

Important Information

DECLARATION OF EMC CONFORMITY

The FreeWay has been independently tested to be in compliance with the following standards: EN55022,

EN61000.

WARNING

Under NO circumstances should AC mains voltage be applied to any connector, terminal or enclosure part of the

FreeWay.

The FreeWay should not be used in locations where it will be subjected to high levels of radiated R.F., or where

its connecting cables will be subjected to high levels of R.F. interference from other sources.

GUARANTEE

All products are covered by a 1-year return-to-base guarantee for parts and labour due to any manufacturing

defect.

POWER SUPPLY

The power supply provided with this product is specifically designed for use with this product for the intended

country of application. It converts the local mains voltage AC to a nominal regulated 9V DC voltage supplying up

to 500mA of current. The unit operates as soon as it is plugged into the wall socket. This power supply is for

indoor use only! Do not expose the unit to water, rain or dust. The power supply must not be covered over. Do

not attempt to remove the casing – this should only be done by a qualified engineer.

WARNING: Dangerous Voltage!

Remove the unit from the wall socket when not in use. The unit is protected against short-circuit and overload by

a thermal fuse. Never use a fuse with a higher rating than specified. The power supply is class II approved. The

socket should always be easily accessible.

FreeWay AV Gateway Controller

Page 2 User Guide - Issue 2.00

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 3

Contents

Introduction 5

Rear Panel 6

Front Panel 6

Getting Started 8

Connecting to FreeWay 8

FreeWay Interface Software 9

FreeWay Configuration 10

Writing a Script 11

Downloading & Compiling a Script 13

Testing the Script 14

Implementing a HTML User Interface (optional) 15

Using the Error Log 16

RS-232 Serial Ports 17

Connector pin assignment 17

RS232 Port Configuration 17

RS232 Transmit 18

RS232 Receive Functions 19

Defining Messages 19

RS-485 Ports 21

Port 7 & 8 pin assignment 21

RJ45 Connector pin assignment 21

Termination resistors 22

Termination Resistor Jumper Links 22

RS-485 and RS-422 modes 22

Infra-Red Receiver 23

Learning Infra-Red Commands 23

Editing Infra-Red Commands 24

Decoding RC5 Infra-Red Commands 24

Converting Philips Pronto IR Codes 25

Infra-Red Outputs 26

Infra-Red Port Transmission 26

Digital Inputs 28

Connector pin assignment 28

Electrical Interface 28

Basic Interface Example 29

FreeScript Functions 29

Digital Outputs 30

Connector pin assignment 30

Electrical Interface 31

Basic Interface Example 31

FreeScript Functions 32

Alarms 33

Setting Up Alarms 33

Responding to Alarms 34

Telnet Ports 35

Opening Telnet Ports 35

Closing Telnet Ports 35

TCP Mode 36

Using Telnet Ports 37

UDP Ports 38

Configuring & Opening UDP Ports 38

Using UDP Ports 39

EIB/KNX Interface 40

EIB Port Connector pin assignment 40

Configuring ETS 40

FreeScript EIB Functions 41

EibPhysical() 41

EibRegister() 41

EibReceive() 43

EibSendFloat() 43

EibSendString() 44

Appendix 45

A1 - Setting up a Telnet HyperTerminal Session 45

A2 - Downloading Scripts using FTP 46

A3 – EIB/KNX Datapoint Types 47

FreeWay AV Gateway Controller

Page 4 User Guide - Issue 2.00

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 5

Introduction

Thank you for your investment in the DKT FreeWay AV Gateway Controller. As the name suggests you now have

in your hands a powerful and flexible tool for integrating and controlling equipment using the most common

control interfaces.

Before delving into the details here is a quick résumé:

 Embedded Web Server for HTML based control

 Embedded Real-Time Clock for calendar alarm and astronomic events

 Powerful FreeScript macro language

 FreeScript compiler using FreeWay Interface PC software

 FreeScript functions accessible from any Web Browser

 FreeScript debugging

 Built-in functions for real-time event handling

FreeWay’s I/O:

 6 x RS232 serial ports – on 9-way male D-type connectors, full-duplex, supporting all the common baud

rates and settings, with & without handshaking

 3 x RS485 ports – 2 on 3-way terminals, 1 on an RJ45 with 9V DC power, half duplex supporting all the

common baud rates and settings. These can be used in 2 or 4-wire configurations and are compatible

with RS-422

 1 x 10Base-T Ethernet port – for communications using TCP, UDP and file transfers via FTP

 4 x LEDs – general purpose programmable status indicators on the front panel

 4 x Infra-Red outputs – on mono mini-jacks fully selectable and matrixable

 1 x Infra-Red Receiver – for learning Remote Control commands and decoding RC5 commands

 6 x opto-isolated Digital Inputs

 6 x opto-isolated Digital Outputs

 1 x EIB/KNX bus interface connector allowing 100 EIB/KNX groups

After a quick tour of the front and rear panels this manual will take you through the steps of basic configuration

and script writing, before delving into detailed descriptions of all the FreeWay’s ports and functions. We

recommend that you also read the FreeScript Programming Reference.

This manual assumes a certain understanding of the various control interfaces, although you don’t need to be an

expert in any of them.

Rear Panel

Front Panel

 Front panel Infra-Red receiver used for learning and decoding commands from

infra-red remote control handsets
4 Front Panel Status LEDs – general purpose and system status

indicators

4 x Infra-Red transmitters on mini-jacks for

controlling equipment using Infra-Red emitters

Digital Inputs & Outputs 25-way

female D-Type. Provides 6 digital

inputs and 6 digital outputs with 5V

DC power.

6 x RS-232 serial ports on 9-

way male D-Type connectors.

Used for controlling RS232

compatible equipment

2 RS-485 serial ports on 3-way terminal

connectors. Used for connecting to RS485

and RS422 networks & equipment

RS485 serial port on an

RJ45 with 9V DC power

EIB on a 4-way terminal

connector for interfacing to

EIB/KNX networks

Ethernet on RJ45 10Base-T

for control & communication

using TCP/IP

FreeWay AV Gateway Controller

Page 8 User Guide - Issue 2.00

Getting Started

The applications and configurations that FreeWay lends itself to are widespread and numerous. However you use

the FreeWay though, the same basic steps are taken to set it up and use it. These can be summarised as follows:

 Connecting to FreeWay

 Basic FreeWay configuration (optional)

 Writing a script

 Compiling and downloading a script

 Testing the Script

 Implementing a user interface (optional)

 Using the FreeWay

We’ll explore these steps in a bit more detail.

Connecting to FreeWay

FreeWay is configured using the FreeWay Interface PC software. This is used for:

 Viewing, compiling and downloading scripts

 Changing FreeWay settings

 Learning Infra-Red codes

 Viewing the error log

 Testing functions and debugging scripts

FreeWay Interface software connects to FreeWay over a standard TCP/IP Ethernet connection. Setting up a

connection between your computer and FreeWay is straightforward. You must obviously have a network card and

TCP/IP drivers installed and working on your PC.

Connect the FreeWay to your computer using a CAT5 Ethernet cable either

 Directly using a standard Ethernet crossover cable

 Or via a standard Ethernet network hub

The FreeWay’s default IP address is 192.168.1.111. If the FreeWay’s default subnet address (the ‘1’ in the IP

address) is different from that of your network you may find it easier to connect directly to FreeWay using a

crossover cable. You’ll may also need to temporarily give your computer a fixed IP address. This is usually done

in your computer’s TCP/IP driver’s network settings.

You can test that you are properly connected to the FreeWay by ‘pinging’ it. Open up a Command Prompt

window and type the following:

 ping 192.168.1.111

If you get replies from that address then you’re properly connected.

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 9

FreeWay Interface Software

FreeWay Interface is shipped on a CD-ROM with the FreeWay and is also available for download from the DKT

website at:

http://www.dktgroup.com/freeway

FreeWay Interface is compatible with Windows XP and Vista and requires Microsoft .Net Framework. When you

run FreeWay Interface you’ll be presented with the following:

To login to the FreeWay you must enter its IP address and password. The default IP address is 192.168.1.111.

The default password is dkt. Press the Connect button. On a successful connection you’ll see the Scripting page.

This page is used to load and compile your scripts.

FreeWay AV Gateway Controller

Page 10 User Guide - Issue 2.00

FreeWay Configuration

This step is optional because you may not need to change the basic settings that the FreeWay was shipped with.

To access the FreeWay settings click on the Settings tab at the top of the page.

FreeWay Version

This is shown at the top of the page in bold. (A) after the version number indicates that an IR board is not fitted.

