

Chapter 1, "Product Overview," is a high-level introduction to S3C84MB/F84MB with general product descriptions, as well as detailed information about individual pin characteristics and pin circuit types.

Chapter 2, "Address Spaces," describes program and data memory spaces, the internal register file, and register addressing. Chapter 2 also describes working register addressing, as well as system stack and user-defined stack operations.

Chapter 3, "Addressing Modes," contains detailed descriptions of the addressing modes that are supported by the S3C8-series CPU.

Chapter 4, "Control Registers," contains overview tables for all mapped system and peripheral control register values, as well as detailed one-page descriptions in a standardized format. You can use these easy-to-read, alphabetically organized, register descriptions as a quick-reference source when writing programs.

Chapter 5, "Interrupt Structure," describes the S3C84MB/F84MB interrupt structure in detail and further prepares you for additional information presented in the individual hardware module descriptions in Part II.

Chapter 6, "Instruction Set," describes the features and conventions of the instruction set used for all S3C8-series microcontrollers. Several summary tables are presented for orientation and reference. Detailed descriptions of each instruction are presented in a standard format. Each instruction description includes one or more practical examples of how to use the instruction when writing an application program.

A basic familiarity with the information in Part I will help you to understand the hardware module descriptions in Part II. If you are not yet familiar with the S3C-series microcontroller family and are reading this manual for the first time, we recommend that you first read Chapters 1–3 carefully. Then, briefly look over the detailed information in Chapters 4, 5, and 6. Later, you can reference the information in Part I as necessary.

Part II "hardware Descriptions," has detailed information about specific hardware components of the S3C84MB/F84MB microcontroller. Also included in Part II are electrical, mechanical, Flash MCU, and development tools data. It has 16 chapters:

Chapter 7	Clock Circuit	Chapter 15	10-bit A/D Converter
Chapter 8	RESET and Power-Down	Chapter 16	PWM
Chapter 9	I/O Ports	Chapter 17	Pattern Generation Module
Chapter 10	Basic Timer	Chapter 18	Embedded Flash Memory Interface
Chapter 11	8-bit Timer A/B/C(0/1)	Chapter 19	Electrical Data
Chapter 12	16-bit Timer 1(0/1)	Chapter 20	Mechanical Data
Chapter 13	Serial I/O Port	Chapter 21	S3F84MB Flash MCU
Chapter 14	UART(0/1)	Chapter 22	Development Tools

Table of Contents

Part I — Programming Model

Chapter 1 Product Overview

S3C8-Series Microcontrollers	1-1
S3C84MB/F84MB Microcontroller	1-1
Features	1-2
Block Diagram	1-3
Pin Assignment	1-4
Pin Descriptions	1-6
Pin Circuits	1-9

Chapter 2 Address Spaces

Overview	2-1
Program Memory (ROM)	2-2
Smart Option	2-3
Register Architecture	
Register Page Pointer (PP)	2-6
Register Set 1	
Register Set 2	2-7
Prime Register Space	
Working Registers	
Using the Register Pointers	2-10
Register Addressing	
Common Working Register Area (C0H–CFH)	
4-Bit Working Register Addressing	
8-Bit Working Register Addressing	
System and User Stack	

Chapter 3 Addressing Modes

Overview	
Register Addressing Mode (R)	
Indirect Register Addressing Mode (IR)	
Indexed Addressing Mode (X)	
Direct Address Mode (DA)	
Indirect Address Mode (IA)	
Relative Address Mode (RA)	
Immediate Mode (IM)	

Chapter 4 Control Registers

Overview	4-1
----------	-----

Chapter 5 Interrupt Structure

Overview	5-1
Interrupt Types	5-2
S3C84MB/F84MB Interrupt Structure	
Interrupt Vector Addresses	5-5
Enable/Disable Interrupt Instructions (EI, DI)	5-7
System-Level Interrupt Control Registers	5-7
Interrupt Processing Control Points	5-8
Peripheral Interrupt Control Registers	5-9
System Mode Register (SYM)	
Interrupt Mask Register (IMR)	5-11
Interrupt Priority Register (IPR)	
Interrupt Request Register (IRQ)	5-14
Interrupt Pending Function Types	5-15
Interrupt Source Polling Sequence	
Interrupt Service Routines	5-16
Generating interrupt Vector Addresses	5-17
Nesting of Vectored Interrupts	5-17

Chapter 6 Instruction Set

Overview	6-1
Data Types	6-1
Register Addressing	6-1
Addressing Modes	6-1
Flags Register (FLAGS)	6-6
Flag Descriptions	6-7
Instruction Set Notation	6-8
Condition Codes	6-12
Instruction Descriptions	6-13
•	

Part II Hardware Descriptions

Chapter 7 Clock Circuit

Overview	7-1
System Clock Circuit	7-1
Clock Status During Power-Down Modes	
System Clock Control Register (CLKCON)	7-3

Chapter 8 RESET and Power-Down

System Reset	8-1
Overview	8-1
Normal Mode Reset Operation	8-1
Hardware Reset Values	8-2
Power-Down Modes	8-6
Stop Mode	8-6
Idle Mode	8-7

Chapter 9 I/O Ports

Overview	
Port Data Registers	
Port 0	
Port 1	
Port 2	
Port 3	
Port 4	
Port 5	
Port 6	
Port 7	
Port 8	

Chapter 10 Basic Timer

Overview	
Basic Timer (BT)	
Basic Timer Control Register (BTCON)	
Basic Timer Function Description	

Chapter 11 8-bit Timer A/B/C(0/1)

Bit Timer A 11-1
Overview
Function Description
Timer A Control Register (TACON)
Block Diagram
Bit Timer B
Overview
Block Diagram 11-5
Timer B Control Register (TBCON) 11-6
Timer B Pulse Width Calculations
Bit Timer C (0/1) 11-11
Overview
Timer C (0/1) Control Register (TCCON0, TCCON1) 11-12
Block Diagram

Chapter 12 16-bit Timer 1(0/1)

Overview	
Function Description	
Timer 1(0/1) Control Register (T1CON0, T1CON1).	
Block Diagram	

Chapter 13 Serial I/O Port

verview	3-1
Programming Procedure13	3-1
SIO Control Register (SIOCON)	
SIO Prescaler Register (SIOPS, SIOPS1)	
Block Diagram	3-3
Serial I/O Timing Diagrams1	

Chapter 14 UART(0/1)

Overview	
Programming Procedure	14-1
Uart Control Register (UARTCON0, UARTCON1, UARTCON2)	
Uart Interrupt Pending Register (UARTPND)	14-3
Uart Parity Control and Status Register (UARTPRT)	14-4
Uart Data Register (UDATA0, UDATA1, UDATA2)	14-5
Uart Baud Rate Data Register (BRDATA0, BRDATA1, BRDATA2)	14-5
Baud Rate Calculations (UART0)	
Block Diagram	14-7
Uart Mode 0 Function Description	
Uart Mode 1 Function Description	14-9
Uart Mode 2 Function Description	14-10
Uart Mode 3 Function Description	
Serial Communication for Multiprocessor Configurations	14-12

Chapter 15 10-bit A/D Converter

Overview1	5-1
Function Description1	5-1
A/D Converter Control Register (ADCON)1	
Internal Reference Voltage Levels1	5-4
Conversion Timing1	5-4
Internal A/D Conversion Procedure1	

Chapter 16 Pulse Width Modulation

Overview	
PWM Control Register (PWMCON)	
PWM2–PWM3	
PWM2, PWM3 Function Description	
Staggered PWM Outputs	
PWM0–PŴM1	
PWM Counter	16-6
PWM Data and Extension Registers	
PWM Clock Rate	
PWM0 and PWM1 Function Description	16-8

Chapter 17 Pattern Generation Module

verview	17-1
Pattern Gneration Flow	17-1

Chapter 18 Embedded FLASH Memory Interface

Overview	
Flash Memory Control Registers	
Flash Memory Control Register	
Flash Memory User Programming Enable Register	
Flash Memory Sector Address Register	
Sector Erase	
Programming	
Reading	
Hard Lock Protection	

Chapter 19 Electrical Data

Chapter 20 Mechanical Data

Overview

Chapter 21 S3F84MBJ Flash MCU

Dverview	21-1
Operating Mode Characteristics	21-5

Chapter 22 Development Tools

Overview	22-1
Target Boards	22-1
Programming Socket Adapter	
TB84MB Target Board	
Idle LED	
Stop LED	22-5
OTP/MTP Programmer (Writer)	22-8

List of Figures

Figure Number

1-1	S3C84MB/F84MB Block Diagram	
1-2	S3C84MB/F84MB Pin Assignment (80-QFP)	
1-3	S3C84MB/F84MB Pin Assignment (80-TQFP)	
1-4	Pin Circuit Type B (RESETB)	
1-5	Pin Circuit Type C	
1-6	Pin Circuit Type D (P0, P1, P2 except P2.3, P3, P8 except P8.4, P8.5)	
1-7	Pin Circuit Type D-1 (P4, P8.4, P8.5)	
1-8	Pin Circuit Type E (ADC0-ADC7)	
1-9	Pin Circuit Type F (P6)	
1-10	Pin Circuit Type G (P5.7-P5.4)	1-11
2-1	Program Memory Address Space	2-2
2-2	Smart Option	2-3
2-3	Internal Register File Organization	
2-4	Register Page Pointer (PP)	
2-5	Set 1, Set 2, Prime Area Register	
2-6	8-Byte Working Register Areas (Slices)	
2-7	Contiguous 16-Byte Working Register Block	
2-8	Non-Contiguous 16-Byte Working Register Block	
2-9	16-Bit Register Pair	
2-10	Register File Addressing	
2-11	Common Working Register Area	
2-12	4-Bit Working Register Addressing	
2-13	4-Bit Working Register Addressing Example	
2-14	8-Bit Working Register Addressing	
2-15	8-Bit Working Register Addressing Example	
2-16	Stack Operations	
3-1	Register Addressing	3-0
3-2	Working Register Addressing	
3-3	Indirect Register Addressing to Register File	
3-4	Indirect Register Addressing to Program Memory	
3-4	Indirect Working Register Addressing to Register File	
3-6	Indirect Working Register Addressing to Program or Data Memory	
3-7	Indexed Addressing to Register File	
3-8	Indexed Addressing to Register File Indexed Addressing to Program or Data Memory with Short Offset	
3-9		
3-9 3-10	Indexed Addressing to Program or Data Memory Direct Addressing for Load Instructions	
3-10	Direct Addressing for Call and Jump Instructions	
3-11	Indirect Addressing for Call and Jump Instructions	
3-12 3-13	5	
	Relative Addressing	
3-14	Immediate Addressing	3-14

List of Figures (Continued)

Figure Number	Title	Page Number
4-1	Register Description Format	4-5
5-1 5-2 5-3 5-4 5-5 5-6 5-7 5-8 5-9	S3C8-Series Interrupt Types S3C84MB/F84MB Interrupt Structure ROM Vector Address Area Interrupt Function Diagram System Mode Register (SYM) Interrupt Mask Register (IMR) Interrupt Mask Register (IMR) Interrupt Request Priority Groups Interrupt Priority Register (IPR) Interrupt Request Register (IRQ)	
6-1 7-1 7-2 7-3	System Flags Register (FLAGS) Main Oscillator Circuit (Crystal or Ceramic Oscillator) System Clock Circuit Diagram System Clock Control Register (CLKCON)	
9-1 9-2 9-3 9-4 9-5 9-6 9-7 9-8 9-9 9-10 9-11 9-12 9-13 9-14 9-15 9-16 9-17 9-18	Port 0 Control Register (P0CON) Port 1 Control Register (P1CON) Port 1 Extension Control Register (P1CONEX) Port 2 High-Byte Control Register (P2CONH) Port 2 Low-Byte Control Register (P2CONL) Port 3 High-Byte Control Register (P3CONH) Port 3 Low-Byte Control Register (P3CONL) Port 4 High-Byte Control Register (P4CONL) Port 4 Low-Byte Control Register (P4CONL) Port 4 Low-Byte Control Register (P4CONL) Port 4 Interrupt Control Register (P4INT) Port 4 Interrupt Pending Register (P4INTPND) Port 5 High-Byte Control Register (P5CONH) Port 5 Low-Byte Control Register (P5CONL) Port 6 Control Register (P6CONL) Port 7 Control Register (P7CON) Port 8 High-Byte Control Register (P8CONH) Port 8 Low-Byte Control Register (P8CONL) Port 8 Low-Byte Control Register (P8CONL) Port 8 Interrupt Pending Register (P8CONL)	9-6 9-7 9-9 9-10 9-12 9-13 9-15 9-16 9-17 9-19 9-20 9-23 9-25 9-26

List of Figures (Continued)

Figure Number	Title	Page Number
10-1	Basic Timer Control Register (BTCON)	10-2
10-2	Basic Timer Block Diagram	10-4
11-1	Timer A Control Register (TACON)	11-3
11-2	Timer A Functional Block Diagram	11-4
11-3	Timer B Functional Block Diagram	11-5
11-4	Timer B Control Register (TBCON)	
11-5	Timer B Data Registers (TBDATAH, TBDATAL)	
11-6	Timer B Output Flip-Flop Waveforms in Repeat Mode	
11-7	Timer C (0/1) Control Register (TCCON0, TCCON1)	
11-8	Timer C (0/1) Functional Block Diagram	11-13
12-1	Timer 1(0/1) Control Register (T1CON0, T1CON1)	12-4
12-2	Timer A and Timer 1(0/1) Pending Register (TINTPND)	12-5
12-3	Timer 1(0/1) Functional Block Diagram	12-6
13-1	SIO Module Control Register (SIOCON)	12-2
13-2	SIO Prescaler Register (SIOPS)	
13-3	SIO Functional Block Diagram	
13-4	SIO Timing in Transmit/Receive Mode (Tx at falling edge, SIOCON.4=0)	12-4
13-5	SIO Timing in Transmit/Receive Mode (Tx at rising edge, SIOCON.4=1)	
13-6	SIO Timing in Receive-Only Mode (Rising edge start)	12-5
14-1	UART Control Register (UARTCON0, UARTCON1, UARTCON2)	14-2
14-2	UART Interrupt Pending Register (UARTPND)	
14-3	UART Parity Register	
14-4	UART Data Register (UDATA0, UDATA1, UDATA2)	
14-5	UART Baud Rate Data Register (BRDATA0, BRDATA1, BRDATA2)	14-5
14-6	UART Functional Block Diagram	14-7
14-7	Timing Diagram for UART Mode 0 Operation	
14-8	Timing Diagram for UART Mode 1 Operation	
14-9	Timing Diagram for UART Mode 2 Operation	
14-10	Connection Example for Multiprocessor Serial Data Communications	14-13
15-1	A/D Converter Control Register (ADCON)	
15-2	A/D Converter Data Register (ADDATAH, ADDATAL)	
15-3	A/D Converter Circuit Diagram	
15-4	A/D Converter Timing Diagram	
15-5	Recommended A/D Converter Circuit for Highest Absolute Accuracy	15-5

List of Figures (Concluded)

Figure Number	Title	Page Number
16-1	PWM Control Register (PWMCON)	16-2
16-2	Block Diagram for PWM2 and PWM3	16-3
16-3	PWM Waveforms for PWM2, PWM3	16-4
16-4	PWM Clock to PWM2, PWM3 Output Delays	16-5
16-5	Block Diagram for PWM0 and PWM1	16-7
16-6	Decision Flowchart for PWM0 Programming Tip	16-9
17-1	Pattern Generation Flow	17-1
17-2	PG Control Register (PGCON)	
17-3	Pattern Generation Circuit Diagram	
18-1	Program Memory Address Space	18-2
18-2	Flash Memory Control Register (FMCON)	
18-3	Flash Memory User Programming Enable Register (FMUSR)	
18-4	Flash Memory Sector Address Register (FMSECH)	
18-5	Flash Memory Sector Address Register (FMSECL)	18-5
18-6	Sectors in User Program Mode	
18-7	Sector Erase Flowchart in User Program Mode	18-7
18-8	Byte Program Flowchart in a User Program Mode	18-11
18-9	Program Flowchart in a User Program Mode	18-12
19-1	Input Timing for External Interrupts (Ports 4, Port 8.5, Port 8.6)	19-5
19-2	Input Timing for RESET	19-5
19-3	Stop Mode Release Timing Initiated by Interrupts	19-6
19-4	Clock Timing Measurement at X _{IN}	19-10
19-5	Operating Voltage Range	19-10
20-1 20-2	S3C84MB/F84MB 80-QFP Standard Package Dimension (in Millimeters) S3C84MB/F84MB 80-TQFP Standard Package Dimension (in Millimeters)	
21-1	S3F84MBJ Pin Assignments (80-QFP)	21-2
21-2	S3F84MBJ Pin Assignments (80-TQFP)	21-3
22-1	Development System Configuration	
22-2	TB84MB Target Board Configuration	
22-3	40-Pin Connectors for TB84MB (S3C84MBJ, 80-QFP Package)	
22-4	TB84MB Cable for 80-QFP Adapter	22-6

List of Tables

Table Number	Title	Page Number
1-1	S3C84MB/F84MB Pin Descriptions (80-QFP)	1-6
2-1	S3C84MB/F84MB Register Type Summary	2-4
4-1	Set 1, Bank 0 Registers	
4-2	Set 1, Bank 0 Registers	
4-3	Set 1, Bank 1 Registers	4-3
4-4	Page 8 Registers	4-4
5-1	Interrupt Vectors	
5-2	Interrupt Control Register Overview	
5-3	Interrupt Source Control and Data Registers	5-9
6-1	Instruction Group Summary	
6-2	Flag Notation Conventions	
6-3	Instruction Set Symbols	6-8
6-4	Instruction Notation Conventions	6-9
6-5	Opcode Quick Reference	6-10
6-6	Condition Codes	6-12
8-1	S3C84MB/F84MB Set 1, Bank 0 Register Values after RESET	8-2
8-2	S3C84MB/F84MB Set 1, Bank 0 Register Values after RESET	
8-3	S3C84MB/F84MB Set 1, Bank 1 Register Values after RESET	
8-4	S3C84MB/F84MB Page 8 Register Values after RESET	
9-1	S3C84MB/F84MB Port Configuration Overview	9-1
9-2	Port Data Register Summary	
14-1	Commonly Used Baud Rates Generated by BRDATA0, BRDATA1, BRDATA2	14-6
16-1	PWM0 and PWM1 Control and Data Registers	16-7
16-2	PWM Output "Stretch" Values for Extension Registers PWM0EX and PWM1E	X16-8
18-1	ISP Sector Size	18-3

List of Tables (Continued)

Table Title Page Number Number Absolute Maximum Ratings 19-2 19-1 19-2 19-3 19-4 Input/Output Capacitance 19-6 19-5 19-6 LVR(Low Voltage Reset) Circuit Characteristics 19-7 19-7 19-8 19-9 Flash Memory A.C. Electrical Characteristics 19-8 Main Oscillator Frequency (f_{OSC1})..... 19-9 19-10 19-11 Descriptions of Pins Used to Read/Write the Flash ROM 21-4 21-1 21-2 Power Selection Settings for TB84MB..... 22-4 22-1 22-2 Emulator Version Selection Settings for TB84MB 22-4 22-3

List of Programming Tips

Description	Pa	age
Chapter 2:	Address Spaces	
Setting the R Using the RF Addressing t	age Pointer for RAM clear (Page 0, Page 1)	0 1 5
Chapter 11:	8-bit Timer A/B/C(0/1)	
To generate Using the Tin Using the Tin	38 kHz, 1/3duty signal through P2.4 11- a one pulse signal through P2.4 11- ner A 11- ner B 11- ner C(0) 11-	·10 ·14 ·15
Chapter 12:	16-bit Timer 1(0/1)	
Using the Tir	mer 1(0)12-	·7
Chapter 13:	Serial I/O Port	
Use Internal	Clock to Transmit and Receive Serial Data13-	.5
Chapter 15:	10-Bit A/D Converter	
Configuring A	A/D Converter15-	·6
Chapter 17:	Pattern Generation Module	
Using the Pa	attern Generation17-	.3

Chapter 18: Embedded FLASH Memory Interface

Sector Erase	18-8
Programming	
Reading	
Hard Lock Protection	
	. 10 10

List of Register Descriptions

Full Register Name

DRDATAZ		······································
BTCON	Basic Timer Control Register	4-8
CLKCON	System Clock Control Register	4-9
FLAGS	System Flags Register	4-10
FMCON	Flash Memory Control Register	4-11
FMUSR	Flash Memory User Programming Control Register	4-12
FMSECH	Flash Memory Sector Address Register (High Byte)	4-12
FMSECL	Flash Memory Sector Address Register (Low Byte)	4-12
IMR	Interrupt Mask Register	4-13
IPH	Instruction Pointer (High Byte)	4-14
IPL	Instruction Pointer (Low Byte)	4-14
IPR	Interrupt Priority Register	4-15
IRQ	Interrupt Request Register	4-16
P0CON	Port 0 Control Register	4-17
P1CON	Port 1 Control Register	4-18
P1CONEX	Port 1 Extension Control Register	4-19
P2CONH	Port 2 Control Register (High Byte)	
P2CONL	Port 2 Control Register (Low Byte)	4-21
P3CONH	Port 3 Control Register (High Byte)	
P3CONL	Port 3 Control Register (Low Byte)	
P4CONH	Port 4 Control Register (High Byte)	
P4CONL	Port 4 Control Register (Low Byte)	
P4INT	Port 4 Interrupt Control Register	
P4INTPND	Port 4 Interrupt Pending Register	4-27
P5CONH	Port 5 Control Register (High Byte)	
P5CONL	Port 5 Control Register (Low Byte)	
P6CON	Port 6 Control Register	
P7CON	Port 7 Control Register	4-31
P8CONH	Port 8 Control Register (High Byte)	4-32
P8CONL	Port 8 Control Register (Low Byte)	
P8INTPND	Port 8 Interrupt Pending Register	4-34
PGCON	Pattern Generation Control Register	

Register

Identifier

ADCON

BRDATA0

BRDATA1

BRDATA2

Page

Number

List of Register Descriptions (Continued)

Register Identifier Full Register Name

Page Number

PP	Register Page Pointer4	-36
PWM0EX/1EX	PWM 0/1 Extension Register	
PWMCON	PWM Control Register	
RP0	Register Pointer 04	
RP1	Register Pointer 14	
SIOCON	SIO Control Register4	
SIOPS	SIO Prescaler Register4	
SIOCON1	SIO1 Control Register4	
SIOPS1	SIO1 Prescaler Register4	-43
SPH	Stack Pointer (High Byte)4	
SPL	Stack Pointer (Low Byte)4	-44
STOPCON	Stop Control Register4	-44
SYM	System Mode Register4	-45
T1CON0	Timer 1(0) Control Register4	-46
T1CON1	Timer 1(1) Control Register4	-47
TACON	Timer A Control Register4	-48
TBCON	Timer B Control Register4	-49
TCCON0	Timer C(0) Control Register4	-50
TCCON1	Timer C(1) Control Register4	-51
TINTPND	Timer A,1 Interrupt Pending Register4	-52
UARTCON0	UART0 Control Register4	-53
UARTCON1	UART1 Control Register4	-54
UARTCON2	UART2 Control Register4	-55
UARTPND	UART1(0) Pending Register4	-56
UARTPRT	UART0, 1, 2 Parity Control Register4	-57

List of Instruction Descriptions

Instruction Mnemonic	Full Register Name	Page Number		
ADC	Add with Carry	6-14		
ADD	Add	6-15		
AND	Logical AND	6-16		
BAND	Bit AND	6-17		
BCP	Bit Compare	6-18		
BITC	Bit Complement	6-19		
BITR	Bit Reset	6-20		
BITS	Bit Set	6-21		
BOR	Bit OR	6-22		
BTJRF	Bit Test, Jump Relative on False	6-23		
BTJRT	Bit Test, Jump Relative on True	6-24		
BXOR	Bit XOR	6-25		
CALL	Call Procedure	6-26		
CCF	Complement Carry Flag	6-27		
CLR	Clear	6-28		
COM	Complement	6-29		
CP	Compare	6-30		
CPIJE	Compare, Increment, and Jump on Equal	6-31		
CPIJNE	Compare, Increment, and Jump on Non-Equal	6-32		
DA	Decimal Adjust	6-33		
DEC	Decrement	6-35		
DECW	Decrement Word	6-36		
DI	Disable Interrupts	6-37		
DIV	Divide (Unsigned)	6-38		
DJNZ	Decrement and Jump if Non-Zero	6-39		
EI	Enable Interrupts	6-40		
ENTER	Enter	6-41		
EXIT	Exit			
IDLE	Idle Operation			
INC	Increment	6-44		
INCW	Increment Word	6-45		
IRET	Interrupt Return			
JP	Jump			
JR	Jump Relative			
LD	Load			
LDB	Load Bit	6-51		

List of Instruction Descriptions (Continued)

Full Register Name

Page Number

Load Memory	6-52
Load Memory and Decrement	6-54
Load Memory and Increment	6-55
Load Memory with Pre-Decrement	6-56
Load Memory with Pre-Increment	6-57
Load Word	6-58
Multiply (Unsigned)	6-59
Next	6-60
No Operation	6-61
Logical OR	6-62
Pop from Stack	6-63
Pop User Stack (Decrementing)	6-64
Pop User Stack (Incrementing)	6-65
Push to Stack	6-66
Push User Stack (Decrementing)	6-67
Push User Stack (Incrementing)	6-68
Reset Carry Flag	6-69
Return	6-70
Rotate Left	6-71
Rotate Left through Carry	6-72
Rotate Right	6-73
Rotate Right through Carry	6-74
Select Bank 0	6-75
Select Bank 1	6-76
Subtract with Carry	6-77
Set Carry Flag	6-78
Shift Right Arithmetic	6-79
Set Register Pointer	6-80
Stop Operation	6-81
Subtract	6-82
Swap Nibbles	6-83
Test Complement under Mask	6-84
Test under Mask	6-85
Wait for Interrupt	6-86
Logical Exclusive OR	6-87
	Load Memory

Instruction

Mnemonic

PRODUCT OVERVIEW

S3C8-SERIES MICROCONTROLLERS

Samsung's S3C8-series of 8-bit single-chip CMOS microcontrollers offers a fast and efficient CPU, a wide range of integrated peripherals, and various mask-programmable ROM sizes. The major CPU features are:

- Efficient register-oriented architecture
- Selectable CPU clock sources
- Idle and Stop power-down mode released by interrupt or reset
- Built-in basic timer with watchdog function

A sophisticated interrupt structure recognizes up to eight interrupt levels. Each level can have one or more interrupt sources and vectors. Fast interrupt processing (within a minimum of four CPU clocks) can be assigned to specific interrupt levels.

S3C84MB/F84MB MICROCONTROLLER

The S3C84MB/F84MB single-chip CMOS microcontrollers are fabricated using the highly advanced CMOS process, based on Samsung's latest CPU architecture.

The S3C84MB is a microcontroller with a 64K-byte mask-programmable ROM embedded.

The S3F84MB is a microcontroller with a 64K-byte Full-Flash ROM embedded.

Using a proven modular design approach, Samsung engineers have successfully developed the S3C84MB/F84MB by integrating the following peripheral modules with the powerful SAM8RC core:

- Nine programmable I/O ports, including eight 8-bit ports and one 6-bit ports, for a total of 70 pins.
- Ten bit-programmable pins for external interrupts.
- One 8-bit basic timer for oscillation stabilization and watchdog function (system reset).
- Four 8-bit timer/counter and two 16-bit timer/counter with selectable operating modes.
- 3 asynchronous UART
- 2 synchronous SIO
- 15-channel A/D converter

The S3C84MB/F84MB is versatile microcontroller for CD-ROM and ADC application, etc. They are currently available in 80-pin QFP and 80-pin TQFP package.

FEATURES

CPU

SAM8RC core

Memory

- 2064-bytes internal register file
- 64K-bytes internal program memory
 S3C84MB: Mask ROM
 - S3F84MB: Flash type memory

Oscillation Sources

- Crystal, Ceramic
- CPU clock divider (1/1, 1/2, 1/8, 1/16)

Instruction Set

- 78 instructions
- IDLE and STOP instructions added for powerdown modes

Instruction Execution Time

• 400 ns at 10-MHz f_{OSC} (minimum)

Interrupts

- 27 interrupt sources with 27 vectors.
- 8 level, 27 vector interrupt structure

I/O Ports

Total 70 bit-programmable pins

Timers and Timer/Counters

- One programmable 8-bit basic timer (**BT**) for oscillation stabilization control or watchdog-timer function.
- One 8-bit timer/counter (**Timer A**) with three operating modes; Interval mode, capture mode and PWM mode.
- One 8-bit timer/counter (**Timer B**) Carrier frequency (or PWM) generator.
- Two 8-bit timer with PWM mode (Timer C0,C1)
- Two 16-bit capture timer/counter (**Timer 10,11**) with two operating modes; Interval mode, Capture mode for pulse period or duty.

A/D Converter

- 10-bit resolution
- 15 analog input channels
- Max 2.5MHz f_{ADC} clock.

PWM

- Two 14-bit PWM
- Two 8-bit PWM

Asynchronous UART

- Full duplex 3 channels UARTs
- Programmable baud rate
- Supports serial data transmit/receive operations with 8-bit, 9-bit in UART

Synchronous SIO

- Programmable baud rate
- Two synchronous serial I/O modules

Pattern Generation Module

• Pattern generation module triggered by timer match signal and S/W.

Operating Temperature Range

• -40° C to + 85° C

Operating Voltage Range

- 2.4 V to 5.5 V at 10MHz f_{OSC}
- 4.5 V to 5.5 V at 16MHz f_{OSC}

Package Type

• 80 pin QFP, 80 pin TQFP

Built-in RESET circuit (LVR)

- Low Voltage check to make system reset
- $V_{LVR} = 2.8 / 4.0 V$ (by Smart Option)

Smart Option

BLOCK DIAGRAM

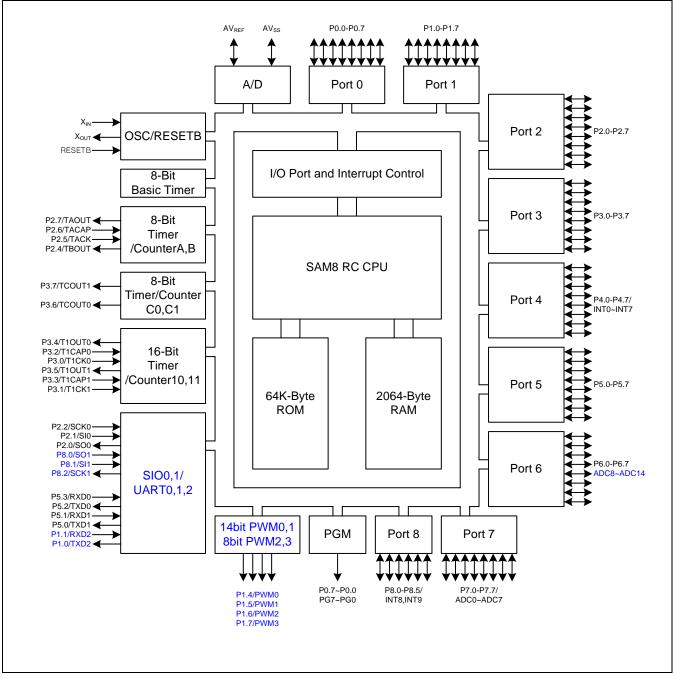


Figure 1-1. S3C84MB/F84MB Block Diagram

PIN ASSIGNMENT

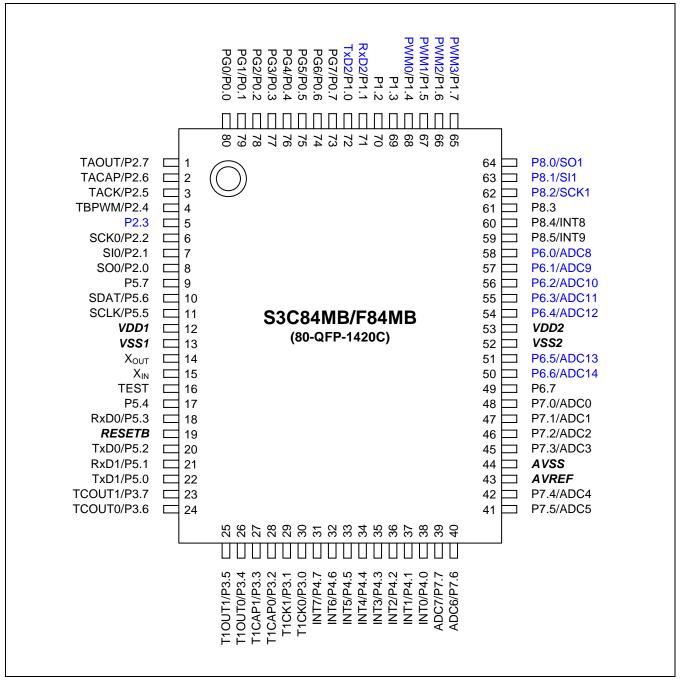


Figure 1-2. S3C84MB/F84MB Pin Assignment (80-QFP)

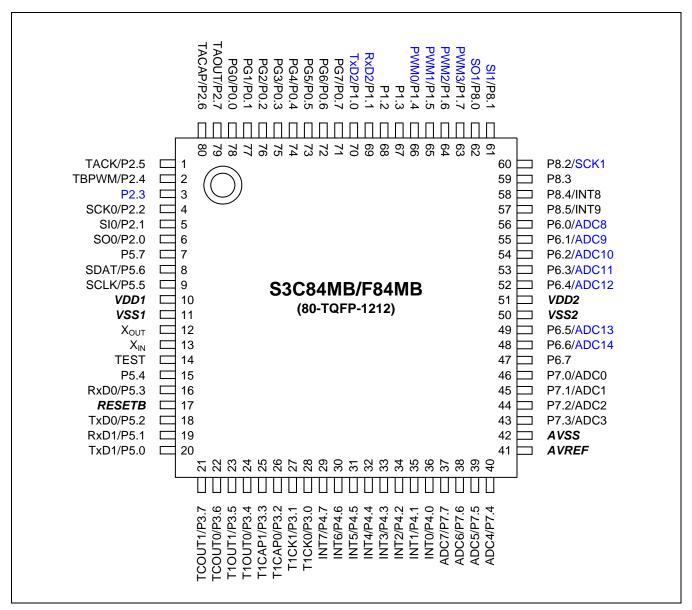


Figure 1-3. S3C84MB/F84MB Pin Assignment (80-TQFP)

PIN DESCRIPTIONS

Pin Name	Pin Type	Pin Description	Circuit Type	Pin Number	Share Pins
P0.0–P0.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P0.0–P0.7 can be used as the PG output port (PG0–PG7).	D	80-73	PG0–PG7
P1.0–P1.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up.	D	72-65	TxD2,RxD2 PWM0,PWM1 PWM2,PWM3
P2.0-P2.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P2.0~P2.7 can be used as I/O for TIMERA, TIMERB, SIO	D	8-1	SO0 SI0 SCK0 TBPWM TACK TACAP TAOUT
P3.0–P3.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P3.0~P3.7 can be used as I/O for TIMERC0/C1, TIMER10/11	D	30-23	T1CK0 T1CK1 T1CAP0 T1CAP1 T1OUT0 T1OUT1 TCOUT0 TCOUT1

Table 1-1. S3C84MB/F84MB Pin Descriptions (80-QFP)

Pin Name	Pin Type	Pin Description	Circuit Type	Pin Number	Share Pins
P4.0-P4.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. P4.0–P4.7 can alternately be used as inputs for external interrupts INT0–INT7, respectively (with noise filters and interrupt controller)	D-1	38-31	INT0– INT7
P5.0–P5.7	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P5.0~P5.3 can be used as I/O for serial por, UART0, UART1, respectively.	G	22-17,11-9	TxD1 RxD1 TxD0 RxD0
P6.0–P6.7	I/O	N-channel, open-drain output, Alternatively used as analog input pins for A/D converter modules.	F	58-54,51-49	ADC8– ADC14
P7.0–P7.7	I	General-purpose digital input ports. Alternatively used as analog input pins for A/D converter modules.	E	48-45,42-39	ADC0- ADC7
P8.0–P8.5	I/O	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. P8.4, P8.5 can alternately be used as inputs for external interrupts INT8, INT9, respectively (with noise filters and interrupt controller)	D,D-1	64-59	INT8,INT9 SO1 SI1 SCK1

D

D

D

D

D

D

D

D

D

D

В

_

_

_

20, 22

3

2

1

4

24, 23

39, 30

28, 27

26, 25

7, 8, 9

19

16

12, 53,

13, 52

15, 14

P5.2,P5.0

P2.5

P2.6

P2.7

P2.4

P3.6,P3.7

P3.0,P3.1

P3.2,P3.3

P3.4,P3.5

P2.1,P2.0, P2.2

_

_

_

_

TxD0, TxD1

TACK

TACAP

TAOUT

TBPWM

TCOUT0

TCOUT1

T1CK0

T1CK1

T1CAP0

T1CAP1

T1OUT0

T1OUT1

RESETB

TEST

SI,SO,SCK

VDD1, VDD2,

VSS1, VSS2

X_{IN}, X_{OUT}

Ο

I

Т

Ο

Ο

0

Т

I

0

I/O

Т

Т

_

_

Pin Name	Pin Type	Pin Description	Circuit Type	Pin Number	Share Pins
AD0-AD7	Ι	Analog input pins for A/D converter module. Alternatively used as general-purpose digital input port 7.	E	48-45 42-39	P7.0–P7.7
AVREF, AVSS	-	A/D converter reference voltage and ground	-	43, 44	-
RxD0, RxD1	I/O	Serial data RxD pin for receive input and	D	18, 21	P5.3,P5.1

Serial data TxD pin for transmit output and

Pulse width modulation output pins for timer A

Carrier frequency output pins for timer B

Timer C 8-bit PWM mode output or counter

Timer 1 16-bit PWM mode output or counter

System reset pin (pull-up resistor: 240 k Ω)

Pull - down register connected internally

External clock input pins for timer A

External clock input pins for timer 1

transmit output (mode 0)

shift clock input (mode 0)

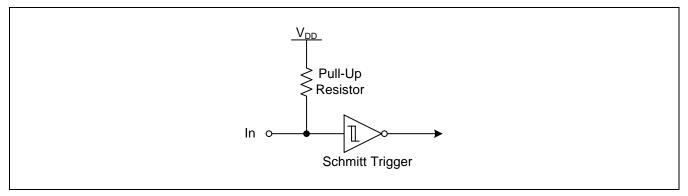
match toggle output pins

match toggle output pins

Synchronous SIO pins

Power input pins

Main oscillator pins


Capture input pins for timer 1

Capture input pins for timer A

Table 1-1. S3C84MB/F84MB Pin Descriptions (80-QFP) (Continued)

PIN CIRCUITS

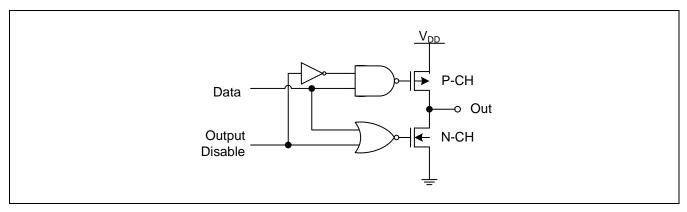


Figure 1-5. Pin Circuit Type C

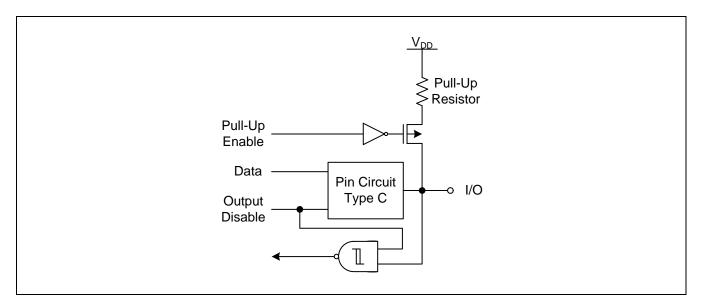


Figure 1-6. Pin Circuit Type D (P0, P1, P2 except P2.3, P3, P8 except P8.4, P8.5)

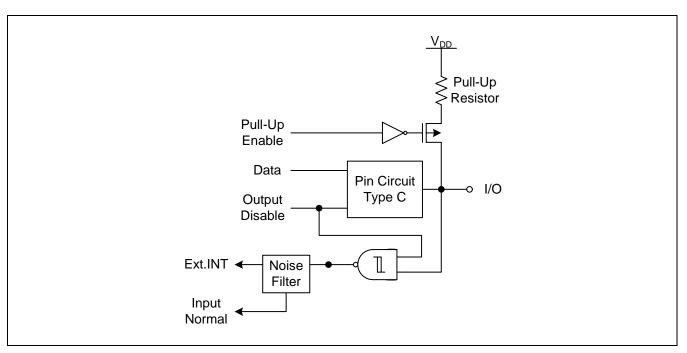


Figure 1-7. Pin Circuit Type D-1 (P4, P8.4, P8.5)

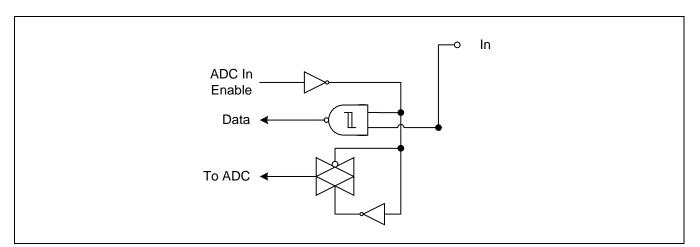
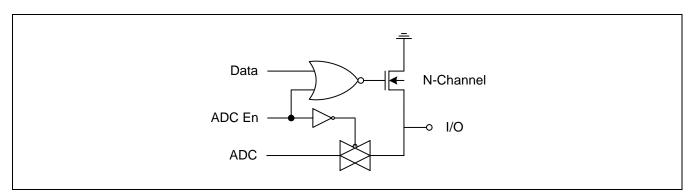



Figure 1-8. Pin Circuit Type E (ADC0-ADC7)

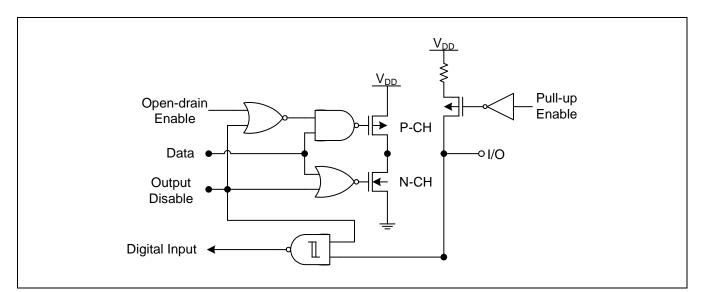


Figure 1-10. Pin Circuit Type G (P5.7-P5.4)

2 ADDRESS SPACES

OVERVIEW

The S3C84MB/F84MB microcontroller has two types of address space:

- Internal program memory (ROM)
- Internal register file (RAM)

A 16-bit address bus supports program memory operations. A separate 8-bit register bus carries addresses and data between the CPU and the register file.

The S3C84MB/F84MB has an internal 64-Kbyte mask-programmable ROM/FLASH ROM and 2064-byte RAM.

PROGRAM MEMORY (ROM)

Program memory (ROM) stores program codes or table data. The S3C84MB has 64-Kbytes of internal mask programmable program memory. The program memory address range is therefore 0H–FFFFH (see Figure 2-1).

The first 256 bytes of the ROM (0H–0FFH) are reserved for interrupt vector addresses. Unused locations in this address range can be used as normal program memory. If you use the vector address area to store a program code, be careful not to overwrite the vector addresses stored in these locations.

The ROM address at which a program execution starts after a reset is 0100H.

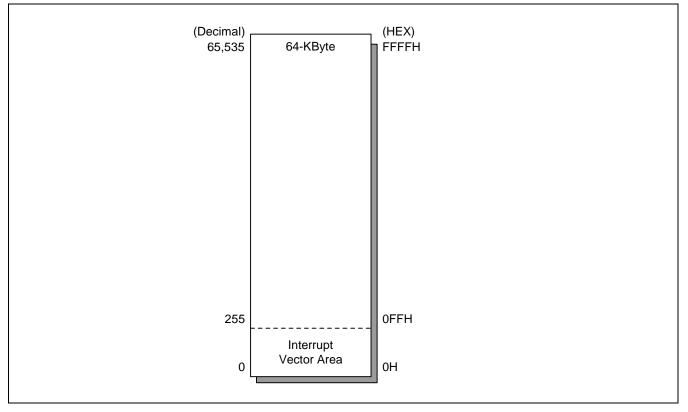


Figure 2-1. Program Memory Address Space

SMART OPTION

Smart option is the ROM option for starting condition of the chip. The ROM addresses used by smart option are from 003CH to 003FH. The default value of ROM is FFH.

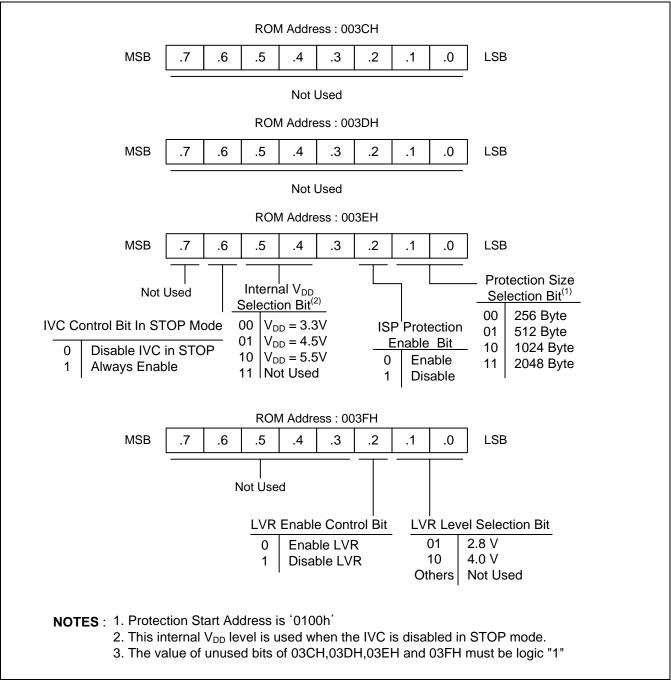


Figure 2-2. Smart Option

REGISTER ARCHITECTURE

In the S3C84MB/F84MB implementation, the upper 64-byte area of register files is expanded two 64-byte areas, called *set 1* and *set 2*. The upper 32-byte area of set 1 is further expanded two 32-byte register banks (bank 0 and bank 1), and the lower 32-byte area is a single 32-byte common area. In addition, set 2 is logically expanded 8 separately addressable register pages, page 0–page 7.

In case of S3C84MB/F84MB the total number of addressable 8-bit registers is 2,164. Of these 2,164 registers, 16 bytes are for CPU and system control registers, 84 bytes are for peripheral control and data registers, 16 bytes are used as a shared working registers, and 2,048 registers are for general-purpose use.

You can always address set 1 register locations, regardless of which of the 9 register pages is currently selected. Set 1 locations, however, can only be addressed using direct addressing modes.

The extension of register space into separately addressable areas (sets, banks, and pages) is supported by various addressing mode restrictions, the select bank instructions, SB0 and SB1, and the register page pointer (PP).

Specific register types and the area (in bytes) that they occupy in the register file are summarized in Table 2-1.

Register Type	Number of Bytes
General-purpose registers (including 16-byte common working register area, the 192-byte prime register area, and the 64-byte set 2 area)	2,064
CPU and system control registers	16
Mapped clock, peripheral, I/O control, and data registers	84
Total Addressable Bytes	2,164

Table 2-1. S3C84MB/F84MB Register Type Summary

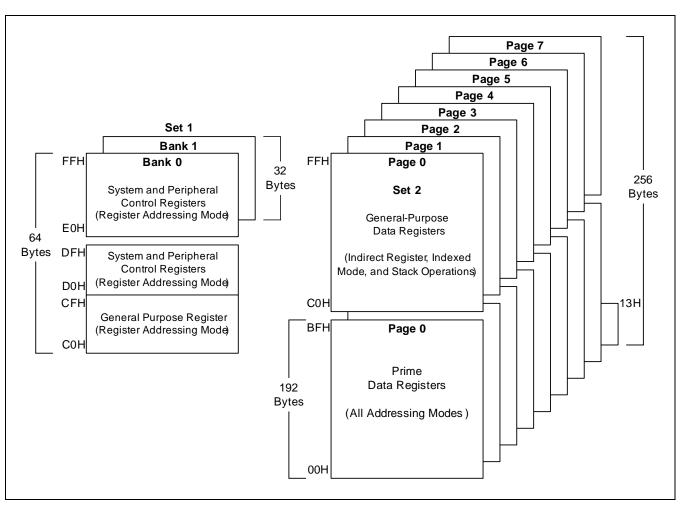


Figure 2-3. Internal Register File Organization

REGISTER PAGE POINTER (PP)

The S3C8-series architecture supports the logical expansion of the physical 2,064-byte internal register file (using an 8-bit data bus) into as many as 16 separately addressable register pages. Page addressing is controlled by the register page pointer (PP, DFH). In the S3C84MB/F84MB microcontroller, a paged register file expansion is implemented for data registers, and the register page pointer must be changed to address other pages.

After a reset, the page pointer's source value (lower nibble) and the destination value (upper nibble) are always "0000", automatically selecting page 0 as the source and destination page for register addressing.

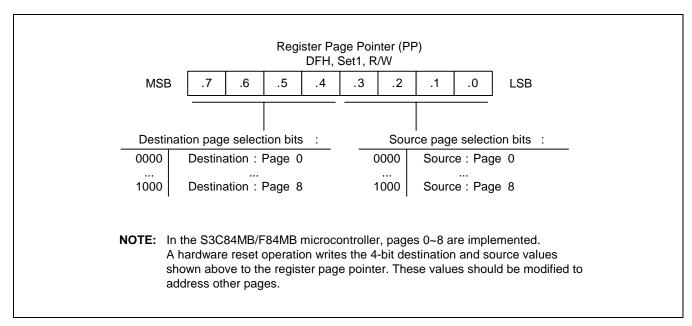


Figure 2-4. Register Page Pointer (PP)

PROGRAMMING TIP — Using the Page Pointer for RAM clear (Page 0, Page 1)

	LD SRP	PP,#00H #0C0H	;	Destination \leftarrow 0, Source \leftarrow 0
RAMCL0	LD CLR DJNZ	R0,#0FFH @R0 R0,RAMCL0	;	Page 0 RAM clear starts
	CLR	@R0	;	R0 = 00H
RAMCL1	LD LD CLR DJNZ	PP,#10H R0,#0FFH @R0 R0,RAMCL1		Destination \leftarrow 1, Source \leftarrow 0 Page 1 RAM clear starts
	CLR	@R0	;	R0 = 00H

NOTE: You should refer to page 6-40 and use DJNZ instruction properly when DJNZ instruction is used in your program.

REGISTER SET 1

The term set 1 refers to the upper 64 bytes of the register file, locations C0H-FFH.

The upper 32-byte area of this 64-byte space (E0H–FFH) is expanded two 32-byte register banks, *bank 0* and *bank 1*. The set register bank instructions, SB0 or SB1, are used to address one bank or the other. A hardware reset operation always selects bank 0 addressing.

The upper two 32-byte areas (bank 0 and bank 1) of set 1 (E0H–FFH) contains 64 mapped system and peripheral control registers. The lower 32-byte area contains 16 system registers (D0H–DFH) and a 16-byte common working register area (C0H–CFH). You can use the common working register area as a "scratch" area for data operations being performed in other areas of the register file.

Registers in set 1 locations are directly accessible at all times using Register addressing mode. The 16-byte working register area can only be accessed using working register addressing (For more information about working register addressing, please refer to Chapter 3, "Addressing Modes.")

REGISTER SET 2

The same 64-byte physical space that is used for set 1 locations C0H–FFH is logically duplicated to add another 64 bytes of register space. This expanded area of the register file is called set 2. For the S3C84MB/F84MB, the set 2 address range (C0H–FFH) is accessible on pages 0-7.

The logical division of set 1 and set 2 is maintained by means of addressing mode restrictions. You can use only Register addressing mode to access set 1 locations. In order to access registers in set 2, you must use Register Indirect addressing mode or Indexed addressing mode.

The set 2 register area is commonly used for stack operations.

PRIME REGISTER SPACE

The lower 192 bytes (00H–BFH) of the S3C84MB/F84MB's eight 256-byte register pages is called *prime register area*. Prime registers can be accessed using any of the seven addressing modes (see Chapter 3, "Addressing Modes.")

The prime register area on page 0 is immediately addressable following a reset. In order to address prime registers on pages 0, or 1 you must set the register page pointer (PP) to the appropriate source and destination values.

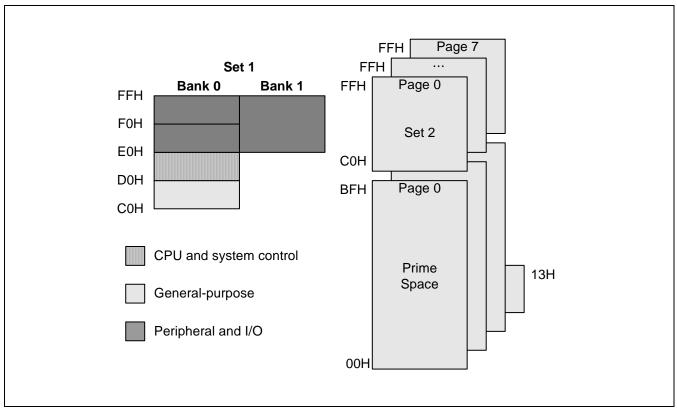


Figure 2-5. Set 1, Set 2, Prime Area Register

WORKING REGISTERS

Instructions can access specific 8-bit registers or 16-bit register pairs using either 4-bit or 8-bit address fields. When 4-bit working register addressing is used, the 256-byte register file can be seen by the programmer as one that consists of 32 8-byte register groups or "slices." Each slice comprises of eight 8-bit registers.

Using the two 8-bit register pointers, RP1 and RP0, two working register slices can be selected at any one time to form a 16-byte working register block. Using the register pointers, you can move this 16-byte register block anywhere in the addressable register file, except for the set 2 area.

The terms slice and block are used in this manual to help you visualize the size and relative locations of selected working register spaces:

- One working register *slice* is 8 bytes (eight 8-bit working registers, R0–R7 or R8–R15)
- One working register *block* is 16 bytes (sixteen 8-bit working registers, R0–R15)

All the registers in an 8-byte working register slice have the same binary value for their five most significant address bits. This makes it possible for each register pointer to point to one of the 24 slices in the register file other than set 2. The base addresses for the two selected 8-byte register slices are contained in register pointers RP0 and RP1.

After a reset, RP0 and RP1 always point to the 16-byte common area in set 1 (C0H–CFH).

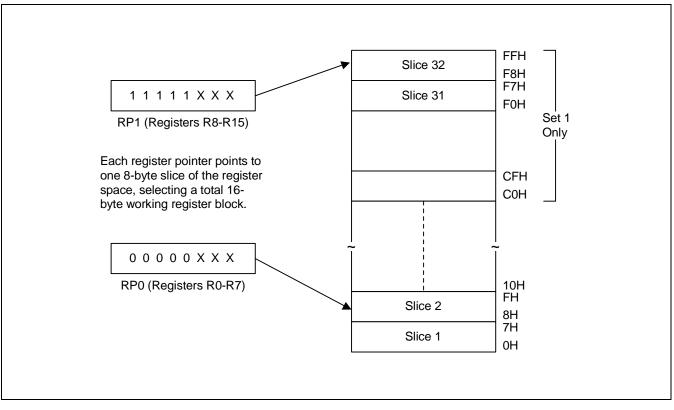


Figure 2-6. 8-Byte Working Register Areas (Slices)

USING THE REGISTER POINTERS

After a reset, RP# point to the working register common area: RP0 points to addresses C0H–C7H, and RP1 points to addresses C8H–CFH.

To change a register pointer value, you load a new value to RP0 and/or RP1 using an SRP or LD instruction. (see Figures 2-6 and 2-7).

With working register addressing, you can only access those two 8-bit slices of the register file that are currently pointed to by RP0 and RP1. You can not, however, use the register pointers to select a working register space in set 2, C0H–FFH, because these locations can be accessed only using the Indirect Register or Indexed addressing modes.

The selected 16-byte working register block usually consists of two contiguous 8-byte slices. As a general programming guideline, it is recommended that RP0 point to the "lower" slice and RP1 point to the "upper" slice (see Figure 2-6).

Because a register pointer can point to either of the two 8-byte slices in the working register block, you can flexibly define the working register area to support program requirements.

PROGRAMMING TIP — Setting the Register Pointers

SRP	#70H	;	RP0 ← 70H, RP1 ← 78H
SRP1	#48H	;	RP0 \leftarrow no change, RP1 \leftarrow 48H,
SRP0	#0A0H	;	$RP0 \leftarrow A0H, RP1 \leftarrow no change$
CLR	RP0	;	$RP0 \leftarrow 00H, RP1 \leftarrow no change$
LD	RP1,#0F8H	;	$RP0 \leftarrow no change, RP1 \leftarrow 0F8H$

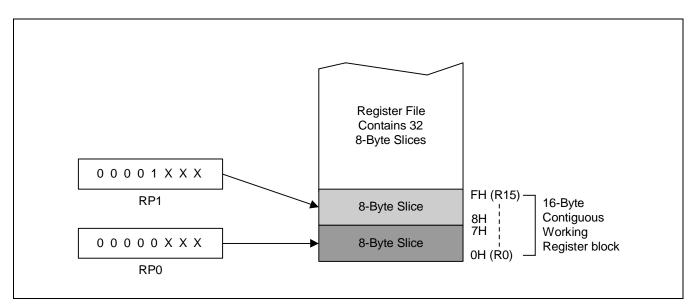


Figure 2-7. Contiguous 16-Byte Working Register Block

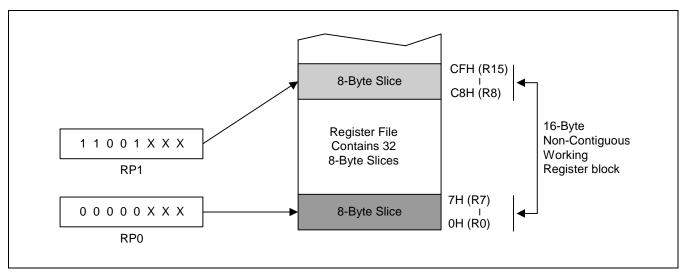


Figure 2-8. Non-Contiguous 16-Byte Working Register Block

PROGRAMMING TIP — Using the RPs to Calculate the Sum of a Series of Registers

Calculate the sum of registers 80H–85H using the register pointer. The register addresses from 80H through 85H contain the values 10H, 11H, 12H, 13H, 14H, and 15H, respectively:

SRP0	#80H	;	RP0 ← 80H
ADD	R0,R1	;	$R0 \leftarrow R0 + R1$
ADC	R0,R2	;	$R0 \leftarrow R0 + R2 + C$
ADC	R0,R3	;	$R0 \leftarrow R0 + R3 + C$
ADC	R0,R4	;	$R0 \leftarrow R0 + R4 + C$
ADC	R0,R5	;	$R0 \leftarrow R0 + R5 + C$

The sum of these six registers, 6FH, is located in the register R0 (80H). The instruction string used in this example takes 12 bytes of instruction code and its execution time is 36 cycles. If the register pointer is not used to calculate the sum of these registers, the following instruction sequence would have to be used:

ADD	80H,81H	; 80H ← (80H) + (81H)
ADC	80H,82H	; 80H \leftarrow (80H) + (82H) + C
ADC	80H,83H	; 80H ← (80H) + (83H) + C
ADC	80H,84H	; 80H \leftarrow (80H) + (84H) + C
ADC	80H,85H	; 80H \leftarrow (80H) + (85H) + C

Now, the sum of the six registers is also located in register 80H. However, this instruction string takes 15 bytes of instruction code rather than 12 bytes, and its execution time is 50 cycles rather than 36 cycles.

REGISTER ADDRESSING

The S3C8-series register architecture provides an efficient method of working register addressing that takes full advantage of shorter instruction formats to reduce execution time.

With Register (R) addressing mode, in which the operand value is the content of a specific register or register pair, you can access any location in the register file except for set 2. With working register addressing, you use a register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that space.

Registers are addressed either as a single 8-bit register or as a paired 16-bit register space. In a 16-bit register pair, the address of the first 8-bit register is always an even number and the address of the next register is always an odd number. The most significant byte of the 16-bit data is always stored in the even-numbered register, and the least significant byte is always stored in the next (+1) odd-numbered register.

Working register addressing differs from Register addressing as it uses a register pointer to identify a specific 8-byte working register space in the internal register file and a specific 8-bit register within that space.

MSB	LSB	n = Even address
Rn	Rn+1	-

Figure 2-9. 16-Bit Register Pair

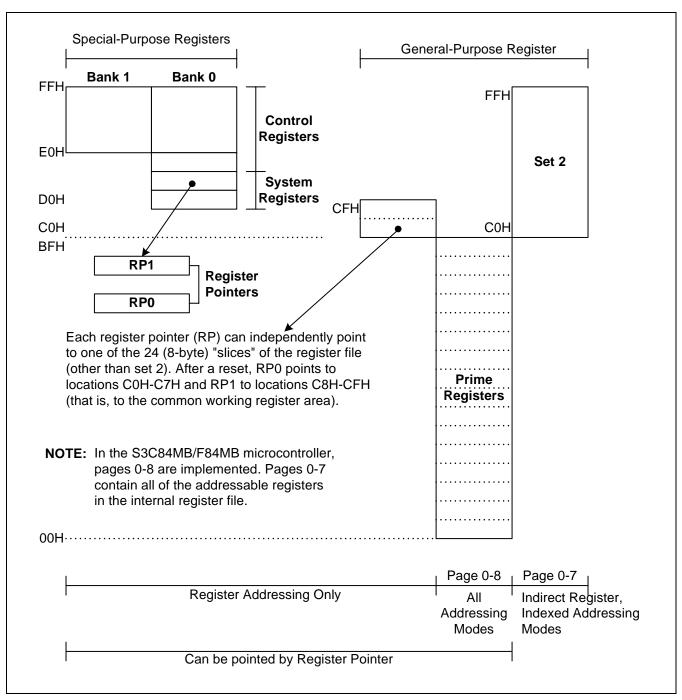


Figure 2-10. Register File Addressing

COMMON WORKING REGISTER AREA (C0H-CFH)

After a reset, register pointers RP0 and RP1 automatically select two 8-byte register slices in set 1, locations C0H–CFH, as the active 16-byte working register block:

 $RP0 \rightarrow C0H-C7H$

 $\mathsf{RP1} \ \rightarrow \ \mathsf{C8H-CFH}$

This 16-byte address range is called *common area*. That is, locations in this area can be used as working registers by operations that address any location on any page in the register file. Typically, these working registers serve as temporary buffers for data operations between different pages.

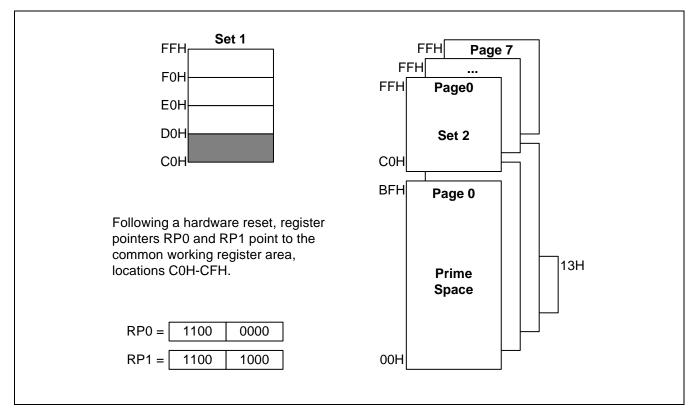


Figure 2-11. Common Working Register Area

PROGRAMMING TIP — Addressing the Common Working Register Area

As the following examples show, you should access working registers in the common area, locations C0H–CFH, using working register addressing mode only.

