Quantum with Unity Pro Experts and Communication Reference Manual

ena

June 2005

35010574_00

Document Set

Presentation

This package contains the following manuals:

- Quantum Hardware Reference Manual
- Quantum Discrete and Analog I/O Reference Manual
- Quantum Experts and Communication Reference Manual
- Grounding and Electromagnetic Compatibility of PLC Systems User Manual
- Quantum Series 800 I/O Reference Manual

Table of Contents

	Safety Information	11
	About the Book	13
Part I	Software Configuration	
Chapter 1	Configuration of the module. Overview Mapping a Local Quantum I/O Station Open the Parameter Configuration	19 20
Chapter 2	Quantum Addressing Modes. Overview . Flat Addressing . Topological Addressing . IODDT Addressing . Quantum IODDTs . Addressing Example . Discrete I/O Bit Numbering . I/O Modules Status Byte .	23 24 25 26 27 29 30
Part II	Quantum Remote I/O (RIO) Modules	
Chapter 3	140 CRP 931 00: Remote I/O (RIO) Head Module (single channel). Overview Overview Presentation Indicators. Error Codes. Specifications	37 38 40 41
Chapter 4	140 CRP 932 00: Remote I/O (RIO) Head Module (dual channel)	45

	Overview Presentation Indicators Error Codes Specifications	46 48 49
Chapter 5	140 CRA 931 00: Remote I/O (RIO) Drop Module (single channel)	53
	Overview Presentation. Indicators Error Codes Specifications.	54 56 57
Chapter 6	140 CRA 932 00: Remote I/O (RIO) Drop Module (dual	
	channel)	
	Overview	
	Indicators	
	Error Codes	
Part III	Quantum Distributed I/O (DIO) Drop Modules	
Part III Chapter 7		67 69
	At a Glance	67 69 69
Chapter 7	At a Glance	67 69 69
Chapter 7	At a Glance	67 69 69 73
Chapter 7	At a Glance	67 69 73 73 74 76
Chapter 7	At a Glance	67 69 69 73 74 76 77
Chapter 7	At a Glance	67 69 69 73 74 76 77
Chapter 7 Chapter 8	At a Glance	67 69 69 73 74 76 77 78 79
Chapter 7 Chapter 8	At a Glance	67 69 69 73 74 76 77 78 79 79
Chapter 7 Chapter 8	At a Glance	67 69 69 73 74 76 77 78 79 79 80 82
Chapter 7 Chapter 8	At a Glance	67 69 69 73 74 76 77 78 79 79 80 82 83

	Presentation Indicators Specifications Wiring Diagram	88 89
Chapter 11	140 CRA 212 20: DIO Drop Module 24 VDC (dual channel) . Overview . Presentation . Indicators. Specifications . Wiring Diagram	91 92 94 95
Part IV	Modbus Plus Network Option Modules (NOM) At a Glance	
Chapter 12	140 NOM 211 00: Modbus Plus Option Module Overview Presentation Indicators Error Codes Specifications	99 . 100 . 106 . 107
Chapter 13	140 NOM 212 00: Modbus Plus Option Module Overview Presentation Indicators Error Codes Specifications	. 111 . 112 . 117 . 118
Chapter 14	140 NOM 252 00: Modbus Plus Option Module 10Base-FL . Overview . Presentation . Indicators. Fiber Optic Cable Connections . Specifications	. 121 . 122 . 128 . 129
Part V	Quantum Ethernet Modules At a Glance	
Chapter 15	140 NOE xxx xx: Ethernet Module General Overview Overview General Information. 140 NOE 771 xx and 140 NWM 100 00 Module Overview Indicators.	. 143 . 144 . 145
Chapter 16	140 NOE 211 x0: TCP/IP 10Base-T Ethernet Module	151

	Overview Presentation Indicators Specifications Installation	152 153 154
Chapter 17	140 NOE 251 x0: TCP/IP 10Base-FL Ethernet Module Overview Presentation. Indicators . Specifications. Installation	157 158 159 160
Chapter 18	140 NOE 311 00: SY/MAX 10Base-T Ethernet Module Overview Presentation Indicators Specifications	163 164 166
Chapter 19	140 NOE 351 00: SY/MAX 10Base-FL Ethernet Module Overview	169 170 172
Chapter 20	140 NOE 771 00: TCP/IP 10/100 Ethernet Module Overview	175 176 179
Chapter 21	140 NOE 771 01: TCP/IP 10/100 Ethernet Module Overview	181 182 183
Chapter 22	140 NOE 771 10: TCP/IP 10/100 FactoryCast Ethernet Module Overview Presentation Indicators Specifications	185 186 189
Chapter 23	140 NOE 771 11: TCP/IP 10/100 FactoryCast Ethernet Module Overview	

	Presentation Indicators Specifications	195
Chapter 24	140 NWM 100 00: TCP/IP 10/100 Ethernet Module. Overview Presentation Indicators. Specifications	197 198 199
Part VI	Quantum Field Bus Modules At a Glance	
Chapter 25	140 EIA 921 00: AS-i Master Communication Module Overview Presentation Indicators. Wiring Diagram Specifications Parameter Configuration	203 204 206 209 210
Chapter 26	140 CRP 811 00 PROFIBUS DP Master Communication Module Overview Short Description. 140 CRP 81100 Display Element Description. 140 CRP 811 00 Specification	213 214 217
Chapter 27	140 NOA 622 00: Interbus Communication Module. Overview Presentation Indicators. Specifications	223 224 227
Part VII	Quantum Special Purpose / Intelligent Modules	
Chapter 28	140 HLI 340 00: High Speed Latch and Interrupt Module Overview . Presentation . Indicators. . Specifications . Wiring Diagram . Addressing . Parameter Configuration .	231 232 233 234 236 238

Chapter 29	140 EHC 202 00: High Speed Counter Module	
	Overview	241
	Presentation	242
	Specifications	244
	Controlling and Timing	246
	Functions	248
	Operating Conditions and Examples	250
	Addressing	
	I/O Map and Commands	
	Indicators	
	Wiring.	
	Maintenance	
	Parameter Configuration	-
		219
Chapter 30	140 EHC 105 00: High Speed Counter Module	. 283
•	Overview	283
	Presentation	
	Specifications	
	Indicators	
	Wiring.	
	Parameter Configuration	
Index		. 295

Safety Information

Important Information

NOTICE

Read these instructions carefully, and look at the equipment to become familiar with the device before trying to install, operate, or maintain it. The following special messages may appear throughout this documentation or on the equipment to warn of potential hazards or to call attention to information that clarifies or simplifies a procedure.

The addition of this symbol to a Danger or Warning safety label indicates that an electrical hazard exists, which will result in personal injury if the instructions are not followed.

This is the safety alert symbol. It is used to alert you to potential personal injury hazards. Obey all safety messages that follow this symbol to avoid possible injury or death.

DANGER indicates an imminently hazardous situation, which, if not avoided, will result in death, serious injury, or equipment damage.

🚹 WARNING

WARNING indicates a potentially hazardous situation, which, if not avoided, **can result** in death, serious injury, or equipment damage.

A CAUTION

CAUTION indicates a potentially hazardous situation, which, if not avoided, **can result** in injury or equipment damage.

PLEASE NOTE Electrical equipment should be serviced only by qualified personnel. No responsibility is assumed by Schneider Electric for any consequences arising out of the use of this material. This document is not intended as an instruction manual for untrained persons.

© 2005 Schneider Electric. All Rights Reserved.

About the Book

At a Glance

Document Scope	This documentation is a reference for the networking and communication hardware of the Quantum automation system with Unity Pro. This documentation is valid for Unity Pro from version 1.1.
Validity Note	The data and illustrations found in this documentation are not binding. We reserve the right to modify our products in line with our policy of continuous product development. The information in this document is subject to change without notice and should not be construed as a commitment by Schneider Electric.

Related Documents

Title of Documentation	Reference Number
Quantum Discrete and Analog I/O Reference Manual	Part of this package
Quantum Experts and Communication Reference Manual	Part of this package
Grounding and Electromagnetic Compatibility of PLC Systems User Manual	Part of this package
Quantum and Premium Communication Architecture Reference Manual	UNYUSE10410V20E
Quantum Hot Standby User Manual	UNYUSE10710V20E
Modicon Remote I/O Cable System Planning and Installation Guide	890USE10100
Modbus Plus Planning and Installation Guide	890USE10000
140 EIA 921 00 Quantum AS-i-Bus Interface Module User Manual	UNYUSE10410V20E
Quantum TCPIP/IP Configuration User Manual	UNYUSE10410V20E
140 NOE 771 xx Quantum Ethernet-Modules User Manual	UNYUSE10410V20E
140 ESI 062 10 Quantum ASCII Interface Module User Manual	UNYUSE10410V20E
140 ERT 854 10 Quantum Time Stamp Module User Manual	UNYUSE10620V20E
140 DCF 077 00 Quantum Clock Module User Manual	UNYUSE10910V20E
140 HLI 340 00 Quantum High Speed I/O Module with Interrrupt Function User Manual	UNYUSE10630V20E
140 EHC 105 00 High Speed Counter Module User Manual	UNYUSE10510V20E
140 MSB 101 00 / 140 MSC 101 00 Quantum Single Axis Motion Module User Manual	UNYUSE10520V20E
140 NOA 622 00 Quantum INTERBUS-Master Module User Manual	UNYUSE10410V20E
140 CRP 811 00 Quantum Profibus DP Module User Manual	UNYUSE10410V20E

Note: The above mentioned documentations are only available in online form at this time.

Product Related Schneider Electric assumes no responsibility for any errors that may appear in this Warnings document. If you have any suggestions for improvements or amendments or have found errors in this publication, please notify us. No part of this document may be reproduced in any form or by any means, electronic or mechanical, including photocopying, without express written permission of Schneider Electric All pertinent state, regional, and local safety regulations must be observed when installing and using this product. For reasons of safety and to ensure compliance with documented system data, only the manufacturer should perform repairs to components. When controllers are used for applications with technical safety requirements. please follow the relevant instructions. Failure to use Schneider Electric software or approved software with our hardware products may result in injury, harm, or improper operating results. Failure to observe this product related warning can result in injury or equipment damage. User Comments We welcome your comments about this document. You can reach us by e-mail at techpub@schneider-electric.com

Software Configuration

At a Glance

Introduction		provides information on the Software Configuration /special purpose modules.	of the networking and
What's in this Part?	This part Chapter	contains the following chapters:	Page
	Chapter	Chapter Name	Fage
	1	Configuration of the module	19
	2	Quantum Addressing Modes	23

Configuration of the module

1

Overview

PurposeThis chapter provides information on the software configuration of the module.

What's in this Chapter?

This chapter contains the following topics:

Торіс	Page	
Mapping a Local Quantum I/O Station	20	
Open the Parameter Configuration	21	

Mapping a Local Quantum I/O Station

Open the Parameter Configuration

Overview

The following dialog box enables you to call the parameter configuration for a module. An explanation of the individual parameters can be found in the respective module chapters.

rameter nfiguration	Step	Action
ingulation	1	Call the Bus Editor
	2	Select the module
	3	Click on the right mouse button
		Result: A shortcut menu is opened
		1 CR2 CR2
	4	Select Open Module

Quantum Addressing Modes

Purpose	This chapter provides information on the three different modes Unity F address the I/O data from a Quantum I/O module:	Pro allows to
	 Flat Addressing Topological Addressing IODDT Addressing 	
	Note: The different addressing modes refer to the same physical local PLC memory for a given data point.	tion in the
What's in this	While Flat Addressing and Topological Addressing are available for all O modules, IODDTs are only provided for modules which deliver inform additional to the I/O values (e.g. errors or warnings). Also provided is information about the I/O modules status byte and about This chapter contains the following topics:	nation
Chapter?	Торіс	Page
	Flat Addressing	24
	Topological Addressing	25
	IODDT Addressing	26
	Quantum IODDTs	27
	Addressing Example	29
	Discrete I/O Bit Numbering	30
	I/O Modules Status Byte	31

Flat Addressing

Flat Addressing The Quantum modules follow a flat address mapping. Each module requires a determinate number of bits and/or words to work properly. This addressing mode is equivalent to the former used register addressing with the following assignments:

- 0x is now %M
- 1x is now %I
- 3x is now %IW
- 4x is now %MW

To access the I/O data of a module the address range entered in the configuration screen for the module is used.

Examples The following examples show the relation between the register addressing and the IEC addressing used in Unity:

000001 is now %M1 100101 is now %I101 301024 is now %IW1024 400010 is now %MW10

Topological Addressing

Topological Addressing	The topological addressing allows to access I/O data items using the topological location of the module within a system. The following notation is used:						
	% <exchangetype><objecttype>[\b.e\]r.m.c[.rank]</objecttype></exchangetype>						
	Used abbreviations: b = bus, e = equipment (drop), r = rack, m = module slot, c = channel						
	Note: The [\b.e\] defaults to \1.1\ in a local rack and does not need to be specified. The rank is an index used to identify different properties of an object with the same data type (e.g. value, warning level, error level). The rank numbering is zero-based and the rank can be ommited in case of being zero.						
	For detailed information on I/O variables, please refer to direct addressing data instances in the <i>Unity Pro Reference Manual</i> .						
Example	To read the input value (rank = 0) from channel 7 of an analog module located in slot 6 of a local rack:						
	%IW1.6.7[.0]						
	For the same module located in drop 3 of a RIO bus 2:						
	%IW\2.3\1.6.7[.0]						
	To read the 'out of range' (rank = 1) from channel 7 of an analog module located in slot 6 of a local rack:						
	%I1.6.7.1[.0]						

IODDT Addressing

IODDT Addressing

An IODDT allows all information (bits and registers) related to a channel to be handled through a user-defined variable. This variable is defined in the Unity Pro data editor by selecting the appropriate IODDT for the module as a data type and specifying the topological address of the module using the following syntax: CH[be]r.m.c where:

- $\mathbf{b} = \mathbf{b}\mathbf{u}\mathbf{s}$
- e = equipment (drop)
- $\mathbf{r} = \operatorname{rack}$
- **m** = module slot
- c = channel

Here is an example of an IODDT for an thermocouple input module in slot 4 of a local rack:

Data Editor									
Variables DDT Types Function DFB Types									
Name	*		⊡E	DT 🗌 DDT 🗹 IODDT					
Name 🗸	Туре 👻	Address	Value	Comment -					
- 🗇 My_Temp_Point1	T_ANA_IN_VWE	%CH1.4.1		Channel 1 Data					
VALUE	Int	% ₩1.4. 1.		Temperatur Value					
ERROR	Bool	%I1.4.1.1		Out of Range					
📙 🕛 🔷 WARNING	Bool	%l1.4.1.2		Range Warning					
· · · >									

Note: Only %CH1.4.1 needs to be entered. The topological addresses related to this channel (%IW.. and \$I...) are generated automatically.

Variables in the User Program

You can access all information related to channel 1 of the module using the following variables:

- My_Temp_Point1.VALUE for the measured value
- My_Temp_Point1.ERROR indicating an out-of-range condition
- My_Temp_Point1.WARNING indicating an over-range condition

Introduction	•	•		uple of IODDTs which are either generic and can be used for belong to one specific module.				
	Addres Quantu	Note: Deviating from the general description of the data types in the Direct Addressing Data Instances chapter in the <i>Unity Pro Reference Manual</i> , in Quantum IODDTs for analog modules and expert modules the data type Bool is used for %I and %Q .						
T_ANA_IN_VE	 ACI (AII 33 ACI (ACI (030 00 30 10 040 00 040 00		with all channels of the following I/O modules: modules supporting V alue and E rror				
T_ANA_IN_VE	 ACI (AII 33 ACI (ACI (IODDT 	030 00 30 10 040 00 040 00	g input	modules supporting Value and Error				
T_ANA_IN_VE	 ACI (AII 33 ACI (ACI (IODDT 	030 00 30 10 040 00 040 00 for analog	g input	modules supporting Value and Error				

- AVI 030 00
- ATI 030 00
- All 330 00

and

• Channels 3 and 4 of AMM 090 00

IODDT for analog input modules supporting Value, Warning and Error

Object	Symbol	Rank	Description			
%IW	VALUE	0	Input value			
%I	ERROR	1	Input error			
%I	WARNING	2	Input warning			

T_ANA_BI_VWE T_ANA_BI_VWE is used with the following I/O modules: Channels 1 and 2 of AMM 090 00

IODDT for bidirectional analog modules supporting Value, Warning and Error

Object	Symbol	Rank	Description			
%IW	VALUE_IN	0	Input value			
%QW	VALUE_OUT	0	Output value			
%I	ERROR_IN	1	Input error			
%I	WARNING	2	Input warning			
%I	ERROR_OUT	3	Output error			

T_CNT_105

T_CNT_105 is used with all channels of the following I/O modules:

• EHC 105

Specific IODDT for high speed counter module EHC 105

Object	Symbol	Rank	Description			
%IW	VALUE_L	1	Input value: Low word			
%IW	VALUE_H	2	Input value: High word			
%I	ERROR	1	Error in Counter			
%I	SP_FINAL	2	Final Set Point signal			
%I	SP_FIRST	3	First Set Point signal			
%I	SP_SECOND	4	Second Set Point signal			
%QW	STOP_VALUE	1	For CNT_DIR="0", final set point value			
%QW	INITIAL_VALUE	2	For CNT_R="1", initial set point value			
%Q	LS	1	"1", Counter load/start (controlled by the rising edge)			
%Q	RSTART	2	"1", Counter restart (controlled by the rising edge)			
%Q	OUT_OFF	3	"1", Counter output switch-off			
%Q	CNT_DIR	4	"0" Counter counts up "1" Counter counts down			
%Q	OM1	5	Operating Mode bit 1			
%Q	OM2	6	Operating Mode bit 2			
%Q	OM3	7	Operating Mode bit 3			
%Q	OM4	8	Operating Mode bit 4			

Addressing Example

Example for the 3 Addressing Modes

The following example compares the 3 possible addressing modes. An 8-channel thermocouple 140 ATI 030 00 module with the following configuration data is used:

- mounted in slot 5 of the CPU rack (local rack)
- starting input address is 201 (input word %IW201)
- end input address is 210 (input word %IW210)

To access the I/O data from the module you can use the following syntax:

Module data	Flat addressing	Topological addressing	IODDT addressing	Concept addressing
Channel 3 temperature	%IW203	%IW1.5.3	My_Temp. VALUE	300203
Channel 3 out of range	%IW209.5	%11.5.3.1	My_Temp. ERROR	300209 Bit 5 to be extracted by user-logic
Channel 3 range warning	%IW209.13	%l1.5.3.2	My_Temp. WARNING	300209 Bit 13 to be extracted by user-logic
Module internal temperature	%IW210	%IW1.5.10	not accessible through IODDT	300210

Note: For the IODDT the data type T_ANA_IN_VWE is used and the variable My_Temp with the address %CH1.5.10 was defined.

For comparison, the register addressing as used with Concept is added in the last column. As Concept does not support direct addressing of a bit in a word, the bit extraction has to be performed in the user program.

Discrete I/O Bit Numbering

Introduction The numbering of channels of an I/O module usually starts with 1 and counts up to the maximum number of supported channels. The software however starts numbering with a 0 for the least significant bit in a word (LSB). Additional the Quantum I/O modules have their lowest channel mapped to the most significant bit (MSB).

The following figure shows the mapping of I/O channels related to the bits in a word:.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	I/O Channels
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Bit numbering
MS	В														LSB	

Word Addressing versus Bit Addressing

Mainly discrete I/O modules can be configured to deliver their I/O data either in word format or in bit format. This can be selected during configuration by selecting either %IW (%MW) or %I (%M). If you need to access a single bit from an I/O module configured to use an I/O word, you can use the syntax %word.bit. The following table gives you the connection between I/O point number and the belonging I/O address in bit and word addressing.

The table shows an 32-point input module in the main rack, slot 4 configured with starting address %I1 or %IW1:

I/O channel	Bit address (flat addressing)	Bit address (topological addressing)	Bit address extracted from word (flat addressing)	Bit address extracted from word (topological addressing)						
1	%I1	%I1.4.1[.0]	%IW1.15	%IW1.4.1.1.15						
2	%I2	%I1.4.2[.0]	%IW1.14	%IW1.4.1.1.14						
3	%I3	%I1.4.3[.0]	%IW1.13	%IW1.4.1.1.13						
	1		•••							
15	%l15	%I1.4.15[.0]	%IW1.1	%IW1.4.1.1.1						
16	%I16	%I1.4.16[.0]	%IW1.0	%IW1.4.1.1.0						
17	%I17	%11.4.17[.0]	%IW2.15	%IW1.4.1.2.15						
18	%I18	%11.4.18[.0]	%IW2.14	%IW1.4.1.2.14						
	•••									
31	%I31	%11.4.31[.0]	%IW2.1	%IW1.4.1.2.1						
32	%I32	%I1.4.32[.0]	%IW2.0	%IW1.4.1.2.0						

I/O Modules Status Byte

Addressing Module Status Data In addition to possible channel related diagnostics data, a module related status byte may be used. The status information of all modules in a Drop is administered by a table of %IW words. The starting address of this table can be entered in the configuration screen for the Drop.

This information is not accessible through topological addressing.

Note: The status information is only available if the module supports a status byte. For the meaning of the status byte check the module descriptions.

Example of a Drop configuration screen with the starting address of the status table set to 100:

🚹 Quantum Drop for local	
Quantum Drop for local	
Overview Config	
Parameter Name	Value
- Starting address status table	100
- Ending address status	115
Prop hold up time 100ms	3
- In Bytes	76
- Out Bytes	32
Local Quant. 1.4: 140 A 🙀 Data Editor. 🕞	fbtest: (M

The following illustration shows how one word of the table conveys the status information for two modules:

Example

The following example shows a rack and the corresponding I/O status bytes displayed in an animation table. The drop is configured to start at word %IW100 and allocates 16 words. This represents the local and expansion rack, and assumes they are 16 slot racks.

If a module does not have have a status byte associated with the module or the slot is empty, then the byte = 0.

Rack configuration and Animation table:

	1 CPS 2 CPU AVI ATI CR 214 651 030 030 930 00 60 00 00 00	X 364 100		14 15 16
	I Table			
1	Modifica- Force	- 1	<u></u>	₩ ≈ ₩
		Value	Туре 👻	Comment
	🖃 🗇 %IW100:16		ARRAY[0 1	
	- · · ·	-	Int	
		2#1000_0000_0000_000		
			Int	
Ĺ.			Int	
_			Int	
		0	Int	
		•	Int	
		0	Int	
		-	Int	
		0	Int	
	· - />			

Relation between Slot, Input Word and Status Byte. The byte related to the module is marked:

Slot	Input Word	Value	Module	Module					
1	%IW[0]	0	Power Supply	no Status Byte					
2	1	0	CPU	no Status Byte					
3	%IW[1]	2#1000_0000_ 0000_0000	CPU	no Status Byte					
4	-	2# 1000_0000_ 0000_0000	AVI	At least one channel fault					
5	%IW[2]	2#0000_0000_ 0000_1111	ATI	Fault on channels 1 4					
6	-	2# 0000_0000_ 0000_1111	CRP	no Status Byte					
7	%IW[3]	0	Empty						
8	-	0	Empty						
9	%IW[4]	2#0000_0000_ 0011_1111	DDO	Fault on all channels					
10		2# 0000_0000_ 0011_1111	XBE	no Status Byte					
	•••								

Quantum Remote I/O (RIO) Modules

II

At a Glance

Introduction

This part provides information on the following Quantum RIO modules:

RIO Module	Drop Location	Communication Channels	Bus Current Required
140 CRA 931 00	Remote (Drop)	1	600 mA
140 CRA 932 00	Remote (Drop)	2	750 mA
140 CRP 931 00	Local (Head)	1	600 mA
140 CRP 932 00	Local (Head)	2	750 mA

Note: For detailed information see also *Related Documents, p. 14*, Modicon Remote I/O Cable System Planning and Installation Guide

What's in this This part contains the following chapters: Part? Chapter **Chapter Name** Page 3 140 CRP 931 00: Remote I/O (RIO) Head Module (single channel) 37 4 140 CRP 932 00: Remote I/O (RIO) Head Module (dual channel) 45 5 140 CRA 931 00: Remote I/O (RIO) Drop Module (single channel) 53 6 140 CRA 932 00: Remote I/O (RIO) Drop Module (dual channel) 59
140 CRP 931 00: Remote I/O (RIO) Head Module (single channel)

Overview Purpose This chapter contains information of the 140 CRP 931 00 Module. What's in this This chapter contains the following topics: Chapter? Topic Page Presentation 38 40 Indicators Error Codes 41 Specifications 43

Presentation

Function The Remote I/O Head single channel modules are installed in the same backplane as the system controlling CPU modules. The RIO head is used to transfer data bidirectionally between the CPU and RIO drop modules installed in separate backplanes. A coaxial cable network is used to interconnect the RIO head module and one or more RIO drop modules.