(B) indicates that it is fitted.

IP Address

By default this is 192.168.1.111. You may want to change this if, for example:

 Another device on your network uses this address

 The subnet address doesn’t match that of your network

 The network settings are different where you‘re setting FreeWay up to the settings where you plan to

install the FreeWay

Netmask

By default this is 255.255.255.0. You’d typically change this if FreeWay needs to communicate with devices over

TCP on a different netmask.

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 11

Gateway IP Address

By default this is 192.168.1.1. This usually the IP address of the router on your network.

After making changes to any of the above settings click on the Save button. FreeWay will then automatically

reboot with the new settings.

Date & Time

The date should be today’s date and the time will be Greenwich Mean Time according to our clock. You may need

to change the time if you are in a different time zone from GMT. To change the time or date just edit the values

in the text boxes and clock on the Save button.

You can click on the Synch from PC button to set the FreeWay clock to the same as that on your PC.

Password

You may change the default (dkt) password if you like. It should have a maximum of 16 characters with no

special characters or spaces. Type in the old password and the new password and click on Save. Note that you

must have a password – do not try to enter nothing as a new password.

Writing a Script

Now you’ll need to write a script file using the FreeScript language to programme the FreeWay for its intended

application. At this point you may want to read the FreeScript Programming Reference document to

familiarise yourself with FreeScript.

If you don’t want to do that at this stage – no problem – the script example shown below can be used to

demonstrate the whole process of compiling, downloading and testing your script.

If you are at all familiar with programming languages such as C or Java or even Basic then the script should

make some sense. If not, don’t worry, you can just use it as is. The comments in the script (i.e. lines that start

with a //) explain the basic principles.

We’ll use the script below to illustrate some fundamentals of scripting and the FreeWay operation. You should

type the following script into a text file using any text editor. You can also download it from the DKT website

(www.dktgroup.com), or load it from the CD-ROM accompanying FreeWay. It is called demo with error.txt.

A few notes on your choice of editor are worthy at this stage.

 Notepad is just fine but…

 You may find an editor that display’s line numbers useful because if the compiler finds any script errors

it’ll refer to them by line number

 Be careful if you use Rich Text Editors as they can add hidden control codes into the file that will

confuse the compiler. Never use Word.

FreeWay AV Gateway Controller

Page 12 User Guide - Issue 2.00

Here is the script..

// First we declare any functions and variables that we're going to use
// They can be declared anywhere in the script
// as long as they're declared before we use them
// Note we don't need to declare the 'built-in' system functions like HubInit()
// --
Func1(); // declare a function Func1()
Func2(float fVal); // declare a function Func2() that’s passed a parameter

string sMessage; // declare a string to hold a message

// The first function is usually HubInit()
// This is always called when FreeWay powers up
// --
HubInit()
{
 // print a welcome message to the debug interface
 DebugPrint("Welcome to the FreeWay demo script! \n\r");
}

// Now we'll define a function that we'll call from the FreeWay's
// built-in Web Page
// --
Func1()
{
 // Print out a debug message
 DebugPrint("Func1 has been called \n\r");
}

// This function demonstrates how to pass a numeric value to the function
// from an external browser - the value is converted into text and printed out
// --
Func2(float fVal)
{
 // build the message
 sMessage = "You passed value " + format(fVal,1,0) + " to Func2 \n\r";
 // print out the message
 DebugPrint(sMessage)
}

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 13

Downloading & Compiling a Script

Assuming that you have the above script (or something similar) in a text file somewhere we now need to compile

it and download it to the FreeWay. Click on the Scripting button.

Click on the Compile button to start compiling the script. You should get a compile error because of the deliberate

mistake in the script file.

34 Lines Compiled
Name memory used: 15% (35/220)
String memory used: 2% (1/50)
Number of errors: 1

Line 34: } expected

The last line in Func2() is missing a semi-colon. Add the semi-colon and download & compile the script again.

You should now get a successful compile. Congratulations.

34 Lines Compiled
Name memory used: 15% (35/220)
String memory used: 2% (1/50)
COMPILE SUCCESSFUL!

After a successful compile, the script will downloaded automatically to the FreeWay.

Drag a script
file into this
area

Or click here to
browse for a script file

Click Compile to
comile and load the
file onto the FreeWay

Click View Script to
view a script loaded
onto the FreeWay

FreeWay AV Gateway Controller

Page 14 User Guide - Issue 2.00

Testing the Script

We’ll now use the Debug page to test the script. Click on the Debug button. Then type in hubinit into the text

box next to the Function 1 button. Now click on the Function 1 button. In the Debugger window you should see

the message:

Welcome to the FreeWay demo script!

In the Function 2 text box type in Func1 and click on the Function 2 button. You should see:

Func1 has been called

In the Function 3 text box type in Func2&1234 and click on the Function 3 button. You should see:

You passed value 1234 to Func2

In this way you can test all of the functions in your script before installation and commissioning.

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 15

Implementing a HTML User Interface (optional)

A user interface is optional because your application may not require one. However, one of the most useful

features of the FreeWay is that all of functions that you implement in your script can be accessed using HTML

references. In fact all of the functions in your script are treated as separate URLs within the FreeWay. This means

that your application can be controlled from a Web Browser.

Application Example

Lets assume that the FreeWay is controlling a Home Theatre setup, integrating control over the AV devices, and

being controlled from a web browser interface on some display device. Here’s how we would control the DVD

Player from the user interface.

You would have an Infra-Red emitter attached to the front of the DVD Player connected to Infra-Red output port

IR1, say. Your script would contain a function that looks something like this:

//---
// Function: DVDPlay()
// Job: Play a DVD
//---
DVDPlay()
{
 string sIRCommand;

 // the Play IR command for the DVD player
 // this would have been learned earlier using the FreeWay IR Learn
 sIRCommand = "[PF68L836741E0083418C3X42F7BDEFF7FFFFB2F7BDEFF7FFFFB0P2CDFR04]";

 // transmit the command
 SendIR(1,0,0,0,sIRCommand);
}

The user interface would doubtless have a button on it called ‘DVD Play’ and clicking on this button would need
to call the DVDPlay() function. If our user interface were written in HTML our link would simply be

PlayDVD <\a>

or more generally, use:

 http://

 followed by the FreeWay’s address

 followed by /run.cgi?

 followed by the FreeScript function name (without the brackets)

If you want to pass a numeric argument to the function then precede the argument with an ampersand (&) e.g.
PlayDVD&1. You can pass up to three numeric arguments in this way.

FreeWay AV Gateway Controller

Page 16 User Guide - Issue 2.00

Using the Error Log

The FreeWay will write various status messages and reports into the error log from time to time. If you are

experiencing problems with your script it’s worth inspecting the log for any unusual messages.

Note that not all messages in the log are problems. For example, there will be entries written when a script is

compiled or when the FreeWay boots up.

To view the error log clock on the Error Log tab and then click on the Get Error Log buton.

For example, if you try and run a function called func3 in the Debug page you will get the above entry in the log

because func3 does not exist in the script.

The error log can store aboute 2k bytes of text so it will eventually fill up. Click on the Clear Error Log button to

empty the log.

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 17

RS-232 Serial Ports

Six serial ports are provided as standard on the FreeWay using 9-way male D-type connectors. These can be

used for controlling any 3rd party RS-232 compatible equipment. The FreeScript language provides a set of

functions for supporting the RS-232 serial ports. All the popular baud rates, start bits, stop bits and parity settings

can be configured using the FreeScript system functions. Functions are also provided for defining message

structures to support various communication protocols.

Connector pin assignment

(Male - viewed looking at the rear panel)

All other pins are not connected.

RS232 Port Configuration

Baud Rate

Call the following FreeScript function to configure the baud rate of each the RS-232 ports

SetBaud(float fPort, string sBaud)

where

 fPort - the RS232 port from 1 to 6

sBaud - the baud rate for the port can be 300, 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600,

115200 bits per second.

Note that this is usually done in the HubInit() function that is the first function to be called when the FreeWay

powers up.

Handshaking & Port Settings

Call the following function to configure the handshaking and other port settings for each RS-232 port

ConfigPort(float fPort, string sConfig, float fHandshake);

where

 fPort - the RS232 port from 1 to 6

Pin 2: Receive Pin 3: Transmit Pin 5: Ground

Pin 7: RTS Pin 8: CTS

FreeWay AV Gateway Controller

Page 18 User Guide - Issue 2.00

sConfig - a string to configure the number of data bits, parity and the number of stop bits.