Examples 1:	LD	0C2H,40H	;	Invalid addressing mode!
	Use work	ing register addressing inst	ea	d:
	SRP LD	#0C0H R2,40H	;	R2 (C2H) \leftarrow the value in location 40H
Examples 2:	ADD	0C3H,#45H	;	Invalid addressing mode!
	Use work	ing register addressing inst	ea	d:
	SRP ADD	#0C0H R3,#45H	;	R3 (C3H) ← R3 + 45H

4-BIT WORKING REGISTER ADDRESSING

Each register pointer defines a movable 8-byte slice of working register space. The address information stored in a register pointer serves as an addressing "window" that makes it possible for instructions to access working registers very efficiently using short 4-bit addresses. When an instruction addresses a location in the selected working register area, the address bits are concatenated in the following way to form a complete 8-bit address:

- The high-order bit of the 4-bit address selects one of the register pointers ("0" selects RP0, "1" selects RP1).
- The five high-order bits in the register pointer select an 8-byte slice of the register space.
- The three low-order bits of the 4-bit address select one of the eight registers in the slice.

As shown in Figure 2-11, the result of this operation is that the five high-order bits from the register pointer are concatenated with the three low-order bits from the instruction address to form the complete address. As long as the address stored in the register pointer remains unchanged, the three bits from the address will always point to an address in the same 8-byte register slice.

Figure 2-12 shows a typical example of 4-bit working register addressing. The high-order bit of the instruction "INC R6" is "0", which selects RP0. The five high-order bits stored in RP0 (01110B) are concatenated with the three low-order bits of the instruction's 4-bit address (110B) to produce the register address 76H (01110110B).

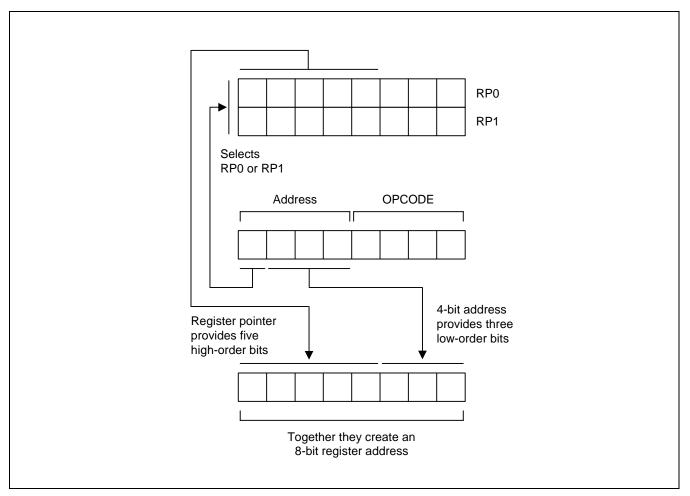


Figure 2-12. 4-Bit Working Register Addressing

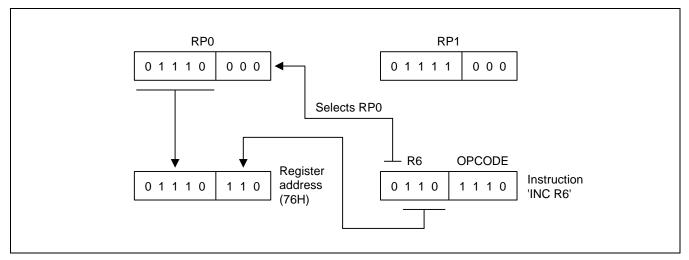


Figure 2-13. 4-Bit Working Register Addressing Example

8-BIT WORKING REGISTER ADDRESSING

You can also use 8-bit working register addressing to access registers in a selected working register area. To initiate 8-bit working register addressing, the upper four bits of the instruction address must contain the value "1100B." This 4-bit value (1100B) indicates that the remaining four bits have the same effect as 4-bit working register addressing.

As shown in Figure 2-13, the lower nibble of the 8-bit address is concatenated in much the same way as for 4-bit addressing. Bit 3 selects either RP0 or RP1, which then supplies the five high-order bits of the final address, the three low-order bits of the complete address are provided by the original instruction.

Figure 2-14 shows an example of 8-bit working register addressing. The four high-order bits of the instruction address (1100B) specify 8-bit working register addressing. Bit 3 ("1") selects RP1 and the five high-order bits in RP1 (10101B) become the five high-order bits of the register address. The three low-order bits of the register address (011) are provided by the three low-order bits of the 8-bit instruction address. The five address bits from RP1 and the three address bits from the instruction are concatenated to form the complete register address, 0ABH (101011B).

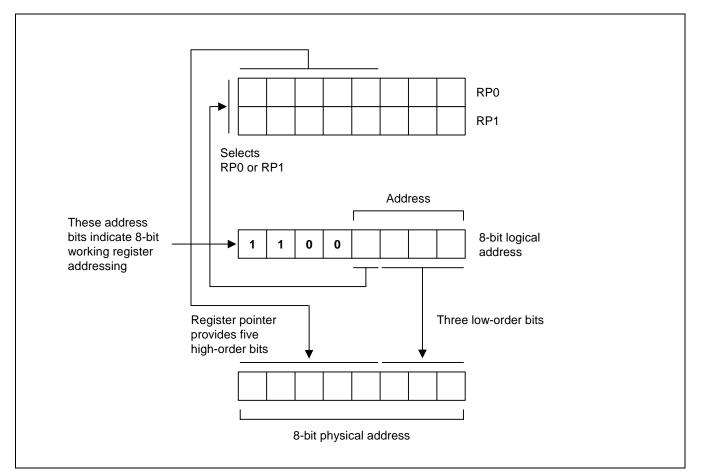


Figure 2-14. 8-Bit Working Register Addressing

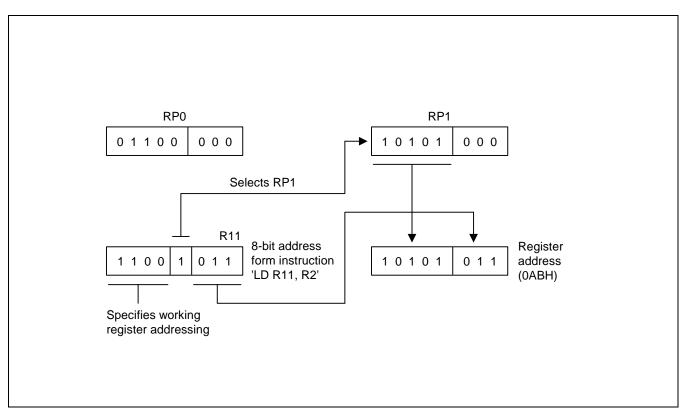


Figure 2-15. 8-Bit Working Register Addressing Example

SYSTEM AND USER STACK

The S3C8-series microcontrollers use the system stack for data storage, subroutine calls and returns. The PUSH and POP instructions are used to control system stack operations. The S3C84MB/F84MB architecture supports stack operations in the internal register file.

Stack Operations

Return addresses for procedure calls, interrupts, and data are stored on the stack. The contents of the PC are saved to stack by a CALL instruction and restored by the RET instruction. When an interrupt occurs, the contents of the PC and the FLAGS registers are pushed to the stack. The IRET instruction then pops these values back to their original locations. The stack address value is always decreased by one before a push operation and increased by one *after* a pop operation. The stack pointer (SP) always points to the stack frame stored on the top of the stack, as shown in Figure 2-15.

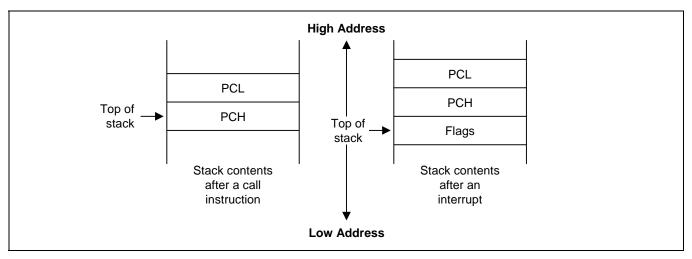


Figure 2-16. Stack Operations

User-Defined Stacks

You can freely define stacks in the internal register file as data storage locations. The instructions PUSHUI, PUSHUD, POPUI, and POPUD support user-defined stack operations.

Stack Pointers (SPL, SPH)

Register locations D8H and D9H contain the 16-bit stack pointer (SP) that is used for system stack operations. The most significant byte of the SP address, SP15–SP8, is stored in the SPH register (D8H), and the least significant byte, SP7–SP0, is stored in the SPL register (D9H). After a reset, the SP value is undetermined.

Because only internal memory space is implemented in the S3C84MB/F84MB, the SPL must be initialized to an 8-bit value in the range 00H–FFH. The SPH register is not needed and can be used as a general-purpose register, if necessary.

When the SPL register contains the only stack pointer value (that is, when it points to a system stack in the register file), you can use the SPH register as a general-purpose data register. However, if an overflow or underflow condition occurs as a result of increasing or decreasing the stack address value in the SPL register during normal stack operations, the value in the SPL register will overflow (or underflow) to the SPH register, overwriting any other data that is currently stored there. To avoid overwriting data in the SPH register, you can initialize the SPL value to "FFH" instead of "00H".

$^{\circ}$ PROGRAMMING TIP — Standard Stack Operations Using PUSH and POP

The following example shows you how to perform stack operations in the internal register file using PUSH and POP instructions:

LD :	SPL,#0FFH	 ; SPL ← FFH ; (Normally, the SPL is set to 0FFH by the initialization ; routine)
•		
PUSH	PP	; Stack address 0FEH ← PP
PUSH	RP0	; Stack address 0FDH ← RP0
PUSH	RP1	; Stack address 0FCH \leftarrow RP1
PUSH	R3	; Stack address 0FBH \leftarrow R3
•		
•		
•		
POP	R3	; R3 ← Stack address 0FBH
POP	RP1	; RP1 \leftarrow Stack address 0FCH
POP	RP0	: RP0 \leftarrow Stack address 0FDH
POP	PP	$PP \leftarrow Stack address 0FEH$
		,

3 ADDRESSING MODES

OVERVIEW

Instructions that are stored in program memory are fetched for execution using the program counter. Instructions indicate the operation to be performed and the data to be operated on. Addressing mode is the method used to determine the location of the data operand. The operands specified in SAM8RC instructions may be condition codes, immediate data, or a location in the register file, program memory, or data memory.

The S3C8-series instruction set supports seven explicit addressing modes. Not all of these addressing modes are available for each instruction. The seven addressing modes and their symbols are:

- Register (R)
- Indirect Register (IR)
- Indexed (X)
- Direct Address (DA)
- Indirect Address (IA)
- Relative Address (RA)
- Immediate (IM)

REGISTER ADDRESSING MODE (R)

In Register addressing mode (R), the operand value is the content of a specified register or register pair (see Figure 3-1).

Working register addressing differs from Register addressing in that it uses a register pointer to specify an 8-byte working register space in the register file and an 8-bit register within that space (see Figure 3-2).

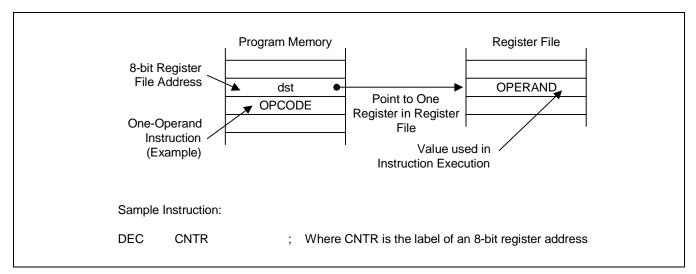
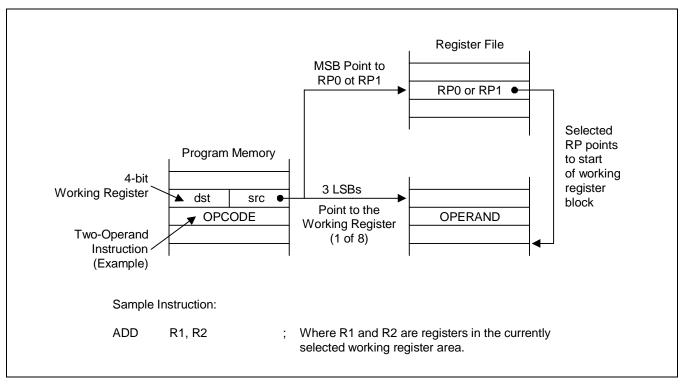



Figure 3-1. Register Addressing

INDIRECT REGISTER ADDRESSING MODE (IR)

In Indirect Register (IR) addressing mode, the content of the specified register or register pair is the address of the operand. Depending on the instruction used, the actual address may point to a register in the register file, to program memory (ROM), or to an external memory space (see Figures 3-3 through 3-6).

You can use any 8-bit register to indirectly address another register. Any 16-bit register pair can be used to indirectly address another memory location. Please note, however, that you cannot access locations C0H–FFH in set 1 using the Indirect Register addressing mode.

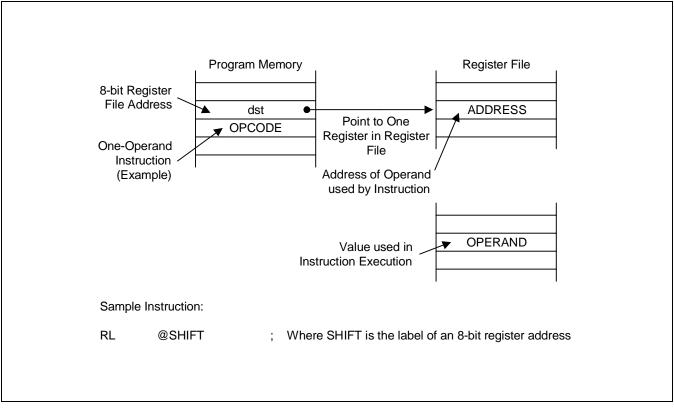
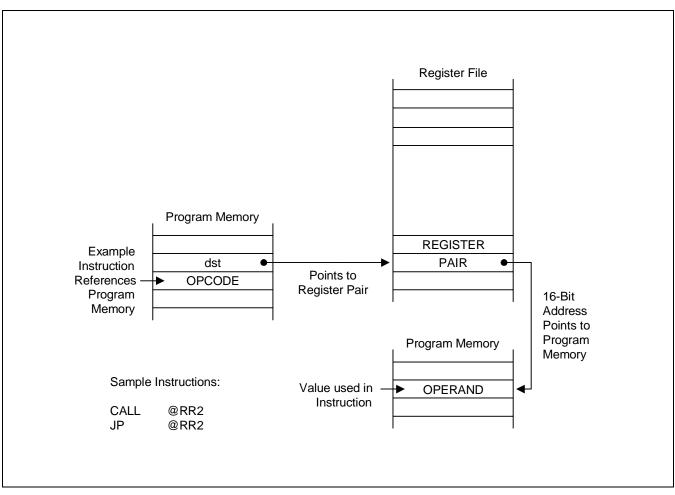
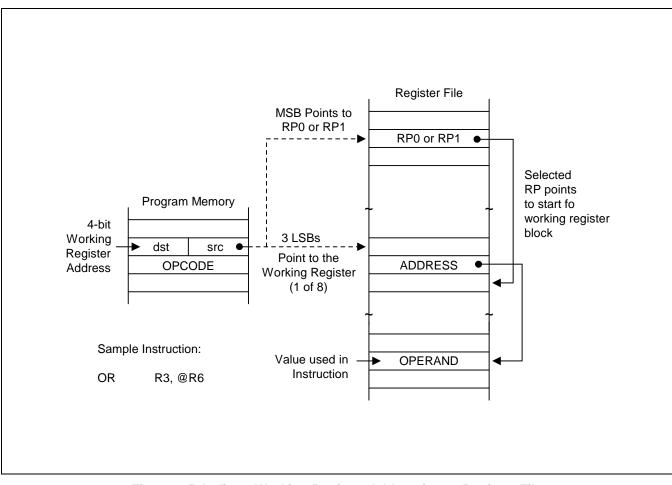
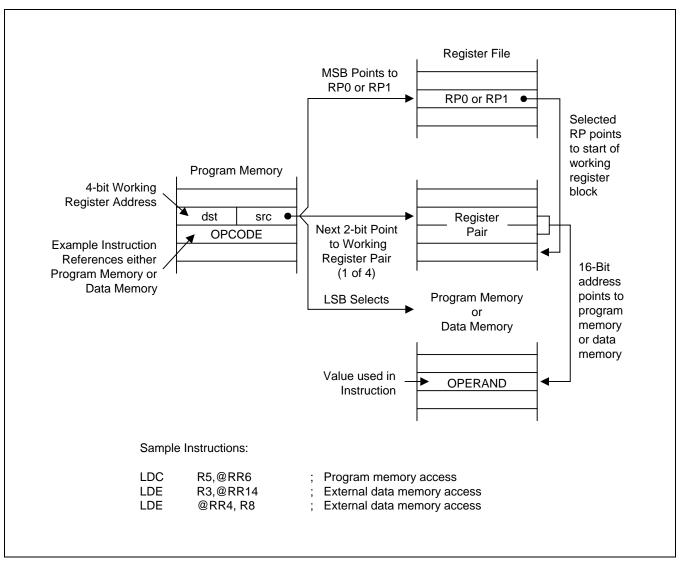



Figure 3-3. Indirect Register Addressing to Register File



INDIRECT REGISTER ADDRESSING MODE (Continued)

Figure 3-4. Indirect Register Addressing to Program Memory



INDIRECT REGISTER ADDRESSING MODE (Continued)

Figure 3-5. Indirect Working Register Addressing to Register File

INDIRECT REGISTER ADDRESSING MODE (Concluded)

Figure 3-6. Indirect Working Register Addressing to Program or Data Memory

INDEXED ADDRESSING MODE (X)

Indexed (X) addressing mode adds an offset value to a base address during instruction execution in order to calculate the effective operand address (see Figure 3-7). You can use Indexed addressing mode to access locations in the internal register file or in external memory. Please note, however, that you cannot access locations C0H–FFH in set 1 using indexed addressing mode.

In short offset Indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range -128 to +127. This applies to external memory accesses only (see Figure 3-8.)

For register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained in a working register. For external memory accesses, the base address is stored in the working register pair designated in the instruction. The 8-bit or 16-bit offset given in the instruction is then added to that base address (see Figure 3-9).

The only instruction that supports indexed addressing mode for the internal register file is the Load instruction (LD). The LDC and LDE instructions support indexed addressing mode for internal program memory and for external data memory, when implemented.

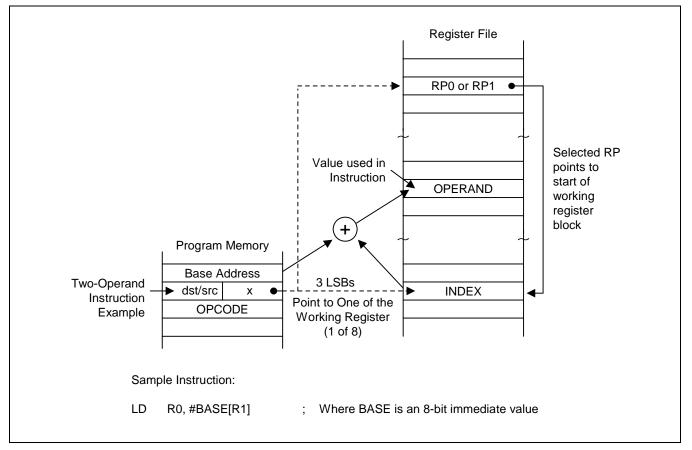


Figure 3-7. Indexed Addressing to Register File

INDEXED ADDRESSING MODE (Continued)

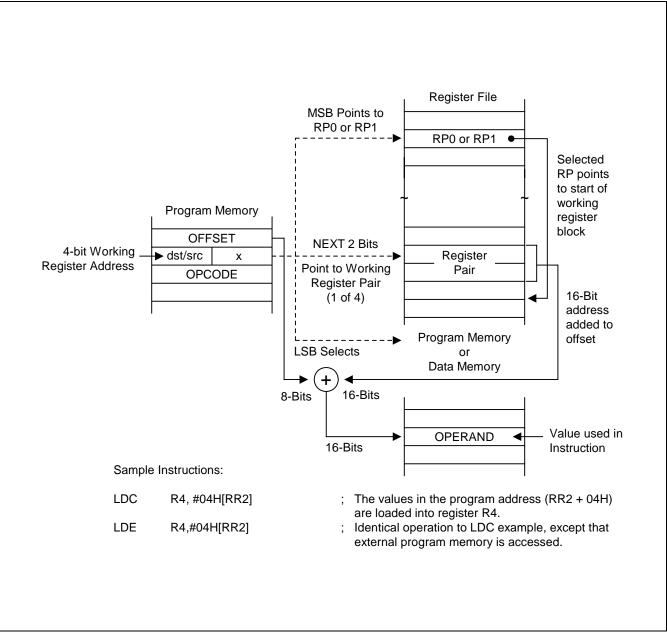
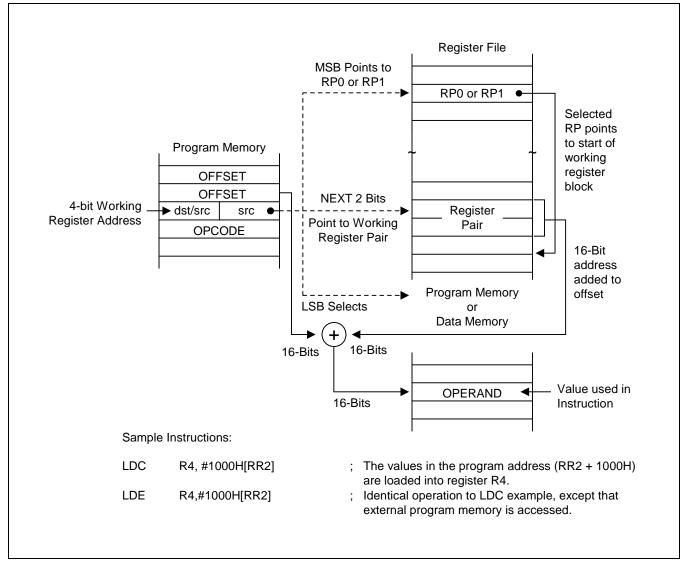



Figure 3-8. Indexed Addressing to Program or Data Memory with Short Offset

INDEXED ADDRESSING MODE (Continued)

Figure 3-9. Indexed Addressing to Program or Data Memory

DIRECT ADDRESS MODE (DA)

In Direct Address (DA) mode, the instruction provides the operand's 16-bit memory address. Jump (JP) and Call (CALL) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the PC whenever a JP or CALL instruction is executed.

The LDC and LDE instructions can use Direct Address mode to specify the source or destination address for Load operations to program memory (LDC) or to external data memory (LDE), if implemented.

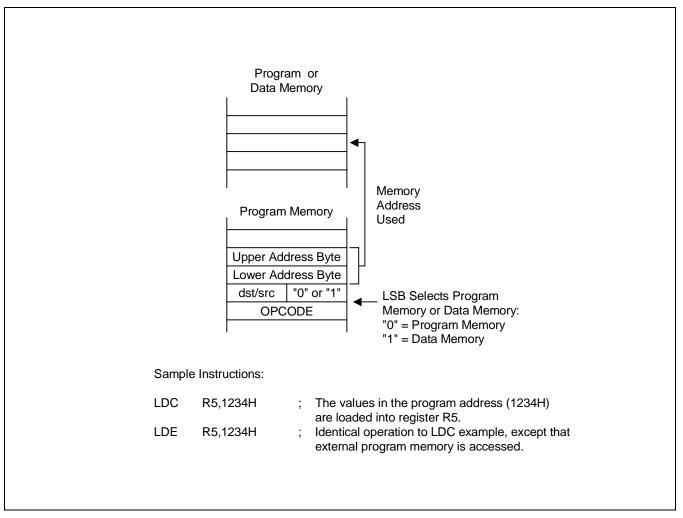


Figure 3-10. Direct Addressing for Load Instructions

DIRECT ADDRESS MODE (Continued)

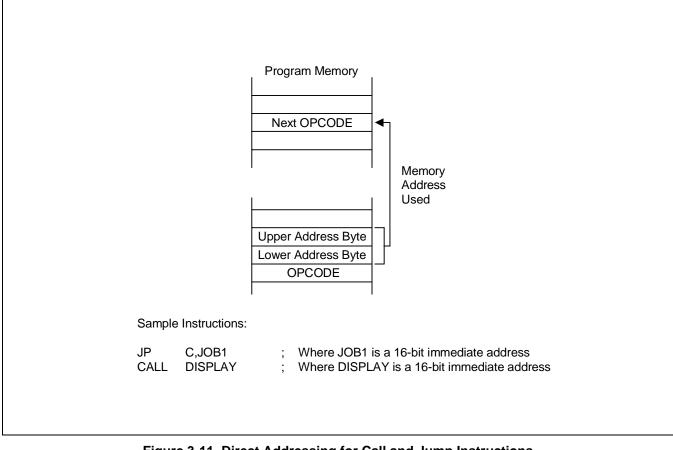


Figure 3-11. Direct Addressing for Call and Jump Instructions

INDIRECT ADDRESS MODE (IA)

In Indirect Address (IA) mode, the instruction specifies an address located in the lowest 256 bytes of the program memory. The selected pair of memory locations contains the actual address of the next instruction to be executed. Only the CALL instruction can use the Indirect Address mode.

Because the Indirect Address mode assumes that the operand is located in the lowest 256 bytes of program memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are assumed to be all zeros.

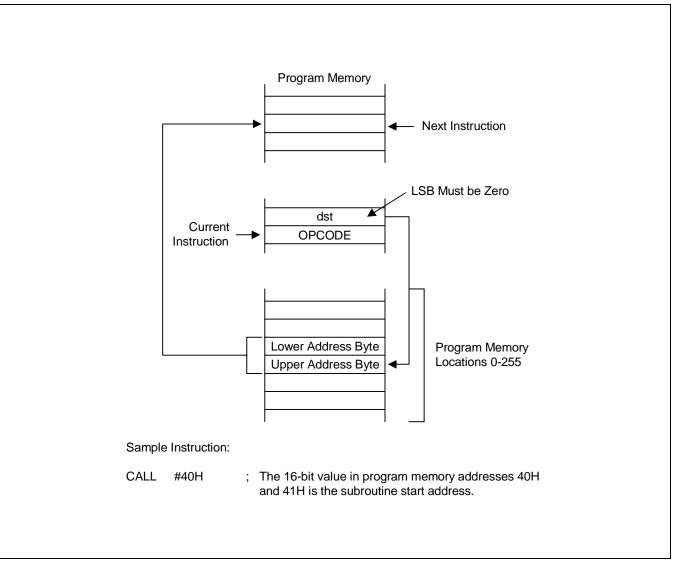


Figure 3-12. Indirect Addressing

RELATIVE ADDRESS MODE (RA)

In Relative Address (RA) mode, a twos-complement signed displacement between – 128 and + 127 is specified in the instruction. The displacement value is then added to the current PC value. The result is the address of the next instruction to be executed. Before this addition occurs, the PC contains the address of the instruction immediately following the current instruction.

Several program control instructions use the Relative Address mode to perform conditional jumps. The instructions that support RA addressing are BTJRF, BTJRT, DJNZ, CPIJE, CPIJNE, and JR.

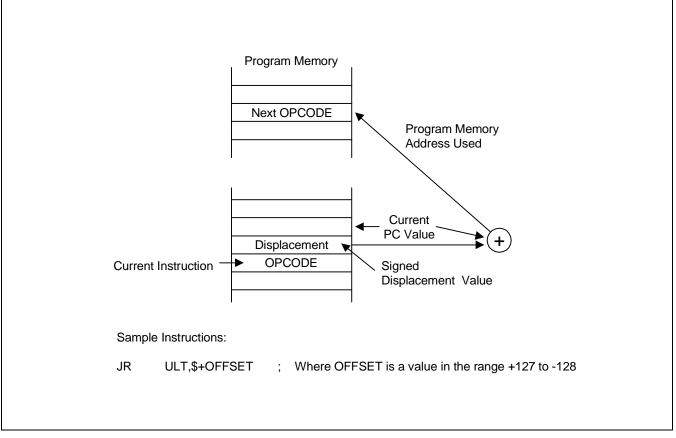


Figure 3-13. Relative Addressing

IMMEDIATE MODE (IM)

In Immediate (IM) addressing mode, the operand value used in the instruction is the value supplied in the operand field itself. The operand may be one byte or one word in length, depending on the instruction used. Immediate addressing mode is useful for loading constant values into registers.

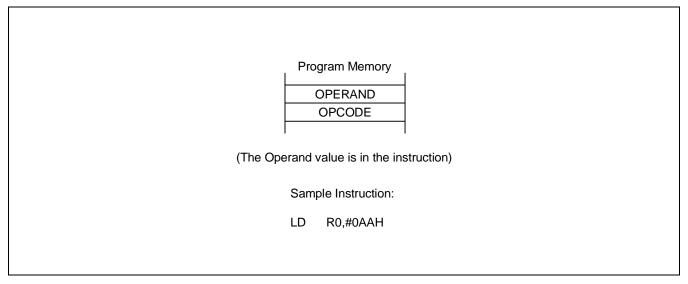


Figure 3-14. Immediate Addressing

4 CONTROL REGISTERS

OVERVIEW

Control register descriptions are arranged in alphabetical order according to register mnemonic. More detailed information about control registers is presented in the context of the specific peripheral hardware descriptions in Part II of this manual.

The locations and read/write characteristics of all mapped registers in the S3C84MB/F84MB register file are listed in Table 4-1. The hardware reset value for each mapped register is described in Chapter 8, "RESET and Power-Down."

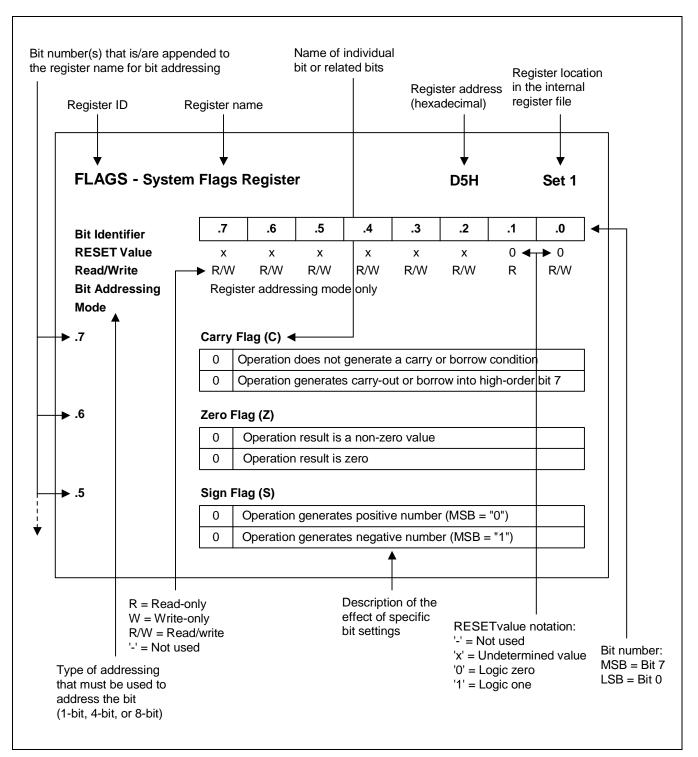
Register Name	Mnemonic	Decimal	Hex	R/W
Timer B control register	TBCON	208	D0H	R/W
Timer B data register (high byte)	TBDATAH	209	D1H	R/W
Timer B data register (low byte)	TBDATAL	210	D2H	R/W
Basic timer control register	BTCON	211	D3H	R/W
Clock control register	CLKCON	212	D4H	R/W
System flags register	FLAGS	213	D5H	R/W
Register pointer 0	RP0	214	D6H	R/W
Register pointer 1	RP1	215	D7H	R/W
Stack pointer (high byte)	SPH	216	D8H	R/W
Stack pointer (low byte)	SPL	217	D9H	R/W
Instruction pointer (high byte)	IPH	218	DAH	R/W
Instruction pointer (low byte)	IPL	219	DBH	R/W
Interrupt request register	IRQ	220	DCH	R
Interrupt mask register	IMR	221	DDH	R/W
System mode register	SYM	222	DEH	R/W
Register page pointer	PP	223	DFH	R/W

Table 4-1. Set 1, Bank 0 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
Port 0 data register	P0	224	E0H	R/W
Port 1 data register	P1	225	E1H	R/W
Port 2 data register	P2	226	E2H	R/W
Port 3 data register	P3	227	E3H	R/W
Port 4 data register	P4	228	E4H	R/W
Port 5 data register	P5	229	E5H	R/W
Port 6 data register	P6	230	E6H	R/W
Port 7 data register	P7	231	E7H	R/W
Port 8 data register	P8	232	E8H	R/W
Timer A/1 interrupt pending register	TINTPND	233	E9H	R/W
Timer A control register	TACON	234	EAH	R/W
Timer A data register	TADATA	235	EBH	R/W
Timer A counter register	TACNT	236	ECH	R
Port 8 control register (high byte)	P8CONH	237	EDH	R/W
Port 8 control register (low byte)	P8CONL	238	EEH	R/W
Port 8 interrupt/pending register	P8INTPND	239	EFH	R/W
Port 0 control register	P0CON	240	F0H	R/W
Port 1 control register	P1CON	241	F1H	R/W
Port 2 control register (high byte)	P2CONH	242	F2H	R/W
Port 2 control register (low byte)	P2CONL	243	F3H	R/W
Port 3 control register (high byte)	P3CONH	244	F4H	R/W
Port 3 control register (low byte)	P3CONL	245	F5H	R/W
Port 4 control register (high byte)	P4CONH	246	F6H	R/W
Port 4 control register (low byte)	P4CONL	247	F7H	R/W
Port 5 control register (high byte)	P5CONH	248	F8H	R/W
Port 5 control register (low byte)	P5CONL	249	F9H	R/W
Port 4 interrupt control register	P4INT	250	FAH	R/W
Port 4 interrupt/pending register	P4INTPND	251	FBH	R/W
Loc	cation FCH is factory	use only		
Basic timer counter register	BTCNT	253	FDH	R
L	ocation FEH is not ma	apped.		
Interrupt priority register	IPR	255	FFH	R/W

Table 4-2. Set 1, Bank 0 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
SIO data register	SIODATA	224	E0H	R/W
SIO Control register	SIOCON	225	E1H	R/W
UART0 data register	UDATA0	226	E2H	R/W
UART0 control register	UARTCON0	227	E3H	R/W
UART0 baud rate data register	BRDATA0	228	E4H	R/W
UART0,1 pending register	UARTPND	229	E5H	R/W
Timer 1(0) data register (high byte)	T1DATAH0	230	E6H	R/W
Timer 1(0) data register (low byte)	T1DATAL0	231	E7H	R/W
Timer 1(1) data register (high byte)	T1DATAH1	232	E8H	R/W
Timer 1(1) data register (low byte)	T1DATAL1	233	E9H	R/W
Timer 1(0) control register	T1CON0	234	EAH	R/W
Timer 1(1) control register	T1CON1	235	EBH	R/W
Timer 1(0) counter register (high byte)	T1CNTH0	236	ECH	R
Timer 1(0) counter register (low byte)	T1CNTL0	237	EDH	R
Timer 1(1) counter register (high byte)	T1CNTH1	238	EEH	R
Timer 1(1) counter register (low byte)	T1CNTL1	239	EFH	R
Timer C(0) data register	TCDATA0	240	F0H	R/W
Timer C(1) data register	TCDATA1	241	F1H	R/W
Timer C(0) control register	TCCON0	242	F2H	R/W
Timer C(1) control register	TCCON1	243	F3H	R/W
SIO prescaler control register	SIOPS	244	F4H	R/W
Port 7 control register	P7CON	245	F5H	R/W
Lo	cation F6H is not ma	apped.		
A/D converter control register	ADCON	247	F7H	R/W
A/D converter data register (high byte)	ADDATAH	248	F8H	R
A/D converter data register (low byte)	ADDATAL	249	F9H	R
UART1 data register	UDATA1	250	FAH	R/W
UART1 control register	UARTCON1	251	FBH	R/W
UART1 baud rate data register	BRDATA1	252	FCH	R/W
Flash memory control register	FMCON	253	FDH	R/W
Pattern generation control register	PGCON	254	FEH	R/W
Pattern generation data register	PGDATA	255	FFH	R/W


Table 4-3. Set 1, Bank 1 Registers

Register Name	Mnemonic	Decimal	Hex	R/W
SIO1 control register	SIOCON1	0	0x00	R/W
SIO1 prescaler control register	SIOPS1	1	0x01	R/W
SIO1 data register	SIODATA1	2	0x02	R/W
UART2 control register	UARTCON2	3	0x03	R/W
UART2 baud rate data register	BRDATA2	4	0x04	R/W
UART2 data register	UDATA2	5	0x05	R/W
UART 0.1.2 parity register	UARTPRT	6	0x06	R/W
PWM control register	PWMCON	7	0x07	R/W
PWM0 data register (main byte)	PWMDAT0	8	0x08	R/W
PWM0 data register (extension byte)	PWM0EX	9	0x09	R/W
PWM1 data register (main byte)	PWMDAT1	10	0x0A	R/W
PWM1 data register (extension byte)	PWM1EX	11	0x0B	R/W
PWM2 Data register	PWMDAT2	12	0x0C	R/W
PWM3 Data register	PWMDAT3	13	0x0D	R/W
PORT1 Extension Control register	P1CONEX	14	0x0E	R/W
PORT6 Control register	P6CON	15	0x0F	R/W
Stop Mode Control Register	STOPCON	16	0x10	R/W
Flash memory user enable register	FMUSR	17	0x11	R/W
Flash memory sector register(High byte)	FMSECH	18	0x12	R/W
Flash memory sector register(Low byte)	FMSECL	19	0x13	R/W

Table 4-4. Page 8 Registers

	D Conve	erter	Con	troi	Register			F7H	Set 1	, Bank
Bit Identifier		.7		6	.5	.4	.3	.2	.1	.0
ESET Value		0		0	0	0	0	0	0	0
ead/Write	R	/W	R	/W	R/W	R/W	R	R/W	R/W	R/W
ddressing Mode	Reg	jister a	addre	ssing	mode only					
4	A/D	Input	t Pin	Selec	tion Bits					
	0	0	0	0	ADC0					
	0	0	0	1	ADC1					
	0	0	1	0	ADC2					
	0	0	1	1	ADC3					
	0	1	0	0	ADC4					
	0	1	0	1	ADC5					
	0	1	1	0	ADC6					
	0	1	1	1	ADC7					
	1	0	0	0	ADC8					
	1	0	0	1	ADC9					
	1	0	1	0	ADC10					
	1	0	1	1	ADC11					
	1	1	0	0	ADC12					
	1	1	0	1	ADC13					
	1	1	1	0	ADC14					
		Oth	ners		Not used	for the S3C	84MB/F84	4MB		
}	End	l-of-C	onve	rsion	Bit (Read-	only)				
	0	1			•	s in progress	S			
	1				opration is		-			
					-1					
2–.1	Clo	ck So	urce	Sele	ction Bits ⁽¹⁾)				
	0	0	f _{XX} /1	6						
	0	1	f _{XX} /8	3						
	1	0	$f_{XX}/4$	ŀ						
	1	1	f _{XX} /1							
		Start								
	0	_		perat						
	1	Star	t ope	ration						

BRDATA0-	UART0 Ba	ud Rate I	Data Reg	ister		E4H	Set1	, Bank1
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register a	addressing	mode only					
.7–.0	Baud Rat	e Data for I	UART0 ^(NOT)	^{E)} : f _{XX} /(16 >	< (BRDATA	A + 1))		
NOTE: Refer to UARTC	ON0 register.							
BRDATA1-	UART1 Bai	ud Rate [Data Reg	ister		FCH	Set	1, Bank1
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register a	addressing	mode only					

.7–.0 Baud Rate Data for UART1^(NOTE) : $f_{XX}/(16 \times (BRDATA + 1))$

NOTE: Refer to UARTCON1 register.

BRDATA2-	UART2 Bau	ud Rate I	Data Reg	ister		04H		Page 8
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	1	1	1	1	1	1	1	1
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	All addres	ssing mode						
.7–.0	Baud Rat	e Data for I	JART2 ^{(NOT}	^{E)} : f _{XX} /(16 >	(BRDATA	. + 1))		
	OND register							

NOTE: Refer to UARTCON2 register.

ic Time	er Co	ontro	ol Re	gister				Set 1	
	.7	-	6	.5	.4	.3	.2	.1	.0
	0	(0	0	0	0	0	0	0
R	/W	R	/W	R/W	R/W	R/W	R/W	R/W	R/W
Reg	ister a	addre	ssing	mode only					
Wat	chdo	g Tim	ner Fu	unction Dis	sable Code	e (for Syst	em Reset)		
1	0	1	0	Disable w	atchdog tir	ner functio	n		
	Oth	ners		Enable w	atchdog tin	ner functior	า		
Bas	ic Tir	ner In	put C	Clock Sele	ction Bits				
0	0	f _{XX} /4	-096 ⁽³)					
0	1	f _{XX} /1	024						
1	0	f _{XX} /1	28						
1	1	f _{XX} /1	6 (Nc	ot used)					
Bas	ic Tir	ner C	ounte	er Clear Bi	t ⁽¹⁾				
0	No e	effect							
1	Clea	ar the	basic	timer cour	nter value				
Clo	ck Fre	equer	າcy D	ivider Clea	ar Bit for B	asic Time	r ⁽²⁾		
0	No e	effect	-						
i	R Wat 1 Bass 0 1 Bass 0 1 1 Cloot	.7 0 R/W Register a Watchdo 1 0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 0 1 1 0 No e 1 Clock Free	.7.0RRegister addressWatchdog Tim101010OthersBasic Timer In00111011	.7.600R/WR/WRegister addressingWatchdog Timer Fu101010OthersBasic Timer Input O0010011011 <t< td=""><td>0 0 0 R/W R/W R/W Register addressing mode only Watchdog Timer Function Dis 1 0 1 0 Disable w 0 1 0 Disable w Others Enable w Basic Timer Input Clock Sele 0 0 f_{xx}/4096⁽³⁾ 0 1 f_{xx}/1024 1 0 f_{xx}/128 1 1 f_{xx}/16 (Not used)</td><td>.7 .6 .5 .4 0 0 0 0 R/W R/W R/W R/W Register addressing mode only Watchdog Timer Function Disable Code 1 0 1 0 Disable watchdog time Others Enable watchdog time Basic Timer Input Clock Selection Bits 0 0 f_{xx}/4096⁽³⁾ 1 0 1 f_{xx}/1024 1 1 0 f_{xx}/128 1 1 1 f_{xx}/16 (Not used) 1</td><td>.7 .6 .5 .4 .3 0 0 0 0 0 R/W R/W R/W R/W R/W Register addressing mode only Watchdog Timer Function Disable Code (for Syst 1 0 1 0 Disable watchdog timer function Others Enable watchdog timer function Enable watchdog timer function Basic Timer Input Clock Selection Bits 0 0 f_{xx}/4096⁽³⁾ </td><td>.7 .6 .5 .4 .3 .2 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W Register addressing mode only Watchdog Timer Function Disable Code (for System Reset) 1 0 1 0 Disable watchdog timer function Others Enable watchdog timer function Image: Code (for System Reset) Basic Timer Input Clock Selection Bits 0 0 f_xx/1024 Image: Code (for System Reset) 1 0 f_xx/128 Image: Code (for System Reset) Basic Timer Counter Clear Bit⁽¹⁾ 0 No effect Image: Code (for System Reset) 1 Clear the basic timer counter value Clock Frequency Divider Clear Bit for Basic Timer⁽²⁾</td><td>.7 .6 .5 .4 .3 .2 .1 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W Register addressing mode only Watchdog Timer Function Disable Code (for System Reset) 1 0 1 0 Disable watchdog timer function 1 0 1 0 Disable watchdog timer function Others Enable watchdog timer function Basic Timer Input Clock Selection Bits 0 1 f_{xx}/1024 </td></t<>	0 0 0 R/W R/W R/W Register addressing mode only Watchdog Timer Function Dis 1 0 1 0 Disable w 0 1 0 Disable w Others Enable w Basic Timer Input Clock Sele 0 0 f _{xx} /4096 ⁽³⁾ 0 1 f _{xx} /1024 1 0 f _{xx} /128 1 1 f _{xx} /16 (Not used)	.7 .6 .5 .4 0 0 0 0 R/W R/W R/W R/W Register addressing mode only Watchdog Timer Function Disable Code 1 0 1 0 Disable watchdog time Others Enable watchdog time Basic Timer Input Clock Selection Bits 0 0 f _{xx} /4096 ⁽³⁾ 1 0 1 f _{xx} /1024 1 1 0 f _{xx} /128 1 1 1 f _{xx} /16 (Not used) 1	.7 .6 .5 .4 .3 0 0 0 0 0 R/W R/W R/W R/W R/W Register addressing mode only Watchdog Timer Function Disable Code (for Syst 1 0 1 0 Disable watchdog timer function Others Enable watchdog timer function Enable watchdog timer function Basic Timer Input Clock Selection Bits 0 0 f _{xx} /4096 ⁽³⁾	.7 .6 .5 .4 .3 .2 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W Register addressing mode only Watchdog Timer Function Disable Code (for System Reset) 1 0 1 0 Disable watchdog timer function Others Enable watchdog timer function Image: Code (for System Reset) Basic Timer Input Clock Selection Bits 0 0 f_xx/1024 Image: Code (for System Reset) 1 0 f_xx/128 Image: Code (for System Reset) Basic Timer Counter Clear Bit ⁽¹⁾ 0 No effect Image: Code (for System Reset) 1 Clear the basic timer counter value Clock Frequency Divider Clear Bit for Basic Timer ⁽²⁾	.7 .6 .5 .4 .3 .2 .1 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W Register addressing mode only Watchdog Timer Function Disable Code (for System Reset) 1 0 1 0 Disable watchdog timer function 1 0 1 0 Disable watchdog timer function Others Enable watchdog timer function Basic Timer Input Clock Selection Bits 0 1 f _{xx} /1024

NOTES:

- 1. When you write a "1" to BTCON.1, the basic timer counter value is cleared to "00H". Immediately following the write operation, the BTCON.1 value is automatically cleared to "0".
- 2. When you write a "1" to BTCON.0, the corresponding frequency divider is cleared to "00H". Immediately following the write operation, the BTCON.0 value is automatically cleared to "0".
- 3. The f_{XX} is selected clock for system (main OSC. or sub OSC.).

	/stem Cloc	k Contro	l Registe	er		Set 1					
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0			
RESET Value	_	_	_	0	0	_	_	_			
Read/Write	_	_	_	R/W	R/W	_	_	_			
Addressing Mode	Register	addressing	mode only	/							
.4–.3	CPU Clock (System Clock) Selection Bits ^(NOTE)										
		f _{xx} /16									
	0 1	f _{XX} /8									
	1 0	f _{XX} /2									
	1 1	f _{XX} /1 (non	-divided)								
.2–.0	Not used	for the S30	C84MB/F84	4MB (must	keep alway	s 0)					

NOTE: After a reset, the slowest clock (divided by 16) is selected as the system clock. To select faster clock speeds, load the appropriate values to CLKCON.3 and CLKCON.4.

FLAGS — Syste	em Fla	gs Ro	egister				D5H		Set
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	L	x	х	х	x	х	x	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R	R/W
Addressing Mode	Reg	jister a	ddressing	mode only					
.7	Car	ry Flag	g (C)						
	0	Oper	ation does	not gener	ate a carry	or underflo	w condition	l	
	1	Oper	ation gene	erates a ca	rry-out or u	nderflow in	to high-orde	er bit 7	
6	Zer	o Flag	(Z)						
	0	Oper	ation resul	lt is a non-z	zero value				
	1	Oper	ation resul	lt is zero					
5	Sigi	n Flag	(S)						
	0	Oper	ation gene	erates a po	sitive numb	oer (MSB =	"0")		
	1	Oper	ation gene	erates a ne	gative num	ber (MSB =	= "1")		
4	Ove 0 1	Oper			27 or ≥ −1 7 or < −12				
3	Dec	imal A	djust Flag	g (D)					
	0	Add	operation o	completed					
	1	Subt	raction ope	eration com	npleted				
2	Half	f-Carrv	/ Flag (H)						
	0	-		bit 3 or no	underflow	into bit 3 b	y addition or	r subtracti	on
	1						ion generate		
		bit 3	-				-		
1	Fas	t Inter	rupt Statu	s Flag (FI	S)				
	0	Inter	rupt return	(IRET) in p	orogress (w	/hen read)			
	1	Fast	interrupt s	ervice rout	ine in prog	ress (when	read)		
0	Ban	ık Add	ress Sele	ction Flag	(BA)				
	0	1	0 is selec						
	1	Bank	1 is selec	ted					

FMCON — Flas	sh Men	nory	Con	trol	Register			FDH	Set	1, Bank1
Bit Identifier		.7	-	6	.5	.4	.3	.2	.1	.0
RESET Value		0	(0	0	0	0	0	_	0
Read/Write	R	/W	R/	/W	R/W	R/W	R/W	R	_	R/W
Addressing Mode	Reg	jister a	addres	ssing	mode only					
.7–.4	Flas	sh Me	mory	Mod	e Selectio	n Bits				
	0	1	0	1	Programi	ng Mode				
	1	0	1	0	Sector Er	ase Mode				
	0	1	1	0	Hard Loc	k Mode				
		Oth	ners		Not used	for the S30	284MB/F84	1MB		
.3	0 1	Inter	rupt [rupt E	Disab		ector Eras	e			
.2	Sec	tor E	rase S	Statu	s Bit					
	0	Sec	tor is a	Succ	essfully Era	ised				
	1	Sec	tor Era	ase F	ail					
.1	Not	used	for the	e S30	C84MB/F84	MB				
.0	Flas	sh Op	eratio	on St	art Bit (Wit	hout Prog	ramming	Mode & Re	ad Mode))
	0	Stop	Bit							
		1								

FMUSR — Flas	h Memory	User Pro	ogrammi	ng Contr	ol Regist	er	11H	Page 8
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	All addres	sing mode	9					
.7–.0	Flash Me	mory Prog	graming M	ode Enabl	e Bits			
	Other	s Disa	able User F	rograming	Mode			
	101001	01 Ena	ble User P	rograming	Mode			
		1		1	1	1		
FMSECH — Fla	ash Memor	y Sector	· Addres	s Registe	er (High B	Byte)	12H	Page 8
		-		-	-			
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	All addres	sing mode)					
.7–.0		-	tor Addres					
	High addr	ess of sec	tor that's a	ccessed				
FMSECL — Fla	ish Memor	y Sector	Address	s Registe	er (Low B	yte)	13H	Page 8
		1	-	.4	.3	.2	.1	.0
Bit Identifier	.7	.6	.5	.4		• 4		.0
	.7 0	.6 0	. 5 0	0	0	0	0	0
Bit Identifier								
Bit Identifier RESET Value	0 R/W	0	0 R/W	0	0	0	0	0

Low address of sector that's accessed

IMR — Interrupt I	Mask Reg	ister				DDH		Set 1
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	х	х	х	х	х	х	х	х
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Registe	r addressing	mode only					
.7	Interru	ot Level 7 (II	RQ7) Enab	le Bit				
	0 Di	sable (mask))					
	1 Er	able (un-ma	isk)					
.6	Interru	ot Level 6 (II	RQ6) Enab	le Bit				
	0 Di	sable (mask))					
	1 Er	able (un-ma	ısk)					
.5	Interru	ot Level 5 (II	RQ5) Enab	le Bit				
		sable (mask)						
		able (un-ma						
.4	Interru	ot Level 4 (II	RQ4) Enab	le Bit				
		sable (mask)						
	1 Er	able (un-ma	isk)					
.3	Interru	ot Level 3 (II	RQ3) Enab	le Bit				
		sable (mask)						
		able (un-ma						
.2	Interru	ot Level 2 (II	RQ2) Enab	le Bit				
		sable (mask)						
	1 Er	able (un-ma	isk)					
.1	Interru	ot Level 1 (II	RQ1) Enab	le Bit				
	0 Di	sable (mask))					
	1 Er	able (un-ma	isk)					
.0	Interru	ot Level 0 (II	RQ0) Enab	le Bit				
		sable (mask)						
	1 Er	able (un-ma	isk)					

NOTE: When an interrupt level is masked, any interrupt requests that may be issued are not recognized by the CPU.

IPH — Instruction	n Pointer (H	ligh Byte	e)			Set 1		
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	Х	х	х	х	х	х	х	х
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register a	addressing	mode only					
.7–.0	Instructio	on Pointer	Address (High Byte)				
	-	dress (IP1	•	er value is tl e lower byte		-		

IPL — Instruction	n Pointer (L	ow Byte)			Set 1		
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	X	х	х	х	х	х	х	х
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register a	addressing	mode only					
.7–.0	Instructio	on Pointer	Address (Low Byte)				
							ne 16-bit ins ocated in th	

. register (DAH).

	Priority	Reg	ister					FFH	Set 1	, Bank
Bit Identifier	-	7	.6	6	.5	.4	.3	.2	.1	.0
RESET Value		x	х	(х	х	х	х	х	х
Read/Write	R/	W/	R/	W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	ister a	ddres	ssing r	node only					
7, .4, and .1	Prio	rity C	ontro	l Bits	for Interr	upt Group	os A, B, an	d C		
	0	0	0	Grou	p priority ι	Indefined				
	0	0	1	B >	C > A					
	0	1	0	A >	B > C					
	0	1	1	B >	A > C					
	1	0	0	C >	A > B					
	1	0	1	C >	B > A					
	1	1	0	A >	C > B					
	1	1	1	Grou	p priority ι	Indefined				
	1	IRO	7 1							
		inter	/ > II	RQ6						
5		rrupt	Grou	р С Рі	riority Co	ntrol Bit				
5		r rupt IRQ8	Grouj 5 > (l	p C P I IRQ6,	IRQ7)	ntrol Bit				
5	Inte	r rupt IRQ8	Grouj 5 > (l	p C P I IRQ6,	-	ntrol Bit				
	Inte 0 1	rrupt IRQ: (IRQ	Grou 5 > (I 6, IRC	p C P I IRQ6, Q7) >	IRQ7) IRQ5	ntrol Bit Control B	it			
5 3	Inte 0 1	rrupt IRQ: (IRQ rrupt	Grou 5 > (I 6, IRC	p C Pi IRQ6, Q7) > roup	IRQ7) IRQ5		it			
	Inter 0 1 Inter	rrupt IRQ((IRQ rrupt IRQ(Grouj 5 > (I 6, IRC Subg	p C Pi IRQ6, Q7) > roup RQ4	IRQ7) IRQ5		it			
3	Inte 0 1 Inte 0 1	rrupt IRQ((IRQ IRQ(IRQ	Grou <u> </u> 5 > (I 6, IR(Subg 3 > IR 4 > IR	p C P i IRQ6, Q7) > roup RQ4 RQ3	IRQ7) IRQ5	Control B	it			
3	Inte 0 1 Inte 0 1	rrupt IRQ (IRQ IRQ IRQ	Grouj 5 > (1 6, IRC Subg 3 > IR 4 > IR 4 > IR	p C Pi IRQ6, Q7) > roup I RQ4 RQ3 p B Pi	IRQ7) IRQ5 B Priority	Control B	it			
3	Inter 0 1 Inter 0 1	rrupt IRQ (IRQ IRQ IRQ IRQ IRQ	Grouj 5 > (I 6, IRC Subg 3 > IR 4 > IR 4 > IR Grou j 2 > (I	p C Pi IRQ6, Q7) > roup I RQ4 RQ3 p B Pi IRQ3,	IRQ7) IRQ5 B Priority riority Co	Control B	it			
3 2	Inter 0 1 Inter 0 1 Inter 0 1	rrupt IRQ (IRQ IRQ IRQ IRQ (IRQ	Group 5 > (I 6, IRC Subg 3 > IR 4 > IR 4 > IR Grou p 2 > (I 3, IRC	p C P i IRQ6, Q7) > roup I RQ4 RQ3 p B Pi IRQ3, Q4) >	IRQ7) IRQ5 B Priority riority Co IRQ4) IRQ2	Control B	it			
	Inter 0 1 Inter 0 1 Inter 0 1	rrupt IRQ (IRQ IRQ IRQ IRQ (IRQ (IRQ	Group 5 > (I 6, IRC Subg 3 > IR 4 > IR 4 > IR Grou p 2 > (I 3, IRC	p C Pi IRQ6, Q7) > roup I RQ4 RQ3 p B Pi IRQ3, Q4) > p A Pi	IRQ7) IRQ5 B Priority riority Co	Control B	it			

IRQ — Interrupt F	Reques	st Reg	gister				DCH		Set 1			
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0			
RESET Value	(C	0	0	0	0	0	0	0			
Read/Write	F	२	R	R	R	R	R	R	R			
Addressing Mode	Reg	ister ac	ddressing	mode only								
.7	Level 7 (IRQ7) Request Pending Bit											
	0	Not p	ending									
	1	Pendi	ing									
.6	Leve	el 6 (IR	Q6) Requ	lest Pendi	ng Bit							
	0	Not p	ending									
	1	Pendi	ing									
.5	Leve	el 5 (IR	Q5) Requ	lest Pendi	ng Bit							
	0	Not p	ending		_							
	1	Pendi	ing									
.4	Leve	el 4 (IR	Q4) Requ	iest Pendi	ng Bit							
	0	Not p	ending									
	1	Pendi	ing									
.3	Leve	el 3 (IR	Q3) Requ	lest Pendi	ng Bit							
	0	Not p	ending		_							
	1	Pendi	ing									
.2	Leve	el 2 (IR	Q2) Requ	lest Pendi	ng Bit							
	0	Not p	ending		_							
	1	Pendi	ing									
.1	Leve	el 1 (IR	Q1) Requ	lest Pendi	ng Bit							
	0	-	ending		-							
	1	Pendi										
.0	Leve	el 0 (IR	Q0) Reau	iest Pendi	na Bit							
	0		ending									
	Ť	P										

Con	trol	Register				F0H	Set 1	, Bank 0
	7	.6	.5	.4	.3	.2	.1	.0
	0	0	0	0	0	0	0	0
R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reg	ister a	addressing	mode only					
P0.7	7/P0.6	6/P0.5/P0.4						
0	0	Input mod	е					
0	1	Input mod	e, pull-up					
1 0 Push-pull output								
P0.3	3/P0.2	2						
0	0	Input mod	е					
0	1	Input mod	e, pull-up					
1	0	Push-pull	output					
1	1	Alternative	e function r	node (PGC)UT<3:2>)			
		Input mod	۵					
	-			node (PGC)UT<1>)			
		,						
P0.0)							
0	0	Input mod	е					
0	1	Input mod	e, pull-up					
1	0	Push-pull	output					
1	1	Alternative	e function r	node (PGC)UT<0>)			
	Reg P0.7 0 0 1 1 1 P0.1 0 0 1 1 1 P0.1 0 0 1 1 1 P0.0 0 1 1 1	.7 0 R/W Register a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 1 0	0 0 R/W R/W Register addressing P0.7/P0.6/P0.5/P0.4 0 0 0 1 0 0 1 1 1 0 1 1 <th>.7 .6 .5 0 0 0 R/W R/W R/W Register addressing mode only PO.7/PO.6/PO.5/PO.4 0 0 Input mode 0 1 Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function r PO.3/PO.2 Input mode, pull-up 0 0 Input mode, pull-up 1 1 Alternative function r PO.3/PO.2 Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function r PO.1 Input mode, pull-up Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function r PO.0 Input mode, pull-up Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function r</th> <th>.7 .6 .5 .4 0 0 0 0 R/W R/W R/W R/W Register addressing mode only Register addressing mode only Register addressing mode only P0.7/P0.6/P0.5/P0.4 0 Input mode 0 0 0 Input mode, pull-up 1 1 0 Push-pull output 1 1 1 Alternative function mode (PGC 0 0 Input mode, pull-up 1 1 1 Alternative function mode (PGC 0 1 Input mode, pull-up 1 1 1 Alternative function mode (PGC P0.1 0 Input mode, pull-up 1 1 1 Alternative function mode (PGC P0.1 0 Push-pull output 1 1 1 Alternative function mode (PGC 0 0 Input mode, pull-up 1 1 1 Alternative function mode (PGC 0 0<th>.7 .6 .5 .4 .3 0 0 0 0 0 R/W R/W R/W R/W R/W Register addressing mode only R/W R/W R/W P0.7/P0.6/P0.5/P0.4 0 0 Input mode </th><th>.7 .6 .5 .4 .3 .2 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W P0.7/P0.6/P0.5/P0.4 0 1 Input mode 0 0 Input mode 0 1 Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function mode (PGOUT<7:4>) 0 0 Input mode, pull-up 1 1 Alternative function mode (PGOUT<3:2>) P0.1 0 0 Input mode, pull-up 1 1</th><th>.7 .6 .5 .4 .3 .2 .1 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W Register addressing mode only </th></th>	.7 .6 .5 0 0 0 R/W R/W R/W Register addressing mode only PO.7/PO.6/PO.5/PO.4 0 0 Input mode 0 1 Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function r PO.3/PO.2 Input mode, pull-up 0 0 Input mode, pull-up 1 1 Alternative function r PO.3/PO.2 Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function r PO.1 Input mode, pull-up Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function r PO.0 Input mode, pull-up Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function r	.7 .6 .5 .4 0 0 0 0 R/W R/W R/W R/W Register addressing mode only Register addressing mode only Register addressing mode only P0.7/P0.6/P0.5/P0.4 0 Input mode 0 0 0 Input mode, pull-up 1 1 0 Push-pull output 1 1 1 Alternative function mode (PGC 0 0 Input mode, pull-up 1 1 1 Alternative function mode (PGC 0 1 Input mode, pull-up 1 1 1 Alternative function mode (PGC P0.1 0 Input mode, pull-up 1 1 1 Alternative function mode (PGC P0.1 0 Push-pull output 1 1 1 Alternative function mode (PGC 0 0 Input mode, pull-up 1 1 1 Alternative function mode (PGC 0 0 <th>.7 .6 .5 .4 .3 0 0 0 0 0 R/W R/W R/W R/W R/W Register addressing mode only R/W R/W R/W P0.7/P0.6/P0.5/P0.4 0 0 Input mode </th> <th>.7 .6 .5 .4 .3 .2 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W P0.7/P0.6/P0.5/P0.4 0 1 Input mode 0 0 Input mode 0 1 Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function mode (PGOUT<7:4>) 0 0 Input mode, pull-up 1 1 Alternative function mode (PGOUT<3:2>) P0.1 0 0 Input mode, pull-up 1 1</th> <th>.7 .6 .5 .4 .3 .2 .1 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W Register addressing mode only </th>	.7 .6 .5 .4 .3 0 0 0 0 0 R/W R/W R/W R/W R/W Register addressing mode only R/W R/W R/W P0.7/P0.6/P0.5/P0.4 0 0 Input mode	.7 .6 .5 .4 .3 .2 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W P0.7/P0.6/P0.5/P0.4 0 1 Input mode 0 0 Input mode 0 1 Input mode, pull-up 1 0 Push-pull output 1 1 Alternative function mode (PGOUT<7:4>) 0 0 Input mode, pull-up 1 1 Alternative function mode (PGOUT<3:2>) P0.1 0 0 Input mode, pull-up 1 1	.7 .6 .5 .4 .3 .2 .1 0 0 0 0 0 0 0 0 R/W R/W R/W R/W R/W R/W R/W R/W Register addressing mode only

P1CON - Port	1 Cont	rol F	Register				F1H	Set 1	, Bank 0		
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0		
RESET Value	(0	0	0	0	0	0	0	0		
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Reg	ister a	addressing	mode only							
.7–.6	P1.7/P1.6										
	0	0	Input mod	е							
	0	1	Input mod	e, pull-up							
	1	х	Push-pull	output							
.5–.4	P1.5 0 0 1	5/P1.4 0 1 x	Input mod Input mod Push-pull	e, pull-up							
.3–.2	P1.3	B/P1.2	2								
	0	0	Input mod	е							
	0	1	Input mod	e, pull-up							
	1	х	Push-pull	output							
.1–.0	P1. 1	/ P1.0) Input mod	e							
	0	1	Input mod								
	1	х	Push-pull								

P1CONEX_	Port 1	Exter	ntion Co	ntrol Re	gister			0EH	Page 8				
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0				
RESET Value		0	0	0	0	_	_	0	0				
Read/Write	R	/W	R/W	R/W	R/W	_	_	R/W	R/W				
Addressing Mode	All a	addres	sing mode										
7	P1.	P1.7/PWM3 Selection Bit											
	0	POR	T1.7 Settir	ng									
	1	PWM	13										
6	P1.0	6/PWN	2 Selection	on Bit									
	0	POR	T1.6 Settir	ng									
	1	PWM	12										
5	P1.	5/PWN	1 Selection	on Bit									
	0	POR	T1.5 Settir	ng									
	1	PWN	11										
4	P1.4/PWM0 Selection Bit												
	0	POR	T1.4 Settir	ng									
	1	PWM	10	-									
3–.2	Not	used f	or the S30	C84MB/F84	MB								
1	D1 ⁻		T2 Ry Sal	ection Bit									
•	0	1	T1.1 Settin										
	1		T2 Rx	.9									
	<u>L</u>	1											
0	P1.	0/UAR	T2 Tx Sel	ection Bit									
	0	POR	T1.0 Settir	ng									
	1	UAR	T2 Tx										

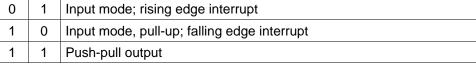
NOTE: 1. When the UART2 is operating in mode 0 (SIO) Rx input, P1CONEX.1 must be set to '0' and P1CON.0-1 must be set to input mode or input with pull-up mode('00' or '10'). In other operating modes(mode 0 Rx output, mode1, 2, 3), P1CONEX.0-1 must be set to '1' and P1CON.0-1 values are don't care.