Illustration The following figure shows the Remote I/O (RIO) module's parts.

- 1 LED Area
- 2 RIO Coax Connector
- 3 Version Label
- 4 Model Number, Module Description, Color Code
- 5 Removable Door
- 6 Customer Identification Label (Fold label and place it inside door)

CAUTION

Connection failure

To mantain CE compliance with the European Directive on EMC (89/ 336/EEC), the RIO head module must be connected using quad shielded cable (see the Remote I/O Cable System Planning and Installation Guide).

Failure to follow this precaution can result in injury or equipment damage.

Indicators

Illustration

The following figure shows the LED indicators for the RIO Head module.

Description The following table shows the LED descriptions for the RIO Head module.

LEDS	Color	Indication When On
Ready	Green	The module has passed powerup diagnostics.
Com Act	Green	The module is communicating on the RIO network (see the following table for LED error codes).
Error A	Red	There is a loss of communication on Channel A with one or more of the drops.

Error Codes

Error Codes Table

The Blinking Com Act LED error codes for the RIO Head module table show the number of times the Com Act LED on the RIO Head module blinks for each type of error and the crash codes for each (all codes are in hex). The following table shows the blinking Com Act LED error codes for the RIO Head module.

Number of Blinks	Code	Error
Slow (steady)	0000	Requested Kernal Mode
2	6820	hcb frame pattern error
	6822	head cntrl blk diag error
	6823	mod personality diag error
	682A	fatal start I/O error
	682B	bad read I/O pers request
	682C	bad execute diag request
	6840	ASCII input xfer state
	6841	ASCII output xfer state
	6842	I/O input comm. state
	6843	I/O output comm. state
	6844	ASCII abort comm. state
	6845	ASCII pause comm. state
	6846	ASCII input comm. state
	6847	ASCII output comm. state
	6849	building 10 byte packet
	684A	building 12 byte packet
	684B	building 16 byte packet
	684C	illegal I/O drop number
3	6729	984 interface bus ack stuck high
4	6616	coax cable initialization error
	6617	coax cable dma xfer error
	6619	coax cable dumped data error
	681A	coax cable DRQ line hung
	681C	coax cable DRQ hung
5	6503	RAM address test error
6	6402	RAM data test error

7	6300	PROM checksum error (Exec not loaded)
	6301	PROM checksum error
8	8001	Kernal PROM checksum error
	8002	Flash prog / erase error
	8003	Unexpected executive return

Specifications

General Specifications General Specifications

Bus Current required	600 mA
Power Dissipation (Typical)	3 W
Isolation	500 VDC coaxial cable center conductor to ground
Maximum Number of CRPs supported by the controller	1
Drop Туре	Quantum 200 Series 500 Series or SY/MAX (any mix)
Drops	31 max
Words/Drop	64 In / 64 Out
ASCII	2 ports/drop, 32 ports (16 drops) max Requires the use of: AS-P892-000 AS-J892-101/102 or AS-J290-0X0 at the RIO drops

Connection / Transmission

Connection / Transmission

Diagnostics

Coax Termination	Internal 75 ohms
Coax Shield	Tied to chassis ground
Data Transfer Rate	1.544 Mb
Dynamic Range	35 dB
External Connections	One "F" type female connector with a right angle adapter

Diagnostics

Power	Dual Port Memory Check
Up	LAN Controller Check
Runtime	Executive Checksum RAM Address/Data

140 CRP 932 00: Remote I/O (RIO) Head Module (dual channel)

4

Overview		
Purpose	This chapter contains information of the 140 CRP 932	00 Module.
What's in this Chapter?	This chapter contains the following topics:	
	Торіс	Page
	Presentation	46
	Indicators	48
	Error Codes	49
	Specifications	51

Presentation

Function The Remote I/O Head dual channel modules are installed in the same backplane as the system controlling CPU modules. The RIO head is used to transfer data bidirectionally between the CPU and RIO drop modules installed in separate backplanes. A coaxial cable network is used to interconnect the RIO head module and one or more RIO drop modules.

Illustration The following figure shows the Remote I/O (RIO) module's parts.

- 1 LED Area
- 2 RIO Coax Connector (Channel A)
- 3 RIO Coax Connector (Channel B)
- 4 Version Label
- 5 Model Number, Module Description, Color Code
- 6 Removable Door
- 7 Customer Identification Label (Fold label and place it inside door)

CAUTION

Connection failure

To mantain CE compliance with the European Directive on EMC (89/ 336/EEC), the RIO head module must be connected using quad shielded cable (see the Remote I/O Cable System Planning and Installation Guide).

Failure to follow this precaution can result in injury or equipment damage.

Indicators

Illustration

The following figure shows the LED indicators for the RIO Head module.

Description

The following table shows the LED descriptions for the RIO Head module.

LEDS	Color	Indication When On
Ready	Green	The module has passed powerup diagnostics.
Com Act	Green	The module is communicating on the RIO network (see the following table for LED error codes).
Error A	Red	There is a loss of communication on Channel A with one or more of the drops.
Error B	Red	There is a loss of communication on Channel B with one or more of the drops

Error Codes

Error Codes Table

The Blinking Com Act LED error codes for the RIO Head module table show the number of times the Com Act LED on the RIO Head module blinks for each type of error and the crash codes for each (all codes are in hex). The following table shows the blinking Com Act LED error codes for the RIO Head module.

Number of Blinks	Code	Error
Slow (steady)	0000	Requested Kernal Mode
2	6820	hcb frame pattern error
	6822	head cntrl blk diag error
	6823	mod personality diag error
	682A	fatal start I/O error
	682B	bad read I/O pers request
	682C	bad execute diag request
	6840	ASCII input xfer state
	6841	ASCII output xfer state
	6842	I/O input comm. state
	6843	I/O output comm. state
	6844	ASCII abort comm. state
	6845	ASCII pause comm. state
	6846	ASCII input comm. state
	6847	ASCII output comm. state
	6849	building 10 byte packet
	684A	building 12 byte packet
	684B	building 16 byte packet
	684C	illegal I/O drop number
3	6729	984 interface bus ack stuck high
4	6616	coax cable initialization error
	6617	coax cable dma xfer error
	6619	coax cable dumped data error
	681A	coax cable DRQ line hung
	681C	coax cable DRQ hung
5	6503	RAM address test error
6	6402	RAM data test error

7	6300	PROM checksum error (Exec not loaded)
	6301	PROM checksum error
8	8001	Kernal PROM checksum error
	8002	Flash prog / erase error
	8003	Unexpected executive return

Specifications

General **Specifications** **General Specifications**

Bus Current required	600 mA
Power Dissipation	3 W
(Typical)	
Isolation	500 VDC coaxial cable center conductor to ground
Maximum Number of CRPs supported by the controller	1
Drop Type	Quantum
	200 Series
	500 Series
	800 Series or
	SY/MAX (any mix)
Drops	31 max
Words/Drop	64 In / 64 Out
ASCII	2 ports/drop, 32 ports (16 drops) max
	Requires the use of:
	AS-P892-000
	AS-J892-101/102 or
	AS-J290-0X0 at the RIO drops

Connection / Transmission

Connection / Transmission

Coax Termination Internal 75 ohms Coax Shield Tied to chassis ground Data Transfer Rate 1.544 Mb Dynamic Range 35 dB Two "F" type female connector with a right angle adapter External Connections

Diagnostics

Diagnostics

Power	Dual Port Memory Check
Up	LAN Controller Check
Runtime	Executive Checksum RAM Address/Data

140 CRA 931 00: Remote I/O (RIO) Drop Module (single channel)

Overview		
Purpose	This chapter contains information of the 140 CRA 931	00 Module.
What's in this Chapter?	This chapter contains the following topics:	
	Торіс	Page
	Presentation	54
	Indicators	56
	Error Codes	57
	Specifications	58

Presentation

Function The Remote I/O Drop Single Channel modules are used to transfer data bidirectionally over a coaxial cable network between I/O modules installed in the same (RIO drop) backplane and the RIO head installed in the CPU backplane.

Illustration

The following figure shows the Remote I/O (RIO) module's parts.

- 1 LED Area
- 2 RIO Coax Connector
- 3 Version Label
- 4 Model Number, Module Description, Color Code
- 5 Removable Door
- 6 Customer Identification Label (Fold label and place it inside door)

	CAUTION	
	Connection Compliance	
	To maintain CE compliance with the European Directive on EMC (89/ 336/EEC), the RIO Head module must be connected using quad shielded cable (see the Remote I/O Cable System Planning and Installation Guide).	
	Failure to follow this precaution can result in injury or equipment damage.	
Rear Panel Switches	Two rotary switches are located on the rear panel of the RIO Drop Modules and are used for setting RIO drop addresses (refer to the illustration and table below). SW1 (top switch) sets the upper digit (tens); SW2 (bottom switch) sets the lower digit (ones). The illustration below shows the correct setting for an example address of 11.	
Rear Panel Switches Figure	The following figure shows the SW1 top and SW2 bottom switches.	
	$ \begin{array}{c} $	

SW1 and SW2 Switches Table SW2 (Bottom)

The following table shows the node addresses of the SW1 and SW2 switches.

Node Address	SW1	SW2
1 9	0	19
10 19	1	09
20 29	2	09
30 32	3	02

Note: Only adresses from 2 to32 are valid If "0" or an address greater than 32 is selected, the RIO module displays a flashing "Error A"- and "Error B"-LED.

Indicators

Illustration

The following figure shows the LED indicators for the Drop module.

Ready	Fault
Com Act	Error A Error B

Description

The following table shows the RIO Drop module LED descriptions.

LEDS	Color	Indication when On
Ready	Green	The module has passed power-up diagnostics.
Com Act	Green	The module is communicating on the RIO network (see the following table for LED error codes).
Fault	Red	Unable to communicate with one or more I/O modules.
Error A	Red	Communication error on Channel A.
Error B	Red	In combination with "Error A" to indicate an invalid Node address.

Error Codes

Error Codes Table

Blinking Com Act LED error codes for the RIO Drop module table show the number of times the Com Act LED on the RIO Drop module blinks for each type of error and the crash codes for each (all codes are in hex).

The following table shows the blinking Com Act LED error codes for the RIO Drop module.

Number of Blinks	Code	Description of Error
3	6701H	ASIC test failure
4	6601H	power down interrupt
	6602H	82588 lan chip test error
	6603H	receive abort timeout
	6604H	transmission loop timeout
	6605H	transmission DMA error
	6606H	cable a initialization error
	6607H	cable a DMA xfer error
	6608H	cable b DMA xfer error
	6609H	cable a dumped data error
	660AH	cable a DRQ line hung
	660BH	cable b DRQ line hung
	660CH	cable a or b DRQ hung
	660DH	power-up lan controller error
5	6501H	RAM address test error
6	6401H	RAM data test error
7	6301H	PROM checksum error

Specifications

General	General Specifications		
Specifications	Bus Current required	600 mA	
	Power Dissipation (Typical)	3 W	
	Isolation	500 VDC coaxial cable center conductor to ground	
	I/О Туре	Quantum	
	Modules/Drop	14 max. 28 max. with Backplane expander (XBE)	
	Words/Drop	64 IN / 64 OUT	
	Holdup Time	Software configurable Note: In the event of a communication loss with the remote processor, this is the time that output modules will retain their last operating state. Input module data will be held in the system controlling CPU. After this time, output modules will assume their predefined time-out states, and inputs will be zeroed by the CPU.	

Connection / Transmission

Connection / Transmission

Diagnostics

Coax Termination	Internal 75 ohms
Coax Shield	Capacitor to ground
Data Transfer Rate	1.544 Mb
Dynamic Range	35 dB
External Connections	One "F" type female connector with a right angle adapter

Diagnostics

Power Up	Runtime
Dual Port Memory Check	Executive Checksum
LAN Controller Check	RAM Address/Data

140 CRA 932 00: Remote I/O (RIO) Drop Module (dual channel)

6

Overview Purpose This chapter contains information of the 140 CRA 932 00 Module. This chapter contains the following topics: What's in this Chapter? Topic Page Presentation 60 63 Indicators Error Codes 64 Specifications 65

Presentation

Function The Remote I/O Drop dual Channel modules are used to transfer data bidirectionally over a coaxial cable network between I/O modules installed in the same (RIO drop) backplane and the RIO head installed in the CPU backplane.

Illustration The following figure shows the Remote I/O (RIO) module's parts.

- 1 LED Area
- 2 RIO Coax Connector (Channel A)
- 3 RIO Coax Connector (Channel B)
- 4 Version Label
- 5 Model Number, Module Description, Color Code
- 6 Removable Door
- 7 Customer Identification Label (Fold label and place it inside door)

CAUTION

Connection Compliance

To maintain CE compliance with the European Directive on EMC (89/ 336/EEC), the RIO Head module must be connected using quad shielded cable (see the Remote I/O Cable System Planning and Installation Guide).

Failure to follow this instruction can result in injury or equipment damage.

Rear Panel Two rotary switches are located on the rear panel of the RIO Drop Modules and are used for setting RIO drop addresses (refer to the illustration and table below). SW1 (top switch) sets the upper digit (tens); SW2 (bottom switch) sets the lower digit (ones). The illustration below shows the correct setting for an example address of 11.

The following figure shows the SW1 top and SW2 bottom switches.

Switches Figure

Rear Panel

SW1 and SW2 Switches Table The following table shows the node addresses of the SW1 and SW2 switches.

SW1	SW2
0	1 9
1	0 9
2	0 9
3	0 2
	0 1 2

Note: Only adresses from 2 to32 are valid If "0" or an address greater than 32 is selected, the RIO module displays a flashing "Error A"- and "Error B"- LED.

Indicators

Illustration

The following figure shows the LED indicators for the Drop module.

Ready	Fault
Com Act	Error A Error B

Description

The following table shows the RIO Drop module LED descriptions.

LEDS	Color	Indication when On
Ready	Green	The module has passed power-up diagnostics.
Com Act	Green	The module is communicating on the RIO network (see the following table for LED error codes).
Fault	Red	Unable to communicate with one or more I/O modules.
Error A	Red	Communication error on Channel A.
Error B	Red	Communication error on Channel B

Error Codes

Error Codes Table

Blinking Com Act LED error codes for the RIO Drop module table show the number of times the Com Act LED on the RIO Drop module blinks for each type of error and the crash codes for each (all codes are in hex).

The following table shows the blinking Com Act LED error codes for the RIO Drop module.

Number of Blinks	Code	Description of Error
3	6701H	ASIC test failure
4	6601H	power down interrupt
	6602H	82588 lan chip test error
	6603H	receive abort timeout
	6604H	transmission loop timeout
	6605H	transmission DMA error
	6606H	cable a initialization error
	6607H	cable a DMA xfer error
	6608H	cable b DMA xfer error
	6609H	cable a dumped data error
	660AH	cable a DRQ line hung
	660BH	cable b DRQ line hung
	660CH	cable a or b DRQ hung
	660DH	power-up lan controller error
5	6501H	RAM address test error
6	6401H	RAM data test error
7	6301H	PROM checksum error

Specifications

General Specification

General Specification

Bus Current required	750 mA
Power Dissipation (Typical)	3.8 W
Isolation	500 VDC coaxial cable center conductor to ground
I/О Туре	Quantum
Modules/Drop	14 max. 28 max. with Backplane expander (XBE)
Words/Drop	64 IN / 64 OUT
Holdup Time	Software configurable Note: In the event of a communication loss with the remote processor, this is the time that output modules will retain their last operating state. Input module data will be held in the system controlling CPU. After this time, output modules will assume their predefined time-out states, and inputs will be zeroed by the CPU.

Connection / Transmission

Connection / Transmission

Coax TerminationInternal 75 ohmsCoax ShieldCapacitor to groundData Transfer Rate1.544 MbDynamic Range35 dBExternal ConnectionsTwo "F" type female connector with a right angle adapter

Diagnostics

Diagnostics

Power Up	Runtime
Dual Port Memory Check	Executive Checksum
LAN Controller Check	RAM Address/Data

Quantum Distributed I/O (DIO) Drop Modules

|||

At a Glance

Introduction

This part provides information on the following Quantum DIO modules:

DIO Module	Source Voltage	Communication Channels	Bus Current Required
140 CRA 211 10	115/230 VAC	1	3 A
140 CRA 212 10	115/230 VAC	2	3 A
140 CRA 211 20	24 VDC	1	3 A
140 CRA 212 20	24 VDC	2	3 A

Quantum DIO is implemented over a Modbus Plus network. The CPU or NOM modules may be the network head via their Modbus Plus ports. Quantum DIO Modbus Plus drop adaptors are specifically designed to link Quantum I/O modules to the head via twisted pair shielded cable (Modbus Plus). The DIO drop modules also provide the I/O with power (maximum 3A) from a 24 VDC or a 115/230 VAC source. Each DIO network supports up to 63 distributed drops using repeaters.

What's in this Part?

This part contains the following chapters:

Chapter	Chapter Name	Page
7	Software Configuration	69
8	140 CRA 211 10: DIO Drop Module 115/230 VAC (single channel)	73
9	140 CRA 212 10: DIO Drop Module 115/230 VAC (dual channel)	79
10	140 CRA 211 20: DIO Drop Module 24 VDC (single channel)	85
11	140 CRA 212 20: DIO Drop Module 24 VDC (dual channel)	91

Software Configuration

7

Configuring a Quantum DIO Drop

Introduction

A Quantum DIO Drop consists of a standard module rack installed with I/O modules and a 140 CRA 21••0 Modbus Plus communication module. A DIO Bus can either be connected to the Modbus Plus connection on the CPU, or to a 140 NOM 2•• 00 communication module.

Note: The Quantum DIO Drop Modules 140 CRA 2•• ••• have no health bits. For this reason the status for a properly functioning DIO Drop is always ZERO and not ONE as it is for other modules!

	The following table describes the procedure for adding a DIO Bus.		
DIO Bus	Step	Action	
	1	Select the Modbus Plus connection that you want to configure as a DIO Bus from the Project Browser or in the hardware configuration window. The following configuration window is opened:	
		•••••••••••••••••••••••••••••	
	2	Activate the DIO Bus check box in the configuration window and confirm your entry. A DIO Bus is placed in the Project Browser: Station Station Configuration Configuration Configuration I :Local Quantum Bus I : Quantum Drop for local I : Quantum D O D O O O D O O O D O D O D D D D D D D D D D	

Step	Action
3	Open the DIO Bus and select add module rack and select New Device . The module rack selection list is opened:
	New Device X Address: [164] OK Cancel Cancel Module Description □··Quantum Drop for DIO STRID_MODULE_Quantum Drop for DIO □··Rack Rack r···140 XBP 003 00 STRID_MODULE_Q-Rack-2S F···140 XBP 004 00 STRID MODULE_Q-Rack-3S ····140 XBP 004 00 STRID MODULE_Q-Rack-4S ····140 XBP 006 00 STRID MODULE_Q-Rack-6S ····140 XBP 010 00 STRID MODULE_Q-Rack-10S ····140 XBP 016 00 STRID_MODULE_Q-Rack-10S
	Drop end communicator

Modbus Plus Address Ensure that the Modbus Plus Station Address that you have entered in the software configuration matches the hardware addresses of the modules used.
140 CRA 211 10: DIO Drop Module 115/230 VAC (single channel)

Overview		
Purpose	This chapter contains information of the 140 CRA 21	1 10 Module.
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	Presentation	74
	Indicators	76
	Specifications	77
	Wiring Diagram	78

8

Presentation

Function The 140 CRA 211 10 is a single channel Distributed I/O Interface, connected via a twisted pair Modbus Plus cable network. This DIO Drop Module provides the I/O with power from a 115/230 VAC source.

Illustration

The following figure shows the parts of the distributed I/O (DIO) module.

Rear Panel
SwitchesTwo rotary switches (refer to the illustration and table below) are located on the
rear panel of the CPU. They are used for setting Modbus Plus node addresses
for the unit.
SW1 (the top switch) sets the upper digit (tens) of the address; SW2 (the bottom
switch) sets the lower digit (ones) of the address. The illustration below shows the
correct setting for an example address of 11.

 Rear Panel
 The following figure shows the SW1 top switch and the SW2 bottom switch.

 Switches Figure
 SW1 (Top)

SW1

0

1

2

3

4

5

6

SW2

1 ... 9

0...9

0...9

0...9

0...9

0...9

0...4

,

Node

Address 1 ... 9

10 ... 19

20 ... 29

30 ... 39

40 ... 49

50 ... 59

60 ... 64

Rear Panel Switches Table

The following table shows node addresses for the SW1 and SW2 switches.

Switches	Table	

Note: Only addresses from 1 to 64 are valid.
If "0" or an address greater than 64 is selected, the "Modbus+" LED comes ON,
steady, indicating that an invalid address was selected.

Indicators

Illustration

The following figure shows the LED panel.

Description

The following table shows the DIO LED indicators and descriptions.

LEDS	Color	Indication when On
Ready	Green	The module has passed power-up diagnostics.
Fault	Red	A communications error exists between the DIO module and one or more I/O modules, or an output module is not being written to, over the Modbus Plus network.
Pwr ok	Green	Bus power is present.
Modbus +	Green	Communications are active on the Modbus Plus port.

Specifications

General Specifications

General Specifications

Operating Mode	Standalone or not powered
Internal Power Dissipation	2.0 W + 3.0 V x I_{BUS} (where I_{BUS} is in Amperes)
Protection	Over Current, Over Voltage
Communication	1 Modbus Plus port (single cable)
Field Wiring Connector	7 point terminal strip (Part # 043506326)
І/О Туре	Quantum
Modules/Drop	Depends on bus current loading and word count
Words	30 IN / 32 OUT. (Two additional IN words are reserved for drop status.)

Input

Input

Input Voltage	85 276 VAC
Input Frequency	47 63 Hz
Input Voltage Total Harmonic Distortion	Less than 10% of the fundamental rms value
Input Current	0.4 A @ 115 VAC. 0.2 A @ 230 VAC
Inrush Current	10 A @ 115 VAC. 20 A @ 230 VAC
VA Rating	50 VA
Input Power Interruption	1/2 cycle at full load and minimum rated line voltage / frequency. No less than 1 second between interruptions.

Output to Bus

Output to Bus

Voltage	5.1 VDC
Current	3 A
Minimum Load	0 A
Fusing (external)	1.5 A (Part # 043502515 or equivalent)

Diagnostics

Diagnostics

Power Up	RAM RAM Address Executive Checksum
Runtime	RAM RAM Address Executive Checksum

Wiring Diagram

Illustration

The following figure shows the wiring diagram for the 140 CRA 211 10

	CAUTION
	System Safety
Ŵ	for secure wiring, observe the Power and Grounding Guidlines of the Quantum Hardware Reference Guide and the Grounding and Cabling user guide <i>Related Documents, p. 14</i>
	Failure to follow this precaution can result in injury or equipment damage.

140 CRA 212 10: DIO Drop Module 115/230 VAC (dual channel)

9	
J	

Overview Purpose This chapter contains information of the 140 CRA 212 10 Module. What's in this This chapter contains the following topics: Chapter? Topic Page Presentation 80 82 Indicators Specifications 83 Wiring Diagram 84

Presentation

Function The 140 CRA 212 10 is a dual channel Distributed I/O Interface, connected via a twisted pair Modbus Plus cable network. This DIO Drop Module provides the I/O with power from a 115/230 VAC source.

Illustration

The following figure shows the parts of the distributed I/O (DIO) module.