For example: “8,n,1” – 8 data bits, no parity, 1 stop bit

Options are:

 Data bits: 7 or 8

 Parity: e, o, n (even, odd, or none)

 Stop Bits: 1 or 2

 fHandshake - a value to enable or disable handshaking. Options are:

 0 – no handshaking

 1 – hardware handshaking using RTS/CTS

If you want to use the default setting of 8-bits, no parity and one stop bit (which applies most of the time) then
you don’t need to call the ConfigPort() function.

 Example:

// ------------------------------------
HubInit()
{
 // configure rs232 port 1 for 9600 baud
 SetBaud(1, “9600”); // note that the baud rate is in quotes !

 // configure rs232 port 1 for 7 bits, even parity, 1 stop bit, no handshaking
 ConfigPort(1, “7,e,1”, 0);
}

RS232 Transmit

Call the following function to transmit data on one of the RS-232 ports

SerialSend(float fPort, string sOutput)

where

 fPort - the RS232 port from 1 to 6

 sOutput - the data to transmit from the port

Example:

// transmit a message on serial port 1
// ------------------------------------
SendRS232Command()
{
 string sCommand; // declare a string to hold the command
 sCommand = “Hello, World!\n\r”; // now define the command
 SerialSend(1, sCommand); // transmit the command on port 1
}

Note: the “\n\r” are special codes for line-feed and carriage return.

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 19

RS232 Receive Functions

The following system event function is automatically called when a message is received from an RS-232 serial

port.

SerialReceive(float fPort)

where

 fPort - the RS232 port (from 1 to 6) on which the message was received

To get the message data use the following function:

string SerialGet(float fPort)

where

 fPort - the RS232 port (from 1 to 6) on which the message was received

Example:

// receive a message on serial port 1
// ------------------------------------
SerialReceive(float fPort)
{
 // to get here we’ve received a message on port ‘fPort’
 string sMessage; // declare a string to hold the message

 // now read the message
 sMessage = SerialGet(fPort);

}

Note

To be more specific, the FreeWay will call the above SerialReceive() function under the following conditions:

 If the defined ‘end of message’ character is received (see below)

 If the number of characters exceeds a defined message length (see below)

 If the time between characters exceeds the message timeout value (see below) – the default is 100ms.

 If the number of characters exceeds 255.

Defining Messages

Defining an End-of Message Character

Many messages will always end in a certain character, for example, a ‘carriage return’ for text based

communications. Use the following function to specify it. You’d probably want to include this function in the

HubInit() function.

SetEndOfMsg(float fPort, float fEom)

where

 fPort - the RS232 port (from 1 to 6) to configure

 fEom - the ‘end of message’ value. For example, a carriage return value would be ‘13’

FreeWay AV Gateway Controller

Page 20 User Guide - Issue 2.00

Example:

// RS232 port 2 message ends in a carriage return (which is decimal 13)
SetEndOfMsg(2,13);

Defining a Message Length

Some messages will always be a fixed length. Use the following function to specify it. You’d probably want to

include this function in the HubInit() function.

SetMsgLength(float fPort, float fLength)

where

 fPort - the RS232 port (from 1 to 6) to configure

fLength - the length of the message, up to 255 characters. 0 disables this feature & the

default value of 255 characters is used.

Example:

// RS232 port 3 message length is 24 characters
SetMsgLength(3,24);

Defining a Message Timeout

You can delimit message boundaries by specifying timeout value. If no characters are received within this time

period the SerialReceive() function will be called. You’d probably want to include this function in the HubInit()

function.

SetMsgTimeout(float fPort, float fTime)

Where

 fPort - the RS232 port (from 1 to 6) to configure

 fTime - timeout period of a message in milliseconds (0-10,000). Default is 100ms.

Example:

// RS232 port 4 message timeout is 1 second
SetMsgTimeout(4,1000);

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 21

RS-485 Ports

There are three RS-485 ports fitted to FreeWay

 Two on 3-way screw terminals – labelled Port 7 & Port 8 on the rear panel

 One on an RJ45 connector – labelled RS485 on the rear panel

The RJ45 connector provides an additional 9V DC line for remotely powering equipment. It can source up to

100mA.

These ports can be used for communicating with any 3rd party RS-485 and RS-422 compatible equipment and

networks in 2-wire (half-duplex RS-485) and 4-wire (full-duplex RS-485 and RS-422) modes. Depending on the

baud rate, cable capacitance and network load, the RS-485 interfaces can usually drive cable lengths of up to

4000 feet. They provide a standard 12kΩ input impedance and can drive a bus of up to 32 standard load devices.

The FreeScript language provides a set of functions for supporting the RS-485 serial ports. All the popular baud

rates, start bits, stop bits and parity settings can be configured using the FreeScript system functions. Functions

are also provided for defining message structures to support various communication protocols.

The FreeScript functions for RS-485 ports are the same as those for RS-232 but differ in the following ways:

 The port parameter is 7 & 8 for the two 3-terminal ports (labelled Port 7 & Port 8)

 The port parameter is 9 for the RJ45 connector port

 Supported baud rates are 600, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200 and 230400

 Handshaking is not supported

Port 7 & 8 pin assignment

Viewed looking at the rear panel

RJ45 Connector pin assignment

Viewed looking at the rear panel

All other pins are not connected.

Pin 1: Ground Pin 2: A (+) Pin 3: B (-)

Pin 1: 9V Pin 2: Ground Pin 4: B (-) Pin 3: A (+)

FreeWay AV Gateway Controller

Page 22 User Guide - Issue 2.00

Termination resistors

For RS-485 connections with long cable lengths and high baud rates (>100m at 115kbaud say), and if the

FreeWay is at the end of the cable, the RS-485 data lines may need to be terminated. This is done by removing

the FreeWay’s lid and fitting jumpers links to add termination resistors into the circuit. The default setting is for

termination with the links connected, i.e. terminated.

Termination Resistor Jumper Links

The disable the line termination resistors remove the lid of the FreeWay and remove the links as shown below:

RS-485 and RS-422 modes

RS-485 2-wire mode

In this mode you have 2 half-duplex RS485 ports available on ports 7 & 8. The FreeWay can act as a Master or

Slave device.

RS-485 4-wire mode

This mode would typically use ports 7 & 8 together to form a 4 wire interface. It’s up to you to decide which

terminals transmit and which receive. The FreeWay can act as a Master or Slave device.

RS-422 mode

This mode would typically use ports 7 & 8 together to form an RS-422 interface. It’s up to you to decide which

terminals transmit and which receive. The FreeWay can act as a Master or Slave device. The RS-485 drivers used

in FreeWay meet all the required specifications for RS-422 communications.

Port 8 Port 7 RS485

Fit link J31 to terminate

RS485 port 8

Fit link J30 to terminate

RS485 port 7

Fit link J28 to terminate

RS485 RJ45 port

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 23

Infra-Red Receiver

An Infra-Red receiver is provided on the Front Panel so that Infra Red commands from the Infra-Red Remote

Controls of various AV devices can be sampled and learned. These commands can then be used in a FreeWay

script to control AV devices via the Infra-Red Output Ports.

FreeWay can also decode RC5 Infra-Red commands and use them to perform other functions in your script.

Received RC5 commands are handled in a similar way to messages on RS232, RS485 and Telnet ports. This

effectively gives you a very powerful tool for controlling A/V equipment from programmable remote controls such

as the Philips Pronto.

The FreeWay Interface program also provides a utility to convert Philips Pronto IR codes into FreeWay compatible

codes. This is described at the end of this chapter.

Learning Infra-Red Commands

Connect to FreeWay via FreeWay Interface and click on the IR Learn tab.

Click on the Start Learn button. The LED 2 on the FreeWay front panel will then turn on indicating that the

FreeWay is waiting for an IR command (unless this LED is being used in your script).

Press the button once on the Remote Control whose Infra-Red command you want to learn. LED 2 will then turn

off to indicate a successful command capture. The IR command will be displayed in the window. Copy and paste

all of this command (including the square brackets) into your Script or a text file (Select the command using the

mouse, right click the mouse button and select Copy).

FreeWay AV Gateway Controller

Page 24 User Guide - Issue 2.00

To learn another Remote Control command click on the IR Learn button again. To cancel a Learn operation click

on the Cancel Learn button.

Hints: Remember to point the Remote Control at the Infra-Red Receiver The distance between the receiver and

the Remote Control should not be greater than 10cm. Also beware of learning IR commands in direct sunlight, or

close to Plasma displays and fluorescent lights. Always use new batteries in your remote handset.

