
Free and Open Source Software for Industrial Process Control Systems
Simone Mannori , Ramine Nikoukhah , Serge Steer

INRIA-Rocquencourt, Domaine de Voluceau,
78153 Le Chesnay Cedex, France

simone.mannori@inria.fr , ramine.nikoukhah@inria.fr, serge.steer@inria.fr

Abstract— Scilab and Scicos are open-source and free soft-
ware packages for design, simulation and realization of in-
dustrial process control systems. They can be used as the
center of an integrated platform for the complete development
process, including running controller with real plant (Scicos-
HIL: Hardware In the Loop) and automatic code generation for
real time embedded platforms (Linux, RTAI/RTAI-Lab, RTAI-
XML/J-RTAI-Lab). These tools are mature, working alterna-
tives to closed source, proprietary solutions for educational,
academic, research and industrial applications. We present,
using a working example, a complete development chain, from
the design tools to the automatic code generation of stand alone
embedded control and user interface program.

Keywords: Real time control; dynamical systems simu-
lation; simulation software; hybrid systems; Scilab; Scicos;
RTAI; Comedi.

I. INTRODUCTION

We show, using a real example, a complete development
chain that allow to:

• construct a mathematical model of the plant;
• validate the model of the plant through simulation and

open-loop measurements;
• design a suitable controller;
• simulate the full system and optimize controller param-

eters;
• run the controller inside the standard simulator while

connected to the real plant in ”soft real-time” mode
(SCICOS-HIL: Scicos Hardware In the Loop);

• use an automatic code generator to create stand-alone
controller program that could run stand alone in ”hard-
real-time” mode (Linux-RTAI Code Generator;

• implement graphics user interfaces (RTAI-Lab, J-RTAI-
Lab) to remotely interact with the controller using
network connections.

We provide all the references to the documentation,
available thought Internet, that describe all the details of
installation, configuration and utilization of the software
packages involved. Our aim is just to show what is possible
to realize within a very limited budget: we try to limit

the cost of the parts using standard, low cost devices and
stimulate development of solutions that use imagination
instead of money. Just as an example, the cost of all the
software used is zero.

II. SOFTWARE PACKAGES OVERVIEW

One - if not the most important - critical issue for
the developing of modern digital control systems are the
software tools used for the design and validation.

A. Scilab

We use Scilab/Scicos as main development environment.
Scilab [1] is a scientific software package for numerical
computations providing a powerful open computing envi-
ronment for engineering and scientific applications. Scilab
has a complete functions toolbox for modeling, simulating
and aiding the design of hybrid control systems. Since 1994
it has been distributed freely along with the source code via
the Internet. It is currently used in educational and industrial
environments around the world. Scilab includes hundreds
of mathematical functions with the possibility to add inter-
actively programs from various languages (FORTRAN, C,
C++, JAVA). It has sophisticated data structures (including
lists, polynomials, rational functions, linear systems), an
interpreter and a high level programming language (Scilab
Language).

B. Scicos

Writing the simulation of an hybrid dynamical system as
scripts, using the powerful functions of the Scilab language
is possible [2], but it is time consuming and it is very
easy to insert bugs during the manual coding. To simplify
this job, Scilab include Scicos [3] a graphical hybrid dy-
namical system modeler and simulator toolbox. Scicos is
used for applications in control system, communication,
signal processing, queuing systems, and to study physical
and biological systems. Within Scicos graphical editor it is
possible to place, configure and connect blocks, in order

to create diagrams to model hybrid dynamical systems, and
simulate it. Most of the Scicos graphical user interface is
written in Scilab language, for complete integration with
Scilab, easy customization and maximum flexibility. Each
blocks is rapresented by two functions:

• the interfacing function. Written in Scilab language,
define the graphical representation, the input, output
and control ports and signals and the user configurable
parameters ;

• the computational function, that is the real code used
in the simulations. The computational function can be
written in Scilab Language, for easy development, or
in C, for maximum efficiency and speed. The C com-
putational function can be pre-compiled or ”compiled-
before-simulation” in order to allow the user to ccus-
tomize without leave the Scicos environment.