Rear Panel Switches

Two rotary switches (refer to the illustration and table below) are located on the rear panel of the CPU. Use them to set Modbus Plus node addresses for the unit. SW1 (the top switch) sets the upper digit (tens) of the address; SW2 (the bottom switch) sets the lower digit (ones) of the address. The illustration below shows the correct setting for the sample address of 11.

 Rear Panel
 The following figure shows the SW1 top switch and the SW2 bottom switch.

 Switches Figure
 SW1 (Top)

Rear Panel Switches Table

The following table shows the node addresses of the SW1 and SW2 switches.

Node Address	SW1	SW2
1 9	0	19
10 19	1	09
20 29	2	09
30 39	3	09
40 49	4	09
50 59	5	09
60 64	6	0 4

Note: Only addresses from 1 to 64 are valid. If "0" or an address greater than 64 is selected, the "Modbus+" LED comes ON, steady, indicating that an invalid address was selected.

Indicators

Illustration

The following figure shows the LED panel.

Ready	Fault
Pwr ok Modbus +	Error A Error B

Description

The following table shows the DIO LED indicators and descriptions.

LEDS	Color	Indication when On
Ready	Green	The module has passed power-up diagnostics.
Fault	Red	A communications error exists between the DIO module and one or more I/O modules, or an output module is not being written to, over the Modbus Plus network.
Pwr ok	Green	Bus power is present.
Modbus +	Green	Communications are active on the Modbus Plus port.
Error A	Red	Communication error on the Modbus Plus Channel A
Error B	Red	Communication error on the Modbus Plus Channel B

Specifications

General Specifications

General Specifications

[
Operating Mode	Standalone or not powered
Internal Power Dissipation	2.0 W + 3.0 V x I _{BUS} (where I _{BUS} is in Amperes)
Protection	Over Current, Over Voltage
Communication	2 Modbus Plus ports (dual cable)
Field Wiring Connector	7 point terminal strip (Part # 043506326)
І/О Туре	Quantum
Modules/Drop	Depends on bus current loading and word count
Words	30 IN / 32 OUT. (Two additional IN words are reserved for drop status.)

Input

Input

Input Voltage	85 276 VAC
Input Frequency	47 63 Hz
Input Voltage Total Harmonic Distortion	Less than 10% of the fundamental rms value
Input Current	0.4 A @ 115 VAC. 0.2 A @ 230 VAC
Inrush Current	10 A @ 115 VAC. 20 A @ 230 VAC
VA Rating	50 VA
Input Power Interruption	1/2 cycle at full load and minimum rated line voltage / frequency. No less than 1 second between interruptions.

Output to Bus

Output to Bus

Voltage	5.1 VDC	
Current	3 A	
Minimum Load	0 A	
Fusing (external)	I) 1.5 A (Part # 043502515 or equivalent)	

Diagnostics

Diagnostics

U	
Power	RAM
Up	RAM Address
	Executive Checksum
Runtime	RAM
	RAM Address
	Executive Checksum

Wiring Diagram

Illustration The following figure shows the wiring diagram for the 140 CRA 212 10

	CAUTION
	System Safety
<u>}</u>	for secure wiring, observe the Power and Grounding Guidlines of the Quantum Hardware Reference Guide and the Grounding and Cabling user guide <i>Related Documents, p. 14</i>
	Failure to follow this precaution can result in injury or equipment damage.

140 CRA 211 20: DIO Drop Module 24 VDC (single channel)

10

Overview		
Purpose	This chapter contains information of the 140 CRA 211 20 Module.	
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	Presentation	86
	Indicators	88
	Specifications	89
	Wiring Diagram	90

Presentation

Function The 140 CRA 211 20 is a single channel Distributed I/O Interface, connected via a twisted pair Modbus Plus cable network. This DIO Drop Module provides the I/O with power from a 24 VDC source.

Illustration

The following figure shows the parts of the distributed I/O (DIO) module.

Rear Panel Two rotary switches (refer to the illustration and table below) are located on the rear panel of the CPU. They are used for setting Modbus Plus node addresses for the unit. SW1 (the top switch) sets the upper digit (tens) of the address; SW2 (the bottom witch) or to the unit.

switch) sets the lower digit (ones) of the address. The illustration below shows the correct setting for an example address of 11.

 Rear Panel
 The following figure shows the SW1 top switch and the SW2 bottom switch.

 Switches Figure
 SW1 (Top)

SW2 (Bottom)

Rear Panel Switches Table

The following table shows the node addresses of the SW1 and SW2 switches.

Node Address	SW1	SW2
1 9	0	19
10 19	1	09
20 29	2	09
30 39	3	09
40 49	4	09
50 59	5	09
60 64	6	04

Note: Only addresses from 1 to 64 are valid. If "0" or an address greater than 64 is selected, the "Modbus+" LED comes ON, steady, indicating that an invalid address was selected.

Indicators

Illustration

The following figure shows the LED panel.

Ready	Fault
Pwr ok	
Modbus +	

Description

The following table shows the DIO LED indicators and descriptions.

	r	
LEDS	Color	Indication when On
Ready	Green	The module has passed power-up diagnostics.
Fault	Red	A communications error exists between the DIO module and one or more I/O modules or an output module is not being written to over the Modbus Plus network.
Pwr ok	Green	Bus power is present.
Modbus +	Green	Communications are active on the Modbus Plus port.

Specifications

General Specifications

General Specifications

Operating Mode	Standalone
Internal Power Dissipation	2.0 W + 3.0 V x I_{BUS} (where I_{BUS} is in Amperes)
Protection	Over Current, Over Voltage
Communication	1 Modbus Plus ports (single cable)
Field Wiring Connector	7 point terminal strip (Part # 043506326)
I/О Туре	Quantum
Modules/Drop	Depends on bus current loading and word count
Words	$30\ \text{IN}$ / $32\ \text{OUT.}$ (Two additional IN words are reserved for drop status.)

Input

Input

Input Voltage	20 30 VDC
Input Current	1.6 A
Inrush Current	30 A
Input Power Interruption	1.0 ms max.

Output to Bus C

Output to Bus

Voltage	5.1 VDC
Current	3 A
Minimum Load	0 A
Fusing (external)	2.5 A (Part # 043502515 or equivalent)

Diagnostics

Diagnostics

Power	RAM	
Up	RAM Address	
	Executive Checksum	
Runtime	RAM	
	RAM Address	
	Executive Checksum	

Wiring Diagram

Illustration The following figure shows the wiring diagram for the 140 CRA 211 20 module

	CAUTION
	System Safety
Ń	for secure wiring, observe the Power and Grounding Guidlines of the Quantum Hardware Reference Guide and the Grounding and Cabling user guide <i>Related Documents, p. 14</i>
	Failure to follow this precaution can result in injury or equipment damage.

140 CRA 212 20: DIO Drop Module 24 VDC (dual channel)

11

Overview		
Purpose	This chapter contains information of the 140 CRA 212 20 M	lodule.
What's in this Chapter?	This chapter contains the following topics:	
	Торіс	Page
	Presentation	92
	Indicators	94
	Specifications	95
	Wiring Diagram	96

Presentation

Function The 140 CRA 212 20 is a dual channel Distributed I/O Interface, connected via a twisted pair Modbus Plus cable network. This DIO Drop Module provides the I/O with power from a 24 VDC source.

Illustration

The following figure shows the parts of the distributed I/O (DIO) module.

- 1 LED Area
- 2 Modbus Plus Connector (Channel A)
- 3 Modbus Plus Connector (Channel B)
- 4 Field Wiring Connector
- 5 Field Wiring Connector Cover
- 6 Model Number, Module Description, Color Code
- 7 Removable Door
- 8 Customer Identification Label (Fold label and place it inside door)

Rear PanelTwo rotary switches (refer to the illustration and table below) are located on the rearSwitchespanel of the CPU. They are used for setting Modbus Plus node addresses for
the unit.
SW1 (the top switch) sets the upper digit (tens) of the address; SW2 (the bottom
switch) sets the lower digit (ones) of the address. The illustration below shows the
correct setting for an example address of 11.

Rear Panel Switches Figure The following figure shows the SW1 top switch and the SW2 bottom switch.

SW2 (Bottom)

Rear Panel The following table shows the node addresses of the SW1 and SW2 switches. Switches Table Node Address | SW1 | SW2

Node Address	SW1	SW2
1 9	0	1 9
10 19	1	0 9
20 29	2	0 9
30 39	3	0 9
40 49	4	0 9
50 59	5	0 9
60 64	6	04

Note: Only addresses from 1 to 64 are valid.

If "0" or an address greater than 64 is selected, the "Modbus+" LED will be ON, steady, to indicate the selection of an invalid address.

Indicators

Illustration

The following figure shows the LED panel.

Ready	Fault
Pwr ok	
Modbus +	Error A Error B

Description

The following table shows the DIO LED indicators and descriptions.

	0	•
LEDS	Color	Indication when On
Ready	Green	The module has passed power-up diagnostics.
Fault	Red	A communications error exists between the DIO module and one or more I/O modules or an output module is not being written to over the Modbus Plus network.
Pwr ok	Green	Bus power is present.
Modbus +	Green	Communications are active on the Modbus Plus port.
Error A	Red	Communication error on the Modbus Plus Channel A
Error B	Red	Communication error on the Modbus Plus Channel B

Specifications

General Specifications

General Specifications

Operating Mode	Standalone
Internal Power Dissipation	2.0 W + 3.0 V x I _{BUS} (where _{IBUS} is in Amperes)
Protection	Over Current, Over Voltage
Communication	2 Modbus Plus ports (dual cable)
Field Wiring Connector	7 point terminal strip (Part # 043506326)
I/О Туре	Quantum
Modules/Drop	Depends on bus current loading and word count
Words	$30\ \text{IN}$ / $32\ \text{OUT.}$ (Two additional IN words are reserved for drop status.)

Input

Input

Input Voltage	20 30 VDC
Input Current	1.6 A
Inrush Current	30 A
Input Power Interruption	1.0 ms max.

Output to Bus Output to Bus

Voltage	5.1 VDC
Current	3 A
Minimum Load	0 A
Fusing (external)	2.5 A (Part # 043502515 or equivalent)

Diagnostics

Diagnostics

Power	RAM	
Up	RAM Address	
	Executive Checksum	
Runtime	RAM	
	RAM Address	
	Executive Checksum	

Wiring Diagram

Illustration The following figure shows the wiring diagram for the 140 CRA 212 20 module

	CAUTION
	System Safety
Ŵ	for secure wiring, observe the Power and Grounding Guidlines of the Quantum Hardware Reference Guide and the Grounding and Cabling user guide <i>Related Documents, p. 14</i>
	Failure to follow this precaution can result in injury or equipment damage.

Modbus Plus Network Option Modules (NOM)

IV

At a Glance

Introduction

This part provides information on the following Quantum Network Option modules:

NOM	Communication Channels	Bus Current Required
140 NOM 211 00	1 Modbus (RS-232) serial port 1 Modbus Plus network (RS-485) port	780 mA
140 NOM 212 00	1 Modbus (RS-232) serial port 2 Modbus Plus network (RS-485) ports	780 mA
140 NOM 252 00	1 Modbus (RJ45) port 2 Modbus Plus on Fiber (consisting of optical receiver and transmitter)	750 mA

Note: For detailed information see also *Related Documents, p. 14*, Modbus Plus Planning and Installation Guide

What's in

This part contains the following chapters:

this	Part?

Chapter	Chapter Name	Page
12	140 NOM 211 00: Modbus Plus Option Module	99
13	140 NOM 212 00: Modbus Plus Option Module	111
14	140 NOM 252 00: Modbus Plus Option Module 10Base-FL	121

140 NOM 211 00: Modbus Plus Option Module

12

Overview		
Purpose	This chapter contains information of the 140 NOM	/ 211 00 Module.
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	Presentation	100
	Indicators	106
	Error Codes	107
	Specifications	109

Presentation

Function The 140 NOM 211 00 is a single channel Network Option Modul (NOM), connected via a twisted pair Modbus Plus cable network

Illustration

The following figure shows the parts of the Modbus Plus 140 NOM 211 00 modules.

- 1 LED Area
- 2 Comm Parameter Slide Switch
- 3 Modbus Connector
- 4 Modbus Plus Connector
- 5 Model Number, Module Description, Color Code
- 6 Removable door
- 7 Customer Identification Label, (Fold label and place it inside door)

Front Panel Switches

Two, three-position slide switches are located on the front of the unit. The switch on the left is not used. The three-position slide switch on the right is used to select the comm parameter settings for the Modbus (RS-232) port provided with the Modbus Plus option module. Three options are available, as shown below. The following figure shows the front panel switches.

Note: The NOM hardware defaults to bridge mode when the front panel switch is set to RTU or ASCII mode. When networking controllers, a panel device connected to the NOM Modbus port can communicate with the controller to which it is conected, as well as log into any nodes on the Modbus Plus network.

Rear Panel Switches Two rotary switches are located on the rear panel of the modules. They are used together to set the Modbus Plus node and Modbus port address for the unit.

Note: The highest address that may be set with these switches is 64. Rotary SW1 (top switch) sets the upper digit (tens), and rotary SW2 (bottom switch) sets the lower digit (ones) of the Modbus Plus node address. The illustration below shows the setting for an example address of 11.

SW1 and SW2 Switches Figure The following figure shows the SW1 and SW2 switches.

SW1 (Top)

Note: If "0," or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

SW1 and SW2 Address Settings

The following table shows the address settings for the SW1 and SW2 switches.

Node Address	SW1	SW2
1 9	0	1 9
10 19	1	0 9
20 29	2	09
30 39	3	0 9
40 49	4	09
50 59	5	09
60 64	6	14

Note: If "0," or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

ASCII Comm Port The following table shows the fixed setting of the ASCII comm port parameters. Parameters

Baud	2,400
Parity	Even
Data Bits	7
Stop Bits	1
Device	Rear panel rotary switch setting
Address	

Setting the slide switch to the middle position assigns remote terminal unit (RTU) functionality to the port; the following comm parameters are set and cannot be changed:

RTU Comm Port Parameters

The following table shows the RTU comm port parameters

	ny lable	3110103	0 comm	pon pa	ametera	,

Baud	9,600
Parity	Even
Data Bits	8
Stop Bits	1
Device Address	Rear panel rotary switch setting

Setting the slide switch to the bottom position gives you the ability to assign comm parameters to the port in software; the following parameters are valid.

Valid Comm Port **Parameters**

The following table shows the valid comm port parameters.

Baud	19,200	1,200	
	9,600	600	
	7,200	300	
	4,800	150	
	3,600	134.5	
	2,400	110	
	2,000	75	
	1,800	50	
Data Bits	7/8		
Stop Bits	1/2		
Parity	Enable/Disable Odd/Even		
Device Address	Rear par	nel rotary switch setting	

Modbus Connector Pinouts

The NOM modules are equipped with a nine-pin RS-232C connector that supports Modicon's proprietary Modbus communication protocol. The following is the Modbus port pinout connections for 9-pin and 25-pin connections.

The following figures show the Modbus port pinout connections for 9-pin (left) and 25-pin (right).

The following is the abbreviation key for the above figure.

TX: Transmitted Data	DTR: Data Terminal Ready
RX: Received Data	CTS: Clear to Send
RTS: Request to Send	N/C: No Connection
DSR: Data Set Ready	CD: Carrier Detect

Modbus PortsThe forPinoutportableConnections forIfPortable9Computers9

The following figure shows the Modbus port pinout connections for 9-pin portable computers.

Indicators

Illustration

The following figure shows the Modbus Plus NOM LED indicators.

Ready
Run
Modbus Modbus +

Description

The following table shows the Modbus Plus NOM LED Descriptions.

LEDs	Color	Indication when On	
Ready	Green	The module has passed powerup diagnostics.	
Run	Green	Indicates that the unit is in kernel mode-should always be OFF during normal operations.	
Modbus	Green	Indicates communication is active on the single RS-232 serial port.	
Modbus+	Green	Indicates communication is active on the Modbus Plus port.	

Error Codes

Error Codes Table

The blinking run LED error codes for the NOM module shows the number of times the Run LED on the NOM module blinks for each type of error and the crash codes for each (all codes are in hex).

The following table shows the blinking run LED error codes for the NOM module.

Number of Blinks	Code	Error
Steady	014H	normal power down event
2	815	RAM sequence error
3	49H	illegal data command received by bypass code
	4BH	diagnostics test pattern invalid in the icb block
	4CH	diagnostics test pattern invalid in the page 0
	4DH	icb address not the same as found in hcb
	4EH	bad code selected for mstrout_sel proc
	52H	config table exec_id is different than the sys table exec_id
	53H	got a pupinit hook for neither S985 nor S975 addr
	56H	did not get bus ack form 984 interface within 400 ms
	59H	unexpected modbus port state in send command to 680 proc
	5AH	system table missing
	5BH	bad DPM critical byte write
4	616H	bad or unexpected interrupt
	617H	loopback error on modbus port 1
	618H	parity error
	619H	set port greater than 21
	61AH	controller ram size is less than 8k
	621H	modbus cmd-buffer overflow
	622H	modbus cmd-length is zero
	623H	modbus abort command error
	624H	bad modbus state trn-int
	625H	bad modbus state rcv-int
	626H	bad comm state trn_asc
	627H	transmit underflow error
	628H	bad comm state trn_tru
	629H	bad comm state rcv_asc
	62AH	bad comm state rcv_rtu

	62BH	bad transmit comm state
	62CH	bad receive comm state
	62DH	bad modbus state tmr0_evt
	62EH	bad uart interrupt
	631H	UPI timeout error
	632H	bad UPI response opcode
	633H	UPI bus diagnostic error
	634H	mbp bus interference error
	635H	bad mbp response opcode
	636H	timeout waiting for mbp
	637H	mbp out of synchronization
	638H	mbp invalid path
	639H	peer did not respond with complement of the opcode
	63AH	peer unable to come out of transitions at powerup
	681H	bad master state
	682H	bad slave state
	683H	unknown routing failure to send
	684H	bad port number in set () proc
	685H	bad port number in reset () proc
	686H	bad port number in getport () proc
	687H	bad port number in bitpos () proc
	688H	bad port number in enable_transmit_interrupt () proc
	689H	bad port number in enable_receive_interrupt () proc
	68AH	bad port number in disable_transmit_interrupt () proc
	68BH	bad port number in
	691H	privilege flag is not reset in the session timeout proc
	692H	bad port number in chkmst_hdw () proc
	6A1H	unknown controller type in reset busy flag
	6A2H	unknown function code in generate_poll_cmd () proc
	6A3H	unknown function code in generate_logout_msg () proc
	6A4H	slave link timeout on port other than port #9
	6A5H	illegal bypass command received by bypass code
5	513H	RAM address test error
6	412H	RAM data test error
7	311H	PROM checksum error
Specifications

General	General Specifications			
Specifications	Power Dissipation 4 W		4 W	
	Bus Currer	nt required	750 mA (max.)	
Communication	Communio	cation Ports	s	
Ports	1 Modbus Plus network (RS-485) port (9-pin connector) 1 Modbus (RS-232) serial port (9-pin connector)		k	
			A bridge mode capability in the module permits a panel device connected to this port to access nodes on the Modbus Plus network or to access the local PLC directly without having to go out onto the network.	
Diagnostics	Diagnostic	S		
	Up Runtime	RAM RAM Address Executive Checksum Processor e RAM RAM Address Executive Checksum Processor		

140 NOM 212 00: Modbus Plus Option Module

13

Overview Purpose This chapter contains information of the 140 NOM 212 00 Module. What's in this This chapter contains the following topics: Chapter? Topic Page Presentation 112 117 Indicators Error Codes 118 Specifications 120

Presentation

Function The 140 NOM 212 00 is a dual channel Network Option Modul (NOM), connected via a twisted pair Modbus Plus cable network

Illustration

The following figure shows the parts of the Modbus Plus 140 NOM 212 00 modules.

- 1 LED Area
- 2 Comm Parameter Slide Switch
- 3 Modbus Connector
- 4 Modbus Plus Connector (Chan A)
- 5 Modbus Plus Connector (Chan B)
- 6 Model Number, Module Description, Color Code
- 7 Removable door
- 8 Customer Identification Label, (Fold label and place it inside door)

Front PanelTwo, three-position slide switches are located on the front of the unit. The switch on
the left is not used. The three-position slide switch on the right is used to select the
comm parameter settings for the Modbus (RS-232) port provided with the Modbus
Plus option module. Three options are available, as shown below.

The following figure shows the front panel switches.

Note: The NOM hardware defaults to bridge mode when the front panel switch is set to RTU or ASCII mode. When networking controllers, a panel device connected to the NOM Modbus port can communicate with the controller to which it is conected, as well as log into any nodes on the Modbus Plus network.

Rear Panel Switches

Two rotary switches are located on the rear panel of the modules. They are used together to set the Modbus Plus node and Modbus port address for the unit.

Note: The highest address that may be set with these switches is 64. Rotary SW1 (top switch) sets the upper digit (tens), and rotary SW2 (bottom switch) sets the lower digit (ones) of the Modbus Plus node address. The illustration below shows the setting for an example address of 11.

SW1 and SW2 Switches Figure

The following figure shows the SW1 and SW2 switches.

SW2 (Bottom)

Note: If "0," or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

Address Settings	Node Address	SW1	SW2
	1 9	0	19
	10 19	1	09
	20 29	2	09
	30 39	3	09
	40 49	4	09
	50 59	5	09
	60 64	6	14
			dress greater than 64 is selected, the Modbus + LED will be ate the selection of an invalid address.
ASCII Comm Port	The following t	able sł	nows the fixed setting of the ASCII comm port parameters.
Parameters	Baud 2,40	00	
	Parity Eve	n	
	Data Bits 7		
	Stop Bits 1		
	Device Rea Address	ar panel	rotary switch setting
RTU Comm Port	functionality to changed:	the po	th to the middle position assigns remote terminal unit (RTU) rt; the following comm parameters are set and cannot be nows the RTU comm port parameters.
Parameters	Baud 9,60		
	Parity Eve		
	Data Bits 8	11	
	Stop Bits 1		
		ar panel	rotary switch setting
			ch to the bottom position gives you the ability to assign comm t in software; the following parameters are valid.

SW1 and SW2 The following table shows the address settings for the SW1 and SW2 switches. Address Settings Node Address

т

0		
Baud	19,200	1,200
	9,600	600
	7,200	300
	4,800	150
	3,600	134.5
	2,400	110
	2,000	75
	1,800	50
Data Bits	7 / 8	•
Stop Bits	1/2	
Parity	Enable/Disable Odd/Even	
Device Address	Rear panel rotary switch setting	

Valid Comm Port	The following table shows the valid comm port parameter				
Doromotoro					
Parameters					

Modbus Connector Pinouts

The NOM modules are equipped with a nine-pin RS-232C connector that supports Modicon's proprietary Modbus communication protocol. The following is the Modbus port pinout connections for 9-pin and 25-pin connections.

The following figures show the Modbus port pinout connections for 9-pin (left) and 25-pin (right).

Modbus Ports Pinout Connections for Portable Computers The following figure shows the Modbus port pinout connections for 9-pin portable computers.

Indicators

Illustration

The following figure shows the Modbus Plus NOM LED indicators.

Ready	
Run	
Modbus Modbus +	Error A Error B

Description

The following table shows the Modbus Plus NOM LED Descriptions.

LEDs	Color	Indication when On
Ready	Green	The module has passed powerup diagnostics.
Run	Green	Indicates that the unit is in kernel mode-should always be OFF during normal operations.
Modbus	Green	Indicates communication is active on the single RS-232 serial port.
Modbus+	Green	Indicates communication is active on the Modbus Plus port.
Error A	Red	There is an error condition on Cable A
Error B	Red	There is an error condition on Cable B

Error Codes

Error Codes Table

The blinking run LED error codes for the NOM module shows the number of times the Run LED on the NOM module blinks for each type of error and the crash codes for each (all codes are in hex).

The following table shows the blinking run LED error codes for the NOM module.