Here’s an example of a Script function that will send a learned command out of an Infra-Red port:

// transmit an IR command on IR1 port
// ----------------------------------
TransmitInfraRed()
{
 string sIRCommand; // declare a string to store the command

 // IR Play command captured from a JVC VCR remote control
 sIRCommand = "[PF68L839841F7081E18E4X42F7FFBF7BF7FFB2F7FFBF7BF7FFB0P2D1ER03]”;

 // transmit the command
 SendIR(1,0,0,0,sIRCommand);
}

Editing Infra-Red Commands

If you look at a learned IR command you will see that the last few characters look like this

 …R03]

The number after the ‘R’ denotes the number of times that the IR command is repeated, in this case 3 times. The

number of repeats is in hexadecimal format. You can change the repeat value to a different value if you need to.

Note that the repeat value is the only part of the IR command that you should edit.

Decoding RC5 Infra-Red Commands

The FreeWay has the ability to decode Infra-Red commands which conform to the RC5 protocol. This Infra-Red

format is used by all Philips products and many other manufacturers such as Linn, Meridian and Arcam. RC5 is a

common interface and is quite simple to decode and interpret. FreeWay’s RC5 decoding is a very powerful and

flexible method to control all sorts of A/V, heating and lighting control from a programmable Infra-Red handset.

The RC5 protocol is split into to 3 fields:

address with 32 values from 0 to 31

data with 64 values from 0 to 63

toggle this is a flag which changes state when a new button is pressed on the

handset. This is used for detecting if a key is being held down – for

example for a volume control

When the FreeWay detects an RC5 command it will automatically call the following system event function:

IRReceive(float fAddress, float fData, float fToggle)

You can then inspect the passed address, data and toggle fields and perform script processing as required. For

example the following script extract will send an RS232 message on port 1 when it receives an RC5 command

with an address field of 31 and a data field of 20.

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 25

IRReceive(float fAddress, float fData, float fToggle)
{
 // check the address field first - we will respond to address 31
 if (fAddress == 31)
 {
 // check the data field next - we will respond to data value 20
 if (fData == 20)
 {
 // Send out a message on RS232 port 1
 SerialSend(1,“Got RC5 Address 31 Data 20 \n\r”);
 }
 }
}

Converting Philips Pronto IR Codes

The Freeway Interface software provides a utility for converting Philips Pronto codes into a FreeWay compatible

format. Click on the Pronto Conversion tab:

Paste the Pronto code
into this area

Click here to convert
Pronot format to
FreeWay format

Copy the FreeWay IR
code from here into
your script

FreeWay AV Gateway Controller

Page 26 User Guide - Issue 2.00

Infra-Red Outputs

Four fully matrixed Infra Red ports are provided. These are suitable for connection to any standard Infra-Red

emitters (single or dual, blinking or non-blinking) fitted with mono mini-jack plugs (e.g. Xantech 282M IR Mouse

Emitters). Infra-Red commands can be transmitted an a single port or simultaneously on multiple IR ports.

Independent transmission is very useful for separately controlling identical pieces of equipment, for example 2 or

3 satellite receivers of the same model.

The Infra-Red commands that are transmitted must be captured using the FreeWay’s built-in Infra-Red receivers

& Infra-Red Learn facility.

Infra-Red Port Transmission

The following FreeScript function is provided for transmitting Infra-Red commands:

SendIR(float fIR1, float fIR2, float fIR3, float fIR4, string sIROut)

where

 fIR1 - set to 1 to transmit the IR command on port IR1, set to 0 otherwise

 fIR2 - set to 1 to transmit the IR command on port IR2, set to 0 otherwise

 fIR3 - set to 1 to transmit the IR command on port IR3, set to 0 otherwise

 fIR4 - set to 1 to transmit the IR command on port IR4, set to 0 otherwise

sIROut – the IR command to send to the IR port(s)

 Example:

// transmit an IR command on IR1 & IR3 ports
// ---
TransmitInfraRed()
{
 string sIRCommand; // declare a string to store the command

 // IR Play command captured from a JVC VCR remote control
 sIRCommand = "[PF68L839841F7081E18E4X42F7FFBF7BF7FFB2F7FFBF7BF7FFB0P2D1ER03]”;

 // transmit the command
 SendIR(1,0,1,0,sIRCommand);
}

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 27

FreeWay AV Gateway Controller

Page 28 User Guide - Issue 2.00

Digital Inputs

Six opto-isolated Digital Inputs are provided on the FreeWay. These are presented on the 25-way female D-Type

connector on the Rear Panel. These can be typically used with switch contact closures to trigger script functions

which can then control other pieces of equipment.

Connector pin assignment

Viewed looking at the rear panel

See the Digital Outputs section for the connections of the other pins

Electrical Interface

The equivalent electrical circuit for each digital input is as follows:

With the Digital input pin unconnected the opto-isolator transistor is switched off and a LOW state is
read by the microprocessor.

With the Digital input pin shorted to Ground current (approx. 10mA) flows through the opto-isolator
LED which turns the transistor on and a HIGH state is read by the microprocessor.

Whenever the Digital Input state changes the FreeScript DigitalIn() function is automatically called.

Pins 19 to 14: Ground

Pin 6: Input 1

Pin 5: Input 2

Pin 4: Input 3

Pin 3: Input 4

Pin 2: Input 5

Pin 1: Input 6

Opto-isolator

+5V

25-way D-Type pin 1 to 6 470Ω

Note: Six ground pins are

provided for connecting 6

switches between the Inputs &

Ground

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 29

Basic Interface Example

The following diagram shows a simple 2 pole switch connected between Digital Input 1 and Ground.

Contact DKT for advice on other Digital-Input configurations you may require.

FreeScript Functions

The following FreeScript functions are available for handling digital input events.

DigitalIn(float fPort)

where

 fPort - the Digital Input port pin from 1 to 6

This system event function will automatically be called whenever a change in pin status is detected. Note that the
function only reports a change on a single pin. If multiple pins change simultaneously the DigitalIn() function

will be called for each pin change in numerical order (i.e. from pin 1 to pin 6).

Once the DigitalIn() function has been called the following system function is then provided to get the state of

the port pin:

float GetDin(float fPort)

where

 fPort - the Digital Input port pin from 1 to 6

The function will return a value of 1 or 0 depending on the state of the port pin. Note that this function can be
called at any time within any function to get the port pin state. You should also call the GetDin() function as

soon as possible in the DigitalIn() function because GetDin() returns the current state of the pin not the

state of the pin when the DigitalIn() function was triggered.

 Example:

// Called when a Digital Input port pin changes state
// --
DigitalIn(float fDigitalInPort)
{
 // declare a variable to hold the pin state
 float fDigitalInState;

 // read the state of the digital input
 fDigitalInState = GetDin(fDigitalInPort);

}

2-pole push-button

switch

FreeWay AV Gateway Controller

Page 30 User Guide - Issue 2.00

Digital Outputs

Six opto-isolated Digital Outputs are provided on the FreeWay. These are presented on the 25-way female D-

Type connector on the Rear Panel. These can be typically used to control external equipment with a binary or

relay type control inputs from events on other ports using the script functions.

Connector pin assignment

Viewed looking at the front panel.

See the Digital Inputs section for the connections of the other pins.

Pin 7: Output+ 1

Pin 8: Output+ 2

Pin 9: Output+ 3

Pin 10: Output+ 4

Pin 11: Output+ 5

Pin 12: Output+ 6

Pin 13: 5V DC

Pin 20: Output- 1

Pin 21: Output- 2

Pin 22: Output- 3

Pin 23: Output- 4

Pin 24: Output- 5

Pin 25: Output- 6

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 31

Electrical Interface

The equivalent electrical circuit for each digital output is as follows:

When the microprocessor sets the Digital input to a 1 (ON) the output transistor is turned on and current will flow

through it.

When the microprocessor sets the Digital input to a 0 (OFF) the output transistor is turned off and no current will

flow through it.

Current will only flow through the output transistor from Output+ to Output- due to the blocking diode. The

transistor will pass current up to a limit of 10mA.

A courtesy voltage of 5V DC is available on pin 13 of the D-Type connector. You should not draw more than

100mA from this pin.

Basic Interface Example

The following diagram shows how an LED can be turned on when Digital Output 1 is turned on.

When the digital output transistor #1 turns on 10mA of current will flow

from the 5V courtesy voltage

through the LED – turning it on

into Output+1 pin through the output transistor

out of the Output-1 pin and into the Ground pin.

Contact DKT for advice on other Digital-Output configurations you may require.