Scicos simulations could be used to interact with real
system in many ways:

• Scicos HIL (Hardware In the Loop). With some limi-
tation is possible use the Scicos simulation to control a
real plant in real time.

• the internal, general purpose, C generator. The internal
”Code Generator” (menu ”Object”-¿”Code generation”,
[4]) translate the Scicos symbolic diagram representa-
tion in stand alone, general purpose C code. This code
uses the standard I/O (terminal) as interface. It is left to
the user to customize the C code in order to interact with
other input/output devices (e.g. data acquisition cards)
and resolves the real time and synchronism issues. This
basic, but very flexible solution, is designed to work
with hand coding or with external software tools as
Syndex[5]. For the next release of Scilab (vers. 5) the
internal code generator will be fully integrated with
Syndex to allow the physical implementation of Scicos
diagram on multiprocessors and programmable logic
architectures.

• use a specific code generator for Linux RTAI. This
solution merge the hard real time capability of Linux-
RTAI kernel [6] with the creation of a stand alone
program from Scicos computational functions, ideal for
embedded systems with limited hardware resources.
The stand alone program that implement the Scicos
diagram con exchange data using the RTAI-Lab user
interface or the J-RTAI-Lab user interfaces. The former
needs RTAI installed in the host system, the latter uses
Java applets that runs on any Java enabled browser on
any OS.

C. RTAI-Lab user interface

RTAI-Lab is a graphics environment that allow to display,
in real time, the internal variables of a RTAI running
controller, using scopes and other virtual instruments. It
is also possible modify the internal parameter in order
to tune the system. RTAI tasks and RTAI-Lab exchange
data using IP address and NET-RPC protocol. The NET-
RPC uses Ethernet (or other compatible media/interfaces)
in real time using custom UDP data packet. This protocol
support an arbitrary number to tasks/controller connected
with a single supervisor. This is the ideal environment for
distributed control applications. With some limitations on
the network load, the same media can support real time and
standard TCP/IP connection simultaneously. RTAI-Lab uses
RTAI API to synchronize the communication and update the
display with real time priority. This imply the presence of
an Linux RTAI also in the supervisor PC that run RTAI-
Lab. It is possible to avoid this requirement: the RTAI-
XML/J-RTAI-Lab [7] allow to use a general purpose Java
enabled web browser to implement the same features of
RTAI-Lab but without any garantee about the latency of the
data exchange.

D. Comedi device drivers and libreries

Comedi [8] is the standard way to use I/O interface de-
vices with Linux. The Comedi project develops open-source
drivers, tools, and libraries for data acquisition. Comedi is a
collection of drivers for a variety of common data acquisition
plug-in boards (more than 100 devices are supported). The
drivers are implemented as a core Linux kernel module
providing common functionality and individual low-level
driver modules. To use the driver, the application program
should use Comedilib functions. Comedilib is a user-space
library that provides a developer-friendly interface to Comedi
devices. Included in the Comedilib distribution is documen-
tation, configuration and calibration utilities, and demon-
stration programs. Kcomedilib is a Linux kernel module
(distributed with Comedi) that provides the same interface
as Comedilib in kernel space, suitable for real-time tasks. It
is effectively a ”kernel library” for using Comedi from real-
time tasks. This is a very important features because the hard
real time RTAI tasks could not issues direct system call to
uses.

E. Linux and RTAI-Linux kernels

The Linux kernel is the foundation over all this building is
constructed. The Linux kernel provides a level of flexibility
and reliability simply impossible to achieve with any other
(free or commercial) operating system. For these reasons,

many companies in the field of real time and embedded
operating systems [9] offer support for Linux.