P2CONH – Pa	ort 2 Co	ontro	ol Registe	er (High	Byte)		F2H	Set 1	l, Bank (
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0				
RESET Value	<u>.</u>	0	0	0	0	0	0	0	0				
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Addressing Mode	Reg	ister	addressing	mode only	,								
.7–.6	P2.7	7/TAC	DUT										
	0 0 Input mode												
	0	1	Input mod	Input mode, pull-up									
	1	0	Push-pull output										
	1	1	Alternative	e output m	ode(TAOU	T)							
.5–.4	P2.6	6/TAC	AP										
	0												
	0	1	-	le, pull-up(TACAP)								
	1	0	Push-pull	output									
	1	1	Not used										
.3–.2	P2.{	5/TAC	ж										
	0	0	Input mod	le(TACK)									
	0	1	Input mod	le, pull-up(TACK)								
	1	0	Push-pull	output									
	1	1	Not used										
.1–.0	P2 /	4/ TBI	РWM										
	0	0	Input mod	e									
	0	1	Input mod										
	1	0	Push-pull										
	1	1	· · ·										

P2CONL – Po	ort 2 Co	ontro	l Registe	er (Low E	Byte)		F3H	Set 1	, Bank			
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0			
RESET Value		0	0	0	0	0	0	0	0			
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Addressing Mode	Reg	jister	addressing	mode only	,							
7–.6	P2.3											
	0	0	Input mod	le								
	0	0 1 Input mode, pull-up										
	1	0	Push-pull	output								
	1	1	Not Used									
5–.4	P2.2/SCK 0 0 Input mode (SCK input)											
	0	0	Input mode, pull-up (SCK input)									
	1	1	Push-pull output Alternative output mode (SCK output)									
	1	I	Alternativ	e output m		յուրույ						
3–.2	P2. ⁴	1/SI										
	0	0	Input mod	le(SI)								
	0	1	Input mod	le, pull-up(SI)							
	1	0	Push-pull	output								
	1	1	Not used									
I–.0	P2.0)/SO										
	0	0	Input mod	le								
	0	1	Input mod	le, pull-up								
	4	0	Duch mult	a								

C)	1	Input mode, pull-up
1	I	0	Push-pull output
1	I	1	Alternative output mode (SO)

P3CONH – Po	ort 3 Co	ontro	ol Registe	er (High	Byte)		F4H	Set 1, Bank (
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0				
RESET Value		0	0	0	0	0	0	0	0				
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
Addressing Mode	Reg	ister	addressing	mode only									
.7–.6	P3.7/TCOUT1												
	0	0	Input mod	de									
	0	1	Input mod	Input mode, pull-up									
	1	0	Push-pull	Push-pull output									
	1 1 Alternative output mode(TCOUT1)												
.5–.4			DUT0										
	0	0	Input mod										
	0	1	Input mode, pull-up										
	1	0	Push-pull output										
	1	1	Alternativ	e output m	ode(TCOU	10)							
.3–.2	P3.5	5/ T10	DUT1										
	0	0	Input mod	de									
	0	1	Input mod	de, pull-up									
	1	0	Push-pull	output									
	1	1	Alternativ	e output m	ode(T1OU	Г1)							
.1–.0	P3.4	1/ T10	OUT0										
	0	0	Input mod	de									
	0	1		de, pull-up									
	1	0	Push-pull	output									
	1	1	Alternativ	e output m	ode(T1OU	Г0)							


P3CONL - Por	t 3 Co	ontro	l Registe	er (Low B	yte)		F5H	Set 1, Bank 0			
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0		
RESET Value		0	0	0	0	0	0	0	0		
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Reg	ister	addressing	mode only							
.7–.6	P3.3	3/T1C									
	0	0	Input mod	le (T1CAP1							
	0										
	1	х	Push-pull	output							
.5–.4		1	CAP0								
	0	0	Input mode (T1CAP0)								
	0	1		le, pull-up (T1CAP0)						
	1	Х	Push-pull	output							
.3–.3	P3. 1	I/T1C	K1								
	0	0	Input mod	le (T1CK1)							
	0	1	Input mod	le, pull-up (T1CK1)						
	1	х	Push-pull	output							
.1–.0	P3.0)/T1C	К0								
	0	0	Input mod	le (T1CK0)							
	0	1	Input mod	le, pull-up (T1CK0)						
	1	х	Push-pull	output							

P4CONH – Po	ort 4 Co	ontro	ol Registe	er (High	Byte)		F6H	Set 1, Bank 0				
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0			
RESET Value		0	0	0	0	0	0	0	0			
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Addressing Mode	Reg	ister	addressing	mode only								
.7–.6	P4.7/INT7											
	0	0	Input mod	e; falling e	dge interru	pt						
	0	1	Input mod	e; rising e	dge interrup	ot						
	1	0	Input mode, pull-up; falling edge interrupt									
	1	1 Push-pull output										
				-								
5–.4	P4.(6/ INT	6									
	0	0	Input mod	e; falling e	dge interru	pt						
	0	1	Input mode; rising edge interrupt									
	1	0	Input mode, pull-up; falling edge interrupt									
	1	1	Push-pull	output								
.3–.2	P4.	5/ INT	5									
	0	0	Input mod	e; falling e	dge interru	pt						
	0	1	Input mod	e; rising e	dge interrup	ot						
	1	0	Input mod	e, pull-up;	falling edge	e interrupt						
	1	1	Push-pull	output								
				-								
.1–.0	P4.4	4/ INT	4									
	0	0	Input mod	e; falling e	dge interru	pt						
	0	1	Input mod	e; rising e	dge interrup	ot						
	1	0	Input mod	e, pull-up;	falling edge	e interrupt						
	1	1	Push-pull						-			

P4CONL—Po	ort 4 Co	ontro	l Registe	er (Low E	Syte)		F7H	Set 1	l, Bank			
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0			
RESET Value		0	0	0	0	0	0	0	0			
ead/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
ddressing Mode	Register addressing mode only											
′ - .6	P4.3/INT3											
	0	0	Input mod	le; falling e	dge interru	pt						
	0	1	Input mod	le; rising eo	dge interru	ot						
	1	0	Input mod	le, pull-up;	falling edg	e interrupt						
	1	1	Push-pull	output								
	00Input mode; falling edge interrupt01Input mode; rising edge interrupt10Input mode, pull-up; falling edge interrupt											
	1	1	Push-pull		<u></u>	<u></u>						
2	P4.1	I/INT										
	0	0		le; falling e	•	•						
	0	1		le; rising eo	• •							
	1	0		le, pull-up;	falling edg	e interrupt						
	1	1	Push-pull	output								
0	P4.()/INT	0									
	0	0	Input mod	le; falling e	dge interru	pt						
	0	1	-	le; rising ed	-	•						
	1	0			folling odg	ointorrunt						

P4INT — Port 4	Interru	pt C	ontrol Re	egister			FAH	Set 1	l, Bank 0
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0
RESET Value	(0	0	0	0	0	0	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	ister a	addressing	mode only					
.7	P4.7	7 Exte	rnal Interr	upt (INT7)	Enable Bi	t			
	0	Disa	ble interrup	ot					
	1	Enal	ole interrup	ot					
.6	P4.6	6 Exte	rnal Interr	upt (INT6)	Enable Bi	t			
	0	Disa	ble interrup	ot					
	1	Enal	ole interrup	t					
.5	D4 6		mal Intern		Enable Bi				
.5	P4.3	1	ble interrup	/		ι			
	1		ole interrup						
	I	LIIdi							
.4	P4.4	l Exte	rnal Interr	upt (INT4)	Enable Bi	t			
	0	Disa	ble interrup	ot					
	1	Enal	ole interrup	ot					
.3	P4.3	8 Exte	rnal Interr	upt (INT3)	Enable Bi	t			
	0		ble interrup			-			
	1		ole interrup						
_									
.2	1	1		• • •	Enable Bi	t			
	0		ble interrup ble interrup						
	1	Enai		1					
.1	P4.1	Exte	rnal Interr	upt (INT1)	Enable Bi	t			
	0	Disa	ble interrup	ot					
	1	Enal	ole interrup	t					
.0	P4 () Fyto	rnal Interr	unt (INTO)	Enable Bi	t			
	0	1	ble interrup	• • •		-			
	1		ole interrup						
	L .			-					

P4INTPND-	Port 4 I	nterrupt Pe	nding Re	gister		FBH	Set 1, Bank					
it Identifier	.7	.6	.5	.4	.3	.2	.1	.0				
ESET Value	0	0	0	0	0	0	0	0				
ead/Write	R/\	N R/W	R/W	R/W	R/W	R/W	R/W					
ddressing Mode	Regis	Register addressing mode only										
	P4.7/INT7 Interrupt Pending Bit 0 Interrupt request is not pending, pending bit clear when write 0											
	0	Interrupt reque	est is not pe	nding, pen	ding bit cle	ar when wr	ite 0					
	1 Interrupt request is pending											
	P4.6/INT6 Interrupt Pending Bit											
	0 Interrupt request is not pending, pending bit clear when write 0											
	1 Interrupt request is pending											
	P4.5/	/INT5 Interrup	t Pendina F	Bit								
		Interrupt reque			dina bit cle	ar when wr	ite 0					
		Interrupt reque		• •	<u></u>	<u></u>						
		/INT4 Interrup										
	 0 Interrupt request is not pending, pending bit clear when write 0 1 Interrupt request is pending 											
	1	Interrupt reque	est is pendir	ng								
	P4.3/	/INT3 Interrupt	t Pending E	Bit								
	0 Interrupt request is not pending, pending bit clear when write 0											
	1	Interrupt reque	est is pendir	ng								
	P4.2/	/INT2 Interrupt	t Pending E	Bit								
		Interrupt reque			ding bit cle	ar when wr	ite 0					
		Interrupt reque		• •	0							
	P4.1/	/INT1 Interrup	t Pendina E	Bit								
		Interrupt reque	•		dina bit cle	ar when wr	ite 0					
		Interrupt reque	•		<u> </u>							
	P4.0/INTO Interrupt Pending Bit											
	 0 Interrupt request is not pending, pending bit clear when write 0 1 Interrupt request is pending 											
	1	interrupt reque	est is pendir	ıy								

P5CONH — Po	ort 5 Co	ontro	ol Registe	er (High	Byte)		F8H	Set 1	l, Bank 0		
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0		
RESET Value		0	0	0	0	0	0	0	0		
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Reg	ister	addressing	mode only							
.7–.6	P5.7	P5.7									
	0										
	0	1	Input mod	le, pull-up							
	1	0	Push-pull	output							
	1	1	Open-dra	in mode							
.5–.4	P5.6	6									
	0	0	Input mod	le							
	0	1	Input mod	le, pull-up							
	1	0	Push-pull	output							
	1	1	Open-dra	in mode							
.3–.2	P5.5	5									
	0	0	Input mod	le							
	0	1	Input mod	le, pull-up							
	1	0	Push-pull	output							
	1	1	Open-dra	in mode							
.1–.0	P5.4										
	0	0	Input mod								
	0	1	Input mod	le, pull-up							

Push-pull output

Open-drain mode

1

1

0

P5CONL – Po	ort 5 Co	ontro	l Registe	er (Low E	Byte)		F9H	Set 1	, Bank			
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0			
RESET Value		0	0	0	0	0	0	0	0			
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Addressing Mode	Reg	Register addressing mode only										
7–.6	P5.3	P5.3/RxD0										
	0 0 Input mode (RxD0 input)											
	0	1	Input mode, pull-up mode (RxD0 input)									
	1	1 0 Push-pull output										
	1											
5–.4	P5.2											
	0	0 0 Input mode										
	0	1	1 Input mode, pull-up mode									
	1	0	Push-pull	output								
	1	1	Alternative	e output m	ode (TxD0	output)						
3–.2	P5.1	/RxD	01									
	0	0	Input mod	le (RxD1 ir	nput)							
	0	1	Input mod	le, pull-up	mode (RxD	1 input)						
	1	0	Push-pull	output								
	1	1	Alternative	e output m	ode (RxD1	output)						
1–.0	P5.0)/TxD	1									
	0	0	Input mod									
	0	1	Input mode, pull-up mode									
	1	0	Push-pull output									
	1	1	Alternative	e output m	ode (TxD1	output)						

P6CON — Port	o Con		egister					0FH	PAGE				
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0				
RESET Value		_	0	0	0	0	0	0	0				
lead/Write		_	R/W	R/W	R/W	R/W	R/W	R/W	R/W				
ddressing Mode	All a	address	ing mode										
7	Not	Not Used											
5	P6.6/ADC14												
	0	0 Open-Drain Output											
	1												
5	P6.	5/ADC1	3										
	0	Open	-Drain Ou	Itput									
	1	ADC1	3										
	P6.4	4/ADC1	2										
	0 Open-Drain Output												
	1	ADC1		-									
}	P6 1	3/ADC1	1										
•	0	1	-Drain Ou	itout									
	1	ADC1		iiput									
		2/ADC1											
	0	-	-Drain Ou	itput									
	1	ADC1	0										
	P6.′	1/ADC9)										
	0	Open	-Drain Ou	itput									
	1	ADCS)										
)	P6.0	P6.0/ADC8											
	0												
	1	1 ADC8											

P7CON — Port	7 Con	trol R	legister				F5H	Set 1	, Bank '			
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0			
RESET Value		0	0	0	0	0	0	0	0			
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Addressing Mode	Reg	gister a	r addressing mode only									
7	P7.7/ADC7											
	0	Input	mode									
	1 ADC 7											
6	P7.	6/ ADC	6									
	0	Input	mode									
	1	ADC	6									
5	P7.	5/ ADC	5									
	0	Input	mode									
	1	ADC	5									
4	P7.4	4/ ADC	4									
	0	Input	mode									
	1	ADC	4									
3	P7.:	3/ ADC	3									
	0	Input	mode									
	1	ADC	3									
2	P7.:	2/ ADC	2									
	0	Input	mode									
	1	ADC										
1	P7.	1/ ADC	1									
	0	1	mode									
	1	ADC										
0	P7 (0/ ADC	0									
-	0		mode									
	1	ADC										

P8CONH Po	ort 8 Co	ontro	ol Registe	EDH	Set 1, Bank 0						
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0		
RESET Value		_	_	_	_	0	0	0	0		
Read/Write		_	-	-	_	R/W	R/W	R/W	R/W		
Addressing Mode	Reg	Register addressing mode only									
.7–.4 .3–.2		Not used for the S3C84MB/F84MB P8.5/ INT9									
	0	0	Input mod	e; falling e	dge interru	pt					
	0	1	Input mod	e; rising eo	dge interrup	ot					
	1	0	Input mod	e, pull-up;	falling edg	e interrupt					
	1	1	Push-pull	output							
.1–.0	P8.4	I/ INT	8								
	0	0	Input mod	e; falling e	dge interru	pt					
	0	1	Input mod	e; rising ea	dge interrup	ot					
	1	0	Input mode, pull-up; falling edge interrupt								

1

1

Push-pull output

P8CONL – Po	rt 8 Cc	ontro	l Registe	er (Low E	Byte)		EEH	Set 1	l, Bank 0
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value		0	0	0	0	0	0	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	ister a	addressing	mode only					
.7–.6	P8.3	3							
	0	0	Input mod	е					
	0	1	Input mod	le, pull-up					
	1	0	Push-pull	output					
	1	1	Not Used						
.5–.4	P8.2	2							
	0	0	Input mod	le / SCK1(I	nput)				
	0	1	Input mod	le, pull-up /	SCK1(Inp	ut)			
	1	0	Push-pull	output					
	1	1	SCK1(Ou	tput)					
.3–.2	P8.′	1							
	0	0	Input mod	le / SI1					
	0	1	Input mod	le, pull-up					
	1	0	Push-pull	output					
	1	1	Not Used						
.1–.0	P8.()							
	0	0	Input mod	е					
	0	1	Input mod	le, pull-up					
	1	0	Push-pull	output					
						-		-	-

1 SO1

8INTPND-	Port 8	Interr	upt Pe	nding Re	gister		EFH	Set 1, Bank 0				
Bit Identifier	-	.7	.6	.3	.2	.1	.0					
RESET Value		_	_	0	0	_	_	0	0			
Read/Write		_	_	R/W	R/W	_	-	R/W	R/W			
Addressing Mode	Reg	Register addressing mode only										
.7–.6	Not	Not used for the S3C84MB/F84MB										
.5	P8.	P8.5/INT9 Interrupt Pending Bit										
	0	Interr	upt reque	st is not pe	nding, penc	ling bit cle	ar when wr	ite 0				
	1	Interro	upt reque	st is pendir	ng							
.4	P8.4	4/INT8	Interrupt	Pending E	Bit							
	0	Interro	upt reque	st is not pe	nding, penc	ling bit cle	ar when wr	ite 0				
	1	Interro	upt reque	est is pendir	ŋg							
.3–.2	Not	used fo	or the S30	C84MB/F84	MB							
.1	P8.5	5/INT9	Interrupt	Enable								
	0	Disab	le interru	pt								
	1	Enabl	e interrup	ot								
.0	P8.4	4/INT8	Interrupt	Enable								
	0	1	le interru									
	1 Enable interrupt											

PGCON – Pa	ttern G	ener	ation Co	ontrol Reg		FEH	Set 1	, Bank 1				
Bit Identifier		7	.6	.5	.4	.3	.2	.1	.0			
RESET Value		_	_	_	_	0	0	0	0			
Read/Write	-	_	_	_	_	R/W	R/W	R/W	R/W			
Addressing Mode	Reg	Register addressing mode only										
.7–.4	Not	Not used for the S3C84MB/F84MB										
.3	Soft	Software Trigger Start Bit										
	0 No effect											
	1	Softw	ware trigge	r start (will	be automa	tically clea	red)					
.2	PG	Opera	tion Disat	ole/Enable	Selection	Bit						
	0	PG o	peration d	isable								
	1	PG c	peration e	nable								
.1–.0	PG	Opera	tion Trigg	er Mode S	election E	Bits						
	0	0 0 Timer A match siganal triggering										
	0	0 1 Timer B underflow siganal triggering										
	1	1 0 Timer 1(0) match siganal triggering										

Software triggering mode

1

PP — Register Pa	ige Poi	inter						DFH		Set ?	
Bit Identifier	-	7	-	6	.5	.4	.3	.2	.1	.0	
RESET Value		0	(0	0	0	0	0	0	0	
Read/Write	R	/W	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	
Addressing Mode	Reg	ister a	addre	ssing	g mode only						
.7–.4	Des	tinati	on Re	egiste	er Page Se	lection Bit	S				
	0	0	0	0	Destinatio	on: page 0					
	0	0	0	1	Destinatio	on: page 1					
	0	0	1	0	Destinatio	on: page 2					
	0	0	1	1	Destinatio	on: page 3					
	0	1	0	0	Destinatio	on: page 4					
	0	1	0	1	Destinatio	on: page 5					
	0	1	1	0	Destinatio	on: page 6					
	0	1	1	1	Destinatio	on: page 7					
	1	0	0	0	Destinatio	on: page 8					
		Other	Value	Э	Not Used						
.3–.0	Sou	1		1	age Selecti						
	0	0	0	0	Source: p	•					
	0	0	0	1	Source: p	age 1					
	0	0	1	0	Source: p	age 2					
	0	0	1	1	Source: p	age 3					
	0	1	0	0	Source: p	age 4					
	0	1	0	1	Source: p	age 5					
	0	1	1	0	Source: p	age 6					
	0	1	1	1	Source: p	age 7					

NOTE: In the S3C84MB/F84MB microcontroller, the internal register file is configured as eight pages (Pages 0-7). The pages 0-1 are used for general-purpose register file, and page 2-7 is used for data register or general purpose registers.

Source: page 8

Not Used

1

0

Other Value

0

PWM0EX/1EX	09H, 0	PAGE8						
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	0	0	0	0	0	0	_	_
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	-	-
Addressing Mode	All addressing mode							

Extention Bit	"Stretched" Cycle Number
7	1, 3, 5, 7, 9,, 55, 57, 59, 61, 63
6	2, 6, 10, 14,, 50, 54, 58, 62
5	4, 12, 20,, 44, 52, 60
4	8, 24, 40, 56
3	16, 48
2	32
1	Not used
0	Not used

PWMCON — PWM Control Register							07H		PAGE8	
Bit Identifier	-	7	-	6	.5	.4	.3	.2	.1	.0
RESET Value	-	_	(0	0	0	_	_	_	0
Read/Write	-	_	R	/W	R/W	R/W	_	_	_	R/W
Addressing Mode	All addressing mode									
.7	Not Used									
.6–.4	Inpu	ut Clo	ck Se	electior	n Bits					
	0	0	0	$f_{XX}/1$						
	0	0	1	$f_{XX}/2$						
	0	1	0	f _{XX} /3						
	0	1	1	$f_{XX}/4$						
	1	0	0	f _{XX} /5						
	1	0	1	f _{XX} /6						
	1	1	0	f _{XX} /7						
	1	1	1	f _{XX} /8						

.3–.1

.0

PWM Counter Enable Bit

Not Used

0	Stop Counter
1	Start(Resume) Counting

RP0 — Register Pointer 0						Set 1			
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0	
RESET Value	1	1	0	0	0	_	_	_	
Read/Write	R/W	R/W	R/W	R/W	R/W	_	_	_	
Addressing Mode	Register addressing only								
.7–.3	Register Pointer 0 Address Value Register pointer 0 can independently point to one of the 256-byte working register areas in the register file. Using the register pointers RP0 and RP1, you can select two 8-byte register slices at one time as active working register space. After a reset, RP0 points to address C0H in register set 1, selecting the 8-byte working register slice C0H–C7H.								
.2–.0	Not used	for the S30	C84MB/F84	MB					

RP1 — Register Pointer 1						D7H			
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0	
RESET Value	1	1	0	0	1	_	_	_	
Read/Write	R/W	R/W	R/W	R/W	R/W	_	_	_	
Addressing Mode	Register addressing only								
.7–.3	Register Pointer 1 Address Value Register pointer 1 can independently point to one of the 256-byte working register areas in the register file. Using the register pointers RP0 and RP1, you can select two 8-byte register slices at one time as active working register space. After a reset, RP1 points to address C8H in register set 1, selecting the 8-byte working register slice C8H–CFH.								
.2–.0	Not used	for the S30	C84MB/F84	IMB					

SIOCON — sic) Contro	ol Register	E1H	Set 1, Bank 1							
Bit Identifier	.7	· .6	.5	.4	.3	.2	.1	.0			
RESET Value	0	0	0	0	0	0	0	0			
Read/Write	R/\	N R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Addressing Mode	Regis	Register addressing mode only									
.7	SIO Shift Clock Selection Bit										
	0 Internal clock (P.S clock)										
	1	External clock	(SCK)								
.6	Data	Data Direction Control Bit									
	0	MSB first mod	e								
	1	LSB first mode	;								
.5	SIO Mode Selection Bit										
	0 Receive only mode										
	1 Transmit/receive mode										
.4	Shift Start Edge Selection Bit										
	0 Tx at falling edges, Rx at rising edges										
	1 Tx at rising edges, Rx at falling edges										
2	SIO Counter Clear and Shift Start Bit										
.3		No action									
	1 Clear 3-bit counter and start shifting (Auto-clear bit)										
	•										
.2	SIO Shift Operation Enable Bit										
	0 Disable shifter and clock counter										
	1	Enable shifter	and clock o	ounter							
.1	SIO Interrupt Enable Bit										
	0 Disable SIO interrupt										
	1 Enable SIO interrupt										
.0	SIO Interrupt Pending Bit										
	0 No interrupt pending										
	0 Clear pending condition (when write)										
	1 Interrupt is pending										

SIOPS - SIO P	rescaler Re	gister				F4H	l, Bank 1			
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0		
RESET Value	0	0	0	0	0	0	0	0		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Register a	Register addressing mode only								
.7–.0	Baud rate	= Input clo	ock (f _{XX})/[(S	IOPS + 1)	×2] or SCk	(input cloc	k			

SIOCON1-s	O1 Co	ontro	l Registe	er			00H		PAGE 8			
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0			
RESET Value		0	0	0	0	0	0	0	0			
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Addressing Mode	All a	addres	sing mode									
.7	SIO Shift Clock Selection Bit											
	0 Internal clock (P.S clock)											
	1 External clock (SCK1)											
.6	Data Direction Control Bit											
	0 MSB first mode											
	1 LSB first mode											
.5	SIO1 Mode Selection Bit											
	0 Receive only mode											
	1	Trar	smit/receiv	ve mode								
.4	Shift Start Edge Selection Bit											
	0 Tx at falling edges, Rx at rising edges											
	1	Tx a	t rising edg	jes, Rx at f	alling edge	S						
.3	SIO1 Counter Clear and Shift Start Bit											
	0 No action											
	1 Clear 3-bit counter and start shifting (Auto-clear bit)											
.2	SIO1 Shift Operation Enable Bit											
	0 Disable shifter and clock counter											
	1	Ena	ble shifter a	and clock c	counter							
.1	SIO1 Interrupt Enable Bit											
	0 Disable SIO1 interrupt											
	1	Ena	ble SIO1 in	terrupt								
.0	SIO	1 Inte	rrupt Pend	ding Bit								
-	0	1	nterrupt per	_								
	0 Clear pending condition (when write)											
	1		rupt is pen		,							
	L	1		~								

SIOPS1 - SIO1	Prescaler	Registe	ſ		01H			
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	All addressing mode							
.7–.0	Baud rate	e = Input clo	ock (f _{xx})/[(S	SIOPS1 + 1) ×2] or SC	CK1 input c	lock	

SPH — Stack Po			Set 1						
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0	
RESET Value	X	х	х	х	х	х	х	х	
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Addressing Mode	Register a	addressing	mode only						
.7–.0	Stack Po	inter Addr	ess (High	Byte)					
	The high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer address (SP15–SP8). The lower byte of the stack pointer value is located in register								

SPL (D9H). The SP value is undefined following a reset.

Page 8

SPL — Stack Po	inter (Low		Set 1							
Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0		
RESET Value	Х	х	х	х	х	х	х	х		
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		
Addressing Mode	Register a	Register addressing mode only								
.7–.0	Stack Po	inter Addr	ess (Low I	Byte)						
	The low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer address (SP7–SP0). The upper byte of the stack pointer value is located in register SPH (D8H). The SP value is undefined following a reset.									

STOPCON — Stop Control Register	

Bit Identifier	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	0	0	0	0	0	0	0	0
Read/Write	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	All addres	sing mode						

All addressing mode

.7–.0

Stop Control Bit

1010 0101	Enable STOP Instruction
Others	Disable STOP Instruction

10H

SYM — System M		Set 1								
Bit Identifier		7	-	6	.5	.4	.3	.2	.1	.0
RESET Value		_	-	_	-	х	х	х	0	0
Read/Write		_	-	-	-	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Register addressing mode only									
.7–.5 .4–.2				Level	Selection	(must keep Bits	50)			
	0	0	0	IRQ0						
	0	0	1	IRQ1						
	0	1	0	IRG2						
	0	1	1	IRQ3						
	1	0	0	IRQ4						
	1	0	1	IRQ5						
	1	1	0	IRQ6						
	1	1	1	IRQ7						

.1

Fast Interrupt Enable Bit

0	Disable fast interrupt processing
1	Enable fast interrupt processing

.0

Global Interrupt Enable Bit^(NOTE)

0	Disable global interrupt processing
1	Enable global interrupt processing

NOTE: Following a reset, you enable global interrupt processing by executing an EI instruction (not by writing a "1" to SYM.0).

F1CON0 — Tin	ner 1(0) Co	ntrol F	egister			EAH	Set 1	, Bank			
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0			
RESET Value	<u>.</u>	0	0	0	0	0	0	0	0			
Read/Write	R/W R/W R/W R/W						R/W	R/W	R/W			
Addressing Mode	Reg	jister a	address	ng mode only	,							
.7–.5	Timer 1 Input Clock Selection Bits											
	0	0	0 0 f _{XX} /1024									
	0	0	0 1 f _{xx} (Non-divide)									
	0	1	1 0 f _{xx} /256									
	0	1	1 1 External clock falling edge									
	1	0	0 0 f _{xx} /64									
	1	0										
	1	1	0 f ₂	(x/8								
	1	1	1 C	ounter stop								
4–.3	O O Interval mode 0 1 Capture mode (Capture on riging odge O)/E cap occur)											
	0		1 Capture mode (Capture on rising edge, OVF can occur)									
		1 0 Capture mode (Capture on falling edge, OVF can occur) 1 1 PWM mode										
	1	1	PVVIVI	node								
2	Tim	er 1 C	Counter	Enable Bit								
	0	No e	effect									
	1	Clea	ar the tin	ner 1 counter	(Auto-clear	bit)						
	T :					D:4						
1		1		apture Interr	upt Enable	BI						
	0	-	able inte	•								
	1	Ena	ble inter	rupt								
.0	Tim	er 1 C	Overflow	v Interrupt Er	nable							
•	0 Disable overflow interrupt											
	0	Disa	able ove	•								

СОN1 — ті	mer 1(1) Co	ntrol	Regis	ter			EBH	Set 1	, Bank ⁻
lentifier		.7	_	6	.5	.4	.3	.2	.1	.0
ET Value		0	(0	0	0	0	0	0	0
I/Write	R	/W	R/	/W	R/W	R/W	R/W	R/W	R/W	R/W
essing Mode	Reg	jister	addres	ssing mo	ode only					
	Tim	er 1 I	nput	Clock S	electior	Bits				
	0	0	0	f _{XX} /102	4					
	0	0	1	f _{XX} (Nor	n-divide)					
	0	1	0	f _{XX} /256						
	0	1	1	Externa	al clock	falling edge	9			
	1	0	0	f _{XX} /64						
	1	0	1	Externa	al clock	rising edge				
	1	1	0	f _{XX} /8						
	1	1	1	Counte	er stop					
	Tim 0 0 1	er 1 (0 1 0	Inter Capt	rval mod ture mod	e de (Capt			VF can occ VF can occ	,	
	1	1	PWN	M mode						
		-		er Enab	le Bit					
	0		effect							
	1	Clea	ar the	timer 1 c	counter	(Auto-clear	bit)			
	Tim	er 1 I	Match	/Captur	e Interr	upt Enable	Bit			
	0	Disa	able in	iterrupt		-				
	1	Ena	ble int	terrupt						
	Tim	or 1 (Ovorfl	ow Inter		ablo				
		1								
	0	Disa	able ov	verflow inverflow in	nterrupt					

TACON — Time	er A Co	ontro	ol Registe	er			EAH	Set 1	, Bank 0
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	1	0	0	0	0	0	0	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	jister	addressing	mode only					
.7–.6	Tim	er A	Input Cloc	k Selectio	n Bits				
	0	0	f _{XX} /1024						
	0	1	f _{XX} /256						
	1	0	f _{XX} /64						
	1	1	External of	clock (TAC	K)				
.5–.4	0 0 1 1	0 1 0 1	Capture r Capture r	node (TAO node (capt node (capt de (OVF in	JT mode) ure on risin	g edge, co ng edge, co	unter runnii punter runni		,
	0	No	effect						
	1	Clea	ar the timer	A counter	(After clear	ing, return	to zero)		
.2	Tim 0 1	Disa	Overflow I able overflo ble overflov	w interrupt					
.1	0	Disa	Match/Cap able interru	pt	upt Enable	e Bit			
	1	Ena	ble interrup	אנ					
.0	Tim	er A	Start/Stop	Bit					
	0	Stop	o Timer A						
	1	Star	t Timer A						

TBCON — Time	er B Co	ontro	ol Registe	er			D0H	Set 1	l, Bank 0
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value		0	0	0	0	0	0	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	jister	addressing	mode only	,				
.7–.6	Tim	er B	Input Cloc	k Selectio	n Bits				
	0	0	f _{XX}						
	0	1	f _{XX} /2						
	1	0	f _{XX} /4						
	1	1	f _{XX} /8						
.5–.4	Tim	er B	Interrupt T	ime Selec	tion Bits				
	0	0	Elapsed t	ime for low	data value	1			
	0	1	Elapsed t	ime for hig	h data valu	е			
	1	0	Elapsed t	ime for low	and high d	lata values			
	1	1	Invalid se	tting					
.3	1	1	Interrupt E						
	0		able Interru						
	1	Ena	ble Interrup	ot					
.2	Tim	er B	Start/Stop	Bit					
	0	Stop	o timer B						
	1	Star	rt timer B						
.1	Tim	er B	Mode Sele	ction Bit					
	0	1	e-shot mode						
	1		eating mod						
.0	Tim	or R	Output flip	-flon Cont	rol Bit				
	0		F is low						
	Ŭ	1							

NOTE: f_{XX} is selected clock for system.

TCCON0-Tir	ner C(0) Co	ontrol F	Register			F2H	Set 1	, Bank 1
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value		_	0	0	0	0	0	0	0
Read/Write		_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	jister a	addressii	ng mode only	,				
.7	Not	used	for the S	3C84MB/F84	IMB (must	keep alway	/s 0)		
.6–.4	Tim	er C 3	3-bits Pr	escaler Bits					
	0	0	0 N	on devided					
	0	0	1 D	vided by 2					
	0	1	0 D	vided by 3					
	0	1	1 D	vided by 4					
	1	0	0 D	vided by 5					
	1	0	1 D	vided by 6					
	1	1	0 D	vided by 7					
	1	1	1 D	vided by 8					
.3	Tim	er C (Counter	Clear Bit					
	0	No e	effect						
	1	Clea	ar the tim	er C(0) count	ter (Auto-cl	ear bit)			
.2	Tim	er C I	Mode Se	lection Bit					
	0	$f_{XX}/1$	& PWM	mode					
	1	$f_{XX}/6$	4 & inter	val mode					
.1	Tim			Enable Bit					
	0		ble inter	-					
	1	Ena	ble interr	upt					
0	Tim		Pending	D:4					
.0	0	1	-enaing nterrupt						
	0			g bit when w	rito				
	1		rupt pen	-					
	I	miler	rupt pen	ung					

TCCON1 - Tir	mer C(1) Co	ontrol F	Register			F3H	Set 1	, Bank 1
Bit Identifier	-	.7	.6	.5	.4	.3	.2	.1	.0
RESET Value		_	0	0	0	0	0	0	0
Read/Write		_	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	ister a	addressii	ng mode only					
.7	Not	used	for the S	3C84MB/F84	IMB (must	keep alway	/s 0)		
.6–.4	Tim	er C 3	8-bits Pr	escaler Bits					
	0	0	0 N	on devided					
	0	0	1 D	ivided by 2					
	0	1	0 D	ivided by 3					
	0	1	1 D	ivided by 4					
	1	0	0 D	ivided by 5					
	1	0	1 D	ivided by 6					
	1	1	0 D	ivided by 7					
	1	1	1 D	ivided by 8					
.3	Tim	er C (Counter	Clear Bit					
	0	No e	effect						
	1	Clea	r the tim	er C(1) count	ter (Auto-cl	ear bit)			
.2	Tim	or C I	lada Sa	lection Bit					
.2	0	1	& PWM						
	1			val mode					
.1	Tim	er C I	nterrup	Enable Bit					
	0	Disa	ble inter	rupt					
	1	Ena	ole interi	rupt					
.0	Tim	er C F	Pending	Bit					
.0	0		nterrupt						
	0			g bit when w	rite				
	1		rupt pen	-					
	'	inter	- apt por	y					

INTPND — TI	mer A, 1	Interrupt	Pending	Register		E9H	Set 1	l, Bank
it Identifier	.7	.6	.5	.4	.3	.2	.1	.0
ESET Value	_	_	0	0	0	0	0	0
ead/Write	_	_	R/W	R/W	R/W	R/W	R/W	R/W
ddressing Mode	Regist	ter addressing	g mode only	,				
6	Not us	sed for the S3	C84MB/F84	1MB				
	Timer	1(1) Overflor	w Interrupt	Pending B	Bit			
	1 0	No interrupt pe	ending					
	0 0	Clear pending	bit when w	rite				
	1 I	nterrupt pend	ing					
	Timer	1(1) Match/C	Capture Inte	errupt Pen	ding Bit			
	1 0	No interrupt pe	ending					
	0 0	Clear pending	bit when w	rite				
	1 I	nterrupt pend	ing					
	Timer	1(0) Overflo	w Interrupt	Pending E	Bit			
	1 0	No interrupt pe	ending					
	0 0	Clear pending	bit when w	rite				
	1 I	nterrupt pend	ing					
	Timer	1(0) Match/C	Capture Inte	errupt Pen	ding Bit			
	0	No interrupt pe	ending					
	0 (Clear pending	bit when w	rite				
	1 I	nterrupt pend	ing					
	Timer	A Overflow	Interrupt P	ending Bit				
	0	No interrupt pe	ending					
	0 0	Clear pending	bit when w	rite				
	1 I	nterrupt pend	ing					
	Timer	A Match/Ca	oture Interr	upt Pendi	ng Bit			
		No interrupt pe						
	0 0	Clear pending	bit when w	rite				
	1 I	nterrupt pend	ing					

UARTCON0-	— UAR	то с	Control R	egister			E3H	Set 1	l, Bank 1
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	<u>.</u>	0	0	0	0	0	0	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	gister	addressing	mode only	/				
.7–.6	Оре	eratin	g mode an	d baud ra	te selectio	n bits			
	0	0	Mode 0: S	SIO mode [$f_{XX}/(16 \times (B))$	RDATA0 +	+ 1))]		
	0	1	Mode 1: 8	B-bit UART	$[f_{XX}/(16 \times ($	BRDATA0	+ 1))]		
	1	0	Mode 2: 9	-bit UART	[f _{XX} /16]				
	1	1	Mode 3: 9	-bit UART	$[f_{XX}/(16 \times ($	BRDATA0	+ 1))]		
.5	Mul	tipro	cessor con	nmunicati	on enable	bit (for mo	odes 2 and	l 3 only)	
	0	-	able						
	1	Ena	ble						
.4	Ser	ial da	ta receive	enable bit					
	0	1	able		•				
	1	Ena							
		Line							
.3	3 ("(mod	0" or ' de 2, 3	lisable mod '1"). If Parit 3. parity 1: Oc	y enable n					
.2	2, 3 If Pa 0: E A re	("0" o arity e iven p esult o	lisable mod or "1"). enable mode parity 1: Od of parity erro ved data.	e, parity se d parity	election bit f	or receive	data in UA	RT mode 2	, 3.
.1	Rec	eive	interrupt e	nable bit					
	0	Disa	able Receiv	e interrupt					
	1	Ena	ble Receive	e interrupt					
.0	Tra	nsmi	t interrupt e	enable bit					
	0		able Transm						
	1	_	ble Transm						
	L	1							

UARTCON1 -	– UAR	T1 C	Control R	egister			FBH	Set 1	I, Bank 1
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	<u>.</u>	0	0	0	0	0	0	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	gister	addressing	mode only	,				
.7–.6	Оре	eratin	g mode an	d baud ra	te selectio	n bits			
	0	0	Mode 0: S	SIO mode [f _{XX} /(16 × (B	RDATA1 -	+ 1))]		
	0	1	Mode 1: 8	B-bit UART	$[f_{XX}/(16 \times (16 \times (1$	BRDATA1	+ 1))]		
	1	0	Mode 2: 9	-bit UART	[f _{XX} /16]				
	1	1	Mode 3: 9	-bit UART	$[f_{XX}/(16 \times (16 \times (1$	BRDATA1	+ 1))]		
.5	Mul	tipro	cessor con	nmunicati	on enable	bit (for mo	odes 2 and	3 only)	
	0	Disa	able						
	1	Ena	ble						
.4	Ser	ial da	ta receive	enable bit					
	0	Disa	able						
	1	Ena	ble						
.3	3 ("(mod	0" or ' de 2, 3	lisable mod 1"). If Parit 3. arity 1: Oc	ty enable n					
.2	2, 3 If Pa 0: E A re	("0" c arity e iven p sult c	lisable mod or "1"). nable mode arity 1: Od f parity erro ved data.	e, parity se d parity	lection bit f	or receive	data in UA	RT mode 2	., 3.
.1	Rec	eive	interrupt e	nable bit					
	0	Disa	able Receiv	e interrupt					
	1	Ena	ble Receive	e interrupt					
.0	Tra	nsmit	interrupt	enable bit					
	0	Disa	able Transm	nit interrup	t				
		Ena							

JARTCON2-	– UAR	T2 C	Control R	egister			03H		Page 8
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value	<u>.</u>	0	0	0	0	0	0	0	0
Read/Write	R	/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	jister	addressing	mode only	,				
7–.6	Оре	eratin	g mode ar	nd baud ra	te selectio	n bits			
	0	0	Mode 0: \$	SIO mode [$f_{XX}/(16 \times (E$	RDATA2 +	- 1))]		
	0	1	Mode 1: 8	8-bit UART	$[f_{XX}/(16 \times ($	BRDATA2	+ 1))]		
	1	0	Mode 2: 9	9-bit UART	[f _{XX} /16]				
	1	1	Mode 2: 9	9-bit UART	$[f_{XX}/(16 \times ($	BRDATA2	+ 1))]		
5	Mul	tipro	cessor cor	mmunicati	on enable	bit (for mo	odes 2 and	3 only)	
	0	Disa	able						
	1	Ena	ble						
L .	Ser	ial da	ta receive	enable bit					
	0	Disa	able						
	1	Ena	ble						
	1								
3	2 , 3 mod	3 ("0" de 2, 3	or "1"). If F	de, location Parity enabl dd parity					
2	2, 3 If Pa 0: E A re	("0" o arity e iven p sult o	or "1"). enable mod parity 1: Oc	de, location le, parity se dd parity or will be sa	lection bit f	or receive	data in UA	RT mode 2	2, 3.
1	Rec	eive	interrupt e	enable bit					
	0	Disa	able Receiv	/e interrupt					
	1	Ena	ble Receiv	e interrupt					
)	Tra	nsmit	t interrupt	enable bit					
	0	1		nit interrup					
	1	Ena	ble Transm	nit Interrupt					

UARTPND-	UART0	, 1, 2	Pending	g Regist	er		E5H	Set 1	l, Bank 1
Bit Identifier	-	7	.6	.5	.4	.3	.2	.1	.0
RESET Value	-	_	-	0	0	0	0	0	0
Read/Write	-	_	_	R/W	R/W	R/W	R/W	R/W	R/W
Addressing Mode	Reg	ister ac	dressing	mode only	,				
.7–.6	Not	used fo	or S3C84N	MB/F84MB					
.5	UAF	RT2 rec	eive inte	rrupt pene	ding flag				
	0	Not pe	ending (re	ad) / <i>Clea</i>	r pending b	oit (when w	rite)		
	1	Interru	upt pendir	ng					
.4	1	1		errupt per					
	0	· ·	• •	,	r pending b	oit (when w	rite)		
	1	Interru	upt pendir	ng					
.3	UAF	RT1 rec	eive inte	rrupt pene	ding flag				
	0	Not pe	ending (re	ead) / <i>Clea</i>	r pending b	oit (when w	rite)		
	1	Interru	upt pendir	ng					
.2		OT1 tra	nemit int	errupt per	nding flag				
	0				r pending b	oit (when w	rite)		
	1	-	upt pendir		i portairig a		11(0)		
	<u> </u>	intoni		19					
.1	UAF	RT0 rec	eive inte	rrupt pene	ding flag				
	0	Not pe	ending (re	ad) / <i>Clea</i>	r pending b	oit (when w	rite)		
	1	Interru	upt pendir	ng					
.0	UAF			errupt per					
	0	-			r pending b	oit (when w	rite)		
	1	Interru	upt pendir	ng					

NOTES:

1. In order to clear a data transmit or receive interrupt pending flag, you must write a "0" to the appropriate pending bit.

2. To avoid programming errors, we recommend using load instruction (except for LDB), when manipulating UARTPND values.

	UARTO), 1, 2	Parity C	ontrol R	legister		06H		Page 8
Bit Identifier		.7	.6	.5	.4	.3	.2	.1	.0
RESET Value		_	0	0	0	_	0	0	0
Read/Write		-	R	R	R	_	R/W	R/W	R/W
Addressing Mode	All a	addres	sing mode						
.7	Not	used f	or S3C84N	MB/F84MB	3				
.6	UA	RT2 Pa	arity Statu	s Bit					
	0	No E	rror						
	1	Parit	y Error						
.5	UA	RT1 Pa	arity Statu	s Bit					
	0	No E	rror						
	1	Parit	y Error						
.4	UA	RT0 Pa	arity Statu	s Bit					
	0	No E	-						
	1	Parit	y Error						
.3	Not	used f	or S3C84N	MB/F84MB	3				
.2	UA	RT2 Pa	arity Enab	le Bit					
	0	Disa	ble						
	1	Enat	ble						
.1	UA	RT1 Pa	arity Enab	le Bit					
	0	Disa	-						
	1	Enat	ble						
.0		RT0 P	arity Enab	le Rit					
	0	Disa	-						
	1	Enat							
	L								

NOTES

5 INTERRUPT STRUCTURE

OVERVIEW

The S3C8-series interrupt structure has three basic components: levels, vectors, and sources. The SAM8 CPU recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. When a specific interrupt level has more than one vector address, the vector priorities are established in hardware. A vector address can be assigned to one or more sources.

Levels

Interrupt levels are the main unit for interrupt priority assignment and recognition. All peripherals and I/O blocks can issue interrupt requests. In other words, peripheral and I/O operations are interrupt-driven. There are eight possible interrupt levels: IRQ0–IRQ7, also called level 0–level 7. Each interrupt level directly corresponds to an interrupt request number (IRQn). The total number of interrupt levels used in the interrupt structure varies from device to device. The S3C84MB/F84MB interrupt structure recognizes eight interrupt levels.

The interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. They are just identifiers for the interrupt levels that are recognized by the CPU. The relative priority of different interrupt levels is determined by settings in the interrupt priority register, IPR. Interrupt group and subgroup logic controlled by IPR settings lets you define more complex priority relationships between different levels.

Vectors

Each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. The maximum number of vectors that can be supported for a given level is 128 (The actual number of vectors used for S3C8-series devices is always much smaller). If an interrupt level has more than one vector address, the vector priorities are set in hardware. S3C84MB/F84MB uses twenty seven vectors.

Sources

A source is any peripheral that generates an interrupt. A source can be an external pin or a counter overflow. Each vector can have several interrupt sources. In the S3C84MB/F84MB interrupt structure, there are twenty seven possible interrupt sources.

When a service routine starts, the respective pending bit should be either cleared automatically by hardware or cleared "manually" by program software. The characteristics of the source's pending mechanism determine which method would be used to clear its respective pending bit.

INTERRUPT TYPES

The three components of the S3C8 interrupt structure described before — levels, vectors, and sources — are combined to determine the interrupt structure of an individual device and to make full use of its available interrupt logic. There are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3. The types differ in the number of vectors and interrupt sources assigned to each level (see Figure 5-1):

Type 1: One level (IRQn) + one vector (V_1) + one source (S_1)

Type 2: One level (IRQn) + one vector (V_1) + multiple sources $(S_1 - S_n)$

Type 3: One level (IRQn) + multiple vectors $(V_1 - V_n)$ + multiple sources $(S_1 - S_n, S_{n+1} - S_{n+m})$

In the S3C84MB/F84MB microcontroller, two interrupt types are implemented.

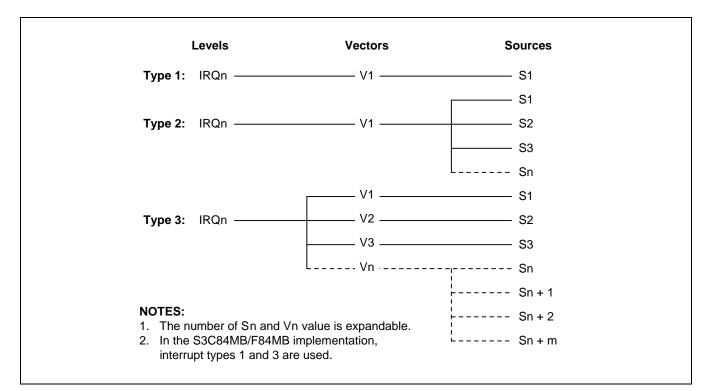


Figure 5-1. S3C8-Series Interrupt Types

S3C84MB/F84MB INTERRUPT STRUCTURE

The S3C84MB/F84MB microcontroller supports twenty seven interrupt sources. All twenty seven of the interrupt sources have a corresponding interrupt vector address. Eight interrupt levels are recognized by the CPU in this device-specific interrupt structure, as shown in Figure 5-2.

When multiple interrupt levels are active, the interrupt priority register (IPR) determines the order in which contending interrupts are to be serviced. If multiple interrupts occur within the same interrupt level, the interrupt with the lowest vector address is usually processed first (The relative priorities of multiple interrupts within a single level are fixed in hardware).

When the CPU grants an interrupt request, interrupt processing starts. All other interrupts are disabled and the program counter value and status flags are pushed to stack. The starting address of the service routine is fetched from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the service routine is executed.

INTERRUPT STRUCTURE

Levels	Vectors	Sources	Reset(Clear)
	———— B8H ————	——— Timer A match/capture	H/W, S/W
IRQ0 —	—— ВАН ———	——— Timer A overflow	H/W, S/W
IRQ1 ——		——— Timer B underflow	H/W
	—— ВСН ———	——— Timer C(0) match/overflow	H/W, S/W
IRQ2 —	——— BEH ———	——— Timer C(1) match/overflow	H/W, S/W
Г	Сон	Timer 1(0) match/capture	H/W, S/W
IRQ3 —	С2Н	Timer 1(0) overflow	H/W, S/W
	C4H	——— Timer 1(1) match/capture	H/W, S/W
	—— С6Н ——	——— Timer 1(1) overflow	H/W, S/W
	CAH	SIO0 receive/transmit	S/W
IRQ4 —	ACH	SIO1 receive/transmit	S/W
	ССН	P8.4 external interrupt	S/W
IRQ5 —	CEH	P8.5 external interrupt	S/W
IRQ6 —	——— E0H ———	P4.0 external interrupt	S/W
-	——— E2H ———	P4.1 external interrupt	S/W
-	——— E4H ———	P4.2 external interrupt	S/W
-	——— E6H ———	P4.3 external interrupt	S/W
-	——— E8H ———	P4.4 external interrupt	S/W
-	——— EAH ———	P4.5 external interrupt	S/W
-	ECH	P4.6 external interrupt	S/W
L	EEH	P4.7 external interrupt	S/W
IRQ7 —	——— F0H ———	UART0 data receive	S/W
F	——— F2H ———	UART0 data transmit	S/W
-	——— F4H ———	UART1 data receive	S/W
F	——— F6H ———	UART1 data transmit	S/W
F	——————————————————————————————————————	UART2 data receive	S/W
L	——— A2H ———	UART2 data transmit	S/W

- 1. Within a given interrupt level, the lower vector address has high priority. For example, B8H has higher priority than BAH within the level IRQ0 the priorities within each level are set at the factory.
- External interrupts are triggered by a rising or falling edge, depending on the corresponding control register setting.

Figure 5-2. S3C84MB/F84MB Interrupt Structure

INTERRUPT VECTOR ADDRESSES

All interrupt vector addresses for the S3C84MB/F84MB interrupt structure are stored in the vector address area of the internal 64-Kbyte ROM, 0H–FFFFH (see Figure 5-3).

You can allocate unused locations in the vector address area as normal program memory. If you do so, please be careful not to overwrite any of the stored vector addresses (Table 5-1 lists all vector addresses).

The program reset address in the ROM is 0100H.

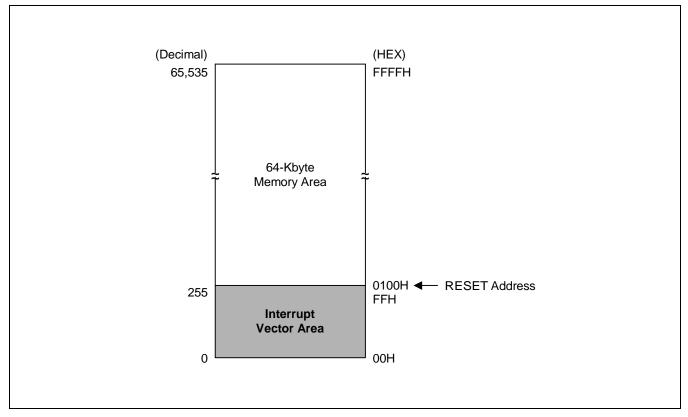


Figure 5-3. ROM Vector Address Area

Vector Address			Req	Request		
Decimal Value	Hex Value	Interrupt Source	Interrupt Level	Priority in Level	H/W	S/W
256	100H	Basic timer(WDT) overflow	RESETB	ESETB -		
246	F6H	UART1 transmit	IRQ7	IRQ7 3		\checkmark
244	F4H	UART1 receive	2			\checkmark
242	F2H	UART0 transmit	1			\checkmark
240	F0H	UART0 receive		0		\checkmark
238	EEH	P4.7 external interrupt	IRQ6	7		\checkmark
236	ECH	P4.6 external interrupt		6		\checkmark
234	EAH	P4.5 external interrupt		5		\checkmark
232	E8H	P4.4 external interrupt		4		\checkmark
230	E6H	P4.3 external interrupt		3		\checkmark
228	E4H	P4.2 external interrupt	2			\checkmark
226	E2H	P4.1 external interrupt		1		\checkmark
224	E0H	P4.0 external interrupt		0		\checkmark
206	CEH	P8.5 external interrupt	IRQ5 1			\checkmark
204	ССН	P8.4 external interrupt		0		\checkmark
202	CAH	SIO0 receive/transmit	IRQ4	-		\checkmark
198	C6H	Timer 1(1) overflow	IRQ3 3			\checkmark
196	C4H	Timer 1(1) match/capture	2		\checkmark	\checkmark
194	C2H	Timer 1(0) overflow		1		\checkmark
192	C0H	Timer 1(0) match/capture	0		\checkmark	\checkmark
190	BEH	Timer C(1) match/overflow	IRQ2 1		\checkmark	\checkmark
188	BCH	Timer C(0) match/overflow	0		\checkmark	\checkmark
200	C8H	Timer B underflow	IRQ1 -		\checkmark	
186	BAH	Timer A overflow	IRQ0	1	\checkmark	\checkmark
184	B8H	Timer A match/capture		0	\checkmark	\checkmark
	ACH	SIO1 receive/transmit	IRQ4			\checkmark
	A2H	UART2 transmit	IRQ7	5		\checkmark
	A0H	UART2 receive		4		\checkmark

Table 5-1. Interrupt Vectors

NOTES:

1. Interrupt priorities are identified in inverse order: "0" is the highest priority, "1" is the next highest, and so on.

2. If two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority over one with a higher vector address. The priorities within a given level are fixed in hardware.

ENABLE/DISABLE INTERRUPT INSTRUCTIONS (EI, DI)

Executing the Enable Interrupts (EI) instruction globally enables the interrupt structure. All interrupts are then serviced as they occur according to the established priorities.

NOTE

The system initialization routine executed after a reset must always contain an EI instruction to globally enable the interrupt structure.

During the normal operation, you can execute the DI (Disable Interrupt) instruction at any time to globally disable interrupt processing. The EI and DI instructions change the value of bit 0 in the SYM register.

SYSTEM-LEVEL INTERRUPT CONTROL REGISTERS

In addition to the control registers for specific interrupt sources, four system-level registers control interrupt processing:

- The interrupt mask register, IMR, enables (un-masks) or disables (masks) interrupt levels.
- The interrupt priority register, IPR, controls the relative priorities of interrupt levels.
- The interrupt request register, IRQ, contains interrupt pending flags for each interrupt level (as opposed to each interrupt source).
- The system mode register, SYM, enables or disables global interrupt processing (SYM settings also enable fast interrupts and control the activity of external interface, if implemented).

Control Register	ID R/W		Function Description		
Interrupt mask register	IMR	R/W	Bit settings in the IMR register enable or disable interrupt processing for each of the eight interrupt levels: IRQ0–IRQ7.		
Interrupt priority register	IPR	R/W	Controls the relative processing priorities of the interrupt levels. The seven levels of S3C84MB/F84MB are organized into three groups: A, B, and C. Group A is IRQ0 and IRQ1, group B is IRQ2, IRQ3 and IRQ4, and group C is IRQ5, IRQ6, and IRQ7.		
Interrupt request register	IRQ	R	This register contains a request pending bit for each interrup level.		
System mode register	SYM	R/W	This register enables/disables fast interrupt processing, dynamic global interrupt processing, and external interface control (An external memory interface is not implemented in the S3C84MB/F84MB microcontroller).		

Table 5-2. Interrupt Control Register Overview

NOTE: Before IMR register is changed to any value, all interrupts must be disabled. Using DI instruction is recommended.

INTERRUPT PROCESSING CONTROL POINTS

Interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. The system-level control points in the interrupt structure are:

- Global interrupt enable and disable (by EI and DI instructions or by direct manipulation of SYM.0)
- Interrupt level enable/disable settings (IMR register)
- Interrupt level priority settings (IPR register)
- Interrupt source enable/disable settings in the corresponding peripheral control registers

NOTE

When writing an application program that handles interrupt processing, be sure to include the necessary register file address (register pointer) information.

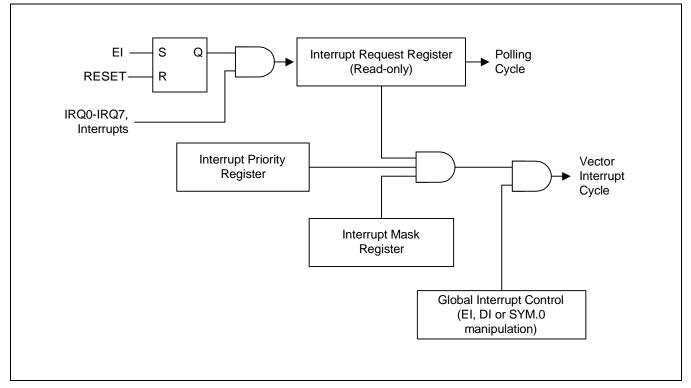


Figure 5-4. Interrupt Function Diagram

PERIPHERAL INTERRUPT CONTROL REGISTERS

For each interrupt source there is one or more corresponding peripheral control registers that let you control the interrupt generated by the related peripheral (see Table 5-3).

Interrupt Source	Interrupt Level	Register(s)	Location(s) in Set 1
Timer A overflow	IRQ0	TINTPND	E9H, bank 0
Timer A match/capture		TACON	EAH, bank 0
		TADATA	EBH, bank 0
		TACNT	ECH, bank 0
Timer B underflow	IRQ1	TBCON	D0H, bank 0
		TBDATAH, TBDATAL	D1H, D2H, bank 0
Timer C(0) match/overflow	IRQ2	TCCON0	F2H, bank 1
Timer C(1) match/overflow		TCCON1	F3H, bank 1
		TCDATA0	F0H, bank 1
		TCDATA1	F1H, bank 1
Timer1(0) match/capture	IRQ3	T1DATAH0,T1DATAL0	E6H,E7H, bank 1
Timer1(0) overflow		T1DATAH1,T1DATAL1	E8H,E9H, bank 1
Timer1(1) match/capture		T1CON0, T1CON1	EAH,EBH, bank1
Timer1(1) overflow		T1CNTH0, T1CNTL0	ECH, EDH, bank1
		T1CNTH1, T1CNTL1	EEH, EFH, bank1
SIO receive/transmit	IRQ4	SIOCON, SIODATA	E1H,E0H, bank1
SIO1 receive/transmit		SIOCON1, SIODATA1	00H, 02H, Page 8
P8.5 external interrupt	IRQ5	P8CONH,P8CONL	EDH,EEH, bank0
P8.4 external interrupt		P8INTPND	EFH, bank0
P4.7 ~ 0 external interrupt	IRQ6	P4CONH	F6H, bank 0
		P4CONL	F7H, bank 0
		P4INT	FAH, bank 0
		P4INTPND	FBH, bank 0
UART0 receive/transmit	IRQ7	UARTCON0	E3H, bank 1
UART1 receive/transmit		UARTCON1	FBH, bank 1
UART2 receive/transmit		UARTCON2	03H, Page 8
		UDATA0, UDATA1	E2H, FAH, bank 1
		UDATA2	05H Page8
		UARTPND	E5H, bank 1
		UARTPRT	06H Page8

SYSTEM MODE REGISTER (SYM)

The system mode register, SYM (set 1, DEH), is used to globally enable and disable interrupt processing (see Figure 5-5).

A reset clears SYM.0 to "0".

The instructions EI and DI enable and disable global interrupt processing, respectively, by modifying the bit 0 value of the SYM register. In order to enable interrupt processing an Enable Interrupt (EI) instruction must be included in the initialization routine, which follows a reset operation. Although you can manipulate SYM.0 directly to enable and disable interrupts during the normal operation, it is recommended to use the EI and DI instructions for this purpose.

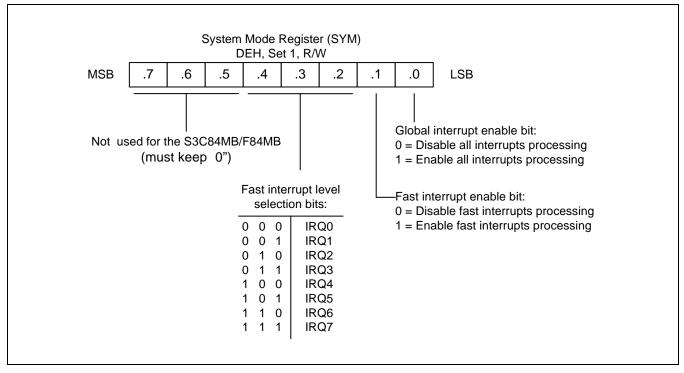


Figure 5-5. System Mode Register (SYM)

INTERRUPT MASK REGISTER (IMR)

The interrupt mask register, IMR (set 1, DDH) is used to enable or disable interrupt processing for individual interrupt levels. After a reset, all IMR bit values are undetermined and must therefore be written to their required settings by the initialization routine.

Each IMR bit corresponds to a specific interrupt level: bit 1 to IRQ1, bit 2 to IRQ2, and so on. When the IMR bit of an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). When you set a level's IMR bit to "1", interrupt processing for the level is enabled (not masked).

The IMR register is mapped to register location DDH in set 1. Bit values can be read and written by instructions using the Register addressing mode.

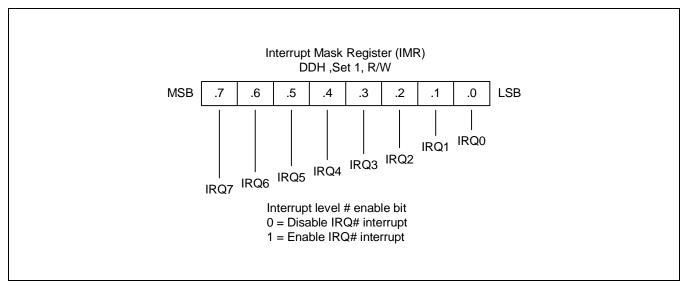


Figure 5-6. Interrupt Mask Register (IMR)

INTERRUPT PRIORITY REGISTER (IPR)

The interrupt priority register, IPR (set 1, bank 0, FFH), is used to set the relative priorities of the interrupt levels in the microcontroller's interrupt structure. After a reset, all IPR bit values are undetermined and must therefore be written to their required settings by the initialization routine.