Number of Blinks	Code	Error
Steady	014H	normal power down event
2	815	RAM sequence error
3	49H	illegal data command received by bypass code
	4BH	diagnostics test pattern invalid in the icb block
	4CH	diagnostics test pattern invalid in the page 0
	4DH	icb address not the same as found in hcb
	4EH	bad code selected for mstrout_sel proc
	52H	config table exec_id is different than the sys table exec_id
	53H	got a pupinit hook for neither S985 nor S975 addr
	56H	did not get bus ack form 984 interface within 400 ms
	59H	unexpected modbus port state in send command to 680 proc
	5AH	system table missing
	5BH	bad DPM critical byte write
4	616H	bad or unexpected interrupt
	617H	loopback error on modbus port 1
	618H	parity error
	619H	set port greater than 21
	61AH	controller ram size is less than 8k
	621H	modbus cmd-buffer overflow
	622H	modbus cmd-length is zero
	623H	modbus abort command error
	624H	bad modbus state trn-int
	625H	bad modbus state rcv-int
	626H	bad comm state trn_asc
	627H	transmit underflow error
	628H	bad comm state trn_tru
	629H	bad comm state rcv_asc
	62AH	bad comm state rcv_rtu

	62BH	bad transmit comm state
	62CH	bad receive comm state
	62DH	bad modbus state tmr0 evt
	62EH	bad uart interrupt
	631H	UPI timeout error
	632H	bad UPI response opcode
	633H	UPI bus diagnostic error
	634H	mbp bus interference error
	635H	bad mbp response opcode
	636H	timeout waiting for mbp
	637H	mbp out of synchronization
	638H	mbp invalid path
	639H	peer did not respond with complement of the opcode
	63AH	peer unable to come out of transitions at powerup
	681H	bad master state
	682H	bad slave state
	683H	
	684H	unknown routing failure to send
	685H	bad port number in set () proc
	686H	bad port number in reset () proc
		bad port number in getport () proc
	687H 688H	bad port number in bitpos () proc
		bad port number in enable_transmit_interrupt () proc
	689H	bad port number in enable_receive_interrupt () proc
	68AH	bad port number in disable_transmit_interrupt () proc
	68BH	bad port number in
	691H	privilege flag is not reset in the session timeout proc
	692H	bad port number in chkmst_hdw () proc
	6A1H	unknown controller type in reset busy flag
	6A2H	unknown function code in generate_poll_cmd () proc
	6A3H	unknown function code in generate_logout_msg () proc
	6A4H	slave link timeout on port other than port #9
	6A5H	illegal bypass command received by bypass code
5	513H	RAM address test error
6	412H	RAM data test error
7	311H	PROM checksum error

Specifications

General	General Specifications			
Specifications	Power Dissipation 4 W		4 W (typical)	
	Bus Curre	ent required	780 mA	
Communication	Commun	ication Ports	ts	
Ports 2 Modbus (RS-485) p connector)			rk For dual connectivity on a single Modbus Plus network. These ports handle identical versions of all inbound and outbound transactions and keep track of the data paths used for these transactions	
	1 Modbus (RS-232) serial port (9-pin connector)			
Diagnostics	Diagnost	ics		
	Power RAM Up RAM Address Executive Checksum Processor Runtime RAM RAM Address			
	Executive Checksum Processor			

140 NOM 252 00: Modbus Plus Option Module 10Base-FL

14

Overview This chapter contains information of the 140 NOM 252 00 Module. Purpose What's in this This chapter contains the following topics: Chapter? Topic Page Presentation 122 128 Indicators Fiber Optic Cable Connections 129 Specifications 139

Presentation

Overview The Modbus Plus on Fiber module provides connectivity to Modbus Plus nodes by fiber cable.

There are many benefits that result from the use of fiber optics. Some of these benefits include:

- Longer distances between nodes (up to 3 km), thereby, increasing the total length of the network.
- Fiber optic medium is not susceptible to the effects of electromagnetic interference, RF interference, and lightning.
- Intrinsically safe links that are required in many hazardous industrial environments.
- Total electrical isolation between terminal points on the link

Illustration

The following figure shows the parts of the Modbus Plus 140 NOM 252 00 module.

- 1 LED Area
- 2 Modbus Connector
- 3 Comm Parameter Slide Switch
- 4 Port 2 TX and RX Connectors
- 5 Port 1 TX and RX Connectors
- 6 Model Number, Module Description, Color Code
- 7 Removable door
- 8 Customer Identification Label, (Fold label and place it inside door)

Front Panel A three-position slide switch is located on the front of the unit. This switch is used to Switch select the comm parameter settings for the Modbus (RS-232) port. Three options are available, as shown below.

The following figure shows the front panel switch.

Setting the slide switch to the top position assigns ASCII functionality to the port: the following comm parameters are set and cannot be changed.

ASCII Comm Port The following table shows the fixed setting of the ASCII comm port parameters.

Baud	2,400
Parity	Even
Data Bits	7
Stop Bits	1
Device Address	Rear panel rotary switch setting

Setting the slide switch to the middle position assigns remote terminal unit (RTU) functionality to the port; the following comm parameters are set and cannot be changed:

RTU Comm Port

The following table shows the RTU comm port parameters.

Pa

Parameters

arameters	Baud

Baud	9,600
Parity	Even
Data Bits	8
Stop Bits	1
Device Address	Rear panel rotary switch setting

Setting the slide switch to the bottom position gives you the ability to assign comm parameters to the port in software; the following parameters are valid.

The following table shows the valid comm port parameters.			
Baud	19,200	1,200	
	9,600	600	
	7,200	300	
	4,800	150	
	3,600	134.5	
	2,400	110	
	2,000	75	
	1,800	50	
Data Bits	7 / 8		
Stop Bits	1/2		
Parity	Enable/	Disable Odd/Even	
Device Address	Rear par	nel rotary switch setting	
Rotary SV sets the lo	V1 (top sv ower digit	address that may be set with these switches is 64. witch) sets the upper digit (tens), and rotary SW2 (bottom switch) (ones) of the Modbus Plus node address. The illustration below for an example address of 11.	
		e shows the SW1 (top) and SW2 (bottom) switches.	
	Baud Data Bits Stop Bits Parity Device Address Two rotary together to Note: The Rotary SV sets the lo shows the The follow	Baud 19,200 9,600 7,200 4,800 3,600 2,400 2,400 2,400 2,000 1,800 1,800 Data Bits 7 / 8 Stop Bits 1 / 2 Parity Enable/E Device Rear par Address Two rotary switches together to set the I I Note: The highest Rotary SW1 (top system) sets the lower digit shows the setting f	

Valid Comm Port The following table shows the valid comm port parameters.

SW1 and SW2The following figure shows the node address settings for the SW1 and SW2Address Settingsswitches.

Node Address	SW1	SW2
1 9	0	1 9
10 19	1	09
20 29	2	09
30 39	3	09
40 49	4	09
50 59	5	09
60 64	6	14

Note: If "0" or an address greater than 64 is selected, the Modbus + LED will be "on" steady, to indicate the selection of an invalid address.

Modbus Connector	The NOM 252 00 module is equipped with an RS-232 port (see below) located on the front of the module. This port uses an eight-position RJ45 (phone jack-type) connector.		
Modbus pin 1	The following figure shows the NOM 252 00 Pin 1 connector.		
Figure			

Note: A D-shell adapter is available from Modicon for NOM 252 00-to-computer connections: a (110 XCA 20 300) 9-pin adapter for PC-AT type computers (see the illustration pinout table below).

The following figures show the 9-pin adapter front view (left) and side view (right). **Pinouts Figures**

The following figure shows the 9-pin RJ45 connector schematic.

This following shows an example of the 110 XCA 282 0X cable. A table is also provided which includes part numbers and cable lengths.

RJ45 Connector Figure

BJ45 Cable Part Numbers Table

Cable Part Numbers	Cable Lengths
110 XCA 282 01	3 ft. (0.91 m)
110 XCA 282 02	10 ft. (3 m)
110 XCA 282 03	20 ft. (6 m)

Indicators

Illustration

The following figure shows the Modbus Plus on Fiber LED indicators.

Ready	
Run Modbus Modbus + Fport 1 Fport 2	FRNGoff

Description

The following table shows the Modbus Plus on fiber LED descriptions.

LEDs	Color	Indication when On	
LLDS	00101		
Ready	Green	The module has passed powerup diagnostics.	
Run	Green	Indicates that the unit is in kernel mode – should always be OFF during normal operations. Note: The table for the NOM 21X 00 shows the number of times the RUN LED on the Modbus Plus on Fiber Module blinks for each type of error and the crash codes for each (all codes are in hex).	
Modbus	Green	Indicates communication is active on the single RS-232 serial port.	
Modbus+	Green	Indicates communication is active on the Modbus Plus port.	
Fport1	Green	Indicates an optical signal has been received on fiber optic Port 1.	
Fport2	Green	Indicates an optical signal has been received on fiber optic Port 2.	
FRNGoff	Red	Indicates the first break in a self healing ring.	

Fiber Optic Cable Connections

Fiber Optic Cable Connections The NOM 252 00 module is connected in the Quantum system by a fiber optic cable (see below). The cable has two strands. Each module transmits a uni-directional signal. For this reason, each strand must be connected to the transmit port on one module and the receive port on the other. One strand of the fiber optic cable is marked at 10-inch (25 cm) intervals with the manufacturer's name and the cable specifications. This is the only way to distinguish the two strands.

Fiber Optic Cable The Connections Figure

The following figure shows the fiber optic cable connections.

 Connecting the
 The following steps show how to connect the fiber optic cable.

 Fiber Optic Cable
 Step
 Action

 Fiber Optic
 Here are four typical configurations that show the wide range of the network architecture:

 • Point-to-point connection
 • Bus configuration

 • Tree configuration
 • Tree configuration

• Self-healing ring configuration

Point-to-PointThis type of configuration (see below) allows communication over the distance of upConfigurationto 3 km through harsh industrial environments.

Point-to-Point Configuration Example Figure The following figure shows the point-to-point configuration.

Bus Configuration

This type of configuration is used when it is required to connect a number of fiber nodes and can be used to increase the distance of a standard Modbus Plus network by changing to a fiber medium. This kind of network allows the connection of up to 32 Quantum NOM 252 nodes over the distance of 5 km.

The following illustrations show the NOM 252 00 module in a mixed fiber optic/ twisted pairs bus configuration network and a straight fiber optic bus configuration network.

CAUTION

Equipment Failure

The loss of a single node in this configuration disables the rest of the network.

Failure to follow this precaution can result in injury or equipment damage.

The following figure shows the straight fiber optic network.

Bus Configuration Example 2

Note: The distance between nodes on fiber is limited by the maximum allowable power loss from end-to-end (3 km over 62.5 mm fiber). Power loss includes the fiber optic cable attenuation, connector losses at the Fiber Optic Receiver and Transmitter ports, and the system margin of 3 dB.

In this configuration, the end NOM 252 00 in this configuration will have the FRNGoff LED active. It also displays the Cable B Framing error in the MBPSTAT (in ladder logic).

Tree Configuration

Using tree configurations allows for greater flexibility in the layout of Modbus Plus and NOM 252 00 networks. The following illustrations are samples tree configurations. Additional repeaters may be connected in order to extend communication between electrical links.

Self-healing Ring Configuration This configuration can be achieved by connecting the unused fiber optic ports of the first and last NOM 252 00 directly or through the fiber optic repeater, if a mixed fiber optic/twisted pairs network is used. This type of connection has all the advantages of the previously described configurations, along with built-in redundancy. A broken connection between any two Quantum modules in the ring will automatically reconfigure the network to the bus configuration, and maintain communication.

Self-healing Ring Configuration Example

The following figure shows a self-healing ring configuration example.

Hot StandbyThe following figure shows the self-healing ring configuration for hotSystems Figurestandby systems.

Network Status	The information about the condition of the network is presented in the form of Network Status. This information indicates the loss of connection (the first break in the self-healing ring) and is similar to the way the existing 140 NOM 212 00 reports the loss of the redundant cable. The break in the fiber cable will be detected by the module not receiving the signal from the cable break side. The incident will be reported by MBPSTAT as a Cable B Framing error. This condition also activates the FRNGoff LED on the module front.					
Recommended Materials for Fiber Optic Links	Modicon does not manufacture fiber optic products such as cables, connectors, or special tools. However, we have experience with third party suppliers of materials, and are able to provide guidelines on product compatibility.					
Connectors	The following table shows the connect	tor types				
	Connector type	Part number	Operating temperature			
	ST bayonet (epoxy) 3M 6105 -40 +					
	ST bayonet (hot melt)	3M 6100	-40 +60 °C			
	ST bayonet (epoxy)	AMP 501380-5 series	-30 +70 °C			
	ST bayonet (epoxy) AMP 503415-1 series -20 +75 °C Light crimp ST-style AMP 503453-1 series -20 + 60 °C					
	Mechanical line splice (one size fits all) 3M 2529 Fiberlok1 II -40 +80 °C					
	Note: All connectors must have a sho	ort boot for strain relief.				

Termination Kits The following table shows the termination kits.

Kit type	Part number	Description
Bayonet ST (eoxy)	AMP 503746-1	For all epoxy type ST style
Light crimp XTC	AMP 50330-2	For all light crimp
Mechanical line splice	3M 2530	Fiber splice prep kit, complete with cleaving tool
3M hot melt	3M 05-00185 3M 05-00187	110 V termination kit 220 V termination kit

Other Tools	The following table s	hows other tools	that may be needed for fiber optic links.
Tabla			
Table	-	-	

Product	Part number	Description/use
3M (Photodyne) optical source driver	9XT	Hand-held optical source driver (requires a light source)
3M (Photodyne) optical light source	1700-0850-T	850 nm Light Source, ST Connectors for 9XT
3M (Photodyne) power meter	17XTA-2041	Hand-held fiber optic power meter
3M optical light source, 660 nm, visible	7XE-0660-J	Use with 9XT to troubleshoot raw fiber, requires FC/ST patch cord
3M FC/ST patch cord	BANAV-FS-0001	Connects FC connector on 7XE to ST
3M bare fiber adapter, ST-compatible	8194	Allows the use of above source and meter to test raw fiber (two required)

Cables It is recommended that you use 62.5/125 mm cable (such as AMP 503016-1, AMP 502986-1, or equivalent) with a maximum attenuation of 3.5 dB/km in most of the configurations.

Note: Modicon recommends using the 990 XCA 656 09 cable.

Note: All cables must have a maximum cable diameter of not more than 3 mm at the terminal side.

Connections

The following information discusses connecting the NOM 252 00 on fiber cable, adding a new mode to the network, and repairing the break in the cable.

Note: When a new network is assembled, it is recommended that you connect all cables before powering up the system. Connect fiber optic cables as described previously in this section.

Adding a New Node to the Network	If a new node is added to an existing network in order to extend the network (at the end of any configuration), then a new node may be connected first by fiber cable and then hot-swapped to the backplane to avoid errors to the existing network. If a new node is added to the middle of the network, disconnect the fiber optic cables from one side of the existing NOM 252 module, and connect to port 1 or 2 of the new node. Additional fiber optic cable then needs to be connected to the second port of the new NOM 252 and to the next NOM 252 in the network. Finally, hot-swap the new NOM 252 to the backplane.					
Repairing the Break in the Cable	no sig to re-e	Because the NOM 252 00 will stop transmitting in the direction from which it receives no signal, replaceing a broken fiber optic cable and reconnectioning do not suffice to re-establish communication over that segment. Hot-swapping only one NOM 252 at the repaired connections is required to complete the connection.				
		Breakage of any fiber connectors or fiber optic cables is the equivalent to king the trunk cable in a copper-based Modbus Plus network.				
	netwo break the nc	For the self-healing ring configuration, repairing the first break in the fiber optic network has to be scheduled when one of the units on either side of the repaired break can be hot-swapped, without creating further problems by disconnecting the node.				
		Note: Self-healing configurations are not considered as redundant networks. Redundant networks yield a high system availability.				
Calculations	Use th netwo	ne following formula to calculate the number of NOM 252 00 modules in a fiber rk:				
	Step					
		Action				
	1	Action The total allowable pulse width distortions and jitter are limited to 20% of the bit period and is 200 nsec for the full fiber optic network.				
	1 2	The total allowable pulse width distortions and jitter are limited to 20% of the bit period				
		The total allowable pulse width distortions and jitter are limited to 20% of the bit period and is 200 nsec for the full fiber optic network.				

Specifications

General	General Specifications			
Specifications	Power Dissipation		4 W (typical)	
	Bus Curren	t required	780 mA	
	External Pc	ower	Not required	
Communication	Communic	ation Port	ts	
Ports	Optical Por	ts 2 (con	sisting of an optical receiver and trans	mitter)
	Modbus Po	Modbus Port 1 RJ45 (phone jack-type) connector		
Diagnostics	Diagnostics			
	Up F	RAM RAM Addre Executive O Processor		
	Runtime RAM RAM Address Executive Checksum			
Optical	Optical Tra	ansmissio	n	
Transmission	Interface			ST-Type connector

Interface	ST-Type connector
PulseWidth Disstortion and Jitter	5 ns or better
Wavelength	820 nm
Power Loss Budget (includes 3 dB of system margins)	50/125 micron fiber -6.5 dB 62.5/125 micron fiber -11 dB 100/140 micron fiber -16.5 dB
Maximum distance for point-to- point connection	2 km over 50 micron fiber 3 km over 62.5 micron fiber 3 km over 100 micron fiber
Maximum System Length in Self Healing Ring Configuration	10 km over 62.5 micron fiber

Optical	Optical Transmitter Specifications			
Transmitter Specifications	Optical Power (Measured with 1 m test fiber)		-12.819.8 dBm average power in 50/125 micron fiber cable -9.016 dBm average power in 62.5/125 micron fiber cable -3.510.5 dBm average power in 100/140 micron fiber cable	
	Rise/Fall Time		20 ns or better	
	Silence (OFF leakage)		-43 dBm	
Optical Receiver	Optical Receiver Spec	cifica	ations	
Specifications	Receiver Sensitivity	-30 dBm average power		
	Dynamik range	-20 dB		
	Detected Silence	-36 dBm		
	·			

Quantum Ethernet Modules

V

At a Glance

Introduction	This part provides information about the different Ethernet modules of the Quantue product series.				
What's in this	This part	This part contains the following chapters:			
Part?	Chapter	Chapter Name	Page		
	15	140 NOE xxx xx: Ethernet Module General Overview	143		
	16	140 NOE 211 x0: TCP/IP 10Base-T Ethernet Module	151		
	17	140 NOE 251 x0: TCP/IP 10Base-FL Ethernet Module	157		
	18	140 NOE 311 00: SY/MAX 10Base-T Ethernet Module	163		
	19	140 NOE 351 00: SY/MAX 10Base-FL Ethernet Module	169		
	20	140 NOE 771 00: TCP/IP 10/100 Ethernet Module	175		
	21	140 NOE 771 01: TCP/IP 10/100 Ethernet Module	181		
	22	140 NOE 771 10: TCP/IP 10/100 FactoryCast Ethernet Module	185		
	23	140 NOE 771 11: TCP/IP 10/100 FactoryCast Ethernet Module	193		
	24	140 NWM 100 00: TCP/IP 10/100 Ethernet Module	197		

140 NOE xxx xx: Ethernet Module General Overview

15

Overview				
At a Glance	This chapter contains general information about the 140 NOE ••• •• and 140 NWM 100 00 Ethernet modules.			
	This chapter contains the following topics:			
What's in this Chapter?		Page		
	This chapter contains the following topics: Topic General Information	Page		
	Торіс			

General Information

	Ethernet Module	Communication Channels	Bus Current Required			
	140 NOE 211 00	1 10Base-T Ethernet network (RJ-45) port	1 A			
	140 NOE 251 00	1 10Base-FL Ethernet network (ST-45) port	1 A			
	140 NOE 311 00	One 10BASE-T Ethernet network (RJ45) port.	1 A			
	140 NOE 351 00	Two 10BASE-FL Ethernet network (ST-style) port.	1 A			
	140 NOE 771 00	100 BASE-FX Fiber optics (MT-RJ) port 10/100BASE-T (RJ-45) port	750 mA			
	140 NOE 771 01	100 BASE-FX Fiber optics (MT-RJ) port 10/100BASE-T (RJ-45) port	750 mA			
	140 NOE 771 10 FactoryCast	100 BASE-FX Fiber optics (MT-RJ) port 10/100BASE-T (RJ-45) port	750 mA			
	140 NOE 771 11 FactoryCast	100 BASE-FX Fiber optics (MT-RJ) port 10/100BASE-T (RJ-45) port	750 mA			
	140 NWM 100 00	100 BASE-FX Fiber optics (MT-RJ) port 10/100BASE-T (RJ-45) port	900 mA			
TCP/IP Ethernet Modules	Quantum TCP/IP Ethernet modules make it possible for a Quantum controller to communicate with devices on an Ethernet network using TCP/IP - the de facto standard protocol. An Ethernet module may be inserted into an existing Quantum system and connected to existing Ethernet networks via fiber optic or twisted pair cabling.					
Sy/Max Ethernet	Quantum Sy/Max	Ethernet modules are Interfaces that can be placed	in a Quantum			

Modules

backplane, to connect Quantum controllers to Sy/Max devices and applications.
140 NOE 771 •• and 140 NWM 100 00 Module Overview

Faulty Device Replacement (DHCP Server)

Enhanced Web Diagnostics

User Programmable Web Pages

Schneider Private MIB

FactoryCast Application

JAVA Virtual Machine

NTP

SMTP

Overview	The following information provides overviews of a 140 NWM 100 00 modules.	ll Quantum 14) NC)E 77	'1 ••	and	
General Description Key Features	The Quantum 140 NOE 771 00 10/100 Ethernet module, shown below, is one of the latest models in a line of Quantum Ethernet TCP/IP modules designed to make it possible for a Quantum Programmable Logic Controller (PLC) to communicate with devices over an Ethernet network. The electronics for the NOE 771•• and 140 NWM 100 00 modules are contained in a standard Quantum single width case that takes up one slot in a Quantum backplane. The module, which is capable of being hot swapped, can be plugged into any available slot in the backplane. The NOE 771 00 provides real-time peer-to-peer communications as well as I/O scanning and a MODBUS/TCP server. The included HTTP services provide maintenance and configuration utilities to the module. The following table shows the different feature of the 140 NOE 771 •• and 140 NWM 100 00 Ethernet modules.						
	models are listed below:			1		•	
	Service	-00	-01	-10	-11	NWM	
	HTTP Server	х	х	х	х	х	
	FTP Server	х	х	х	Х	х	
	Flash File System	х	х	х	Х	х	
	BOOTP Client	Х	х	х	Х	х	
	BOOTP Server	Х	х	х	Х		
	SNMP V2 Agent	Х	х	х	х	х	
	MODBUS Messaging	Х	х	х	х	х	
	I/O Scanner	Х	х		х		
	Hot Standby	Х		х			
	Global Data - Publish / Subscribe		х		Х		
	Bandwidth Monitoring		х	1	х		

Х

Х

Х

х

X X

x x x

Х

х х

х х

Х

х

Х

Note: In the detailed description of the key features, only the modules of the NOE family are named. The features are also available for the 140 NWM 100 00 module. This applies depending on the listed properties in the table shown above.

Front Panel Components

The front panel of the NOE 771 •• and 140 NWM 100 00 modules contain identification markings, color codes, and LED displays. A writable area for an IP address, a global address label, and two Ethernet cable connectors is located behind the removable front panel door.

The following table provides a description of the front panel components which are shown in front view figure.

Component	Description
LED indicator Panel	Indicates the operating status of the module, and the fiber optic or Ethernet communications network it is connected to. (See LED Indicators in this chapter.)
IP Address Area	Provides a writable area to record the module's assigned IP address.
Global Address Label	Indicates the module's global Ethernet MAC address assigned at the factory.
100 BASE-FX Connector	Provides an MT-RJ socket for connection to a 100 megabit fiber optic Ethernet cable.
10/100BASE-T Connector	Provides an RJ-45 socket for connection to a shielded, twisted pair Ethernet cable.

Front View The following figure shows the front of the NOE 771 00 Ethernet module as an example for all Ethernet modules.

- 1 Model number, module description, color code
- 2 LED display
- 3 IP Address writable area
- 4 Global address label
- 5 100 Base Fx MT-RJ cable connector
- 6 10/100 Base-T RJ-45 cable connector
- 7 Removable door

Indicators

Illustration

The following figure shows the NOE 771 00 LED indicators as a place holder for all other Ethernet modules.