The real time performances of the latest 2.6.1x Linux
kernel are very close to real time (for sampling time in the
milliseconds range) but the ”vanilla” (standard, unmodified)
Linux is NOT a real time operating system because with the
standard Linux kernel is not possible give guarantee about
the absolute maximum latency of task activation. There are
many project that modify (patch) the Linux kernel in order
to create a ”parallel” hard real time kernel (and user) space
where the tasks have deterministic activation timing, while
leave the other ”normal” tasks running in the standard Linux
user’s space. We use RTAI because offer direct support for
Scilab/Scicos, but is also possible to use Xenomai [10].

III. CONSTRUCTION OF THE PLANT

The fastest way to have a plant is to buy such ”ready-
made”. There are many companies on the educational mar-
ket that offer such products [11]. We choose the classical
ball and beam experiment (Fig. 1 (a)) because its intrinsic
instability and non linearity represents a recognized control
system benchmark. The construction is possible using readily
available cheap parts. For most of the mechanical parts we
use LEGO Technique/Mindstorm [11] components (less than
200 euro for a complete kit).

Fig. 1. Complete system. From the bottom: (a) ball and beam; (b)
amplifiers and power supplies; (c) USB-DUX data acquisition card.

The ball is made of stainless steel. The ball rolls on two
brass rails salvaged from a train model and glued on the
Lego bricks (Fig. 1(a)). We build, using a single experimental
printed circuit board (Fig. 1(b)), the input amplifier, the
power output amplifier and the relatives power supplies. As
data acquisition cards we use the USB-DUX (Fig. 1(c), [13]).

A. Ball position sensor

The ball position is measured using one of the rails as a
variable voltage source (Fig. 3). A floating 5 Volts voltage
and a series resistor, supply a constant 700 mA current to the
reference rail. This arrangements is simple but inefficient:
almost all the electrical power is dissipated in the linear
regulator and in the external 6.8 ohm / 5 Watt power resistor.
To avoid this waste of electrical power, we plan to use
a constant voltage (100mV), low noise, switching power
supply. The metallic (stainless steel) ball works as a sliding
contact; the second rail closes the circuit, sending the low
level signal (0−40 mV, equivalent to 0−30 cm) to the input
amplifier.

5 Volt

12K
120

0 − 2 Volt

330K+270K

10K

6.8

LF 356

C0.47uF

RRs

E R1

R2

Ro

0 − 40 mV
L_beam = 30 cm

+

−

−

+

Fig. 2. Input Amplifier.

The contact resistance is very noisy (typical moving
contact noise). The input amplifier (Fig. 3) has high-input
impedance and uses a low pass filter (R and C) that cut
out part of the noise from this sensor. We provides two
time constants (5ms and 0.5ms) compatible with expected
closed loop dynamic of the plant. With the high-impedance
of the JFET operational amplifier LF356, if the ball loose
the electrical contact with the rail(s), the input filter works
as ”sample-and-hold”: the capacitor C ”remember” the last
valid voltage/position value. This non linear behavior of a
fully linear filter and amplifier is an ”collateral effect” of
the non-linear, random proprieties of the moving contact
resistance, that represent the internal impedance of our
position sensor. To have two moving contact (reference-
rail/ball and ball/sensing-rail) in series aggravate the final
results. A common cure to reduce the moving contact noise
is to use carbon based (electrical conducting) grease. We
don’t use it intentionally because we want to evaluate the
noise-rejecting proprieties of the controllers in worst cases
situations.

B. Actuator

For actuator we use the LEGO Mindstorm standard motor
model ”71427”. The specifications of this motor are available

[14] from experimental tests. The inductance of the motor’s
armature (LA = 2.07mH, average value, measured with an
impedance bridge) is not included in the model because it
introduces a time constant

τe = LA/RA = 0.83ms

which can be neglected.