When more than one interrupt sources are active, the source with the highest priority level is serviced first. If two sources belong to the same interrupt level, the source with the lower vector address usually has the priority (This priority is fixed in hardware).

To support programming of the relative interrupt level priorities, they are organized into groups and subgroups by the interrupt logic. Please note that these groups (and subgroups) are used only by IPR logic for the IPR register priority definitions (see Figure 5-7):

Group A IRQ0, IRQ1 Group B IRQ2, IRQ3, IRQ4 Group C IRQ5, IRQ6, IRQ7

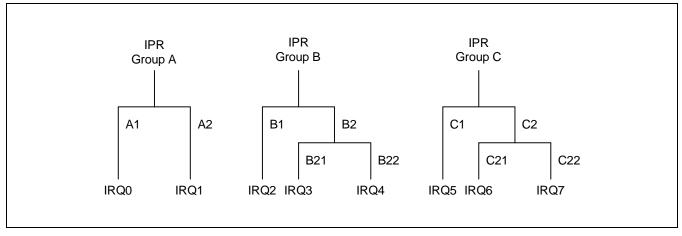


Figure 5-7. Interrupt Request Priority Groups

As you can see in Figure 5-8, IPR.7, IPR.4, and IPR.1 control the relative priority of interrupt groups A, B, and C. For example, the setting "001B" for these bits would select the group relationship B > C > A. The setting "101B" would select the relationship C > B > A.

The functions of the other IPR bit settings are as follows:

- IPR.5 controls the relative priorities of group C interrupts.
- Interrupt group C includes a subgroup that has an additional priority relationship among the interrupt levels 5,
 6, and 7. IPR.6 defines the subgroup C relationship. IPR.5 controls the interrupt group C.
- IPR.0 controls the relative priority setting of IRQ0 and IRQ1 interrupts.

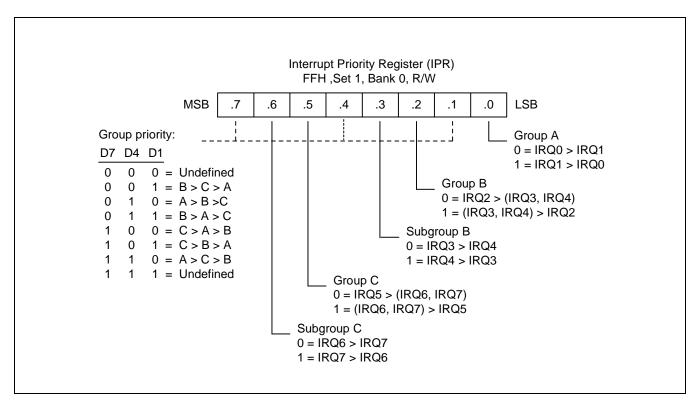


Figure 5-8. Interrupt Priority Register (IPR)

INTERRUPT REQUEST REGISTER (IRQ)

You can poll bit values in the interrupt request register, IRQ (set 1, DCH), to monitor interrupt request status for all levels in the microcontroller's interrupt structure. Each bit corresponds to the interrupt level of the same number: bit 0 to IRQ0, bit 1 to IRQ1, and so on. A "0" indicates that no interrupt request is currently being issued for that level. A "1" indicates that an interrupt request has been generated for that level.

IRQ bit values are read-only addressable using Register addressing mode. You can read (test) the contents of the IRQ register at any time using bit or byte addressing to determine the current interrupt request status of specific interrupt levels. After a reset, all IRQ status bits are cleared to "0".

You can poll IRQ register values even if a DI instruction has been executed (that is, if global interrupt processing is disabled). If an interrupt occurs while the interrupt structure is disabled, the CPU will not service it. You can, however, still detect the interrupt request by polling the IRQ register. In this way, you can determine which events occurred while the interrupt structure was globally disabled.

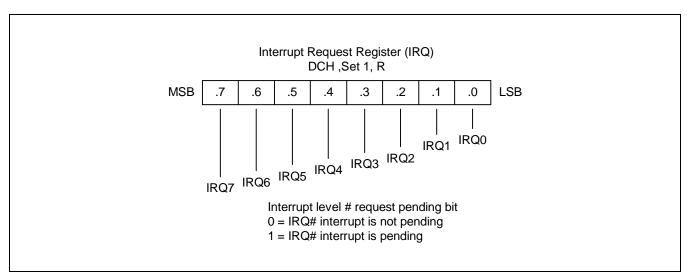


Figure 5-9. Interrupt Request Register (IRQ)

INTERRUPT PENDING FUNCTION TYPES

Overview

There are two types of interrupt pending bits: one type that is automatically cleared by hardware after the interrupt service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.

Pending Bits Cleared Automatically by Hardware

For interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding pending bit to "1" when a request occurs. It then issues an IRQ pulse to inform the CPU that an interrupt is waiting to be serviced. The CPU acknowledges the interrupt source by sending an IACK, executes the service routine, and clears the pending bit to "0". This type of pending bit is not mapped and cannot, therefore, be read or written by application software.

In the S3C84MB/F84MB interrupt structure, the timer B underflow interrupt (IRQ1) belongs to this category of interrupts in which pending condition is cleared automatically by hardware.

Pending Bits Cleared by the Service Routine

The second type of pending bit is the one that should be cleared by program software. The service routine must clear the appropriate pending bit before a return-from-interrupt subroutine (IRET) occurs. To do this, a "0" must be written to the corresponding pending bit location in the source's mode or control register.

In the S3C84MB/F84MB interrupt structure, pending conditions for IRQ4, IRQ5, IRQ6, and IRQ7 must be cleared in the interrupt service routine.

INTERRUPT SOURCE POLLING SEQUENCE

The interrupt request polling and servicing sequence is as follows:

- 1. A source generates an interrupt request by setting the interrupt request bit to "1".
- 2. The CPU polling procedure identifies a pending condition for that source.
- 3. The CPU checks the source's interrupt level.
- 4. The CPU generates an interrupt acknowledge signal.
- 5. Interrupt logic determines the interrupt's vector address.
- 6. The service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).
- 7. The CPU continues polling for interrupt requests.

INTERRUPT SERVICE ROUTINES

Before an interrupt request is serviced, the following conditions must be met:

- Interrupt processing must be globally enabled (EI, SYM.0 = "1")
- The interrupt level must be enabled (IMR register)
- The interrupt level must have the highest priority if more than one level is currently requesting service
- The interrupt must be enabled at the interrupt's source (peripheral control register)

When all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle. The CPU then initiates an interrupt machine cycle that completes the following processing sequence:

- 1. Reset (clear to "0") the interrupt enable bit in the SYM register (SYM.0) to disable all subsequent interrupts.
- 2. Save the program counter (PC) and status flags to the system stack.
- 3. Branch to the interrupt vector to fetch the address of the service routine.
- 4. Pass control to the interrupt service routine.

When the interrupt service routine is completed, the CPU issues an Interrupt Return (IRET). The IRET restores the PC and status flags, setting SYM.0 to "1". It allows the CPU to process the next interrupt request.

GENERATING INTERRUPT VECTOR ADDRESSES

The interrupt vector area in the ROM (00H–FFH) contains the addresses of interrupt service routines that correspond to each level in the interrupt structure. Vectored interrupt processing follows this sequence:

- 1. Push the program counter's low-byte value to the stack.
- 2. Push the program counter's high-byte value to the stack.
- 3. Push the FLAG register values to the stack.
- 4. Fetch the service routine's high-byte address from the vector location.
- 5. Fetch the service routine's low-byte address from the vector location.
- 6. Branch to the service routine specified by the concatenated 16-bit vector address.

NOTE

A 16-bit vector address always begins at an even-numbered ROM address within the range of 00H–FFH.

NESTING OF VECTORED INTERRUPTS

It is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. To do this, you must follow these steps:

- 1. Push the current 8-bit interrupt mask register (IMR) value to the stack (PUSH IMR).
- 2. Load the IMR register with a new mask value that enables only the higher priority interrupt.
- 3. Execute an EI instruction to enable interrupt processing (a higher priority interrupt will be processed if it occurs).
- 4. When the lower-priority interrupt service routine ends, restore the IMR to its original value by returning the previous mask value from the stack (POP IMR).
- 5. Execute an IRET.

Depending on the application, you may be able to simplify the procedure above to some extent.

6 INSTRUCTION SET

OVERVIEW

The instruction set is specifically designed to support large register files that are typical of most S3C8-series microcontrollers. There are 78 instructions. The powerful data manipulation capabilities and features of the instruction set include:

- A full complement of 8-bit arithmetic and logic operations, including multiply and divide
- No special I/O instructions (I/O control/data registers are mapped directly into the register file)
- Decimal adjustment included in binary-coded decimal (BCD) operations
- 16-bit (word) data can be incremented and decremented
- Flexible instructions for bit addressing, rotate, and shift operations

DATA TYPES

The CPU performs operations on bits, bytes, BCD digits, and two-byte words. Bits in the register file can be set, cleared, complemented, and tested. Bits within a byte are numbered from 7 to 0, where bit 0 is the least significant (right-most) bit.

REGISTER ADDRESSING

To access an individual register, an 8-bit address in the range 0–255 or the 4-bit address of a working register is specified. Paired registers can be used to construct 16-bit data, 16-bit program memory or data memory addresses. For detailed information about register addressing, please refer to Chapter 2, "Address Spaces."

ADDRESSING MODES

There are seven explicit addressing modes: Register (R), Indirect Register (IR), Indexed (X), Direct (DA), Relative (RA), Immediate (IM), and Indirect (IA). For detailed descriptions of these addressing modes, please refer to Chapter 3, "Addressing Modes."

Mnemonic	Operands	Instruction			
Load Instructions					
CLR	dst	Clear			
LD	dst,src	Load			
LDB	dst,src	Load bit			
LDE	dst,src	Load external data memory			
LDC	dst,src	Load program memory			
LDED	dst,src	Load external data memory and decrement			
LDCD	dst,src	Load program memory and decrement			
LDEI	dst,src	Load external data memory and increment			
LDCI	dst,src	Load program memory and increment			
LDEPD	dst,src	Load external data memory with pre-decrement			
LDCPD	dst,src	Load program memory with pre-decrement			
LDEPI	dst,src	Load external data memory with pre-increment			
LDCPI	dst,src	Load program memory with pre-increment			
LDW	dst,src	Load word			
POP	dst	Pop from stack			
POPUD	dst,src	Pop user stack (decrementing)			
POPUI	dst,src	Pop user stack (incrementing)			
PUSH	src	Push to stack			
PUSHUD	dst,src	Push user stack (decrementing)			
PUSHUI	dst,src	Push user stack (incrementing)			

Table 6-1. Instruction Group Summary

NOTE: LDE, LDED, LDEI, LDEPP, and LDEPI instructions can be used to read/write the data from the 64-Kbyte data memory.

Mnemonic	Operands	Instruction
rithmetic Instruct	ions	
C	dst,src	Add with carry
DD	dst,src	Add
C	dst,src	Compare
4	dst	Decimal adjust
EC	dst	Decrement
ECW	dst	Decrement word
V	dst,src	Divide
С	dst	Increment
CW	dst	Increment word
ULT	dst,src	Multiply
BC	dst,src	Subtract with carry
JB	dst,src	Subtract

Table 6-1. Instruction Group Summary (Continued)

Logic Instructions

AND	dst,src	Logical AND
COM	dst	Complement
OR	dst,src	Logical OR
XOR	dst,src	Logical exclusive OR

	Table 6-1. Instruction Group Summary (Continued)						
Mnemonic	Operands	Instruction					
Program Control In	structions						
BTJRF	dst,src	Bit test and jump relative on false					
BTJRT	dst,src	Bit test and jump relative on true					
CALL	dst	Call procedure					
CPIJE	dst,src	Compare, increment and jump on equal					
CPIJNE	dst,src	Compare, increment and jump on non-equal					
DJNZ	r,dst	Decrement register and jump on non-zero					
ENTER		Enter					
EXIT		Exit					
IRET		Interrupt return					
JP	cc,dst	Jump on condition code					
JP	dst	Jump unconditional					
JR	cc,dst	Jump relative on condition code					
NEXT		Next					
RET		Return					
WFI		Wait for interrupt					
Bit Manipulation In	structions						
BAND	dst,src	Bit AND					
BCP	dst,src	Bit compare					
BITC	dst	Bit complement					
BITR	dst	Bit reset					
BITS	dst	Bit set					
BOR	dst,src	Bit OR					
BXOR	dst,src	Bit XOR					
ТСМ	dst,src	Test complement under mask					
ТМ	dst,src	Test under mask					

Table 6-1. Instruction Group Summary (Continued)

Mnemonic	Operands	Instruction		
Rotate and Shift Instr	uctions			
RL	dst	Rotate left		
RLC	dst	Rotate left through carry		
RR	dst	Rotate right		
RRC	dst	Rotate right through carry		
SRA	dst	Shift right arithmetic		
SWAP	dst	Swap nibbles		
CPU Control Instructi	ons			
CCF		Complement carry flag		
וכ		Disable interrupts		
El		Enable interrupts		
DLE		Enter Idle mode		
NOP		No operation		
RCF		Reset carry flag		
SB0		Set bank 0		
SB1		Set bank 1		
SCF		Set carry flag		
SRP	src	Set register pointers		
SRP0	SIC	Set register pointer 0		
SRP1	src	Set register pointer 1		
STOP		Enter Stop mode		

Table 6-1. Instruction Group Summary (Concluded)

FLAGS REGISTER (FLAGS)

The flags register FLAGS contains eight bits which describe the current status of CPU operations. Four of these bits, FLAGS.7–FLAGS.4, can be tested and used with conditional jump instructions. Two other flag bits, FLAGS.3 and FLAGS.2, are used for BCD arithmetic.

The FLAGS register also contains a bit to indicate the status of fast interrupt processing (FLAGS.1) and a bank address status bit (FLAGS.0) to indicate whether register bank 0 or bank 1 is currently being addressed.

FLAGS register can be set or reset by instructions as long as its outcome does not affect the flags, such as, Load instruction. Logical and Arithmetic instructions such as, AND, OR, XOR, ADD, and SUB can affect the Flags register. For example, the AND instruction updates the Zero, Sign and Overflow flags based on the outcome of the AND instruction. If the AND instruction uses the Flags register as the destination, then two write will simultaneously occur to the Flags register producing an unpredictable result.

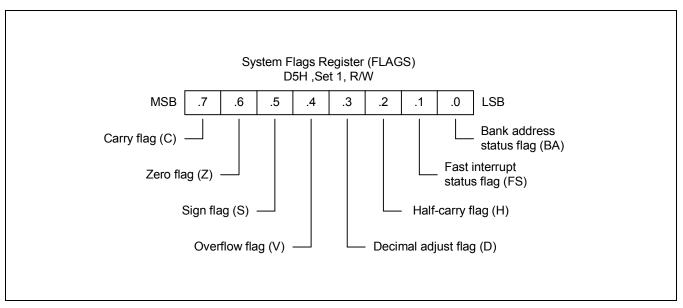


Figure 6-1. System Flags Register (FLAGS)

FLAG DESCRIPTIONS

C Carry Flag (FLAGS.7)

The C flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to the bit 7 position (MSB). After rotate and shift operations have been performed, it contains the last value shifted out of the specified register. Program instructions can set, clear, or complement the carry flag.

Z Zero Flag (FLAGS.6)

For arithmetic and logic operations, the Z flag is set to "1" if the result of the operation is zero. In operations that test register bits, and in shift and rotate operations, the Z flag is set to "1" if the result is logic zero.

S Sign Flag (FLAGS.5)

Following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the MSB of the result. A logic zero indicates a positive number and a logic one indicates a negative number.

V Overflow Flag (FLAGS.4)

The V flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than - 128. It is cleared to "0" after a logic operation has been performed.

D Decimal Adjust Flag (FLAGS.3)

The DA bit is used to specify what type of instruction was executed last during BCD operations so that a subsequent decimal adjust operation can execute correctly. The DA bit is not usually accessed by programmers, and it cannot be addressed as a test condition.

H Half-Carry Flag (FLAGS.2)

The H bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows out of bit 4. It is used by the Decimal Adjust (DA) instruction to convert the binary result of a previous addition or subtraction into the correct decimal (BCD) result. The H flag is normally not accessed directly by a program.

FIS Fast Interrupt Status Flag (FLAGS.1)

The FIS bit is set during a fast interrupt cycle and reset during the IRET following interrupt servicing. When set, it inhibits all interrupts and causes the fast interrupt return to be executed when the IRET instruction is executed.

BA Bank Address Flag (FLAGS.0)

The BA flag indicates which register bank in the set 1 area of the internal register file is currently selected, bank 0 or bank 1. The BA flag is cleared to "0" (select bank 0) when the SB0 instruction is executed and is set to "1" (select bank 1) when the SB1 instruction is executed.

INSTRUCTION SET NOTATION

Flag	Description					
С	Carry flag					
Z	Zero flag					
S	Sign flag					
V	Overflow flag					
D	Decimal-adjust flag					
Н	Half-carry flag					
0	Cleared to logic zero					
1	Set to logic one					
*	Set or cleared according to operation					
-	Value is unaffected					
x	Value is undefined					

Table 6-2. Flag Notation Conventions

Table 6-3. Instruction Set Symbols

Symbol	Description			
dst	Destination operand			
src	Source operand			
@	Indirect register address prefix			
PC	Program counter			
IP	Instruction pointer			
FLAGS	Flags register (D5H)			
RP	Register pointer			
#	Immediate operand or register address prefix			
Н	Hexadecimal number suffix			
D	Decimal number suffix			
В	Binary number suffix			
орс	Opcode			

Notation	Description	Actual Operand Range
СС	Condition code	See list of condition codes in Table 6-6.
r	Working register only	Rn (n = 0–15)
rb	Bit (b) of working register	Rn.b (n = 0–15, b = 0–7)
r0	Bit 0 (LSB) of working register	Rn (n = 0–15)
rr	Working register pair	RRp (p = 0, 2, 4,, 14)
R	Register or working register	reg or Rn (reg = 0–255, n = 0–15)
Rb	Bit "b" of register or working register	reg.b (reg = 0–255, b = 0–7)
RR	Register pair or working register pair	reg or RRp (reg = $0-254$, even number only, where p = $0, 2,, 14$)
IA	Indirect addressing mode	addr (addr = 0–254, even number only)
Ir	Indirect working register only	@Rn (n = 0–15)
IR	Indirect register or indirect working register	@Rn or @reg (reg = 0–255, n = 0–15)
Irr	Indirect working register pair only	@RRp (p = 0, 2,, 14)
IRR	Indirect register pair or indirect working register pair	@RRp or @reg (reg = $0-254$, even only, where p = $0, 2,, 14$)
Х	Indexed addressing mode	#reg[Rn] (reg = 0–255, n = 0–15)
XS	Indexed (short offset) addressing mode	#addr[RRp] (addr = range –128 to +127, where p = 0, 2,, 14)
XL	Indexed (long offset) addressing mode	#addr [RRp] (addr = range 0–65535, where p = 2,, 14)
DA	Direct addressing mode	addr (addr = range 0–65535)
RA	Relative addressing mode	addr (addr = a number from +127 to -128 that is an offset relative to the address of the next instruction)
IM	Immediate addressing mode	#data (data = 0–255)
IML	Immediate (long) addressing mode	#data (data = 0–65535)

Table 6-4. Instruction Notation Conventions

	OPCODE MAP								
	LOWER NIBBLE (HEX)								
	_	0	1	2	3	4	5	6	7
U	0	DEC R1	DEC IR1	ADD r1,r2	ADD r1,Ir2	ADD R2,R1	ADD IR2,R1	ADD R1,IM	BOR r0–Rb
Р	1	RLC R1	RLC IR1	ADC r1,r2	ADC r1,Ir2	ADC R2,R1	ADC IR2,R1	ADC R1,IM	BCP r1.b, R2
Ρ	2	INC R1	INC IR1	SUB r1,r2	SUB r1,Ir2	SUB R2,R1	SUB IR2,R1	SUB R1,IM	BXOR r0–Rb
E	3	JP IRR1	SRP/0/1 IM	SBC r1,r2	SBC r1,Ir2	SBC R2,R1	SBC IR2,R1	SBC R1,IM	BTJR r2.b, RA
R	4	DA R1	DA IR1	OR r1,r2	OR r1,lr2	OR R2,R1	OR IR2,R1	OR R1,IM	LDB r0–Rb
	5	POP R1	POP IR1	AND r1,r2	AND r1,lr2	AND R2,R1	AND IR2,R1	AND R1,IM	BITC r1.b
Ν	6	COM R1	COM IR1	TCM r1,r2	TCM r1,Ir2	TCM R2,R1	TCM IR2,R1	TCM R1,IM	BAND r0–Rb
I	7	PUSH R2	PUSH IR2	TM r1,r2	TM r1,Ir2	TM R2,R1	TM IR2,R1	TM R1,IM	BIT r1.b
В	8	DECW RR1	DECW IR1	PUSHUD IR1,R2	PUSHUI IR1,R2	MULT R2,RR1	MULT IR2,RR1	MULT IM,RR1	LD r1, x, r2
В	9	RL R1	RL IR1	POPUD IR2,R1	POPUI IR2,R1	DIV R2,RR1	DIV IR2,RR1	DIV IM,RR1	LD r2, x, r1
L	A	INCW RR1	INCW IR1	CP r1,r2	CP r1,Ir2	CP R2,R1	CP IR2,R1	CP R1,IM	LDC r1, Irr2, xL
Е	В	CLR R1	CLR IR1	XOR r1,r2	XOR r1,lr2	XOR R2,R1	XOR IR2,R1	XOR R1,IM	LDC r2, Irr2, xL
	С	RRC R1	RRC IR1	CPIJE Ir,r2,RA	LDC r1,Irr2	LDW RR2,RR1	LDW IR2,RR1	LDW RR1,IML	LD r1, lr2
Н	D	SRA R1	SRA IR1	CPIJNE Irr,r2,RA	LDC r2,Irr1	CALL IA1		LD IR1,IM	LD Ir1, r2
Е	E	RR R1	RR IR1	LDCD r1,Irr2	LDCI r1,Irr2	LD R2,R1	LD R2,IR1	LD R1,IM	LDC r1, Irr2, xs
х	F	SWAP R1	SWAP IR1	LDCPD r2,Irr1	LDCPI r2,Irr1	CALL IRR1	LD IR2,R1	CALL DA1	LDC r2, Irr1, xs

Table 6-5. OPCODE Quick Reference

	OPCODE MAP								
				LOWER	NIBBLE (H	IEX)			
	_	8	9	А	В	С	D	Е	F
U	0	LD r1,R2	LD r2,R1	DJNZ r1,RA	JR cc,RA	LD r1,IM	JP cc,DA	INC r1	NEXT
Р	1	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	ENTER
Р	2	_							EXIT
E	3								WFI
R	4								SB0
	5								SB1
N	6								IDLE
I	7	\downarrow \downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	STOP
В	8								DI
В	9								EI
L	A								RET
E	В								IRET
	С								RCF
Н	D	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	\downarrow	SCF
E	E								CCF
Х	F	LD r1,R2	LD r2,R1	DJNZ r1,RA	JR cc,RA	LD r1,IM	JP cc,DA	INC r1	NOP

CONDITION CODES

The opcode of a conditional jump always contains a 4-bit field called the condition code (cc). This specifies under which conditions it is to execute the jump. For example, a conditional jump with the condition code for "equal" after a compare operation only jumps if the two operands are equal. Condition codes are listed in Table 6-6.

The carry (C), zero (Z), sign (S), and overflow (V) flags are used to control the operation of conditional jump instructions.

Binary	Mnemonic	Description	Flags Set
0000	F	Always false	_
1000	Т	Always true	_
0111 ⁽¹⁾	С	Carry	C = 1
1111 ⁽¹⁾	NC	No carry	C = 0
0110 ⁽¹⁾	Z	Zero	Z = 1
1110 ⁽¹⁾	NZ	Not zero	Z = 0
1101	PL	Plus	S = 0
0101	MI	Minus	S = 1
0100	OV	Overflow	V = 1
1100	NOV	No overflow	V = 0
0110 ⁽¹⁾	EQ	Equal	Z = 1
1110 ⁽¹⁾	NE	Not equal	Z = 0
1001	GE	Greater than or equal	(S XOR V) = 0
0001	LT	Less than	(S XOR V) = 1
1010	GT	Greater than	(Z OR (S XOR V)) = 0
0010	LE	Less than or equal	(Z OR (S XOR V)) = 1
1111 ⁽¹⁾	UGE	Unsigned greater than or equal	C = 0
0111 ⁽¹⁾	ULT	Unsigned less than	C = 1
1011	UGT	Unsigned greater than	(C = 0 AND Z = 0) = 1
0011	ULE	Unsigned less than or equal	(C OR Z) = 1

NOTES:

 It indicate condition codes which are related to two different mnemonics but which test the same flag. For example, Z and EQ are both true if the zero flag (Z) is set, but after an ADD instruction, Z would probably be used. Following a CP instruction, you would probably want to use the instruction EQ.

2. For operations using unsigned numbers, the special condition codes UGE, ULT, UGT, and ULE must be used.

INSTRUCTION DESCRIPTIONS

This Chapter contains detailed information and programming examples for each instruction in the S3C8-series instruction set. Information is arranged in a consistent format for improved readability and for quick reference. The following information is included in each instruction description:

- Instruction name (mnemonic)
- Full instruction name
- Source/destination format of the instruction operand
- Shorthand notation of the instruction's operation
- Textual description of the instruction's effect
- Flag settings that may be affected by the instruction
- Detailed description of the instruction's format, execution time, and addressing mode(s)
- Programming example(s) explaining how to use the instruction

ADC — Add with Carry

ADC dst,src

Operation: dst \leftarrow dst + src + c

The source operand, along with the carry flag setting, is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed. In multiple-precision arithmetic, this instruction lets the carry value from the addition of low-order operands be carried into the addition of high-order operands.

Flags:

- **C:** Set if there is a carry from the most significant bit of the result; cleared otherwise.
- **Z:** Set if the result is "0"; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurs, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.
- D: Always cleared to "0".
- **H:** Set if there is a carry from the most significant bit of the low-order four bits of the result; cleared otherwise.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	12	r	r
				6	13	r	lr
орс	src	dst	3	6	14	R	R
					15	R	IR
орс	dst	src	3	6	16	R	IM

Examples: Given: R1 = 10H, R2 = 03H, C flag = "1", register 01H = 20H, register 02H = 03H, and register 03H = 0AH:

ADC	R1,R2	\rightarrow	R1 = 14H, R2 = 03H
ADC	R1,@R2	\rightarrow	R1 = 1BH, R2 = 03H
ADC	01H,02H	\rightarrow	Register 01H = 24H, register 02H = 03H
ADC	01H,@02H	\rightarrow	Register 01H = 2BH, register 02H = 03H
ADC	01H,#11H	\rightarrow	Register 01H = 32H

In the first example, the destination register R1 contains the value 10H, the carry flag is set to "1" and the source working register R2 contains the value 03H. The statement "ADC R1,R2" adds 03H and the carry flag value ("1") to the destination value 10H, leaving 14H in the register R1.

ADD — Add

- ADD dst,src
- **Operation:** $dst \leftarrow dst + src$

The source operand is added to the destination operand and the sum is stored in the destination. The contents of the source are unaffected. Two's-complement addition is performed.

Flags:

- **C:** Set if there is a carry from the most significant bit of the result; cleared otherwise.
 - Z: Set if the result is "0"; cleared otherwise.
 - S: Set if the result is negative; cleared otherwise.
 - V: Set if arithmetic overflow occurred, that is, if both operands are of the same sign and the result is of the opposite sign; cleared otherwise.
 - D: Always cleared to "0".
 - H: Set if a carry from the low-order nibble occurred.

Format:

			E	Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src			2	4	02	r	r
					6	03	r	lr
орс	SrC	dst		3	6	04	R	R
						05	R	IR
орс	dst	SrC		3	6	06	R	IM

Examples:

Given: R1 = 12H, R2 = 03H, register 01H = 21H, register 02H = 03H, register 03H = 0AH:

ADD	R1,R2	\rightarrow	R1 = 15H, R2 = 03H
ADD	R1,@R2	\rightarrow	R1 = 1CH, R2 = 03H
ADD	01H,02H	\rightarrow	Register 01H = 24H, register 02H = 03H
ADD	01H,@02H	\rightarrow	Register 01H = 2BH, register 02H = 03H
ADD	01H,#25H	\rightarrow	Register 01H = 46H

In the first example, the destination working register R1 contains 12H and the source working register R2 contains 03H. The statement "ADD R1,R2" adds 03H to 12H, leaving the value 15H in the register R1.

AND — Logical AND

AND dst,src

Operation: dst \leftarrow dst AND src

The source operand is logically ANDed with the destination operand. The result is stored in the destination. The AND operation causes a "1" bit to be stored whenever the corresponding bits in the two operands are both logic ones; otherwise a "0" bit value is stored. The contents of the source are unaffected.

Flags:

- **Z:** Set if the result is "0": cleared otherwise.
 - S: Set if the result bit 7 is set; cleared otherwise.
 - V: Always cleared to "0".
 - D: Unaffected.

C: Unaffected.

H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	52	r	r
				6	53	r	lr
орс	src	dst	3	6	54	R	R
					55	R	IR
орс	dst	SrC	3	6	56	R	IM

Examples:

es:	Given: R1	= 12H, R2 =	 03H, regist 	ter $01H = 21H$, register $02H = 03H$, register $03H = 0AH$:
	AND	R1.R2	\rightarrow	R1 = 02H, R2 = 03H

	,		- ,
AND	R1,@R2	\rightarrow	R1 = 02H, R2 = 03H
AND	01H,02H	\rightarrow	Register 01H = 01H, register 02H = 03H
AND	01H,@02H	\rightarrow	Register 01H = 00H, register 02H = $03H$
AND	01H,#25H	\rightarrow	Register 01H = 21H

In the first example, the destination working register R1 contains the value 12H and the source working register R2 contains 03H. The statement "AND R1,R2" logically ANDs the source operand 03H with the destination operand value 12H, leaving the value 02H in the register R1.

BAND - Bit AND

- BAND dst,src.b
- BAND dst.b,src
- **Operation:** $dst(0) \leftarrow dst(0)$ AND src(b)

or

 $dst(b) \leftarrow dst(b) AND src(0)$

The specified bit of the source (or the destination) is logically ANDed with the zero bit (LSB) of the destination (or the source). The resultant bit is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

- Flags: C: Unaffected.
 - Z: Set if the result is "0"; cleared otherwise.
 - S: Cleared to "0".
 - V: Undefined.
 - D: Unaffected.
 - H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr I <u>dst</u>	Mode <u>src</u>
орс	dst b 0	src	3	6	67	rO	Rb
орс	src b 1	dst	3	6	67	Rb	r0

NOTE: In the second byte of the 3-byte instruction formats, the destination (or the source) address is four bits, the bit address "b" is three bits, and the LSB address value is one bit in length.

Examples:	Given: R	1 = 07H and re	egister 01	H = 05H:	
	BAND	R1,01H.1	\rightarrow	R1 = 06H, register 01H = 05H	
	BAND	01H.1,R1	\rightarrow	Register 01H = 05H, R1 = 07H	

In the first example, the source register 01H contains the value 05H (00000101B) and the destination working register R1 contains 07H (00000111B). The statement "BAND R1,01H.1" ANDs the bit 1 value of the source register ("0") with the bit 0 value of the register R1 (destination), leaving the value 06H (00000110B) in the register R1.

BCP — Bit Compare

BCP dst,src.b

Operation: dst(0) – src(b)

The specified bit of the source is compared to (subtracted from) bit zero (LSB) of the destination. The zero flag is set if the bits are the same; otherwise it is cleared. The contents of both operands are unaffected by the comparison.

Flags:

- **Z:** Set if the two bits are the same; cleared otherwise.
- S: Cleared to "0".

C: Unaffected.

- V: Undefined.
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Cycles	Opcode	Addr	Mode
					(Hex)	<u>dst</u>	<u>src</u>
орс	dst b 0	src	3	6	17	rO	Rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address "0" is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H and register 01H = 01H:

BCP R1,01H.1 \rightarrow R1 = 07H, register 01H = 01H

If the destination working register R1 contains the value 07H (00000111B) and the source register 01H contains the value 01H (0000001B), the statement "BCP R1,01H.1" compares bit one of the source register (01H) and bit zero of the destination register (R1). Because the bit values are not identical, the zero flag bit (Z) is cleared in the FLAGS register (0D5H).

BITC — Bit Complement

BITC dst.b

Operation: dst(b) \leftarrow NOT dst(b)

This instruction complements the specified bit within the destination without affecting any other bit in the destination.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

- S: Cleared to "0".
- V: Undefined.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst b 0	2	4	57	rb

NOTE: In the second byte of the instruction format, the destination address is four bits, the bit address "b" is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H

BITC R1.1 \rightarrow R1 = 05H

If the working register R1 contains the value 07H (00000111B), the statement "BITC R1.1" complements bit one of the destination and leaves the value 05H (00000101B) in the register R1. Because the result of the complement is not "0", the zero flag (Z) in the FLAGS register (0D5H) is cleared.

BITR — Bit Reset

BITR	dst.b							
Operation:	dst(b) \leftarrow	0						
		The BITR instruction clears the specified bit within the destination without affecting any other bit in the destination.						
Flags:	No flags ar	No flags are affected.						
Format:								
					Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	орс	dst b 0			2	4	77	rb
	NOTE : In the second byte of the instruction format, the destination address is four bits, the bit address "0" is three bits, and the LSB address value is one bit in length.							
Example:	Given: R1	= 07H:						
	BITR	R1.1	\rightarrow	R1 = 05	H			
		e of the working destination reg		•		,		R1.1" clears bit

BITS — Bit Set

BITS	dst.b							
Operation:	dst(b) \leftarrow	dst(b) ← 1						
		The BITS instruction sets the specified bit within the destination without affecting any other bit in the destination.						
Flags:	No flags ar	No flags are affected.						
Format:								
					Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	орс	dst b 1			2	4	77	rb
		he second byte dress "b" is three						e bit
Example:	Given: R1	= 07H:						
	BITS	R1.3	\rightarrow	R1 = 0F	Н			
		ng register R1 the destinatio			•			S R1.3" sets

BOR - Bit OR

- BOR dst,src.b
- BOR dst.b,src
- **Operation:** $dst(0) \leftarrow dst(0) \text{ OR } src(b)$

or

 $dst(b) \leftarrow dst(b) OR src(0)$

The specified bit of the source (or the destination) is logically ORed with bit zero (LSB) of the destination (or the source). The resulting bit value is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: C: Unaffected.

- **Z:** Set if the result is "0"; cleared otherwise.
- S: Cleared to "0".
- V: Undefined.
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst b 0	src	3	6	07	r0	Rb
орс	src b 1	dst	3	6	07	Rb	r0

NOTE: In the second byte of the 3-byte instruction format, the destination (or the source) address is four bits, the bit address "b" is three bits, and the LSB address value is one bit.

Examples: Given: R1 = 07H and register 01H = 03H:

BOR	R1, 01H.1	\rightarrow	R1 = 07H, register 01H = 03H
BOR	01H.2, R1	\rightarrow	Register 01H = 07H, R1 = 07H

In the first example, the destination working register R1 contains the value 07H (00000111B) and the source register 01H the value 03H (00000011B). The statement "BOR R1,01H.1" logically ORs bit one of the register 01H (source) with bit zero of R1 (destination). This leaves the same value (07H) in the working register R1.

In the second example, the destination register 01H contains the value 03H (00000011B) and the source working register R1 the value 07H (00000111B). The statement "BOR 01H.2,R1" logically ORs bit two of the register 01H (destination) with bit zero of R1 (source). This leaves the value 07H in the register 01H.

BTJRF — Bit Test, Jump Relative on False

BTJRF dst,src.b

Operation: If src(b) is a "0", then PC \leftarrow PC + dst

The specified bit within the source operand is tested. If it is a "0", the relative address is added to the program counter and control passes to the statement whose address is currently in the program counter. Otherwise, the instruction following the BTJRF instruction is executed.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode	Addr	Mode
	(note)				(Hex)	<u>dst</u>	<u>src</u>
орс	src b 0	dst	3	10	37	RA	rb

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address "b" is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BTJRF SKIP,R1.3 \rightarrow PC jumps to SKIP location

If the working register R1 contains the value 07H (00000111B), the statement "BTJRF SKIP,R1.3" tests bit 3. Because it is "0", the relative address is added to the PC and the PC jumps to the memory location pointed to by the SKIP (Remember that the memory location must be within the allowed range of + 127 to - 128).

BTJRT — Bit Test, Jump Relative on True

BTJRT dst,src.b

Operation: If src(b) is a "1", then PC \leftarrow PC + dst

The specified bit within the source operand is tested. If it is a "1", the relative address is added to the program counter and control passes to the statement whose address is now in the PC. Otherwise, the instruction following the BTJRT instruction is executed.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode	Addr	Mode
	(note)				(Hex)	dst	src
орс	src b 1	dst	3	10	37	RA	rb

NOTE: In the second byte of the instruction format, the source address is four bits, the bit address "b" is three bits, and the LSB address value is one bit in length.

Example: Given: R1 = 07H:

BTJRT SKIP,R1.1

If the working register R1 contains the value 07H (00000111B), the statement "BTJRT SKIP,R1.1" tests bit one in the source register (R1). Because it is a "1", the relative address is added to the PC and the PC jumps to the memory location pointed to by the SKIP.

Remember that the memory location addressed by the BTJRT instruction must be within the allowed range of + 127 to -128.

BXOR — Bit XOR

- BXOR dst,src.b
- BXOR dst.b,src
- **Operation:** $dst(0) \leftarrow dst(0) \text{ XOR } src(b)$

or

 $dst(b) \leftarrow dst(b) XOR src(0)$

The specified bit of the source (or the destination) is logically exclusive-ORed with bit zero (LSB) of the destination (or the source). The result bit is stored in the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

- Flags: C: Unaffected.
 - Z: Set if the result is "0"; cleared otherwise.
 - S: Cleared to "0".
 - V: Undefined.
 - D: Unaffected.
 - H: Unaffected.

Format:

			Bytes	Cycles	Opcode		Mode
					(Hex)	<u>dst</u>	<u>src</u>
орс	dst b 0	src	3	6	27	r0	Rb
орс	src b 1	dst	3	6	27	Rb	r0

NOTE: In the second byte of the 3-byte instruction format, the destination (or the source) address is four bits, the bit address "b" is three bits, and the LSB address value is one bit in length.

Examples:	Given: R1 =	07H (00000111B) and register 01H	= 03H (00000011B):
-----------	-------------	----------------------------------	--------------------

BXOR	R1,01H.1	\rightarrow	R1 = 06H, register 01H = 03H
BXOR	01H.2,R1	\rightarrow	Register 01H = 07H, R1 = 07H

In the first example, the destination working register R1 has the value 07H (00000111B) and the source register 01H has the value 03H (00000011B). The statement "BXOR R1,01H.1" exclusive-ORs bit one of the register 01H (the source) with bit zero of R1 (the destination). The result bit value is stored in bit zero of R1, changing its value from 07H to 06H. The value of the source register 01H is unaffected.

CALL — Call Procedure

CALL	C
Operation:	5
	(
	ę
	(

dst SP \leftarrow SP–1 @SP \leftarrow PCL SP \leftarrow SP–1 @SP \leftarrow PCH PC \leftarrow dst

The contents of the program counter are pushed onto the top of the stack. The program counter value used is the address of the first instruction following the CALL instruction. The specified destination address is then loaded into the program counter and points to the first instruction of a procedure. At the end of the procedure the return instruction (RET) can be used to return to the original program flow. RET pops the top of the stack back into the program counter.

Flags: No flags are affected.

Format:

			Bytes	s Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	d	st	3	14	F6	DA
орс	dst		2	12	F4	IRR
орс	dst		2	14	D4	IA

Examples:

CALL	3521H	\rightarrow	SP = 0000H
			(Memory locations $0000H = 1AH$, $0001H = 4AH$,
			where, 4AH is the address that follows the instruction.)
CALL	@RR0	\rightarrow	SP = 0000H (0000H = 1AH, 0001H = 49H)

Given: R0 = 35H, R1 = 21H, PC = 1A47H, and SP = 0002H:

CALL #40H \rightarrow SP = 0000H (0000H = 1AH, 0001H = 49H)

In the first example, if the program counter value is 1A47H and the stack pointer contains the value 0002H, the statement "CALL 3521H" pushes the current PC value onto the top of the stack. The stack pointer now points to the memory location 0000H. The PC is then loaded with the value 3521H, the address of the first instruction in the program sequence to be executed.

If the contents of the program counter and the stack pointer are the same as in the first example, the statement "CALL @RR0" produces the same result except that the 49H is stored in stack location 0001H (because the two-byte instruction format was used). The PC is then loaded with the value 3521H, the address of the first instruction in the program sequence to be executed. Assuming that the contents of the program counter and the stack pointer are the same as in the first example, if the program address 0040H contains 35H and the program address 0041H contains 21H, the statement "CALL #40H" produces the same result as in the second example.

CCF — Complement Carry Flag

CCF

Operation: $C \leftarrow NOT C$

The carry flag (C) is complemented. If C = "1", the value of the carry flag is changed to logic zero. If C = "0", the value of the carry flag is changed to logic one.

Flags: C: Complemented. No other flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	EF

Example: Given: The carry flag = "0":

CCF

If the carry flag = "0", the CCF instruction complements it in the FLAGS register (0D5H), changing its value from logic zero to logic one.

CLR - Clear

CLR	dst
Operation:	dst ← "0"
	The destination location is cleared to "0".

Flags: No flags are affected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	B0	R
			4	B1	IR

Examples: Given: Register 00H = 4FH, register 01H = 02H, and register 02H = 5EH:

CLR	00H	\rightarrow	Register 00H = 00H
CLR	@01H	\rightarrow	Register 01H = 02H, register 02H = 00H

In Register (R) addressing mode, the statement "CLR 00H" clears the destination register 00H value to 00H.

In the second example, the statement "CLR @01H" uses Indirect Register (IR) addressing mode to clear the 02H register value to 00H.

COM - Complement

СОМ	dst

Operation: dst ← NOT dst

> The contents of the destination location are complemented (one's complement). All "1s" are changed to "0s", and vice-versa.

C: Unaffected. Flags:

- **Z:** Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Always reset to "0".
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	60	R
			4	61	IR

Examples:

Given: R1 = 07H and register 07H = 0F1H:

COM	R1	\rightarrow	R1 = 0F8H
COM	@R1	\rightarrow	R1 = $07H$, register $07H$ = $0EH$

In the first example, the destination working register R1 contains the value 07H (00000111B). The statement "COM R1" complements all the bits in R1: all logic ones are changed to logic zeros, and logic zeros to logic ones, leaving the value 0F8H (11111000B).

In the second example, Indirect Register (IR) addressing mode is used to complement the value of the destination register 07H (11110001B), leaving the new value 0EH (00001110B).

$\mathbf{CP}-\mathbf{Compare}$

CP Operation:	dst,src dst–src					
	The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are set accordingly. The contents of both operands are unaffected by the comparison.					
Flags:	 C: Set if a "borrow" occurred (src > dst); cleared otherwise. Z: Set if the result is "0"; cleared otherwise. S: Set if the result is negative; cleared otherwise. V: Set if arithmetic overflow occurred; cleared otherwise. D: Unaffected. H: Unaffected. 					

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	A2	r	r
				6	A3	r	lr
орс	src	dst	3	6	A4	R	R
				6	A5	R	IR
орс	dst	SrC	3	6	A6	R	IM

Examples:

1. Given: R1 = 02H and R2 = 03H:

CP R1,R2 \rightarrow Set the C and S flags

The destination working register R1 contains the value 02H and the source register R2 contains the value 03H. The statement "CP R1,R2" subtracts the R2 value (source/subtrahend) from the R1 value (destination/minuend). Because a "borrow" occurs and the difference is negative, the C and the S flag values are "1".

2. Given: R1 = 05H and R2 = 0AH:

CP	R1,R2
JP	UGE,SKIP
INC	R1
SKIP	LD R3,R1

In this example, the destination working register R1 contains the value 05H which is less than the contents of the source working register R2 (0AH). The statement "CP R1,R2" generates C = "1" and the JP instruction does not jump to the SKIP location. After the statement "LD R3,R1" executes, the value 06H remains in the working register R3.

CPIJE — Compare, Increment, and Jump on Equal

CPIJE dst,src,RA

Operation: If dst-src = "0", PC \leftarrow PC + RA Ir \leftarrow Ir + 1

The source operand is compared to (subtracted from) the destination operand. If the result is "0", the relative address is added to the program counter and control passes to the statement whose address is now in the program counter. Otherwise, the instruction immediately following the CPIJE instruction is executed. In either case, the source pointer is incremented by one before the next instruction is executed.

Flags: No flags are affected.

Format:

				Bytes	Cycles	Opcode (Hex)		
орс	src	dst	RA	3	12	C2	r	lr

Example: Given: R1 = 02H, R2 = 03H, and register 03H = 02H:

CPIJE R1,@R2,SKIP \rightarrow R2 = 04H, PC jumps to SKIP location

In this example, the working register R1 contains the value 02H, the working register R2 the value 03H, and the register 03 contains 02H. The statement "CPIJE R1,@R2,SKIP" compares the @R2 value 02H (00000010B) to 02H (00000010B). Because the result of the comparison is *equal*, the relative address is added to the PC and the PC then jumps to the memory location pointed to by SKIP. The source register (R2) is incremented by one, leaving a value of 04H.

Remember that the memory location addressed by the CPIJE instruction must be within the allowed range of + 127 to - 128.

CPIJNE — Compare, Increment, and Jump on Non-Equal

CPIJNE dst,src,RA

Operation: If dst-src \neq "0", PC \leftarrow PC + RA

 $Ir \leftarrow Ir + 1$

The source operand is compared to (subtracted from) the destination operand. If the result is not "0", the relative address is added to the program counter and control passes to the statement whose address is now in the program counter. Otherwise the instruction following the CPIJNE instruction is executed. In either case the source pointer is incremented by one before the next instruction.

Flags: No flags are affected.

Format:

				Bytes	Bytes Cycles		Addr Mode	
						(Hex)	<u>dst</u>	<u>src</u>
орс	src	dst	RA	3	12	D2	r	lr

Example: Given: R1 = 02H, R2 = 03H, and register 03H = 04H:

CPIJNE R1,@R2,SKIP → R2 = 04H, PC jumps to SKIP location

The working register R1 contains the value 02H, the working register R2 (the source pointer) the value 03H, and the general register 03 the value 04H. The statement "CPIJNE R1,@R2,SKIP" subtracts 04H (00000100B) from 02H (0000010B). Because the result of the comparison is *non-equal*, the relative address is added to the PC and the PC then jumps to the memory location pointed to by SKIP. The source pointer register (R2) is also incremented by one, leaving a value of 04H.

Remember that the memory location addressed by the CPIJNE instruction must be within the allowed range of + 127 to - 128.

DA — Decimal Adjust

DA

Operation: dst \leftarrow DA dst

dst

The destination operand is adjusted to form two 4-bit BCD digits following an addition or subtraction operation. For addition (ADD, ADC) or subtraction (SUB, SBC), the following table indicates the operation performed (The operation is undefined if the destination operand is not the result of a valid addition or subtraction of BCD digits):

Instruction	Carry Before DA	Bits 4–7 Value (Hex)	H Flag Before DA	Bits 0–3 Value (Hex)	Number Added to Byte	Carry After DA
	0	0–9	0	0–9	00	0
	0	0–8	0	A–F	06	0
	0	0—9	1	0–3	06	0
ADD	0	A–F	0	0—9	60	1
ADC	0	9–F	0	A–F	66	1
	0	A–F	1	0–3	66	1
	1	0–2	0	0–9	60	1
	1	0–2	0	A–F	66	1
	1	0–3	1	0–3	66	1
	0	0–9	0	0–9	00 = -00	0
SUB	0	0–8	1	6–F	FA = -06	0
SBC	1	7–F	0	0—9	A0 = -60	1
	1	6–F	1	6–F	9A = -66	1

Flags:

C: Set if there was a carry from the most significant bit; cleared otherwise (see table).

- **Z:** Set if result is "0"; cleared otherwise.
- S: Set if result bit 7 is set; cleared otherwise.
- V: Undefined.
- **D:** Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	40	R
			4	41	IR

DA — Decimal Adjust

DA (Continued)

Example: Given: The working register R0 contains the value 15 (BCD), the working register R1 contains 27 (BCD), and the address 27H contains 46 (BCD):

ADD	R1,R0	•	$C \leftarrow$ "0", $H \leftarrow$ "0", Bits 4–7 = 3, bits 0–3 = C, R1 \leftarrow 3CH
DA	R1	;	$R1 \leftarrow 3CH + 06$

If an addition is performed using the BCD values 15 and 27, the result should be 42. The sum is incorrect, however, when the binary representations are added in the destination location using the standard binary arithmetic:

	0001	0101		15
+	<u>0010</u>	0111		27
	0011	1100	=	3CH

The DA instruction adjusts this result so that the correct BCD representation is obtained:

Assuming the same values given above, the statements

SUB	27H,R0	•	$C \leftarrow$ "0", $H \leftarrow$ "0", Bits 4–7 = 3, bits 0–3 = 1
DA	@R1	•	@R1 ← 31–0

leave the value 31 (BCD) in the address 27H (@R1).

DEC - Decrement

DEC dst

Operation: dst ← dst-1

The contents of the destination operand are decremented by one.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- **S:** Set if result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	00	R
			4	01	IR

Examples: Given: R1 = 03H and register 03H = 10H:

DEC	R1	\rightarrow	R1 = 02H
DEC	@R1	\rightarrow	Register 03H = 0FH

In the first example, if the working register R1 contains the value 03H, the statement "DEC R1" decrements the hexadecimal value by one, leaving the value 02H. In the second example, the statement "DEC @R1" decrements the value 10H contained in the destination register 03H by one, leaving the value 0FH.

DECW — Decrement Word

DECW	dst								
Operation:	dst	← dst – 1							
		e contents of t owing that loc			•			,	•
Flags:	C: Unaffected.								
	Z :	Set if the res	ult is '	'0"; cleared c	otherwise.				
	S:	Set if the res	ult is i	negative; cle	ared otherwi	se.			
	V :	Set if arithme	etic ov	erflow occur	red; cleared	otherwise			
	D:	Unaffected.							
	H:	Unaffected.							
Format:									
						Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
		opc ds	st			2	8	80	RR
							8	81	IR
Examples:	Giv	ven: R0 = 12	2H, R ²	1 = 34H, R2	2 = 30H, reg	gister 30H	= 0FH, and	d register 31H	H = 21H:

DECW	RR0	\rightarrow	R0 = 12H, R1 = 33H
DECW	@R2	\rightarrow	Register 30H = 0FH, register 31H = 20H

In the first example, the destination register R0 contains the value 12H and the register R1 the value 34H. The statement "DECW RR0" addresses R0 and the following operand R1 as a 16-bit word and decrements the value of R1 by one, leaving the value 33H.

A system malfunction may occur if you use a Zero flag (FLAGS.6) result together with a DECW instruction. NOTE: To avoid this problem, it is recommended to use DECW as shown in the following example.

LOOP	DECW	RR0
LD	R2,R1	
OR	R2,R0	
JR	NZ,LOOP	

DI — Disable Interrupts

DI

Operation: SYM (0) \leftarrow 0

Bit zero of the system mode control register, SYM.0, is cleared to "0", globally disabling all interrupt processing. Interrupt requests will continue to set their respective interrupt pending bits, but the CPU will not service them while interrupt processing is disabled.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	8F

Example: Given: SYM = 01H:

DI

If the value of the SYM register is 01H, the statement "DI" leaves the new value 00H in the register and clears SYM.0 to "0", disabling interrupt processing.

DIV — Divide (Unsigned)

DIV	dst,src					
Operation:	dst ÷ src dst (UPPER) ← REMAINDER dst (LOWER) ← QUOTIENT					
	The destination operand (16 bits) is divided by the source operand (8 bits). The quotient (8 bits) is stored in the lower half of the destination. The remainder (8 bits) is stored in the upper half of the destination. When the quotient is $\geq 2^8$, the numbers stored in the upper and lower halves of the destination for quotient and remainder are incorrect. Both operands are treated as unsigned integers.					
Flags:	 C: Set if the V flag is set and the quotient is between 2⁸ and 2⁹ −1; cleared otherwise. Z: Set if the divisor or the quotient = "0"; cleared otherwise. S: Set if MSB of the quotient = "1"; cleared otherwise. V: Set if the quotient is ≥ 2⁸ or if the divisor = "0"; cleared otherwise. D: Unaffected. H: Unaffected. 					
Format:						
	Bytes Cycles Opcode Addr Mode (Hex) <u>dst</u> <u>src</u>					
	opc src dst 3 2 ⁶ /10 * 94 RR R					
	2 ⁶ /10 * 95 RR IR					
	2 ⁶ /10 * 96 RR IM					
	 * Execution takes 10 cycles if the divide-by-zero is attempted, otherwise, it takes 2⁶ cycles. 					
Examples:	Given: R0 = 10H, R1 = 03H, R2 = 40H, register 40H = 80H:					
	$\begin{array}{llllllllllllllllllllllllllllllllllll$					
	In the first example, the destination working register pair RR0 contains the values 10H (R0) and 03H (R1), and the register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0					

03H (R1), and the register R2 contains the value 40H. The statement "DIV RR0,R2" divides the 16-bit RR0 value by the 8-bit value of the R2 (source) register. After the DIV instruction, R0 contains the value 03H and R1 contains 40H. The 8-bit remainder is stored in the upper half of the destination register RR0 (R0) and the quotient in the lower half (R1).

DJNZ — Decrement and Jump if Non-Zero

DJNZ r,dst

Operation: $r \leftarrow r - 1$

If $r \neq 0$, PC \leftarrow PC + dst

The working register being used as a counter is decremented. If the contents of the register are not logic zero after decrementing, the relative address is added to the program counter and control passes to the statement whose address is now in the PC. The range of the relative address is + 127 to - 128, and the original value of the PC is taken to be the address of the instruction byte following the DJNZ statement.

NOTE: In case of using DJNZ instruction, the working register being used as a counter should be set at the one of location 0C0H to 0CFH with SRP, SRP0 or SRP1 instruction.

Flags: No flags are affected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
r opc	dst	2	8 (jump taken)	rA	RA
			8 (no jump)	r = 0 to F	

Example:

Given: R1 = 02H and LOOP is the label of a relative address:

SRP #0C0H DJNZ R1,LOOP

DJNZ is typically used to control a "loop" of instructions. In many cases, a label is used as the destination operand instead of a numeric relative address value. In the example, the working register R1 contains the value 02H, and LOOP is the label for a relative address.

The statement "DJNZ R1, LOOP" decrements the register R1 by one, leaving the value 01H. Because the contents of R1 after the decrement are non-zero, the jump is taken to the relative address specified by the LOOP label.

El — Enab	le Interrupts				
EI					
Operation:	SYM (0) ← 1				
	The EI instruction sets bit zero of the system to be serviced as they occur (assuming they was set while interrupt processing was disable when the EI instruction is executed.	have the hig	hest priority	/). If an interrupt's p	ending bit
Flags:	No flags are affected.				
Format:					
		Bytes	Cycles	Opcode (Hex)	
	орс	1	4	9F	
Example:	Given: SYM = 00H:				
	EI				
	If the SYM register contains the value 00H, th	nat is, if inter	rrupts are cu	urrently disabled, th	е

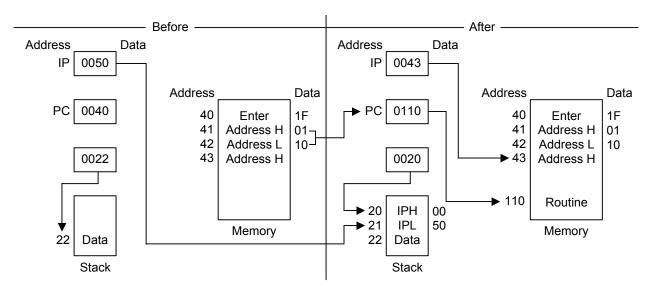
If the SYM register contains the value 00H, that is, if interrupts are currently disabled, the statement "EI" sets the SYM register to 01H, enabling all interrupts. (SYM.0 is the enable bit for global interrupt processing.)

ENTER - Enter

ENTER

Operation:

 $\begin{array}{l} \mathsf{SP} \leftarrow \mathsf{SP}-2\\ @\mathsf{SP} \leftarrow \mathsf{IP}\\ \mathsf{IP} \leftarrow \mathsf{PC}\\ \mathsf{PC} \leftarrow @\mathsf{IP}\\ \mathsf{IP} \leftarrow \mathsf{IP}+2 \end{array}$


This instruction is useful when implementing threaded-code languages. The contents of the instruction pointer are pushed to the stack. The program counter (PC) value is then written to the instruction pointer. The program memory word that is pointed to by the instruction pointer is loaded into the PC, and the instruction pointer is incremented by two.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	14	1F

Example: The diagram below shows an example of how to use an ENTER statement.

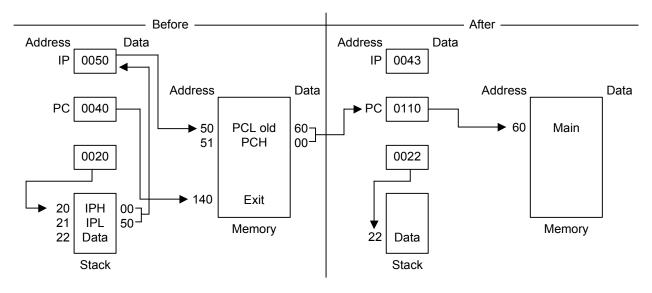
EXIT — Exit

EXIT

Operation: IP SF P(

 $\begin{array}{rrrr} \mathsf{IP} &\leftarrow & @\mathsf{SP} \\ \mathsf{SP} &\leftarrow & \mathsf{SP} + 2 \\ \mathsf{PC} &\leftarrow & @\mathsf{IP} \\ \mathsf{IP} &\leftarrow & \mathsf{IP} + 2 \end{array}$

This instruction is useful when implementing threaded-code languages. The stack value is popped and loaded into the instruction pointer. The program memory word that is pointed to by the instruction pointer is then loaded into the program counter, and the instruction pointer is incremented by two.


Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	16	2F

Example:

Ie: The diagram below shows an example of how to use an EXIT statement.

IDLE — Idle Operation

IDLE

- Operation:
 (See description)

 The IDLE instruction stops the CPU clock while allowing the system clock oscillation to continue. Idle mode can be released by an interrupt request (IRQ) or an external reset operation.
- Flags: No flags are affected.

Format:

	Byte	es Cycles	Cycles Opcode	Addr	Addr Mode	
			(Hex)	<u>dst</u>	<u>src</u>	
оро	1	4	6F	-	-	

Example: The instruction **IDLE** stops the CPU clock but it does not stop the system clock.

INC — Increment

INC dst

Operation: dst \leftarrow dst + 1

The contents of the destination operand are incremented by one.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
dst opc		1	4	rE	r
				r = 0 to F	
орс	dst	2	4	20	R
			4	21	IR

Examples: Given: R0 = 1BH, register 00H = 0CH, and register 1BH = 0FH:

 $\begin{array}{rrrr} \text{INCR0} & \rightarrow & \text{R0} = 1\text{CH} \\ \text{INC00H} & \rightarrow & \text{Register 00H} = 0\text{DH} \\ \text{INC}@\text{R0} & \rightarrow & \text{R0} = 1\text{BH}, \text{ register 01H} = 10\text{H} \end{array}$

In the first example, if the destination working register R0 contains the value 1BH, the statement "INC R0" leaves the value 1CH in that same register.

The second example shows the effect an INC instruction has on the register at the location 00H, assuming that it contains the value 0CH.

In the third example, INC is used in Indirect Register (IR) addressing mode to increment the value of the register 1BH from 0FH to 10H.

INCW — Increment Word

INCW dst

Operation: dst \leftarrow dst + 1

The contents of the destination (which must be an even address) and the byte following that location are treated as a single 16-bit value that is incremented by one.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	8	A0	RR
			8	A1	IR

Examples: Given: R0 = 1AH, R1 = 02H, register 02H = 0FH, and register
--

INCW	RR0	\rightarrow	R0 = 1AH, R1 = 03H
INCW	@R1	\rightarrow	Register 02H = 10H, register 03H = 00H

In the first example, the working register pair RR0 contains the value 1AH in the register R0 and 02H in the register R1. The statement "INCW RR0" increments the 16-bit destination by one, leaving the value 03H in the register R1. In the second example, the statement "INCW @R1" uses Indirect Register (IR) addressing mode to increment the contents of the general register 03H from 0FFH to 00H and the register 02H from 0FH to 10H.

NOTE: A system malfunction may occur if you use a Zero (Z) flag (FLAGS.6) result together with an INCW instruction. To avoid this problem, it is recommended to use the INCW instruction as shown in the following example:

P:	INCW	RR0
	LD	R2,R1
	OR	R2,R0
	JR	NZ,LOOP
	JK	NZ,LO

L

IRET — Interrupt Return

IRET	IRET (Normal)	iRET (Fast)
Operation:	$FLAGS \leftarrow @SP$	$PC \leftrightarrow IP$
	$SP \leftarrow SP + 1$	$FLAGS \leftarrow FLAGS'$
	PC ← @SP	$FIS \leftarrow 0$
	$SP \leftarrow SP + 2$	
	SYM(0) ← 1	

This instruction is used at the end of an interrupt service routine. It restores the flag register and the program counter. It also re-enables global interrupts. A "normal IRET" is executed only if the fast interrupt status bit (FIS, bit one of the FLAGS register, 0D5H) is cleared (= "0"). If a fast interrupt occurred, IRET clears the FIS bit that was set at the beginning of the service routine.

 Flags:
 All flags are restored to their original settings (that is, the settings before the interrupt occurred).

 Format:
 Format:

Format:

IRET (Normal)	Bytes	Cycles	Opcode (Hex)
орс	1	12	BF
IRET (Fast)	Bytes	Cycles	Opcode (Hex)
орс	1	6	BF

Example: In the figure below, the instruction pointer is initially loaded with 100H in the main program before interrupt are enabled. When an interrupt occurs, the program counter and the instruction pointer are swapped. This causes the PC to jump to the address 100H and the IP to keep the return address. The last instruction in the service routine is normally a jump to IRET at the address FFH.

This loads the instruction pointer with 100H "again" and causes the program counter to jump back to the main program. Now, the next interrupt can occur and the IP is still correct at 100H.

0H	
FFH	IRET
100H	Interrupt Service Routine
	JP to FFH
FFFFH	

NOTE: In the fast interrupt example above, if the last instruction is not a jump to IRET, you must pay attention to the order of the last tow instruction. The IRET cannot be immediately proceeded by an instruction which clears the interrupt status (as with a reset of the IPR register).

JP - JUMP

JP cc,dst (Conditional)

JP dst (Unconditional)

Operation: If cc is true, PC \leftarrow dst

> The conditional JUMP instruction transfers program control to the destination address if the condition specified by the condition code (cc) is true, otherwise, the instruction following the JP instruction is executed. The unconditional JP simply replaces the contents of the PC with the contents of the specified register pair. Control then passes to the statement addressed by the PC.

Flags: No flags are affected.

Format: (1)

(2)		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
cc opc	ds	3	8	ccD	DA
				cc = 0 to F	
орс	dst	2	8	30	IRR
IOTES:					

1. The 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump. 2. In the first byte of the 3-byte instruction format (conditional jump), the condition code and the OPCODE are both four bits.

