
MMA955xL Intelligent, Motion-Sensing
Platform Software Reference Manual

Devices Supported:
MMA9550L

MMA9551L

MMA9553L

Document Number: MMA955XLSWRM
Rev. 0, 04/2012



MMA955XLSWRM
Rev. 0
04/2012

Information in this document is provided solely to enable system and software 

implementers to use Freescale products. There are no express or implied copyright 

licenses granted hereunder to design or fabricate any integrated circuits based on the 

information in this document.

Freescale reserves the right to make changes without further notice to any products 

herein. Freescale makes no warranty, representation, or guarantee regarding the 

suitability of its products for any particular purpose, nor does Freescale assume any 

liability arising out of the application or use of any product or circuit, and specifically 

disclaims any and all liability, including without limitation consequential or incidental 

damages. “Typical” parameters that may be provided in Freescale data sheets and/or 

specifications can and do vary in different applications, and actual performance may 

vary over time. All operating parameters, including “typicals,” must be validated for each 

customer application by customer’s technical experts. Freescale does not convey any 

license under its patent rights nor the rights of others. Freescale sells products pursuant 

to standard terms and conditions of sale, which can be found at the following address: 

http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm.

Freescale, the Freescale logo, CodeWarrior, ColdFire, Energy Efficient Solutions logo, 

are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. ColdFire+ 

and Xtrinsic are trademarks of Freescale Semiconductor, Inc.

All other product or service names are the property of their respective owners.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

How to Reach Us:
Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

http://www.reg.net/v2/webservices/Freescale/Docs/TermsandConditions.htm


MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 3

Contents

Chapter 1 About This Document
1.1 Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

1.1.1 Purpose  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.1.2 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9

1.2 Terms and acronyms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
1.3 Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.4 Register figure conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
1.5 References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13

Chapter 2 Introduction
2.1 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
2.2 MMA955xL package: axis orientation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
2.3 Data flow  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
2.4 User applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18

2.4.1 Application table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
2.4.2 RAM allocation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20

2.5 System initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
2.5.1 Application identifiers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22

2.6 Registers summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23

Chapter 3 Version Application
3.1 Reading the version information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .32

Chapter 4 Scheduler Application
4.1 Scheduler operational overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
4.2 Scheduler application elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34

4.2.1 Priority levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35
4.2.2 Activity levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36

4.3 Interrupts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .37
4.4 Scheduler preemption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

4.4.1 High-priority task suspending low-priority task . . . . . . . . . . . . . . . . . . . . . . . . . .39
4.4.2 Low-priority task becoming ready during high-priority task  . . . . . . . . . . . . . . . .40

4.5 Error conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41
4.6 Scheduler configuration registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42

4.6.1 request_to_start register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43
4.6.2 request_to_start register configuration example . . . . . . . . . . . . . . . . . . . . . . . . .44
4.6.3 Interrupt assignment registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45

4.6.3.1 Interrupt_App_IDs register configuration example . . . . . . . . . . . . . . . . .49
4.6.4 Scheduler parameters register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50

4.7 Scheduler status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53
4.7.1 Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

4 Freescale Semiconductor, Inc.

Chapter 5 Communication Interface
5.1 Overview of Communication Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55
5.2 Mailbox interface  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55

5.2.1 Mailbox timing diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56
5.3 Mailbox usage  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56

5.3.1 Mailbox command format for a write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57
5.3.2 Application IDs, names, and descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
5.3.3 Mailbox command format for a read . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60

Chapter 6 GPIO Application
6.1 Overview of GPIO application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63
6.2 GPIO configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

6.2.1 GPIO register tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64
6.2.2 GPIO polarity configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66
6.2.3 GPIO application bit descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Chapter 7 Mailbox Application
7.1 Overview of Mailbox application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
7.2 Mailbox configuration registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67

7.2.1 MBOX bit descriptions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72
7.2.2 Configuring XYZ data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73

7.3 Mailbox status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .74
7.4 Reading aggregated data (Legacy mode - Quick read) . . . . . . . . . . . . . . . . . . . . . . . . . .74

Chapter 8 Analog Front End Application
8.1 Overview of Analog Front End application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77

8.1.1 Sample rate  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
8.1.2 Offset and scale correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
8.1.3 Anti-aliasing filter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
8.1.4 Raw data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
8.1.5 Normalization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .79
8.1.6 Down-sampling and stage-1, anti-aliasing filter  . . . . . . . . . . . . . . . . . . . . . . . . .80
8.1.7 Absolute value  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80
8.1.8 Configurable, low-pass and high-pass filters  . . . . . . . . . . . . . . . . . . . . . . . . . . .80

8.2 AFE configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
8.2.1 afe_csr  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
8.2.2 user_offset [XYZ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .84
8.2.3 config_k  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85
8.2.4 sfd_rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .86

8.3 AFE status registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
8.3.1 output[FRONTEND_Stage_0][XYZ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87
8.3.2 output[FRONTEND_Stage_1][XYZ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .88
8.3.3 output[FRONTEND_Stage_0_ABS][XYZ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
8.3.4 output[FRONTEND_Stage_0_GM][XYZ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 5

8.3.5 output[FRONTEND_Stage_0_LPF][XYZ] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91
8.3.6 output[FRONTEND_Stage_0_HPF][XYZ]  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .92
8.3.7 output_temp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
8.3.8 output_EIC  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
8.3.9 frame_counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .94

Chapter 9 Portrait/Landscape Application
9.1 Overview of Portrait/Landscape application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
9.2 Portrait/Landscape configuration registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

9.2.1 threshold_tilt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
9.2.2 landscape_angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98
9.2.3 portrait_angle  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
9.2.4 debounce_count . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .99
9.2.5 hysteresis_LO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
9.2.6 hysteresis_BAFRO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .100
9.2.7 cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101

9.3 Portrait/Landscape status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
9.3.1 PL_Out  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
9.3.2 Programming example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .103

Chapter 10 High-g/Low-g Application
10.1 Overview of High-g/Low-g application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .105
10.2 High-g/Low-g configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108

10.2.1 low_g_thresh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
10.2.2 low_g_cnt_min  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .108
10.2.3 low_g_cfg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109
10.2.4 high_g_thresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
10.2.5 high_g_cnt_min  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
10.2.6 high_g_cfg  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113
10.2.7 lhg_event_mask  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114

10.3 High-g/Low-g status register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
10.3.1 lhg_out  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115

Chapter 11 Tap Detection Application
11.1 Overview of Tap Detection application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .117
11.2 Tap-Detection configuration registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120

11.2.1 tap_thresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
11.2.2 tap_on_min . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .120
11.2.3 tap_on_max  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
11.2.4 double_tap_min_time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .121
11.2.5 tap_K_HP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
11.2.6 tap_K_LP  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .122
11.2.7 tap_axis_enable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123
11.2.8 tap_events_mask  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

6 Freescale Semiconductor, Inc.

11.3 Tap-Detection status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
11.3.1 TAP_Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .124
11.3.2 DTAP_Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .125

Chapter 12 Tilt Application
12.1 Overview of Tilt application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .127
12.2 Tilt configuration registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129

12.2.1 tilt_K_LP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .129
12.2.2 tilt_cfg1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .130
12.2.3 tilt_event_mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .131

12.3 Tilt status registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
12.3.1 tilt_delta_xz_ang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .132
12.3.2 tilt_delta_yz_ang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
12.3.3 tilt_delta_xy_ang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .133
12.3.4 tilt_xz_yz_quad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .134

Chapter 13 Frame Counter Application
13.1 Overview of Frame Counter application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
13.2 Frame-Counter configuration registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135
13.3 Frame-Counter status register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

13.3.1 frame_cnt  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .135

Chapter 14 Data FIFO Application
14.1 Overview of Data FIFO application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
14.2 Modes of operation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137

14.2.1 Stop-on-overflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .137
14.2.2 Free-run  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138

14.3 Reading process  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .138
14.4 Data FIFO block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

14.4.1 Entries format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
14.5 Data FIFO configuration registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145

14.5.1 FIFO configuration byte  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
14.5.2 FIFO size word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
14.5.3 FIFO APP_ID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146
14.5.4 Watermark  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .147

14.6 Data FIFO status registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
14.6.1 Records number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .148
14.6.2 Entry size  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149
14.6.3 FIFO_Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .149

Chapter 15 Event Queue Application
15.1 Overview of Event Queue application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .151

15.1.1 Modes of operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152
15.1.2 Reading process   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .152



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 7

15.1.3 Event Queue block diagram  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .155
15.2 Event Queue configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156

15.2.1 queue_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
15.2.2 queue_wmrk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .156
15.2.3 queue_timeout  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .157