The limited electromechanical conversion efficiency of the
motors appears as different KT (torque constant) and KV

(speed constant). These two constants are equals in the case
of ”perfect” 100% efficient motor, where all the electrical
power is converted in mechanical work. The constants are
different also because inside the Lego motor there is a re-
duction gear that lower the efficiency but increase the torque
(reducing the maximum speed) and improve the linearity
of the DC motor in the low speed region. The estimated
internal motor plus reduction gear equivalent moment inertia
are negligible respect the the moment of inertia of ball and
beam.

In the model, we neglect all the other possible sources of
friction.

The motor has more than sufficient speed and torque
to move the ball and the beam directly. We introduce an
external reduction gear to utilize better the motor speed
range.

C. Power Amplifier

The output of an operational amplifier is boosted with
a complementary pair Darlington transistors. This linear
power amplifier has more than sufficient bandwidth (10kHz),
voltage (+/− 15V) and current (+/− 1.5A) capability to
drive the loaded motor. The output voltage is limited to
+/− 9V to avoid motor overload (that will permanently
damage the motor). We choose to set AV = 1 for the power
amplifier because we found that the +/−4V dynamic range
of the USB-DUX output voltage is enough to drive the motor
(the output amplifier works only as current booster with
voltage gain set to one).

D. Encoder Input

Using the bidirectional counter input of the data acqui-
sition card (USB-DUX) is possible to connect an encoder
measuring the real angle of the beam. We have not used this
input in the experiment because we choose to use an observer
to recreate the full state of the system. With an observer, it
is possible to avoid the necessity of an expensive sensor to
measure the position of the beam.

E. Data Acquisition Card

We use the USB-DUX [13] interface. We choose this
device because it has sufficient resources to monitor and
drive the plant. USB-DUX uses a Universal Serial Bus
connection: his allow to use any recent laptop. USB-DUX
uses Comedi [8] device driver suite that allows to use
different hardware without a coherent API. In the spirit of
free and open-source development, the USB-DUX is fully
documented (hardware and software), including schematics
and source code of the firmware of the micro-controller that
runs the board. The only real limit of this board is the USB
bus: unfortunately it is not yet possible to run it in true
hard-real-time fashion USB interfaces because, to do so, it is
necessary to rewrite the full USB Linux stack [15]. Usually,
with recent 2.6.1x kernel this is not a serious limitations
for applications with sampling time of 10ms or higher. At
present time, the only way that allow a full hard real time
guarantee behavior, is the use of ISA/PCI/PC-CARD I/O
board [7].

IV. MODELLING AND SIMULATING THE SYSTEM

A very useful way to evaluate all system constants is
to write all the equations inside a single Scilab script (
bb 10.sce ; see appendix A).

In the first part of the script all the system constants
are defined; then these constants are used to calculate the
coefficients of the linearized model of the system.

A. Modelling the plant

Supposing that the linear model of the plant is represented
by the time continuous state matrix A , B , C et D ; the discrete
(sampled time) model is obtained using the Scilab instruction

sys_d = dscr(sys,Ts);

where sys is the Scilab object that represent the linear
system:

sys = syslin(’c’,A,B,C,D);

The A matrix has dimension 4× 4 (the model has four
state see the annexe), the matrix B is 4×1 (there is only an
input: the motor voltage), C is 1×4 (the position of the ball
is the only output) and D is null.

The eigenvalue of the the A matrix show that the lin-
earized model is unstable in the equilibrium point (there is
an eigenvalue with positive real part). A full state feedback
approach is used to stabilize the system. The feedback matrix
F is calculated using LQR method, using Q and R values
tuned experimentally.

bb_a

Nonlinear model
Ball and beam
Nonlinear model
Ball and beamS/HS/H

Ball_Position

Motor_In

SUM

+
+
+
+

FF

−Ki−Ki

BdBd

AdAd

SUM

+
+
+

+
+
+

CdCd

SUM

+
−
+
−LL

Osserv

den(z)
num(z)
den(z)
num(z)

OssPosError

1/z1/z

Fig. 3. Scicos diagram bb a.cos with complete, continuous non linear
model of the plant and the linear discrete controller.