Opto-isolator

Output+ 1-6

25-way D-Type pin 7-12

Output- 1-6

25-way D-Type pin 20-25

FreeWay AV Gateway Controller

Page 32 User Guide - Issue 2.00

FreeScript Functions

The following FreeScript functions are available for handling Digital Outputs.

SetDout(float fPort, float fState)

where

 fPort - the Digital Output port pin from 1 to 6

 fState - the state of the output pin (0=OFF, 1=ON)

 Example:

// General purpose function to
// change the state of a Digital Output
// ------------------------------------
SetDigitalOutput(float fDoutPort, float fDoutState)
{
 SetDout(fDoutPort, fDoutState)
}

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 33

Alarms

The FreeWay has a Real-Time clock which keeps track of the current time and date and provides the facility for

triggering time & date based events – or alarms. There are eight alarms available which can be triggered on a

daily, weekly or one-off basis. There is also an astronomic clock function which can trigger alarms at dusk &

dawn.

Setting Up Alarms

The following FreeScript function is used to configure an alarm. You would typically include this function in the
HubInit() function.

SetAlarm(float fAlarm, string sConfig)

where

 fAlarm - the number of the alarm you are configuring, from 1 to 8

 sConfig - the alarm configuration string. Options are:

 “O dd/mm/yyyy hh:mm” one time alarm at this time and date

 “D hh:mm” daily alarm at this time

 “W dd/mm/yyyy hh:mm” weekly alarm at this time from this date

“A +/-hh:mm” at dawn + or – an offset

“P +/-hh:mm” at dusk + or – an offset

When using the astronomic clock you also need to call the SetLocation() function. This function is used to specify

the FreeWay’s location so that it can calculate the dawn and dusk alarm times. You can obtain these values from
any online map service, for example: www.multimap.com.

SetLocation(float fLat, float fLon)

where

fLat the Latitude value

fLon the Longitude value

Example

// configure some alarms
HubInit()
{
 // setup alarm 1 as a one-off on 27th November 2004 at 9:00am
 SetAlarm(1,”O 27/11/2004 09:00”);

 // setup alarm 2 as a daily alarm at 5:30pm
 SetAlarm(2,”D 17:30”);

 // setup alarm 3 as a weekly from 1st January 2005 at 7:30am
 SetAlarm(3,”W 01/01/2005 07:30”);

 // setup a dawn alarm set for 1 hour after dawn
 // The location is London’s Oxford Street
 SetLocation(51.51, -0.148);
 SetAlarm(4, “A +01:00”);

}

FreeWay AV Gateway Controller

Page 34 User Guide - Issue 2.00

Responding to Alarms

When an alarm is activated the following system event function will automatically be called:

Alarm(float fAlarm)

where

 fAlarm - the number of the alarm from 1 to 8

Example

// assume the alarms have been setup as in the above example
Alarm(float fAlarm)
{
 string sMessage;

 if (fAlarm == 1) {
 sMessage = “Its my birthday!\n\r”
 }
 if (fAlarm == 2) {
 sMessage = “Time to go home!\n\r”
 }
 if (fAlarm == 3) {
 sMessage = “Its Monday\n\r”
 }
 if (fAlarm == 4) {
 sMessage = “Good Morning\n\r”
 }
 // print out the message to the debug terminal
 DebugPrint(sMessage);
}

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 35

Telnet Ports

There are four Telnet ports built-in to the FreeWay which you can use for communicating with equipment over a

TCP/IP Ethernet connection. In the script these are effectively treated as four serial ports but use the Ethernet

port. These ports are typically used for 2-way Ethernet communications between :

 multiple FreeWays

 multiple FreeWays and TCP/IP sockets built into Macromedia Flash Actionscript

 FreeWay and TCP/IP sockets built into Ethernet enabled A/V devices (e.g. CD Servers, Projectors etc)

Telnet ports can operate in standard Telnet mode or in raw TCP mode. There are script functions for opening,

closing & configuring Telnet Ports.

Opening Telnet Ports

Before the FreeWay uses a Telnet port (or another devices uses a FreeWay Telnet port) you need to open it up.
You would do this with the OpenTelnet() function, probably included in the HubInit() function, as follows:

OpenTelnet(float fPort, float fCS, float fIPport, string sIPaddress)

where

 fPort - the port number of the Telnet port we want to open: 10, 11, 12, or 13

 fCS - specifies the type of Telnet port to open: 0 or 1

 0 – Telnet Client

 1 – Telnet Server

fIPport - the TCP/IP port number of the Telnet connection. This is determined by your

application, or specified by the device you are trying to connect to. For example a Xiva

CD server’s port number is 6789.

fIPaddress - the IP address of the port to connect to. If the FreeWay’s Telnet port is is a server

then just leave this blank i.e. “”. If the FreeWay’s Telnet port is a client then specify

the IP address of the Telnet server you are connecting to, e.g. “192.168.7.112”.

Closing Telnet Ports

FreeWay also provides a close Telent function, as follows:

CloseTelnet(float fPort)

where

 fPort - the port number of the Telnet port we want to close: 10, 11, 12, or 13

There are a number of situations where you may want to use closeTelnet(). Firstly, some network devices

require that you open a Telnet connection, communicate and then close a Telnet communication.

FreeWay AV Gateway Controller

Page 36 User Guide - Issue 2.00

Also, FreeWay typically stays switched on 24 hours a day, 7 days a week. If you have a Telnet connection to a

device and the network goes down, or the devices reboots, then the Telnet connection may not be valid

anymore. In this case you may want to open & close telnet connections each time you want to communicate so

that you know that a valid connection has been made.

An additional advantage of closing Telnet ports is that it lets you communicate with an unlimited number of

network devices. You can open a connection to one device, close it & then open a connection to another device.

You can only have four simultaneous connections though.

TCP Mode

Most devices implement a full Telnet interface for network communications. Some devices require a raw TCP

connection. This is similar to Telnet but does not support various additional control characters & handshaking. If
you want to use a Telnet port in raw TCP mode then use the ConfigTelnet() function as follows:

ConfigTelnet(float fPort, float fMode)

where

 fPort - the port number of the Telnet port we want to configure: 10, 11, 12, or 13

fMode - 0 is Telent mode – which is default

 - 1 is Raw TCP mode

Note that if you want raw TCP mode you must call this function before caling OpenTelnet(). If you want standard

Telent mode you don’t need to call this function (unless you are changing a connection on a FreeWay port

between TCP & Telnet modes).

Example:

HubInit()
{
 // Open a raw TCP client port
 // on 192.168.7.27 port 6789
 // --
 ConfigTelnet(10, 1);
 OpenTelnet(10, 0, 6789, “192.168.7.27”);

 // Open a Telnet server port
 // on 192.168.7.112 port 10000
 // --
 OpenTelnet(11, 1, 10000, “”);
}

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 37

Using Telnet Ports

FreeWay treats Telnet ports just like normal serial ports so the SerialSend() and SerialReceive()

functions can be used to receive and transmit messages over the Telnet connections that you make. The
SetEndOfMsg(), SetMsgLength() and SetMsgTimeout() functions can also be used if required.

Example:

HubInit()
{
 // Open a Telnet client port
 // on 192.168.7.27 port 6789
 // --
 OpenTelnet(10, 0, 6789, “192.168.7.27”);

 // Wait one second to allow the device port to initialise
 // This is optional
 // ---
 Delayms(1000);

 // Send a hello message to the Kivor
 // ---------------------------------
 SerialSend(10, ”Hello\n\r”);
}

SerialReceive(float fPort)
{
 // test if the message is from Kivor
 // ---------------------------------
 if (fPort == 10)
 {
 DebugPrint(“Got a message from Kivor\n\r”);
 }
 else
 {
 DebugPrint(“Got a message from someone else\n\r”);
 }
}

FreeWay AV Gateway Controller

Page 38 User Guide - Issue 2.00

UDP Ports

There are four UDP ports built-in to the FreeWay which you can use for communicating with equipment over an

Ethernet connection. In the script these are effectively treated as four serial ports but use the Ethernet port.

These ports are typically used for 2-way Ethernet communications between :

 multiple FreeWays

 FreeWay and UDP sockets built into Ethernet enabled A/V devices

UDP connections are similar to TCP & Telnet but, whereas TCP guarantees that a message will get through, UDP

doesn’t. Under situations of high network traffic it may be possible for UDP messages to get lost. Therefore, if it

is important to your application that messages don’t get lost, then you need to implement a retry mechanism into

your application.

In addition, unlike TCP, UDP is a connectionless protocol - which means that we don’t need a closeUDP()

function.