15.3 Event Queue status registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
15.3.1 records_number  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
15.3.2 entry_size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158
15.3.3 queue_status  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .159

Chapter 16 Status Register Application
16.1 Overview of Status Register application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .161
16.2 Status Register configuration registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162

16.2.1 APP_ID SR_00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
16.2.2 Output_Bit_ID SR_00 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
16.2.3 APP_ID SR_01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .162
16.2.4 Output_Bit_ID SR_01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
16.2.5 APP_ID SR_02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
16.2.6 Output_Bit_ID SR_02 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
16.2.7 APP_ID SR_03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .163
16.2.8 Output_Bit_ID SR_03 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
16.2.9 APP_ID SR_04 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
16.2.10Output_Bit_ID SR_04  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
16.2.11APP_ID SR_05  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .164
16.2.12Output_Bit_ID SR_05  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
16.2.13APP_ID SR_06  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
16.2.14Output_Bit_ID SR_06  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
16.2.15APP_ID SR_07  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .165
16.2.16Output_Bit_ID SR_07  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .166

16.3 Status Register default configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .167

Chapter 17 Sleep/Wake Application
17.1 Overview of Sleep/Wake application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169

17.1.1 Run mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .169
17.1.2 Doze mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170
17.1.3 Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .170

17.2 Sleep/Wake configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
17.2.1 sensitivity_thresh  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
17.2.2 doze_time_thresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .172
17.2.3 long_time_off  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .173
17.2.4 short_time_off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .174
17.2.5 cfg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .175

17.3 Sleep/Wake status registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176
17.3.1 scheduler_mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .176



Section Number Title Page

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

8 Freescale Semiconductor, Inc.

Chapter 18 Reset/Suspend/Clear Control Application
18.1 Overview of Reset/Suspend/Clear Control application  . . . . . . . . . . . . . . . . . . . . . . . . .177

18.1.1 Reset  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
18.1.2 Suspend  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .177
18.1.3 Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178

18.2 Configuration registers for Reset/Suspend/Clear Control applications  . . . . . . . . . . . . .178
18.2.1 Reset configuration register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .178
18.2.2 Suspend configuration register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .181

18.3 Clear configuration register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .184
18.4 Reset/Suspend/Clear status registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
18.5 Reboot to ROM CI from flash code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187
18.6 Reboot to flash code from ROM CI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .187

Chapter 19 MBOX Configuration Application
19.1 Overview of MBOX Configuration application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .189
19.2 Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
19.3 Legacy mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .190
19.4 Configuring mailbox operational mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
19.5 MBOX Configuration memory map and register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191

19.5.1 MBOX Configuration memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .191
19.5.2 MBOX Configuration register  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

Chapter 20 Memory Allocation for User Applications
20.1 Overview of memory allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
20.2 API functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195

Chapter 21 User Applications
21.1 Application binding  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .197
21.2 API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .199
21.3 Additional resources  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 9

Chapter 1 About This Document

1.1 Overview

1.1.1 Purpose

This software reference manual describes the features, architecture, and programming model of the 
MMA9550L, MMA9551L, and MMA9553L intelligent, motion-sensing platforms. Additional 
information for the MMA9553L platform is available in the MMA9553L Intelligent Pedometer Platform 
Software Reference Manual (MMA9553LSWRM). (See item 1 in “References” on page 13.)

The MMA9559L platform is a member of the MMA955xL family that has the same hardware as the other 
platforms, but significantly different firmware. For that reason, the MMA9559L platform is described in 
a separate software reference manual (MMA9559LSWRM). (See item 1 in “References” on page 13.)

1.1.2 Audience

This document is primarily for system architects and software application developers who are using or 
considering use of the MMA9550L, MMA9551L, and MMA9553L platforms in a system.

1.2 Terms and acronyms
AFE Analog Front End

APP_ID Application Identifier

API Application Programming Interface

CC Command Complete

CI Command Interpreter

CMD Command

COCO Conversion Complete

DFC Data Format Code

DTAP Double tap (n.)

FIFO First In First Out, a data structure

GPIO General-Purpose Input/Output, a microcontroller pin that can be programmed by 
software

HG High g

I2C Inter-integrated circuit

LG Low g



About This Document

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

10 Freescale Semiconductor, Inc.

LL Landscape left

LR Landscape right

MAC Multiply-accumulate unit

MBOX Mailbox

MCU Microcontroller

MEMS Microelectromechanical systems

MISO SPI Master In, Slave Out

MOSI SPI Master Out, Slave In

MTIMOV Module Timer Overflow Module

PD Portrait Down

PDB Program Delay Block

PL Portrait/Landscape

Platform A grouping of hardware and software, working together

PU Portrait Up

SFD Start Frame Digital

SPI Serial, peripheral interface

TPM Timer Program Module



About This Document

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 11

1.3 Conventions
This document uses the following notational conventions:

cleared/set When a bit takes the value 0, it is said to be cleared; when it takes a value of 1, it 
is said to be set.

MNEMONICS In text, instruction mnemonics are shown in uppercase. 

mnemonics In code and tables, instruction mnemonics are shown in lowercase. 

italics Italics indicate variable command parameters.
Book titles also are italicized.

0x0 The 0x prefix to denote a hexadecimal number

0b The b suffix to denote a binary number

REG[FIELD] Abbreviations for registers are shown in uppercase. Specific bits, fields or ranges 
appear in brackets. For example, RAMBAR[BA] identifies the base address field 
in the RAM base-address register.

nibble A four-bit data unit

byte An eight-bit data unit

word A 16-bit data unit

longword A 32-bit data unit

x In some contexts, such as signal encodings, x indicates a “do not care.”

n Used to express an undefined numerical value.

~ NOT logical operator

& AND logical operator

| OR logical operator

|| Field concatenation operator

OVERBAR Indicates that a signal is active-low.



About This Document

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

12 Freescale Semiconductor, Inc.

1.4 Register figure conventions
This document uses the following conventions for the register reset values:

— The bit is undefined at reset.

u The bit is unaffected by reset.

[signal_name] Reset value is determined by the polarity of the indicated signal.

The following register fields are used:

Read 0 Indicates a reserved bit field in a memory-mapped register. These bits are always read as 0.

Write

Read 1 Indicates a reserved bit field in a memory-mapped register. These bits are always read as 1.

Write

Read
FIELDNAME

Indicates a read/write bit.

Write

Read FIELDNAME Indicates a read-only bit field in a memory-mapped register.

Write

Read Indicates a write-only bit field in a memory-mapped register.

Write FIELDNAME

Read FIELDNAME Write 1 to clear: indicates that writing a 1 to this bit field clears it.

Write w1c

Read 0 Indicates a self-clearing bit.

Write FIELDNAME



About This Document

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 13

1.5 References
1. MMA955xL Intelligent Motion-Sensing Platform documentation: “MMA955xL: Product 

Documentation Page”

2. IEEE Standard Test Access Port and Boundary-Scan Architecture, IEEE Std. 1149.1™-2001 
(R2008)

3. The I2C-Bus Specification Version 2.1, January 2000, Philips Semiconductors

4. I2C-Bus Specification and User Manual, NXP Semiconductors Document UM10204, Rev. 03 - 
19 June 2007

5. ColdFire Family Programmer’s Reference Manual, Freescale Semiconductor, CFPRM Rev. 3, 
03/2005

6. Wikipedia entry for “Semaphore”: http://en.wikipedia.org/wiki/Semaphore_(programming) 

7. ITU-T V.41 Recommendation: Code-Independent Error Control System, available at 
http://www.itu.int/publications/index.html.

8. ITU-T X.25 Recommendation: Interface between Data Terminal Equipment (DTE) and Data 
Circuit-terminating Equipment (DCE) for terminals operating in the packet mode and connected 
to public data networks by dedicated circuit, available at 
http://www.itu.int/publications/index.html.

9. ITU-T T.30 Recommendation: Procedures for document facsimile transmission in the general 
switched telephone network, available at http://www.itu.int/publications/index.html.

http://en.wikipedia.org/wiki/Semaphore_(programming)
http://www.itu.int/publications/index.html
http://www.itu.int/publications/index.html
http://www.itu.int/publications/index.html
http://www.itu.int/publications/index.html
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA9550L&nodeId=011269C10C&fpsp=1&tab=Documentation_Tab
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA9550L&nodeId=011269C10C&fpsp=1&tab=Documentation_Tab


About This Document

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

14 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 15

Chapter 2 Introduction
The MMA955xL low-g, 3-axis accelerometer is a member of Freescale’s Xtrinsic family of intelligent 
sensor platforms.

The device incorporates dedicated accelerometer MEMS transducers, signal-conditioning, data 
conversion, a 32-bit programmable microcontroller, and flexible communications and I/O pins.