Adjusting the R and Q parameters of the controller is
possible to change the dynamics of the transient response.
Fig. 3 show the results of the simulation using R and Q
values found experimentally to stabilize the controller.

B. The regulator

The regulator implemented inside a PC is a sampled data
system, but the real plant is a continuous time system.
Various approach are possible: we choose to transform the
continuous model of the plant a a discrete one and design the
controller in the sampled domain. The first things to do is
choose a sampling time. Usually the sampling time is chosen
looking at the closed loop expected performances. If Tr is
the desired 10-90 response time to a step of the reference
T s = Tr/10 or less. In other words: at last ten sample in
the rise time. The sampling time should be high enough to
cover, within the Fs/2 Nyquist limit, all the ”fast” poles of
the plant in order to avoid intersampling oscillation.

It is important to check also the ”authority” (capability to
act with efficacy) of the actuator present in the real system.
In our plant, the Lego motor has a intrinsic bandwidth in
the range 10-40 Hz, function of the load inertia. We choose
Ts = 10 ms because is a good compromise between this
requirement and is realizable with the available hardware
and software components in soft and hard real time modes.

Input amplifier, data acquisition and output amplifier can
be considered fully ”transparent”.

With the full, linearized, model of the plant

sys = syslin(’c’,A,B,C,D);

and the sampling time T s, the equivalent discrete time
plant is computed with

sys_d = dscr(sys,Ts);

and splitted in the four elements with

[Ad,Bd,Cd,Dd] = abcd(sys_d);

The classic approach at the design of the state variable
regulator is to compute, using the expected controlled sys-
tem, the position of the closed loop poles, then and compute
a feedback matrix F to do that. Scilab has a function that do
all the work (F = ppol(A,B, poles)). This kind of approach
has several drawbacks. A better solution is to use an LQR
designed feedback matrix that is more robust to parameters
variations and allow to find a good compromise between
the time reponse and the effort on the actuator. In order to
improve the steady state accuracy of the system, an external
discrete integrator is added in the loop. The matrix of our
new ”augmented” feedback system are :

Fi =
(

F Ki
)

,Adi =

(

Ad 0
−Cd I

)

,Bdi =

(

Bd
0

)

With this arrangement is possible to compute the gain of
the integrator Ki and the stabilizing feedback matrix F at the
same time. The value of R and Q are found experimentally
using R = 1 and Q = [1 1 1 1 1] as starting point.

F_lqr_i = bb_dlqr(Adi,Bdi,Qi,R) ;
F = -F_lqr_i(1:4) ;
Ki = -F_lqr_i(5) ;

C. The observer

Instead that fill the plant with sensors, using a Luenberg
observer. The added integrator does not change the design
of the observer because it is external at the real plant, then
we use the non augmented matrix. We design the observer
using manual placement of real poles in order to obtain an
observer faster than the plant.

V. TESTING THE CONTROLLER WITH THE REAL PLANT:
SCICOS HARDWARE IN THE LOOP

With some limitations, it is possible to use Scicos to
control a real plant. The first step is to create input blocks
to acquire the feedback signal and output blocks to drive

the system. Using the examples found in the Scicos [17]
and Comedi [18] documentation we have developed the
interfacing and computational functions that realize the
I/O using Scicos blocks. Within Scicos it is possible to
run the simulation in ”real-time” using the menu option
[Simulate]->[Setup] and setting ”Realtime scaling”
equal ”1”. With this parameter set Scicos ”wait” for the
right time to read the inputs, make the calculations and
update the outputs. It is clear that the time required to
complete all the actions should be less than the sampling
time. Normally this is not a problems with the modern
PC. Unfortunately, Linux is not an hard real time OS:
also with free CPU time there is no guarantee that the
sampling time will be respected. The latest 2.6.1x Linux
kernel, with the low latency features active and with the
internal timer set to the maximum resolution (1ms, 1000Hz)
could be considered real-time at 99% for a sampling time of
10ms. This performance is more than enough for laboratory
applications with electromechanical systems where sampling
time in the range of 4-20 milliseconds.