Act	ive
Ready	Fault
Run	Coll
Link	
Tx Act	
RxÅ Act	
10MB	
100MB	Fduplex
Kernel	Appl

Description

The following table shows the LED descriptions.

LED	Color	Description
Active	Green	Indicates the backplane is configured.
Ready	Green	Indicates module is healthy.
Fault	Red	Flashes when the NOE is in crash state.
Run	Green	Flashes to indicate diagnostic code, as described in "Run LED Status" (below).
Coll.	Red	Flashes when Ethernet collisions occur.
Link	Green	On when Ethernet link is active.
Tx Act	Green	Flashes to indicate Ethernet transmission.
Rx Act	Green	Flashes to indicate Ethernet reception.
10MB	Green	On when the module is connected to a 10 Megabit network.
100MB	Green	On when the module is connected to a 100 Megabit network.
Fduplex		On when Ethernet is operating in the full duplex mode.
Kernel	Amber	On when in Kernel Mode. Flashing while in download mode.
Appl	Green	On when crash log entry exists.

Run LED Status The following table lists each available state of the Run LED indicator, and it provides diagnostic information for that state

Indicator State	Status
On (steady)	Normal operation: The NOE module is ready for network communication.
Number of flashes i	n sequence
one	Not used
two	Not used
three	No Link: the network cable is not connected or is defective
four	Duplicate IP address: The module will stay off-line.
five	No IP address: The module is attempting to obtain an IP address from a BOOTP server.
six	Using default IP address
seven	No valid executive NOE present
eight (140 NWM 100 00 only)	Invalid IP configuration (Likely cause: Default gateway is not on the same subnet mask.)
nine (140 NWM 100 00 only)	Flash file system inoperative.

140 NOE 211 x0: TCP/IP 10Base-T Ethernet Module

16

Overview		
Purpose	This chapter contains information of the 140 NOE	211 x0 Module.
	Note: For detailed information see also <i>Related L</i> the Quantum NOE 211/251 Ethernet Module	Documents, p. 14, User Guide for
	This chapter contains the following topics:	
	This chapter contains the following topics: Topic	Page
		Page 152
	Торіс	
What's in this Chapter?	Topic Presentation	152

Presentation

Function The Ethernet TCP/IP module for twisted pair cabling provides an interface to Ethernet networks for the Quantum Automation Series system.

Illustration

The following figure shows the Ethernet TCP/IP NOE 211 x0 module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Global Address Label
- 4 Transmit Cable Connector
- 5 Receive Cable Connector
- 6 Removable door
- 7 Customer Identification Label, (Fold label and place it inside door)

Indicators

Illustration

The following figure shows the NOE 211 x0 LED indicators.

	Active
Ready Run	Fault Coll
Link	Coll
Kernel	Appl

Description

The following table shows the NOE 211 x0 LED descriptions.

LEDs	Color	Indication when On
Active	Green	Module is communicating with backplane.
Ready	Green	Module has passed internal diagnostic tests.
Run	Green	Flashes during normal operation.
Link	Green	Ethernet link to hub is ok.
Kernel	Amber	If steady, module is operating in kernel mode. If flashing, module is waiting for download.
Fault	Red	An error has been detected, a download has failed or a reset is in process.
Coll	Red	If steady, cable is not connected. If flashing, Ethernet collisions are occurring.
Appl	Amber	Entry exists in crash log.

Specifications

Specifications	Specifications Table	
Table	Power Dissipation	5 W
	Bus Current required	1 A
	Protocol	Ethernet ports transmit and receive Modbus commands encapsulated in TCP/IP protocol.
	Ports	One 10BASE-T Ethernet network (RJ-45) port.
	Data Transfer Frequency	10 Mbps
	Compatibility with Quantum Controllers	All, V2.0 at a minimum
	Factory Cast	140 NOE 211 10 only

Installation	
Installing the NOE Module	Quantum Ethernet TCP/IP modules come fully configured. However, before installing your module, you should make sure the default configuration is appropriate for your network. If the module will be communicating on an open network, consult your network administrator to obtain a unique IP network address. You must enter this address in the Modsoft Ethernet TCP/IP configuration extension screen before installing the
	module. If the module will be communicating on a local network, make sure the default IP network address is not already in use on that network. To determine the default IP network address, locate the global address label on the front panel of the module. Convert the rightmost eight digits from hexadecimal to decimal. The result should be a decimal number in the form, 84.xxx.xxx, where each group of xxx is a number from 0 to 255. This is the default IP network address.

InstallationThe following example shows the steps for discovering the default IPExamplenetworkaddress.

Step	Action
1	Locate the global address label on the front panel of the module.
	IEEE GLOBAL ADDRESS
	0000540B72A8
2	Note the rightmost eight digits.
	5 4 0 B 7 2 A 8
	↓ ↓ ↓ ↓ ▼ ▼ ▼ ▼ 84. 11.114.168
	04. 11.114.100
3	Convert them from hexadecimal to decimal. Each pair of hexadecimal numbers will result in a decimal number between 0 and 255. This is the default IP address.
4	If you use the default IP network address and if your network uses Ethernet II framing and if you do not need to specify the default gateway or a subnet mask, then you may install the module without changing the default configuration.

	CAUTION
	System Error
$\mathbf{\Lambda}$	Do not connect this module to your network until you have ensured that its IP address will be unique on the network.
	Failure to follow this precaution can result in injury or equipment damage.

CAUTION
Hardware Restrictions
The cable for an Ethernet module must be routed through an Ethernet hub for the network to function properly. Do not connect the module directly to another device.
Failure to follow this precaution can result in injury or equipment damage.

140 NOE 251 x0: TCP/IP 10Base-FL Ethernet Module

17

Overview		
Purpose	This chapter contains information of the 140 NC	0E 251 x0 Module.
	Note: For detailed information see also <i>Related</i> the Quantum NOE 211/251 Ethernet Module	Documents, p. 14, User Guide for
What's in this Chapter?		
	This chapter contains the following topics:	Page
		Page 158
	Торіс	
	Topic Presentation	158

Presentation

Function The Ethernet TCP/IP modules for fiber optic cabling provide an interface to Ethernet networks for the Quantum Automation Series system.

Illustration

The following figure shows the Ethernet TCP/IP NOE 251 x0 module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Global Address Label
- 4 Transmit Cable Connector
- 6 Receive Cable Connector
- 5 Removable door
- 6 Customer Identification Label, (Fold label and place it inside door)

Indicators

Illustration

The following figure shows the NOE 251 x0 LED indicators.

ļ	Active
Ready	Fault
Run	Coll
Link	
Kernel	Appl

Description

The following table shows the NOE 251 x0 LED descriptions.

LEDs	Color	Indication when On
Active	Green	Module is communicating with backplane.
Ready	Green	Module has passed internal diagnostic tests.
Run	Green	Flashes during normal operation.
Link	Green	Ethernet link to hub is ok.
Kernel	Amber	If steady, module is operating in kernel mode. If flashing, module is waiting for download.
Fault	Red	An error has been detected, a download has failed or a reset is in process.
Coll	Red	If steady, cable is not connected. If flashing, Ethernet collisions are occurring.
Appl	Amber	Entry exists in crash log.

Specifications

Specifications	Specifications Table		
Table	Power Dissipation	5 W	
	Bus Current required	1 A	
	Protocol	Ethernet ports transmit and receive Modbus commands encapsulated in TCP/IP protocol	
	Ports	One 10BASE-FL Ethernet network (ST-style) port.	
	Data Transfer Frequency	10 Mbps	
	Compatibility with Quantum Controllers	All, V2.0 at a minimum	
	Factory Cast	140 NOE 251 10 only	

Installation	
Installing the NOE Module	Quantum Ethernet TCP/IP modules come fully configured. However, before installing your module, you should make sure the default configuration is appropriate for your network. If the module will be communicating on an open network, consult your network administrator to obtain a unique IP network address. You must enter this address in the Modsoft Ethernet TCP/IP configuration extension screen before installing the
	module. If the module will be communicating on a local network, make sure the default IP network address is not already in use on that network. To determine the default IP network address, locate the global address label on the front panel of the module. Convert the rightmost eight digits from hexadecimal to decimal. The result should be a decimal number in the form, 84.xxx.xxx, where each group of xxx is a number from 0 to 255. This is the default IP network address.

InstallationThe following example shows the steps for discovering the default IPExamplenetwork address.

Step	Action
1	Locate the global address label on the front panel of the module.
	IEEE GLOBAL ADDRESS
	0000540B72A8
2	Note the rightmost eight digits.
	5 4 0 B 7 2 A 8
	↓ ↓
3	Convert them from hexadecimal to decimal. Each pair of hexadecimal numbers will result in a decimal number between 0 and 255. This is the default IP address.
4	If you use the default IP network address and if your network uses Ethernet II framing and if you do not need to specify the default gateway or a subnet mask, then you may install the module without changing the default configuration.

	CAUTION
	System Error
$\mathbf{\Lambda}$	Do not connect this module to your network until you have ensured that its IP address will be unique on the network.
	Failure to follow this precaution can result in injury or equipment damage.

CAUTION
Hardware Restrictions
The cable for an Ethernet module must be routed through an Ethernet hub for the network to function properly. Do not connect the module directly to another device.
Failure to follow this precaution can result in injury or equipment damage.

140 NOE 311 00: SY/MAX 10Base-T Ethernet Module

18

Overview		
Purpose	This chapter contains information of the 140 NOE 3	11 00 Module.
	Note: For detailed information see also <i>Related Do</i> Max Ethernet Network Option Module Guide	ocuments, p. 14, Quantum Sy/
	This chapter contains the following topics:	
What's in this Chapter?	This chapter contains the following topics: Topic	Page
		Page 164
	Торіс	U

Presentation

Function The Quantum SY/MAX Ethernet module for twisted pair cabling provides an interface for the Quantum Automation Series system to SY/MAX devices via Ethernet.

Illustration

The following figure shows the NOE 311 00 SY/MAX Ethernet module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Global Address Label
- 4 RJ-45 Connector
- 5 Removable door
- 6 Customer Identification Label, (Fold label and place it inside door)

SY/MAX Addressing

Be sure that the module is assigned a unique SY/MAX drop number during configuration.

WARNING

Personal injury or equipment damage

Failure to assign a unique SY/MAX drop number during configuration can cause severe personal injury or equipment damage.

Failure to follow this precaution can result in death, serious injury, or equipment damage.

Indicators

Illustration

The following figure shows the NOE 311 00 LED indicators.

Description

The following figure shows the NOE 311 00 LED descriptions.

LEDs	Color	Indication when On
Active	Green	Module is communicating with backplane.
Ready	Green	Module has passed internal diagnostic tests.
Run	Green	Flashes during normal operation.
Link	Green	Ethernet connection is made.
Kernel	Amber	On during download.
Fault	Red	An error condition has occurred.
Collision	Red	If steady, an error condition exists. If flashing, packet collisions are occurring on the network during data transmission.
Appl	Amber	A fatal error has occurred.

Specifications

Specification	General Specification		
•	Bus Current required	1 A	
	Communication Port	One 10BASE-T Ethernet network (RJ45) port.	
	Backplane Compatibility (Requires Quantum CPU)	3, 4, 6, 10, and 16 position backplanes	
	Compatibility SY/MAX 802.3 Devices and Software	Model 450 Model 650 SFI160 SFW390-VAX Streamline Version 1.3	
Cable Type	Cable Type		
		2, 3, 4, or 6 twisted pairs with a solid copper core	
	10Base-T (twisted pair) F	RG58a/u or RG58C/U coaxial (Belden 9907/82907 or equ	valent)
Wire Size	Wire Size		
	10Base-2 or ThinWire Ethe	ernet 20 AWG	
	10Base-T (twisted pair)	22, 24, 2	6 AWG
Topology	Topology		
Topology	Topology	arnat	Bue
Topology	10Base-2 or ThinWire Ethe	ernet	Bus
Topology		ernet	Bus Star
Topology Connector	10Base-2 or ThinWire Ethe	ernet	
	10Base-2 or ThinWire Ethe 10Base-T (twisted pair)	BNC (UG-274)	

140 NOE 351 00: SY/MAX 10Base-FL Ethernet Module

Overview		
Purpose	This chapter contains information of the 140 NOE 3	51 00 Module.
	Note: For detailed information see also <i>Related Do</i> Max Ethernet Network Option Module Guide	ocuments, p. 14, Quantum Sy/
What's in this	This chapter contains the following topics:	
	This chapter contains the following topics: Topic	Page
		Page 170
What's in this Chapter?	Торіс	

Presentation

Function The Quantum SY/MAX Ethernet module for fiber optic cabling provides an interface for the Quantum Automation Series system to SY/MAX devices via Ethernet.

Illustration

The following figure shows the NOE 351 00 SY/MAX Ethernet module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Global Address Label
- 4 Transmit Cable Connector
- 5 Receive Cable Connector
- 6 Removable door
- 7 Customer Identification Label, (Fold label and place it inside door)

SY/MAX Addressing

Be sure that the module is assigned a unique SY/MAX drop number during configuration.

WARNING

Personal injury or equipment damage

Failure to assign a unique SY/MAX drop number during configuration can cause severe personal injury or equipment damage.

Failure to follow this precaution can result in death, serious injury, or equipment damage.

Indicators

Illustration

The following figure shows the NOE 351 00 LED indicators.

Description

The following figure shows the NOE 351 00 LED descriptions.

LEDs	Color	Indication when On
Active	Green	Module is communicating with backplane.
Ready	Green	Module has passed internal diagnostic tests.
Run	Green	Flashes during normal operation.
Link	Green	Ethernet connection is made.
Kernel	Amber	On during download.
Fault	Red	An error condition has occurred.
Collision	Red	If steady, an error condition exists. If flashing, packet collisions are occurring on the network during data transmission.
Appl	Amber	A fatal error has occurred.

Specifications

General Specification General Specification

Bus Current required	1 A
Communication Port	Two 10BASE-FL Ethernet network (ST-style) port.
Backplane Compatibility (Requires Quantum CPU)	3, 4, 6, 10, and 16 position backplanes
Compatibility SY/MAX 802.3 Devices and Software	Model 450 Model 650 SFI160 SFW390-VAX Streamline Version 1.3

140 NOE 771 00: TCP/IP 10/100 Ethernet Module

20

Overview		
Purpose	This chapter contains information of the 140 NOE	771 00 Module.
	Note: For detailed information see also <i>Related De</i> the Quantum NOE 771 Ethernet Module	ocuments, p. 14, User Guide for
What's in this	This chapter contains the following topics:	
What's in this Chapter?	This chapter contains the following topics: Topic	Page
		Page 176
	Торіс	

Presentation

Function The Quantum 140 NOE 771 00,10/100 Ethernet module is the latest model in a line of Quantum Ethernet TCP/IP modules designed to make it possible for a Quantum Programmable Logic Controller (PLC) to communicate with devices over an Ethernet network.

Illustration

The following figure shows the front of the NOE 771 00 Ethernet module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 IP Address Writable Area
- 4 Global Address Label
- 5 100 Base Fx MT-RJ Cable Connector
- 6 10/100 Base-T RJ-45 Cable Connector
- 7 Removable door

Front Panel The front panel of the NOE 771 00 module contains identification marking, color code, and LED display. A writable area for an Internet Protocol (IP) address, a global address label, and two Ethernet cable connectors is located behind the removable front panel door.

The following table provides a description of the front panel components which are shown in front view figure.

Component	Description
LED indicator Panel	Indicates the operating status of the module, and the fiber optic and Modbus communications networks it is connected to. (See <i>Indicators</i> , <i>p.</i> 179)
IP Address Writable Area	Provides a writable area to record the module's assigned IP address.
Global Address Label	Indicates the module's global Ethernet MAC address assigned at the factory.
100 BASE-FX Connector	Provides an MT-RJ receptacle for connection to a 100 megabit fiber optic Ethernet cable.
10/100BASE-T Connector	Provides an RJ-45 receptacle for connection to a shielded, twisted pair Ethernet cable.

Indicators

Illustration

The following figure shows the 140 NOE 771 00 LED indicators.

	Active
Ready	Fault
Run	Coll
Link	
Kernel	Аррі

Description

The following table shows the 140 NOE 771 00 LED descriptions.

LEDs	Color	Indication when On
Active	Green	Module is communicating with backplane.
Ready	Green	Module has passed internal diagnostic tests.
Run	Green	Flashes during normal operation.
Link	Green	Ethernet link to hub is ok.
Kernel	Amber	If steady, module is operating in kernel mode. If flashing, module is waiting for download.
Fault	Red	An error has been detected, a download has failed or a reset is in process.
Coll	Red	If steady, cable is not connected. If flashing, Ethernet collisions are occurring.
Appl	Amber	Entry exists in crash log.

Specifications

Specifications Table

Specifications Table

Power Dissipation	3.8 W
Bus Current required	750 mA
Protocol	Ethernet ports transmit and receive Modbus commands encapsulated in TCP/IP protocol
Ports	One 100 BASE-FX Fiber optics (MT-RJ) port. One 10/100BASE-T (RJ-45) port.
Fuse	none
Factory Cast	no
I/O Scanner	yes
140 NOE 771 01: TCP/IP 10/100 Ethernet Module

21

Overview			
Purpose	This chapter contains information of the 140 NOE	771 01 Module.	
What's in this	This chapter contains the following topics:		
Chapter?	Торіс	Page	
	Presentation	182	
	Indicators	183	
	indicatoro	100	

Presentation

Function The Ethernet TCP/IP module for twisted pair cabling provides an interface to Ethernet networks for the Quantum Automation Series system.

Illustration

The following figure shows the Ethernet TCP/IP 140 NOE 771 01 module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Global Address Label
- 4 RJ-45 Connector
- 5 Removable door
- 6 Customer Identification Label, (Fold label and place it inside door)

Indicators

Illustration

The following figure shows the 140 NOE 771 01 LED indicators.

ļ	Active
Ready	Fault
Run	Coll
Link	
Kernel	Appl

Description

The following table shows the 140 NOE 771 01 LED descriptions.

LEDs	Color	Indication when On
Active	Green	Module is communicating with backplane.
Ready	Green	Module has passed internal diagnostic tests.
Run	Green	Flashes during normal operation.
Link	Green	Ethernet link to hub is ok.
Kernel	Amber	If steady, module is operating in kernel mode. If flashing, module is waiting for download.
Fault	Red	An error has been detected, a download has failed or a reset is in process.
Coll	Red	If steady, cable is not connected. If flashing, Ethernet collisions are occurring.
Appl	Amber	Entry exists in crash log.

Specifications

Specifications	
Table	

Specifications Table

Power Dissipation	3.8 W
Bus Current required	750 mA
Protocol	Ethernet ports transmit and receive Modbus commands encapsulated in TCP/IP protocol.
Ports	One 100 BASE-FX Fiber optics (MT-RJ) port. One 10/100BASE-T (RJ-45) port.
Compatibility with Quantum Controllers	All, V2.0 at a minimum
Factory Cast	no
I/O Scanner	yes

140 NOE 771 10: TCP/IP 10/100 FactoryCast Ethernet Module

22

Overview		
Purpose	This chapter contains information of the 140 NOE 771 1	0 Module.
Note: For detailed information see also <i>Related Documents, p. 14</i> , User the Quantum NOE 771 00 Ethernet Module		ents, p. 14, User Guide for
	This chapter contains the following topics:	
		Page
	This chapter contains the following topics:	Page 186
What's in this Chapter?	This chapter contains the following topics: Topic	

Presentation

Function The Quantum 140 NOE 771 10,10/100 FactoryCast Ethernet module is the latest model in a line of Quantum Ethernet TCP/IP modules designed to make it possible for a Quantum Programmable Logic Controller (PLC) to communicate with devices over an Ethernet network.

Illustration

The following figure shows the front of the NOE 771 10 Ethernet module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 IP Address Writable Area
- 4 Global Address Label
- 5 100 Base Fx MT-RJ Cable Connector
- 6 10/100 Base-T RJ-45 Cable Connector
- 7 Removable door

Front Panel The front panel of the NOE 771 10 module contains identification marking, color code, and LED display. A writable area for an Internet Protocol (IP) address, a global address label, and two Ethernet cable connectors is located behind the removable front panel door.

The following table provides a description of the front panel components which are shown in front view figure.

Component	Description
LED indicator Panel	Indicates the operating status of the module, and the fiber optic and Modbus communications networks it is connected to. (See Indicators in this
IP Address Writable Area	Provides a writable area to record the module's assigned IP address.
Global Address Label	Indicates the module's global Ethernet MAC address assigned at the factory.
100 BASE-FX Connector	Provides an MT-RJ receptacle for connection to a 100 Megabit fiber optic Ethernet cable.
10/100BASE-T Connector	Provides an RJ-45 receptacle for connection to a shielded, twisted pair Ethernet cable.

Indicators

Illustration

The following figure shows the NOE 771 10 LED indicators.

Active		
Ready	Fault	
Run	Coll	
Link		
Tx Act		
RxÅ Act		
10MB		
100MB	Fduplex	
Kernel	Appl	

Description

The following table shows the NOE 771 10 LED descriptions.

	1	
LED	Color	Description
Active	Green	Indicates the backplane is configured.
Ready	Green	Indicates module is healthy.
Fault	Red	Flashes when Ethernet collisions occur.
Run	Green	Flashes to indicate diagnostic code, as described in "Run LED Status" (below).
Coll.	Red	Flashes when Ethernet collisions occur.
Link	Green	On when Ethernet link is active.
Tx Act	Green	Flashes to indicate Ethernet transmission.
Rx Act	Green	Flashes to indicate Ethernet reception.
Kernel	Amber	On when in Kernel Mode.
10MB	Green	On when the module is connected to a 10 Megabit network.
100MB	Green	
Fduplex		On when Ethernet is operating in the full duplex mode.
Appl	Green	On when crash log entry exists.

Run LED Status The following table lists each available state of the Run LED indicator, and it provides diagnostic information for that state

Indicator State	Status
On (steady)	Normal operation: The NOE module is ready for network communication.
Number of flashe	s in sequence
one	Not used
two	Not used
three	No Link: the network cable is not connected or is defective
four	Duplicate IP address: The module will stay off-line.
five	No IP address: The module is attempting to obtain an IP address from a BOOTP server.
six	Using default IP address
seven	No valid executive NOE present

Specifications

Specifications Table

Specifications Table

Power Dissipation	3.8 W
Bus Current required	750 mA
Protocol	Ethernet ports transmit and receive Modbus commands encapsulated in TCP/IP protocol
Ports	One 100 BASE-FX Fiber optics (MT-RJ) port. One 10/100BASE-T (RJ-45) port.
Fuse	none
Factory Cast	yes
I/O Scanner	no

140 NOE 771 11: TCP/IP 10/100 FactoryCast Ethernet Module

23

Overview			
Purpose	This chapter contains information of the 140 NC	DE 771 11 Module.	
What's in this	This chapter contains the following topics:		
Chapter?	Торіс	Page	
	Presentation	194	
	Indiantora	105	
	Indicators	195	

Presentation

Function The Ethernet TCP/IP module for twisted pair cabling provides an interface to Ethernet networks for the Quantum Automation Series system.

Illustration

The following figure shows the Ethernet TCP/IP 140 NOE 771 11 module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Global Address Label
- 4 RJ-45 Connector
- 5 Removable door
- 6 Customer Identification Label, (Fold label and place it inside door)

Indicators

Illustration

The following figure shows the 140 NOE 771 11 LED indicators.

Active		
Ready	Fault	
Run	Coll	
Link		
Kernel	Appl	

Description

The following table shows the 140 NOE 771 11 LED descriptions.

LEDs	Color	Indication when On
Active	Green	Module is communicating with backplane.
Ready	Green	Module has passed internal diagnostic tests.
Run	Green	Flashes during normal operation.
Link	Green	Ethernet link to hub is ok.
Kernel	Amber	If steady, module is operating in kernel mode. If flashing, module is waiting for download.
Fault	Red	An error has been detected, a download has failed or a reset is in process.
Coll	Red	If steady, cable is not connected. If flashing, Ethernet collisions are occurring.
Appl	Amber	Entry exists in crash log.