This unique blend of capabilities transforms the MMA955xL platform into an intelligent, high-precision, 
motion-sensing platform able to manage multiple sensor inputs and make the system-level decisions 
required for sophisticated applications such as gesture recognition and pedometer tasks.

The MMA955xL platform can be further programmed and configured with the CodeWarrior Development 
Studio software. C, C++, and ColdFire assembly programming languages are supported. (For more 
information, see “References” on page 13.) This Eclipse-based, integrated-design environment enables 
users to quickly and easily shape and implement custom algorithms and features to exactly match their 
project needs.

The MMA955xL platform can be used in conjunction with a host processor in any system that requires 
data acquisition and processing in response to motion of the entire system. The host processor runs the host 
application and the MMA955xL platform runs the embedded application that provides a data interface to 
acceleration data from the linear acceleration sensor.

2.1 Functional overview
A host processor communicates with the MMA955xL devices via I2C or SPI serial buses. A program on 
the host sends the commands via either the I2C or SPI serial bus and the MMA955xL platform’s Command 
Interpreter (CI) interprets and responds to those commands.

The platform has two CIs—one ROM-based and one flash-based. The most-recent reset determines which 
memory space the device is in. If the device is in ROM memory space, it runs the ROM CI. If the device 
is in flash memory and runs the flash CI.

The ROM-based CI commands are simpler, low-level commands. The flash-based CI commands are 
higher-level, higher-function commands.

The ROM-CI commands are described in the MMA955xL Intelligent, Motion-Sensing Platform Hardware 
Reference Manual (MMA955xLRM). The FLASH-CI commands are described in this document.

The MMA955xL device can also be configured and programmed to act as a bus master. The device talks 
to secondary sensors—such as pressure sensors, magnetometers, or gyroscopes—through its master serial 
communication interface. The MMA955xL platform's master serial port can operate in I2C or SPI mode. 
By offloading the secondary sensors’ algorithms to the MMA955xL's embedded microcontroller, users 
can develop unique features for their products.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

16 Freescale Semiconductor, Inc.

The MMA955xL platform has Freescale-provided, pre-programmed applications and infrastructure 
modules such as a scheduler, filters, command interpreter, basic accelerometer, gesture recognition, and 
pedometery.

In addition, users can write their own custom applications adding to the software applications and 
infrastructure of the MMA955xL platform.

This document describes the functionality, configuration, and outputs of all the Freescale-provided 
applications.

2.2 MMA955xL package: axis orientation
The package orientation and measured values are shown in the following figure, PU = Portrait Up, PD = 
Portrait Down, LL = Landscape Left, LR = Landscape Right, Back = Back facing up, Front = Front facing 
up.

In the Portrait Up orientation, both X and Z axes read 0g and the Y axis reads the equivalent of -1g.

Figure 2-1. Device orientation

Top view
Portrait up

Earth gravity

Pin 1

Xout @ 0g
Yout @ -1g
Zout @ 0g

Xout @ 1g
Yout @ 0g
Zout @ 0g

Xout @ 0g
Yout @ 1g
Zout @ 0g

Xout @ -1g
Yout @ 0g
Zout @ 0g

Landscape left

Portrait down

Landscape right
Side view

Front

Xout @ 0g
Yout @ 0g
Zout @ 1g

Back

Xout @ 0g
Yout @ 0g
Zout @ -1g



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 17

2.3 Data flow
The MMA955xL platform can act as a standalone, local processing unit or, more commonly, be connected 
to a host processor. The host processor configures and reads data from the MMA955xL platform.

The basic building blocks of the MMA955xL platforms are the MEMS sensor accelerometer, the 
analog-to-digital converters, signal conditioning, and an embedded ColdFire V1 microprocessor. The 
physical data path is relatively simple, as shown in the following figure.

Figure 2-2. Platform data flow

Internal applications, that process the sensor data, run on the embedded ColdFire processor.

Platform

Scheduler 
application
APP_ID=0x01
Always

Reset/Susp/Clr 
application
APP_ID=0x17
488 Hz

GPIO
application
APP_ID=0x03
488 Hz

Sleep/Wake 
application
APP_ID=0x12
488 Hz

MBOX config
application
APP_ID=0x18
488 Hz

Status Register
application
APP_ID=0x11
488 Hz

Analog Front End
configuration
APP_ID = 0x06
488 Hz

Frame internal counter 
= Sample rate

3-axis MEMS

Data FIFO
application
APP_ID=0x0F
488 Hz

Event Queue
application
APP_ID=0x10
488 Hz

Mailbox
application
APP_ID=0x04
488 Hz

Communications
application
APP_ID=0x02
488 Hz

Host
processor

Tap
application
APP_ID=0x0A
488 Hz

High-g/Low-g
application
APP_ID=0x08/0x09
244 Hz

Tilt
application
APP_ID=0x0B
122 Hz

Portrait /Landscape
application
APP_ID=0x07
122 Hz

User 
application 1
APP_ID = 0x??
1~400 HzUser 

application 2
APP_ID = 0x??
1~400 HzUser 

application 3
APP_ID = 0x1F
1~400 Hz

Note: Arrows indicate the directions of the data flows.

Embedded 
ColdFire 
processor



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

18 Freescale Semiconductor, Inc.

The functional flow of the MMA955xL platform includes the following:

1. A mechanical acceleration event causes a small mass to move inside the MEMS sensor.

2. The motion or offset is converted to a small voltage and amplified.

3. The analog-to-digital converter samples the voltage and converts it to a digital number.

Those digital numbers are available for the embedded ColdFire processor to read and process.

4. Freescale-provided applications, running on the ColdFire processor, process the data and provide 
high-level analysis such as angle, position, and gesture recognition.

5. If desired, user applications implement extended or new functions and features.

6. If desired and programmed, the MMA955xL platform interrupts the host processor on specific 
conditions.

7. If desired and programmed, the host processor polls or responds to the MMA955xL- interrupts and 
collects the processed information from the MMA955xL platform.

2.4 User applications
User applications are a collection of functions grouped with a header structure. Such applications consist 
of:

• A header structure for the scheduler to find the application and callback functions

• A set of callback functions for the scheduler to control the user application

• The application code

The header structure is called an application table. This table is a structure that contains the table identifier, 
the application identifier (APP_ID), the number of configuration and output registers, and pointers to the 
initialization, reset, clear, and application functions.

To enable the scheduler to find the applications at boot time, they must be linked and located at specific 
addresses in the flash memory. Multiple applications can be handled by the scheduler, provided there is 
sufficient space available in memory.

Users can implement up to three application tables. Each application table can contain many applications. 
For more details, see “User Applications” on page 197.

The following image shows the flash memory map with the Freescale and user memory sections:



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 19

Figure 2-3. Flash memory map

2.4.1 Application table

The MMA955xL platform supports user applications that are contained in up to three additional 
application tables. These additional applications must follow these rules:

• Valid application tables are located at the 512-byte, flash-memory page boundaries

The 32-bit addresses for functions and data within this map can refer to any absolute, 
flash-memory, or RAM location. (For more information, see “RAM allocation”.)

• The embedded ColdFire processor’s register A5 cannot be read nor modified

• Each user application must have a unique application identifier (APP_ID).

The user must not use any of the Freescale application identifiers. (For a list of these identifiers, 
see Table 2-1 on page 22.)

• For all static RAM variables, the memory-allocation API function should be used. All RAM 
allocation must be included in the initialization callback function.

The initialization callback function provides a way to execute some initialization code before any 
application is run. (For further information, see “Memory Allocation for User Applications” on 
page 193.)

app_table_t app_table = {
TABLE_IDENTIFIER, // table identifier = 0x9559CODE
1, //num_of_applications

{
{(cbFunction)(&initCbFunction), // init function address
 (cbFunction)(&resetCbFunction), // reset function address
 (cbFunction)(&clearCbFunction), // clear function address
 (cbFunction) &UserApplication, // main function address
 (uint8_t)(CUST_FBID), // application id 
 (7), // number of parameter bytes
 (1) // number of output bytes

 }
} , // call back block for 

application 2,if used....
};

void initCbFucntion(void )

{
/* Request memory RAM for User Application variables*/
/* Set priority and activity of UserApplication1*/
/* Initilize User Application variables*/

}

void  resetCbFunction(void ){}

void clearCbFunction(void){}

void  UserApplication1(void )

{

}

N*512

Primary Freescale firmware

First user image

Second user image

Third user image



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

20 Freescale Semiconductor, Inc.

These rules enable the scheduler to determine the locations of user applications at runtime, execute those 
applications in the appropriate priority, and access the applications’ configuration and output/status 
registers. From the host interface, Freescale applications and user applications are configured and read in 
the same way. Both are normal applications and are identified by their APP_ID.

The definition and structure of an application table is shown in the following example.