Given: The carry flag (C) = "1", register 00 = 01H, and register 01 = 20H Examples:

JP	C,LABEL_W	\rightarrow	LABEL_W = 1000H, PC = 1000H
JP	@00H	\rightarrow	PC = 0120H

The first example shows a conditional JP. Assuming that the carry flag is set to "1", the statement "JP C,LABEL W" replaces the contents of the PC with the value 1000H and transfers control to that location. Had the carry flag not been set, control would then have passed to the statement immediately following the JP instruction.

The second example shows an unconditional JP. The statement "JP @00" replaces the contents of the PC with the contents of the register pair 00H and 01H, leaving the value 0120H.

JR — Jump Relative

JR cc,dst

Operation: If cc is true, PC \leftarrow PC + dst

If the condition specified by the condition code (cc) is true, the relative address is added to the program counter and control passes to the statement whose address is now in the program counter, otherwise, the instruction following the JR instruction is executed. (See the list of condition codes at the beginning of this chapter).

The range of the relative address is +127, -128, and the original value of the program counter is taken to be the address of the first instruction byte following the JR statement.

Flags: No flags are affected.

Format:

(note)		Bytes	Cycles	Opcode (Hex)	Addr Mode dst
cc opc	dst	2	6	ccB	RA
				cc = 0 to F	

NOTE: In the first byte of the two-byte instruction format, the condition code and the opcode are each four bits in length.

Example: Given: The carry flag = "1" and LABEL_X = 1FF7H:

JR C,LABEL_X \rightarrow PC = 1FF7H

If the carry flag is set (that is, if the condition code is "true"), the statement "JR C,LABEL_X" will pass control to the statement whose address is currently in the program counter. Otherwise, the program instruction following the JR will be executed.

LD-LOAD

LD dst,src

Operation: dst \leftarrow src

The contents of the source are loaded into the destination. The source's contents are unaffected.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
dst opc	src		2	4	rC	r	IM
				4	r8	r	R
src opc	dst		2	4	r9	R	r
					r = 0 to F		
орс	dst src		2	4	C7	r	lr
				4	D7	lr	r
орс	src	dst	3	6	E4	R	R
				6	E5	R	IR
орс	dst	src	3	6	E6	R	IM
				6	D6	IR	IM
орс	src	dst	3	6	F5	IR	R
	1		1				
орс	dst src	Х	3	6	87	r	x [r]
			1 -	-			
орс	src dst	X	3	6	97	x [r]	r

LD - Load

LD (Continued) Given: R0 = 01H, R1 = 0AH, register 00H = 01H, register 01H = 20H, Examples: register 02H = 02H, LOOP = 30H, and register 3AH = 0FFH: LD R0,#10H R0 = 10H \rightarrow R0 = 20H, register 01H = 20HLD R0.01H \rightarrow Register 01H = 01H, R0 = 01HLD 01H,R0 \rightarrow LD R1,@R0 R1 = 20H, R0 = 01H \rightarrow LD @R0,R1 \rightarrow R0 = 01H, R1 = 0AH, register 01H = 0AHLD 00H,01H Register 00H = 20H, register 01H = 20H \rightarrow LD 02H,@00H Register 02H = 20H, register 00H = 01H \rightarrow LD 00H,#0AH \rightarrow Register 00H = 0AH Register 00H = 01H, register 01H = 10H LD @00H,#10H \rightarrow Register 00H = 01H, register 01H = 02, LD @00H,02H \rightarrow register 02H = 02H LD R0,#LOOP[R1] R0 = 0FFH, R1 = 0AH \rightarrow LD #LOOP[R0],R1 Register 31H = 0AH, R0 = 01H, R1 = 0AH \rightarrow

LDB — Load Bit

LDB dst,src.b

LDB dst.b,src

Operation: $dst(0) \leftarrow src(b)$

or

 $dst(b) \leftarrow src(0)$

The specified bit of the source is loaded into bit zero (LSB) of the destination, or bit zero of the source is loaded into the specified bit of the destination. No other bits of the destination are affected. The source is unaffected.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst b 0	src	3	6	47	r0	Rb
орс	src b 1	dst	3	6	47	Rb	r0

NOTE: In the second byte of the instruction format, the destination (or the source) address is four bits, the bit address "b" is three bits, and the LSB address value is one bit in length.

Examples: Given: R0 = 06H and general register 00H = 05H:

LDB	R0,00H.2	\rightarrow	R0 = 07H, register $00H = 05H$
LDB	00H.0,R0	\rightarrow	R0 = 06H, register $00H = 04H$

In the first example, the destination working register R0 contains the value 06H and the source general register 00H the value 05H. The statement "LD R0,00H.2" loads the bit two value of the 00H register into bit zero of the R0 register, leaving the value 07H in the register R0.

In the second example, 00H is the destination register. The statement "LD 00H.0,R0" loads bit zero of the register R0 to the specified bit (bit zero) of the destination register, leaving 04H in the general register 00H.

LDC/LDE — Load Memory

LDC	dst,src
-----	---------

LDE dst,src

Operation: dst \leftarrow src

This instruction loads a byte from program or data memory into a working register or vice-versa. The source values are unaffected. LDC refers to program memory and LDE to data memory. The assembler makes "Irr" or "rr" values an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
1.	орс	dst src			2	10	C3	r	Irr
2.	орс	src dst			2	10	D3	Irr	r
3.	орс	dst src	XS]	3	12	E7	r	XS [rr]
4.	орс	src dst	XS]	3	12	F7	XS [rr]	r
5.	орс	dst src	XLL	XL _H	4	14	A7	r	XL [rr]
6.	орс	src dst	XLL	XL _H	4	14	B7	XL [rr]	r
7.	орс	dst 0000	DAL	DA _H	4	14	A7	r	DA
8.	орс	src 0000	DAL	DA _H	4	14	B7	DA	r
9.	орс	dst 0001	DAL	DA _H	4	14	A7	r	DA
10.	орс	src 0001	DAL	DA _H	4	14	В7	DA	r

NOTES:

1. The source (src) or the working register pair [rr] for formats 5 and 6 cannot use the register pair 0–1.

2. For the formats 3 and 4, the destination "XS [rr]" and the source address "XS [rr]" are both one byte.

3. For the formats 5 and 6, the destination "XL [rr] and the source address "XL [rr]" are both two bytes.

- 4. The DA and the r source values for the formats 7 and 8 are used to address program memory. The second set of values, used in the formats 9 and 10, are used to address data memory.
- 5. LDE instruction can be used to read/write the data of 64-Kbyte data memory.

LDC/LDE — Load Memory

LDC/LDE	(Continued	1)		
Examples:	0103H = 4	4FH, 0104H = 1A, 0105⊢	1 =	1H, R3 = 04H; Program memory locations 6DH, and 1104H = 88H.
		External data memory loca		= 7DH, and 1104H = 98H:
			л	
	LDC	R0,@RR2	;	$R0 \leftarrow$ contents of program memory location 0104H; R0 = 1AH, R2 = 01H, R3 = 04H
	LDE	R0,@RR2	;	R0 ← contents of external data memory location 0104H;
			;	R0 = 2AH, R2 = 01H, R3 = 04H
	LDC	@RR2,R0	;	11H (contents of R0) is loaded into program memory
			;	location 0104H (RR2); R0, R2, R3 \rightarrow no change
	LDE	@RR2,R0	;	11H (contents of R0) is loaded into external data memory
			;	location 0104H (RR2); R0, R2, R3 \rightarrow no change
	LDC	R0,#01H[RR2]	;	$R0 \leftarrow$ contents of program memory location 0105H
			÷	(01H + RR2); R0 = 6DH, R2 = 01H, R3 = 04H
	LDE	R0,#01H[RR2]	;	R0 ← contents of external data memory location 0105H
			;	(01H + RR2); R0 = 7DH, R2 = 01H, R3 = 04H
	LDC	#01H[RR2],R0	;	11H (contents of R0) is loaded into program memory location
			:	0105H (01H + 0104H)
	LDE	#01H[RR2],R0	;	11H (contents of R0) is loaded into external data memory
				location 0105H (01H + 0104H)
	LDC	R0,#1000H[RR2]		$R0 \leftarrow contents of program memory location 1104H$
	LDC	10001[[112]	:	(1000H + 0104H); R0 = 88H, R2 = 01H, R3 = 04H
	LDE	R0,#1000H[RR2]	;	R0 ← contents of external data memory location 1104H
				(1000H + 0104H); R0 = 98H, R2 = 01H, R3 = 04H
	LDC	R0,1104H	;	$R0 \leftarrow contents of program memory location 1104H$
	LDO			R0 = 88H
	LDE	R0,1104H	;	$R0 \leftarrow contents of external data memory location$
	LDE	ко, по4п	,	$r_{0} \leftarrow contents of external data memory location1104H;R0 = 98H$
			,	
	LDC	1105H,R0	;	11H (contents of R0) is loaded into program memory location
			;	1105H; (1105H) ← 11H
	LDE	1105H,R0	;	11H (contents of R0) is loaded into external data memory
			;	location 1105H; (1105H) ← 11H

NOTE:

The LDC and the LDE instructions are not supported by masked ROM type devices.

LDCD/LDED — Load Memory and Decrement

LDCD	dst,src
	401,010

LDED dst.src

Operation: dst \leftarrow src

rr ← rr – 1

These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then decremented. The contents of the source are unaffected.

LDCD refers to program memory and LDED refers to external data memory. The assembler makes "Irr" an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

		Bytes	Cycles	Cycles Opcode (Hex)		
				(nex)	<u>dst</u>	<u>src</u>
орс	dst src	2	10	E2	r	Irr

Examples: Given: R6 = 10H, R7 = 33H, R8 = 12H, program memory location 1033H = 0CDH, and external data memory location 1033H = 0DDH:

LDCD	R8,@RR6	 OCDH (contents of program memory location 1033H) is loaded into R8 and RR6 is decremented by one;
		; R8 = 0CDH, R6 = 10H, R7 = 32H (RR6 \leftarrow RR6 – 1)
LDED	R8,@RR6	; 0DDH (contents of data memory location 1033H) is loaded
		; into R8 and RR6 is decremented by one
		$(RR6 \leftarrow RR6 - 1);$
		; R8 = 0DDH, R6 = 10H, R7 = 32H

NOTE: LDED instruction can be used to read/write the data of 64-Kbyte data memory.

LDCI/LDEI - Load Memory and Increment

LDCI	dst,src
------	---------

- LDEI dst,src
- **Operation:** dst \leftarrow src

rr ← rr + 1

These instructions are used for user stacks or block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair. The contents of the source location are loaded into the destination location. The memory address is then incremented automatically. The contents of the source are unaffected. LDCI refers to program memory and LDEI refers to external data memory. The assembler makes "Irr" an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst src		2	10	E3	r	Irr
Examples:		R6 = 10H, R7 = 3 0C5H; external da		•				and
	LDCI	R8,@RR6	loade ; into R (RR6	d 8 and RR6 ← RR6 +	is increme	memory loca nted by one 7 = 34H	ition 103	3H) is
	LDEI	R8,@RR6	; into R (RR6	loaded 8 and RR6 \leftarrow RR6 +	is increme	mory location nted by one 7 = 34H	1033H)	is

NOTE: LDEI instruction can be used to read/write the data of 64-Kbyte data memory.

LDCPD/LDEPD — Load Memory with Pre-Decrement

LDEPD dst.src

Operation: $rr \leftarrow rr - 1$

 $\mathsf{dst} \leftarrow \mathsf{src}$

These instructions are used for block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair and is first decremented. The contents of the source location are then loaded into the destination location. The contents of the source are unaffected.

LDCPD refers to program memory and LDEPD refers to external data memory. The assembler makes "Irr" an even number for program memory and an odd number for external data memory.

Flags: No flags are affected.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	src dst			2	14	F2	Irr	r
Examples:	Given: R0) = 77H, R6 =	30H, and R	7 = 00H	l:				
	LDCPD	@RR6,R0	- - - - - - - - - - - - - - 	 ; (RR6 ← RR6 – 1) ; 77H (the contents of R0) is loaded into program memory ; location 2FFFH (3000H – 1H); ; R0 = 77H, R6 = 2FH, R7 = 0FFH 					
	LDEPD	@RR6,R0	• • • •	 ; (RR6 ← RR6 – 1) ; 77H (the contents of R0) is loaded into external data memory ; location 2FFFH (3000H – 1H); 					ata

NOTE: LDEPD instruction can be used to read/write the data of 64-Kbyte data memory.

LDCPI/LDEPI — Load Memory with Pre-Increment

LDCPI	dst,src
-------	---------

LDEPI dst,src

Operation: $rr \leftarrow rr + 1$

dst ← src

These instructions are used for block transfers of data from program or data memory to the register file. The address of the memory location is specified by a working register pair and is first incremented. The contents of the source location are loaded into the destination location. The contents of the source are unaffected.

LDCPI refers to program memory and LDEPI refers to external data memory. The assembler makes "Irr" an even number for program memory and an odd number for data memory.

Flags: No flags are affected.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	src dst			2	14	F3	Irr	r
Examples:	Given: R) = 7FH, R6 =	21H, and R7	' = 0FF	H:				
	LDCPI	@RR6,R0	-	7FH (th location	n 2200H (,		rogram r	nemory
	LDEPI	@RR6,R0	, , , , ,	(RR6 4 7FH (th memor locatior	← bRR6 ne conten y n 2200H (+ 1)	loaded into e: H);	xternal d	ata

NOTE: LDEPI instruction can be used to read/write the data of 64-Kbyte data memory.

LDW — Load Word

LDW dst,src

Operation: dst \leftarrow src

The contents of the source (a word) are loaded into the destination. The contents of the source are unaffected.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	src	dst	3	8	C4	RR	RR
				8	C5	RR	IR
	1		1				
орс	dst	src	4	8	C6	RR	IML

Examples: Given: R4 = 06H, R5 = 1CH, R6 = 05H, R7 = 02H, register 00H = 1AH, register 01H = 02H, register 02H = 03H, and register 03H = 0FH

LDW	RR6,RR4	\rightarrow	R6 = 06H, R7 = 1CH, R4 = 06H, R5 = 1CH
LDW	00H,02H	\rightarrow	Register 00H = 03H, register 01H = 0FH,
			register 02H = 03H, register 03H = 0FH
LDW	RR2,@R7	\rightarrow	R2 = 03H, R3 = 0FH,
LDW	04H,@01H	\rightarrow	Register 04H = 03H, register 05H = 0FH
LDW	RR6,#1234H	\rightarrow	R6 = 12H, R7 = 34H
LDW	02H,#0FEDH	\rightarrow	Register 02H = 0FH, register 03H = 0EDH

In the second example, please note that the statement "LDW 00H,02H" loads the contents of the source word 02H and 03H into the destination word 00H and 01H. This leaves the value 03H in the general register 00H and the value 0FH in the register 01H.

Other examples show how to use the LDW instruction with various addressing modes and formats.

MULT — Multiply (Unsigned)

Operation: dst \leftarrow dst \times src

The 8-bit destination operand (the even numbered register of the register pair) is multiplied by the source operand (8 bits) and the product (16 bits) is stored in the register pair specified by the destination address. Both operands are treated as unsigned integers.

Flags:

C: Set if the result is > 255; cleared otherwise.

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if MSB of the result is a "1"; cleared otherwise.
- V: Cleared.
- D: Unaffected.
- H: Unaffected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	src	dst	3	22	84	RR	R
				22	85	RR	IR
				22	86	RR	IM

Examples: Given: Register 00H = 20H, register 01H = 03H, register 02H = 09H, register 03H = 06H:

MULT	00H, 02H	\rightarrow	Register 00H = 01H, register 01H = $20H$,
			register 02H = 09H
MULT	00H, @01H	\rightarrow	Register $00H = 00H$, register $01H = 0C0H$
MULT	00H, #30H	\rightarrow	Register 00H = 06H, register 01H = 00H

In the first example, the statement "MULT 00H,02H" multiplies the 8-bit destination operand (in the register 00H of the register pair 00H, 01H) by the source register 02H operand (09H). The 16-bit product, 0120H, is stored in the register pair 00H, 01H.

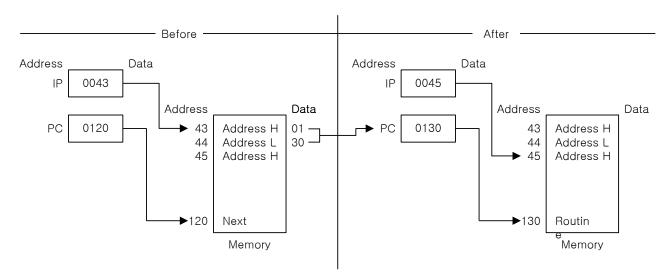
NEXT - Next

NEXT

 $PC \leftarrow @IP$ **Operation:**

 $IP \leftarrow IP + 2$

The NEXT instruction is useful when implementing threaded-code languages. The program memory word that is pointed to by the instruction pointer is loaded into the program counter. The instruction pointer is then incremented by two.


Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	10	0F

Example:

The following diagram shows an example of how to use the NEXT instruction.

NOP - No Operation

NOP

Operation: No action is performed when the CPU executes this instruction. Typically, one or more NOPs are executed in sequence in order to affect a timing delay of variable duration.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	FF

Example: When the instruction NOP is executed in a program, no operation occurs. Instead, there happens a delay in instruction execution time which is of approximately one machine cycle per each **NOP** instruction encountered.

\mathbf{OR} — Logical OR

OR dst,src

Operation: dst ← dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the destination. The contents of the source are unaffected. The OR operation results in a "1" being stored whenever either of the corresponding bits in the two operands is a "1", otherwise, a "0" is stored.

Flags:

C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- **S:** Set if the result bit 7 is set; cleared otherwise.
- V: Always cleared to "0".
- D: Unaffected.
- H: Unaffected.

Format:

			Ву	tes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		:	2	4	42	r	r
					6	43	r	lr
орс	src	dst	;	3	6	44	R	R
					6	45	R	IR
орс	dst	SIC	:	3	6	46	R	IM

Examples: Given: R0 = 15H, R1 = 2AH, R2 = 01H, register 00H = 08H, register 01H = 37H, and register 08H = 8AH

OR	R0,R1	\rightarrow	R0 = 3FH, R1 = 2AH
OR	R0,@R2	\rightarrow	R0 = 37H, R2 = 01H, register 01H = 37H
OR	00H,01H	\rightarrow	Register 00H = 3FH, register 01H = 37H
OR	01H,@00H	\rightarrow	Register 00H = 08H, register 01H = 0BFH
OR	00H,#02H	\rightarrow	Register 00H = 0AH

In the first example, if the working register R0 contains the value 15H and the register R1 the value 2AH, the statement "OR R0,R1" logical-ORs the R0 and R1 register contents and stores the result (3FH) in the destination register R0.

Other examples show the use of the logical OR instruction with various addressing modes and formats.

${\bf POP}-{\bf Pop}~{\rm from}~{\rm Stack}$

POP	dst							
Operation:	dst \leftarrow @SP \leftarrow SP							
		nts of the locat pointer is then		•	stack point	er are loade	ed into the de	estination.
Flags:	No flags a	re affected.						
Format:								
					Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	орс	dst			2	8	50	R
						8	51	IR
Examples:	Given: Register 00H = 01H, register 01H = 1BH, SPH (0D8H) = 00H, SPL (0D9H) = 0FBH, and stack register 0FBH = 55H:							

In the first example, the general register 00H contains the value 01H. The statement "POP 00H" loads the contents of the location 00FBH (55H) into the destination register 00H and then increments the stack pointer by one. The register 00H then contains the value 55H and the SP points to the location 00FCH.

POPUD — Pop User Stack (Decrementing)

POPUD	dst,src
Operation:	$dst \leftarrow src$
	$IR \leftarrow IR - 1$

This instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination. The user stack pointer is then decremented.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode	Addr	Mode
					(Hex)	<u>dst</u>	<u>src</u>
орс	src	dst	3	8	92	R	IR

Example: Given: Register 00H = 42H (user stack pointer register), register 42H = 6FH, and register 02H = 70H:

POPUD	02H,@00H	\rightarrow	Register 00H = 41H, register 02H = 6FH, register 42H =
			6FH

If the general register 00H contains the value 42H and the register 42H the value 6FH, the statement "POPUD 02H,@00H" loads the contents of the register 42H into the destination register. The user stack pointer is then decremented by one, leaving the value 41H.

POPUI — Pop User Stack (Incrementing)

POPUI	dst,src	
Operation:	dst ← src IR ← IR + 1	
	The POPUI instruction is used for user-defined stacks in the register file. The contents of the register file location addressed by the user stack pointer are loaded into the destination. The user stack pointer is then incremented.	
Flags:	No flags are affected.	
Format:		
	Bytes Cycles Opcode Addr Mode (Hex) <u>dst src</u>	
	opc src dst 3 8 93 R IR	
Example:	Given: Register 00H = 01H and register 01H = 70H:	
	POPUI 02H,@00H \rightarrow Register 00H = 02H, register 01H = 70H, register 02H = 70H	
	If the general register 00H contains the value 01H and the register 01H the value 70H, the statement "POPUL 02H @00H" loads the value 70H into the destination general register 02H	

statement "POPUI 02H,@00H" loads the value 70H into the destination general register 02H. The user stack pointer (the register 00H) is then incremented by one, changing its value from 01H to 02H.

PUSH — Push to Stack

PUSH src

Operation: SP \leftarrow SP - 1

 $@\mathsf{SP} \leftarrow \mathsf{src}$

A PUSH instruction decrements the stack pointer value and loads the contents of the source (src) into the location addressed by the decremented stack pointer. The operation then adds the new value to the top of the stack.

Flags: No flags are affected.

Format:

			Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
	орс	src	2	8 (internal clock)	70	R
				8 (external clock)		
				8 (internal clock)		
				8 (external clock)	71	IR
Examples:	Given: Re	gister 40H	4FH, register 4FH =	= 0AAH, SPH = 00H,	and SPL = (00H:

PUSH	40H	\rightarrow	Register 40H = 4FH, stack register 0FFH = 4FH,
			SPH = 0FFH, SPL = 0FFH
PUSH	@40H	\rightarrow	Register 40H = 4FH, register 4FH = 0AAH, stack register
			OFFH = 0AAH, SPH = 0FFH, SPL = 0FFH

In the first example, if the stack pointer contains the value 0000H, and the general register 40H the value 4FH, the statement "PUSH 40H" decrements the stack pointer from 0000 to 0FFFFH. It then loads the contents of the register 40H into the location 0FFFFH and adds this new value to the top of the stack.

PUSHUD — Push User Stack (Decrementing)

PUSHUD	dst,src
Operation:	$IR \leftarrow IR - 1$ dst \leftarrow src
	This instruction is used to address user-defined stacks in the register file. PUSHUD decrements the user stack pointer and loads the contents of the source into the register addressed by the decremented stack pointer.
Flags:	No flags are affected.
Format:	
	Bytes Cycles Opcode Addr Mode (Hex) <u>dst</u> src
	opc dst src 3 8 82 IR R
Example:	Given: Register 00H = 03H, register 01H = 05H, and register 02H = 1AH:
	PUSHUD @00H,01H \rightarrow Register 00H = 02H, register 01H = 05H, register 02H = 05H
	If the user stack pointer (the register 00H, for example) contains the value 03H, the statement

If the user stack pointer (the register 00H, for example) contains the value 03H, the statement "PUSHUD @00H,01H" decrements the user stack pointer by one, leaving the value 02H. The 01H register value, 05H, is then loaded into the register addressed by the decremented user stack pointer.

PUSHUI — Push User Stack (Incrementing)

PUSHUI dst	,src
------------	------

Operation: $IR \leftarrow IR + 1$

dst \leftarrow src

This instruction is used for user-defined stacks in the register file. PUSHUI increments the user stack pointer and then loads the contents of the source into the register location addressed by the incremented user stack pointer.

Flags: No flags are affected.

Format:

				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst	src	3	8	83	IR	R
Example: Given: Register 00H = 03H, register 01H = 05H, and register 04H = 2AH:								
	PUSHUI	@00H,01	H →	Register 00H = 04 register 04H = 05		01H = 05H,		
	16.0							

If the user stack pointer (the register 00H, for example) contains the value 03H, the statement "PUSHUI @00H,01H" increments the user stack pointer by one, leaving the value 04H. The 01H register value, 05H, is then loaded into the location addressed by the incremented user stack pointer.

RCF — Reset Carry Flag

RCF	RCF						
Operation:	C ← (0					
	The ca	rry flag is cleared to logic zero, regardles	ss of its pre	evious value).		
Flags:	C:	Cleared to "0". No other flags are affected.					
Format:							
			Bytes	Cycles	Opcode (Hex)		
	ор	c	1	4	CF		
Example:	Given:	C = "1" or "0":					
	The in:	struction RCF clears the carry flag (C) to	logic zero				

$\mathbf{RET} - \mathbf{Return}$

RET

Operation: $PC \leftarrow @SP$

 $SP \leftarrow SP + 2$

The RET instruction is normally used to return to the previously executed procedure at the end of the procedure entered by a CALL instruction. The contents of the location addressed by the stack pointer are popped into the program counter. The next statement to be executed is the one that is addressed by the new program counter value.

Flags: No flags are affected.

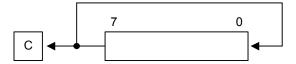
Format:

		Bytes	Cycles	Opcode (Hex)
	орс	1	10	AF
Example:	Given: SP = 00FCH, (SP) = 101AH, and PC	= 1234:		
	RET \rightarrow PC = 101AH, SP = 00FEH			

The RET instruction pops the contents of the stack pointer location 00FCH (10H) into the high byte of the program counter. The stack pointer then pops the value in the location 00FEH (1AH) into the PC's low byte and the instruction at the location 101AH is executed. The stack pointer now points to the memory location 00FEH.

dst

RL — Rotate Left


RL

Operation: C

 $C \leftarrow dst (7)$ $dst (0) \leftarrow dst (7)$

dst (n + 1) \leftarrow dst (n), n = 0–6

The contents of the destination operand are rotated left one bit position. The initial value of bit 7 is moved to the bit zero (LSB) position and also replaces the carry flag, as shown in the figure below.

Flags:

C: Set if the bit rotated from the most significant bit position (bit 7) was "1".

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

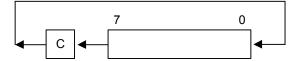
Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
opc dst	2	4	90	R
	_	4	91	IR

Examples: Given: Register 00H = 0AAH, register 01H = 02H and register 02H = 17H:

RL	00H	\rightarrow	Register 00H = 55H, C = "1"
RL	@01H	\rightarrow	Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if the general register 00H contains the value 0AAH (10101010B), the statement "RL 00H" rotates the 0AAH value left one bit position, leaving the new value 55H (01010101B) and setting the carry (C) and the overflow (V) flags.


RLC — Rotate Left through Carry

RLC dst

Operation:

dst (0) \leftarrow C C \leftarrow dst (7) dst (n + 1) \leftarrow dst (n), n = 0–6

The contents of the destination operand with the carry flag are rotated left one bit position. The initial value of bit 7 replaces the carry flag (C), and the initial value of the carry flag replaces bit zero.

Flags:

- C: Set if the bit rotated from the most significant bit position (bit 7) was "1".
- **Z:** Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the rotation; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
dst	2	4	10	R
		4	11	IR
	dst		dst 2 4	dst 2 4 10

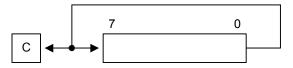
Examples: Given: Register 00H = 0AAH, register 01H = 02H, and register 02H = 17H, C = "0":

RLC	00H	\rightarrow	Register 00H = 54H, C = "1"
RLC	@01H	\rightarrow	Register 01H = 02H, register 02H = 2EH, C = "0"

In the first example, if the general register 00H has the value 0AAH (10101010B), the statement "RLC 00H" rotates 0AAH one bit position to the left. The initial value of bit 7 sets the carry flag and the initial value of the C flag replaces bit zero of the register 00H, leaving the value 55H (01010101B). The MSB of the register 00H resets the carry flag to "1" and sets the overflow flag.

RR — Rotate Right

dst


RR

Operation:

 $\begin{array}{l} \mathsf{C} \ \leftarrow \ \mathsf{dst} \ (\mathsf{0}) \\ \mathsf{dst} \ (\mathsf{7}) \ \leftarrow \ \mathsf{dst} \ (\mathsf{0}) \end{array}$

 $dst(n) \leftarrow dst(n + 1), n = 0-6$

The contents of the destination operand are rotated right one bit position. The initial value of bit zero (LSB) is moved to bit 7 (MSB) and also replaces the carry flag (C).

Flags:

- C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the rotation; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

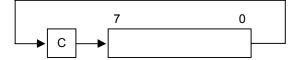
		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	E0	R
			4	E1	IR

Examples: Given: Register 00H = 31H, register 01H = 02H, and register 02H = 17H:

RR	00H	\rightarrow	Register 00H = 98H, C = "1"
RR	@01H	\rightarrow	Register 01H = 02H, register 02H = 8BH, C = "1"

In the first example, if the general register 00H contains the value 31H (00110001B), the statement "RR 00H" rotates this value one bit position to the right. The initial value of bit zero is moved to bit 7, leaving the new value 98H (10011000B) in the destination register. The initial bit zero also resets the C flag to "1" and the sign flag and the overflow flag are also set to "1".

RRC — Rotate Right through Carry


RRC dst

Operation: d

dst (7) \leftarrow C C \leftarrow dst (0)

dst (n) \leftarrow dst (n + 1), n = 0-6

The contents of the destination operand and the carry flag are rotated right one bit position. The initial value of bit zero (LSB) replaces the carry flag, and the initial value of the carry flag replaces bit 7 (MSB).

Flags:

- C: Set if the bit rotated from the least significant bit position (bit zero) was "1".
- **Z:** Set if the result is "0" cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the sign of the destination is changed during the rotation; cleared otherwise.
- D: Unaffected.
- H: Unaffected.

Format:

		Ву	tes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst		2	4	C0	R
				4	C1	IR
				•	•	

Examples: Given: Register 00H = 55H, register 01H = 02H, register 02H = 17H, and C = "0":

RRC	00H	\rightarrow	Register 00H = 2AH, C = "1"
RRC	@01H	\rightarrow	Register 01H = 02H, register 02H = 0BH, C = "1"

In the first example, if the general register 00H contains the value 55H (01010101B), the statement "RRC 00H" rotates this value one bit position to the right. The initial value of bit zero ("1") replaces the carry flag and the initial value of the C flag ("1") replaces bit 7. This leaves the new value 2AH (00101010B) in the destination register 00H. The sign flag and the overflow flag are both cleared to "0".

SB0 — Select Bank 0

SB0						
Operation:	BANK \leftarrow 0					
	The SB0 instruction clears the bank address selecting the bank 0 register addressing in t	•	•	· · · ·	gic zero,	
Flags:	No flags are affected.					
Format:						
		Bytes	Cycles	Opcode (Hex)		
	орс	1	4	4F		
Example:	The statement SB0 clears FLAGS.0 to "0", selecting the bank 0 register addressing.					

SB1 — Select Bank 1

SB1

Operation:	BANK ~ 1					
	The SB1 instruction sets the bank address flag in the FLAGS register (FLAGS.0) to logic one, selecting the bank 1 register addressing in the set 1 area of the register file.					
	NOTE: Bank 1 is not implemented in some KS88-series microcontrollers.					
Flags:	No flags are affected.					
Format:						
		Bytes	Cycles	Opcode (Hex)		
	орс	1	4	5F		

Example: The statement **SB1** sets FLAGS.0 to "1", selecting the bank 1 register addressing (if bank 1 is implemented in the microcontroller's internla register file).

SBC — Subtract with Carry

SBC dst,src

Operation: dst \leftarrow dst - src - c

The source operand, along with the current value of the carry flag, is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's-complement of the source operand to the destination operand. In multiple precision arithmetic, this instruction permits the carry ("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of high-order operands.

Flags:

C: Set if a borrow occurred (src > dst); cleared otherwise.

- Z: Set if the result is "0"; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the sign of the result is the same as the sign of the source; cleared otherwise.
- **D:** Always set to "1".
- **H:** Cleared if there is a carry from the most significant bit of the low-order four bits of the result; set otherwise, indicating a "borrow"

Format:

				Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
0	рс	dst src		2	4	32	r	r
					6	33	r	lr
0	рс	src	dst	3	6	34	R	R
					6	35	R	IR
0	рс	dst	src	3	6	36	R	IM

Examples: Given: R1 = 10H, R2 = 03H, C = "1", register 01H = 20H, register 02H = 03H, and register 03H = 0AH:

SBC	R1,R2	\rightarrow	R1 = 0CH, R2 = 03H
SBC	R1,@R2	\rightarrow	R1 = 05H, R2 = 03H, register 03H = 0AH
SBC	01H,02H	\rightarrow	Register 01H = 1CH, register 02H = 03H
SBC	01H,@02H	\rightarrow	Register 01H = 15H, register 02H = 03H,
			register 03H = 0AH
SBC	01H,#8AH	\rightarrow	Register 01H = 95H; C, S, and V = "1"

In the first example, if the working register R1 contains the value 10H and the register R2 the value 03H, the statement "SBC R1,R2" subtracts the source value (03H) and the C flag value ("1") from the destination (10H) and then stores the result (0CH) in the register R1.

SAMSUNG ELECTRONICS

SCF — Set Carry Flag

SCF

Operation:	C ← 1
	The carry flag (C) is set to logic one, regardless of its previous value.
Flags: C:	Set to "1". No other flags are affected.

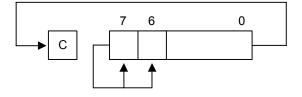
Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4	DF

Example: The statement **SCF** sets the carry flag to "1".

SRA — Shift Right Arithmetic

dst


SRA

Operation:

dst (7) \leftarrow dst (7) C \leftarrow dst (0)

dst (n) \leftarrow dst (n + 1), n = 0-6

An arithmetic shift-right of one bit position is performed on the destination operand. Bit zero (the LSB) replaces the carry flag. The value of bit 7 (the sign bit) is unchanged and is shifted into the bit position 6.

Flags:

- C: Set if the bit shifted from the LSB position (bit zero) was "1".
- Z: Set if the result is "0"; cleared otherwise.
- **S:** Set if the result is negative; cleared otherwise.
- V: Always cleared to "0".
- D: Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	D0	R
			4	D1	IR

Examples:	Given: Register 00H = 9AH, register 02H = 03H, register 03H = 0BCH, and C = "1":	

SRA	00H	\rightarrow	Register 00H = 0CD, C = "0"
SRA	@02H	\rightarrow	Register 02H = 03H, register 03H = 0DEH, C = "0"

In the first example, if the general register 00H contains the value 9AH (10011010B), the statement "SRA 00H" shifts the bit values in the register 00H right one bit position. Bit zero ("0") clears the C flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged). This leaves the value 0CDH (11001101B) in the destination register 00H.

SRP/SRP0/SRP1 — Set Register Pointer

SRP	src				
SRP0 SRP1	src src				
Operation:	If src (1) = 1 and src (0) = 0 then: If src (1) = 0 and src (0) = 1 then: If src (1) = 0 and src (0) = 0 then:	RP1 (3–7) ←	src (3–7) src (4–7), 0		
	The source data bits one and zero (pointers, RP0 and RP1. Bits 3–7 of pointers are selected. RP0.3 is then	the selected register	r pointer are	written unless	both register
Flags:	No flags are affected.				
Format:					
		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>src</u>
	opc src	2	4	31	IM
Examples:	The statement SRP #40H sets the r register pointer 1 (RP1) at the locati	.	P0) at the loc	ation 0D6H to	o 40H and the
	The statement "SRP0 #50H" would RP1 to 68H.	set RP0 to 50H, an	d the stateme	ent "SRP1 #6	8H" would set

NOTE: Before execute the STOP instruction, You must set the STPCON register as "10100101b". Otherwise the STOP instruction will not execute.

STOP — Stop Operation

STOP

Operation: The STOP instruction stops the both the CPU clock and system clock and causes the microcontroller to enter Stop mode. During Stop mode, the contents of on-chip CPU registers, peripheral registers, and I/O port control and data registers are retained. Stop mode can be released by an external reset operation or by external interrupts. For the reset operation, the RESET pin must be held to Low level until the required oscillation stabilization interval has elapsed.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	
орс	1	4	7F	-	_

Example: The statement **STOP** halts all microcontroller operations.

SUB — Subtract

SUB dst,src

Operation: dst \leftarrow dst - src

The source operand is subtracted from the destination operand and the result is stored in the destination. The contents of the source are unaffected. Subtraction is performed by adding the two's complement of the source operand to the destination operand.

Flags:

- C: Set if a "borrow" occurred; cleared otherwise.
- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result is negative; cleared otherwise.
- V: Set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the sign of the result is of the same as the sign of the source operand; cleared otherwise.
- D: Always set to "1".
- **H:** Cleared if there is a carry from the most significant bit of the low-order four bits of the result; set otherwise indicating a "borrow".

Format:

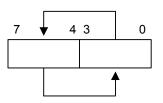
			Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	4	22	r	r
				6	23	r	lr
орс	src	dst	3	6	24	R	R
				6	25	R	IR
орс	dst	src	3	6	26	R	IM

Examples:

oles:	Given: R1 = 12H,	R2 = 03H, register 01H	= 21H, register 02H	= 03H, register 03H $=$ 0AH:
-------	------------------	------------------------	---------------------	------------------------------

SUB	R1,R2	\rightarrow	R1 = 0FH, R2 = 03H
SUB	R1,@R2	\rightarrow	R1 = 08H, R2 = 03H
SUB	01H,02H	\rightarrow	Register 01H = 1EH, register 02H = 03H
SUB	01H,@02H	\rightarrow	Register 01H = 17H, register 02H = 03H
SUB	01H,#90H	\rightarrow	Register 01H = 91H; C, S, and V = "1"
SUB	01H,#65H	\rightarrow	Register 01H = 0BCH; C and S = "1", V = "0"

In the first example, if he working register R1 contains the value 12H and if the register R2 contains the value 03H, the statement "SUB R1,R2" subtracts the source value (03H) from the destination value (12H) and stores the result (0FH) in the destination register R1.


SWAP — Swap Nibbles

SWAP dst

Operation: dst $(0-3) \leftrightarrow$ dst (4-7)

The contents of the lower four bits and the upper four bits of the destination operand are

swapped.

Flags:

- C: Undefined.
- **Z:** Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Undefined.
- **D:** Unaffected.
- H: Unaffected.

Format:

		Bytes	Cycles	Opcode (Hex)	Addr Mode <u>dst</u>
орс	dst	2	4	F0	R
			4	F1	IR

Examples:	Given:	Register 00H =	3EH, register 02H =	03H, and register 03H = 0A4H:
-----------	--------	----------------	---------------------	-------------------------------

SWAP	00H	\rightarrow	Register 00H =	0E3H
SWAP	@02H	\rightarrow	Register 02H =	03H, register $03H = 4AH$

In the first example, if the general register 00H contains the value 3EH (00111110B), the statement "SWAP 00H" swaps the lower and the upper four bits (nibbles) in the 00H register, leaving the value 0E3H (11100011B).

TCM — Test Complement under Mask

ТСМ	dst,src
-----	---------

Operation: (NOT dst) AND src

This instruction tests selected bits in the destination operand for a logic one value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask). The TCM statement complements the destination operand, which is then ANDed with the source mask. The zero (Z) flag can then be checked to determine the result. The destination and the source operands are unaffected.

Flags: C: Unaffected.

Z: Set if the result is "0"; cleared otherwise.

S: Set if the result bit 7 is set; cleared otherwise.

- V: Always cleared to "0".
- D: Unaffected.
- H: Unaffected.

Format:

			By	es C	cles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
орс	dst src		2	2	4	62	r	r
					6	63	r	lr
орс	src	dst	3	5	6	64	R	R
					6	65	R	IR
орс	dst	src	3	5	6	66	R	IM

Examples:

Given: R0 = 0C7H, R1 = 02H, R2 = 12H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

ТСМ	R0,R1	\rightarrow	R0 = 0C7H, R1 = 02H, Z = "1"
ТСМ	R0,@R1	\rightarrow	R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"
TCM	00H,01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, Z = "1"
ТСМ	00H,@01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, register 02H = 23H, Z = "1"
			1 = 2311, Z = 1
TCM	00H,#34	\rightarrow	Register 00H = $2BH, Z = "0"$

In the first example, if the working register R0 contains the value 0C7H (11000111B) and the register R1 the value 02H (0000010B), the statement "TCM R0,R1" tests bit one in the destination register for a "1" value. Because the mask value corresponds to the test bit, the Z flag is set to logic one and can be tested to determine the result of the TCM operation.

TM — Test under Mask

TM dst,src

Operation: dst AND src

This instruction tests selected bits in the destination operand for a logic zero value. The bits to be tested are specified by setting a "1" bit in the corresponding position of the source operand (mask), which is ANDed with the destination operand. The zero (Z) flag can then be checked to determine the result. The destination and the source operands are unaffected.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Always reset to "0".
- D: Unaffected.
- H: Unaffected.

Format:

			Byte	es Cycle	es Opcod (Hex)		lr Mode <u>src</u>
орс	dst src		2	4	72	r	r
				6	73	r	lr
орс	src	dst	3	6	74	R	R
				6	75	R	IR
орс	dst	src	3	6	76	R	IM

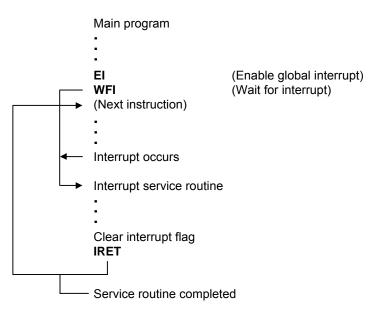
Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

ТМ	R0,R1	\rightarrow	R0 = 0C7H, R1 = 02H, Z = "0"
ТМ	R0,@R1	\rightarrow	R0 = 0C7H, R1 = 02H, register 02H = 23H, Z = "0"
ТМ	00H,01H	\rightarrow	Register 00H = 2BH, register 01H = 02H, Z = "0"
ТМ	00H,@01H	\rightarrow	Register 00H = 2BH, register 01H = 02H,
	_		register 02H = 23H, Z = "0"
ТМ	00H,#54H	\rightarrow	Register 00H = 2BH, Z = "1"

In the first example, if the working register R0 contains the value 0C7H (11000111B) and the register R1 the value 02H (00000010B), the statement "TM R0,R1" tests bit one in the destination register for a "0" value. Because the mask value does not match the test bit, the Z flag is cleared to logic zero and can be tested to determine the result of the TM operation.

WFI — Wait for Interrupt

WFI


Operation: The CPU is effectively halted before an interrupt occurs, except that DMA transfers can still take place during this wait state. The WFI status can be released by an internal interrupt, including a fast interrupt.

Flags: No flags are affected.

Format:

	Bytes	Cycles	Opcode (Hex)
орс	1	4n	3F
		(n = 1, 2, 3,)

Example: The following sample program structure shows the sequence of operations that follow a "WFI" statement:

XOR - Logical Exclusive OR

XOR dst,src

Operation: dst ← dst XOR src

The source operand is logically exclusive-ORed with the destination operand and the result is stored in the destination. The exclusive-OR operation results in a "1" bit being stored whenever the corresponding bits in the operands are different. Otherwise, a "0" bit is stored.

Flags: C: Unaffected.

- Z: Set if the result is "0"; cleared otherwise.
- S: Set if the result bit 7 is set; cleared otherwise.
- V: Always reset to "0".
- D: Unaffected.
- H: Unaffected.

Format:

					Bytes	Cycles	Opcode (Hex)	Addr <u>dst</u>	Mode <u>src</u>
	орс	dst src			2	4	B2	r	r
						6	B3	r	lr
_				T					
	орс	src	dst		3	6	B4	R	R
						6	B5	R	IR
		dat		I	2	0	DO	-	18.4
	орс	dst	src		3	6	B6	R	IM

Examples: Given: R0 = 0C7H, R1 = 02H, R2 = 18H, register 00H = 2BH, register 01H = 02H, and register 02H = 23H:

XOR	R0,R1	\rightarrow	R0 = 0C5H, R1 = 02H
XOR	R0,@R1	\rightarrow	R0 = 0E4H, R1 = 02H, register 02H = 23H
XOR	00H,01H	\rightarrow	Register 00H = 29H, register 01H = 02H
XOR	00H,@01H	\rightarrow	Register 00H = 08H, register 01H = 02H,
			register 02H = 23H
XOR	00H,#54H	\rightarrow	Register 00H = 7FH

In the first example, if the working register R0 contains the value 0C7H and if the register R1 contains the value 02H, the statement "XOR R0,R1" logically exclusive-ORs the R1 value with the R0 value and stores the result (0C5H) in the destination register R0.

CLOCK CIRCUIT

OVERVIEW

The clock frequency generated for the S3C84MB/F84MB by an external crystal can range from 1 MHz to 16 MHz. The maximum CPU clock frequency is 16 MHz. The X_{IN} and X_{OUT} pins connect the external oscillator or clock source to the on-chip clock circuit.

SYSTEM CLOCK CIRCUIT

The system clock circuit has the following components:

- External crystal or ceramic resonator oscillation source (or an external clock source)
- Oscillator stop and wake-up functions
- Programmable frequency divider for the CPU clock (f_{XX} divided by 1, 2, 8, or 16)
- System clock control register, CLKCON

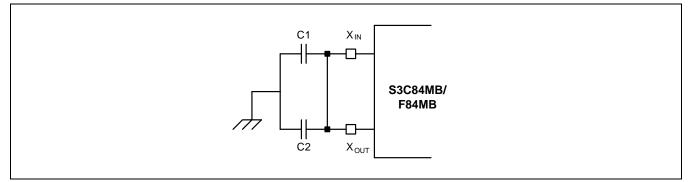


Figure 7-1. Main Oscillator Circuit (Crystal or Ceramic Oscillator)

CLOCK STATUS DURING POWER-DOWN MODES

The two power-down modes, Stop mode and Idle mode, affect the system clock as follows:

- In Stop mode, the main oscillator is halted. Stop mode is released, and the oscillator started, by a reset operation or an external interrupt (with RC delay noise filter), and can be released by internal interrupt too when the sub-system oscillator is running and watch timer is operating with sub-system clock.
- In Idle mode, the internal clock signal is gated to the CPU, but not to interrupt structure, timers and timer/ counters. Idle mode is released by a reset or by an external or internal interrupt.

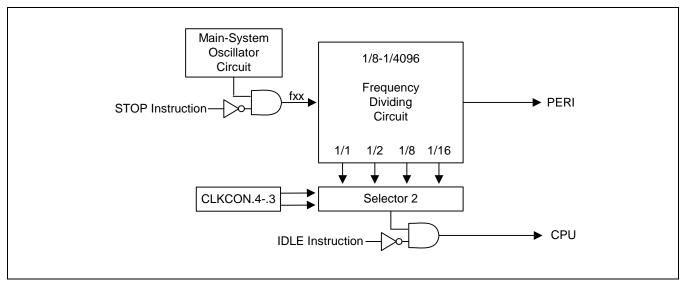


Figure 7-2. System Clock Circuit Diagram

SYSTEM CLOCK CONTROL REGISTER (CLKCON)

The system clock control register, CLKCON, is located in the bank 0 of set 1, address D4H. It is read/write addressable and has the following functions:

- Oscillator frequency divide-by value

After the main oscillator is activated, and the $f_{XX}/16$ (the slowest clock speed) is selected as the CPU clock. If necessary, you can then increase the CPU clock speed to $f_{XX}/8$, $f_{XX}/2$, or $f_{XX}/1$.

When the divided clock is selected to system clock, be careful using interrupt. If the interrupt interval is short than interrupt service routine processing time, interrupt request cannot be guaranteed.

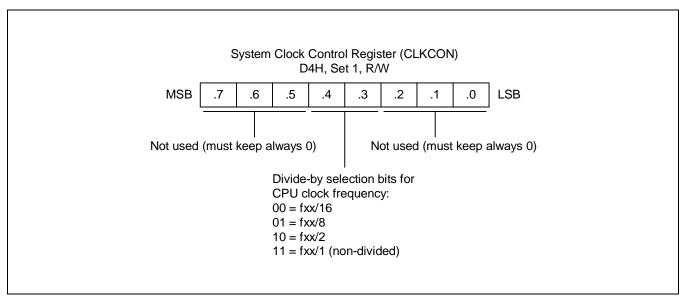


Figure 7-3. System Clock Control Register (CLKCON)

8 RESET and POWER-DOWN

SYSTEM RESET

OVERVIEW

During a power-on reset, the voltage at V_{DD} goes to High level and the RESETB pin is forced to Low level. The RESET signal is input through a Schmitt trigger circuit where it is then synchronized with the CPU clock. This procedure brings S3C84MB/F84MB into a known operating status.

To allow time for internal CPU clock oscillation to stabilize, the RESETB pin must be held to Low level for a minimum time interval after the power supply comes within tolerance. The minimum required oscillation stabilization time for a reset operation is 1 millisecond.

Whenever a reset occurs during normal operation (that is, when both V_{DD} and RESETB are High level), the RESETB pin is forced Low and the reset operation starts. All system and peripheral control registers are then reset to their default hardware values.

In summary, the following sequence of events occurs during a reset operation:

- Interrupt is disabled.
- The watchdog function (basic timer) is enabled.
- Ports 0-8 are set to input mode(Port 6 is set to open-drain output).
- Peripheral control and data registers are disabled and reset to their default hardware values.
- The program counter (PC) is loaded with the program reset address in the ROM, 0100H.
- When the programmed oscillation stabilization time interval has elapsed, the instruction stored in ROM location 0100H (and 0101H) is fetched and executed.

NORMAL MODE RESET OPERATION

In normal (masked ROM) mode, the Test pin is tied to V_{SS}. A reset enables access to the 64-Kbyte on-chip ROM.

NOTE

To program the duration of the oscillation stabilization interval, you make the appropriate settings to the basic timer control register, BTCON, *before* entering Stop mode. Also, if you do not want to use the basic timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can disable it by writing '1010B' to the upper nibble of BTCON.

HARDWARE RESET VALUES

Table 8-1, 8-2, 8-3 list the reset values for CPU and system registers, peripheral control registers, and peripheral data registers following a reset operation. The following notation is used to represent reset values:

- A "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.
- An "x" means that the bit value is undefined after a reset.
- A dash ("-") means that the bit is either not used or not mapped, but read 0 is the bit value.

	Marana	Add	ress		В	it Val	ues A	After	RESE	т	
Register Name	Mnemonic	Dec	Hex	7	6	5	4	3	2	1	0
Timer B control register	TBCON	208	D0H	0	0	0	0	0	0	0	0
Timer B data register (high byte)	TBDATAH	209	D1H	1	1	1	1	1	1	1	1
Timer B data register (low byte)	TBDATAL	210	D2H	1	1	1	1	1	1	1	1
Basic timer control register	BTCON	211	D3H	0	0	0	0	0	0	0	0
Clock Control register	CLKCON	212	D4H	0	0	0	0	0	0	0	0
System flags register	FLAGS	213	D5H	х	х	х	х	х	х	0	0
Register pointer 0	RP0	214	D6H	1	1	0	0	0	_	_	_
Register pointer 1	RP1	215	D7H	1	1	0	0	1	_	_	_
Stack pointer (high byte)	SPH	216	D8H	х	х	х	х	х	х	х	х
Stack pointer (low byte)	SPL	217	D9H	х	х	х	х	х	х	х	х
Instruction pointer (high byte)	IPH	218	DAH	х	х	х	х	х	х	х	х
Instruction pointer (low byte)	IPL	219	DBH	х	х	х	х	х	х	х	х
Interrupt request register	IRQ	220	DCH	0	0	0	0	0	0	0	0
Interrupt mask register	IMR	221	DDH	х	х	х	х	х	х	х	х
System mode register	SYM	222	DEH	0	_	_	х	х	х	0	0
Register page pointer	PP	223	DFH	0	0	0	0	0	0	0	0

Table 8-1. S3C84MB/F84MB Set 1, Bank 0 Register Values after RESET

_		Address		Bit Values After Reset								
Register Name	Mnemonic	Dec	Hex	7	6	5	4	3	2	1	0	
Port 0 data register	P0	224	E0H	0	0	0	0	0	0	0	0	
Port 1 data register	P1	225	E1H	0	0	0	0	0	0	0	0	
Port 2 data register	P2	226	E2H	0	0	0	0	0	0	0	0	
Port 3 data register	P3	227	E3H	0	0	0	0	0	0	0	0	
Port 4 data register	P4	228	E4H	0	0	0	0	0	0	0	0	
Port 5 data register	P5	229	E5H	0	0	0	0	0	0	0	0	
Port 6 data register	P6	230	E6H	0	0	0	0	0	0	0	0	
Port 7 data register	P7	231	E7H	0	0	0	0	0	0	0	0	
Port 8 data register	P8	232	E8H	_	_	0	0	0	0	0	0	
Timer A/1 interrupt pending register	TINTPND	233	E9H	_	_	0	0	0	0	0	0	
Timer A control register	TACON	234	EAH	0	0	0	0	0	0	0	-	
Timer A data register	TADATA	235	EBH	1	1	1	1	1	1	1	1	
Timer A counter register	TACNT	236	ECH	0	0	0	0	0	0	0	0	
Port 8 control register (high byte)	P8CONH	237	EDH	_	_	_	_	0	0	0	0	
Port 8 control register (low byte)	P8CONL	238	EEH	0	0	0	0	0	0	0	0	
Port 8 interrupt/pending register	P8INTPND	239	EFH	_	_	0	0	-	_	0	0	
Port 0 control register	P0CON	240	F0H	0	0	0	0	0	0	0	0	
Port 1 control register	P1CON	241	F1H	0	0	0	0	0	0	0	0	
Port 2 control register (high byte)	P2CONH	242	F2H	0	0	0	0	0	0	0	0	
Port 2 control register (low byte)	P2CONL	243	F3H	0	0	0	0	0	0	0	0	
Port 3 control register (high byte)	P3CONH	244	F4H	0	0	0	0	0	0	0	0	
Port 3 control register (low byte)	P3CONL	245	F5H	0	0	0	0	0	0	0	0	
Port 4 control register (high byte)	P4CONH	246	F6H	0	0	0	0	0	0	0	0	
Port 4 control register (low byte)	P4CONL	247	F7H	0	0	0	0	0	0	0	0	
Port 5 control register (high byte)	P5CONH	248	F8H	0	0	0	0	0	0	0	0	
Port 5 control register (low byte)	P5CONL	249	F9H	0	0	0	0	0	0	0	0	
Port 4 interrupt control register	P4INT	250	FAH	0	0	0	0	0	0	0	0	
Port 4 interrupt/pending register	P4INTPND	251	FBH	0	0	0	0	0	0	0	0	
	Location FCH	is facto	ory use o	nly								
Basic timer counter register	BTCNT	253	FDH	0	0	0	0	0	0	0	0	
	Location FE	H is no	t mappe	b								
Interrupt priority register	IPR	255	FFH	х	х	х	х	х	х	х	х	

Table 8-2. S3C84MB/F84MB Set 1, Bank 0 Register Values after RESET

			ress	Bit Values After Reset								
Register Name	Mnemonic	Dec	Hex	7	6	5	4	3	2	1	0	
SIO data register	SIODATA	224 E0H		0	0	0	- 0	0	0	0	0	
SIO Control register	SIOCON	225	E1H	0	0	0	0	0	0	0	0	
UARTO data register	UDATA0	226	E2H	1	1	1	1	1	1	1	1	
UART0 control register	UARTCON0	227	E3H	0	0	0	0	0	0	0	0	
UART0 baud rate data register	BRDATA0	228	E4H	1	1	1	1	1	1	1	1	
UART0,1 pending register	UARTPND	229	E5H	-	·	0	0	0	0	0	0	
Timer 1(0) data register (high byte)	T1DATAH0	230	E6H	1	1	1	1	1	1	1	1	
Timer 1(0) data register (low byte)	T1DATAL0	230	E7H	1	1	1	1	1	1	1	1	
Timer 1(1) data register (low byte)	T1DATAL0	231	E8H	1	1	1	1	1	1	1	1	
Timer 1(1) data register (low byte)	T1DATAH1	232	E9H	1	1	1	1	1	1	1	1	
Timer 1(0) control register	T1CON0	233	EAH	0	0	0	0	0	0	0	0	
Timer 1(1) control register	T1CON0	234	EBH	0	0	0	0	0	0	0	0	
Timer 1(0) counter register(high byte)	T1CNTH0	235	ЕСН	0	0	0	0	0	0	0	0	
	T1CNTL0	230	EDH	0	0	0	0	0	0	0	0	
Timer 1(0) counter register(low byte)	T1CNTL0		EEH		0	0	0		0	-	0	
Timer 1(1) counter register(high byte)		238		0	0	0	0	0	0	0	0	
Timer 1(1) counter register(low byte)	T1CNTL1 TCDATA0	239	EFH F0H	1	1	1	1	1	1	1	1	
Timer C(0) data register		240										
Timer C(1) data register		241	F1H	1	1	1	1	1	1	1	1	
Timer C(0) control register	TCCON0	242	F2H	0	0	0	0	0	0	0	0	
Timer C(1) control register	TCCON1	243	F3H	0	0	0	0	0	0	0	0	
SIO prescaler control register	SIOPS	244	F4H	0	0	0	0	0	0	0	0	
Port 7 control register	P7CON	245	F5H	0	0	0	0	0	0	0	0	
A/D and a sector base inter-	Location F6			1	0	0	0	0	0	0	•	
A/D converter control register	ADCON	247	F7H	0	0	0	0	0	0	0	0	
A/D converter data register(high byte)	ADDATAH	248	F8H	0	0	0	0	0	0	0	0	
A/D converter data register(low byte)	ADDATAL	249	F9H	0	0	0	0	0	0	0	0	
UART1 data register	UDATA1	250	FAH	1	1	1	1	1	1	1	1	
UART1 control register	UARTCON1	251	FBH	0	0	0	0	0	0	0	0	
UART1 baud rate data register	BRDATA1	252	FCH	1	1	1	1	1	1	1	1	
Flash memory control register	FMCON	253	FDH	0	0	0	0	0	0	0	0	
Pattern generation control register	PGCON	254	FEH	-	-	-	-	0	0	0	0	
Pattern generation data register	PGDATA	255	FFH	0	0	0	0	0	0	0	0	

Table 8-3. S3C84MB/F84MB Set 1, Bank 1 Register Values after RESET

		۸d	droce		Address Bit Values After Reset											
Register Name	Mnemonic	Dec	Hex	7	6	5	4	3		1	0					
			-	-	-		-		2	1	•					
SIO1 control register	SIOCON1	0	00H	0	0	0	0	0	0	0	0					
SIO1 prescaler control register	SIOPS1	1	01H	0	0	0	0	0	0	0	0					
SIO1 data register	SIODATA1	2	02H	0	0	0	0	0	0	0	0					
UART2 control register	UARTCON2	3	03H	0	0	0	0	0	0	0	0					
UART2 baud rate data register	BRDATA2	4	04H	1	1	1	1	1	1	1	1					
UART2 data register	UDATA2	5	05H	1	1	1	1	1	1	1	1					
UART 0.1.2 parity register	UARTPRT	6	06H	-	0	0	0	Ι	0	0	0					
PWM control register	PWMCON	7	07H	-	0	0	0	Ι	_	_	0					
PWM0 data register (main byte)	PWMDAT0	8	08H	1	1	1	1	1	1	1	1					
PWM0 data register (extension byte)	PWM0EX	9	09H	0	0	0	0	0	0	-	-					
PWM1 data register (main byte)	PWMDAT1	10	0AH	1	1	1	1	1	1	1	1					
PWM1 data register (extension byte)	PWM1EX	11	0BH	0	0	0	0	0	0	_	-					
PWM2 Data register	PWMDAT2	12	0CH	1	1	1	1	1	1	1	1					
PWM3 Data register	PWMDAT3	13	0DH	1	1	1	1	1	1	1	1					
PORT1 Extension Control register	P1CONEX	14	0EH	0	0	0	0	Ι	_	0	0					
PORT6 Control register	P6CON	15	0FH	-	0	0	0	0	0	0	0					
Stop Mode Control Register	STOPCON	16	10H	0	0	0	0	0	0	0	0					
Flash memory user enable register	FMUSR	17	11H	0	0	0	0	0	0	0	0					
Flash memory sector register(High byte)	FMSECH	18	12H	0	0	0	0	0	0	0	0					
Flash memory sector register(Low byte)	FMSECL	19	13H	0	0	0	0	0	0	0	0					

Table 8-4. S3C84MB/F84MB Page 8 Register Values after RESET

POWER-DOWN MODES

STOP MODE

Stop mode is invoked by the instruction STOP (opcode 7FH). In Stop mode, the operation of the CPU and all peripherals is halted. That is, the on-chip main oscillator stops and the supply current is reduced to less than 200 μ A. All system functions stop when the clock "freezes," but data stored in the internal register file is retained. Stop mode can be released in one of two ways: by a reset or by interrupts.

NOTE

Do not use stop mode if you are using an external clock source because X_{IN} input must be restricted internally to V_{SS} to reduce current leakage.

Using RESET to Release Stop Mode

Stop mode is released when the RESET signal is released and returns to high level: all system and peripheral control registers are reset to their default hardware values and the contents of all data registers are retained. A reset operation automatically selects a slow clock (1/16) because CLKCON.3 and CLKCON.4 are cleared to '00B'. After the programmed oscillation stabilization interval has elapsed, the CPU starts the system initialization routine by fetching the program instruction stored in ROM location 0100H (and 0101H).

Using an External Interrupt to Release Stop Mode

External interrupts with an RC-delay noise filter circuit can be used to release Stop mode. Which interrupt you can use to release Stop mode in a given situation depends on the microcontroller's current internal operating mode. The external interrupts in the S3F84MBJ interrupt structure that can be used to release Stop mode are:

External interrupts P4.0/INT0-P4.7/INT7, P8.4/INT8 and P8.5/INT9

Please note the following conditions for Stop mode release:

- If you release Stop mode using an external interrupt, the current values in system and peripheral control
 registers are unchanged.
- If you use an external interrupt for Stop mode release, you can also program the duration of the oscillation stabilization interval. To do this, you must make the appropriate control and clock settings *before* entering Stop mode.
- When the Stop mode is released by external interrupt, the CLKCON.4 and CLKCON.3 bit-pair setting remains unchanged and the currently selected clock value is used.
- The external interrupt is serviced when the Stop mode release occurs. Following the IRET from the service
 routine, the instruction immediately following the one that initiated Stop mode is executed.

Using an internal Interrupt to Release Stop Mode

Activate any enabled interrupt, causing stop mode to be released. Other things are same as using external interrupt.

IDLE MODE

Idle mode is invoked by the instruction IDLE (opcode 6FH). In idle mode, CPU operations are halted while some peripherals remain active. During idle mode, the internal clock signal is gated away from the CPU, but all peripherals timers remain active. Port pins retain the mode (input or output) they had at the time idle mode was entered.

There are two ways to release idle mode:

- 1. Execute a reset. All system and peripheral control registers are reset to their default values and the contents of all data registers are retained. The reset automatically selects the slow clock f_{XX} /16 because CLKCON.4 and CLKCON.3 are cleared to '00B'. If interrupts are masked, a reset is the only way to release idle mode.
- 2. Activate any enabled interrupt, causing idle mode to be released. When you use an interrupt to release idle mode, the CLKCON.4 and CLKCON.3 register values remain unchanged, and the currently selected clock value is used. The interrupt is then serviced. When the return-from-interrupt (IRET) occurs, the instruction immediately following the one that initiated idle mode is executed.

9 I/O PORTS

OVERVIEW

The S3C84MB/F84MB microcontroller has nine bit-programmable I/O ports, P0-P8. The port 8 are 6-bit ports and the others are 8-bit ports. This gives a total of 70 I/O pins. Each port can be flexibly configured to meet application design requirements. The CPU accesses ports by directly writing or reading port registers. No special I/O instructions are required.

Table 9-1 gives you a general overview of the S3C84MB/F84MB I/O port functions.