Specifications

Specifications Table	Specifications Table Power Dissipation	3.8 W
	Bus Current required	750 mA
	Protocol	Ethernet ports transmit and receive Modbus commands encapsulated in TCP/IP protocol.
	Ports	One 100 BASE-FX Fiber optics (MT-RJ) port. One 10/100BASE-T (RJ-45) port.
	Compatibility with Quantum Controllers	All, V2.0 at a minimum
	Factory Cast	yes
	I/O Scanner	yes

140 NWM 100 00: TCP/IP 10/100 Ethernet Module

24

Overview		
Purpose	This chapter contains information of the 140 NW	M 100 00 Module.
What's in this	This chapter contains the following topics:	
Chapter?	Торіс	Page
	Presentation	198
	Indicators	199
	Specifications	200

Presentation

Function The Ethernet TCP/IP module for twisted pair cabling provides an interface to Ethernet networks for the Quantum Automation Series system.

Illustration

The following figure shows the Ethernet TCP/IP 140 NWM 100 00 module.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 IP Address Writable Area
- 4 Global Address Label
- 5 100 Base Fx MT-RJ Cable Connector
- 6 10/100 Base-T RJ-45 Cable Connector
- 7 Removable door

Indicators

Illustration

The following figure shows the 140 NWM 100 00 LED indicators.

Active		
Ready	Fault	
Run	Coll	
Link		
Kernel	Appl	

Description

The following table shows the 140 NWM 100 00 LED descriptions.

LEDs	Color	Indication when On
Active	Green	Module is communicating with backplane.
Ready	Green	Module has passed internal diagnostic tests.
Run	Green	Flashes during normal operation.
Link	Green	Ethernet link to hub is ok.
Kernel	Amber	If steady, module is operating in kernel mode. If flashing, module is waiting for download.
Fault	Red	An error has been detected, a download has failed or a reset is in process.
Coll	Red	If steady, cable is not connected. If flashing, Ethernet collisions are occurring.
Appl	Amber	Entry exists in crash log.

Specifications

Specifications Table		
Power Dissipation	4.5 W	
Bus Current required	900 mA	
Protocol	Ethernet ports transmit and receive Modbus commands encapsulated in TCP/IP protocol.	
Ports	One 100 BASE-FX Fiber optics (MT-RJ) port. One 10/100BASE-T (RJ-45) port.	
Compatibility with Quantum Controllers	All, V2.0 at a minimum	
Factory Cast	yes	
I/O Scanner	no	
	Power Dissipation Bus Current required Protocol Ports Compatibility with Quantum Controllers Factory Cast	

Quantum Field Bus Modules

VI

At a Glance

This part provides information on the Quantum Field Bus modules Introduction This part contains the following chapters: What's in this Part? Page Chapter Chapter Name 25 140 EIA 921 00: AS-i Master Communication Module 203 140 CRP 811 00 PROFIBUS DP Master Communication Module 26 213 27 140 NOA 622 00: Interbus Communication Module 223

140 EIA 921 00: AS-i Master Communication Module

Overview		
Purpose	This chapter contains information on the 140 EIA 921 0 communications module.	00 AS-i master
	Note: For detailed information see also <i>Related Docul</i> Quantum AS-i Master Module EIA 921 00	ments, p. 14, Modicon
What's in this	This chapter contains the following topics:	
What's in this Chapter?	This chapter contains the following topics:	Page
		Page 204
	Торіс	
	Topic Presentation	204
	Topic Presentation Indicators	204 206

Presentation

FunctionThe Quantum AS-i Master Module provides AS-i communications between the bus
master module and the sensor/actuator slaves. One master module can control 31
slaves. Multiple master modules can be used in a single control system.
These sensor/actuators can be in the local CPU, an RIO, or a DIO drop adapter.

Note: This module is not available to directly exploit analog slaves (profile 7.1, 7.2, 7.3, 7.4) on an AS-i bus. For detailed information see Modicon Quantum AS-i Master Module EIA 921 00 book *Related Documents*, *p. 14*

Illustration

Front view of the AS-i module with LED Matrix detail and legend numbers:

Legend

The fo	llowing table provides a description of the functions of the equipment LEDs.
ltem	Description
1	Display block comprising 4 status indicator lamps (LEDs) for displaying the module operating modes:
	 B (green, 1 LED): Indicates, when on, data exchange between module and slave. Active (green, 2 LEDs): when on, indicates AS-i module being services by the local CPU, RIO, or DIO drop adapter.
	• F (red, 1 LED): indicates, when on steady, module fault. Flashing shows external I/O fault (could indicate slave with address 0 or an AS-i bus configuration fault.
2	Display block of 32 indicator lamps (0 - 31, green) for diagnostics of the AS-i bus and display of the state of each slave connected to the bus.
3	AS-i (red): ON shows AS-i line not properly powered. Flashing shows automatic addressing enabled and a slave is "prévu" but not connected. OFF shows normal module function.
4	SLV/BUS (green): ON shows the LEDs 0-31 are in BUS display mode. Displays the slaves on the bus.
5	I/O Status (green): On shows the LEDs 0-31 are in SLV display mode. Displays the state of a selected slave.
6	Mode (Push Button): provides local diagnostics of the AS-i bus. Press this button longer than 1 sec. to change the mode. In slave mode use the Address Push Button to scroll among the 32 addresses.
7	Address (Push Button): Pressing this button (in slave mode) scrolls through the slaves. Press longer than 1 sec. to reverse direction of the scroll.
8	AS-i Channel cable connector - connects module to AS-i cable and AS-i power supply.

Indicators

Ilustration

Diagram of the LED display:

Diag	,			
В	Act	ive	F	
0	8	16	24	
1	9	17	25	
2	10	18	26	
3	11	19	27	
4 5	12	20	28	
5	13	21	29	
6	14	22	30	
7	15	23	31	

Description

LED	Color	Description
Active	Green	Bus communication is present.
F	Red	Fault on the AS-i bus. Steady: module fault Flashing: bad bus configuration or slave address
В	Green	Communication exists between master and slaves.
0-31	Green	Slave indicators.

Each indicator lamp 1-31 corresponds to a slave address on the bus.

- On: Slave is present.
- Flashing: Slave is mapped but not detected, or detected but not mapped. It may also be projected and detected, but not activated (bad profile or I/O code).
- Off: Slave is neither mapped nor detected.

Example:

LED Slave I/O Slave mode (SLV) figure: Status

Display of the address of the selected slave:

On: number of the selected slave

A short press on the address button will change the selected slave.

A long press on the address button will determine whether the next slave address will be calculated by an increment or a decrement to the slave Display of the state of the I/O bits of the selected slave:

0-3: displays the state of the input bits
4-7: displays the state of the output bits
On: bit = 1

Off: bit = 0 or not significant

в	Active	F	Meaning	Corrective Action
0	0	0	Module switched off.	Switch the device on.
0	•	0	Operating in Protected Mode (normal). Displaying Outputs.	æ
	•	0	Operating in Protected Mode (normal). Displaying Inputs.	æ
0	•	(1)	Fault on AS-i bus (self- programming possible).	Replace the faulty slave with a new identical slave.
0	•	(X) (2)	Fault on AS-i bus (self- programming not possible).	Connect the terminal.
•	0	8	AS-i power supply fault or no slave on the AS-i bus.	 Check AS-i power supply. Check the continuity of the AS-i bus cable.
\otimes	8	\otimes	Module self-tests in progress.	æ

LED Diagnostics State of Indicator Lamps:

•	Indicator lamp is on.	0	Indicator lamp is off.	\otimes	Indicator lamp is flashing.	x	Indicator lamp is in in indeterminate state.
``	Faulty slave ID No slave ID nur		0				

Wiring Diagram

Specifications

AS-i Specifications Specifications for the 140 EIA 921 00 AS-i module:

Master profile	M2
Bus length	100m max, no repeaters
I/O	124 IN / 124 OUT
# slaves	31 max.
Power supply	30VDC @ 120mA max.
Scan time	156 msec x (n+2) if n < 31
	156 msec x (n+1) if n = 31
Transmission	167 kbits/sec
Polarity reversal	Non-destructive
Bus current required	250mA max.
Power dissipation	2.5W max.
Installation	Local, RIO, DIO

Parameter Configuration

Parameter and Default Values Parameter Configuration Window

1.6 : 140 EIA 921 00	_ 0	Ç
As-i 1 Channel		
		-
OverView Config		
Parameter Name	Value	
MAPPING	WORD (%IW-3X %MW-4X)	
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	13	
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	9	
⊦ TASK	MAST	v
OPERATING MODE	Protected	v
F TIMEOUT STATE	Fallback to 0	Ŧ
AUTOMATIC SLAVE 0 ADRESSING SLAVE 0 ADDRESSING	Disable	v
- · AS-i SLAVE CONFIGURATION		
⊨ ĖSLAVE1		
· · · PROJECT	No	v
I IO PROFILE	0	
ID PROFILE	0	
PARAMETERS	0	
⊢ +- · SLAVE2		
+SLAVE3		
· · · ·		
. ∃ SLAVE31		_
Local 1.6 : 140		Ĩ

Name	Default Value	Options	Description			
MAPPING	WORD (%IW-3x %MW-4X)					
INPUTS STARTING ADDRESS	1	1-65522	Address area where the input information from the AS-i modules is mapped			
INPUTS ENDING ADDRESS	13					
OUTPUTS STARTING ADDRESS	1	1-65526	Address area where the output information to the AS-i modules is mapped			
OUTPUTS ENDING ADDRESS	9					
TASK (Grayed if module in other than local)	MAST	FAST AUX0 AUX1 AUX2 AUX3	Fixed to MAST if module in other than local			
OPERATING MODE	Protected	Configur ation	Configuration Mode: all slaves are activated, i.e. writing on outputs as well as reading from inputs is done directly. Protected Mode: Only those slaves with a configuration on the AS-i bus which matches the reference configuration are activated.			
TIMEOUT STATE	Fallback to 0	HOLD LAST VALUE	Determines the state of the I/O points in case of an communication error			
AUTOMATIC SLAVE 0 ADDRESSING	Disable	Enable	When this function is enabled a faulty slave can be replaced by a slave of the same type without stopping the AS-i bus.			
AS-i SLAVE CONFI	AS-i SLAVE CONFIGURATION					
AS-i SLAVE 1						
PROJECT	No	Yes	When "Yes", the configuration is downloaded to the slave and the slave is added to the list of configured slaves			
IO PROFILE	0		Refer to indications of the slave			
ID PROFILE	0		manufacturer about slave profiles and capabilities.			
PARAMETERS	0					
AS-i SLAVE 2-31	see AS-i SLAVE 1					

140 CRP 811 00 PROFIBUS DP Master Communication Module

Overview		
Purpose	This chapter contains information of the 140 CRP 811 00 Module.	
	Note: For detailed information see also <i>Related Documents, p. 14</i> PROFIBUS DP User Manual	4, Quantum
What's in this	This chapter contains the following topics:	
What's in this Chapter?	This chapter contains the following topics:	Page
		Page 214
	Торіс	-

26

Short Description

Overview The Quantum 140 CRP 811 is a Class 1 PROFIBUS DP Master. It connects a Quantum controller with the slave modules using PROFIBUS DP. The interface to PROFIBUS DP is an RS-485 interface on the bus tap (Transmission Access Point) The bus TAP is also used as potential isolation for the PLC This representation shows you the master module with the PROFIBUS interface.

- 1 LED display field
- 2 Diagnostics interface (RS 232C)
- 3 PCMCIA card (467 NHP 911)
- 4 LED (always off)
- 5 PROFIBUS interface (RS 485)
- 6 LED (always on)
- 7 Bus TAP / Transmission Access Point (490 NAE 911)

Operational Security

Unrecognizable communication break-down between master and slaves.

Do not, in any case, remove the 15 pin PROFIBUS connector on the Bus TAP during operation. This leads to a communication break-down which is not recognized by the PLC.

Failure to follow this precaution will result in death, serious injury, or equipment damage.

RS 232C Interface Assignments

RS 232C interface

RS 232C interface pin-outs

Connector	Signal	Meaning
2	D2 (RxD)	Receive data
3	D1 (TxD)	Send data
5	E2 (GND)	Reference Ground
7	S2 (RTS)	Request transmission (Request to Send
8	M2 (CTS)	Clear to send

RS 485 Interface RS 485 interface Assignments

RS 485 interface pin-outs

Connector	Signal	Meaning
3	RxD-P/	Receive data (RxD) positive,
	TxD-P	Outgoing data (TxD) positive
5	DGND	Reference potential for terminations (supplied by the I/O module)
6	VP	Supply voltage for bus signals, used by nodes with termination resistor (+5V)
8	RxD-N/ TxD-N	Incoming data (RxD-N) negated, Outgoing data (TxD-N) negated
1, 2, 4, 7, 9		Pin not connected
Connector case		Cable shield connection (internally connected)
140 CRP 81100 Display Element Description

LED Display

Acti	ive	
Ready	Fault	
Backpl		
PROFI		
DP S/R		
	Load	

The Backpl, DP S/R, PROFI and Load LEDs are dual-purpose indicators that show:

- 1. usable data and configuration data transfers
- 2. error status

LED Descriptions

LEDs	Color	Status	Description
Active	Green	On	Signals the existence of backplane communication
		Flashing	The Flash RAM loading procedure is active
Ready	Green	On	Module is in operation, firmware running
Fault	Red	On	Indicates and error (see LED Error Codes)
Backpl	Green	Off	Indicates error-free operation
		Flashing with error code	Backplane error
PROFI	Green	Flashing with error code	Erroneous configuration data or PROFIBUS fault
DP S/R	Green	Flashing (quick ³ frequency)	Sending/receiving DP data
		Flashing (medium ² frequency)	Slaves being configured
		Flashing (slow ¹ frequency)	Waiting for configuration data
		Flashing with error code	Erroneous configuration data
Load	Yellow	Flashing	Configuration data load operation is active
		Flashing with error code	Erroneous load operation

Flashing frequency

	Flashing frequency	Turn-on time	Off-time
1	Slow	400 ms	400 ms
2	Medium	200 ms	200 ms
3	Fast	100 ms	100 ms

Note: To reset the error indicator LED(s), restart or hot swap the module.

Note:

- The LED on the PCMCIA card is always off during error-free operation.
- The LED on the bus tap is always on when an error occurs.

140 CRP 811 00 Specification

General Specifications

Equipment class	Master class 1
PNO identification number	5506
Supported user profile	PA
Supported protocol	V0
Device master file	ASA_5506.GSD
Firmware	>= V.4.5 recommended
Power supply via bus	5 VDC, 1.2 A max.
Power dissipation	6.5 W max.
Number CRP per Quantum	2 with CPU 140 x13 0x
(max.)	6 with CPU 140 424 02 or CPU 140 x34 1x (A)

Mechanical

Format	Standard housing (width: 40.34 mm)
	Quantum module equipped with PCMCIA card type III and bus access
Weight	0.68 kg (complete)
Connection area	In central backplane
PCMCIA card	NHP 811
	Firmware V.5.02

Interfaces

Profibus	On bus access as EIA RS-485 interface to 12 Mbit/s max.
	9-pin D-SUB connector
RS-232C	according to DIN 66 020, unisolated
	Baud rate: 19.2 kbit/s (default)
	Max. cable length: 3 m (shielded)

Bus

Bus access procedure	Master/slave	
Transfer procedure	Half duplex	
Bus topology	Linear bus with active bus terminat	ion
Bus cable type	Shielded twisted pair conductors	
	The Profibus standard determines A for 12 Mbit/s) per EN 50 170:	the parameters of the cable (type
	Wave resistance	135 165 Ω @ 3 to 20 MHz
	Capacitance per unit length	< 30 pF/m
	Loop resistance	< 110 Ω/km
	Cable diameter	> 0.64 mm
	Cable cross section	> 0.34 mm ²
Branch lines	none (with the exception of 1 x 3m	to the bus monitor)
Bus termination	According to standard: 390/220/39	$0 \ \Omega$ for 12 Mbit/s cable)
Number of bus nodes	max. 32 without repeater	
	max. 125 with repeater	
Addressing range	1 125	

Bus cable lengths

Max. bus cable lengths	Transfer rates (for 12 Mbit/s cable)
1.2 km (0.91 m)	9.6 kbit/s
1.2 km	19.2 kbit/s
1.2 km	93.75 kbit/s
1.0 km	187.5 kbit/s
0.5 km	500 kbit/s
0.2 km	1.5 Mbit/s
0.1 km	3 Mbit/s
0.1 km	6 Mbit/s
0.1 km	12 Mbit/s

Data format and security

Telegram length	Max. 255 bytes
Data field length	Max. 244 bytes
Data storage	Hamming distance HD = 4

Software

Software	Designation	Valid versions
Configuration	Unity Pro	>= V.1.0
Configurator	SyCon PB/GS	>= V.2.6.00
	TLX L FBC M or TLX L FBC 10 M	
	incl. GSD files	

Hardware

Memory	RAM	256 kbytes for program data + 8 kbytes dual-port memory in the CRP module
		512 kbytes for program data + 16 kbytes dual-port memory in the PCMCIA card
	EEPROM	128 bytes in the PCMCIA card
	Flash ROM	256 kbytes in the CRP module
		256 kbytes in the PCMCIA card
Processor	25 MHz Intel	80386 in the CRP module (controller)
	Siemens 800	C 165 and Siemens ASIC ASPC2 in the PCMCIA card

140 NOA 622 00: Interbus Communication Module

27

Overview		
Purpose	This chapter contains information of the 140 NOA 622 00	Module.
	Note: For detailed information see also <i>Related Docume</i> . NOA 622 00 Interbus Master	nts, p. 14, Quantum 140
	NOA 622 00 Interdus Master	
	This chapter contains the following topics:	
What's in this Chapter?		Page
	This chapter contains the following topics:	Page 224
	This chapter contains the following topics: Topic	

Presentation

FunctionThe 140 NOA 622 00 is the INTERBUS master. This communications module
provides interface to INTERBUS networks for the Modicon Quantum Automation
Series systems. The module's performance is compatible to that of INTERBUS
Generation 4 devices.

Related For detailed information on the installation and use of Quantum INTERBUS modules, see the *Modicon TSX Quantum 140NOA61110 User Manual*, part number 840USE41900; the *Modicon TSX Quantum 140NOA61100 User Manual*, part number 840USE41800; and the *TSX Quantum 140NOA62200 User Manual*, part number 840USE49700.

Illustration

The following figure shows the 140 NOA 622 00 INTERBUS communication module.

Front Panel Connections and Controls

The INTERBUS module is equipped a Reset push button, and with two ports: the INTERBUS port and the serial port. Both ports are 9-pin D connector receptacles (see below for pinouts).

INTERBUS Port Connect the remote bus cable to the receptacle port labeled "INTERBUS remote bus."

The following figure shows the INTERBUS port connection.

The following table provides the pin allocation for the remote bus.

Pin	Signal	Function			
1	DO	Data Out (+)			
2	DI	Data In (+)			
3	GND	Signal ground			
6	DO	Data Out negated (-)			
7	DI	Data In negated (-)			
Black	Black circle = Pin in use. White circle = N/C				

RS-232C Port Use a Modbus data cable, Part# 990 NAA 263 20 (3 m long) to connect to the RS-232C receptacle port.

The following figure shows the RS-232C port connection.

	-					
Pin Signal F		Signal	Function			
	2	D2 (RXD)	Received data			
	3	D1 (TXD)	Transmitted data			
	5	E2 (GND)	Signal Ground			
	7	S2 (RTS)	Request to send			
	8	M2 (CTS)	Clear to send			
	Blac	k circle = Pir	n in use. White circle = N/C			
Reset push button	The Reset push button performs a hardware reset of the module. Such a reset mus be conducted after each new firmware down. Use this button to reset the module without removing it from the backplane.					
Positioning the Module	The INTERBUS module may be mounted on a local backplane. After mounting the module on the local backplane, make sure you load the appropriate firmware components required by the controller to support the module.					

The following table provides the pin allocation for the RS-232C port.

Indicators

Illustration The following figure shows the NOA 622 00 LED indicators.

R	Active	F
IB-S I	Run	
	Sla	ive

Description

The following table shows the NOA 622 00 LED descriptions.

LEDs	Color	Status	Function
R	Green	On	Ready. The switch-on routine was completed succesfully. The firmware is running correctly and the module is ready for operations. RAM and checksum are ok
		Flashing	No firmware, or firmware is being loaded
		Off	Module error
Active	Green	On	Communication with the Quantum CPU is active.
F	Red	On	Fault. An error has occured on the INTERBUS.
IB-S	Green	On	The INTERBUS is functioning normally and carrying data.
Run		Flashing cyclically	The INTERBUS is ready.
		Flashing not cyclically	No INTERBUS configuration (error message).
Slave	Red	On	An Interbus node has indicated a module error.

Specifications

Specifications Table	The following table shows the INTERBUS specifications.			
Table	I/O Type	Quantum		
	INTERBUS	RS-485, isolated (500 VAC test voltage)		
	RS-232C	As per DIN 66 020, non-isolated maximum cable length: 20 m shielded		
	Data Transfer Frequency	0.5 Mbps		
	Connection Styles	INTERBUS port: Sub-D9 socket RS-232C port: Sub-D9 socket (Use cable part # 990 NAA 263 x0		
	Supply Voltage (provided internally over the Quantum-Bus)	5 VDC		
	Bus Current Required	800 mA max. 700 mA typ.		
	Power Dissipation	4 W max. 3.5 W typ. Note: When using fiber optics adapters, the power consumption increases according to the adapter used		
	7 Segment Display	no		
	Physical Location	Local backplane only		

Quantum Special Purpose / Intelligent Modules

VII

At a Glance

Introduction	provides information of the Quantum Special Purpose / Intel	ligent Modules					
What's in this	is This part contains the following chapters:						
Part?	Chapter Chapter Name		Page				
	28	140 HLI 340 00: High Speed Latch and Interrupt Module	231				
	29	140 EHC 202 00: High Speed Counter Module	241				
	30	140 EHC 105 00: High Speed Counter Module	283				

140 HLI 340 00: High Speed Latch and Interrupt Module

28

Overview Purpose The following chapter provides information of the Quantum 140 HLI 340 00 Module. This chapter contains the following topics: What's in this Chapter? Page Topic Presentation 232 Indicators 233 Specifications 234 Wiring Diagram 236 Addressing 238 Parameter Configuration 239

Presentation

 Function
 The High Speed Latch and Interrupt 24 VDC 16x1 Sink / Source input module accepts 24 VDC inputs and is for use with 24 VDC sink/source input devices.

Illustration

The following figure shows the 140 HLI 340 00 module and its components.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Field Wiring Terminal Strip
- 4 Removable Door
- 5 Customer Identification Label (Fold label and place it inside door)

Note: The field wiring terminal strip (Modicon #140 XTS 002 00) must be ordered separately. (The terminal strip includes the removable door and label.)

Indicators

Illustration

The following table shows the LED indicators for the 140 HLI 340 00 module.

A	ctive		
1	9		
2	10		
3	11		
4	12		
5	13		
6	14		
7	15		
8	16		

Descriptions

The following table shows the LED descriptions for the 140 HLI 340 00 module.

LEDs	Color	Indication when ON		
Active	Green	Bus communication is present.		
1 16	6 Green The indicated point or channel is turned ON.			

Note: Due to the speed of the module, LED indications do not represent the state of the input signal, when the input signal is a short duration pulse.

Specifications

General	General Spec	fications	5		
Specifications	Module Type	1	16 IN individually isolated		
	External Powe	۱ ۰	Not required for this module		
	Power Dissipat	ion 2	2.0 W/0.30 W x the number of points ON		
	Bus Current re	quired 4	400 mA		
	I/O map	1	1 input word		
	Fault Detection	1	None		
	L				
Indicators	Indicators				
	LEDs Active	l16 (gre	een)-indicates point status		
Operating Voltage and	Operating Voltage and Input Current				
Input Current	ON (voltage) 153		Vdc		
	OFF (voltage) -3+5		Vdc		
	ON (current) 2.08) mA		
	OFF (current) 00.		mA		
Maximum Input	Absolute Max	mum Inj	put Voltage		
	Continuous 30 Vdc				
Input Protection	Input Protection				
	30 Vdc reverse polarity (diode protection)				
Isolation Isolation					
	Point to Point	500 Vac	c rms for 1 minute		
	Point to Bus	1780 Va	ac rms for 1 minute		
	1	I			

Response	Response)				
	OFF - ON	30 µs (max	30 µs (max)			
	ON - OFF	130 μs (ma	ax)			
Fuses	Fuses					
	Internal None					
	External User discretion					
Module Keying	Field Wiri	ng Terminal	Strip/Module Keying			
	Module Co	oding	ABE			
	Terminal S	Strip Coding	CDF			

Wiring Diagram

Illustration

Note: Either shielded or unshielded signal cables may be used (the user should consider using shielded wire in a noisy environment). Shielded types should have a shield tied to earth ground near the signal ground. N / C = Not Connected.