Example 2-1. Application table 

typedef struct app_table_tag {
uint32 table_identifier; // magic code to identify app_table = 0x9550C0DE
uint32 num_of_apps; // number of entries in this app_table
Data_APMap_t apmap[]; // actual app_table table

} app_table_t;

typedef struct Data_APMap_tag
{

void (*initCbFn)(void); // init callback function pointer
void (*rstCbFn)(void); // reset callback function pointer
void (*clrCbFn)(void); // clear callback function pointer
void (*applicationMain)(void); // Application function pointer
uint8_t APP_ID;
uint8_t parameter_bytes; // Number of bytes in the configuration parameters
uint8_t output_bytes;

}Data_APMap_t;

For information on creating your own custom application to run on the MMA955xL platform, see “User 
Applications” on page 197 and Building Custom Applications on MMA9550L/MMA9551L (AN4129). (To 
access the application note, see “References” on page 13.)

2.4.2 RAM allocation

An application may reserve a portion of the system RAM by calling the system API function 
RequestDataRam function, which has the following format:

uint8_t * RequestDataRam(uint16 sz, uint8 u8app_id);

The required parameters are the size of the RAM to be reserved and the identifier of the application 
requesting RAM.

The function returns the address of the allocated variable.

Allocated memory is local to the application that requested the memory. Memory allocation can only be 
done once and should be done in the initialization function. There is no mechanism to free or return 
memory.

If there is not enough memory available, a NULL pointer is returned, indicating an error.

For more information on memory allocation, see “Memory Allocation for User Applications” on page 193.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 21

2.5 System initialization
Two types of resets are recognized in the system: power on reset (POR) and pin reset (reset).

After a POR, the MMA955xL platform’s bootloader reads device-specific trim codes (that were 
programmed at the factory) and other parameters from the flash memory to configure the hardware. The 
bootloader also copies some of this information into working RAM for use by the platform software. It is 
important to power cycle the device after programming the flash, so that the new values programmed into 
the flash are copied to the working RAM area.

After a pin reset, the microprocessor boots—depending on some system parameters—and starts the 
scheduler. The scheduler checks every 512-byte, flash-memory page boundary for valid application tables 
that are identified, at the start of the page, by the four-byte keyword 0x9550C0DE.

The scheduler-initialization sequence then builds a list of applications from the application tables to 
quickly access the application properties during normal, runtime execution. Any applications set to the 
same priority are executed in the order defined by the application table. Application tables at lower 
addresses are processed before those at higher addresses.

It is up to the user to select App_IDs that do not conflict with Freescale applications or other user-provided 
applications. If an APP_ID is reassigned, unpredictable system behavior may result.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

22 Freescale Semiconductor, Inc.

2.5.1 Application identifiers

Freescale provides a suite of preloaded applications that vary with each device member of the MMA955xL 
family. The following table shows those applications, their APP_IDs, and whether they can access the 
configuration and status registers. The table also shows whether the application is preloaded for a device 
and the application’s run rate, if it is supported by the device.

There are 14 unused APP_IDs available for future Freescale applications as well as user applications

Table 2-1. Platform applications

Freescale application APP_ID

X = Access to these registers X = Preloaded
Run Rate

(Hz)Configuration 
registers

Status registers MMA9550L MMA9551L

Version 0x00 — X X X Always 
runs

Scheduler 0x01 X X X X Always 
runs

Communications 0x02 — — X X 488

GPIO 0x03 X — X X 488

Mailbox 0x04 X — X X 488

Reserved (Do not use) 0x05 — — — — —

Analog Front End 0x06 X X X X 488

Portrait Landscape 0x07 X X — X 122

High-g Detection 0x08 X X — X 244

Low-g Detection 0x09 X X — X 244

Tap Detection 0x0A X X — X 488

Tilt 0x0B X X — X 122

(Available for user applications) APP_ID = 0x0C and 0x0D

Frame Counter 0x0E X X X X 488

Data FIFO 0x0F X X X X 488

Event Queue 0x10 X X X X 488

Status Register 0x11 X X X X 488

Sleep Wake 0x12 X X X X 488

(Available for user applications) APP_ID = 0x13, 0x14, 0x15, 0x16

Reset Suspend Clear 0x17 X — X X 488

MBOX Config 0x18 X — X X 488

(Available for user applications) APP_ID = 0x 19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 23

2.6 Registers summary
A summary of all the configuration and status/output registers, for the Freescale-provided applications, is 
given in the following table. For details on the specific register and status information, see the individual 
applications’ chapters.

The Configuration registers hold parameters to configure and set up the applications. The Status registers 
show the output bits or data from an application.

Table 2-2. Freescale-provided applications’ registers (1)

Scheduler application (APP_ID = 0x01)

Configuration

Address Width (bits) Register Name

0x00-0x03 32 Request_to_start

0x04-0x07 32 SFD Interrupt_AppIDs

0x08-0x0B 32 AFE COCO Interrupt_AppIDs

0x0C-0x0F 32 IRQ Interrupt_AppIDs

0x10-0x13 32 TPMOV Interrupt_AppIDs

0x14-0x17 32 TPMCH0 Interrupt_AppIDs

0x18-0x1B 32 TPMCH1 Interrupt_AppIDs

0x1C-0x1F 32 MTIMOV Interrupt_AppIDs

0x20-0x23 32 PDBA Interrupt_AppIDs

0x24-0x27 32 PDBB Interrupt_AppIDs

0x28-0x2B 32 Master I2C Interrupt_AppIDs

0x2C 8 sched_parms_APP_ID_0x00

0x2D - 0x4A 8 each sched_parms_APP_ID_0x01 through 0x1E((1))

0x4B 8 sched_parms_APP_ID_0x1F

Status
Address Width (bits) Register Name

0x00-0x03 32 Timeout Status

Communications application (APP_ID = 0x02)

Configuration
Address Width (bits) Register Name

0x00 8 Config

Status
Address Width (bits) Register Name

(None)

1. Shaded rows indicate the compressed registers.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

24 Freescale Semiconductor, Inc.

GPIO application (APP_ID = 0x03)

Configuration

Address Width (bits) Register Name

0x00 8 APP_ID for GPIO6

0x01 8 SR Bit for GPIO6

0x02 8 APP_ID for GPIO7

0x03 8 SR Bit for GPIO7

0x04 8 APP_ID for GPIO8

0x05 8 SR Bit for GPIO8

0x06 8 APP_ID for GPIO9

0x07 8 SR Bit for GPIO9

0x08-0x09 16 GPIO_pol; Polarity control bits

Status
Address Width (bits) Register Name

(None)

Table 2-2. Freescale-provided applications’ registers (continued)(1)

1. Shaded rows indicate the compressed registers.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 25

Mailbox application (APP_ID = 0x04)

Configuration

Address Width (bits) Register Name

0x00,0x01 16 Mailbox 4, APP_ID and Byte ID

0x02,0x03 16 Mailbox 5, APP_ID and Byte ID

0x04,0x05 16 Mailbox 6, APP_ID and Byte ID

0x06,0x07 16 Mailbox 7, APP_ID and Byte ID

0x08,0x09 16 Mailbox 8, APP_ID and Byte ID

0x0A,0x0B 16 Mailbox 9, APP_ID and Byte ID

0x0C,0x0D 16 Mailbox 10, APP_ID and Byte ID

0x0E,0x0F 16 Mailbox 11, APP_ID and Byte ID

0x10,0x11 16 Mailbox 12, APP_ID and Byte ID

0x12,0x13 16 Mailbox 13, APP_ID and Byte ID

0x14,0x15 16 Mailbox 14, APP_ID and Byte ID

0x16,0x17 16 Mailbox 15, APP_ID and Byte ID

0x18,0x19 16 Mailbox 16, APP_ID and Byte ID

0x1A,0x1B 16 Mailbox 17, APP_ID and Byte ID

0x1C,0x1D 16 Mailbox 18, APP_ID and Byte ID

0x1E,0x1F 16 Mailbox 19, APP_ID and Byte ID

0x20,0x21 16 Mailbox 20, APP_ID and Byte ID

0x22,0x23 16 Mailbox 21, APP_ID and Byte ID

0x24,0x25 16 Mailbox 22, APP_ID and Byte ID

0x26,0x27 16 Mailbox 23, APP_ID and Byte ID

0x28,0x29 16 Mailbox 24, APP_ID and Byte ID

0x2A,0x2B 16 Mailbox 25, APP_ID and Byte ID

0x2C,0x2D 16 Mailbox 26, APP_ID and Byte ID

0x2E,0x2F 16 Mailbox 27, APP_ID and Byte ID

0x30,0x31 16 Mailbox 28, APP_ID and Byte ID

0x32,0x33 16 Mailbox 29, APP_ID and Byte ID

0x34,0x35 16 Mailbox 30, APP_ID and Byte ID

0x36,0x37 16 Mailbox 31, APP_ID and Byte ID

Table 2-2. Freescale-provided applications’ registers (continued)(1)