Port	Configuration Options
0	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P0.0-P0.7 can be used as the PG output port (PG0-PG7).
1	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P1.4~P1.7 can be used as PWM0 ~ PWM4 output and P1.0~P1.1 can be used as UART2 Tx, Rx
2	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P2.0~P2.7 can be used as I/O for TIMERA, TIMERB, SIO
3	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P3.0~P3.7 can be used as I/O for TIMERC0/C1, TIMER10/11
4	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. P4.0-P4.7 can alternately be used as inputs for external interrupts INT0-INT7, respectively (with noise filters and interrupt controller)
5	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. Alternately, P5.0~P5.3 can be used as I/O for serial port UART0, UART1, respectively.
6	N-channel, open-drain output only port. Alternately, P6.0~P6.6 can be used as ADC8~ADC14 input
7	General-purpose digital input ports. Alternatively used as analog input pins for A/D converter modules.
8	Bit programmable port; input or output mode selected by software; input or push-pull output. Software assignable pull-up. P8.4, P8.5 can alternately be used as inputs for external interrupts INT8, INT9, respectively (with noise filters and interrupt controller) P8.0~P8.2 can be used as I/O SIO1

Table 9-1. S3C84MB/F84MB Port Configuration Overview

PORT DATA REGISTERS

Table 9-2 gives you an overview of the register locations of all five S3C84MB/F84MB I/O port data registers. Data registers for ports 0, 1, 2, 3, 4, 5, 6, 7 and 8 have the general format shown in Table 9-2.

		-			
Register Name	Mnemonic	Decimal	Hex	Location	R/W
Port 0 data register	P0	224	E0H	Set 1, Bank 0	R/W
Port 1 data register	P1	225	E1H	Set 1, Bank 0	R/W
Port 2 data register	P2	226	E2H	Set 1, Bank 0	R/W
Port 3 data register	P3	227	E3H	Set 1, Bank 0	R/W
Port 4 data register	P4	228	E4H	Set 1, Bank 0	R/W
Port 5 data register	P5	229	E5H	Set 1, Bank 0	R/W
Port 6 data register	P6	230	E6H	Set 1, Bank 0	R/W
Port 7 data register	P7	231	E7H	Set 1, Bank 0	R/W
Port 8 data register	P8	232	E8H	Set 1, Bank 0	R/W

Table 9-2. Port Data Register Summary

PORT 0

Port 0 is an 8-bit I/O Port that you can use two ways:

- General-purpose I/O
- Alternative function: PGOUT7-PGOUT0

Port 0 is accessed directly by writing or reading the port 0 data register, P0 at location E0H in set 1, bank 0.

Port 0 Control Register (P0CON)

Port 0 pins are configured individually by bit-pair settings in one control registers located in set 1, bank 0: P0CON (F0H).

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 0 control registers must also be enabled in the associated peripheral module.

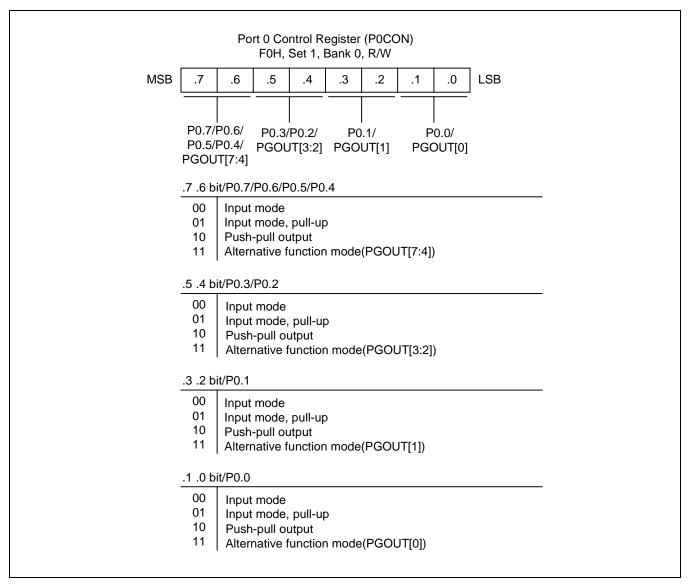


Figure 9-1. Port 0 Control Register (P0CON)

PORT 1

Port 1 is an 8-bit I/O Port that you can use two ways:

- General-purpose I/O
- Alternative function: PWM0~PWM3 output

Port 1 is accessed directly by writing or reading the port 1 data register, P1 at location E1H in set 1, bank 0.

Port 1 Control Register (P1CON)

Port 1 pins are configured individually by bit-pair settings in one control registers located in set 1, bank 0: P1CON (F1H).

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 1 control registers must also be enabled in the associated peripheral module.

Alternative function (PWM0~PWM3) can be controlled in P1CONEX(PORT1 Extension Control register).

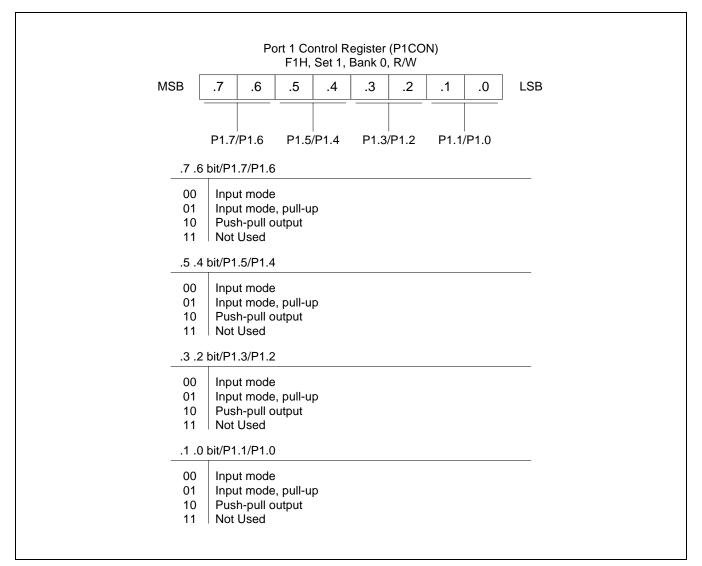
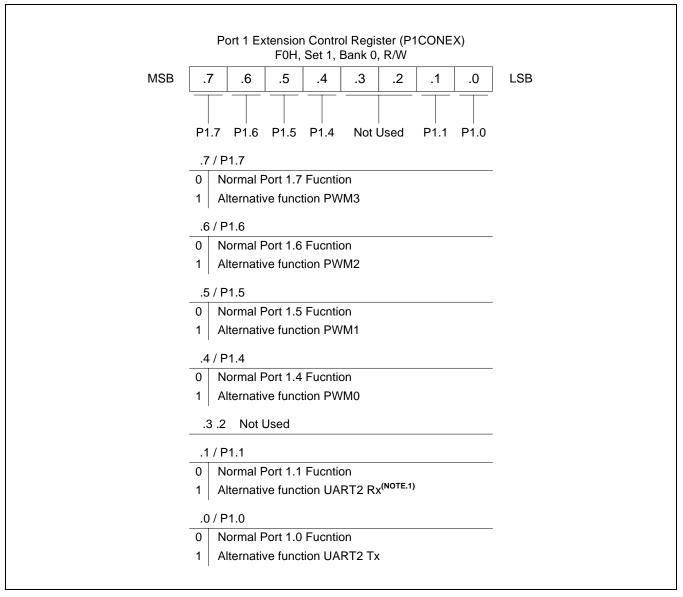



Figure 9-2. Port 1 Control Register (P1CON)

Figure 9-3. Port 1 Extension Control Register (P1CONEX)

NOTE: When the UART2 is operating in mode 0 (SIO) Rx input, P1CONEX.1 must be set to '0' and P1CON.0-1 must be set to input mode or input with pull-up mode('00' or '10'). In other operating modes(mode 0 Rx output, mode1, 2, 3), P1CONEX.0-1 must be set to '1' and P1CON.0-1 values are don't care.

PORT 2

Port 2 is an 8-bit I/O port with individually configurable pins. Port 2 pins are accessed directly by writing or reading the port 2 data register, P2 at location E2H in set 1, bank 0. P2.0–P2.7 can serve as inputs, outputs (push pull) or you can configure the following alternative functions:

- Low-byte pins (P2.0-P2.2): SCK0, SI0, SO0
- High-byte pins (P2.4-P2.7): TAOUT, TACAP, TACK, TBPWM

Port 2 Control Register (P2CONH, P2CONL)

Port 2 has two 8-bit control registers: P2CONH for P2.4–P2.7 and P2CONL for P2.0–P2.3. A reset clears the P2CONH and P2CONL registers to "00H", configuring all pins to input mode. You use control registers settings to select input or output mode (push-pull) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 2 control registers must also be enabled in the associated peripheral module.

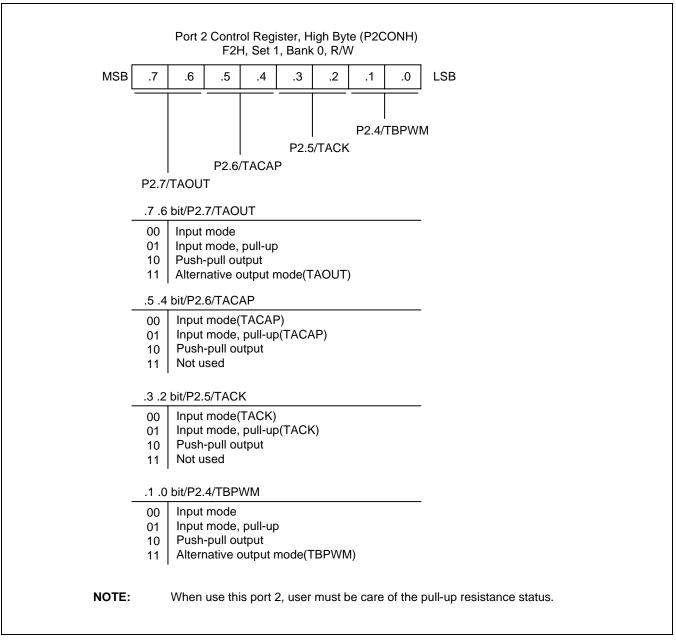


Figure 9-4. Port 2 High-Byte Control Register (P2CONH)

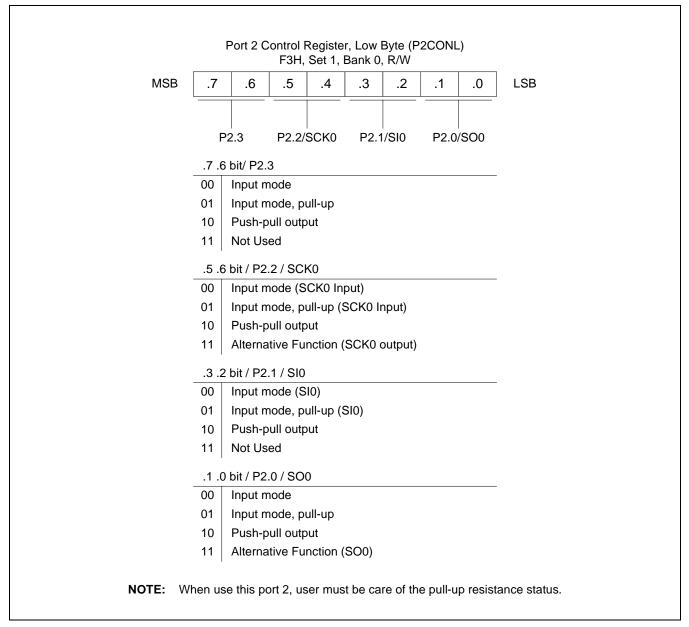


Figure 9-5. Port 2 Low-Byte Control Register (P2CONL)

PORT 3

Port 3 is an 8-bit I/O port that can be used for general-purpose I/O. The pins are accessed directly by writing or reading the port 3 data register, P3 at location E3H in set 1, bank 0. P3.7–P3.0 can serve as inputs, outputs (push pull) or you can configure the following alternative functions:

- Low-byte pins (P3.0-P3.3): T1CAP1, T1CAP0, T1CK1, T1CK0
- High-byte pins (P3.4-P3.7): TCOUT1, TCOUT0, T1OUT1, T1OUT0

To individually configure the port 3 pins P3.0–P3.7, you make bit-pair settings in two control registers located in set 1, bank 0: P3CONL (low byte, F5H) and P3CONH (high byte, F4H).

Port 3 Control Registers (P3CONH, P3CONL)

Two 8-bit control registers are used to configure port 3 pins: P3CONL (F5H, set 1, Bank 0) for pins P3.0–P3.3 and P3CONH (F4H, set 1, Bank 0) for pins P3.4–P3.7. Each byte contains four bit-pairs and each bit-pair configures one pin of port 3.

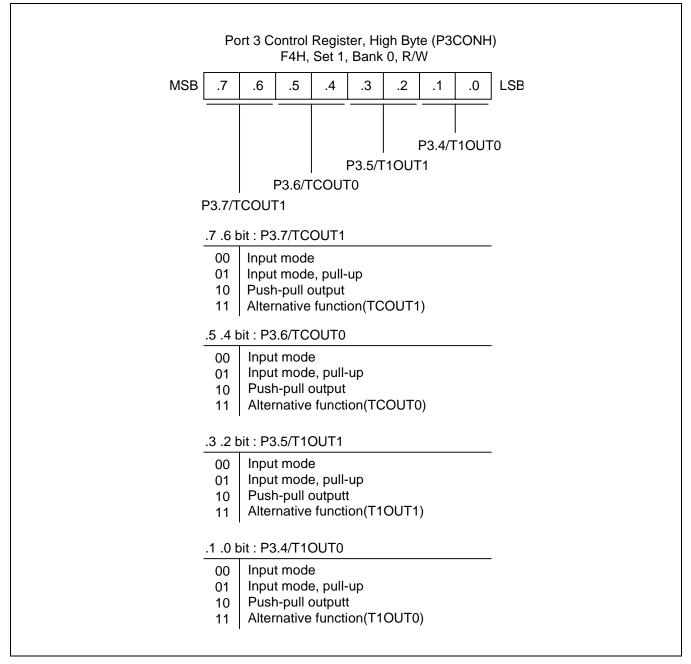


Figure 9-6. Port 3 High-Byte Control Register (P3CONH)

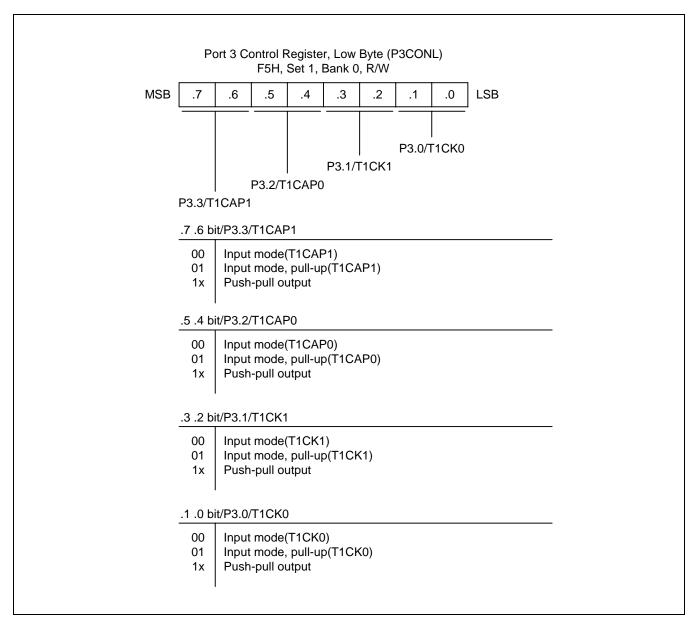


Figure 9-7. Port 3 Low-Byte Control Register (P3CONL)

Port 4 is an 8-bit I/O Port that you can use two ways:

- General-purpose I/O
- External interrupt inputs for INT0-INT7

Port 4 is accessed directly by writing or reading the port 4 data register, P4 at location E4H in set 1, bank 0.

Port 4 Control Register (P4CONH, P4CONL)

Port 4 pins are configured individually by bit-pair settings in two control registers located in set 1, bank 0: P4CONL (low byte, F7H) and P4CONH (high byte, F6H).

When you select output mode, a push-pull circuit is configured. In input mode, three different selections are available:

- Schmitt trigger input with interrupt generation on falling signal edges.
- Schmitt trigger input with interrupt generation on rising signal edges.
- Schmitt trigger input with pull-up resistor and interrupt generation on falling signal edges.

Port 4 Interrupt Enable and Pending Registers (P4INT, P4INTPND)

To process external interrupts at the port 4 pins, two additional control registers are provided: the port 4 interrupt enable register P4INT (FAH, set 1, bank 0) and the port 4 interrupt pending register P4INTPND (FBH, set 1, bank 0).

The port 4 interrupt pending register P4INTPND lets you check for interrupt pending conditions and clear the pending condition when the interrupt service routine has been initiated. The application program detects interrupt requests by polling the P4INTPND register at regular intervals.

When the interrupt enable bit of any port 4 pin is "1", a rising or falling signal edge at that pin will generate an interrupt request. The corresponding P4INTPND bit is then automatically set to "1" and the IRQ level goes low to signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application software must clear the pending condition by writing a "0" to the corresponding P4INTPND bit.

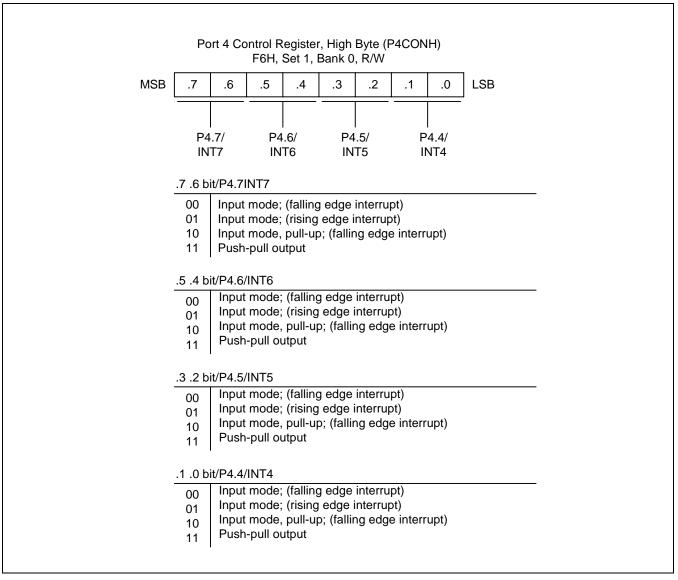


Figure 9-8. Port 4 High-Byte Control Register (P4CONH)

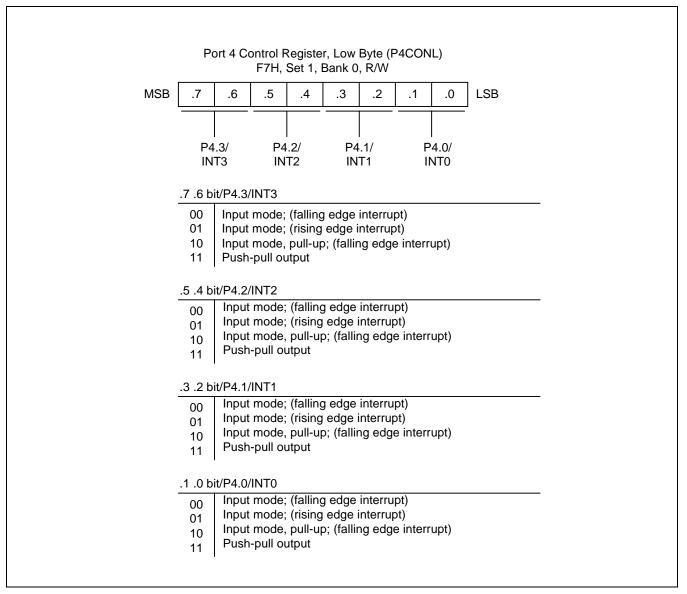
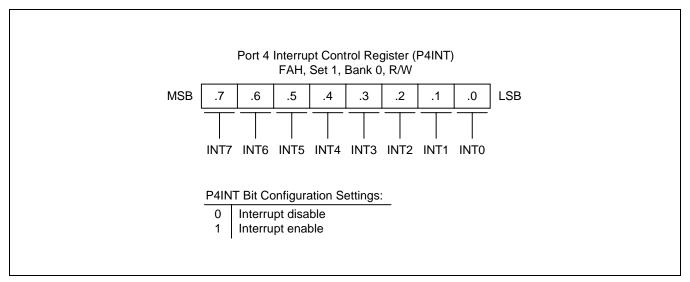
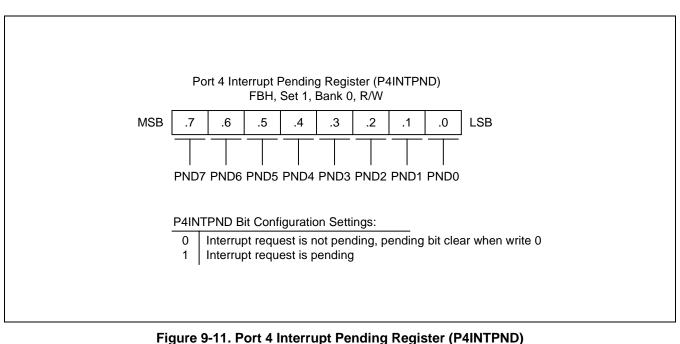




Figure 9-9. Port 4 Low-Byte Control Register (P4CONL)

Port 5 is an 8-bit I/O port with individually configurable pins. Port 5 pins are accessed directly by writing or reading the port 5 data register, P5 at location E5H in set 1, bank 0. P5.7–P5.4 can serve as inputs, outputs (push pull or open-drain). P5.3–P5.0 can serve as inputs, outputs (push pull) or you can configure the following alternative functions:

- Low-byte pins (P5.3-P5.0): RxD0, TxD0, RxD1, TxD1

Port 5 Control Register (P5CONH, P5CONL)

Port 5 has two 8-bit control registers: P5CONH for P5.4–P5.7 and P5CONL for P5.0–P5.3. A reset clears the P5CONH and P5CONL registers to "00H", configuring all pins to input mode. You use control registers settings to select input or output mode (push-pull, open-drain) and enable the alternative functions.

When programming the port, please remember that any alternative peripheral I/O function you configure using the port 5 control registers must also be enabled in the associated peripheral module.

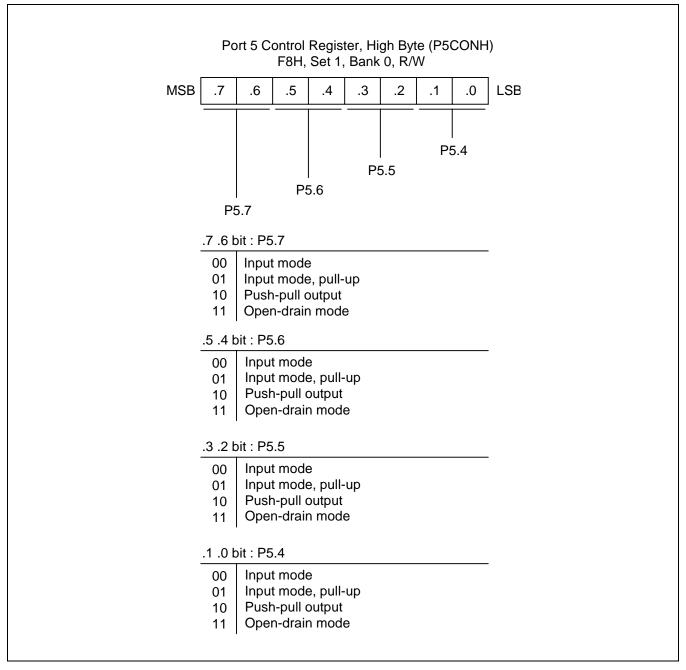
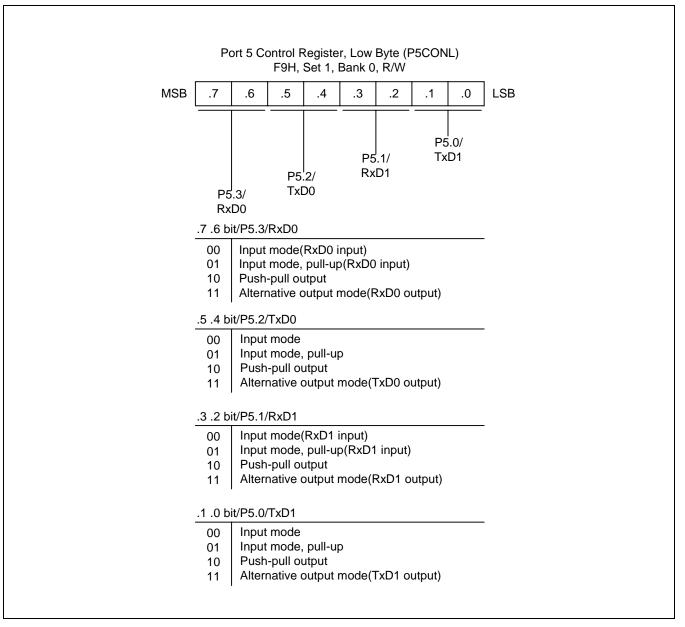
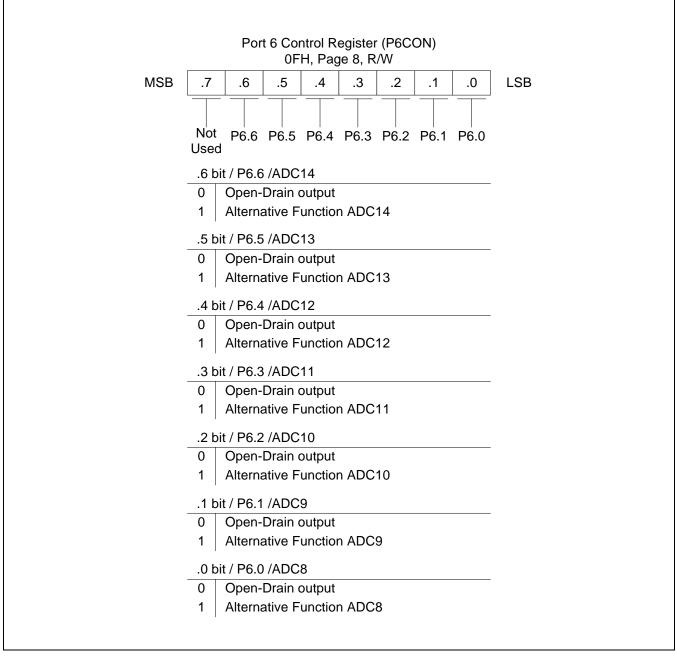


Figure 9-12. Port 5 High-Byte Control Register (P5CONH)




Figure 9-13. Port 5 Low-Byte Control Register (P5CONL)

Port 6 is an 8-bit I/O port that you can use two ways:

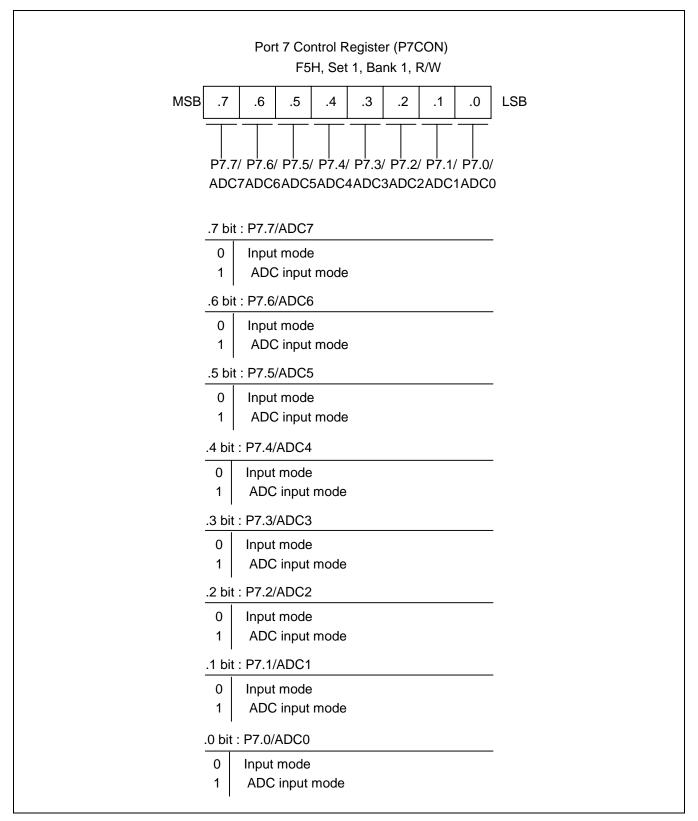
- Open-Drain Output
- Alternative function: ADC0-ADC7 input

Port 6 pins are accessed directly by writing the port6 data register, P6 at location E6H in set 1, bank 0.

Figure 9-14. Port 6 Control Register (P6CON)

Port 7 is an 8-bit Input port that you can use two ways:

- General-purpose Input
- Alternative function: ADC0-ADC7 input


Port 7 is accessed directly by reading the port 7 data register, P7 at location E7H in set 1, bank 0.

Port 7 Control Register (P7CON)

Port 7 pins are configured individually by bit-pair settings in one control registers located in set 1, bank 1: P7CON (F5H).

When programming the port, please remember that any alternative peripheral I function you configure using the port 7 control registers must also be enabled in the associated peripheral module.

Figure 9-15. Port 7 Control Register (P7CON)

Port 8 is an 6-bit I/O Port that you can use three ways:

- General-purpose I/O
- Alternative function: SCK1, SI1, SO1
- External interrupt inputs for INT8-INT9

Port 8 is accessed directly by writing or reading the port 8 data register, P8 at location E8H in set 1, bank 0.

Port 8 Control Register (P8CONH, P8CONL)

Port 8 pins are configured individually by bit-pair settings in two control registers located in set 1, bank 0: P8CONL (low byte, EEH) and P8CONH (high byte, EDH).

When you select output mode, a push-pull circuit is configured. In input mode, three different selections are available:

- Schmitt trigger input with interrupt generation on falling signal edges.
- Schmitt trigger input with interrupt generation on rising signal edges.
- Schmitt trigger input with pull-up resistor and interrupt generation on falling signal edges.

Port 8 Interrupt Enable and Pending Registers (P8INTPND)

To process external interrupts at the port 8 pins, one additional control register is provided: the port 8 interrupt enable register P8INTPND (EFH, set 1, bank 0).

The port 8 interrupt pending register P8INTPND lets you check for interrupt pending conditions and clear the pending condition when the interrupt service routine has been initiated. The application program detects interrupt requests by polling the P8INTPND register at regular intervals.

When the interrupt enable bit of any port 8 pin is "1", a rising or falling signal edge at that pin will generate an interrupt request. The corresponding P8INTPND bit is then automatically set to "1" and the IRQ level goes low to signal the CPU that an interrupt request is waiting. When the CPU acknowledges the interrupt request, application software must the clear the pending condition by writing a "0" to the corresponding P8INTPND bit.

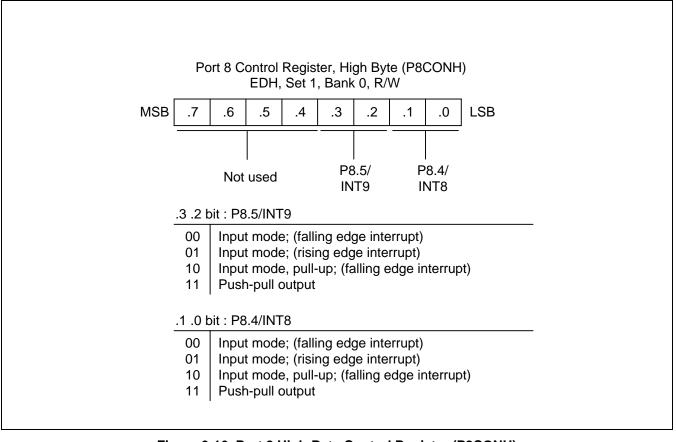


Figure 9-16. Port 8 High-Byte Control Register (P8CONH)

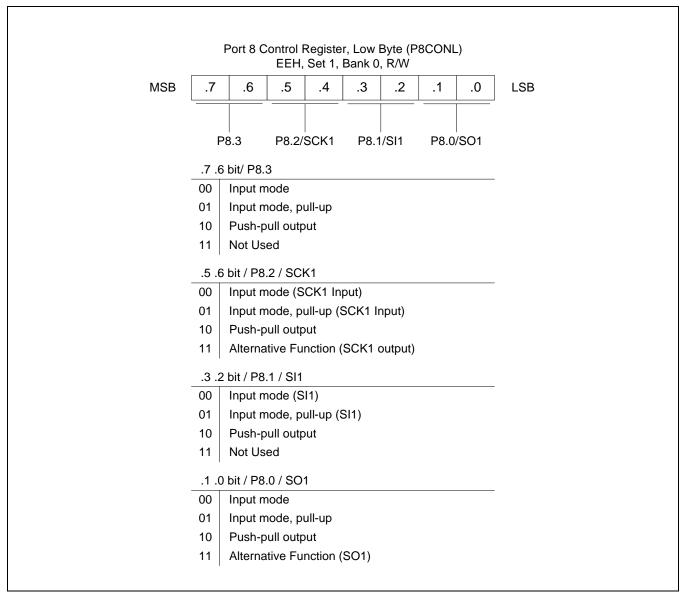


Figure 9-17. Port 8 Low-Byte Control Register (P8CONL)

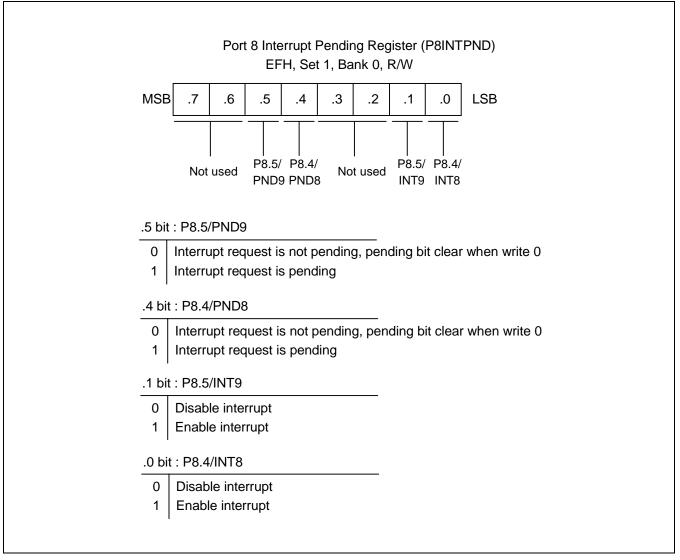


Figure 9-18. Port 8 Interrupt Pending Register (P8INTPND)

10 BASIC TIMER

OVERVIEW

BASIC TIMER (BT)

You can use the basic timer (BT) in two different ways:

- As a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.
- To signal the end of the required oscillation stabilization interval after a reset or a Stop mode release.

The functional components of the basic timer block are:

- Clock frequency divider (f_{XX} divided by 4096, 1024 or 128) with multiplexer
- 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH, read-only)
- Basic timer control register, BTCON (set 1, D3H, read/write)

BASIC TIMER CONTROL REGISTER (BTCON)

The basic timer control register, BTCON, is used to select the input clock frequency, to clear the basic timer counter and frequency dividers, and to enable or disable the watchdog timer function. It is located in set 1, address D3H, and is read/write addressable using register addressing mode.

A reset clears BTCON to '00H'. This enables the watchdog function and selects a basic timer clock frequency of f_{XX} /4096. To disable the watchdog function, write the signature code '1010B' to the basic timer register control bits BTCON.7–BTCON.4.

The 8-bit basic timer counter, BTCNT (set 1, bank 0, FDH), can be cleared at any time during normal operation by writing a "1" to BTCON.1. To clear the frequency dividers, write a "1" to BTCON.0.

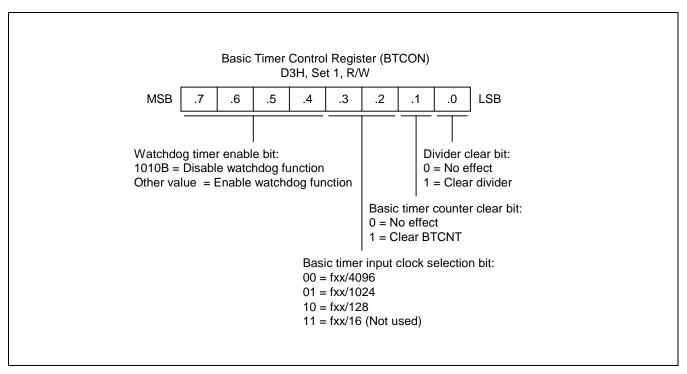


Figure 10-1. Basic Timer Control Register (BTCON)

BASIC TIMER FUNCTION DESCRIPTION

Watchdog Timer Function

You can program the basic timer overflow signal (BTOVF) to generate a reset by setting BTCON.7–BTCON.4 to any value other than "1010B". (The "1010B" value disables the watchdog function.) A reset clears BTCON to "00H", automatically enabling the watchdog timer function. A reset also selects the CPU clock (as determined by the current CLKCON register setting), divided by 4096, as the BT clock.

The MCU is reset whenever a basic timer counter overflow occurs, During normal operation, the application program must prevent the overflow, and the accompanying reset operation, from occurring, To do this, the BTCNT value must be cleared (by writing a "1" to BTCON.1) at regular intervals.

If a system malfunction occurs due to circuit noise or some other error condition, the BT counter clear operation will not be executed and a basic timer overflow will occur, initiating a reset. In other words, during the normal operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, BTCNT) is always broken by a BTCNT clear instruction. If a malfunction does occur, a reset is triggered automatically.

Oscillation Stabilization Interval Timer Function

You can also use the basic timer to program a specific oscillation stabilization interval following a reset or when Stop mode has been released by an external interrupt.

In Stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. The BTCNT value then starts increasing at the rate of f_{XX} /4096 (for reset), or at the rate of the preset clock source (for an external interrupt). When BTCNT.4 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate the clock signal off to the CPU so that it can resume normal operation.

In summary, the following events occur when stop mode is released:

- 1. During stop mode, a power-on reset or an interrupt occurs to trigger the Stop mode release and oscillation starts.
- 2. If a power-on reset occurred, the basic timer counter will increase at the rate of f_{XX} /4096. If an interrupt is used to release stop mode, the BTCNT value increases at the rate of the preset clock source.
- 3. Clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.
- 4. When a BTCNT.4 overflow occurs, normal CPU operation resumes.

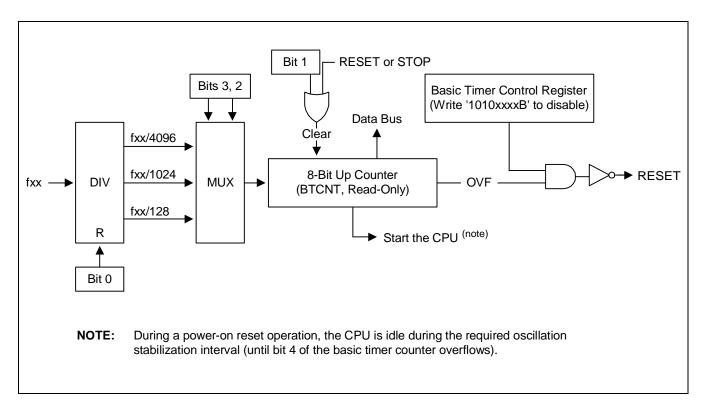


Figure 10-2. Basic Timer Block Diagram

8-BIT TIMER A/B/C(0/1)

8-BIT TIMER A

OVERVIEW

The 8-bit timer A is an 8-bit general-purpose timer/counter. Timer A has three operating modes, you can select one of them using the appropriate TACON setting:

- Interval timer mode (Toggle output at TAOUT pin)
- Capture input mode with a rising or falling edge trigger at the TACAP pin
- PWM mode (TAPWM); PWM output shares its output port with TAOUT pin

Timer A has the following functional components:

- Clock frequency divider (f_{xx} divided by 1024, 256, or 64) with multiplexer
- External clock input pin (TACK)
- 8-bit counter (TACNT), 8-bit comparator, and 8-bit reference data register (TADATA)
- I/O pins for capture input (TACAP) or PWM or match output (TAPWM, TAOUT)
- Timer A overflow interrupt (IRQ0, vector BAH) and match/capture interrupt (IRQ0, vector B8H) generation
- Timer A control register, TACON (set 1, bank0, EAH, read/write)

FUNCTION DESCRIPTION

Timer A Interrupts (IRQ0, Vectors B8H and BAH)

The timer A module can generate two interrupts: the timer A overflow interrupt (TAOVF), and the timer A match/ capture interrupt (TAINT). TAOVF is interrupt level IRQ0, vector BAH. TAINT also belongs to interrupt level IRQ0, but is assigned the separate vector address, B8H.

A timer A overflow interrupt pending condition is automatically cleared by hardware when it has been serviced. A timer A match/capture interrupt, TAINT pending condition is also cleared by hardware when it has been serviced.

Interval Timer Function

The timer A module can generate an interrupt: the timer A match interrupt (TAINT). TAINT belongs to interrupt level IRQ0, and is assigned the separate vector address, B8H.

When timer A match interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware.

In interval timer mode, a match signal is generated and TAOUT is toggled when the counter value is identical to the value written to the TA reference data register, TADATA. The match signal generates a timer A match interrupt (TAINT, vector B8H) and clears the counter.

If, for example, you write the value 10H to TADATA and 0AH to TACON, the counter will increment until it reaches 10H. At this point, the TA interrupt request is generated, the counter value is reset, and counting resumes.

Pulse Width Modulation Mode

Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the TAPWM pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the timer A data register. In PWM mode, however, the match signal does not clear the counter. Instead, it runs continuously, overflowing at FFH, and then continues incrementing from 00H.

Although timer A overflow interrupt is occurred, this interrupt is not typically used in PWM-type applications. Instead, the pulse at the TAPWM pin is held to Low level as long as the reference data value is *less than or equal to* (\leq) the counter value and then the pulse is held to High level for as long as the data value is *greater than* (>) the counter value. One pulse width is equal to t_{CLK} • 256.

Capture Mode

In capture mode, a signal edge that is detected at the TACAP pin opens a gate and loads the current counter value into the TA data register. You can select rising or falling edges to trigger this operation.

Timer A also gives you capture input source: the signal edge at the TACAP pin. You select the capture input by setting the value of the timer A capture input selection bit in the port 2 control register, P2CONH, (set 1, bank 0, F2H). When P2CONH.5.4 is 00, the TACAP input or normal input is selected. When P2CONH.5.4 is set to 10, normal output is selected.

Both kinds of timer A interrupts can be used in capture mode: the timer A overflow interrupt is generated whenever a counter overflow occurs; the timer A match/capture interrupt is generated whenever the counter value is loaded into the TA data register.

By reading the captured data value in TADATA, and assuming a specific value for the timer A clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the TACAP pin.

TIMER A CONTROL REGISTER (TACON)

You use the timer A control register, TACON, to

- Select the timer A operating mode (interval timer, capture mode, or PWM mode)
- Select the timer A input clock frequency
- Clear the timer A counter, TACNT
- Enable the timer A overflow interrupt or timer A match/capture interrupt
- Clear timer A match/capture interrupt pending conditions

TACON is located in set 1, Bank 0 at address EAH, and is read/write addressable using Register addressing mode.

A reset clears TACON to '00H'. This sets timer A to normal interval timer mode, selects an input clock frequency of $f_{XX}/1024$, and disables all timer A interrupts. You can clear the timer A counter at any time during normal operation by writing a "1" to TACON.3.

The timer A overflow interrupt (TAOVF) is interrupt level IRQ0 and has the vector address BAH. When a timer A overflow interrupt occurs and is serviced by the CPU, the pending condition is cleared automatically by hardware. To enable the timer A match/capture interrupt (IRQ0, vector B8H), you must write TACON.1 to "1". To generate the exact time interval, you should write "1" to TACON.3 and "0" to TINTPND.0, which cleared counter and interrupt pending bit.

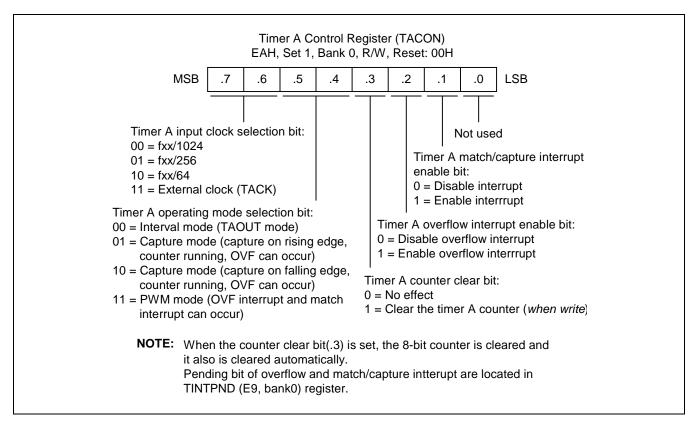


Figure 11-1. Timer A Control Register (TACON)

BLOCK DIAGRAM

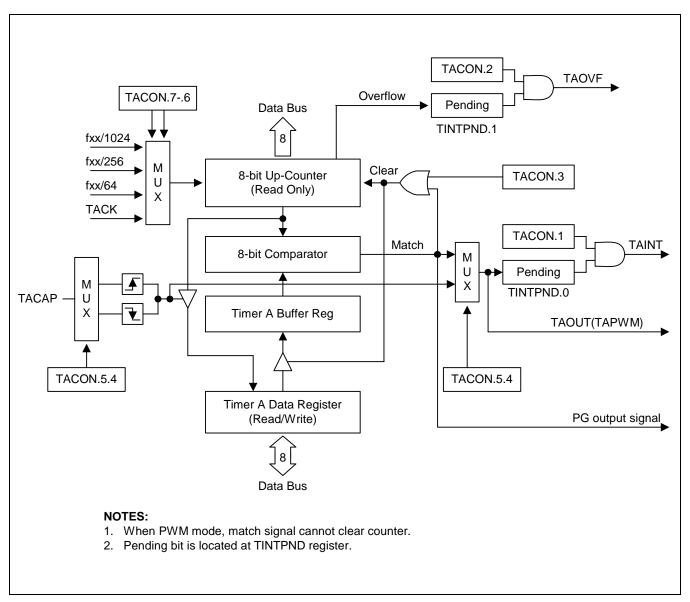


Figure 11-2. Timer A Functional Block Diagram

8-BIT TIMER B

OVERVIEW

The S3C84MB/F84MB micro-controller has an 8-bit counter called timer B. Timer B, which can be used to generate the carrier frequency of a remote controller signal. Pending bit of timer B is cleared automatically by hardware.

Timer B has two functions:

- As a normal interval timer, generating a timer B interrupt at programmed time intervals.
- To generate a programmable carrier pulse for a remote control signal at P2.4.

BLOCK DIAGRAM

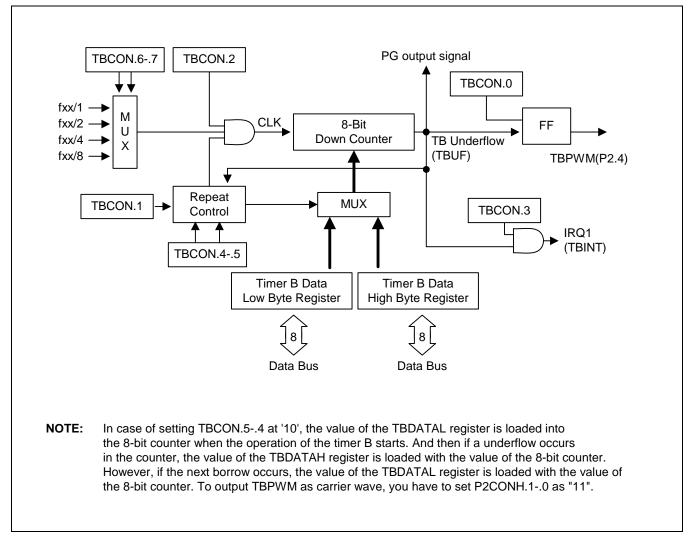
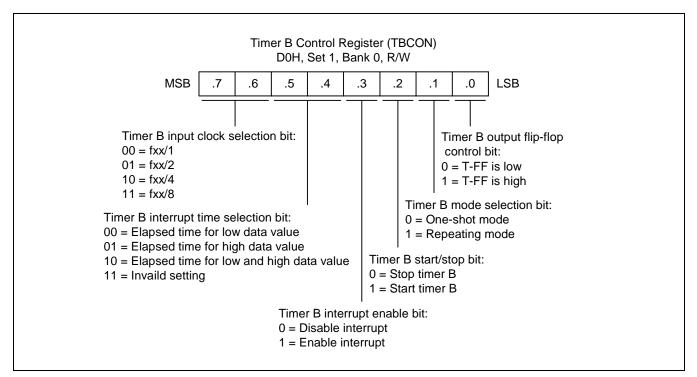


Figure 11-3. Timer B Functional Block Diagram

TIMER B CONTROL REGISTER (TBCON)



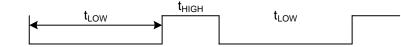

Figure 11-4. Timer B Control Register (TBCON)

Figure 11-5. Timer B Data Registers (TBDATAH, TBDATAL)

TIMER B PULSE WIDTH CALCULATIONS

To generate the above repeated waveform consisted of low period time, t_{LOW}, and high period time, t_{HIGH}.

When T-FF = 0, $t_{LOW} = (TBDATAL + 2) \times 1/fx$, 0H < TBDATAL < 100H, where fx = The selected clock. $t_{HIGH} = (TBDATAH + 2) \times 1/fx$, 0H < TBDATAH < 100H, where fx = The selected clock. When T-FF = 1, $t_{LOW} = (TBDATAH + 2) \times 1/fx$, 0H < TBDATAH < 100H, where fx = The selected clock. $t_{HIGH} = (TBDATAL + 2) \times 1/fx$, 0H < TBDATAL < 100H, where fx = The selected clock.

To make t_{LOW} = 24 us and t_{HIGH} = 15 us. $f_{\text{OSC}}\,$ = 4 MHz, fx = 4 MHz/4 = 1 MHz

When T-FF = 0,

 $t_{\text{LOW}} = 24 \text{ us} = (\text{TBDATAL} + 2) / \text{fx} = (\text{TBDATAL} + 2) \times 1\text{us}, \text{TBDATAL} = 22.$ $t_{\text{HIGH}} = 15 \text{ us} = (\text{TBDATAH} + 2) / \text{fx} = (\text{TBDATAH} + 2) \times 1\text{us}, \text{TBDATAH} = 13.$ When T-FF = 1,

 $t_{HIGH} = 15 \text{ us} = (TBDATAL + 2) /fx = (TBDATAL + 2) x 1us, TBDATAL = 13.$

 $t_{LOW} = 24 \text{ us} = (TBDATAH + 2) / fx = (TBDATAH + 2) x 1us, TBDATAH = 22.$

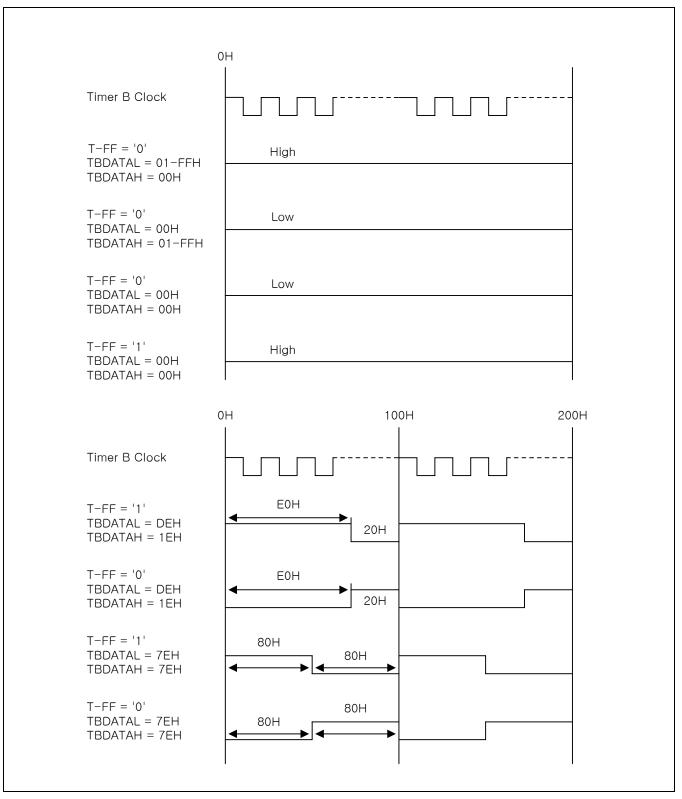


Figure 11-6. Timer B Output Flip-Flop Waveforms in Repeat Mode

PROGRAMMING TIP — To generate 38 kHz, 1/3duty signal through P2.4

This example sets Timer B to the repeat mode, sets the oscillation frequency as the Timer B clock source, and TBDATAH and TBDATAL to make a 38 kHz, 1/3 Duty carrier frequency. The program parameters are:

- Timer B is used in repeat mode
- Oscillation frequency is 4 MHz (0.25 μs)
- -- TBDATAL = 8.795 μs/0.25 μs = 35.18, TBDATAH = 17.59 μs/0.25 μs = 70.36
- Set P2.4 to TBPWM mode.

START	ORG DI •	0100H	;	Reset address
	LD	TBDATAH, #(70-2)	;	Set 17.5 μs
	LD	TBDATAL, #(35-2)	;	Set 8.75 μs
	LD	TBCON, #00100111B	, , , , , ,	Clock Source $\leftarrow f_{XX}$ Disable Timer B interrupt. Select repeat mode for Timer B. Start Timer B operation. Set Timer B Output flip-flop (T-FF) high.
	LD •	P2CONH, #03H	;	Set P2.4 to TBPWM mode. This command generates 38 kHz, 1/3 duty pulse signal through P2.4.
	•			
	•			

PROGRAMMING TIP — To generate a one pulse signal through P2.4

This example sets Timer B to the one shot mode, sets the oscillation frequency as the Timer B clock source, and TBDATAH and TBDATAL to make a 40μ s width pulse. The program parameters are:

		•	40 μs		
 Timer B is used in one shot mode Oscillation frequency is 4 MHz (1 clock = 0.25 μs) TBDATAH = 40 μs / 0.25 μs = 160, TBDATAL = 1 Set P2.4 to TBPWM mode 					
START	ORG DI •	0100H	; Reset address		
	LD LD LD	TBDATAH,# (160-2) TBDATAL,# 1 TBCON,#00010001B	 ; Set 40 μs ; Set any value except 00H ; Clock Source ← f_{OSC} ; Disable Timer B interrupt. ; Select one shot mode for Timer B. ; Stop Timer B operation. ; Set Timer B output flip-flop (T-FF) high 		
	LD •	P2CONH, #03H	; Set P2.4 to TBPWM mode.		
Pulse_out:	LD • •	TBCON,#00010101B	 Start Timer B operation to make the pulse at this point. After the instruction is executed, 0.75 μs is required before the falling edge of the pulse starts. 		

8-BIT TIMER C (0/1)

OVERVIEW

The 8-bit timer C (0/1) is an 8-bit general-purpose timer/counter. Timer C (0/1) has two operating modes, you can select one of them using the appropriate TCCON0, and TCCON1 setting:

- Interval timer mode (Toggle output at TCOUT0, TCOUT1 pin)
- PWM mode (TCOUT0, TCOUT1)

Timer C (0/1) has the following functional components:

- Clock frequency divider with multiplexer
- 8-bit counter, 8-bit comparator, and 8-bit reference data register (TCDATA0, TCDATA1)
- PWM or match output (TCOUT0, TCOUT1)
- Timer C (0) match/overflow interrupt (IRQ2, vector BCH) generation
- Timer C (1) match/overflow interrupt (IRQ2, vector BEH) generation
- Timer C (0) control register, TCCON0 (set 1, bank1, F2H, read/write)
- Timer C (1) control register, TCCON1 (set 1, bank1, F3H, read/write)

TIMER C (0/1) CONTROL REGISTER (TCCON0, TCCON1)

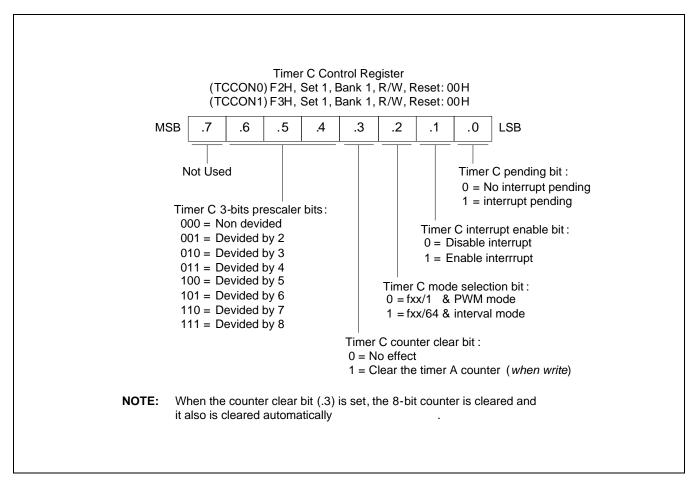


Figure 11-7. Timer C (0/1) Control Register (TCCON0, TCCON1)

S3C84MB/F84MB_UM_REV1.00

BLOCK DIAGRAM

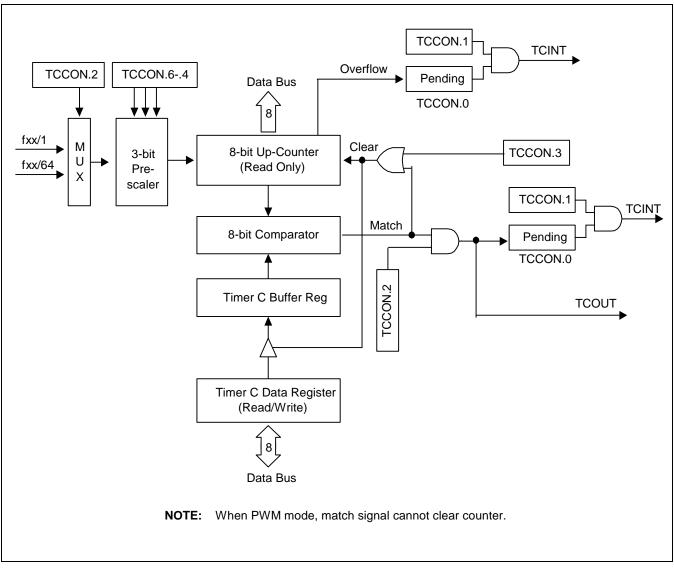


Figure 11-8. Timer C (0/1) Functional Block Diagram

PROGRAMMING TIP — Using the Timer A

	ORG	0000h		
	VECTOR VECTOR	0B8h,TAMC_INT 0BAh,TAOV_INT		
	ORG	0100h		
INITIAL:	LD LD LD LD LD	SYM,#00h IMR,#00000001b SPH,#00000000b SPL,#0FFh BTCON,#10100011b TADATA,#80h	, , ,	Disable Global/Fast interrupt → SYM Enable IRQ0 interrupt Set stack area Disable watch-dog
	LD	TACON,#01001010b	;	Match interrupt enable 3.30 ms duration (10 MHz x'tal)
	EI			
MAIN:	• MAIN ROUT • JR	INE T,MAIN		
TAMC_INT:	on	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	• Interrupt service routine • IRET			
TAOV_INT:	• Interrupt serv • IRET	vice routine		
	.END			

PROGRAMMING TIP — Using the Timer B

	ORG	0000h		
	VECTOR	0C8h,TBUN_INT		
	ORG	0100h		
INITIAL:	LD LD LD LD LD	SYM,#00h IMR,#00000010b SPH,#00000000b SPL,#0FFh BTCON,#10100011b		Disable Global/Fast interrupt Enable IRQ1 interrupt Set stack area Disable Watch-dog
	LD	P2CONH,#00000011b	;	Enable TBPWM output
	LD LD LD	TBDATAH,#80h TBDATAL,#80h TBCON,#11101110b	- , ,	Enable interrupt, repeating, f_{XX} /8 Duration 206 μ s (10 MHz x'tal)
MAIN:				
WAIN.	•			
	MAIN ROUT	FINE		
	JR	T, MAIN		
TBUN_INT:	• Interrupt ser • IRET .END	vice routine		

PROGRAMMING TIP — Using the Timer C(0)

	ORG	0000h					
	VECTOR	VECTOR 0BCh, TCUN_INT					
	ORG	0100h					
INITIAL:	LD LD LD LD LD	SYM,#00h IMR,#00000100b SPH,#00000000b SPL,#1111111b BTCON,#10100011b	- - - ,	•			
	LD	P3CONH,#00110000b	;	Enable TCOUT0 output			
	LD LD	TCDATA0,#80h TCCON0,#00001110b	;	non-divide, interval, Enable interrupt Duration 0.825ms (10 MHz x'tal)			
	EI						
MAIN:	• MAIN ROUT • • JR	ΓINE Τ, MAIN					
TCUN_INT:	Interrupt ser	vice routine					

12 16-BIT TIMER 1(0/1)

OVERVIEW

The S3C84MBJ/F84MBJ has two 16-bit timer/counters. The 16-bit timer 1(0/1) is a 16-bit general-purpose timer/counter. Timer 1(0/1) has three operating modes, one of which you select using the appropriate T1CON0, T1CON1 setting is:

- Interval timer mode (Toggle output at T1OUT0, T1OUT1 pin)
- Capture input mode with a rising or falling edge trigger at the T1CAP0, T1CAP1 pin
- PWM mode (T1PWM0, T1PWM1); PWM output shares their output port with T1OUT0, T1OUT1 pin

Timer 1(0/1) has the following functional components:

- Clock frequency divider (f_{XX} divided by 1024, 256, 64, 8, or 1) with multiplexer
- External clock input pin (T1CK0, T1CK1)
- A 16-bit counter (T1CNTH0/L0, T1CNTH1/L1), 16-bit comparator, and two 16-bit reference data register (T1DATAH0/L0, T1DATAH1/L1)
- I/O pins for capture input (T1CAP0, T1CAP1), or match output (T1OUT0, T1OUT1)
- Timer 1(0) overflow interrupt (IRQ3, vector C2H) and match/capture interrupt (IRQ3, vector C0H) generation
- Timer 1(1) overflow interrupt (IRQ3, vector C6H) and match/capture interrupt (IRQ3, vector C4H) generation
- Timer 1(0) control register, T1CON0 (set 1, EAH, Bank 1, read/write)
- Timer 1(1) control register, T1CON1 (set 1, EBH, Bank 1, read/write)

FUNCTION DESCRIPTION

Timer 1 (0/1) Interrupts (IRQ3, Vectors C6H, C4H, C2H and C0H)

The timer 1(0) module can generate two interrupts, the timer 1(0) overflow interrupt (T1OVF0), and the timer 1(0) match/capture interrupt (T1INT0). T1OVF0 is interrupt level IRQ3, vector C2H. T1INT0 also belongs to interrupt level IRQ3, but is assigned the separate vector address, C0H.

A timer 1(0) overflow interrupt pending condition is automatically cleared by hardware when it has been serviced. A timer 1(0) match/capture interrupt, T1INT0 pending condition is also cleared by hardware when it has been serviced.

The timer 1(1) module can generate two interrupts, the timer 1(1) overflow interrupt (T1OVF1), and the timer 1(1) match/capture interrupt (T1INT1). T1OVF1 is interrupt level IRQ3, vector C6H. T1INT1 also belongs to interrupt level IRQ3, but is assigned the separate vector address, C4H.

A timer 1(1) overflow interrupt pending condition is automatically cleared by hardware when it has been serviced. A timer 1(1) match/capture interrupt, T1INT1 pending condition is also cleared by hardware when it has been serviced.

Interval Mode (match)

The timer 1(0) module can generate an interrupt: the timer 1(0) match interrupt (T1INT0). T1INT0 belongs to interrupt level IRQ3, and is assigned the separate vector address, C0H.

In interval timer mode, a match signal is generated and T1OUT0 is toggled when the counter value is identical to the value written to the T1 reference data register, T1DATAH0/L0. The match signal generates a timer 1(0) match interrupt (T1INT0, vector C0H) and clears the counter.

The timer 1(1) module can generate an interrupt: the timer 1(1) match interrupt (T1INT1). T1INT1 belongs to interrupt level IRQ3, and is assigned the separate vector address, C4H.

In interval timer mode, a match signal is generated and T1OUT1 is toggled when the counter value is identical to the value written to the T1 reference data register, T1DATAH1/L1. The match signal generates a timer 1(1) match interrupt (T1INT1, vector C4H) and clears the counter.