Addressing Flat Addressing This module requires either 16 contiguous %I references or one %IW word. For a description of how to access the input points, please refer to Discrete I/O Bit Numberina, p. 30. MSB 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Topological The following tables show the topological addresses for the 140HLI34000 module. Addressing Topological addresses in Bit Mapping format: Point I/O Object Comment Input 1 %I[\b.e\]r.m.1 Value Input 2 %II\b.e\]r.m.2 Value ... %I[\b.e\]r.m.15 Value Input 15 Input 16 %I[\b.e\]r.m.16 Value Topological addresses in Word Mapping format: Point I/O Object Comment %IW[\b.e\]r.m.1.1 Value Inputword 1 Used abbreviations: $\mathbf{b} = bus$, $\mathbf{e} = equipment (drop)$, $\mathbf{r} = rack$, $\mathbf{m} = module slot$. I/O Map There is no I/O map status byte associated with this module.

Status Byte

Parameter Configuration

Module Placement The 140 HLI 340 00 High Speed Interrupt module functionality depends on the location it is placed in.

The following list shows the available modes depending on the location:

- Local Rack: High Speed Inputs, Latch Inputs, Interupts
- Expansion Rack: High Speed Inputs, Latch Inputs
- Remote Rack: High Speed Inputs

Parameter and Default values Parameter Configuration Window

1.8 : 140 HLI 340 00		
HS-LTCH/INTPT-16		
L		
OverView Config		
Parameter Name	Value	
MAPPING	BIT (I-1X)	•
INPUTS STARTING ADDRESS	1	
r INPUTS ENDING ADDRESS	16	
L TASK	MAST	•
🔁 CHANNELS		
· ECHANNEL1		
	High Speed Input	▼
I CHANNEL2		
INPUT 2	Latch Rise Edge	•
CHANNEL3		
· · · INPUT 3	Intp. Rise Edge	•
Event3	0	
□ CHANNEL4		
I INPUT 4	High Speed Input	▼
, 🔃 - CHANNEL5	Intp. Rise Edge	
· ⊡CHANNEL6	Intp. Fall Edge	
CHANNEL7	Intp. Both Edges Latch Rise Edge	
	Latch Fall Edge	
E CHANNEL16		•
🛄 Local 📫 1.8 : 140		

Parameter Description

Name	Default Value	Options	Description
Mapping	BIT (%I-1x)	WORD (%IW-3X)	
Inputs Starting Address	1		
Inputs Ending Address	16		
Task	MAST	FAST AUX0 AUX1 AUX2 AUX3	
Channels		•	
Input n	High Speed Input	Intp. Rise Edge Intp. Fall Edge Intp. Both Edges Latch Rise Edge Latch Fall Edge	Interupt modes only available in local rack, latch only in local- and expansion rack
Event n	0	1 - 127	

140 EHC 202 00: High Speed Counter Module

Overview			
Purpose	The following chapter provides information of the Quantum 140 EHC 202 Speed Counter Module.	2 00 High	
What's in this	This chapter contains the following topics:		
Chapter?	Торіс	Page	
	Presentation	242	
	Specifications	244	
	Controlling and Timing	246	
	Functions	248	
	Operating Conditions and Examples	250	
	Addressing	253	
	I/O Map and Commands	254	
	Indicators	270	
	Wiring	271	
	Maintenance	278	
	Parameter Configuration	279	

Presentation	
Function	The 140 EHC 202 00 is a two-channel module best suited for high-speed counting applications up to 500 kHz or for applications that require a quadrature counter interface.
Operating Modes	 The following operating modes are possible: 16-bit counters on one or both channels with two outputs, configurable for incremental or quadrature mode 32-bit counter that uses both channels with two outputs, configurable for incremental or quadrature mode 32-bit counters on one or both channels with no outputs, configurable for incremental or quadrature mode 32-bit counters on one or both channels with no outputs, configurable for incremental or quadrature mode 32-bit counters on one or both channels with no outputs, configurable for incremental or quadrature mode 16-bit counters on one or both channels with no outputs, in rate-sample mode for incremental or quadrature encoders
Outputs	 Two FET output switches exist for each counter. They turn on when the counter reaches programmed setpoint or maximum values in up-count/down-count operations. The outputs can be turned off by changes in counter values, software commands, or a hard wired reset from the field. Each of the outputs can be configured as follows: Output latched on at setpoint Output latched on at a terminal count Output timed on at setpoint, with a time range of 0 16 383 ms (only one of the four possible outputs can be configured for this mode) Output timed on at a terminal count, with a time range of 0 16 383 ms (only one of the four possible outputs can be configured for this mode)
Inputs	Single ended or differential

Illustration

The following figure shows the EHC 102 module and its components.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Fuse Cutouts
- 4 Field Wiring Terminal Strip
- 5 Removable Door
- 6 Customer Identification Label (Fold label and place it inside door)

Note: The field wiring terminal strip (Modicon #140 XTS 002 00) must be ordered separately. (The terminal strip includes the removable door and label.)

Specifications

General Specifications	General Specifications	
	Module Type	High Speed Counter Module
	Number of Channels	2
	External Power	19,2 30 VDC, 24 VDC nominal, 50 mA reqired plus the load current for each output.
	Power Dissipation	4+(0.4 x total modul load current)
	Bus Current required	650 mA
	I/O Map	6 words IN, 6 words OUT
	Isolation (channel to bus)	1780 VAC rms for 1 minute
	Fault detection	Blown fuse detect; loss of 1A, 1B, 2A, 2B output field power
	Fusing	internal: 2.5 (P/N 043503948 or equivalent) external: user discretion
	Backplane Support	Local, remote or distributed

Counter Inputs Cou

Counter inputs

Operating mode	incremental or quadratur
Input voltage	30 V max. continuous
Data formats	16 bit counter: 65.535 Decimal 32 bit counter: 2.147.483.647 Decimal

Discrete Inputs Discrete inputs

Operating mode	incremental or quadratur
Input voltage	30 V max. continuous
Input resistence	10 kohms

Input threshold Input threshold

[single ended mode	VREF supply	On state	Off state
		5 VREF DC	0 2 V	3.5 5.0 V
		12 VREF DC	0 5 V	7 12 V
		24 VREF DC	0 11 V	13 24 V
	differential mode		1.8 VDC mir	limum

Discrete Outputs Discrete outputs

FET Switch ON	supply - 0.4 V
FET Switch OFF	0 VDC (ground reference)
Max. load current (each output)	0,5 A
Output off state Leackage	0,4 A max @ 30 VDC
Output on state voltage drop	0.4 VDC @ 0,5 A
Output Levels	1A, 2A, 1B, 2B
Output Protection	36 V transorb for transient voltage suppression

Controlling and Timing

Controlling the Module	 Hardware inputs from the field can be used to: Increment/decrement the input counters with serial pulses from encoders or other square wave sources. Set direction of count. Reset the outputs. Hardware inputs from the field and software commands are used together to: Enable the count input. Hardware inputs from the field or software commands can be used to: Preset the input counter to zero or maximum count. Software commands can be used to: Configure the counters for pulse (tachometer) or quadrature mode.
	Software commands can be used to:Configure the counters for pulse (tachometer) or quadrature mode.
	 Configure for 16 or 32 bit counters, with or without output assertion. Configure the module to operate in either count or rate-sample mode. Option for outputs to operate or not operate if backplane bus communication is lost (i.e., a fault condition).
	 Option for outputs to switch on when setpoint and/or maximum values are reached.
	Define the setpoint and maximum count values.Define ON time for outputs.Disable outputs.
Timing Diagrams	 Read the input counter totalizing or rate sample values. Retrieve the old (previous) input counter value after the counter has been preset. The following figure shows the EHC20200 timing diagrams.
	Tpw 1

Timing Parameter Table

The following table shows the EHC20200 timing parameters.

Timing I	Timing Parameters		Limits	
	Filter 200 Hz	Filter 200 Hz	No Filter 500 khz	
Tdly1	Count to Output Assertion Delay (MAX)	4.8 ms	40 µs	
Tdly2	Preset/Reset to Output Delay (MAX)	4.8 ms	40 µs	
Tpw1	Count/Reset Pulse Width (MIN)	2.5 ms	1 μs	
Tpw2	Preset Pulse Width (MIN)	2.5 ms	500 μs	
Tst	Enable/Reset/Preset to Count Setup Time (MIN)	2.5 ms	2 µs	
Thold	Enable/Reset to Count Hold Time (MIN)	2.5 ms	2 µs	

Note: The timing parameter limits are measures at the module field terminal connector at the logic low threshold level.

Functions	
COUNT UP	The input counter is reset to zero if the count direction input is UP and a preset (hardware or software) or Load Value command is sent to the module. When counting in the UP direction, the input counter increments to the maximum value, the next input pulse sets the counter to zero and it continues counting back up to the maximum value.
COUNT DOWN	The input counter is set to maximum count if the count direction is down and a preset (hardware or software) or Load Value command is sent to the module. When counting in the DOWN direction, the input counter is decremented from the maximum value to zero. The next pulse resets the input counter to the Maximum value and the increment down starts again.
REMOVE ENABLE	This function disables the input counter, causing it to stop incrementing and hold the count accumulated prior to disabling.
OUTPUTS	 When configured in the count mode, outputs will turn on for defined times when setpoints or maximum values have been reached. No output assertion in two, 32 bit counter mode or rate sample. Programmed ON time for outputs can be set for one channel, one output and one trigger point only. In a running controller, latched outputs are turned off only by a hardware RESET input. If no reset is provided, the outputs latched on will turn off when the controller is stopped.
COUNTER PRESET	This is both a hardware and software function. In the event that both methods are used, the last one executed has precedence. An input counter will be automatically preset whenever a new maximum value or rate sample time is loaded.
COUNTER ENABLE	Both hardware and software enables are required for an input counter to operate. An input counter will be automatically software enabled whenever a new maximum value is loaded or a preset (hardware or software) is sent to it.
RATE SAMPLE VALUE	The rate sample value is held and may be accessed during count operations. The value read is from the last configured and completed rate sample interval.

QUADRATUREWhen the module is configured for quadrature mode operation, the counter requiresMODEencoder pulses on inputs A and B.
In quadrature mode, all input signal edges are counted. A 60 count/revolution
encoder will produce a count of 240 for one shaft rotation.

Operating Conditions and Examples

Rate Sample	 rate sample, the module must be: Configured for pulse or quadrature mode. Configured for Rate Sample mode. Loaded with the Rate Sample time value. Enabled to count, using hardwired input and software control bits. 	
Pulse Count	 unt pulses, the module must be: Configured for pulse or quadrature mode. Configured for counter display: two, 16 bit, one, 32 bit, or two, 32 bit counters. Loaded with the maximum count. Enabled to count, using hardwired input and software control bits. 	
Pulse Count and Turning Outputs On/Off	To count pulses and turn outputs on and off, the module must be:	

Counter RolloverThe following figure is an example of a counter rollover with pulse input, counting up.Examples forPulse Input

Counter RolloverThe following figure is an example of a counter rollover with quadrature input,
counting up.Quadrature InputCounting up.

Count is from 0 -> 10 (Maximum Count)

Output A turns on at Setpoint = 5

Output B turns on after Input Count = Maximum (Terminal) Count = 10 The following figure is an example of a counter rollover with quadrature input, counting down.

Note: Outputs are not latched.
Addressing

Flat Addressing

The 140EHC20200 high speed counter requires six contiguous 16-bit input words (%IW) and six contiguous 16-bit output words (%QW).

Topological Addressing

Point	I/O Object	Comment
Input 1	%IW[\b.e\]r.m.1.1	Data
	•••	
Input 6	%IW[\b.e\]r.m.1.6	Data
Output 1	%QW[\b.e\]r.m.1.1	Data
	•••	
Output 6	%QW[\b.e\]r.m.1.6	Data

where:

- **b** = bus
- **e** = equipment (drop)
- **r** = rack
- **m** = module slot

I/O Map and Commands

Overview	 The 140 EHC 202 00 high speed counter requires six contiguous output (4X) and six contiguous input (3X) registers in the I/O map. The 4X registers perform the same configuration tasks as in the Parameter Configuration. Also, the preset and the enable inputs connected to the field wiring terminal block perform the same functions as those software command control bits. When both methods are used to: Preset a counter – the last preset executed has precedence. Enable/disable a counter – it will only be enabled when both the hardware enable input and software enable control bit are in the enable state. For simple applications, the parameter configuation rather than the I/O mapped registers can be used to configure the module. Parameter configuration is only possible while the PLC is stopped. The selected parameters take effect when the PLC is set to run. For applications that require that module parameters be changed while the system is running, user logic can modify the I/O map-assigned registers to override the previously selected parameters. When using either parameter configuration or I/O map registers, the maximum values specified in the Load Values Command section are the largest values that can be used by the module. The I/O Mapped registers discussed in this section are 4X output registers that: Preset and enable/disable input counters. Load setpoint and maximum values to define output turn on points. Set mode of operation, count, or rate sample. Enable output switches and configures their mode of operation. 3X input registers that: Hold count or rate sample data. Display field power status. Echo 4X command data after the command is executed by the module.
Commands	There are four command that can be performed. Each uses one or more of both types of registers assigned to the module. In addition to the command definition byte, the first 4X register for all commands contain control bits to preset and enable/ disable counters of either channel.

Command 1 -Command 1 uses three 4X registers and six 3X registers (see below).CONFIGURESThe following figure shows the 4X and 3X registers for command 1.

4X		3X
4X+1		3X+1
4X+2		3X+2
L	1	3X+3
		3X+4
		3X+5

This command does the following:

- Sets up the module for pulse or quadrature input.
- Sets up the module for count or rate-sample mode. Counters cannot be separately configured.
- Defines counter register length 16 or 32 bit.
- Enables output assertion including module communication loss state. Output assertion is available if configured for 2, 16 bit, or 1, 32 bit counter. No output assertion is available if 2, 32 bit counters are defined, or in rate-sample mode.
- Defines output assertion point.

Command 2 - There are four formats for this command. It uses up to six 4X registers and six 3X registers.

The following figure shows the format for registers 4X and 3X for command 2.

4X	3X
4X+1	3X+1
4X+2	3X+2
4X+3	3X+3
4X+4	3X+4
4X+5	3X+5

Values loaded may be the following.

- Maximum count and setpoint (i.e., output turn on times).
- Output assertion ON time duration (one input only).
- Rate sample time interval.

Command 3 -READ INPUT COUNTER

4X

4X

Command 3 uses one 4X register and six 3X registers (see below). The following figure shows the 4X and 3X registers for command 3.

Command 4 uses one 4X register and six 3X registers (see below).

The following figure shows the 4X and 3X registers for command 4.

3X
3X+1
3X+2
3X+3
3X+4
3X+5

Command 4 READS RATE SAMPLE or LAST INPUT COUNT BEFORE PRESET

3X
3X+1
3X+2
3X+3
3X+4
3X+5

Note: 4X register formats for the commands are described first. The 3X register contents after issuing Command 1 or 2 are listed after the 4X register description for Command 2, since the responses are the same for both. The 3X responses for Commands 3 and 4 immediately follow those commands.

Note: When Command 0 (4X = 00XX) or any other undefined commands are asserted in the 4X register, the 3X registers will contain the count inputs if in count mode (same as Command 3) and the rate sample values when in rate-sample mode (same as Command 4).

Command Words Described

The following details the command words and responses.

The following figure shows the 4x + 1 output register for command 1 (4X+1).

0/1 = Comm Lost Output Assert OFF/ONWhen = 0, if module communication with the bus is lost, outputs are disabled. When = 1, outputs continue to operate as configured.

The following figure shows the 4x + 2 output register for command 1.

CAUTION
Module disable possibility
The Output ON time specified in the Command 2 registers may be used by only one of the four outputs. When more than one output is set to mode 5 or 6, the module firmware will operate the first one encountered, and disable the other outputs set to modes 5 or 6.
Failure to follow this precaution can result in injury or equipment damage.

Command 2. LOAD VALUES, Output Register Format (4X = 02XX hex) The LOAD VALUES 4X register format depends on the Counter/Rate Sample mode selected in Command 1, Register 4X+1, bits 11 and 12.

Two 16 Bit If configured for two, 16 bit Counters - Output Assert ON, the following information is displayed. The following figures show the counters for registers 4X through 4X to regulate the counters 4X to regula

The following figures show the counters for registers 4X through 4X+5 modules.

-	+^+1															
ſ	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Maximum Count for Counter 1 (max = FFFF hex)

4X+2

1	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Setpoint for Counter 1 (max = FFFF hex)

4X+3

1	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Maximum Count for Counter 2 (max = FFFF hex)

4X+4

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Setpoint for Counter 2 (max = FFFF hex)

4X+5

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Output Assert ON Time (milliseconds, max = 3FFF hex)

Note: Zero set into any 4X register means no change.

 One 32 Bit
 If configured for one, 32 bit Counter - Output Assert ON, the following information is displayed.

 Counter
 Displayed.

The following figure shows the counters for registers 4X through 4X+5, with low and high word.

4X+1 (Low word) 4X+2 (High word)

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Maximum Count for Counter 1 (max = 7FFFFFF hex)

4X+3 (Low word) 4X+4 (High word)

4X+4	(High	wore	d)												
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Setpoint for Counter 1 (max = 7FFFFFF hex)

4X+5

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Output Assert ON Time (milliseconds, max = 3FFF hex)

Note: Zero set into any 4X register pair for 32 bit values or any 4X register means no change.

Two 32 Bit If configured for 2, 32 bit Counters - NO Output Assert, the following Counters information is displayed.

The following figures show the 4X through 4X+4 counters, with low and high word.

4X

4X+1 (Low word 4X+2 (High word

4772	(ingi	word													
16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Maximum Count for Counter 1 (max = 7FFFFFF hex)

4X+3 (Low word)

47	+4	(nigr	wore	u)												
1	6	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Maximum Count for Counter 2 (max = 7FFFFFF hex)

Note: Zero set into any 4X register pair for 32 bit values or any 4X register means no change.

Rate SampleIf configured for Rate Sample Mode, the following information is displayed.ModeThe following figure shows the 4X through 4X+2 counters.

4X+1

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Rate Sample Timer Value, Counter 1 (milliseconds, max = 3FFF hex)

4X+2

16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1

Rate Sample Timer Value, Counter 2 (milliseconds, max = 3FFF hex)

Note: Zero set into any 4X register or any 4X register pair for 32 bit values means no change.

The following figures show the 3X through 3X+5 response formats.

Command 1 and Command 2 Response Formats

3X+5

Command 4		ures show the counters for 3X through 3X+5 for command 4.
Response Format	3X	
	16 15 14 13	<u>3 12 11 10 9 8 7 6 5 4 3 2 1</u>
		Read Rate Sample/
		Last Count Command Byte
	3X+1 and 3X	+2 = Counter 1's 32 bit Rate Sample / Last Count Before Preset. +4 = Counter 2's 32 bit Rate Sample / Last Count Before Preset.
	3X+3 and 3X-	+4 = Counter 2's 32 bit Rate Sample / Last Count Before Preset.
	3X+5	
	16 15 14 13	12 11 10 9 8 7 6 5 4 3 2 1
		1 = Field Power Lost
I/О Мар	The most signifi	cant bit in the I/O Map status byte is used for the 140 EHC 202 00
Status Byte	High Speed Cou	Inter Module.
	The following fig	ure shows the map status byte register.
	8 7 6	5 4 3 2 1
	1 = Intern	al Fuse Blown or External Output Supply Lost
COUNT UP		s for this example are illustrated in the EHC 202 wiring diagrams 1-
Example		allowable Vref value is 30 VDC. Input pulse on-off threshold levels
		DC Vref range are listed in the module specification table. The ntial input is 1.8 V.
	The following us	•
		e module to count up from zero.
		out on for one count at a setpoint value of 50.
	Continues co	
	 Repeats the operation 	zero and turn on a second output for one count.
		ble shows the I/O Map register assignments.
	Input Ref	Output Ref
	300001-300006	400001-400006
		block moves are used to load the operating parameters into the quires pre-defined tables be established. Register values are in
	HEX format.	unes pre-denned labes de established. Register values die 11

Module Configuration Table The following table shows the module configurations.

400101	0140	CONFIGURE command, Disable Counter 2
400102	0000	Pulse input, two 16 bit counters, output assert on Rate Sample OFF, disable outputs at bus communication loss
400103	3100	Output 1A on at setpoint, Output 1B on at maximum count +1 Output 2A and 2B are disabled
400104	0000	
400105	0000	Not used by this command
400106	0000	

Load Values

The following table shows the load values.

400201 02	243	LOAD VALUES command, disable Counter 2, preset and enable Counter 1
400202 00	064	Counter 1 maximum count, count after which Output 1B turns on
400203 00	032	Counter 1 setpoint, count when Output 1A turns on
400204 00	000	Counter 2 maximum count (not used in this example)
400205 00	000	Counter 2 setpoint (not used in this example)
400206 00	000	Output assert time (Not used in this example, one output only, fused

Zeros in the 4X registers also mean no change. Setpoint, maximum count and assert time can only be set to zero using the parameter configuration. When the registers in this example are echoed, zeros will appear but the actual content in the module will be unchanged from previous values. In this example, Counter 2 is disabled and its outputs and timed assert have not been selected. Registers 400204 - 6 have no meaning.

After the module executes the Configure and Load Value's commands, they are echoed in the I/O mapped 3X registers except for the command register's low 8 bits. Command execution time by the module is 1 ms. Actual time between the 4X register block move and the echo response display in the 3X registers is dependent on User Logic and hardware configuration. An echo of the Configuration command registers would appear as follows:

Response Table The following table shows the echo response for the configuration command.

Register	Value
300001	0100
300002	0000
300003	3100
300004	0000
300005	0000
300006	0000

Read Input Counter Table

The following table shows the read input registers.

40301	0300	READ INPUT COUNTER command
40302	0000	
40303	0000	
40304	0000	Not used by this command
40305	0000	
40306	0000	

When this command is issued, the content of the input pulse counter is retrieved. The 3X register content would appear as follows:

Response table The following table shows the content of the registers.

Register	Value	Description
300001	0300	Command echo
300002	XXXX	Current input count
300003	0000	Zeros as the count will not exceed 100. For counts above 65,536, this register is a multiplier. As an example: 30002 has a value of 324 and 30003 a value of 3.The total count is $(65,536 \times 3) + 324 = 196,932$
300004	0000	Counter 2 is disabled
300005	0000	Counter 2 is disabled
300006	0X00	X is the field power indicator

Reset of Latched If register 400103 in the Module Configuration Table has been set to 4200, Output Outputs 1A would have been latched on at setpoint and Output 1B latched on at maximum count. Wiring Diagrams 2 and 4 show how the encoder Z outputs could be used to reset the latched outputs. The minimum pulse width to reset outputs is 1 ms.