1. Shaded rows indicate the compressed registers.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

26 Freescale Semiconductor, Inc.

Status
Address Width (bits) Register Name

(None)

Analog Front End (AFE) application (APP_ID = 0x06)

Configuration

Address Width (bits) Register Name

0x00,0x01 16 AFE CSR

0x02,0x03 16 User Offset X

0x04,0x05 16 User Offset Y

0x06,0x07 16 User Offset Z

0x08 8 High Pass Filter Cutoff Coefficient

0x09 8 Low Pass Filter Cutoff Coefficient

0x0A 8 Temperature Low Pass Filter Cutoff Coefficient

0x0B 8 EIC Low Pass Filter Cutoff Coefficient

0x0C 8 Sample Rate Configuration

Status

Address Width (bits) Register Name

0x00 - 0x05 48 Stage 0 – XYZ (16 bits each for X, Y, and Z)

0x06 - 0x0B 48 Stage 1 – XYZ (16 bits each for X, Y, and Z)

0x0C - 0x11 48 Stage 0 ABS – XYZ (16 bits each for X, Y, and Z)

0x12 - 0x17 48 Stage 0 RAW – XYZ (16 bits each for X, Y, and 
Z)

0x18 - 0x1D 48 Stage 0 LPF – XYZ (16 bits each for X, Y, and Z)

0x1E - 0x23 48 Stage 0 HPF – XYZ (16 bits each for X, Y, and Z)

0x24 - 0x25 16 Output Temperature

0x26 - 0x27 16 Output EIC

0x29 - 0x29 16 Frame Counter

Table 2-2. Freescale-provided applications’ registers (continued)(1)

1. Shaded rows indicate the compressed registers.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 27

Portrait/Landscape application (APP_ID = 0x07)

Configuration

Address Width (bits) Register Name

0x00 8 Threshold_tilt

0x01 8 Landscape_angle

0x02 8 Portrait_angle

0x03 8 Debounce_count

0x04 8 Hysteresis _LO

0x05 8 Hysteresis_BAFRO (Back to Front)

0x06 8 Configuration

Status
Address Width (bits) Register Name

0x00 8 PL_OUT

High-g/Low-g application (High g APP_ID = 0x08; Low g APP_ID = 0x09)

Configuration

Address Width (bits) Register Name

0x00,0x01 16 Low_g_thresh

0x02 8 Low_g_cnt_min

0x03 8 Low_g_config

0x04,0x05 16 HI_g_thresh

0x06 8 HI_g_cnt_min

0x07 8 HI_g_config

0x09 8 Lhg_event_mask

Status
Address Width (bits) Register Name

0x00 8 Lhg_out

Table 2-2. Freescale-provided applications’ registers (continued)(1)

1. Shaded rows indicate the compressed registers.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

28 Freescale Semiconductor, Inc.

Tap Detection application (APP_ID = 0x0A)

Configuration

Address Width (bits) Register Name

0x00,0x01 16 tap_thresh

0x02 8 Tap_on_min

0x03 8 Tap_on_max

0x04 8 TapTap MinTime

0x05 8 Tap_K_HP

0x06 8 Tap_K_LP

0x07 8 Tap_Axis_enable

0x08 8 Tap_events_mask

Status

Address Width (bits) Register Name

0x00 8 Tap Out

0x01 8 Double Tap Out

Tilt application (APP_ID = 0x0B)

Configuration

Address Width (bits) Register Name

0x00 8 Tilt K_LP

0x01 8 Tilt Confg 1

0x02 8 Tilt Event Mask

Status

Address Width (bits) Register Name

0x00 8 Tilt Delta xz angle

0x01 8 Tilt Delta yz angle

0x02 8 Tilt Delta xy angle

0x02 8 Tilt z xyz quad

Table 2-2. Freescale-provided applications’ registers (continued)(1)

1. Shaded rows indicate the compressed registers.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 29

Frame Counter application (APP_ID = 0x0E)

Configuration
Address Width (bits) Register Name

(None)

Status
Address Width (bits) Register Name

0x00,0x01 16 Frame Count

Data FIFO application (APP_ID = 0x0F)

Configuration

Address Width (bits) Register Name

0x00 8 FIFO CONFIG

0x01-0x03 Not used

0x04,0x05 16 FIFO SIZE WORD

0x06 8 FIFO Channel APP_ID

0x07 Not used

0x08,0x09 16 Watermark

Status

Address Width (bits) Register Name

0x00,0x01 16 Records Number

0x02 8 Entry Size

0x03 8 FIFO STATUS

Event Queue application (APP_ID = 0x10)

Configuration

Address Width (bits) Register Name

0x00,0x01 16 Queue Size

0x02,0x03 16 Queue Watermark

0x04,0x05 16 Queue Timeout

Status

Address Width (bits) Register Name

0x00,0x01 16 Records Number

0x02 8 Entry Size

0x03 8 QUEUE STATUS

Table 2-2. Freescale-provided applications’ registers (continued)(1)

1. Shaded rows indicate the compressed registers.



Introduction

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

30 Freescale Semiconductor, Inc.

Status Register application (APP_ID = 0x11)

Configuration

Address Width (bits) Register Name

0x00, 0x01 16 Status Bit 0; APP_ID and SR BIT

0x02 … 0x0D 16 Status Bits 1 through 6; APP_ID and SR BIT((1))

0x0E,0x0F 16 Status Bit 7; APP_ID and SR BIT

Status
Address Width (bits) Register Name

0x00,0x01 16 Status Register

Sleep / Wake application (APP_ID = 0x12)

Configuration

Address Width (bits) Register Name

0x00,0x01 16 Sensitivity threshold

0x02,0x03 16 Doze Time Threshold

0x04 8 Long Time Off

0x05 8 Short Time Off

0x06 8 Config

Status
Address Width (bits) Register Name

0x00 8 Scheduler Mode

Reset / Suspend / Clear application (APP_ID = 0x17)

Configuration

Address Width (bits) Register Name

0x00-0x03 32 Reset Control Bits

0x04-0x07 32 Suspend Control Bits

0x08-0x0B 32 Clear Control Bits

Status
Address Width (bits) Register Name

(None)

Table 2-2. Freescale-provided applications’ registers (continued)(1)

1. Shaded rows indicate the compressed registers.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 31

Chapter 3 Version Application

The MMA955xL device's system-version information is stored in a 12 byte 
packet and contains system-identity information including device-hardware 
ID; the versions of the ROM bootloader, primary firmware, and hardware; 
and the system-build information.

The following table describes the system-version packet and its 
corresponding mailbox alignment.

Table 3-1. Version command description bytes

Mailbox 
number

Description Byte

4 Device identifier 31:24 

5 Device identifier 24:16 

6 Device identifier 15:8

7 Device identifier 7:0

8 ROM major version number 7:0

9 ROM minor version number 7:0

10 Firmware major version number 7:0

11 Firmware minor version number 7:0

12 Hardware major version number 7:0

13 Hardware minor version number 7:0

14 Build major version number 7:0

15 Build minor version number 7:0

Application
ID

0x00

Default speed
Always 

available.

Configuration 
registers

None.

Status 
registers

None.



Version Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

32 Freescale Semiconductor, Inc.

The following table describes the “Build Major” and “Build Minor” version-number fields.

3.1 Reading the version information
To read the MMA955xL platform's version information, send the following command packets to the 
mailboxes:

1. MB0: Set APP_ID to 0x00.

2. MB1: Command to 0x00.

Reads version information.
3. MB2: Set offset to zero 0x00.

Starts reading at offset 0.
4. MB3: Set count field to 0x0C.

Reads12 bytes of data.

Bytes to Send: 0x00, 0x00, 0x00, 0x0C.

The expected response to these commands is given in the following example.

Example 3-1. 

00 80 0C 0C 2F 33 48 B8 01 01 02 02 01 06 03 41 00

MB0: APP_ID = 0x00
MB1: STATUS = 0x80 Command Complete, no errors
MB2: RequestedData count= 0xC
MB3: Actual Data Count= 0xC
MB4-7: Device ID = 0x2F3348B8
MB8-9: ROM Version = 01.01
MB10-11: Firmware Version = 02.02
MB12-13: Hardware Version = 01.06
MB14-15: Firmware Build = 03.41 (Production #3, 4 Mar 2011)

Table 3-2. Version application, Build major and minor bytes

Byte Address Description Bit fields

3 0x1FD Build major version number

 • 7–3 Build’s day of the month
Range, 1 to 31

 • 2–0 Year of build, from 2010
Range, 0 to 7.