An advantage of UDP messages is their speed. Because they don’t have the retry overhead of TCP messages they

typically get through more quickly. UDP also has a broadcast mechanism which allows a message to be sent to all

interested parties on the network. This is useful for communications between a large number of FreeWays on a

network.

FreeWay provides script functions for configuring UDP connections as follows.

Configuring & Opening UDP Ports

This function tells the FreeWay to listen for UDP messages on a particular UDP port.

OpenUDP(float fPort, float fListenPort)

where

 fPort - specifies one of four the Freeway port numbers. This can be 14, 15, 16 or 17.

fListenPort - specifies the UDP port that FreeWay will listen to. E.g. 3456.

This opens a UDP port which is set to listen for UDP messages on a particular port number. Received messages
can be handled in the SerialReceive() function as normal.

If you want to send UDP messages then you need to call the following function:

ConfigSendUDP(float fPort, string sRemoteIP, float fDestPort)

where

 fPort - specifies one of four the Freeway port numbers. This can be 14, 15, 16 or 17.

sRemoteIP - the IP address of the remote UDP port we want to send to.

An IP address of “255.255.255.255” will broadcast to all UDP listeners.

fDestPort is the UDP port number at the destination

This function tells the FreeWAy where to send the UDP messages (which IP address, or all IP addresses for a

broadcast), and to which UDP port to address the message. You can then send UDP messages using the
SerialSend() function as normal.

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 39

Using UDP Ports

FreeWay treats UDP ports just like normal serial ports so the SerialSend() and SerialReceive() functions

can be used to receive and transmit messages over the Telnet connections that you make. The
SetEndOfMsg(), SetMsgLength() and SetMsgTimeout() functions can also be used if required.

Example:

HubInit()
{
 OpenUDP(14, 5600);
 ConfigSendUDP(14, “192.168.7.110”, 5600);
 SerialSend(14, “Hello”);
}

SerialReceive(float fPort)
{
 // test if the message is from UDP
 // ---------------------------------
 if (fPort == 14)
 {
 DebugPrint(“Got a message from UDP\n\r”);
 }
 else
 {
 DebugPrint(“Got a message from someone else\n\r”);
 }
}

FreeWay AV Gateway Controller

Page 40 User Guide - Issue 2.00

EIB/KNX Interface

The EIB port allows the FreeWay to send and receive messages to groups on a EIB/KNX bus. Support is provided

for all of the EIB data types. Applications include:

• Controlling A/V equipment from EIB switches and sensors

• Control of EIB devices such as lighting dimmers and heating actuators from web browser-based user

interfaces

• Control of EIB devices from an Infra Red handset

• Schedule astronomic time and date events using FreeWay’s alarm functions

• EIB time synchronisation from FreeWay’s internal clock

• Perform logic operations

EIB Port Connector pin assignment

FreeWay connection directly to the bus is via a 4-way terminal connector.

 (Viewed looking at the rear panel)

All other pins are not connected.

Configuring ETS

Under most circumstances you do not need to make any configuration changes to your ETS project to

communicate with FreeWay, particularly if FreeWay exists on the same line as the devices you wish FreeWay to

interact with. Simply allocate FreeWay an unused physical address.

However, for systems with multiple lines, where FreeWay needs to communicate with devices across a line

coupler you’ll need to add a dummy device to your ETS project, and add objects from the dummy devices to the

Groups that FreeWay needs to communicate with. For very large systems, because FreeWay ‘listens’ to all bus

messages, you may also want to assign a FreeWay to its own line.

Gira provide two dummy devices with their product database, for example. The dummy device’s physical address

is effectively the FreeWay’s physical address. You don’t need download a physical address to the FreeWay via

ETS as you normally do with other EIB devices. You also don’t need to download an application to FreeWay using

ETS as you’ll program the application using FreeWay’s script.

Pin 1: Black Pin 3: Red

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 41

FreeScript EIB Functions

The following FreeScript functions are provided for EIB communications:

EibPhysical() Call this in hubinit() to set the FreeWay’s Physical address

EibRegister() Call this in hubinit() to specify the groups you want to communicate with

EibReceive() System Event function called when a registered group message is received

EibSendFloat() Use this to send a float value to the bus

EibSendString() Use this to send a string to the bus

EibPhysical()

You must call this function, usually in HubInit, to set the FreeWay’s physical address. This should be the same as

the physical address of the dummy device that you added to your ETS project.

EIBPhysical(string sEibPhysical)

where

 sEibPysical - a string to set the FreeWay’s physical address e.g. “0.1.2”

Example

HubInit()
{
 // FreeWay’s physical address
 EIBPhysical(“0.1.2”);
}

EibRegister()

You must call this function, usually in HubInit, for every group that you want FreeWay to communicate with This

should be the same as the group addresses in your ETS project that are associated with the dummy device’s

objects. The function requires a unique handle which is used by send and receive functions to refer to the group;

a group address as a string; a Data Type. You can register up to 64 groups.

EIBRegister(float fEibRegHandle, string sEibRegGroup, float fEibRegType)

where

fEibRegHandle a unique handle to identify the EIB group - between 1 and 64

sEibRegGroup the EIB group address that you want to register e.g. “0/0/1”

fEibType the type of Datapoint that the Group uses. Options are

FreeWay AV Gateway Controller

Page 42 User Guide - Issue 2.00

 fEibType Data Type Format Example

 1 Boolean 1-bit Switches & status

 2 2-bit 2-bit

 3 3-bit Controlled 4-bit Dimmers

 4 Character Set 8-bit Displays

 5 8-Bit Unsigned Value 8-bit e.g. dimmer brightness value

 6 8-bit Signed Value 8-bit Values

 7 2-octet Unsigned Value 2-octet e.g. thermostat temperature

 8 2-octet Signed Value 2-octet Values

 9 2-octet Floating Point Value 2-octet Values

 10 Time 3-octet Set bus time

 11 Date 3-octet Set bus date

 12 4-octet Unsigned Value 4-octet Values

 13 4-octet Signed Value 4-octet Values

 14 4-octet Float Value 4-octet Values

 15 Access 4-octet Access control

 16 Character String 14 bytes Text displays

Note: Registering a group address as Type 0 signifies an un-registered group.

Example

HubInit()
{
 // FreeWay’s physical address
 EIBPhysical(“0.1.2”);

 // Register a switch group address
 // --------------------------------
 // Group Handle = 1
 // Group Address = 0/1/2
 // Data Type = 1 = Boolean
 EIBRegister(1,”0/1/2”,1);

 // Register a dimmer control group address
 // --------------------------------
 // Group Handle = 2
 // Group Address = 0/1/3
 // Data Type = 3 = 3-bit control
 EIBRegister(2,”0/1/3,3);

}

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 43

EibReceive()

This is a System Event function that is automatically called when FreeWay receives a message from a group that

you’ve registered. The function is passed 3 parameters: the group handle, the message value as a float, and the

message value also as a string. You can use either the float or the string values for most data types with a few

exceptions.

EIBReceive(float fEibRxHandle, float fEibRxValue, string sEibRxValue)

Where

fEibHandle the handle of the registered group

fEibRxValue the floating point value of the data received from the group

sEibRxValue a string version of the data received from the group

Example

EIBReceive(float fEibRxHandle, float fEibRxValue, string sEibRxValue)
{
 // check the group’s handle
 if (fEibRxHandle == 1)
 {
 // Read the value as a string....
 if (sEibRxValue[0] == 0) {DebugPrint(“Value = On”);}
 if (sEibRxValue[0] == 1) {DebugPrint(“Value = Off”);}

 // ... or Read the value as a float
 if (fEibRxValue == 0) {DebugPrint(“Value = On”);}
 if (fEibRxValue == 1) {DebugPrint(“Value = Off”);}
 }
}

EibSendFloat()

Use this function to send a value to group that you’ve registered. The function is passed 2 parameters: the group

handle, the message value as a float. You’d use this function for sending 1, 4 and 8-bit and floating point values.

EIBSendFloat(float fEibTxfHandle, float fEibTxfValue)

where

fEibTxfHandle the group handle previously registered with EIBRegister()

fEibTxfValue the floating point value of the data to send to the group

Example

HubInit()
{
 EIBPhysical(“0.1.2”);

 // Group Handle = 1
 // Group Address = 0/1/2
 // Data Type = 1 = Boolean
 EIBRegister(1,”0/1/2”,1);

 // send a value of 1 to the group
 EIBSendFloat(1, 1)
}

FreeWay AV Gateway Controller

Page 44 User Guide - Issue 2.00

EibSendString()

Use this function to send a value to group that you’ve registered. The function is passed 2 parameters: the group

handle, the message value as a string. You can use this function to send values for any of the data types,

particularly those with multiple bytes.