COUNT DOWN Example	except th Inputs ill change i shift cha The Use module i zero cou The exar value, tu the input operation	ne Inpu ustrated s requin nge be r Logic s differd nt has mple co rn on a c counten n is the	DOWN example uses the same wiring as in the count up example, ut 1B+ level is changed to common (connected to Vref-) for Pulse ed in Wiring Diagrams 1 and 2. For Quadrature Inputs, no wiring uired as the count direction is decoded internally by sensing the phase etween inputs A and B. c is the same as for the count example. The actual operation of the erent in that the output associated with maximum count turns on after s been reached. configures the module to decrement the input count from the maximum an output at a setpoint value of 50, and turn on a second output after ter had reached zero and rolled over to the maximum count; the en repeated. The initial loading of the maximum count will not cause output to turn on.				
RATE SAMPLE Example for Either Pulse or Quadrature Input	Field connections for this example are illustrated in the Wiring Diagrams1-4. The connections on terminals 15 and 16 are optional, depending on the use requirements of the outputs. Terminals 39 and 40 always require the 24 VDC supply connections. The maximum allowable Vref value is 30 VDC. Input pulse on-off threshold levels for the 5 24 VDC Vref range are listed in the module specification table. The minimum differential input is 1.8 V. As with count examples, tables are set up and transferred to the module using block moves. The User Logic for Rate Sample is the same as that used for Pulse Input Count Up/Down.						
Module	The follo	wing ta	ble shows the module configurations.				
Configuration Table	400101	0140	CONFIGURE command, Disable Counter 2				
	400102	1000	Pulse input, Rate Sample ON, disable outputs at bus communication loss (Note: Bits 11 and 12 were not required.)				
	400103	0000					
	400104	0000	Not used by this command				
	400105	0000					
	400106	0000					

Load Values Table	The following table shows the load values.			
	400201	0243	LOAD VALUES command, disable Counter 2, preset and enable Counter 1	
	400202	XXXX	Counter 1 Rate Sample Time in milliseconds	
	400203	0000	Counter 2 Rate Sample Time in milliseconds (Not used in this example)	
	400204	0000	Not used by this command	
	400205	0000		
	400206	0000		

Note: Command echoes are the same as described in the Pulse Input Count Up/ Down examples.

Read Rate

The following table shows a read rate sample.

Sample Table

400301	0400	READ INPUT COUNTER command
400302	0000	
400303	0000	
400304	0000	Not used by this command
400305	0000	-
400306	0000	

When this command is issued, the input pulse counter content is retrieved. The 3X register content is the count over the time period selected in the Load Values registers 4X + 1 and 4X + 2. The 3X response to the Read-Rate Sample command in register 40301 is as follows.

Response Table The following table shows the responses to the read rate sample command.

Register	Value	Description
300001	0400	Command echo
300002	XXXX	Counter 1 Input rate low word
300003	XXXX	Counter 1 Input rate high word: this register is a multiplier. As an example: 30002 has a value of 324 and 30003 a value of 3 .The total count is ($65,536 \times 3$) + $324 = 196,932$
300004	0000	Counter 2 is disabled
300005	0000	Counter 2 is disabled
300006	0X00	X is the field power indicator

Rate SampleIf a version 02.00 or higher module replaces a module which has a version numberMode Cautionless than 02.00 in a Rate Sample mode application, extra software configuration
may be required.

Rate Sample mode is set using Command 1, CONFIGURE (01XX), 4X+1 register, bit 13 = 1 (see the description of Command 1 in this section).

Note: To verify the version of the module, reference the indicated label found on the top front of the module.

The following figure shows the module's label.

In modules prior to V02.00, when Rate Sample mode was selected, input was always handled as if it were generated by a pulse encoder. For example, 60 count per revolution encoders, either pulse or quadrature types, would give a rate of 60 for a one-second revolution when the interval was set for one second.

Users are cautioned that beginning with V2.00 modules, if a quadrature type encoder is used to provide count input and Pulse/Quadrature Input Counter 1 and 2, bits 9 or 10, are set to 1, the module will detect all edges. The result is four times the rate sample value as would be accumulated with an equivalent pulse encoder input. In the example in the above paragraph, the rate sample would be equal to 240.

Encoder type selection is set using Command 1, CONFIGURE (01XX), 4X+1 register, bits 9 or 10 (see the description of Command 1 in this section). If the Encoder Type select bits are set to 0, either type of encoder will produce the Rate Sample, as did versions of the module that were lower than V02.00.

Indicators

Illustration

The following figure shows the LED indicators for the EHC20200 High Speed Counter module.

	Active	F	
ln 1		In 2	
En 1		En 2	
Pre C	C1	Pre C2	
Res	01	Res 02	
Out 1	А	Out 2A	
Out 1	В	Out 2B	

Descriptions The following table shows the LED descriptions for the EHC 202 00 high speed counter.

LEDs	Color	Indication when On
Active	Green	Bus communication is present
F	Red	Indicates internal fuse blown or loss of output power supply
ln 1	Green	Counter 1 input
En 1	Green	Enable Counter 1 input
Pre C1	Green	Preset Counter 1 input
Res 01	Green	Reset Output 1A, 1B
ln 2	Green	Counter 2 input
En 2	Green	Enable Counter 2 input
Pre C2	Green	Preset Counter 2 input
Res 02	Green	Reset Output 2A, 2B
Out 1A	Green	Counter 1A output
Out 1B	Green	Counter 1B output
Out 2A	Green	Counter 2A output
Out 2B	Green	Counter 2B output

Wiring

Signal overview

w The following table shows the signal descriptions of the wiring diagram.

Parameter	Description/Usage
INPUT A	Single ended or differential count input or Phase A for quadrature mode.
	Single ended (active low only) uses Input 1A+ and/or Input 2A+.
	Input 1A- and/or Input 2A- are not connected. Differential input encoders use both plus (+) and minus (-) inputs.
INPUT B	Direction level for non-quadrature devices or Phase B for quadrature mode.
	Direction inputs for non-quadrature input devices are: Count Up = High Voltage Level; Count Down = Low Voltage Level
	For single ended Input devices, only Input 1B+ and/or Input 2B+ are used. Input 1B- and 2B- are not connected. Differential input encoders use both plus (+) and minus (-) inputs.
PRESET C	Presets count register(s). Low level causes preset.
	For single ended Preset inputs, only Preset 1C+ and/or Preset 2B+ are used. Preset 1C- and 2C- are not connected. Differential input encoders use both plus (+) and minus (-) inputs.
OUTPUT	Low level resets Outputs 1A, 1B, 2A, and 2B to OFF if latched.
RESET 0	For single ended Reset inputs, only Reset 10+ and/or Reset 20+ are used. Reset 10- and 20- are not connected. Differential input encoders use both plus (+) and minus (-) inputs.
ENABLE	Low level enables counting.
	For single ended Enable inputs, only Enable 1+ and/or Enable 2+ are used. Enable 1- and 2- are not connected. Differential input encoders use both plus (+) and minus (-) inputs.
VREF	Field input device power source connection. Also, connect any unused (+) inputs to the group VREF terminal or the one in use (30 Vdc max).
	Group A = Terminal 17
	Group B = Terminal 37
	Group A and Group B VREF supplies can be different voltage levels.
LO FILTER SEL	Enables the internal 200 Hz filter when connected to Return Terminal 39.
OUTPUT	Internal FET switches connect the output supply wired to Terminal 40 to the Output 1A, 1B, 2A, 2B terminals at output assert times.
POWER SUPPLY	External 24 Vdc power supply (+) connection. Required for the module interface and for Outputs 1A, 1B, 2A, and 2B.
RETURN	External 24 Vdc power supply (-) connection. Required for the module interface and for Outputs 1A, 1B, 2A, and 2B.

Miscellaneous Information	Field wire to Counter 2 inputs and outputs, when configured for one, 32 bit counter with output assertion. The unused Counter 1 must have its + (plus) inputs connected to VREF+.
	Input counts and parameters are not maintained in the module at power down. The rewrite of parameters at power up must be done with either user logic or Modzoom-type preset panel selections.
	The 200 Hz filter for each counter can be activated by strapping the Lo Filter Sel terminal to the Return terminal. This function provides noise immunity for low frequency applications and can also be used for relay debounce.

Note: Terminal description:

- Terminal 1 Pulse encoder input (sinking device)
- Terminal 3 Input 1B count UP direction
- Terminal 5 Unused hardwire Preset tied high
- Terminal 7 Output Reset tied high, not required; outputs not used
- Terminal 11 Hardware enabled
- Terminal 15, 16 Outputs 1A and 1B operate relays
- Terminal 17 Required VRef+ connection
- Terminals 21, 23, 25, 27, 31, 37 Counter 2 not used. These terminals must be connected VRef+
- Terminal 39 Required Output Supply Return
- Terminal 40 Required Output Supply
- N/C not connected

Wiring Diagram 2 Wiring diagram showing differential pulse input, counting up and constant enable.

Note: Zero pulse resets Output 1A and 1B

Wiring Diagram 3 Wiring diagram showing quadratur input with constant enable.

Note: Zero pulse resets Output 1A and 1B

Maintenance

Fuses	Fuses				
	Internal	2.5 (P/N 043503948 or equivalent)			
	External	user discretion			

Fuse Location Figure The following figure shows the locations of the fuses for the EHC 202 module...

Note: Turn off power to the module and remove the field wiring terminal strip to gain access to the fuse.

Parameter Configuration

Overview

This section provides information on the parameters, accessible in the Parameter Configuration Screen.

Parameter Configuration Default Screen

This diagram shows the Parameter Configuration default screen

HI SPEED CNT 2CH			
OverView Config			
Parameter Name	Value		
MAPPING	WORD		
INPUTS STARTING ADDRESS	1		
	6		
OUTPUTS STARTING ADDRESS	1		
OUTPUTS ENDING ADDRESS	6		
I TASK	MAST	•	
NUMBER OF COUNTERS	2x16 WITH OUTPUT	•	
COUNTER 1 MODE CONTROL	INCREMENTAL	•	
COUNTER 2 MODE CONTROL	INCREMENTAL	•	
OUTPUT COIL 1A MODE	TIMED TERMINAL		
OUTPUT COIL 1B MODE	SET POINT		
r OUTPUT COIL 2A MODE	SET POINT	•	
OUTPUT COIL 2B MODE	SET POINT	•	
r COUNTER 1 MAX COUNT	0		
COUNTER 1 SET POINT	0		
COUNTER 2 MAX COUNT	0		
COUNTER 2 SET POINT	0		
TIME OUTPUT ON	0		
		\	
Local 1.2 : 140			

Addressing and Task

This table shows the parameters for addressing and task with its values

Name	Value	Options
MAPPING	WORD	-
INPUTS STARTING ADDRESS	1	0-100000
INPUTS ENDING ADDRESS	6	-
OUTPUTS STARTING ADDRESS	1	0-100000
OUTPUTS ENDING ADDRESS	6	-
TASK	MAST	FAST
(Grayed if module in other than local)		AUX0
		AUX1
		AUX2
		AUX3

NUMBER OF
COUNTERSThis part of the parameter configuration screen depends on the choice made in the
field: NUMBER OF COUNTERS. Therefore you find four tables accordingly.
This table shows the parameters configuration screen for the entry: 2x16
WITH OUTPUT

Name	Value	Options
NUMBER OF COUNTERS	2x16 WITH OUTPUT	1x32 WITH OUTPUT 1x32 NO OUTPUT RATE SAMPLE MODE
COUNTER 1 MODE CONTROL	QUADRATURE	INCREMENTAL
COUNTER 2 MODE CONTROL	QUADRATURE	INCREMENTAL
OUTPUT COIL 1A MODE	SET POINT	TIMED SET POINT LATCHED SET POINT TERMINAL COUNT LATCHED TERMINAL TIMED TERMINAL
OUTPUT COIL 1B MODE		
OUTPUT COIL 2A MODE		
OUTPUT COIL 2B MODE		
COUNTER 1 MAX COUNT	0	0-65535
COUNTER 1 SET POINT		
COUNTER 2 MAX COUNT		
COUNTER 2 SET POINT		
TIME OUTPUT ON		

This table shows the parameters configuration screen for the entry: **1x32 WITH OUTPUT**

Name	Value	Options
NUMBER OF COUNTERS	1x32 WITH OUTPUT	2x16 WITH OUTPUT 1x32 NO OUTPUT RATE SAMPLE MODE
COUNTER 2 MODE CONTROL	QUADRATURE	INCREMENTAL
OUTPUT COIL 2A MODE	SET POINT	TIMED SET POINT
OUTPUT COIL 2B MODE		LATCHED SET POINT TERMINAL COUNT LATCHED TERMINAL TIMED TERMINAL
COUNTER 2 MAX COUNT: LOW WORD	0	0-65535
COUNTER 2 MAX COUNT: HIGH WORD		
COUNTER 2 SET POINT: LOW WORD		
COUNTER 2 SET POINT: HIGH WORD		
TIME OUTPUT ON		

This table shows the parameters configuration screen for the entry: **1x32 NO OUTPUT**

Name	Value	Options
NUMBER OF COUNTERS	1x32 NO OUTPUT	2x16 WITH OUTPUT 1x32 WITH OUTPUT RATE SAMPLE MODE
COUNTER 1 MODE CONTROL	QUADRATURE	INCREMENTAL
COUNTER 2 MODE CONTROL	QUADRATURE	INCREMENTAL
COUNTER 1 SET POINT: LOW WORD	0	0-65535
COUNTER 1 SET POINT: HIGH WORD		
COUNTER 2 SET POINT: LOW WORD		
COUNTER 2 SET POINT: HIGH WORD		

This table shows the parameters configuration screen for the entry: **RATE SAMPLE MODE**

Name	Value	Options
NUMBER OF COUNTERS	RATE SAMPLE MODE	2x16 WITH OUTPUT 1x32 WITH OUTPUT 1x32 NO OUTPUT
COUNTER 1 MODE CONTROL	QUADRATURE	INCREMENTAL
COUNTER 2 MODE CONTROL	QUADRATURE	INCREMENTAL
COUNTER 1 RATE SAMPLER TIMER	0	0-65535
COUNTER 2 RATE SAMPLER TIMER		

140 EHC 105 00: High Speed Counter Module

Overview		
Purpose	The following chapter provides information of the Qua Speed Counter Module.	antum 140 EHC 105 00 High
What's in this Chapter?	This chapter contains the following topics:	Page
	Presentation	284
	Specifications	286
	Indicators	288
	Wiring	289
	Parameter Configuration	292

Presentation

Function

The 140 EHC 105 00 is a highspeed counter module. It utilizes five equivalent, independently usable counters with the following functions:

- 32bit event counter with 6 modes
 - Event counter with parallel set point output activation
 - Event counter with parallel set point output activation and fast Final Set Point
 - · Event counter with serial set point activation
 - · Event counter with serial set point activation and fast final set point
 - · Event counter with timed set point output activation
 - Event counter with latched set point output avtivation
- 32bit differential counter (2 configurable counter pairs) with 2 modes
 - Differential counter with serial set point output activation
 - Differential counter with parallel set point output activation
- 16bit repetitive counter
- 32bit (velocity counter, rate counter) with 2 modes
 - Rate counter with 100ms gate time
 - Rate counter with 1s gate time

Illustration

The following figure shows the EHC 105 module and its components.

- 1 Model Number, Module Description, Color Code
- 2 LED Display
- 3 Fuse Cutouts
- 4 Field Wiring Terminal Strip
- 5 Removable Door
- 6 Customer Identification Label (Fold label and place it inside door)

Note: The field wiring terminal strip (Modicon #140 XTS 002 00) must be ordered separately. (The terminal strip includes the removable door and label.)

Specifications

General Specifications	General Specifications		
	Module Type	High Speed Counter Module	
	Number of Channels	5	
	External Power	19,2 30 VDC, 24 VDC nominal, 60 mA required plus the load current for each output.	
	Power Dissipation	Maximum 6W	
	Bus Current required	250 mA	
	I/O Map	12 words IN, 13 words OUT	
	Isolation (channel to bus)	500 VAC rms for 1 minute	
	Fault detection	Loss of output field power, output short circuit	
	Fusing	internal: none external: user discretion	
	Backplane Support	Local, remote or distributed	
	Compatibility	All Quantum Controllers, V2.0 at a minimum	

Note: The 5Cx and 24Cx counter inputs may be used alternatively.

Counter Inputs

Counter Inputs

Counter Inputs	5V	24V
Count frequency	100 kHz	20 kHz
Count to output assertion delay (Max)	3ms	
Input voltage	OFF state (VDC) :1,0 +1,15 ON state (VDC): 3,1 5,5	OFF state (VDC): -3,0 +5,0 ON state (VDC):15,0 30,0
Input current	8 mA for 3,1VDC	7 mA for 24 VDC
Duty cycle	1:1	
Data formats	16 bit counter: 65.535 Decimal 32 bit counter: 2.147.483.647 Decimal	
Delay time (typical)	t = 0,002 ms	
Operating mode	discrete incremental counter	

Discrete Inputs Discrete Inputs

Discrete Inputs	24V
VREF supply +24VDC	Off State (VDC): -3,0 +5,0
	ON State (VDC):15,0 30,0
Delay time (typical)	
IN1 IN6	ton = 2,2 ms, toff = 1 ms
IN7, IN8	ton = 0,006 ms, toff = 0,3 ms
Input current (typical)	5 mA

Input Threshold Input Threshold

single ended mode	5 VREF DC	-
	12 VREF DC	-
	24 VREF DC	-3 5 V on state/15 30 off state
differential mode		-

Discrete Outputs Discrete Outputs

Output Voltage	24V
FET Switch ON	20 30 VDC
FET Switch OFF	0 VDC (ground reference)
Max load current (each output)	0,5 A
Output off state Leackage	0,1 mA max @ 30 VDC
Output on state voltage drop	1,5 VDC @ 0,5 A

Indicators

Illustration

The following table shows the LED indicators for the EHC 105 module.

Description

The following table shows the LED descriptions for the EHC 105 module

LED	Color	Description
R	green	Module is READY (firmware initialization has been completed).
Р	green	POWER - the US24 working voltage is present.
F	red	 The red F-LED (F = fault) lights on the following faults: 24 VDC supply voltage (US24) not present Short circuit on one of the OUTn outputs Pulse monitoring has tripped (indicate bit = 1 and ERRx = 1) Counter overflow (indicate bit = 0 and ERRx = 1)
ACTIVE	green	The PLC communication becomes active.
1 to 8	green	Displays the signal states of the discrete inputs IN1IN8.
1 to 8	green	Displays the signal states of the discrete outputs OUT1OUT8.
C1 to C5	green	Lights with the clock frequency applied to clock-inputs 5C1 to 5C5 respectively 24C1 to 24C5.

Wiring

Discrete Inputs and Outputs

Wiring diagram for discrete inputs and outputs.

Parameter Configuration

Overview

This section provides information on the parameters, accessible in the Parameter Configuration Screen.

Parameter Configuration Default Screen This diagram shows the Parameter Configuration default screen

HI SPEED CNT 5CH		
OverView Config		
Parameter Name	Value	
MAPPING	WORD (%IW-3X %MW-4X)	
INPUTS STARTING ADDRESS	1	
INPUTS ENDING ADDRESS	12	
OUTPUTS STARTING ADDRESS	1	
OUTPUTS ENDING ADDRESS	13	
TASK	MAST	-
COUNTERS		
- COUNT INPUT SIGNAL ON NEGATIVE TRANSITION	No	•
USE INPUT 1 FOR COUNTER ENABLE	No	•
WATCHDOG TIMER (0.1S)	0	
F OUTPUT SET POINT 1	0	
OUTPUT SET POINT 2	0	
' INPUTS_FOR_COUNTER_START/RESTART		
LOGIC FUNCTION TO START/RESTART	OR	-
I INPUT A	1	-
INPUT B	-	•
INPUT C	-	•
└		
r INPUT D	6	•
' INPUT E	-	•
¦INPUT F	-	•
· 🔄 OUTPUTS		
SETPOINT 1 LINKED TO OUTPUT	-	•
I INVERT OUTPUT	No	•
- SETPOINT 2 LINKED TO OUTPUT	6	•
INVERT OUTPUT	No	•
FINAL SET POINT LINKED TO OUTPUT	1	•
INVERT OUTPUT	No	•
- TIMED FINAL SET POINT LINKED TO OUTPUT	-	•
INVERT OUTPUT	No	•
PULSE WIDTH (X 0.02S)	0	
COUNTER_2		
COUNTER_3		
<u></u> COUNTER_4		
. El COUNTER_5		
Local 1.2 : 140		

Addressing and Task	This table shows the parameters for addressing and task with its values				
	Name	Default Value	Options		
	MAPPING	WORD (%IW-	-		

Name	Default Value	Options
MAPPING	WORD (%IW-	-
	3X%MW-4x)	
INPUTS STARTING ADDRESS	1	-
INPUTS ENDING ADDRESS	12	-
OUTPUTS STARTING ADDRESS	1	-
OUTPUTS ENDING ADDRESS	13	-
TASK	MAST	FAST
(Grayed if module in other than local)		AUX0
		AUX1
		AUX2
		AUX3

Counters This table shows the parameters for the counters with its values

Name			Options
COUNTER_1			
COUNT INPUT SIGNAL ON NEGATIVE TRANSITION		No	Yes
USE INPUT 1 FOR COUNTER ENABLE		No	Yes
WATCHDOG TIMER (0.1s)		0	0-255
OUTPUT SET POINT 1		0	0-65535
OUTPUT SET POINT 2		0	0-65535
INPUTS_COUNTER_START/RESTART	LOGIC FUNCTION TO START/ RESTART COUNTER	OR	AND
	INPUT A	1	- 1-8
	INPUT B	-	- 1-8
	INPUT C	-	- 1-8
FREEZE_COUNTER_REGISTERS	INPUT D	6	- 1-8
	INPUT E	-	1-8
	INPUT F	-	1-8
OUTPUTS	SETPOINT 1 LINKED TO OUTPUT	-	1-8
	INVERT OUTPUT	No	Yes
	SETPOINT 2 LINKED TO OUTPUT	6	- 1-8
	INVERT OUTPUT	No	Yes
	FINAL SETPOINT LINKED TO OUTPUT	1	- 1-8
	INVERT OUTPUT	No	Yes
	TIMED FINAL SETPOINT LINKED TO OUTPUT	-	1-8
	INVERT OUTPUT	No	Yes
	• PULSE WIDTH (x 0.02s)		0-255
COUNTER_2 COUNTER_3 COUNTER_4 COUNTER_5	·	See CO	UNTER_1

Index

Numerics

140 CRA 211 10, 73 140 CBA 211 20, 85 140 CRA 212 10, 79 140 CRA 212 20, 91 140 CRA 931 00. 53 140 CRA 932 00, 59 140 CRP 811 00, 213 140 CRP 931 00. 37 140 CRP 932 00. 45 140 EHC 105 00. 283 140 EHC 202 00, 241 140 EIA 921 00, 203 140 HLI 340 00. 231 140 NOA 622 00, 223 140 NOE 211 x0, 151 140 NOE 251 x0. 157 140 NOE 311 00, 163 140 NOE 351 00, 169 140 NOE 771 00, 175 140 NOE 771 01, 181 140 NOE 771 10, 185 140 NOE 771 11, 193 140 NOM 211 00. 99 140 NOM 212 00, 111 140 NOM 252 00, 121 140 NWM 100 00, 145, 197 Important note, 146 140EHC20200 Addressing, 253 140HLI34000 Addressing, 238

Α

Addressing 140EHC20200, 253 140HLI34000, 238 Example, 29 Flat, 24 IODDT, 26 Module Status Data, 31 Topological, 25 Addressing Modes, 23

С

Configuration, 211 CRA21120 description, 86 illustration, 86 CRA21210 description, 80 illustration, 80 CRA21X10 description, 74 illustration, 74 CRP 811 Hardware, Display Element Description, 217 Hardware, Short Description, 214 Hardware, Specification, 219

D

DIO Drop Modules, 67 DIO modules CRA21X10 or CRA21X20, 74 Discrete I/O Bit Numbering, 30 Drop Modules (DIO), 67

Ε

Ethernet Modules, 141 Ethernet Module Overview, 145

F

FactoryCast Module Overview, 145 Field Bus Modules, 201

I

IODDT T_ANA_BI_VWE, 28 T_ANA_IN_VE, 27 T_ANA_IN_VWE, 27 T_CNT_105, 28

Μ

Modbus Plus Network Option Module, 97

Ν

NOE 771 00 Key Features, 145 NOE 771 01 Key Features, 145 NOE 771 10 Key Features, 145 NOE 771 11 Key Features, 145 NOE 771 x0 Front panel components, 146 NOM, 97 NWM 100 00 Front panel components, 146 Key Features, 145

Ρ

Parameter Configuration, 211

Q

Quantum Software Configuration, 19 Quantum Addressing Modes, 23

R

RIO Modules, 35

S

Special Purpose / Intelligent Modules, 229