4 0x1FC Build minor version number

 • 7 — Release
– 1 Engineering version
– 0 Production release

 • 6–4 Build number
 • 3–0 Month of build

Range, 1 to 12



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 33

Chapter 4 Scheduler Application

A simple task scheduler manages execution of the applications of the 
MMA955xL platform. Based on a run-to-completion scheme, the scheduler 
features very low cycle and memory overhead.

The scheduler is tightly coupled with the Analog Front End's sampling rate 
and is triggered at the start of every sample interval. The system is designed 
such that all applications must complete their processing within the sample 
interval.

The scheduler handles both Freescale and user applications.

A priority scheme allows short-duration, high-priority tasks. —such as data 
sampling and filtering—to preempt long-duration, low-priority tasks.

The scheduler scans serially through the list of applications, looking for applications that have the same 
priority as the scheduler's current priority. When there is a priority match, an activity level is checked to 
determine if the application should be run in the current scheduler's interval.

An application’s activity mask can be set to High, Low, Both, or None. This feature allows an application 
to run during high activity, low activity, both, or not at all. The Sleep/Wake application defines the 
thresholds of activity between Sleep and Wake, or High and Low activity.

Priorities from 16 to 23 are linked directly to the frame execution rate. (See Table 4-1 on page 35.) The 
lower-priority levels provide a range of values for managing applications in the user system.

The scheduler automatically executes all the applications with a priority corresponding to the scheduler's 
current running priority level.

Once the scheduler has identified an application to run, it does a context switch to that application. When 
the application completes, context is returned to the scheduler and it looks for more applications with the 
same priority.

Application
ID 0x01

Default speed
(Runs all the 

time)

Configuration 
registers

Start on 
page 42.

Status 
registers

Start on 
page 42.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

34 Freescale Semiconductor, Inc.

4.1 Scheduler operational overview
The basic operational steps of the scheduler include:

1. The scheduler determines what type of interrupt occurred.

If an application-ready interrupt occurred (such as afe_results_ready or mtim_overflow), that 
application's bit is set in the request_to_start register and the interrupt is acknowledged to the 
hardware.
If an application-complete interrupt occurred (because an application returned to the 
invoke_scheduler function), the application's bit is cleared in the started register and context is 
popped from the user stack.

2. The highest priority started or request_to_start application is determined.

If this application is not started, the context of the old application is pushed onto the user stack. 
If the application is waiting to start, a context switch pushes the embedded ColdFire processor’s 
registers D0-D2/A0-A1/SR/PC, MACSR, and ACC onto the ColdFire processor's user stack. It 
also pushes the address of the internal function  invoke_scheduler() onto the user 
stack—which causes the program flow to return to the scheduler when the application completes.

3. The context switch modifies the ColdFire processor’s supervisor stack to redirect the interrupt to 
return to the application in user mode.

This clears the request_to_start bit and sets the start bit for the application. If the application is 
already started, no context push is required.

4. The interrupt handler automatically returns to the application.

5. When the scheduler finds no more applications at the current priority level, it searches for the 
next-lower priority level.

6. When all priorities have been run, the scheduler enters an idle state.

4.2 Scheduler application elements
MMA955xL applications consist of the application code, a set of specifically defined callback functions 
that the scheduler uses to control the application, and a header structure that enables the scheduler to find 
the application and callback functions. For the scheduler to find the applications at boot time, they must 
be linked and located at specific addresses in the memory.

Users can implement up to three application tables. Each application table can include multiple 
applications.

Applications are assigned a priority and an activity level. These two parameters determine when the 
scheduler runs the application.

For more information on applications, see “User Applications” on page 197.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 35

4.2.1 Priority levels

A priority scheme allows short-duration, high-priority applications—such as data sampling and 
filtering—to preempt long-duration, low-priority applications.

The scheduler supports 24 unique priorities, from 0x00 to 0x17 (0 to 23, in decimal). The larger the 
number, the higher the priority—with such applications run before applications with lower numbers. 
Multiple applications can be assigned the same priority level.

The priority level for each application is encoded by the lower six bits in the scheduler_parameters 
registers.   See “Scheduler parameters register” on page 50.

Priorities from 0 to 15 (0x00 to 0x0F) can trigger an application when an interrupt occurs. Priorities 16 to 23 (0x10 
to 0x17) are linked to the Analog Front End (AFE) execution rate. All applications with a priority of 16 to 23 are 
automatically software-triggered by the Scheduler.

Table 4-1. Priorities descriptions

Priority Level Description

0x17 Applications with this priority run at 488 Hz

0x16 Applications with this priority run at 244 Hz

0x15 Applications with this priority run at 122 Hz

0x14 Applications with this priority run at 61 Hz

0x13 Applications with this priority run at 30 Hz

0x12 Applications with this priority run at 15 Hz

0x11 Applications with this priority run at 7 Hz

0x10 Applications with this priority run at 3 Hz

0x0F Highest user assignable priority level (lower than 3 Hz)



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

36 Freescale Semiconductor, Inc.

4.2.2 Activity levels

The MMA955xL platform uses an “activity level” attribute to indicate how physically active the device is. 
The measured physical acceleration and motion actions of the device are classified into two ranges: high 
activity and low activity.

The activity level is used with the priority level to determine which applications run first. Applications can 
be set to run during these conditions:

• Always run

• Run during high activity

• Run during low activity

• Never run

The activity level for each application is encoded in the upper two bits of the scheduler_parameters 
registers. See “Scheduler parameters register” on page 50.

The Sleep/Wake application alone determines the activity level, therefore high/low activity is entirely a 
function of the sleep/wake threshold parameters. When in run mode, the scheduler only executes 
applications with the high activity parameter bit set. Similarly, when in doze mode, the scheduler only 
executes applications with the low activity parameter bit set. Since these bits are separate, an application 
has the option to set both to run regardless of the activity level.

0x0E

User-assignable priority levels

0x0D

0x0C

0x0B

0x0A

0x09

0x08

0x07

0x06

0x05

0x04

0x03

0x02

0x01

0x00 Lowest user assignable priority level

Table 4-1. Priorities descriptions (continued)

Priority Level Description



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 37

The low activity level parameter is like a filter which skips applications that would normally run after each 
AFE sample interval. The idea is that when the sensor is not moving (i.e., sitting on your desk), you can 
save power by not running applications like portrait landscape.

4.3 Interrupts
Interrupts immediately divert execution from any application or the idle state into dedicated interrupt 
handlers. The scheduler is not invoked, so the interrupt returns without redirection.

All interrupt handlers disable interrupts, so application ready, communication, and pin interrupts divert 
execution only from applications or the idle state.

Interrupts are never nested.

User interrupt handlers should be made as small and as fast as possible.

The MMA955xL platform supports the interrupts listed in the following table. Each supported interrupt can be 
associated with zero or more priorities. When the interrupt occurs, the scheduler triggers all the applications 
associated with the priorities configured for that interrupt.

The priorities for each interrupt are configured in the scheduler configuration parameter structure.

Table 4-2. Supported interrupts (1)

Name Description

SFD Start of Digital Frame interrupt.
This interrupt occurs when the start of frame signal is asserted.

COCO Conversion-complete interrupt.
This interrupt occurs when the AFE cycle has completed and all ADC conversions are complete and 
ready to be used.

IRQ IRQ pin interrupt.
This interrupt occurs when the selected input pin detects the configured condition (rising edge/high 
level or falling edge/low level).

TPMOV Timer overflow interrupt.
This interrupt occurs when the TPM counter resets to 0x00 after reaching the modulo value 
programmed in the TPM counter modulo register.

TPMCH0 Timer channel 0 interrupt.
This interrupt occurs when the value in the TPM counter matches the value in the TPM channel 0 
value register.

TPMCH1 Timer channel 0 interrupt.
This interrupt occurs when the value in the TPM counter matches the value in the TPM channel 0 
value register.

MTIMOV MTIM16 overflow flag.
This interrupt occurs when the MTIM16 counter overflows to 0x0000 after reaching the value in the 
MTIM16 modulo register.

PDBA Programmable delay block interrupt.
This interrupt occurs after the trigger source has activated the PDB counter and the counter has 
matched the PBD modulo value.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

38 Freescale Semiconductor, Inc.

Interrupts are assigned to an application in the Interrupt Assignment registers. See “Interrupt assignment 
registers” on page 45.

PDBB Programmable-delay block interrupt.
This interrupt occurs after the trigger source has activated the PDB counter and the counter has 
matched the PBD modulo value.

MASTER_I2C Inter-Integrated Circuit interrupt.
This interrupt is linked to the I2C master communication tasks.

1. For more information, see the MMA955xL Intelligent, Motion-Sensing Platform Hardware Reference Manual (MMA955xLRM), 
accessible from a link in “References” on page 13.