The respect of the sampling time is a very critical issue for
a digital controller because the position of poles and zeros
are function of sampling time T s. If T s change, the position
of pole-zero change, with potential dangerous consequence
in the transient, steady state and stability proprieties of the
closed loop hybrid system.

It is also important to limit the number of Scicos scopes
and traces: they uses CPU resources. Increasing the scope’s
internal buffers reduces the CPU loads, at the expense of the
real time update of the display.

A. Compensation of the mechanical non linearity

The very cheap Lego parts create a non linear ”sticky
friction” (sticktion) that block the movement of the beam for
very low values of the motor voltage. As result of this ”dead
zone” effect, the motor is totally incapable of making the
small movement to place the ball in the perfect equilibrium
position with zero ball speed. We use a custom Scicos block
to create an artificial non linearity that try to compensate
the ”dead-zone” effect, using a fixed voltage ”step” to the
motor in the correct direction. The ”dead-zone” canceling
non-linearty is realized inside the block Mathematical
Expression that uses the equation:

sign(u1)*a+u1

The parameter a , defined in the script or in the Context ,
represent the equivalent motor voltage of the the dead zone
(the minimum voltage required to move the beam). The full
regulator is show in Fig. 4. We used a non linear block
Saturation to limit the motor voltage during the starting
phase; during the normal working operation , the voltage
computed form the controller is ever below the saturation

level (+/- 2V).

bb_abn

SUM

+
+
+
+

FF

−Ki−Ki

BdBd

AdAd

SUM

+
+
+

+
+
+

CdCd

SUM

+
−
+
−LL

1/z1/z

Comedi D/A CH−0
Comedi D/A
Comedi D/A CH−0
Comedi D/A

Comedi A/D CH−0
Comedi A/D
Comedi A/D CH−0
Comedi A/D

SUM

+
−
+
−

0.970.97KrKr

den(z)
num(z)
den(z)
num(z)

Expression
Mathematical
Expression
Mathematical

Motor

Ball

Observ

Fig. 4. Scicos Hardware In the Loop .

B. The observer

The fists attempt to manually place the poles of the
observer was unsuccessful. The position signal is noisy
because the rail-ball-rail contact is not perfect. This noise,
only partially attenuated by the single pole low pass filter of
the input amplifier, create stability problems in the observer.
After several trial and error iterations with different strategies
to place the poles of the observer (real poles, complex
conjugate poles, deadbeat), we found that the LQR method
was effective also to design the observer.

C. Kalman observer

At not satisfied with the performances of the LQR ob-
server, we had tried to use a steady state optimal Kalman
observer. The computation of the feedback matrix L is
more involved because the Scilab ”lqe” function require the
preparation of an equivalent system that include input (state),
output and cross (input-output) correlation noise sources.
The performances of the Kalman observer is equivalent to
the LQR observer.

VI. SCICOS RTAI CODE GENERATOR

There are many situation where the performance of the
Scicos-HIL solution are not sufficient: if the plant is un-
stable with catastrophic consequence, for fast/high accuracy
systems that require sampling time lower than 4 ms, for
embedded system where is not possible install the full

Scilab/Scicos package but a small, stand alone program that
implement the controller is the only option. The previous
diagram can reused, but but all the I/O block must be from
the specific RTAI Scicos palette.

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0
−0.10

−0.05

0.00

0.05

0.10

+

Fig. 5. Ball position (m), time (s).

0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0
−2.50

−1.25

0.00

1.25

2.50

+

Fig. 6. Motor voltage (Volt), time (s).

VII. CONCLUSION

In this paper we have presented a full working system that
will be used for the teaching of the industrial control.

REFERENCES

[1] Scilab [Online].
Available: http://www.scilab.org/.

[2] S. L. Campbell, J-Ph. Chancelier et R. Nikoukhah, Modeling and
Simulation in Scilab/Scicos, Springer, 2005.