EIBSendString(float fEibTxsHandle, string sEibTxsValue)

where

fEibTxsHandle the group handle previously registered with EIBRegister()

sEibTxsValue the string value of the data to send to the group

Example

string sEibString;

HubInit()
{
 EIBPhysical(“0.1.2”);

 // Group Handle = 1
 // Group Address = 0/1/2
 // Data Type = 1 = Boolean
 EIBRegister(1,”0/1/2”,1);

 // send a value of 1 to the group
 sEibString[0] = 1;
 EIBSendString(1, sEibString)
}

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 45

Appendix

A1 - Setting up a Telnet HyperTerminal Session

This section gives instructions on setting up a Telnet session file for HyperTerminal supplied with most versions of

Windows.

 From the Start menu select Programs->Accessories->Communications->HyperTerminal.

 In the New Connection dialog box type in: FreeWay Telnet and click OK

 In the Connect To window, in the Connect Using drop-down box select TCP/IP (Winsock)

 For Host address type in 192.168.1.111 (or the FreeWay’s new IP address if you have changed it)

 The Port number should be 3900. Click on OK

 Select File->Save from the HyperTerminal menu to save the session file. You can access the session

file again from Programs->Accessories->Communications->HyperTerminal->FreeWay
Telnet.ht

FreeWay AV Gateway Controller

Page 46 User Guide - Issue 2.00

A2 - Downloading Scripts using FTP

FreeWay has an FTP interface as an alternative to Telnet for downloading scripts to FreeWay. There are

numerous FTP Client programmes freely available on the Internet and Windows has one built-in. To use it:

 First run a Command Prompt session: Select Start->Programs->Accessories->Command Prompt

 You should then navigate to the directory that contains your script file. For example at the C:\> prompt

type in:

cd My Documents\FreeWay Scripts\script.txt

 Note that for Telnet transfers you can call the script anything you like. For FTP transfers the script file

name must be script.txt.

 Then run the FTP Client by typing in ftp followed by the FreeWay’s IP address, for example:

ftp 192.168.1.111

 You will be prompted for a username, type in dkt

 You will be prompted for a password, type in dkt

 You are now logged in as an FTP client to FreeWay. To send your script file to FreeWay type in:

send script.txt

 Type quit to exit the FTP client programme.

 You will now need to compile the script file using the Compile button on the FreeWay’s built-in web

page

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 47

A3 – EIB/KNX Datapoint Types

Type 1: Boolean

Format 1-bit

Range 0,1

This data type is used for switch states (e.g. 0/1, on/off, open/closed, up/down etc). On transmit it is used to

switch devices on/off. On receive it provides device states.

On receive the bit value is provided in fEibRxValue and in sEibRxValue[0] as values 0 or 1.

On transmit the bit value can be sent using EibSendFloat() or EibSendString().

Example

This example receives a switch state from group address 0/1/1, prints out a debug message and sends the

received value to group address 0/1/2.

HubInit()
{
 EIBPhysical(“0.0.1”); // FreeWay physical address

 EIBRegister(1,”0/1/1”,1); // Group Handle = 1

// Group Address = 0/1/1
 // Data Type = 1 = Boolean

 EIBRegister(2,”0/1/2”,1); // Group Handle = 2
// Group Address = 0/1/2

 // Data Type = 1 = Boolean
}

EIBReceive(float fEibRxHandle, float fEibRxValue, string sEibRxValue)
{
float fValue;
string sValue;

 // check the group’s handle
 if (fEibRxHandle == 1)
 {
 // get the float value or ...
 fValue = fEibRxValue;
 // get the string value
 sValue = sEibRxValue[0];

 // send float to group 2 or ...
 EIBSendFloat(2, fValue);
 // send string to group 2
 EIBSendString(2, sValue);

 }
}

FreeWay AV Gateway Controller

Page 48 User Guide - Issue 2.00

Type 2: 2-bit

Format 2-bit [C V]

Range C = 0,1 V = 0,1

On receive sString[0] = V

sString[1] = C

fFloat = CV

On transmit the bit value can be sent using EibSendFloat() or EibSendString().

Type 3 3-Bit Controlled

Format 4-bit [C VVV]

Values C = 0,1

0 = dim down

1 = dim up

 V = 000…111

001-111 = dimming step

000 = stop

This data type is commonly used to increase or decrease the set value in steps, or to stop/start movement (e.g.

to control a dimmer). Data is formatted as follows:

fFloat = [_ _ _ _ C V V V]

or

sString[0] = [_ _ _ _ _ _ _ C]

sString[1] = [_ _ _ _ _ V V V]

Example 1

This example prints out the status of received dimming messages.

HubInit()
{
 EIBPhysical(“0.0.1”); // FreeWay physical address

 EIBRegister(1,”0/0/1”,3); // Group Handle = 1

// Group Address = 0/1/2
 // Data Type = 3 = 4-bit controlled

}

EIBReceive(float fEibRxHandle, float fEibRxValue, string sEibRxValue)
{
string sControl;
string sStep;

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 49

string sDebug;

 // check the group’s handle
 if (fEibRxHandle == 1)
 {
 // get the control value
 sControl = sEibRxValue[0];
 // get the step value
 sStep = sEibRxValue[1];

 if (sStep == 0)
 {
 DebugPrint(“Dimming stopped \n\r”);
 }
 else
 {
 if (sControl == 0)
 {
 sDebug = “Dimming Up with step = “ + s + “\n\r”;
 DebugPrint(sDebug);
 }
 else
 {
 sDebug = “Dimming Down with step = “ + s + “\n\r”;
 DebugPrint(sDebug);
 }
 }
 }
}

Example 2

This example shows a function which can be called by web browser buttons to control a dimmer.

ControlDimmer(float fCommand, float fStep)
{
string sEibString;

 // 1 = stop dimming
 if (fCommand == 1)
 {
 sEibString[0] = 0;
 sEibString[1] = 0;
 EibSendString(1,sEibString);
 }

 // 1 = dim up
 if (fCommand == 2)
 {
 sEibString[0] = 0;
 sEibString[1] = fStep;
 EibSendString(1,sEibString);
 }

 // 1 = dim down
 if (fCommand == 3)
 {
 sEibString[0] = 1;
 sEibString[1] = fStep;
 EibSendString(1,sEibString);
 }

}

FreeWay AV Gateway Controller

Page 50 User Guide - Issue 2.00

Type 4 Character Set

Format 8-bit [AAAAAAAA]

Range 00h to FFh

This data type is used to transfer an ASCII character over the bus. Data is formatted as follows:

fFloat = [A A A A A A A A]

or

sString[0] = [A A A A A A A A]

Example 1

HubInit()
{
 EIBPhysical(“0.0.1”); // FreeWay physical address

 EIBRegister(1,”0/0/1”,4); // Group Handle = 1

// Group Address = 0/0/1
 // Data Type = 4 = character set

}

EIBReceive(float fEibRxHandle, float fEibRxValue, string sEibRxValue)
{
string sCharacter;
string sMessage;

 // check the group’s handle
 if (fEibRxHandle == 1)
 {
 sMessage = “Character is “ + sEibRxValue[0] + “\n\r”;
 DebugPrint(sMessage);
 }
}

Type 5 8-Bit Unsigned Value

Format 8-bit [UUUUUUUU]

Range U = 0…255

fFloat = [UUUUUUUU]

sString[0] = [UUUUUUUU]

This data type is commonly used to transfer 8-bit unsigned integer values (e.g. counter values). Normally the

range is 0 to 255 but the interpretation can differ depending on the sub-type. If sub-type scaling is selected the

value is interpreted as a percent value from 0 to 100%. This can be used to set the brightness value of dimming

actuators. If the sub-type Wind Direction is selected the value is interpreted as an angle in the range from 0O to

360O.

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 51

Example

HubInit()
{
 EIBPhysical(“0.0.1”); // FreeWay physical address

 EIBRegister(1,”0/0/1”,5); // Group Handle = 1

// Group Address = 0/1/2
 // Data Type = 5 = 8-bit Unsigned Value

}

EIBReceive(float fEibRxHandle, float fEibRxValue, string sEibRxValue)
{
string sMessage;
float fValue;

 // check the group’s handle
 if (fEibRxHandle == 1)
 {
 // interpret as a raw value from 0-255
 sMessage = “Raw value is “ + fEibRxValue + “\n\r”;
 DebugPrint(sMessage);

 // interpret as a scaling value from 0-100%
 fValue = 100*fEibRxValue/255;
 sMessage = “Scaling value is “ + fValue + “%\n\r”;
 DebugPrint(sMessage);

 // interpret as an angle value from 0-360O
 fValue = 360*fEibRxValue/255;
 sMessage = “Angle value is “ + fValue + “degrees\n\r”;
 DebugPrint(sMessage);
 }
}

Type 6 8-Bit Signed Value

Format 8-bit [VVVVVVVV]

Range V = -128…+127

fFloat = [VVVVVVVV]

sString[0] = [VVVVVVVV]

This data type is commonly used to transfer 8-bit signed integer values in the range is -127 to +128.