Table 4-2. Supported interrupts (continued)(1)

Name Description



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 39

4.4 Scheduler preemption
This section gives some detailed examples of how preemption is handled by MMA955xL platforms.

4.4.1 High-priority task suspending low-priority task

The scheduler has the ability to switch to a higher-priority application while a lower-priority application 
is running. This example examines a low-priority, counter application—such as for a pedometer—and a 
high-priority, data-processing application—that might be used for a special user task.

Example 4-1. 

Initially, the user:

1. Configures the timer interrupt to point to the counter application's APP_ID, in the 
user_interrupt_register of the scheduler.

2. Sets the priority of the counter application—in the sched_parms register of the scheduler—to 
something low.

3. Sets the priority of the data-processing application—in the sched_parms register of the 
scheduler—to TASK488 or something higher than the counter application.

If the scheduler is in the idle state and all high- and low-priority applications have been run, the scheduler 
has nothing left to do and is waiting for an interrupt. In this example, the hardware timer counter has just 
overflowed and triggered an interrupt.

In this scenario, the MMA955xL platform responds as follows:

1. The interrupt handler acknowledges the interrupt to the hardware by clearing a flag in an MTIM 
register and schedules the counter application to run by setting the APP_ID bit in the 
request_to_start register.

2. The scheduler determines that the counter application is the highest priority executable application, 
pushes the idle state context onto the stack and calls the counter application.

3. While the counter application is still running, the Analog Front End (AFE) results become 
available—which triggers another interrupt.

4. The interrupt handler acknowledges the interrupt to the hardware and schedules the 
data-processing application to run by setting the data-processing application’s bit in the 
request_to_start register.

5. The scheduler determines that the data-processing application is the highest-priority executable 
task, pushes the counter application context and calls the data-processing application task to 
sample the ADC, trim, and filter.

6. Sometime later, the data-processing application finishes and returns to the scheduler via the 
invoke_scheduler() call.

7. The scheduler clears the data-processing application-started flag, pops the counter application 
context from the stack, and returns to the counter application to resume the pedometer application.

8. The counter application completes and returns to the scheduler.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

40 Freescale Semiconductor, Inc.

9. The scheduler clears the counter application-started flag and pops the idle state context from the 
stack and returns to the idle state.

4.4.2 Low-priority task becoming ready during high-priority task

This example shows how the scheduler functions when a low-priority task becomes ready while a 
high-priority task is being executed. This operation uses three tasks: idle, MTIMOV, and SFD.

• Idle: A low-power wait state

• MTIMOV: A low-priority used by the pedometer application and triggered by the MTIM counter 
overflow

• SFD: A high-priority used to sample the ADC, trim, and filter

Example 4-2. 

In this scenario, the MMA955xL platform behaves as follows:

1. Starting in the idle task, AFE results become ready and trigger an SFD interrupt.

2. The scheduler acknowledges the SFD interrupt to the hardware and marks the SFD task as 
request_to_start.

3. The scheduler determines the SFD task is the highest-priority executable task, pushes the idle task 
context onto the stack, clears the SFD request_to_start flag, sets the SFD started flag, and returns 
to the SFD task to sample the ADC, trim, and filter.

4. Before the SFD task completes, an MTIMOV interrupt occurs.

5. The scheduler acknowledges the interrupt to the hardware by clearing a flag in an MTIM register 
and marks the MTIM task as request_to_start.

6. The scheduler determines the SFD task is still the highest priority executable task and returns to 
the SFD task without any context switch.

7. Later, the SFD task completes and returns to the scheduler via a trap call.

8. The scheduler clears the SFD task-started flag and pops the idle task context from the stack.

9. The scheduler must start the MTIMOV task, so it pushes the idle task context back onto the stack, 
clears the MTIMOV request_to_start flag, sets its started flag, and returns into the MTIMOV task.

Though it is not necessary to pop, then push the idle task context, this technique simplifies the 
scheduler logic—reducing the required code size.

10. The MTIMOV task completes and returns to the scheduler.

11. The scheduler clears the MTIMOV task-started flag, pops the idle task context from the stack, and 
returns to the idle task.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 41

4.5 Error conditions
In the event that an application does not complete before it is triggered again, the first instance of the 
application runs to completion before the second instance starts. If a third trigger occurs before the first 
instance of the application completes, the application misses an instance and is marked in the timeout 
register.

By checking the timeout_status register, the user can determine which priority application was missed. The 
corresponding bit of the timeout will be set in the timeout_status register.

For more information on the timeout_status register, see Chapter 16, “Status Register Application” on 
page 161.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

42 Freescale Semiconductor, Inc.

4.6 Scheduler configuration registers
The scheduler has the following three groups of configuration registers:

• request_to_start register

• interrupt assignment registers

• scheduler parameters registers

The configuration and status registers are listed in the following table.

The request_to_start register is a way to run the applications under scheduler control. The interrupt 
assignment registers connect applications to interrupt events. The scheduler parameter registers assign 
activity levels and priorities to the applications.

Table 4-3. Scheduler configuration and status registers

Register type Address Width (bits) Register Name

Configuration

0x00-0x03 32 Request_to_start

0x04-0x07 32 SFD Interrupt_AppIDs

0x08-0x0B 32 AFE COCO Interrupt_AppIDs

0x0C-0x0F 32 IRQ Interrupt_AppIDs

0x10-0x13 32 TPMOV Interrupt_AppIDs

0x14-0x17 32 TPMCH0 Interrupt_AppIDs

0x18-0x1B 32 TPMCH1 Interrupt_AppIDs

0x1C-0x1F 32 MTIMOV Interrupt_AppIDs

0x20-0x23 32 PDBA Interrupt_AppIDs

0x24-0x27 32 PDBB Interrupt_AppIDs

0x28-0x2B 32 Master I2C Interrupt_AppIDs

0x2C 8 sched_parms_APP_ID_0x00

0x2D - 0x4A 8 each sched_parms_APP_ID_0x01 through 0x1E(1)

1. Shaded rows indicate the compressed registers.

0x4B 8 sched_parms_APP_ID_0x1F

Status
Address Width (bits) Register Name

0x00-0x03 32 Timeout Status



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 43

4.6.1 request_to_start register

An application can be scheduled to run by setting the bit corresponding to the application's APP_ID in the 
request_to_start register. The scheduler manages starting applications, depending on priority and activity.

User applications also may schedule other applications to run by setting the appropriate bit in the 
request_to_start register. When an application finishes and returns, the scheduler clears the corresponding 
bit in the request_to_start register.

The request_to_start register enables a user to trigger one or more applications via the slave-port command 
or a direct write-through from a user application. When modifying this register, the user must logically OR 
the current value with the new value (with a read/modify/write access) to prevent the erasure of the task 
waiting to be started.

The host controller may issue a command through the slave communications port to trigger the running of 
an application. To do this, the host controller does a read/modify/write to the request_to_start 
configuration register and sets the appropriate bit associated with the application that the host wants to 
start.

Similarly, a user application running natively on the MMA955xL platform can trigger one or more 
applications to start by writing directly to the request_to_start register.

Since the scheduler only samples this configuration register through its interrupt handler, a trap interrupt 
is available for user code to invoke the scheduler. This mechanism is intended to support user-defined, 

Table 4-4. request_to_start register

Offset 0x00(MSB) 0x01

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field request_to_start [31:24] request_to_start [23:16]

Reset 0x00 0x00

Offset 0x02 0x03(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field request_to_start [15:8] request_to_start [7:0]

Reset 0x00 0x00

Table 4-5. request_to_start description

Field Description

request_to_start
[31:0]

Indicates which APP_IDs are marked for starting at the beginning of the next scheduler interval. Each bit 
corresponds to an APP_ID. It is important that the user do a read/modify/write type of access to ensure that 
the contents of the resister are logically ORed with the new value to avoid erasing the request_to_start bit of 
the other APP_IDs that are waiting to start. Setting the bit will mark the APP_ID for starting in the next 
scheduler loop.
Units: None.
Range of valid values: 0 to 0xFFFFFFF.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

44 Freescale Semiconductor, Inc.

software-triggered applications. Be advised, however, that there are no protections to prevent a slave-port 
command or a direct-write from triggering a hardware-assigned applications such as SFD or MTIMOV.

Regardless of which mechanism triggers the Scheduler application to start—a hardware interrupt, a slave 
port command, or a trap interrupt—it always executes the highest-priority applications first. As a result, a 
slave-port command could trigger a low-priority application, but some time may occur before that 
application actually executes.

4.6.2 request_to_start register configuration example

To configure the request_to_start register, send this command, read the register and modify it, and write it 
back.

Example 4-3. 