[3] Scicos [Online].
Available: http:www.scicos.org.

[4] [2], cap.12 ”Code Generation”).
[5] Syndex [Online].

Available: http://www-rocq.inria.fr/syndex/.

[6] RTAI [Online].
Available: http://www.rtai.org;
Available: http://www.dti.supsi.ch/ bucher/scilab-howto.pdf .

[7] RTAI-XML Project [Online].
Available: http://artist.dsi.unifi.it/rtaixml/.

[8] Comedi [Online].
Available: http://www.comedi.org/.

[9] Links to companies [Online].
Available: http://www.linuxdevices.com/ .

[10] Xenomai [Online].
Available: http://www.xenomai.org/ .

[11] Quanser [Online].
Available: http://www.quanser.com;
TQ Education and Training Limited [Online].
Available: http://www.tq.com/.

[12] LEGO Mindstorm [Online].
Available: http://mindstorms.lego.com/.

[13] USB-DUX [Online].
Available: http://www.linux-usb-daq.co.uk/.

[14] LEGO motor parameters [Online].
Available: http://www.philohome.com/motors/motorcomp.htm.

[15] USB-RTAI stack: works in progress [Online].
Available: http://developer.berlios.de/projects/usb4rt .

[16] PC-CARD DAS16/16-AO Measurement Computing [Online].
Available: www.measurementcomputing.com .

[17] [2], cap.9 ”Scicos Blocks”).
[18] Comedi/Comedilib Tutorial and User Manual ”comedilib.pdf”.

Available: http://www.comedi.org/.

ANNEXE
MATHEMATICAL MODEL OF THE PLANT

The mathematical model of the mechanical system has
three ”internal state”: the ball posizion x, the ball’s rotation
angle φ, and the beam angle, θ. The equation relative to the
ball dynamics is

mgsin(θ) = mẍ+ Jsφ̈/r

where r is the ball radius (meter), m the ball mass (Kg) et
Js = 2mr2/5, the rotational moment of inertia.

Using the relation x = φr whit the hypothesis that the ball
roll without slide, the dynamics of the ball is simplified to

ẍ = 5gsin(θ)/7.

A second equation model the dynamics of the beam :

T = −mgcos(θ)x+ Jbθ̈+mx2θ̈

where T represent the torque on the beam’s axis.

Using the simplified model of the motor (that don’t
consider the inductance):

TM = KT iA

where TM is the motor torque (Nm), KT the torque constant
(Nm/A), and iA the motor current (A).

Introducing the cinematic ratio of the gears that couple the
motor to the axis of the bean KC = 40/8 = ωM/ω = T/TM

where ωM is the rotational speed of the motor axis ω = θ̇,
and the motor equation is

UM = RAiA +KV ωM ,

we obtain

KCKT iA = −mgcos(θ)x+ Jbθ̈+mx2θ̈

where
iA =

UM −KV ωM

RA
.

Substituting ẋ par v, we obtain the complete model:

ω̇ =
mgx

Jb +mx2 cos(θ)−
KV K2

CKT

RA(Jb +mx2)
ω+

KCKTUM

RA(Jb +mx2)

θ̇ = ω

v̇ =
5
7gsin(θ),

ẋ = v.

The state of this system are: (ω0,θ0,v0,x0) = (0,0,0,∗)
where ∗

is an arbitrary value. It is possible to stabilize the ball in
a generic position. We examine in detail the case x0 = 0.

Linearizing the model around the equilibrium state 0, we
obtain an approximate linear model:

ξ̇ = Aξ+Bu

y = Cξ

where

ξ =









ω
θ
v
x









,A =











−
KV K2

CKT
RAJb

0 0 mg
Jb

1 0 0 0
0 5

7 g 0 0
0 0 1 0











,B =









KCKT
RAJb

0
0
0









and u = UM . The matrix C is
(

0 0 0 1
)

.

This linear model is used for the design of the regulator
and the observer.