Capture Mode

In capture mode for Timer 1(0), a signal edge that is detected at the T1CAP0 pin opens a gate and loads the current counter value into the T1 data register (T1DATAH0/L0 for rising edge, or falling edge). You can select rising or falling edges to trigger this operation.

Timer 1(0) also gives you capture input source, the signal edge at the T1CAP0 pin. You select the capture input by setting the capture input selection bit in the port 3 control register, P3CONL, (set 1 bank 0, F5H).

Both kinds of timer 1(0) interrupts (T1OVF0, T1INT0) can be used in capture mode, the timer 1(0) overflow interrupt is generated whenever a counter overflow occurs, the timer 1(0) capture interrupt is generated whenever the counter value is loaded into the T1 data register (T1DATAH0/L0).

By reading the captured data value in T1DATAH0/L0, and assuming a specific value for the timer 1(0) clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the T1CAP0 pin.

In capture mode for Timer 1(1), a signal edge that is detected at the T1CAP1 pin opens a gate and loads the current counter value into the T1 data register (T1DATAH1/L1 for rising edge, or falling edge). You can select rising or falling edges to trigger this operation.

Timer 1(1) also gives you capture input source, the signal edge at the T1CAP1 pin. You select the capture input by setting the capture input selection bit in the port 3 control register, P3CONL, (set 1 bank 0, F5H). Both kinds of timer 1(1) interrupts (T1OVF1, T1INT1) can be used in capture mode, the timer 1(1) overflow interrupt is generated whenever a counter overflow occurs, the timer 1(1) capture interrupt is generated whenever the counter value is loaded into the T1 data register.

By reading the captured data value in T1DATAH1/L1, and assuming a specific value for the timer 1(1) clock frequency, you can calculate the pulse width (duration) of the signal that is being input at the T1CAP1 pin.

PWM Mode

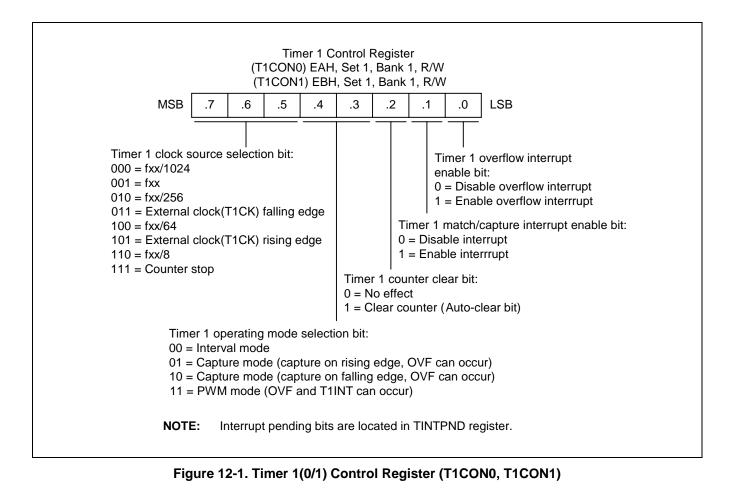
Pulse width modulation (PWM) mode lets you program the width (duration) of the pulse that is output at the T1OUT0, T1OUT1 pin. As in interval timer mode, a match signal is generated when the counter value is identical to the value written to the timer 1(0/1) data register. In PWM mode, however, the match signal does not clear the counter but can generate a match interrupt. The counter runs continuously, overflowing at FFFFH, and then continuous increasing from 0000H. Whenever an overflow is occurred, an overflow (OVF0,1) interrupt can be generated.

Although you can use the match or the overflow interrupt in the PWM mode, these interrupts are not typically used in PWM-type applications. Instead, the pulse at the T1OUT0, T1OUT1 pin is held to low level as long as the reference data value is less than or equal to(\leq) the counter value and then the pulse is held to high level for as long as the data value is greater than(>) the counter value. One pulse width is equal to t_{CLK}.

TIMER 1(0/1) CONTROL REGISTER (T1CON0, T1CON1)

You use the timer 1(0/1) control register, T1CON0, T1CON1, to

- Select the timer 1(0/1) operating mode (interval timer, capture mode, or PWM mode)
- Select the timer 1(0/1) input clock frequency
- Clear the timer 1(0/1) counter, T1CNTH0/L0, T1CNTH1/L1
- Enable the timer 1(0/1) overflow interrupt
- Enable the timer 1(0/1) match/capture interrupt


T1CON0 is located in set 1 and Bank 1 at address EAH, and is read/write addressable using Register addressing mode. T1CON1 is located in set 1 and Bank 1 at address EBH, and is read/write addressable using Register addressing mode.

A reset clears T1CON0, T1CON1 to '00H'. This sets timer 1(0/1) to normal interval timer mode, selects an input clock frequency of $f_{XX}/1024$, and disables all timer 1(0/1) interrupts. To disable the counter operation, please set T1CON(0/1).7-.5 to 111B. You can clear the timer 1(0/1) counter at any time during normal operation by writing a "1" to T1CON(0/1).3. To generate the exact time interval, you should write "1" to T1CON(0/1).2 and clear appropriate pending bits of the TINTPND register.

To detect a match/capture or overflow interrupt pending condition when T1INT0, T1INT1 or T1OVF0, T1OVF1 is disabled, the application program should poll the pending bit TINTPND register, bank 0, E9H. When a "1" is detected, a timer 1(0/1) match/capture or overflow interrupt is pending.

When the sub-routine has been serviced, the pending condition must be cleared by software by writing a "0" to the interrupt pending bit. If interrupts (match/capture or overflow) are enabled, the pending bit is cleared automatically by hardware.

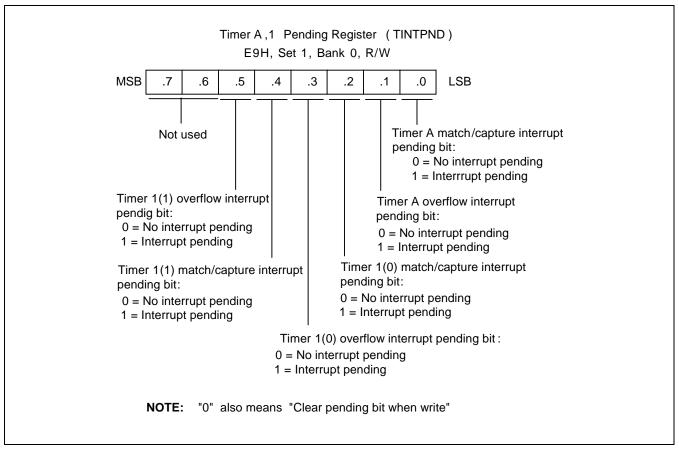


Figure 12-2. Timer A and Timer 1(0/1) Pending Register (TINTPND)

BLOCK DIAGRAM

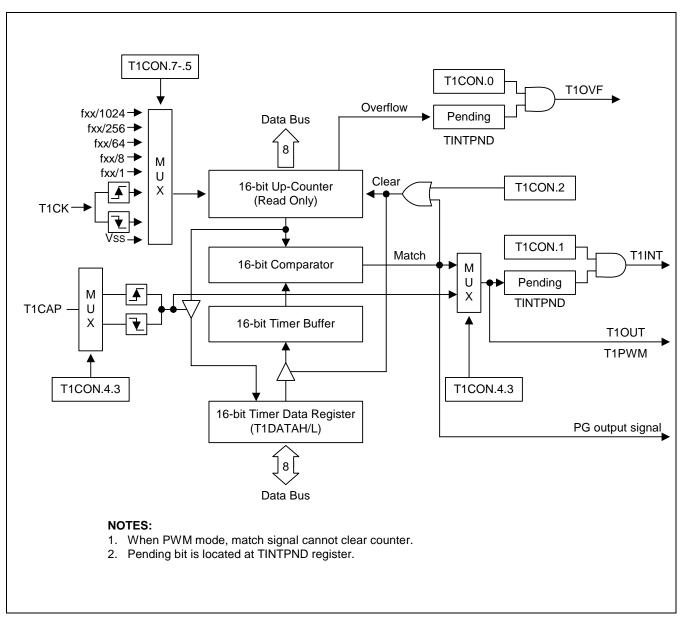


Figure 12-3. Timer 1(0/1) Functional Block Diagram

PROGRAMMING TIP — Using the Timer 1(0)

	ORG	0000h		
	VECTOR	0E4h,T1MC_INT		
	ORG	0100h		
INITIAL:	LD LD LD LD LD SB1 LDW LD SB0	SYM,#00h IMR,#00001000b SPH,#0000000b SPL,#1111111b BTCON,#10100011b T1DATAH0,#0F0h T1CON0,#01000110b	· , , , , , , , , , , , , , , , , , , ,	
	EI			
MAIN: T1MC_INT:	• MAIN ROU ⁻ • JR	TINE T,MAIN		
	• Interrupt ser • • IRET	rvice routine		
	.END			

13 SERIAL I/O PORT

OVERVIEW

Serial I/O module, SIO can interface with various types of external devices that require serial data transfer. SIO has the following functional components:

- SIO data receive/transmit interrupt (IRQ4, vector CAH, ACH) generation
- 8-bit control register, SIOCON(set 1, bank 1, E1H, read/write), SIOCON1(Page 8, 00H, read/write)
- Clock selection logic
- 8-bit data buffer, SIODATA, SIODATA1
- 8-bit prescaler SIOPS (set 1, bank 1, F4H, read/write), SIOPS1 (Page 8, 01H, read/write)
- 3-bit serial clock counter
- Serial data I/O pins (SO0, SI0, SO1, SI1)
- External clock input/output pin (SCK0, SCK1)

The SIO module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control register settings. To ensure flexible data transmission rates, you can select an internal or external clock source.

PROGRAMMING PROCEDURE

To program the SIO modules, follow these basic steps(SIO0):

- 1. Configure P2.1, P2.0 and P2.2 to alternative function (SI0, SO0, SCK0) for interfacing SIO module by setting the P2CONL register to appropriately value.
- 2. Load an 8-bit value to the SIOCON control register to properly configure the serial I/O module. In this operation, SIOCON.2 must be set to "1" to enable the data shifter.
- 3. For interrupt generation, set the serial I/O interrupt enable bit, SIOCON.1 to "1".
- 4. To transmit data to the serial buffer, write data to SIODATA and set SIOCON.3 to 1, then the shift operation starts.
- 5. When the shift operation (transmit/receive) is completed, the SIO pending bit (SIOCON.0) is set to "1" and an SIO interrupt request is generated.

SIO CONTROL REGISTER (SIOCON)

The control register for the serial I/O interface module, SIOCON, is located in set 1, bank 1 at address E1H(SIO0) and Page 8 at address 00H(SIO1). It has the control settings for SIO module.

- Clock source selection (internal or external) for shift clock
- Interrupt enable
- Edge selection for shift operation
- Clear 3-bit counter and start shift operation
- Shift operation (transmit) enable
- Mode selection (transmit/receive or receive-only)
- Data direction selection (MSB first or LSB first)

A reset clears the SIOCON value to '00H'. This configures the corresponding module with an internal clock source, P.S clock at the SCK, selects receive-only operating mode, the data shift operation and the interrupt are disabled, and the data direction is selected to MSB-first.

So, if you want to use SIO module, you must write appropriate value to SIOCON.

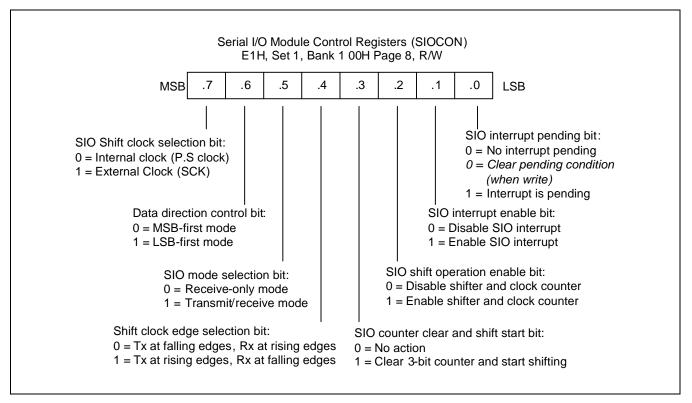


Figure 13-1. SIO Module Control Register (SIOCON)

SIO PRESCALER REGISTER (SIOPS, SIOPS1)

The control register for the serial I/O interface module, is located in set 1, bank 1, at address F4H(SIOPS) and Page 8, at address 01H(SIOPS1).

The value stored in the SIO prescaler registers, SIOPS, lets you determine the SIO clock rate (baud rate) as follows:

Baud rate = Input clock $(f_{XX})/[(SIOPS value + 1) x 2]$ or SCK input clock

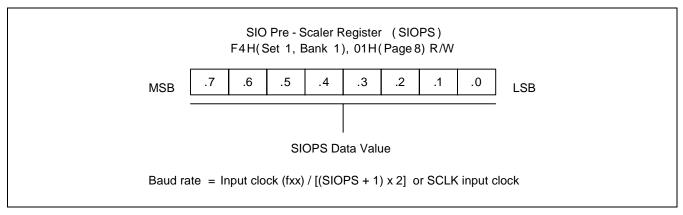


Figure 13-2. SIO Prescaler Register (SIOPS)

BLOCK DIAGRAM

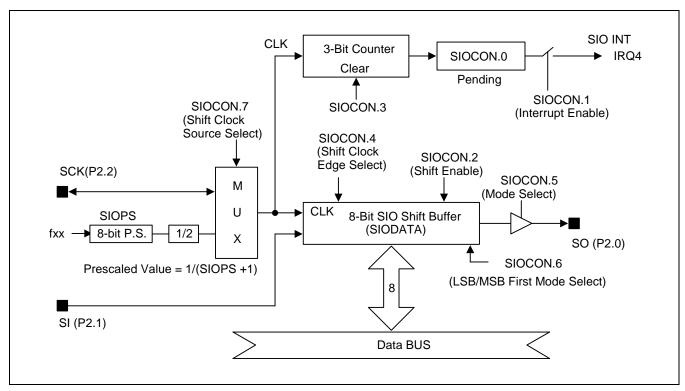


Figure 13-3. SIO Functional Block Diagram

SERIAL I/O TIMING DIAGRAMS

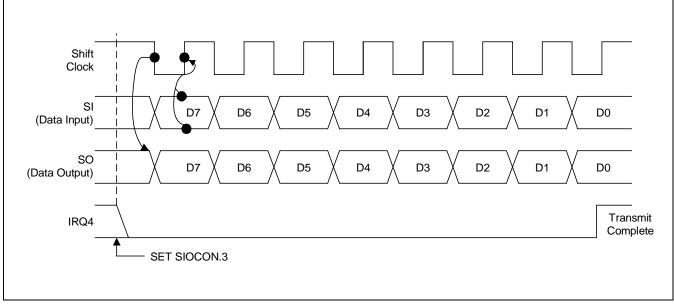


Figure 13-4. SIO Timing in Transmit/Receive Mode (Tx at falling edge, SIOCON.4=0)

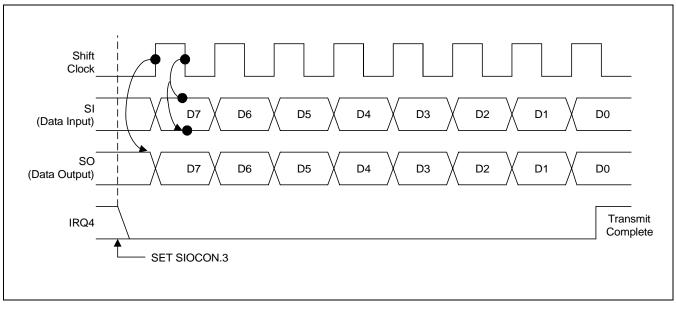
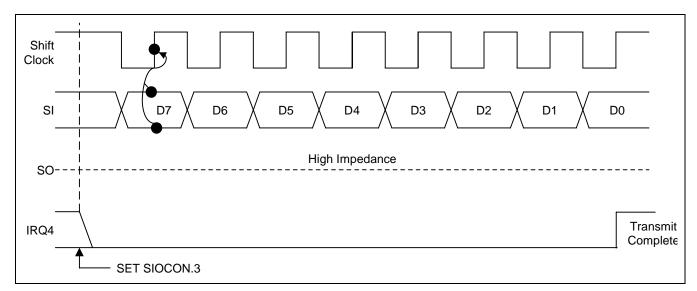



Figure 13-5. SIO Timing in Transmit/Receive Mode (Tx at rising edge, SIOCON.4=1)

PROGRAMMING TIP — Use Internal Clock to Transmit and Receive Serial Data

1. The method that uses interrupt is used.

	•			
	DI LD	P2CONL, #03H	;	Disable All interrupts P2.2–P2.0 are selected to alternative function for SI, SO, SCK, respectively
	LD	IMR, #00010000b	, ,	Enable IRQ4 Interrupt
	SB1 LD LD SB0	SIODATA, TDATA SIOPS, #90H SIOCON, #2EH	- - - - - - - - - - - - - - - - - - -	Load data to SIO buffer Baud rate = input clock(fxx)/[(144 + 1) x 2] Internal clock, MSB first, transmit/receive mode Select Tx falling edges to start shift operation Clear 3-bit counter and start shifting Enable shifter and clock counter Enable SIO interrupt and clear pending
	EI ∙			
	•			
SIOINT	PUSH SRP0 SB1	RP0 #RDATA	, , ,	
	LD OR AND POP IRET	R0,SIODATA SIOCON,#08H SIOCON,#11111110b RP0	, , ,	Load received data to general register SIO restart Clear interrupt pending bit

PROGRAMMING TIP — Use Internal Clock to Transfer and Receive Serial Data (Continued)

2. The method that uses software pending check is used.

• • DI		;	Disable All interrupts
SB1 LD LD LD	SIODATA, TDATA SIOPS, #90H SIOCON, #2CH	· , · , · , · , · , · , · , · , · , · ,	Load data to SIO buffer Baud rate = input clock(f_{XX})/[(144 + 1) × 2] Internal clock, MSB first, transmit/receive mode Select falling edges to start shift operation clear 3-bit counter and start shifting Disable SIO interrupt and pending clear
LD BTJRF NOP AND LD • • SB0 •	R6,SIOCON SIOtest,R6.0 SIOCON,#0FEH RDATA,SIODATA	· , , , , , , , , , , , , , , , , , , ,	To check whether transmit and receive is finished Check pending bit Pending clear by software Load received data to RDATA
	SB1 LD LD LD EI LD BTJRF NOP AND LD • •	SB1 LD SIODATA, TDATA LD SIOPS, #90H LD SIOCON, #2CH EI LD R6,SIOCON BTJRF SIOtest,R6.0 NOP AND SIOCON,#0FEH LD RDATA,SIODATA • •	SB1 LD SIODATA, TDATA LD SIOPS, #90H LD SIOCON, #2CH EI LD R6,SIOCON BTJRF SIOtest,R6.0 NOP AND SIOCON,#0FEH LD RDATA,SIODATA •

14 UART(0/1/2)

OVERVIEW

The UART block has a full-duplex serial port with programmable operating modes: There is one synchronous mode and three UART (Universal Asynchronous Receiver/Transmitter) modes:

- Serial I/O with baud rate of $fxx/(16 \times (BRDATA+1))$
- 8-bit UART mode; variable baud rate
- 9-bit UART mode; fxx/16
- 9-bit UART mode, variable baud rate

UART receive and transmit buffers are both accessed via the data register, UDATA0, is set 1, bank 1 at address E2H, UDATA1, is set 1, bank 1 at address FAH, UDATA2 is Page 8 at address 05H. Writing to the UART data register loads the transmit buffer; reading the UART data register accesses a physically separate receive buffer.

When accessing a receive data buffer (shift register), reception of the next byte can begin before the previously received byte has been read from the receive register. However, if the first byte has not been read by the time the next byte has been completely received, the first data byte will be lost.

In all operating modes, transmission is started when any instruction (usually a write operation) uses the UDATA0, UDATA1, UDATA2 register as its destination address. In mode 0, serial data reception starts when the receive interrupt pending bit (UARTPND.1, UARTPND.3, UARTPND.5) is "0" and the receive enable bit (UARTCON0.4, UARTCON1.4, UARTCON2.4) is "1". In mode 1, 2, and 3, reception starts whenever an incoming start bit ("0") is received and the receive enable bit (UARTCON0.4, UARTCON1.4, UARTCON2.4) is set to "1".

PROGRAMMING PROCEDURE

To program the UART0 modules, follow these basic steps:

- 1. Configure P5.3 and P5.2 to alternative function RxD0, TxD0 for UART0 module by setting the P5CONL register to appropriatly value.
- 2. Load an 8-bit value to the UARTCON0 control register to properly configure the UART0 I/O module.
- 3. For interrupt generation, set the UART0 interrupt enable bit (UARTCON0.1 or UARTCON0.0) to "1".
- 4. When you transmit data to the UART0 buffer, writing data to UDATA0, the shift operation starts.
- 5. When the shift operation (transmit/receive) is completed, UART0 pending bit (UARTPND.1 or UARTPND.0) is set to "1" and an UART0 interrupt request is generated.

UART CONTROL REGISTER (UARTCON0, UARTCON1, UARTCON2)

The control register for the UART is called UARTCON0 in set 1, bank 1 at address E3H, UARTCON1 in set 1, bank 1 at address FBH, UARTCON2 in Page8 at address 03H. It has the following control functions:

- Operating mode and baud rate selection
- Multiprocessor communication and interrupt control
- Serial receive enable/disable control
- 9th data bit location for transmit and receive operations (modes 2 and 3 only)
- UART transmit and receive interrupt control

A reset clears the UARTCON0, UARTCON1, UARTCON2 value to "00H". So, if you want to use UART0, UART1 or UART2 module, you must write appropriate value to UARTCON0, UARTCON1, UARTCON2.

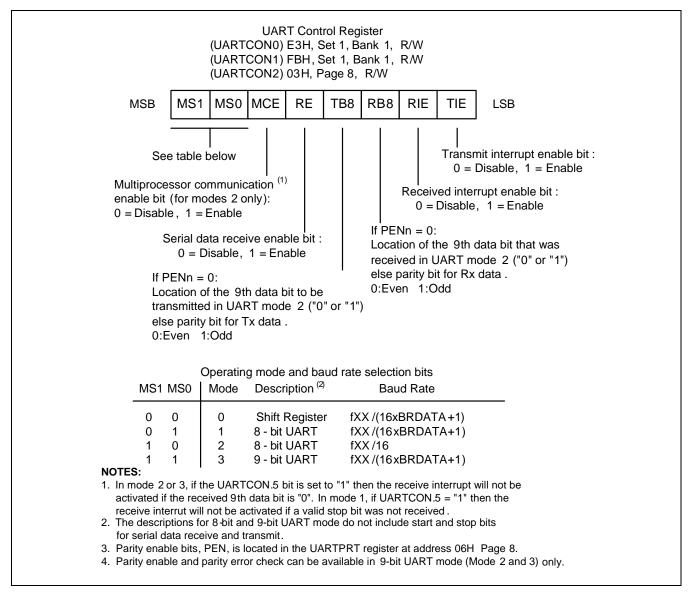


Figure 14-1. UART Control Register (UARTCON0, UARTCON1)

UART INTERRUPT PENDING REGISTER (UARTPND)

The UART interrupt pending register, UARTPND is located in set 1, bank 1 at address E5H, it contains the UART0, 1, 2 data transmit interrupt pending bit and the receive interrupt pending bit.

In mode 0, the receive interrupt pending flag UARTPND.1, UARTPND.3, UARTPND.5 bit is set to "1" when the 8th receive data bit has been shifted. In mode 1, 2 or 3, the UARTPND.1, UARTPND.3, UARTPND.5 bit is set to "1" at the halfway point of the stop bit's shift time. When the CPU has acknowledged the receive interrupt pending condition, the UARTPND.1, UARTPND.3, UARTPND.5 flag must then be cleared by software in the interrupt service routine.

In mode 0, the transmit interrupt pending flag UARTPND.0, UARTPND.2, UARTPND.4 is set to "1" when the 8th transmit data bit has been shifted. In mode 1, 2 or 3, the UARTPND.0, UARTPND.2, UARTPND.4 bit is set at the start of the stop bit. When the CPU has acknowledged the transmit interrupt pending condition, the UARTPND.0, UARTPND.2, UARTPND.4 flag must then be cleared by software in the interrupt service routine.

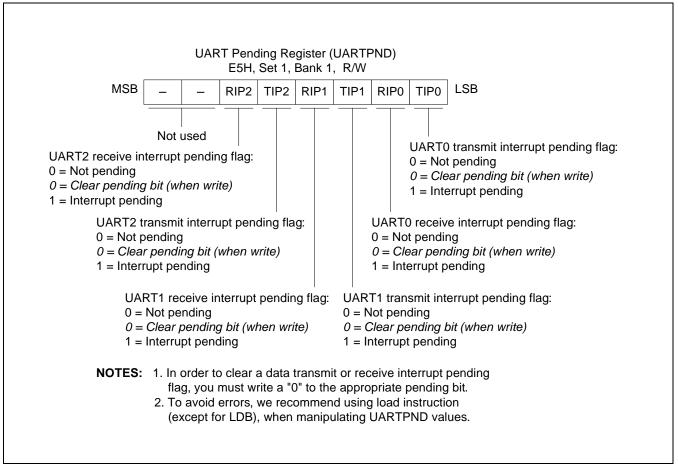


Figure 14-2. UART Interrupt Pending Register (UARTPND)

UART PARITY CONTROL and STATUS REGISTER (UARTPRT)

In mode 2, 3 (9-bit UART data), by setting the parity enable bit (PEN0, 1, 2) of UARTPRT register to '1', the 9th data bit of transmit data will be an automatically generated parity bit. Also, the 9th data bit of the received data will be treated as a parity bit for checking the received data.

In parity enable mode (PENn = 1), UARTCON.3 (TB8) and UARTCON.2 (RB8) will be a parity selection bit for transmit and receive data respectively. The UARTCON.3 (TB8) is for settings of the even parity generation (TB8 = 0) or the odd parity generation (TB8 = 1) in the transmit mode. The UARTCON.2 (RB8) is also for settings of the even parity checking (RB8= 0) or the odd parity checking (RB8 = 1) in the receive mode. The parity enable (generation / checking) functions are not available in UART mode 0 and 1. If you don't want to use a parity mode, UARTCON.2 (RB8) and UARTCON.3 (TB8) are a normal control bit as the 9th data bit, in this case, PENn must be disable ("0") in mode 2, 3. Also it is needed to select the 9th data bit to be transmitted by writing TB8 to "0" or "1".

The receive parity error flag (RPEn) will be set to '0' or '1' depending on parity error whenever the 8th data bit of the received data has been shifted.

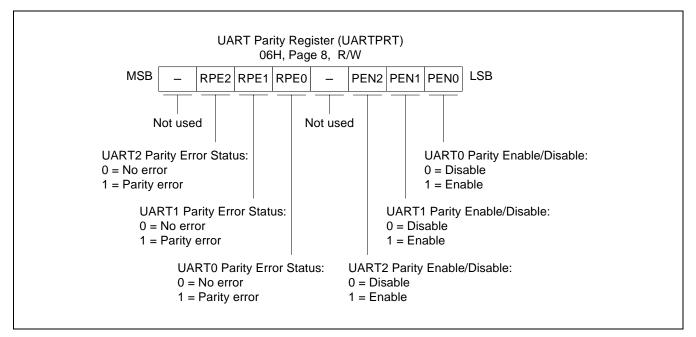
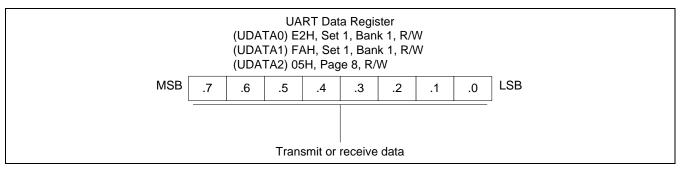



Figure 14-3. UART Parity Register

UART DATA REGISTER (UDATA0, UDATA1, UDATA2)

UART BAUD RATE DATA REGISTER (BRDATA0, BRDATA1, BRDATA2)

The value stored in the baud rate register, BRDATA0, BRDATA1, BRDATA2 lets you determine the UART clock rate (baud rate).

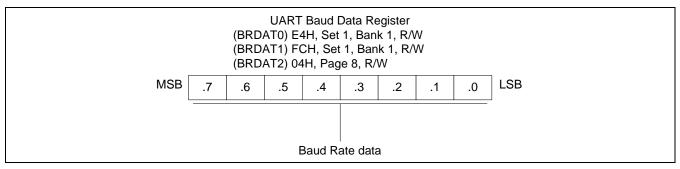


Figure 14-5. UART Baud Rate Data Register (BRDATA0, BRDATA1, BRDATA2)

BAUD RATE CALCULATIONS (UART0)

Mode 0 Baud Rate Calculation

In mode 0, the baud rate is determined by the UART0 baud rate data register, BRDATA0 in set1, bank 1 at address E4H.

Mode 0 baud rate = $fxx/(16 \times (BRDATA0 + 1))$

Mode 2 Baud Rate Calculation

The baud rate in mode 2 is fixed at the f_{OSC} clock frequency divided by 16:

Mode 2 baud rate = fxx/16

Modes 1 and 3 Baud Rate Calculation

In modes 1 and 3, the baud rate is determined by the UART0 baud rate data register, BRDATA0 in set 1, bank 1 at address E4H.

Mode 1 and 3 baud rate = $fxx/(16 \times (BRDATA0 + 1))$

Mada	Baud Rate	Oscillation Clock	BRDATA0, 1, 2		
Mode	Bauu Kale Oscillation Clock		Decimal	Hexdecimal	
Mode 2	0.5 MHz	8 MHz	х	x	
Mode 0	230,400 Hz	11.0592 MHz	02	02H	
Mode 1	115,200 Hz	11.0592 MHz	05	05H	
Mode 3	57,600 Hz	11.0592 MHz	11	0BH	
	38,400 Hz	11.0592 MHz	17	11H	
	19,200 Hz	11.0592 MHz	35	23H	
	9,600 Hz	11.0592 MHz	71	47H	
	4,800 Hz	11.0592 MHz	143	8FH	
	62,500 Hz	10 MHz	09	09H	
	9,615 Hz	10 MHz	64	40H	
	38,461 Hz	8 MHz	12	0CH	
	12,500 Hz	8 MHz	39	27H	
	19,230 Hz	4 MHz	12	0CH	
	9,615 Hz	4 MHz	25	19H	

Table 14-1. Commonly Used Baud Rates Generated by BRDATA0, 1, 2

BLOCK DIAGRAM

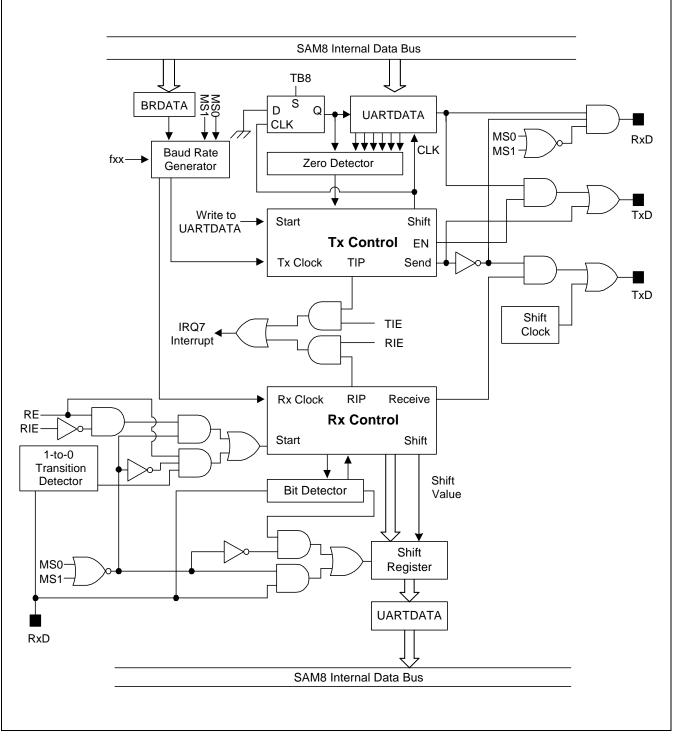


Figure 14-6. UART Functional Block Diagram

UARTO MODE 0 FUNCTION DESCRIPTION

In mode 0, UART0 is input and output through the RxD0 (P5.3) pin and TxD0 (P5.2) pin outputs the shift clock. Data is transmitted or received in 8-bit units only. The LSB of the 8-bit value is transmitted (or received) first.

Mode 0 Transmit Procedure

- 1. Select mode 0 by setting UARTCON0.6 and .7 to "00B".
- 2. Write transmission data to the shift register UDATA0 (E2H, set 1, bank 1) to start the transmission operation.

Mode 0 Receive Procedure

- 1. Select mode 0 by setting UATCON0.6 and .7 to "00B".
- 2. Clear the receive interrupt pending bit (UARTPND.1) by writing a "0" to UARTPND.1.
- 3. Set the UART0 receive enable bit (UARTCON0.4) to "1".
- 4. The shift clock will now be output to the TxD0 (P5.2) pin and will read the data at the RxD0 (P5.3) pin. A UART0 receive interrupt (IRQ7, vector F0H) occurs when UARTCON0.1 is set to "1".

Shift		_
RxD (Data Out)	D0 X D1 X D2 X D3 X D4 X D5 X D6 X D7	_
TxD (Shift Clock)		_
TIP		
N	rite to UARTPND (Clear RIP and set RE)	_
1 L_	rite to UARTPND (Clear RIP and set RE)	-
RIP	rite to UARTPND (Clear RIP and set RE)	-
RIP	rite to UARTPND (Clear RIP and set RE)	-
RIP RE Shift RxD (Data In) —	Irite to UARTPND (Clear RIP and set RE)	-

Figure 14-7. Timing Diagram for UART Mode 0 Operation

UARTO MODE 1 FUNCTION DESCRIPTION

In mode 1, 10-bits are transmitted through the TxD0 pin or received through the RxD0 pin. Each data frame has three components:

- Start bit ("0")
- 8 data bits (LSB first)
- Stop bit ("1")

When receiving, the stop bit is written to the RB8 bit in the UARTCON0 register. The baud rate for mode 1 is variable.

Mode 1 Transmit Procedure

- 1. Select the baud rate generated by setting BRDATA0.
- 2. Select mode 1 (8-bit UART0) by setting UARTCON0 bits 7 and 6 to '01B'.
- 3. Write transmission data to the shift register UDATA0 (E2H, set 1, bank 1). The start and stop bits are generated automatically by hardware.

Mode 1 Receive Procedure

- 1. Select the baud rate to be generated by setting BRDATA0.
- 2. Select mode 1 and set the RE (Receive Enable) bit in the UARTCON0 register to "1".
- 3. The start bit low ("0") condition at the RxD0 (P5.3) pin will cause the UART0 module to start the serial data receive operation.

Tx Clock Write to Shift Register (UDATA)	
Shift	Bit Lange La
RxD Start Bit D0 D1 D2 D3 D4 D5 D6 D7 Bit Detect Sample Time	Stop Bit
Shift	Receive

Figure 14-8. Timing Diagram for UART Mode 1 Operation

UARTO MODE 2 FUNCTION DESCRIPTION

In mode 2, 11-bits are transmitted (through the TxD0 pin) or received (through the RxD0 pin). Each data frame has four components:

- Start bit ("0")
- 8 data bits (LSB first)
- Programmable 9th data bit
- Stop bit ("1")

The 9th data bit to be transmitted can be assigned a value of "0" or "1" by writing the TB8 bit (UARTCON0.3). When receiving, the 9th data bit that is received is written to the RB8 bit (UARTCON0.2), while the stop bit is ignored. The baud rate for mode 2 is fosc/16 clock frequency.

Mode 2 Transmit Procedure

- 1. Select mode 2 (9-bit UART0) by setting UARTCON0 bits 6 and 7 to '10B'. Also, select the 9th data bit to be transmitted by writing TB8 to "0" or "1".
- 2. Write transmission data to the shift register, UDATA0 (E2H, set 1, bank 1), to start the transmit operation.

Mode 2 Receive Procedure

- 1. Select mode 2 and set the receive enable bit (RE) in the UARTCON0 register to "1".
- 2. The receive operation starts when the signal at the RxD pin goes to low level.

Write to Shift Register (UARTDATA)
TxD Start Bit D0 D1 D2 D3 D4 D5 D6 D7 TB8 Stop Bit
TIP
RxD Start Bit D0 D1 D2 D3 D4 D5 D6 D7 RB8 Stop Bit
Shift
RIP

Figure 14-9. Timing Diagram for UART Mode 2 Operation

UARTO MODE 3 FUNCTION DESCRIPTION

In mode 3, 11-bits are transmitted (through the TxD0) or received (through the RxD0). Mode 3 is identical to mode 2 except for baud rate, which is variable. Each data frame has four components:

- Start bit ("0")
- 8 data bits (LSB first)
- Programmable 9th data bit
- Stop bit ("1")

Mode 3 Transmit Procedure

- 1. Select the baud rate generated by setting BRDATA0.
- 2. Select mode 3 operation (9-bit UART0) by setting UARTCON0 bits 6 and 7 to '11B'. Also, select the 9th data bit to be transmitted by writing UARTCON0.3 (TB8) to "0" or "1".
- 3. Write transmission data to the shift register, UDATA0 (E2H, set 1, bank 1), to start the transmit operation.

Mode 3 Receive Procedure

- 1. Select the baud rate to be generated by setting BRDATA0.
- 2. Select mode 3 and set the RE (Receive Enable) bit in the UARTCON0 register to "1".
- 3. The receive operation will be started when the signal at the RxD0 pin goes to low level.

	Π	ΠΠ	
Write to Shift Register (UARTDATA)			_
Shift			12
TxD Start Bit D0 D1 D2 D3 D4 D5 D6 D6	7 ТВ	8 Stop Bit	 Transmit
TIP			-
			_
RxD Start Bit D0 D1 D2 D3 D4 D5 D	6 D7	RB8 Sto	— op it
			_
Shift			 Receive
RIP			_ œ

Figure 14-10. Timing Diagram for UART Mode 3 Operation

SERIAL COMMUNICATION FOR MULTIPROCESSOR CONFIGURATIONS

The S3C8-series multiprocessor communication feature lets a "master" S3C84MB/F84MB send a multiple-frame serial message to a "slave" device in a multi-S3C84MB/F84MB configuration. It does this without interrupting other slave devices that may be on the same serial line.

This feature can be used only in UART modes 2 or 3. In these modes 2 and 3, 9 data bits are received. The 9th bit value is written to RB8 (UARTCONn.2). The data receive operation is concluded with a stop bit. You can program this function so that when the stop bit is received, the serial interrupt will be generated only if RB8 = "1".

To enable this feature, you set the MCE bit in the UARTCONn register. When the MCE bit is "1", serial data frames that are received with the 9th bit = "0" do not generate an interrupt. In this case, the 9th bit simply separates the address from the serial data.

Sample Protocol for Master/Slave Interaction

When the master device wants to transmit a block of data to one of several slaves on a serial line, it first sends out an address byte to identify the target slave. Note that in this case, an address byte differs from a data byte: In an address byte, the 9th bit is "1" and in a data byte, it is "0".

The address byte interrupts all slaves so that each slave can examine the received byte and see if it is being addressed. The addressed slave then clears its MCE bit and prepares to receive incoming data bytes.

The MCE bits of slaves that were not addressed remain set, and they continue operating normally while ignoring the incoming data bytes.

While the MCE bit setting has no effect in mode 0, it can be used in mode 1 to check the validity of the stop bit. For mode 1 reception, if MCE is "1", the receive interrupt will be issue unless a valid stop bit is received.

Setup Procedure for Multiprocessor Communications

Follow these steps to configure multiprocessor communications:

- 1. Set all S3C84MB/F84MB devices (masters and slaves) to UART mode 2 or 3.
- 2. Write the MCE bit of all the slave devices to "1".
- 3. The master device's transmission protocol is:
 - First byte: the address identifying the target slave device (9th bit = "1")
 - Next bytes: data (9th bit = "0")
- 4. When the target slave receives the first byte, all of the slaves are interrupted because the 9th data bit is "1". The targeted slave compares the address byte to its own address and then clears its MCE bit in order to receive incoming data. The other slaves continue operating normally.

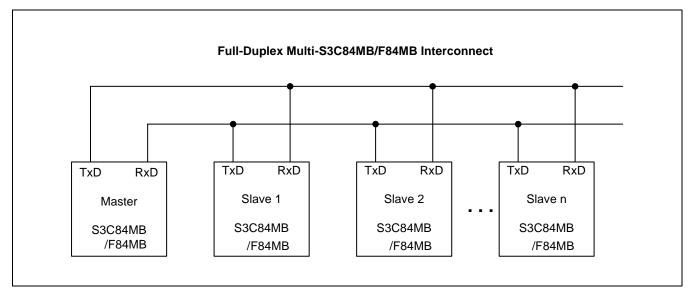


Figure 14-11. Connection Example for Multiprocessor Serial Data Communications

15 10-BIT A/D CONVERTER

OVERVIEW

The 10-bit A/D converter (ADC) module uses successive approximation logic to convert analog levels entering at one of the fifteen input channels to equivalent 10-bit digital values. The analog input level must lie between the AV_{REF} and AV_{SS} values. The A/D converter has the following components:

- Analog comparator with successive approximation logic
- D/A converter logic (resistor string type)
- ADC control register, ADCON (set 1, bank 1, F7H, read/write, but ADCON.3 is read only)
- Eight multiplexed analog data input pins (ADC0-ADC14)
- 10-bit A/D conversion data output register (ADDATAH, ADDATAL)
- Internal AV_{REF} and AV_{SS}

FUNCTION DESCRIPTION

To initiate an analog-to-digital conversion procedure, at first, you must configure P6.0~6, P7.0~7 to analog input before A/D conversions because the P6.0~6, P7.0~7 pins can be used alternatively as normal I/O or analog input pins. To do this, you load the appropriate value to the P6CON, P7CON (for ADC0 – ADC14) register. And you write the channel selection data in the A/D converter control register ADCON to select one of the fifteen analog input pins (ADCn, n = 0-14) and set the conversion start or enable bit, ADCON.0. An 10-bit conversion operation can be performed for only one analog input channel at a time. The read-write ADCON register is located in set 1, bank 1 at address F7H.

During a normal conversion, ADC logic initially sets the successive approximation register to 200H (the approximate half-way point of a 10-bit register). This register is then updated automatically during each conversion step. The successive approximation block performs 10-bit conversions for one input channel at a time. You can dynamically select different channels by manipulating the channel selection bit value (ADCON.6–4) in the ADCON register.

To start the A/D conversion, you should set the enable bit, ADCON.0. When a conversion is completed, ADCON.3, the end-of-conversion (EOC) bit is automatically set to 1 and the result is dumped into the ADDATAH, ADDATAL registers where it can be read. The ADC module enters an idle state. Remember to read the contents of ADDATAH and ADDATAL before another conversion starts. Otherwise, the previous result will be overwritten by the next conversion result.

NOTE

Because the ADC does not use sample-and-hold circuitry, it is important that any fluctuations in the analog level at the ADC0–ADC14 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to circuit noise, will invalidate the result.

A/D CONVERTER CONTROL REGISTER (ADCON)

The A/D converter control register, ADCON, is located in set1, bank 1 at address F7H. ADCON is read-write addressable using 8-bit instructions only. But EOC bit, ADCON.3 is read only. ADCON has four functions:

- Bits 7–4 select an analog input pin (ADC0–ADC14).
- Bit 3 indicates the end of conversion status of the A/D conversion.
- Bits 2–1 select a conversion speed.
- Bit 0 starts the A/D conversion.

Only one analog input channel can be selected at a time. You can dynamically select any one of the eight analog input pins, ADC0–ADC14 by manipulating the 4-bit value for ADCON.7–ADCON.4

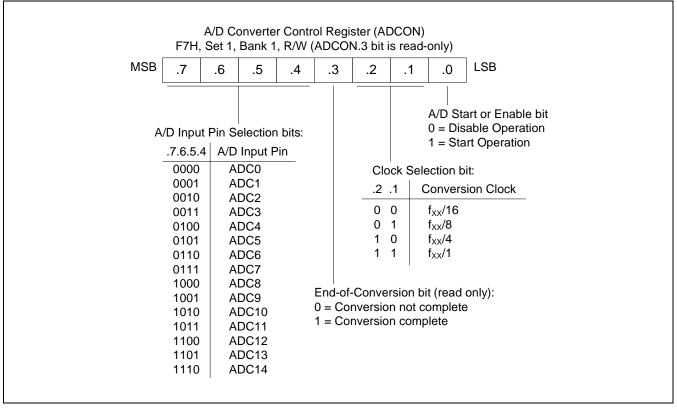


Figure 15-1. A/D Converter Control Register (ADCON)

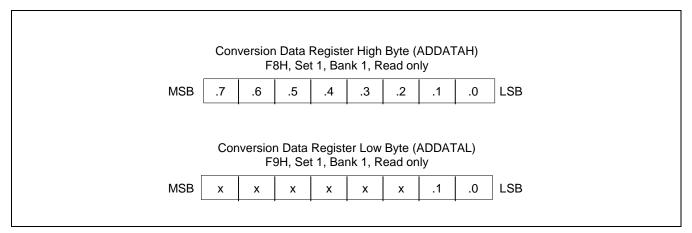


Figure 15-2. A/D Converter Data Register (ADDATAH, ADDATAL)

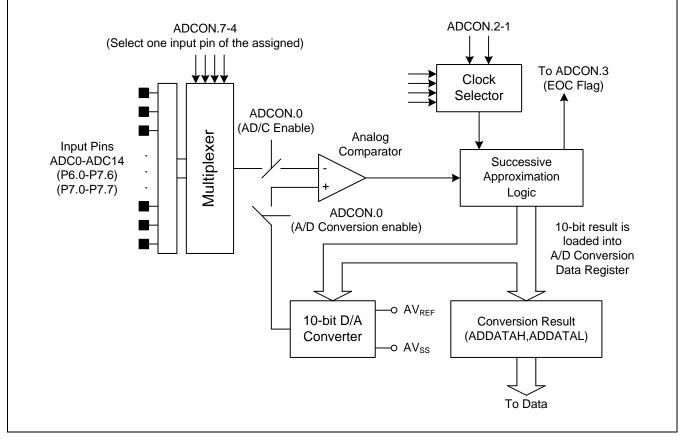


Figure 15-3. A/D Converter Circuit Diagram

INTERNAL REFERENCE VOLTAGE LEVELS

In the ADC function block, the analog input voltage level is compared to the reference voltage. The analog input level must remain within the range AV_{SS} to AV_{REF} (usually $AV_{REF} = V_{DD}$).

Different reference voltage levels are generated internally along the resistor tree during the analog conversion process for each conversion step. The reference voltage level for the first bit conversion is always $1/2 \text{ AV}_{REF}$.

CONVERSION TIMING

The A/D conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to step-up A/D conversion. Therefore, total of 50 clocks is required to complete a 10-bit conversion. With a maximum ADC input clock frequency (2.5 MHz), one clock cycle is 400 ns. If each bit conversion requires 4 clocks, the conversion rate is calculated as follows:

4 clocks/bit x 10-bits + step-up time (10 clock) = 50 clocks 50 clock x 400 ns = 20 μ s at f_{ADC} =2.5 MHz, 1 clock time = 1/ f_{ADC}

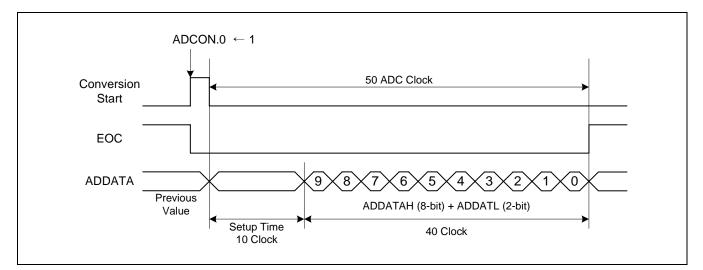


Figure 15-4. A/D Converter Timing Diagram

INTERNAL A/D CONVERSION PROCEDURE

- 1. Analog input must remain between the voltage range of AV_{SS} and AV_{REF}.
- 2. Configure P7.0–P7.7 for analog input before A/D conversions. To do this, you load the appropriate value to the P7CON (for ADC0–ADC14) register.
- 3. Before the conversion operation starts, you must first select one of the eight input pins (ADC0–ADC14) by writing the appropriate value to the ADCON register.
- 4. When conversion has been completed, (50 clocks have elapsed), the EOC, ADCON.3 flag is set to "1", so that a check can be made to verify that the conversion was successful.
- 5. The converted digital value is loaded to the output register, ADDATAH (8-bit) and ADDATAL (2-bit), then the ADC module enters an idle state.
- 6. The digital conversion result can now be read from the ADDATAH and ADDATAL register.

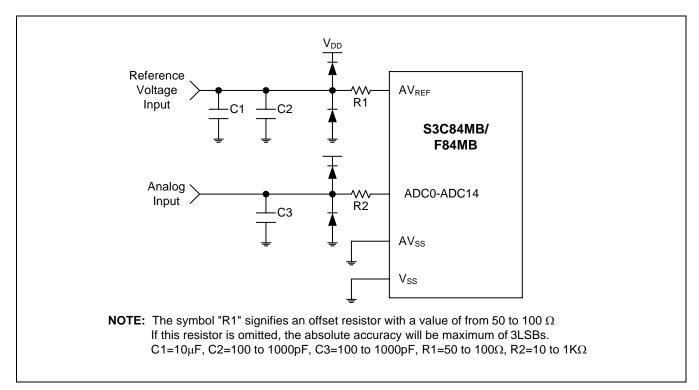


Figure 15-5. Recommended A/D Converter Circuit for Highest Absolute Accuracy

PROGRAMMING TIP — Configuring A/D Converter

	• SB0 LD •	P7CON,#11111111B	;	P7.7–P7.0 A/D Input MODE
AD0_CHK:	SB1 LD TM JR	ADCON,#00000001B ADCON,#00001000B Z, AD0_CHK		Channel ADC0, Conversion start A/D conversion end $? \rightarrow$ EOC check No
	LD LD SB0 •	AD0BUFH,ADDATAH AD0BUFL,ADDATAL		8-bit Conversion data 2-bit Conversion data
AD3_CHK:	SB1 LD TM JR	ADCON,#00110001B ADCON,#00001000B Z,AD3_CHK	;	Channel AD3, $f_{XX}/16$, Conversion start A/D conversion end ? \rightarrow EOC check No
	LD LD SB0 •	AD3BUFH,ADDATAH AD3BUFL,ADDATAL		8-bit Conversion data 2-bit Conversion data

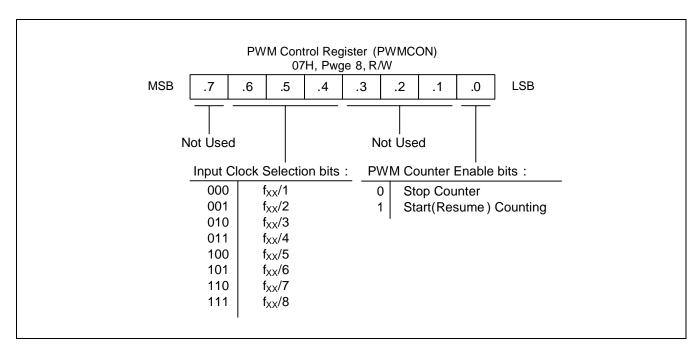
16 PULSE WIDTH MODULATION

OVERVIEW

The S3C84MB/F84MB microcontrollers have two 14-bit PWM circuits and two 8-bit PWM circuits. The 14-bit circuits are called PWM0 and PWM1; the 8-bit circuits are PWM2–PWM3. The operation of all the PWM circuits is controlled by a single control register, PWMCON. PWMCON also contains a 3-bit prescaler for adjusting the PWM frequency (cycle).

The PWM counter is a 14-bit incrementing counter. It is used by the 14-bit PWM circuits. To start the counter and enable the PWM circuits, you must set PWMCON.0 to "1". If the counter is stopped, it retains its current count value; when re-started, it resumes counting from the retained count value.

The 3-bit prescaler controls the clock input frequency to the PWM counter. By modifying the prescaler value, you can divide the input clock by one (non-divided), two, three, four, five, six, seven, or eight. The prescaler output is the clock frequency of the PWM counter.


PWM CONTROL REGISTER (PWMCON)

The control register for the PWM module, PWMCON, is located at the register address 07H in Page 8. Bit settings in the PWMCON register control the following functions:

- 3-bit prescaler for scaling the PWM counter clock
- Stop/start (or resume) the PWM counter operation

A reset clears all PWMCON bits to logic zero, disabling the entire PWM module.

PWM2–PWM3

The S3C84MB/F84MB microcontrollers have two 8-bit PWM circuits, called PWM2–PWM3. These 8-bit circuits have the following components:

- 8-bit counter with 3-bit prescaler
- 8-bit comparators
- 8-bit PWM data registers (PWMDAT2–PWMDAT3)
- PWM output pins (PWM2–PWM3)

The PWM2–PWM3 circuits are controlled by the PWMCON register (07H, Page 8).

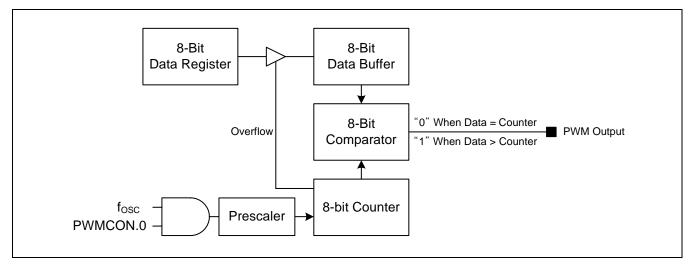


Figure 16-2. Block Diagram for PWM2 and PWM3

PWM2, PWM3 FUNCTION DESCRIPTION

All the two 8-bit PWM circuits function identically: each has its own 8-bit data register and 8-bit comparator. Each circuit compares a unique data register value to the lower 8-bit value of the 8bit PWM counter.

The PWM2–PWM3 data registers are located in Page 8, at locations 0CH, 0DH, respectively. These data registers are read/write addressable. By loading specific values into the respective data registers, you can modulate the pulse width at the corresponding PWM output pins, PWM2–PWM3.

The level at the output pins toggles High and Low at a frequency equal to the counter clock, divided by 256 (2⁸). The duty cycle of the PWM0 and PWM1 pins ranges from 0% to 99.6%, based on the corresponding data register values. To determine the PWM output duty cycle, its 8-bit comparator sends the output level High when the data register value is greater than the lower 8-bit count value. The output level is Low when the data register value is less than or equal to the lower 8-bit count value. The output level at the PWM2–PWM3 pins remains at Low level for the first 256 counter clocks. Then, each PWM waveform is repeated continuously, at the same frequency and duty cycle, until one of the following three events occurs:

- The counter is stopped
- The counter clock frequency is changed
- A new value is written to the PWM data register

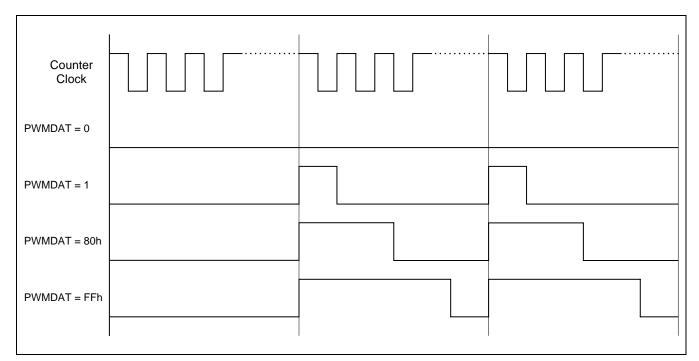


Figure 16-3. PWM Waveforms for PWM2, PWM3

STAGGERED PWM OUTPUTS

The PWM0–PWM3 outputs are staggered in order to reduce the overall noise level on the pulse width modulation circuits. If you load the same value to the PWM0–PWM3 data registers, a match condition (data register value is equal to the lower 8-bit count value) will occur on the same clock cycle for all the PWM circuits. The output of PWM1~3 is delayed by one-half of CPU clock for subsequent clock cycles (see Figure 16-4).

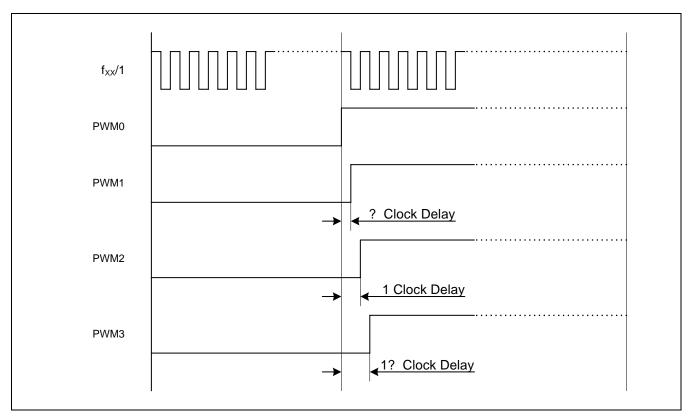


Figure 16-4. PWM Clock to PWM2, PWM3 Output Delays

PWM0-PWM1

The S3C84MB/F84MB pulse width modulation (PWM) module has two 14-bit PWM circuits (PWM0 and PWM1). The 14-bit PWM circuits have the following components:

- 14-bit counter with 3-bit prescaler (an 8-bit counter with 6-bit extension is used for 14-bit output resolution)
- 8-bit comparator and extension cycle circuit
- 8-bit reference data registers (PWM0, PWM1)
- 6-bit extension data registers (PWM0EX, PWM1EX)
- PWM output pins (PWM0, PWM1)

The PWM0 and PWM1 circuits are enabled by the PWMCON register (07H, Page 8).

PWM COUNTER

The PWM counter is a 14-bit increasing counter comprised of a lower byte counter and an upper byte counter. To determine the PWM module's base operating frequency, the lower byte counter is compared to the PWM data register value. In order to achieve higher resolutions, the lower six bits of the upper byte counter can be used to modulate the "stretch" cycle. To control the "stretching" of the PWM output duty cycle at specific intervals, the 6-bit extended counter value is compared with the 6-bit value (bits 2–7) that you write to the module's extension register.

PWM DATA AND EXTENSION REGISTERS

Two PWM (duty) data registers, located Page 8, determine the output value generated by each 14-bit PWM circuit. PWM0 and PWM1 are read/write addressable.

- 8-bit data registers PWM0 (08H) and PWM1(0AH)
- 6-bit extension registers PWM0EX (F5H) and PWM1EX (F7H) of which only bits 2-7 are used

To program the required PWM output, you should load the appropriate initialization values into the 8-bit data registers (PWM0, PWM1) and the 6-bit extension registers (PWM0EX, PWM1EX). To start the PWM counter, or to resume counting, you should set PWMCON.5 to "1". A reset operation disables all PWM output. The current counter value is retained when the counter stops. When the counter starts, counting resumes at the retained value.

PWM CLOCK RATE

The timing characteristics of both 14-bit output channels are identical, and are based on the maximum CPU clock frequency. The 3-bit prescaler value in the PWMCON register determines the frequency of the counter clock.

You can set PWMCON.6-4 to divide the CPU clock frequency by 1 (non-divided), 2, 3, 4, 5, 6, 7, or 8. Because the maximum CPU clock rate for the S3C84MB/F84MB microcontrollers is 16 MHz, the maximum base PWM frequency is 62.5 kHz (16 MHz divided by 256). This assumes a non-divided CPU clock.

Register Name	Mnemonic	Address (Page 8)	Function
PWM0 Data Register	PWM0	08h	8-bit PWM0 basic cycle frame value
	PWM0EX	09h	6-bit extension ("stretch") value
PWM0 Data Register	PWM1	0Ah	8-bit PWM1 basic cycle frame value
	PWM1EX	0Bh	6-bit extension ("stretch") value
PWM Control Register	PWMCON	07h	PWM0 counter stop/start (resume), and 3-bit prescaler for CPU clock; also contains capture A control settings

Table 16-1. PWM0 and PWM1 Control and Data Registers

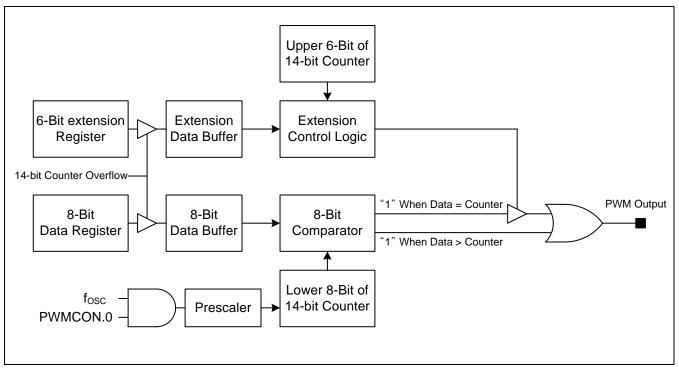


Figure 16-5. Block Diagram for PWM0 and PWM1

PWM0 AND PWM1 FUNCTION DESCRIPTION

The PWM output signal toggles to Low level whenever the lower 8-bit counter matches the reference value stored in the module's data register (PWM0, PWM1). If the value in the PWM data register is not zero, an overflow of the lower counter causes the PWM output to toggle to High level. In this way, the reference value written to the data register determines the module's base duty cycle.

The value in the 6-bit extension counter (the lower six bits of the upper counter) is compared with the extension settings in the 6-bit extension data register (PWM0EX, PWM1EX). This 6-bit extension counter value (bits 2–7), together with extension logic and the PWM module's extension register, is then used to "stretch" the duty cycle of the PWM output. The "stretch" value is one extra clock period at specific intervals, or cycles (see Table 16-2). If, for example, the value in the extension register is '1', the 32nd cycle will be one pulse longer than the other 63 cycles. If the base duty cycle is 50%, the duty of the 32nd cycle will therefore be "stretched" to approximately 51% duty. For example, if you write 80H to the extension register, all odd-numbered pulses will be one cycle longer. If you write FCH to the extension register, all pulses will be stretched by one cycle except the 64th pulse. PWM output goes to an output buffer and then to the corresponding PWM0 and PWM1 output pin. In this way, you can obtain high output resolution at high frequencies.

PWM0EX/PWM1EX Bit	"Stretched" Cycle Number
7	1, 3, 5, 7, 9,, 55, 57, 59, 61, 63
6	2, 6, 10, 14,, 50, 54, 58, 62
5	4, 12, 20, 28,, 44, 52, 60
4	8, 24, 40, 58
3	16, 48
2	32
1	Not Used
0	Not Used

Table 16-2. PWM Output "Stretch" Values for Extension Registers PWM0EX and PWM1EX

PROGRAMMING TIP — Programming PWM0 to Sample Specifications

This example shows how to program the 14-bit pulse-width modulation module, PWM0. The program parameters are as follows:

- The oscillation frequency of the main crystal is 6 MHz
- PWM0 data is in the working register R0
- PWM0EX (PWM0 extension value) is in the working register R1, bits 2–7

The program performs the following operations:

- 1. Set the PWM0 frequency to 23.437 kHz
- 2. If R3.0 = "1", then PWM ← PWM + 12H (If an overflow occurs from R0, then R0 ← 0FFH and R1 ← 0FCH.)
- 3. If R3.0 = "0", then PWM \leftarrow PWM 11H (If an underflow occurs from R0, then R0 \leftarrow 00H and R1 \leftarrow 00H.)