Type 7 2-octet Unsigned Value

Format 2-octet: MSB [UUUUUUUU] LSB [UUUUUUUU]

Range U = 0…65535

fFloat = value

sString[0] = [UUUUUUUU] LSB

sString[1] = [UUUUUUUU] MSB

This data type is commonly used to transfer 2-byte unsigned integer values (e.g. counter values).

FreeWay AV Gateway Controller

Page 52 User Guide - Issue 2.00

Type 8 2-octet Signed Value

Format 2-octet: MSB [VVVVVVVV] LSB [VVVVVVVV]

Range V = -32768…+32767

fFloat = value

sString[0] = [VVVVVVVV] LSB

sString[1] = [VVVVVVVV] MSB

This data type is commonly used to transfer 2-byte signed integer values (e.g. counter values).

Type 9 2-octet Floating Point Value

Format 2-octet: MSB [M EEEE MMM] LSB [MMMMMMMM]

Range -671088.64…+670760.96

fFloat = value

sString[0] = [VVVVVVVV] LSB

sString[1] = [VVVVVVVV] MSB

This data type is commonly used to transfer 2-byte analogue values (e.g. values from a temperature sensor).

Type 10 Time

Format 3-octet Byte 3 [ddd hhhhh]

Byte 2 [00 mmmmmm]

Byte 1 [00 ssssss]

fFloat = not used

sString[0] = day, 0 to 6, 0 = monday

sString[1] = hour

sString[1] = minutes

sString[1] = seconds

This data type is used to transfer 3-byte time values. The time value is read from the bus and stored in 4

characters of the sEibRxValue string as follows:

Day in sEibRxValue[0] = “0..6” where 0 is Monday, etc
Hours in sEibRxValue[1] = “0…23”
Minutes in sEibRxValue[2] = “0…59”
Seconds in sEibRxValue[3] = “0…59”

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 53

Example

This example reads the time from the bus and prints out of the FreeWays’ debug output.

HubInit()
{
 EIBPhysical(“0.0.1”); // FreeWay physical address

 EIBRegister(1,”0/0/1”,12); // Group Handle = 1

// Group Address = 0/1/2
 // Data Type = 12 = 3-octet Time

}

EIBReceive(float fEibRxHandle, float fEibRxValue, string sEibRxValue)
{
string sMessage;

 // check the group’s handle
 if (fEibRxHandle == 1)
 {
 sMessage = “EIB Time is “ + sEibRxValue[0] + “, ” +

 sEibRxValue[1] + “:” +
 sEibRxValue[2] + “:” +
 sEibRxValue[3] + “\n\r”;

 DebugPrint(sMessage);
 }
}

Type 11 Date

Format 3-octet Byte 3 [000 DDDDD]

Byte 2 [0000 MMMM]

Byte 1 [0 YYYYYYY]

This data type is used to transfer 3-byte date values. The date value is read from the bus and stored in 3

characters of the sEibRxValue string as follows:

Day in sEibRxValue[0] = “1…31”
Month in sEibRxValue[1] = “1…12”
Year in sEibRxValue[2] = “0…99”

Example

This example reads the date from the bus and prints out of the FreeWay’s debug output.

HubInit()
{
 EIBPhysical(“0.0.1”); // FreeWay physical address

 EIBRegister(1,”0/0/1”,13); // Group Handle = 1

// Group Address = 0/1/2
 // Data Type = 13 = 3-octet Date

}

EIBReceive(float fEibRxHandle, float fEibRxValue, string sEibRxValue)
{
string sMessage;

 // check the group’s handle
 if (fEibRxHandle == 1)
 {
 sMessage = “EIB Date is “ + sEibRxValue[0] + “/” +

 sEibRxValue[1] + “/20” +
 sEibRxValue[2] + “\n\r”;

 DebugPrint(sMessage);

FreeWay AV Gateway Controller

Page 54 User Guide - Issue 2.00

 }
}

Type 12 4-octet Unsigned Value

Format 4-octet: MSB [UUUUUUUU] [UUUUUUUU] [UUUUUUUU] [UUUUUUUU] LSB

Range U = 0…4,294,967,295

fFloat = value

sString[0] = [UUUUUUUU] LSB

sString[1] = [UUUUUUUU]

sString[2] = [UUUUUUUU]

sString[3] = [UUUUUUUU] MSB

This data type is commonly used to transfer 4-byte unsigned integer values (e.g. counter values).

Type 13 4-octet Signed Value

Format 4-octet: MSB [UUUUUUUU] [UUUUUUUU] [UUUUUUUU] [UUUUUUUU] LSB

Range V = -2,147,483,648…+2,147,483,647

fFloat = value

sString[0] = [UUUUUUUU] LSB

sString[1] = [UUUUUUUU]

sString[2] = [UUUUUUUU]

sString[3] = [UUUUUUUU] MSB

This data type is commonly used to transfer 4-byte signed integer values.

Type 14 4-octet Floating Point Value

Format 4-octet: MSB [M EEEE MMM] LSB [MMMMMMMM]

Range

fFloat = value

sString[0] = [UUUUUUUU] LSB

sString[1] = [UUUUUUUU]

sString[2] = [UUUUUUUU]

sString[3] = [UUUUUUUU] MSB

This data type is commonly used to transfer 4-byte analogue values (e.g. values from a temperature sensor).

FreeWay AV Gateway Controller

User Guide - Issue 2.00 Page 55

Type 15 Access

Type 16 Character String

Format 14-octet:

Range n/a

fFloat = not used

sString[0] = first character

….

sString[13] = last character

This type is used for sending text messages for textual displays.

	Contents
	Introduction
	Rear Panel
	Front Panel
	Getting Started
	Connecting to FreeWay
	FreeWay Interface Software
	FreeWay Configuration
	Writing a Scipt
	Downloading & Compiling a Script
	Testing the Script
	Implementing a HTML User Interface
	Using the Error Log

	RS232 Serial Ports
	Connector Pin Assignment
	RS232 Port Configuration
	RS232 Transmit
	RS232 Receive Functions
	Defining Messages

	RS485 Ports
	Port 7 & 8 Pin Assignment
	RJ45 Connector Pin Assignment
	Termination Resistors
	Termination Resistor Jumper Links
	RS-485 and RS-422 Ports

	Infra-Red Receiver
	Learning Infra-Red Commands
	Editing Infra-Red Commands
	Decoding RC5 Infra-Red Commands
	Converting Philips Pronto IR Codes

	Infra-Red Outputs
	Infra-Red Port Transmission

	Digital Inputs
	Connector pin assignment
	Electrical Interface
	Basic Interface Example
	FreeScript Functions

	Digital Outputs
	Connector Pin Asignment
	Electrical Interface
	Basic Interface Example
	FreeScript Functions

	Alarms
	Setting Up Alarms
	Responding to Alarms

	Telnet Ports
	Opening Telnet Ports
	Closing Telnet Ports
	TCP Mode
	Using Telnet Ports

	UDP Ports
	Configuring & Opening UDP Ports
	Using UDP Ports

	EIB/KNX Interface
	EIB Port Connector Pin Assignment
	Configuring ETS
	FreeScript EIB Functions
	EibPhysical()
	EibRegister()
	EibReceive()
	EibSendFloat()
	EibSendString()

	Appendix
	A1 - Setting Up aTelnet HyperTerminal Sessions
	A2 - Downloading Scripts Using FTP
	A3 - EIB/KNX Datapoint Types
	Type 1: Boolean
	Type 2: 2-bit
	Type 3: 3-Bit Controlled
	Type 4: Character Set
	Type 5: 8-Bit Unsigned Value
	Type 6: 8-Bit Signed Value
	Type 7: 2-octet Unsigned Value
	Type 8: 2-octet Signed Value
	Type 9: 2-octet Floating Point Value
	Type 10: Time
	Type 11: Date
	Type 12: 4-octet Unsigned Value
	Type 13: 4-octet Signed Value
	Type 14: - 4-octet Floating Point Value
	Type 15: Access
	Type 16: Character String