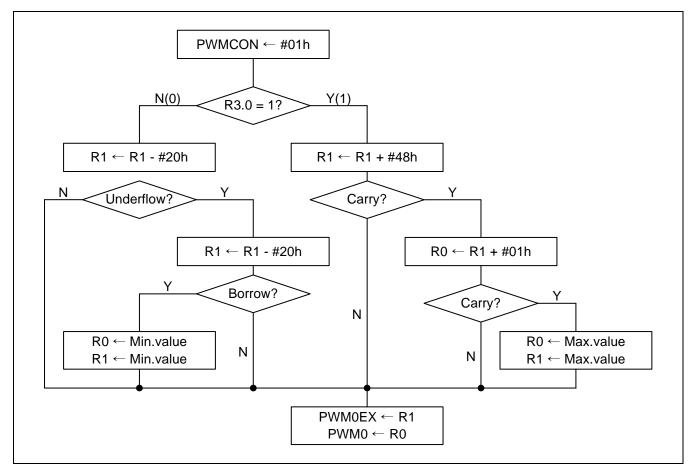


Figure 16-6. Decision Flowchart for PWM0 Programming Tip

PROGRAMMING TIP . Programming PWM0 to Sample Specifications (Continued)

•			
•	LD	PWMCON, #01H	; PS ← 0 (Select 23.437-kHz PWM frequency) ; Enable the PWM counter
	• •		
	BTJRF	pwm0_dec, R3.0	; If R3.0 = "0", then jump to pwm0_dec
pwm0_	inc: ADD JR INC JR LD LD JR	R1, #48H NC, pwm0_data_end R0 NZ, pwm0_data_end R0, #0FFH R1, #0FCH T, pwm0_data_end	; If R3.0 = "1", then add 48H to the PWM data ; If no carry, go to pwm0_data_end ; R0 ← R0 + 1 ; If no overflow, jump to pwm0_data_end for update ; If overflow, set 0FFH to R0 ; Set 0FCH to R1 ; Jump to pwm0_data_end unconditionally
pwm0_	_dec: SUB JP SUB JR CLR CLR	R1, #44H NC, pwm0_data_end R0, #01H NC, pwm0_data_end R0 R1	; R3.0 = "0", so subtract 44H from PWM data ; If no borrow, jump to pwm0_data_end for update ; Decrement R0 (R0 ← R0 . 1) ; If no borrow, jump to pwm0_data_end ; Clear data R0 ; Clear data R1
pwm0_	_data_en LD LD	nd: PWM0EX, R1 PWM0, R0	; Load new value to PWM0EX (bits 2.7) ; Load new value to PWM0

17 PATTERN GENERATION MODULE

OVERVIEW

PATTERN GENERATION FLOW

You can output up to 8-bit through P0.0-P0.7 by tracing the following sequence. First of all, you have to change the PGDATA into what you want to output. And then you have to set the PGCON to enable the pattern generation module and select the triggering signal. From now, bits of PGDATA are on the P0.0-P0.7 whenever the selected triggering signal occurs.

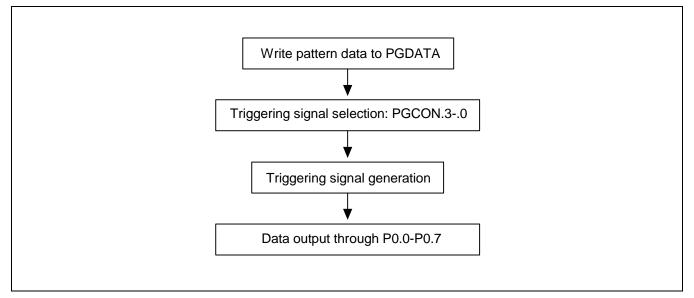


Figure 17-1. Pattern Generation Flow

PATTERN GENERATION MODULE

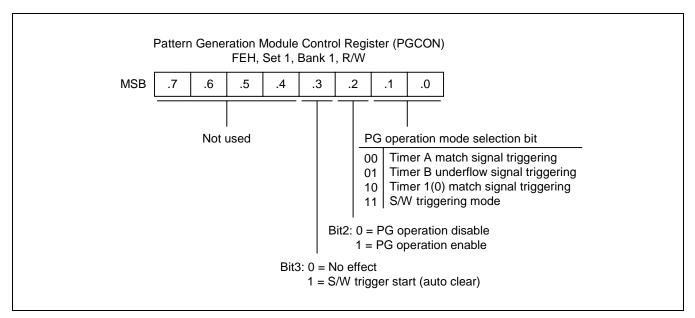


Figure 17-2. PG Control Register (PGCON)

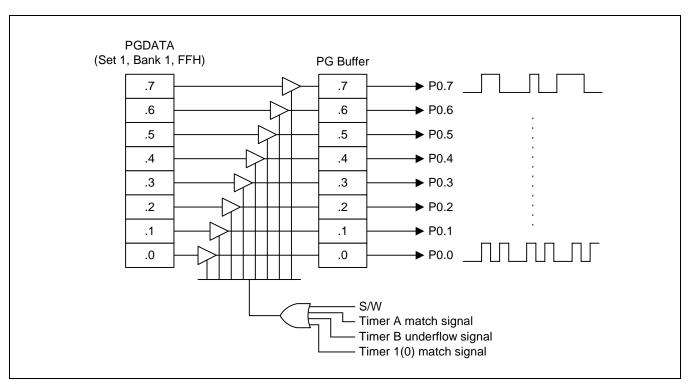


Figure 17-3. Pattern Generation Circuit Diagram

Programming Tip — Using the Pattern Generation

	ORG	0000h		
INITIAL:	ORG	0100h		
INTTAL.	SB0 LD LD LD LD LD LD	SYM,#00h IMR,#01h SPH,#0h SPL,#0FFh BTCON,#10100011b CLKCON,#00011000b	- - - - - - - - - - - -	Disable Global interrupt \rightarrow SYM Enable IRQ0 interrupt High byte of stack pointer \rightarrow SPH Low byte of stack pointer \rightarrow SPL Disable Watch-dog Non-divided
	LD	P0CON,#11111111b	;	Enable PG output
	EI			
MAIN:	NOP NOP			
	SB1 LD OR SB0	PGDATA,#10101010b PGCON,#00001111b	, , ,	Setting pattern data Triggering then pattern data are output
	NOP NOP			
	JR	T,MAIN		
	.END			

18 EMBEDDED FLASH MEMEORY INTERFACE

OVERVIEW

The S3F84MB has an on-chip flash memory internally instead of masked ROM. The flash memory is accessed by instruction 'LDC'. This is a sector erasable and a byte programmable flash. User can program the data in a flash memory area any time you want. The S3F84MB's embedded 64K-byte memory has two operating features as below:

- User Program Mode
- Tool Program Mode: Refer to the chapter 21. S3F84MB FLASH MCU

Flash ROM Configuration

The S3F84MB flash memory consists of 512 sectors. Each sector consists of 128bytes. So, the total size of flash memory is 512x128 bytes (64KB). User can erase the flash memory by a sector unit at a time and write the data into the flash memory by a byte unit at a time.

- 64Kbyte Internal flash memory
- Sector size: 128-Bytes
- 10years data retention
- Fast programming Time: Sector Erase: 10ms (min) Byte Program: 40us (min)
- Byte programmable
- User programmable by 'LDC' instruction
- Sector (128-Bytes) erase available
- External serial programming support
- Endurance: 10,000 Erase/Program cycles (min)
- Expandable OBPTM (On Board Program)

User Program Mode

This mode supports sector erase, byte programming, byte read and one protection mode (Hard Lock Protection). The S3F84MB has the internal pumping circuit to generate high voltage. Therefore, 12.5V into V_{PP} (TEST) pin is not needed. To program a flash memory in this mode several control registers will be used. There are four kind functions in user program mode – programming, reading, sector erase, and one protection mode (Hard lock protection).

ISP™ (ON-BOARD PROGRAMMING) SECTOR

ISPTM sectors located in program memory area can store On Board Program Software (Boot program code for upgrading application code by interfacing with I/O port pin). The ISPTM sectors can't be erased or programmed by 'LDC' instruction for the safety of On Board Program Software.

The ISP sectors are available only when the ISP enable/disable bit is set 0, that is, enable ISP at the Smart Option. If you don't like to use ISP sector, this area can be used as a normal program memory (can be erased or programmed by 'LDC' instruction) by setting ISP disable bit ("1") at the Smart Option. Even if ISP sector is selected, ISP sector can be erased or programmed in the tool program mode by serial programming tools.

The size of ISP sector can be varied by settings of smart option (Refer to Figure 2-2 and Table 18-1). You can choose appropriate ISP sector size according to the size of On Board Program Software.

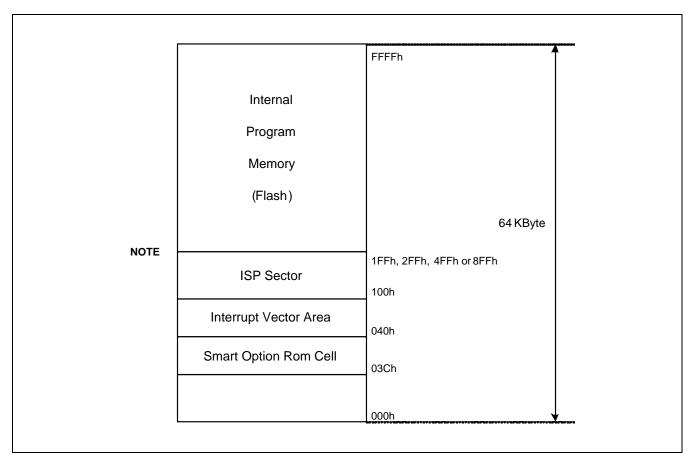


Figure 18-1. Program Memory Address Space

NOTE: User can select suitable ISP protection size by 3EH.1 and 3EH.0. If ISP Protection Enable/Disable Bit (3EH.2) is '1', 3EH.1 and 3EH.0 are meaningless

Smart Option (003EH) ISP Size Selection Bit		Area of ISP Sector	ISD Sector Size	
Bit 2	Bit 1	Bit 0	Area of ISP Sector	ISP Sector Size
1	x	х	0	0
0	0	0	100H – 1FFH (256 Bytes)	256 Bytes
0	0	1	100H – 2FFH (512 Bytes)	512 Bytes
0	1	0	100H – 4FFH (1024 Bytes)	1024 Bytes
0	1	1	100H – 8FFH (2048 Bytes)	2048 Bytes

Table 18-1. ISP Sector Size

NOTE: The area of the ISP sector selected by smart option bit (3EH.2 – 3EH.0) can't be erased and programmed by 'LDC' instruction in user program mode.

FLASH MEMORY CONTROL REGISTERS

FLASH MEMORY CONTROL REGISTER

FMCON register is available only in user program mode to program some data to the flash memory.

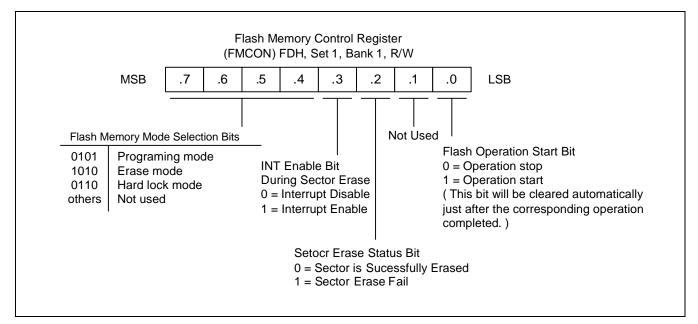


Figure 18-2. Flash Memory Control Register (FMCON)

FLASH MEMORY USER PROGRAMMING ENABLE REGISTER

After reset, the user-programming mode is disabled, because the value of FMUSR is "00000000B".

If necessary, you can use the user programming mode by setting the value of FMUSR is "10100101B".

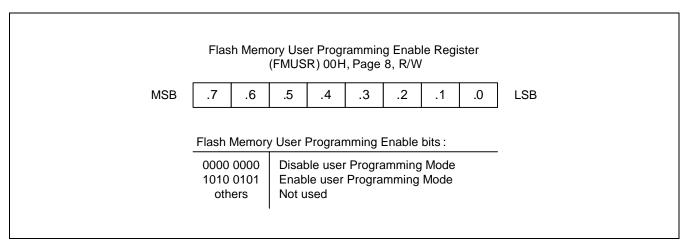


Figure 18-3. Flash Memory User Programming Enable Register (FMUSR)

FLASH MEMORY SECTOR ADDRESS REGISTERS

There are two sector address registers for the erase or programming flash memory. The FMSECL (Flash Memory Sector Address Register Low Byte) indicates the low byte of sector address and FMSECH (Flash Memory Address Sector Register High Byte) indicates the high byte of sector address.

One sector consists of 128-bytes. Each sector's address starts XX00H or XX80H, that is, a base address of sector is XX00H or XX80H. So bit .6-.0 of FMSECL don't mean whether the value is '1' or '0'. We recommend that it is the simplest way to load the sector base address into FMSECH and FMSECL register. When programming the flash memory, user should program after loading a sector base address, which is located in the destination address to write data into FMSECH and FMSECL register. If the next operation is also to write one byte data, user should check whether next destination address is located in the same sector or not. In case of other sectors, user should load sector address to FMSECH and FMSECL Register according to the sector. (Refer to page 15-16 PROGRAMMING TIP — Programming)

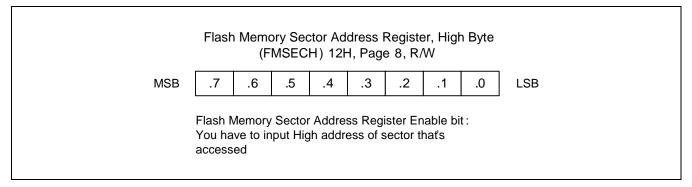


Figure 18-4. Flash Memory Sector Address Register (FMSECH)

Figure 18-5. Flash Memory Sector Address Register (FMSECL)

SECTOR ERASE

User can erase a flash memory partially by using sector erase function only in User Program Mode. The only unit of flash memory to be erased and written in User Program Mode is called sector. The program memory of S3F84MB, 64Kbytes flash memory, is divided into 512 sectors. Every sector has all 128-byte sizes. So the sector to be located destination address should be erased first to program a new data (one byte) into flash memory. Minimum 10ms' delay time for the erase is required after setting sector address and triggering erase start bit (FMCON.0). Sector erase is not supported in tool program modes (MDS mode tool or programming tool).

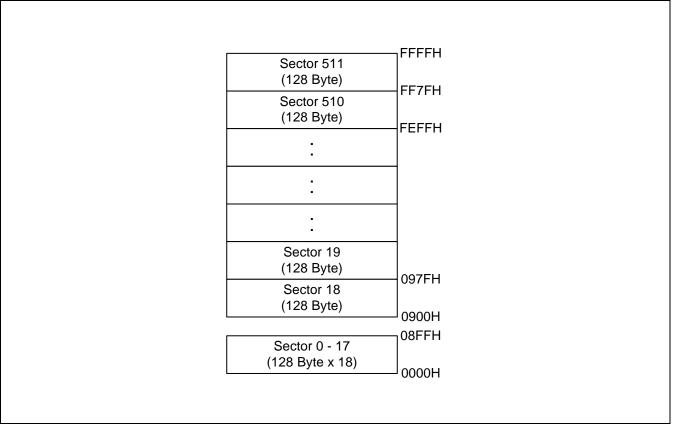


Figure 18-6. Sectors in User Program Mode

The Sector Erase Procedure in User Program Mode

- 1. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 2. Set Flash Memory Sector Address Register (FMSECH/FMSECL).
- 3. Set Flash Memory Control Register (FMCON) to "10100001B".
- 4. Set Flash Memory User Programming Enable Register (FMUSR) to "00000000B".

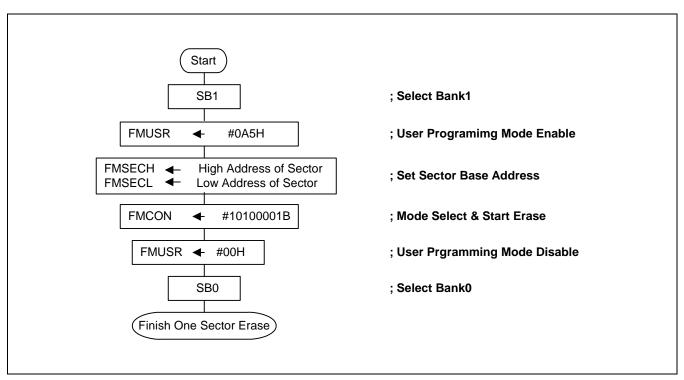


Figure 18-7. Sector Erase Flowchart in User Program Mode

NOTES

- 1. If user erases a sector selected by Flash Memory Sector Address Register FMSECH and FMSECL, FMUSR should be enabled just before starting sector erase operation. And to erase a sector, Flash Operation Start Bit of FMCON register is written from operation stop '0' to operation start '1'. That bit will be cleared automatically just after the corresponding operation completed. In other words, when S3F84MB is in the condition that flash memory user programming enable bits is enabled and executes start operation of sector erase, it will get the result of erasing selected sector as user's a purpose and Flash Operation Start Bit of FMCON register is also clear automatically.
- If user executes sector erase operation with FMUSR disabled, FMCON.0 bit, Flash Operation Start Bit, remains 'high', which means start operation, and is not cleared even though next instruction is executed. So user should be careful to set FMUSR when executing sector erase, for no effect on other flash sectors.

Programming Tip — Sector Erase

R8, R7

R8, #00H

NZ, ERASE_LOOP

٠

OR CP

JP

Case1. Erase one sector

•

LD PF	P, #80h	
LD FN	MUSR, #0A5H	; User Program mode enable
LD FN	MSECH, #2	; Set Sector 4 (200H-27FH)
LD FN	MSECL, #00H	; You can set FMSECL from 00H to 7FH.
SB1		
LD FN	MCON, #10100001B	; Start sector erase
SB0		
LD FN	MUSR, #0	; User Program mode disable
LD PF	P, #0	

Case2.Erase flash memory space from Sector (n) to Sector (n + m)

Case2.Erase flash memory space from Sector (n) to Sector (n + m)				
		•		
		•		
;;Pre-de	efine the	e number of sector to era	ase	
	LD	PP, #0		
	LD	SecNumH, #00H	; Set sector number	
	LD	SecNumL, #128	; Selection the sector128 (base address 4000H)	
	LD	R6, #01H	; Set the sector range (m) to erase	
	LD	R7, #7DH	; into High-byte(R6) and Low-byte(R7)	
	LD	R2, SecNumH		
	LD	R3, SecNumL		
ERASE	LOOP	:		
	_	SECTOR_ERASE		
	XOR	P4, #11111111B	; Display ERASE_LOOP cycle	
	INCW	RR2		
	LD	SecNumH, R2		
	LD	SecNumL, R3		
	DECW	,		
	LD	R8, R6		

SECTOR_ERASE:

LD R14, SecNumL MULT RR12, #80H MULT RR14, #80H ADD R13, R14 ; Calculation the base address of a target ; The size of one sector is 128-bytes ; BTJRF FLAGS.7,NOCARRY	sector
; INC R12 NOCARRY:	
LD R10, R13	
LD R11, R15	
ERASE_START:	
LD PP, #80h	
LD FMUSR, #0A5H ; User program mode enable	
LD FMSECH, R10 ; Set sector address	
LD FMSECL, R11	
SB1	
LD FMCON, #10100001B ; Select erase mode enable & Start sector	erase
SB0	
ERASE_STOP:	
LD FMUSR, #00H ; User program mode disable	
LD PP, #00h	
RET	

PROGRAMMING

A flash memory is programmed in one byte unit after sector erase.

And for programming safety's sake, must set FMSECH, FMSECL to flash memory sector value.

The write operation of programming starts by 'LDC' instruction.

The Program Procedure in User Program Mode

- 1. Must erase sector before programming.
- 2. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 3. Set Flash Memory Control Register (FMCON) to "01010001B".
- 4. Set Flash Memory Sector Address Register (FMSECH, FMSECL) to sector value of the address to write data.
- 5. Load a transmission data into a working register.
- 6. Load a flash memory upper address into upper register of pair working register.
- 7. Load a flash memory lower address into lower register of pair working register.
- 8. Load transmission data to flash memory location area on 'LDC' instruction by indirectly addressing mode
- 9. Set Flash Memory User Programming Enable Register (FMUSR) to "0000000B".

NOTE: In programming mode, it doesn't care whether FMCON.0's value is "0" or "1".

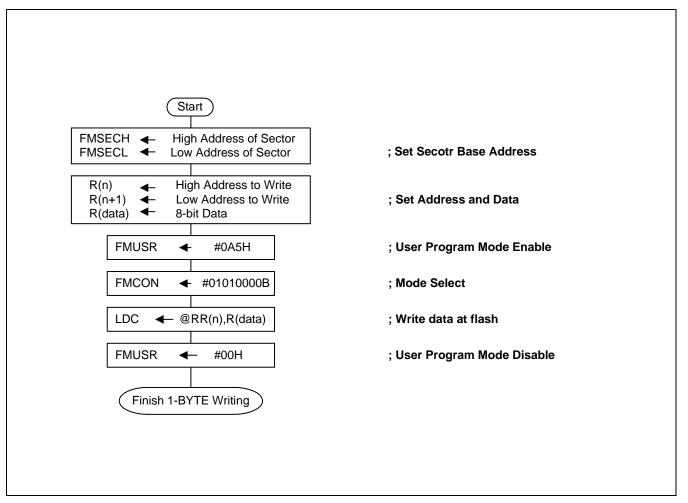


Figure 18-8. Byte Program Flowchart in a User Program Mode

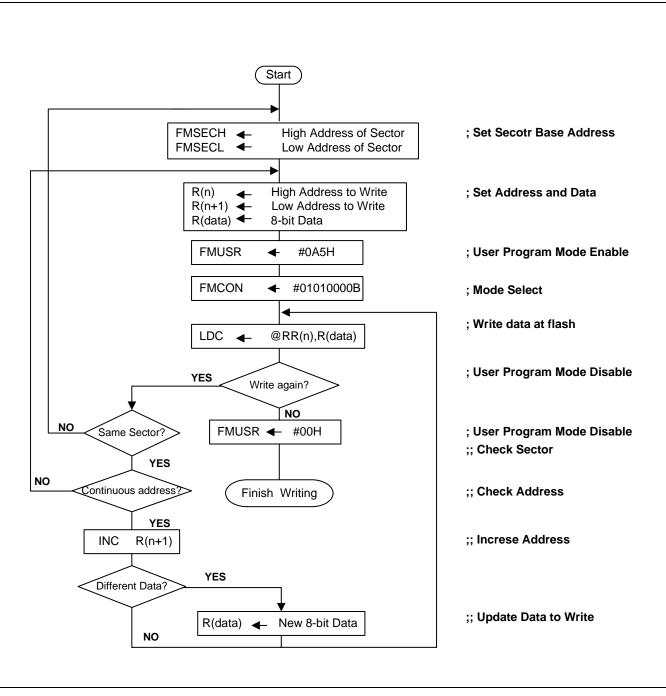


Figure 18-9. Program Flowchart in a User Program Mode

Programming Tip — Programming

Case1. 1BYTE Programming

٠

WR_BYTE: ; Write data "AAH" to flash memory address 4010H

LD	PP, #80H	
LD	FMUSR, #0A5H	; User Program mode enable
SB1		
LD	FMCON, #01010001B	; Programming mode enable
SB0		
LD	FMSECH, #40H	; Set flash sector address
LD	FMSECL, #00H	; Set sector address of pointer to write data
LD	R9, #0AAH	; Load data "AA" to write
LD	R10, #40H	; Load flash memory upper address into upper register of pair working
		; register
LD	R11, #10H	; Load flash memory lower address into lower register of pair working
		; register
LDC	@RR10, R9	; Write data 'AAH' at flash memory location(4010H)
SB1		
LD	FMCON, #01010000B	; Programming stop
SB0		
LD	FMUSR, #00H	; User Program mode disable
LD	PP, #0	-

Case2. Programming in the same sector

•

WR_INSECTOR:		R:	; RR10>Address copy (R10 .high address,R11-low address)
_	LD	R0, #40H	
	LD	PP, #80H	
	LD	FMUSR, #0A5H	; User Program mode enable
	LD	FMSECH, #40H	; Set sector address located in target address to write data
	LD	FMSECL, #00H	; SECTOR128- sector base address 4000H
	LD	PP, #0	
	SB1		
	LD	FMCON, #01010001B	; Programming mode enable
	SB0 LD	D0 #22U	· Load data "22 ¹ " to write
		R9, #33H	; Load data "33H" to write
	LD	R10, #40H	; Load flash memory upper address into upper register of pair working ; register
	LD	R11, #40H	; Load flash memory lower address into lower register of pair working ; register
WR_B	TE:		,
_	LDC	@RR10, R9	; Write data '33H' at flash memory location
	INC	R11	; Reset address in the same sector by INC instruction
	DJNZ SB1	R0, WR_BYTE	; Check whether the end address for programming reach 407FH or not.
	LD SB0	FMCON, #01010000B	; Programming stop
	LD LD LD	PP, #80H FMUSR, #00H PP, #0	; User Program mode disable

Case3. Programming to the flash memory space located in other sectors

	•	
WR_	INSECTOR2:	

WR_IN	SECTO LD	R2: R0, #40H	
	LD	R1, #40H	
	LD	PP, #80H	
	LD	FMUSR, #0A5H	; User Program mode enable
	LD	FMSECH, #01H	; Set sector address located in target address to write data
	LD	FMSECL, #00H	; SECTOR2- sector base address 100H
	LD	PP, #0	,
	SB1		
	LD SB0	FMCON, #01010001B	; Programming mode enable
	LD	R9, #0CCH	; Load data "CCH" to write
	LD	R10, #01H	; Load flash memory upper address into upper register of pair
			; working register
	LD	R11, #40H	; Load flash memory lower address into lower register of pair ; working register
	CALL	WR_BYTE	
	LD R0	, #40H	
WR_IN			
	LD	PP, #80H	. Oct contant address located in terrat address to write date
	LD	FMSECH, #19H	; Set sector address located in target address to write data ; SECTOR50 –sector base address 1900H
	LD LD	FMSECL, #00H PP, #0	, SECTORSU -sector base address 19000
	LD	R9, # 55H	; Load data "55H" to write
	LD	R10, #19H	; Load flash memory upper address into upper register of pair
			; working register
	LD	R11, #40H	; Load flash memory lower address into lower register of pair
			; working register
	CALL	WR_BYTE	
WR_IN			
	LD	PP, #80H	
	LD	FMSECH, #40H	; Set sector address located in target address to write data
	LD LD	FMSECL, #00H	; SECTOR128 –sector base address 4000H
	LD LD	PP, #0 R9, #0A3H	; Load data "A3H" to write
	LD	R10, #40H	; Load flash memory upper address into upper register of pair
	LD		; working register
	LD	R11, #40H	; Load flash memory lower address into lower register of pair ; working register
WR_BY	YTE1:		
_	LDC	@RR10, R9	; Write data 'A3H' at flash memory location
	INC	R11	
	DJNZ	R1, WR_BYTE1	
	SB1		
	LD SB0	FMCON, #01010000B	; Programming stop
	SBU LD	PP, #80H	

LD LD ·	FMUSR, #00H PP, #0	; User Program mode disable
WR_BYTE: LDC INC DJNZ RET	@RR10, R9 R11 R0, WR_BYTE	; Write data written by R9 at flash memory location

READING

The read operation starts by 'LDC' instruction.

The program procedure in user program mode

- 1. Load a flash memory upper address into upper register of pair working register.
- 2. Load a flash memory lower address into lower register of pair working register.
- 3. Load receive data from flash memory location area on 'LDC' instruction by indirectly addressing mode

PROGRAMMING TIP — Reading

	•		
	LD	R2, #03H	; Load flash memory's upper address ; to upper register of pair working register
	LD	R3, #00H	; Load flash memory's lower address ; to lower register of pair working register
LOOP:	LDC	R0, @RR2	; Read data from flash memory location ; (Between 300H and 3FFH)
	INC	R3	
	CP	R3, #0FFH	
	JP	NZ, LOOP	
	•		
	•		
	•		
	•		
LOOP:	LDC INC CP	R0, @RR2 R3 R3, #0FFH	; to lower register of pair working registe

HARD LOCK PROTECTION

User can set Hard Lock Protection by writing '0110B' in FMCON7-4. This function prevents the changes of data in a flash memory area. If this function is enabled, the user cannot write or erase the data in a flash memory area. This protection can be released by the chip erase execution in the tool program mode. In terms of user program mode, the procedure of setting Hard Lock Protection is following that. In tool mode, the manufacturer of serial tool writer could support Hardware Protection. Please refer to the manual of serial program writer tool provided by the manufacturer.

The program procedure in user program mode

- 1. Set Flash Memory User Programming Enable Register (FMUSR) to "10100101B".
- 2. Set Flash Memory Control Register (FMCON) to "01100001B".
- 3. Set Flash Memory User Programming Enable Register (FMUSR) to "00000000B".

PROGRAMMING TIP — Hard Lock Protection

```
•

LD PP, #80H

LD FMUSR, #0A5H ; User Program mode enable

SB1

LD FMCON, #01100001B ; Hard Lock mode set & start

SB0

LD FMUSR, #0 ; User Program mode disable

LD PP, #0

•
```

٠

19 ELECTRICAL DATA

OVERVIEW

In this chapter, S3C84MB/F84MB electrical characteristics are presented in tables and graphs. The information is arranged in the following order:

- Absolute maximum ratings
- Input/output capacitance
- D.C. electrical characteristics
- A.C. electrical characteristics
- Oscillation characteristics
- Oscillation stabilization time
- Data retention supply voltage in stop mode
- A/D converter electrical characteristics

Table 19-1. Absolute Maximum Ratings

(T _A =	25	°C)
-------------------	----	-----

Parameter	Symbol	Conditions	Rating	Unit
Supply voltage	V _{DD}		- 0.3 to +6.5	
Input voltage	VI		-0.3 to V _{DD} + 0.3	V
Output voltage	Vo		-0.3 to V _{DD} + 0.3	
Output current high	I _{ОН}	One I/O pin active	– 15	
		All I/O pins active	- 60	
Output current low	I _{OL}	One I/O pin active	+30	mA
		Total pin current for port	+200	
Operating temperature	T _A		- 40 to + 85	
Storage temperature	T _{STG}		- 65 to + 150	°C

Table 19-2. D.C. Electrical Characteristics

 $(T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, \ V_{DD} = 2.4 \ V \ to \ 5.5 \ V)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Operating voltage	V _{DD}	f _{osc} = 10 MHz	2.4	-	5.5	
Input high voltage	V _{IH1}	All input pins except V _{IH2}	0.8 V _{DD}	-	V _{DD}	
	V _{IH2}	X _{IN}	V _{DD} -0.5		V _{DD}	V
Input low voltage	V _{IL1}	All input pins except V_{IL2}	-	-	$0.2 V_{DD}$	
	V _{IL2}	X _{IN}	-		0.4	

Unit

V

μΑ

kΩ

Table 19-2. D.C. Electrical	Characteristics (Continued)
-----------------------------	-------------------	------------

Parameter	Symbol	Conditions	Min	Тур	Max
Output high voltage	V _{OH1}	$V_{DD} = 5 \text{ V}; I_{OH} = -1 \text{ mA}$ All output pins except Port 0,2,6	V _{DD} – 1.0	_	_
	V_{OH2}	$V_{DD} = 5 \text{ V}; I_{OH} = -4 \text{ mA}$ Port 0,2	$V_{DD}-2.0$		
Output low voltage	V _{OL1}	$V_{DD} = 5 \text{ V}; I_{OL} = 4 \text{ mA}$ All output pins except V_{OL2}			2.0
	V _{OL2}	$V_{DD} = 5 \text{ V}; I_{OL} = 16 \text{ mA}$ Port 0, 2, 6		0.4	2.0
Input high leakage current	I _{LIH1}	$V_{IN} = V_{DD}$ All input pins except I _{LIH2}			3
	I _{LIH2}	$V_{IN} = V_{DD}$ X_{IN}, X_{OUT}		_	20
Input low leakage current	I _{LIL1}	V _{IN} = 0 V All input pins except V _{IN}			-3
	V _{IN}	$V_{IN} = 0 V$ X_{IN}, X_{OUT}		_	-20
Output high leakage current	I _{LOH}	$V_{OUT} = V_{DD}$ All I/O pins and Output pins	_	_	3
Output low leakage current	I _{LOL}	V _{OUT} = 0 V All I/O pins and Output pins	_	-	-3
Pull-up resistor	P	$V_{IN} = 0 \text{ V}; V_{DD} = 5 \text{ V} \pm 10 \%$ Port 0–8, $T_A = 25^{\circ}\text{C}$ All Output Pin except RESETB	25	45	70
	R _{P1}	$\label{eq:VIN} \begin{array}{l} V_{IN} = 0 \; V; \; V_{DD} = 3 \; V \pm 10 \; \% \\ \text{Port} \; \; 0 - 8, \; T_{A} = 25 ^{\circ} \text{C} \\ \text{All Output Pin except} \\ \text{RESETB} \end{array}$	50	95	200
	R _{P2}	$V_{IN} = 0 V; V_{DD} = 5 V \pm 10 \%$ Port 0–8, T _A = 25°C RESETB	150	250	400
	rxp2	$V_{IN} = 0 V; V_{DD} = 3 V \pm 10 \%$ Port 0–8, T _A = 25°C RESETB	300	500	800

40.00 95 °C V 2111 /-

Table 19-2. D.C. Electrical Characteristics (Con	cluded)
--	---------

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Supply current ⁽¹⁾		$V_{DD} = 4.5 V$ to 5.5 V 16 MHz Run mode		10	20	
	I _{DD1}	$V_{DD} = 2.4 V$ to 5.5 V 10 MHz Run mode		7	14	~^^
		$V_{DD} = 4.5 V$ to 5.5 V 16 MHz Idle mode		2.5	5	– mA
	I _{DD2}	$V_{DD} = 2.4 V$ to 5.5 V 10 MHz Idle mode		2	4	
	I _{DD3}	V _{DD} = 2.4 V to 5.5 V STOP mode, LVR Enable	_	200	400	
	I _{DD4}	V_{DD} = 2.4 V to 5.5 V STOP mode, LVR Disable		100	200	
	I _{DD5}	V _{DD} = 2.4 V to 5.5 V STOP mode, LVR Enable IVC Disable		100	200	μΑ
	I _{DD6}	$V_{DD} = 2.4 V$ to 5.5 V STOP mode, LVR Disable IVC Disable		10	20	

 $(T_A = -40 \ ^{\circ}C \text{ to } + 85 \ ^{\circ}C, V_{DD} = 2.4 \ V \text{ to } 5.5 \ V)$

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.

$(T_A = -40 \degree C \text{ to } + 85 \degree C, V_{DD} = 2.4 \degree V \text{ to } 5.5 \degree V)$							
Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
External Interrupt Input High Voltage	V _{EIH}	-	$0.8 V_{DD}$	_	V_{DD}	V	
External Interrupt Input Low Voltage	V_{EIL}	_	_	_	$0.2 V_{DD}$	V	
External Interrupt Input Width	t _{INTH} t _{INTL}	$V_{\text{DD}}=~5$ V \pm 10 %	180	_	-	ns	
RESET input low width	t _{RSL}	$V_{DD} = 5 V$	1.0	_	-	μS	

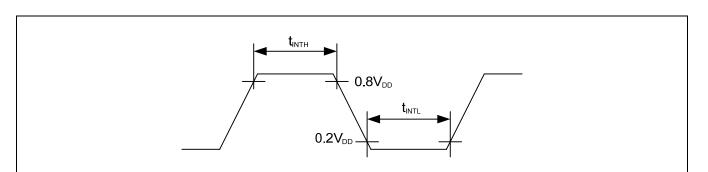


Figure 19-1. Input Timing for External Interrupts (Ports 4, Port 8.5, Port 8.6)

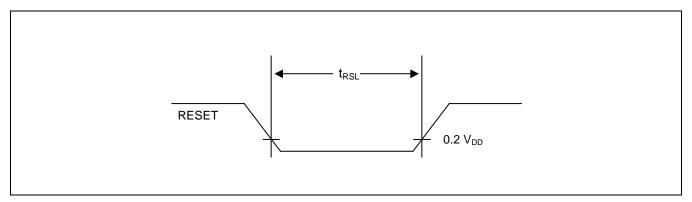


Figure 19-2. Input Timing for RESET

	Table 19-4. Input/Output Capacitance
<u> </u>	

Parameter	Symbol	Conditions	Min	Тур	Max	Unit	
Input capacitance	C _{IN}	f = 1 MHz; unmeasured pins are tied to V _{SS}					
Output capacitance	C _{OUT}		-	_	10	pF	
I/O capacitance	C _{IO}						

Table 19-5. Data Retention Supply Voltage in Stop Mode

 $(T_A = -40 \degree C \text{ to } +85 \degree C)$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Data retention supply voltage	V _{dddr}	Stop mode	2.4	-	5.5	V
Data retention supply current	I _{DDDR}	Stop mode , $V_{DDDR} = 2.4 V$	_	_	8	μA

NOTE: Supply current does not include current drawn through internal pull-up resistors or external output current loads.

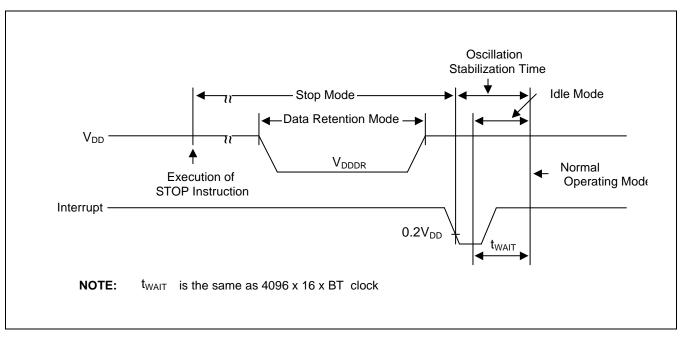


Figure 19-3. Stop Mode Release Timing Initiated by Interrupts

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Resolution		_	_	10	_	bit
Total accuracy		V _{DD} = 5.12 V	_	_	±3	
Integral Linearity Error	ILE	AV _{REF} = 5.12V	_	_	±2	
Differential Linearity Error	DLE	$AV_{SS} = 0 V$ $f_{ADC} = 2.5 MHz$	_	_	±1	LSB
Offset Error of Top	EOT	_	_	±1	±3	
Offset Error of Bottom	EOB	_	_	±0.5	±2	
Conversion time ⁽¹⁾	T _{CON}	10-bit resolution Max f _{ADC} = 2.5MHz	20	_	-	μS
Analog input voltage	VIAN	_	AV _{SS}	-	AV_{REF}	V
Analog input impedance	R _{AN}	_	2	1000	_	MΩ
Analog reference voltage	AV_{REF}	_	2.4	-	V _{DD}	V
Analog ground	AV _{SS}	_	V _{SS}	-	V _{SS} +0.3	V
Analog input current	I _{ADIN}	$AV_{REF} = V_{DD} = 5V$	_	_	10	μΑ
Analog block current ⁽²⁾	I _{ADC}	$AV_{REF} = V_{DD} = 5V$	_	1	3	~ ^
		$AV_{REF} = V_{DD} = 3V$		0.5	1.5	mA
		$AV_{REF} = V_{DD} = 5V$ When Power Down mode		100	500	nA

$(T_{\text{A}} = -40 \ ^{\circ}\text{C to } +85 \ ^{\circ}\text{C}, \ V_{\text{DD}} = \ 2.4 \ \text{V} \ \text{ to } \ 5.5 \ \text{V}, \ V_{\text{SS}} = \ 0 \ \text{V})$

NOTES:

1. 'Conversion time' is the time required from the moment a conversion operation starts until it ends.

2. I_{ADC} is an operating current during A/D conversion.

Table 19-7. LVR(Low Voltage Reset) Circuit Characteristics

 $(T_A = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C, \ V_{DD} = \ 2.4 \ V \ to \ 5.5 \ V)$

Parameter	Symbol	Conditions	Min	Тур	Мах	Unit
Low Voltage Level	V_{LVR}	LVR is enabled by smart option	2.4	2.8	3.2	V
		T _A = 25 °C	3.5	4.0	4.5	V

Table 19-8. Flash Memory D.C. Electrical Characteristics

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Logic power supply	V_{DD}		2.4	5.0	5.5	V
Flash memory operating current	F _{DD1}	V_{DD} = 2.4 V to 5.5 V during reading	-	_	10	mA
(F _{DD})	F _{DD2}	$V_{DD} = 2.4 V$ to 5.5 V during programming	-	_	10	mA
	F _{DD3}	V_{DD} = 2.4 V to 5.5 V during erasing	-	_	10	mA

$(T_A = -40 \ ^{\circ}C \text{ to } +85 \ ^{\circ}C, \ V_{DD} = \ 2.4 \ V \ \text{ to } \ 5.5 \ V, \ V_{SS} = \ 0 \ V)$

Table 19-9. Flash Memory A.C. Electrical Characteristics

 $(T_A = -40 \degree C \text{ to } +85 \degree C, V_{DD} = 2.4 \text{ V} \text{ to } 5.5 \text{ V}, V_{SS} = 0 \text{ V})$

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
Programming time ⁽¹⁾	Ft _P		20	30	50	μS
Chip Erasing time ⁽²⁾	Ft _{P1}	$V_{DD} = 2.4 V$ to 5.5 V	10	_	_	mS
Sector Erasing time ⁽³⁾	Ft _{P2}		10	_	_	mS
Data access time	Ft _{RS}		_	100	_	nS
Number of writing/erasing	Fn _{WE}	_	10,000	_	_	Times
Data Retention Time	Ft _{DR}	_	10	-	-	Years

NOTES:

1. The Programming time is the time during which one byte(8-bit) is programmed.

2. The chip erasing time is the time during which all 64K-byte block is erased.

3. The sector erasing time is the time during which one 128-byte block is erased.

Oscillator	Clock Circuit	Test Condition	Min	Тур	Max	Unit
Crystal		$V_{DD} = 2.4 \text{ V}$ to 5.5 V	1	_	10	MHz
	$X_{IN} X_{OUT}$	$V_{DD} = 4.5 V$ to 5.5 V	1	_	16	
Ceramic	$\begin{array}{c c} X_{\rm IN} & X_{\rm OUT} \\ \hline \\ $	V_{DD} = 2.4 V to 5.5 V	1	_	10	-
		$V_{DD} = 4.5 V$ to 5.5 V	1	_	16	
External clock	xternal clock	V_{DD} = 2.4 V to 5.5 V	1	_	10	-
		$V_{DD} = 4.5 V$ to 5.5 V	1	-	16	

Table 19-10. Main Oscillator Frequency (fosc)

Table 19-11. Main Oscillator Clock Stabilization Time (t_{ST1})

 $(T_A = -40 \ ^\circ C \text{ to } +85 \ ^\circ C, V_{DD} = 2.4 \text{ V} \text{ to } 5.5 \text{ V})$

Oscillator	Test Condition	Min	Тур	Max	Unit
Crystal	f _{OSC} > 400kHz;	-	-	10	
Ceramic	Stabilization occurs when V_{DD} is equal to the minimum oscillator voltage range.	_	_	4	ms
External clock	X_{IN} input high and low level width (t_{XH} , t_{XL})	50	_	_	ns

NOTE: Oscillation stabilization time (t_{ST1}) is the time required for the CPU clock to return to its normal oscillation frequency after a power-on occurs, or when Stop mode is ended by a RESET signal.

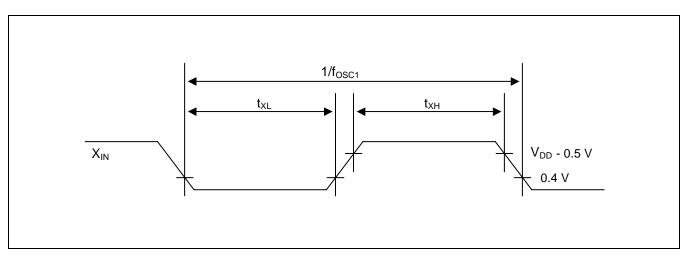


Figure 19-4. Clock Timing Measurement at X_{IN}

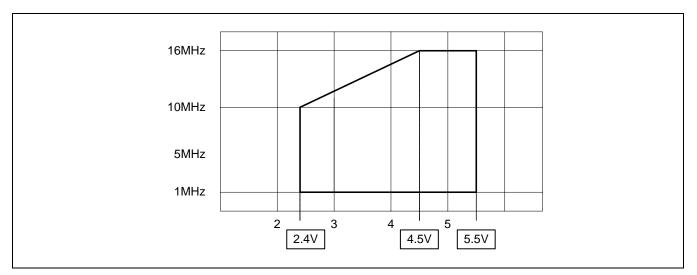


Figure 19-5. Operating Voltage Range

20 Mechanical Data

OVERVIEW

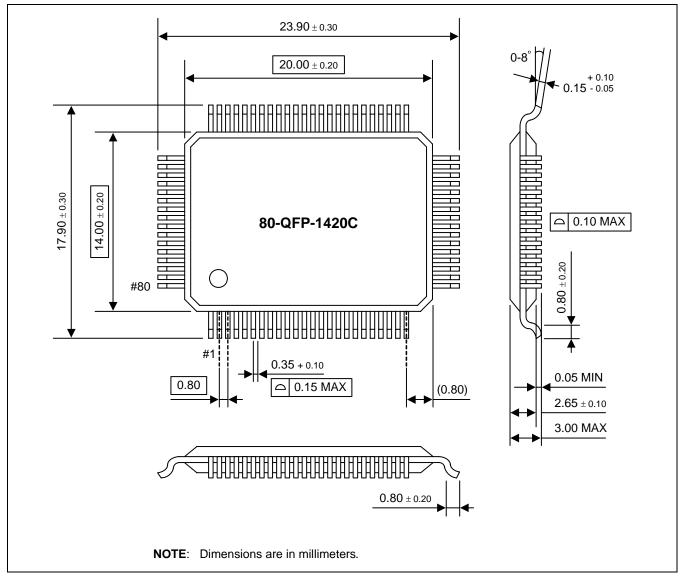


Figure 20-1. S3C84MB/F84MB 80-QFP Standard Package Dimension (in Millimeters)

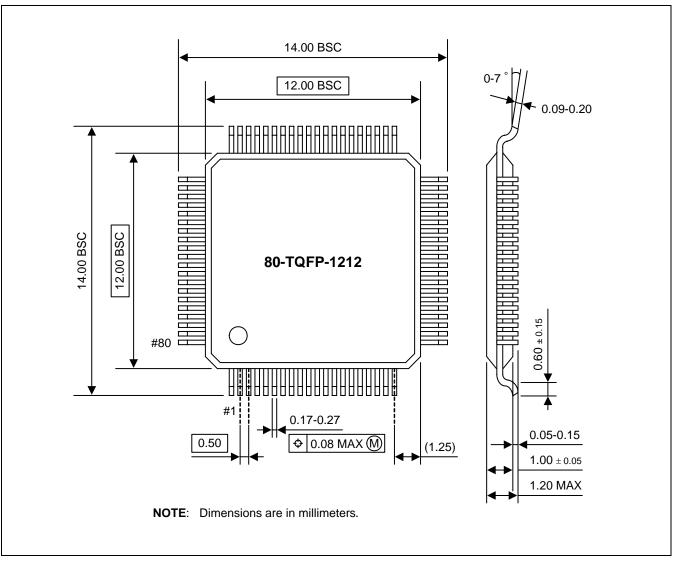


Figure 20-2. S3C84MB/F84MB 80-TQFP Standard Package Dimension (in Millimeters)

21 S3F84MB FLASH MCU

OVERVIEW

The S3F84MB single-chip CMOS microcontroller is the Flash MCU. It has an on-chip Flash MCU ROM. The Flash ROM is accessed by serial data format.

NOTE

This chapter is about the Tool Program Mode of Flash MCU. If you want to know the User Program Mode, refer to the Chapter 18. Embedded Flash Memory Interface.

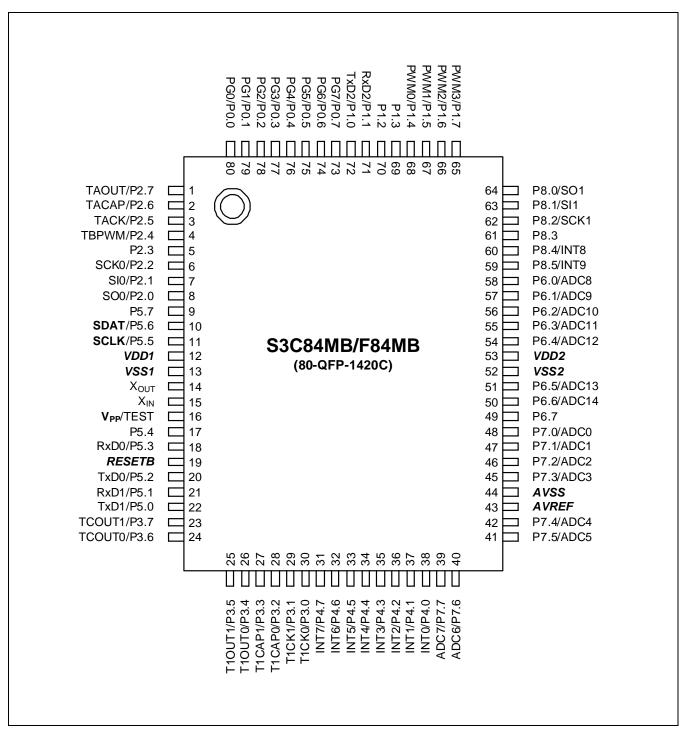


Figure 21-1. S3F84MB Pin Assignments (80-QFP)

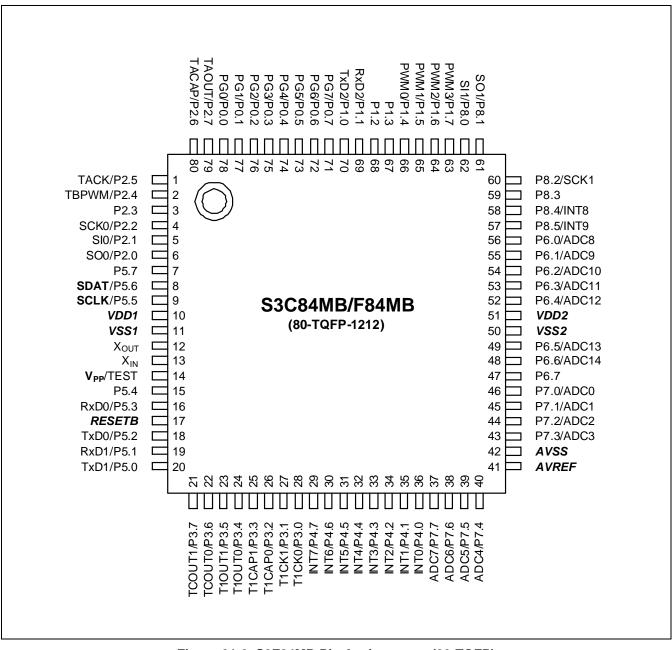


Figure 21-2. S3F84MB Pin Assignments (80-TQFP)

Main Chip	During Programming				
Pin Name	Pin Name	Pin No.	I/O	Function	
P5.6	SDAT	10(8)	I/O	Serial data pin. Output port when reading and input port when writing. SDAT(P5.6) can be assigned as an Input/push-pull output port.	
P5.5	SCLK	11(9)	I	Serial clock pin. Input only pin.	
TEST	V _{PP}	16(14)	I	Tool mode selection when TEST pin sets Logic val '1'. If user uses the flash writer tool mode (ex.spw2 etc.), user should connect TEST pin to V _{DD} . (S3F84MB supplies high voltage 12.5V by internal high voltage generation circuit.)	
RESETB	RESETB	19(17)	I	Chip Initialization.	
V_{DD}, V_{SS}	V_{DD}, V_{SS}	12, 13 (10, 11)	_	Power supply pin for logic circuit. V_{DD} should be tied to +3.3V during programming.	

Table 21-1. Descriptions of Pins Used to Read/Write the Flash ROM

NOTE: Parentheses indicate pin number for 80-TQFP package.

Test Pin Voltage

The TEST pin on socket board for OTP/MTP writer must be connected to V_{DD} (3.3V). <u>The TEST pin on socket</u> board must not be connected $V_{PP}(12.5V)$ which is generated from OTP/MTP Writer. So the specific socket board for S3F84MB must be used, when writing or erasing using OTP/MTP writer.

OPERATING MODE CHARACTERISTICS

When logical high is supplied to the V_{PP} (TEST) pin of the S3F84MB, the Flash ROM programming mode is entered.

The operating mode (read, write, or read protection) is selected according to the input signals to the pins listed in Table 21-2 below.

V _{DD}	V _{PP} (TEST)	REG/nMEM	Address (A15–A0)	R/W ^(note)	Mode
3.3V	3.3V	0	0000H	1	Flash ROM Read
		0	0000H	0	Flash ROM Program
		0	0000H	1	Flash ROM Verify
		1	0E3FH	0	Flash ROM Read Protection

Table 21-2. Operating Mode Selection Criteria

NOTE: "0" means Low level; "1" means High level.

22 DEVELOPMENT TOOLS

OVERVIEW

Samsung provides a powerful and easy-to-use development support system on a turnkey basis. The development support system is composed of a host system, debugging tools, and supporting software. For a host system, any standard computer that employs Win95/98/2000/XP as its operating system can be used. A sophisticated debugging tool is provided both in hardware and software: the powerful in-circuit emulator, OPENice-i500 and SK-1200, for the S3C7-, S3C9-, and S3C8- microcontroller families. Samsung also offers supporting software that includes, debugger, an assembler, and a program for setting options.

TARGET BOARDS

Target boards are available for all S3C8/S3F8-series microcontrollers. All required target system cables and adapters are included with the device-specific target board. TB84MB is a specific target board for the development of application systems using S3F84MB

PROGRAMMING SOCKET ADAPTER

When you program S3F84MB's flash memory by using an emulator or OTP/MTP writer, you need a specific programming socket adapter for S3F84MB.

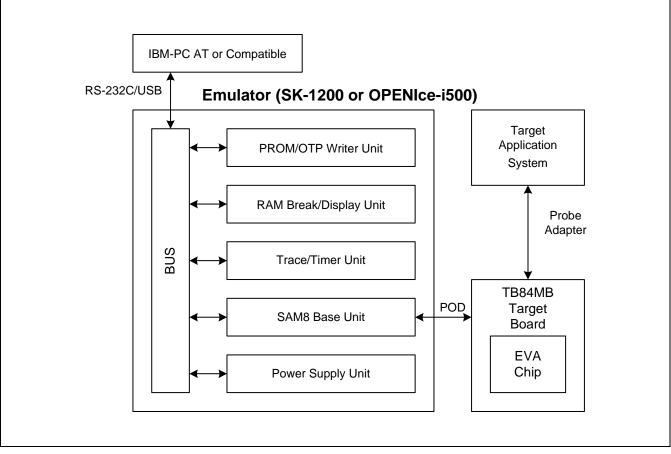


Figure 22-1. Development System Configuration

TB84MB TARGET BOARD

The TB84MB target board is used for the S3C84MB/F84MB microcontroller. It is supported by the SMDS2, SMDS2+, SK-820, or SK-1000 development system.

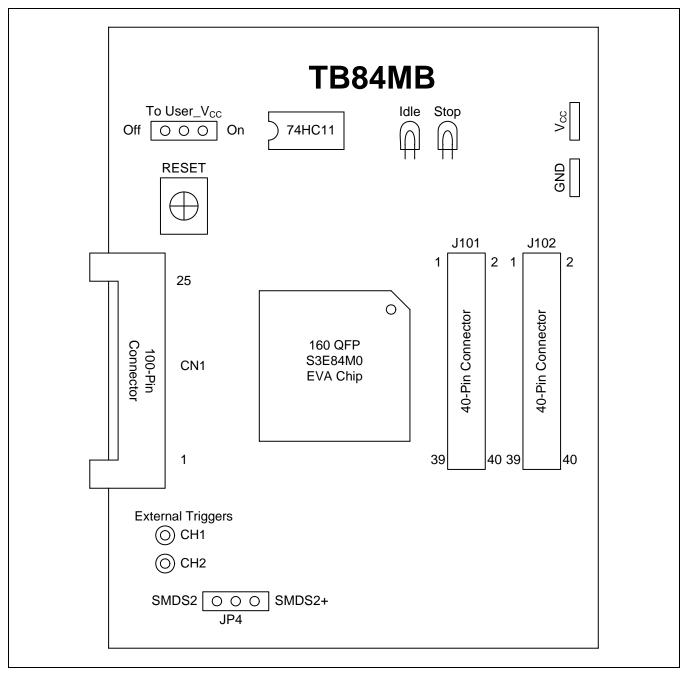


Figure 22-2. TB84MB Target Board Configuration

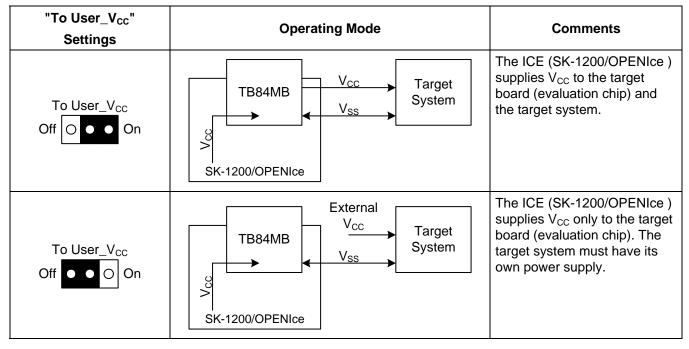


Table 22-1. Power Selection Settings for TB84MB

Table 22-2. Emulator Version Selection Settings for TB84MB

JP4 Settings	Emulator Version	Comments
SMDS2 SMDS2+ JP4 SK-1200, OPENIce i500, SMDS2+		Default Setting
SMDS2 SMDS2+ JP4	SMDS	

Target Board Part	Comments	
External Triggers O Ch1 O Ch2	You can connect an external trigger source to one of the two external trigger channels (CH1 or CH2) only for the SMDS2+ breakpoint and trace functions.	

 Table 22-3. Using Single Header Pins as the Input Path for External Trigger Sources

IDLE LED

The Green LED is ON when the evaluation chip (S3E84MB) is in idle mode.

STOP LED

The Red LED is ON when the evaluation chip (S3E84MB) is in stop mode.

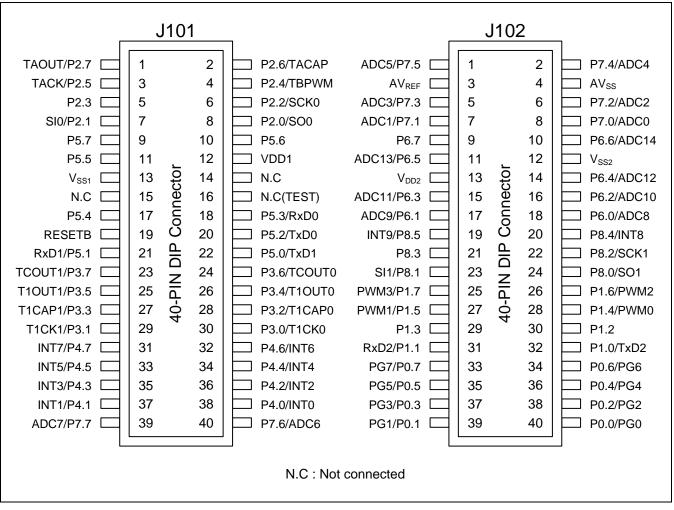


Figure 22-3. 40-Pin Connectors for TB84MB (S3C84MB/F84MB, 80-QFP Package)

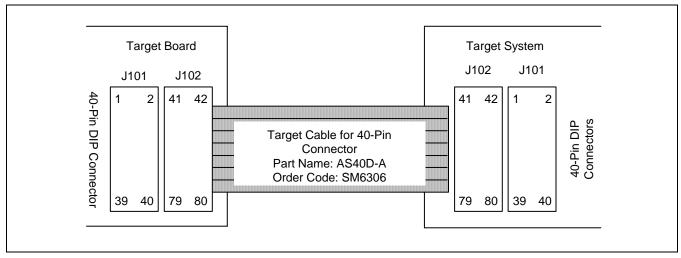


Figure 22-4. TB84MB Cable for 80-QFP Adapter

22.2 Third parties for development tools

SAMSUNG provides a complete line of development tools for SAMSUNG's microcontroller. With long experience in developing MCU systems, our third parties are leading companies in the tool's technology. SAMSUNG In-circuit emulator solution covers a wide range of capabilities and prices, from a low cost ICE to a complete system with an OTP/MTP programmer.

In-Circuit Emulator for SAM8 family

- OPENice-i500
- SmartKit SK-1200

OTP/MTP Programmer

- SPW-uni
- AS-pro
- US-pro
- BlueChips-Combi
- GW-PRO2 (8 gang programmer)

Development Tools Suppliers

Please contact our local sales offices or the 3rd party tool suppliers directly as shown below for getting development tools.

8-bit In-Circuit Emulator

OPENice - i500	AIJI System		
	 TEL: 82-31-223-6611 FAX: 82-331-223-6613 E-mail : <u>openice@aijisystem.com</u> URL : <u>http://www.aijisystem.com</u> 		
SK-1200	Seminix		
Smart Ktt -	 TEL: 82-2-539-7891 FAX: 82-2-539-7819 E-mail: sales@seminix.com URL: http://www.seminix.com 		

OTP/MTP PROGRAMMER (WRITER)

	SPW-uni	SEMINIX
	 Single OTP/ MTP/FLASH Programmer Download/Upload and data edit function PC-based operation with USB port Full function regarding OTP/MTP/FLASH MCU programmer (Read, Program, Verify, Blank, Protection) Fast programming speed (4Kbyte/sec) Support all of SAMSUNG OTP/MTP/FLASH MCU devices Low-cost NOR Flash memory (SST,Samsung) NAND Flash memory (SLC) New devices will be supported just by adding device files or upgrading the software. 	 TEL: 82-2-539-7891 FAX: 82-2-539-7819. E-mail: <u>sales@seminix.com</u> URL: <u>http://www.seminix.com</u>
	AS-pro	SEMINIX
	 On-board programmer for Samsung Flash MCU Portable & Stand alone Samsung OTP/MTP/FLASH Programmer for After Service Small size and Light for the portable use Support all of SAMSUNG OTP/MTP/FLASH devices HEX file download via USB port from PC Very fast program and verify time (OTP:2Kbytes per second, MTP:10Kbytes per second) Internal large buffer memory (118M Bytes) Driver software run under various O/S (Windows 95/98/2000/XP) Full function regarding OTP/MTP programmer (Read, Program, Verify, Blank, Protection) Two kind of Power Supplies (User system power or USB power adapter) Support Firmware upgrade 	 TEL: 82-2-539-7891 FAX: 82-2-539-7819. E-mail: <u>sales@seminix.com</u> URL: <u>http://www.seminix.com</u>
LIS PROI	 US-pro Portable Samsung OTP/MTP/FLASH Programmer Portable Samsung OTP/MTP/FLASH Programmer Small size and Light for the portable use Support all of SAMSUNG OTP/MTP/FLASH devices Convenient USB connection to any IBM compatible PC or Laptop computers. Operated by USB power of PC PC-based menu-drive software for simple operation Very fast program and verify time (OTP:2Kbytes per second, MTP:10Kbytes per second) 	SEMINIX • TEL: 82-2-539-7891 • FAX: 82-2-539-7819. • E-mail: <u>sales@seminix.com</u> • URL: <u>http://www.seminix.com</u>

	 Support Samsung standard Hex or Intel Hex format Driver software run under various O/S (Windows 95/98/2000/XP) Full function regarding OTP/MTP programmer (Read, Program, Verify, Blank, Protection) Support Firmware upgrade 	
BlueChips-combi Programme & Kold annual USER's Manual Rev. 0	BlueChips-Combi BlueChips-combi is a programmer for all Samsung MCU. It can program not only all Samsung OTP/MTP (Flash) MCU but also the popular E(E)PROMs. New devices will be supported just by adding device files or upgrading the software. It is connected to host PC's serial port and controlled by the software.	AlJI System • TEL: 82-31-223-6611 • FAX: 82-31-223-6613 • E-mail : <u>openice@aijisystem.com</u> • URL : <u>http://www.aijisystem.com</u>
	 GW-PRO2 Gang Programmer for OTP/MTP/FLASH MCU 8 devices programming at one time Fast programming speed (1.2Kbyte/sec) PC-based control operation mode or Stand-alone Full Function regarding OTP/MTP program (Read, Program, Verify, Protection, Blank) Data back-up even at power break After setup in Design Lab, it can be moved to the factory site. Key Lock protecting operator's mistake Good/Fail quantity displayed and memorized Buzzer sounds after programming User friendly single-menu operation (PC) Operation status displayed in LCD panel 	SEMINIX • TEL: 82-2-539-7891 • FAX: 82-2-539-7819. • E-mail: <u>sales@seminix.com</u> • URL: <u>http://www.seminix.com</u>