1. MB0: Set the Scheduler application identifier (0x01).

2. MB1: Set the Command: Read Config application identifier (0x10).

3. MB2: Set the Offset to Zero field (0x00) to point to the request_to_start configuration register.

4. MB3: Set the Count field (0x04) to request four bytes.

Bytes to send: 0x01, 0x10, 0x00, 0x04.

5. Read back the mailboxes.

The current value of the request_to_start register is stored in MB4-MB7.
6. Modify the value as needed:

7. MB0: Set the Scheduler application identifier (0x01).

8. MB1: Set the Command: Write Config application identifier (0x20).

9. MB2: Set the Offset to Zero field (0x00) to point to the request_to_start configuration register.

10. MB3: Set the Count field (0x04) to writing four bytes.

11. MB4: Set the DATA value to 0xAA.

12. MB4: Set the DATA value to 0xBB.

13. MB4: Set the DATA value to 0xCC.

14. MB4: Set the DATA value to 0xDD.

Bytes to send: 0x01, 0x20, 0x00, 0x04, 0xAA, 0xBB, 0xCC, 0xDD.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 45

4.6.3 Interrupt assignment registers

There are 10 possible interrupts in the MMA955xL platform. Each interrupt is assigned to an application 
through the user_interrupt parameter registers.   When an interrupt happens, the scheduler handler 
logically ORs the contents of the user_interrupt register with the request_to_start parameter register.

The scheduler runs the appropriate application the next time the application’s priority is runable.

The scheduler uses the interrupt vector to determine which application-ready interrupt occurred and sets a 
bit in the request_to_start register. In the bit vector, each bit corresponds to a task and the bit position 
indicates the priority of the application.

The appropriate interrupt is acknowledged to the hardware, usually by clearing a flag bit in the peripheral’s 
memory-mapped status register. In the special case that an AFE, results-ready interrupt occurred, supervisor-only 
AFE registers are copied into user-mode shadow registers.

Table 4-6. user_interrupt registers

Offset 0x04(MSB) 0x05

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field SFD Interrupt_AppIDs [31:24] SFD Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x06 0x07(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field SFD Interrupt_AppIDs [15:8] SFD Interrupt_AppIDs [7:0]

Reset 0x00 0x00

Offset 0x08(MSB) 0x09

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field AFE_COCO Interrupt_AppIDs [31:24 AFE_COCO Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x0A 0x0B(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field AFE_COCO Interrupt_AppIDs [15:8] AFE_COCO Interrupt_AppIDs [7:0]

Reset 0x00 0x00



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

46 Freescale Semiconductor, Inc.

Offset 0x0C(MSB) 0x0D

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field IRQ Interrupt_AppIDs [31:24] IRQ Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x0E 0x0F(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field IRQ Interrupt_AppIDs [15:8] IRQ Interrupt_AppIDs [7:0]

Reset 0x00 0x00

Offset 0x10(MSB) 0x11

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field TPMOV Interrupt_AppIDs [31:24] TPMOV Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x12 0x13(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field TPMOV Interrupt_AppIDs [15:8] TPMOV Interrupt_AppIDs [7:0]

Reset 0x00 0x00

Offset 0x14(MSB) 0x15

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field TPMCH0 Interrupt_AppIDs [31:24] TPMCH0 Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x16 0x17(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field TPMCH0 Interrupt_AppIDs [15:8] TPMCH0 Interrupt_AppIDs [7:0]

Reset 0x00 0x00

Table 4-6. user_interrupt registers (continued)



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 47

Offset 0x18(MSB) 0x19

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field TPMCH1 Interrupt_AppIDs [31:24] TPMCH1 Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x1A 0x1B(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field TPMCH1 Interrupt_AppIDs [15:8] TPMCH1 Interrupt_AppIDs [7:0]

Reset 0x00 0x00

Offset 0x1C(MSB) 0x1D

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field MTIMOV Interrupt_AppIDs [31:24] MTIMOV Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x1E 0x1F(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field MTIMOV Interrupt_AppIDs MTIMOV Interrupt_AppIDs [7:0]

Reset 0x00 [15:8] 0x00

Offset 0x20(MSB) 0x21

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field PDBA Interrupt_AppIDs [31:24] PDBA Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x22 0x23LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field PDBA Interrupt_AppIDs [15:8] PDBA Interrupt_AppIDs [7:0]

Reset 0x00 0x00

Table 4-6. user_interrupt registers (continued)



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

48 Freescale Semiconductor, Inc.

Offset 0x24(MSB) 0x25

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field PDBB Interrupt_AppIDs [31:24] PDBB Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x26 0x27(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field PDBB Interrupt_AppIDs [15:8] PDBB Interrupt_AppIDs [7:0]

Reset 0x00 0x00

Offset 0x28(MSB) 0x29

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field MASTER_IIC Interrupt_AppIDs [31:24] MASTER_IIC Interrupt_AppIDs [23:16]

Reset 0x00 0x00

Offset 0x2A 0x2B(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field MASTER_IIC Interrupt_AppIDs [15:8] MASTER_IIC Interrupt_AppIDs [7:0]

Reset 0x00 0x00

Table 4-7. user_interrupt bit descriptions

Field Description

Interrupt_AppIDs
[31:0]

Bit vector indicating which tasks are to start after the interrupt. Each bit corresponds to a task and the bit 
position indicates the task’s priority. This 32-bit parameter should match the priority of the task that is 
executing when the interrupt occurs.
Units: None.
Range of valid values: 0 to 0xFFFFFF.

Table 4-6. user_interrupt registers (continued)



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 49

4.6.3.1 Interrupt_App_IDs register configuration example

In this example, the user has an external interrupt source that wants to run a user application assigned to 
APP_ID = 0x19. This requires setting the 0x19 bit position in the IRQ_interrupt_APP_IDs register at 
offset 0x0C-0x0F.

Example 4-4. 

1. MB0: Set the Scheduler application identifier (0x01).

2. MB1: Set the “Command: Write Config” application identifier (0x20).

3. MB2: Set the Offset to Zero field (0x0C) to point to the IRQ_interrupt_APP_IDs register.

4. MB3: Set the Count field (0x04) to write four bytes.

5. MB4: Set the DATA value to 0x20.

This bit is the 0x19th bit in this 32 bit register.

6. MB4: Set the DATA value to 0x00.

7. MB4: Set the DATA value to 0x00.

8. MB4: Set the DATA value to 0x00.

Command to send for write: 0x01, 0x20, 0x0C, 0x04, 0x20, 0x00, 0x00, 0x00.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

50 Freescale Semiconductor, Inc.

4.6.4 Scheduler parameters register

Both the Freescale and user applications have the same structure for their sched_parms registers. That 
structure is shown in the following figure. For more information on the (Activity) and (Priority) bits, see 
Table 4-9 on page 50.

Table 4-8. sched_parms register structure

Bit 7 6 5 4 3 2 1 0

Field (Activity) (Priority)

Table 4-9. sched_parms_APP_ID bit descriptions

Field Description

(Activity)
(7:6)

Scheduler parameters for each task, this value allows accelerometer activity (motion) to determine whether 
a task should run.
High and low activity thresholds are defined with the Sleep/Wake application. (See “Sleep/Wake 
Application” on page 169.)
Units: None.
Range of valid values: 
 • 0x03: ALWAYS // execute application during high and low activity
 • 0x02: ACTIVE // execute application only during high activity
 • 0x01: INACTIVE // execute application only during low activity
 • 0x00: NEVER // never execute application

priority
(5:0)

Scheduler parameters for each task, this value determine the priority of the application.
Units: None.
Range of valid values: 
 • 0x17: TASK488HZ // task running at 488 Hz
 • 0x16:TASK244HZ // task running at 244 Hz
 • 0x15: TASK122HZ // task running at 122 Hz
 • 0x14: TASK61HZ // task running at 61 Hz
 • 0x13: TASK30HZ // task running at 30 Hz
 • 0x12: TASK15HZ // task running at 15 Hz
 • 0x11: TASK7HZ // task running at 7 Hz
 • 0x10: TASK3HZ // task running at 3 Hz
 • 0x0F: PRIORITY15
 • 0x0E: PRIORITY14
 • 0x0D: PRIORITY13
 • 0x0C: PRIORITY12
 • 0x0B: PRIORITY11
 • 0x0A: PRIORITY10 

 • 9: PRIORITY9
 • 8: PRIORITY8
 • 7: PRIORITY7
 • 6: PRIORITY6
 • 5: PRIORITY5
 • 4: PRIORITY4
 • 3: PRIORITY3
 • 2: PRIORITY2
 • 1: PRIORITY1
 • 0: PRIORITY0



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 51

The variable data for the sched_parms registers includes the register name, offset, and reset. Each of the 
possible application IDs (0x00–0x1F) is associated with a scheduler parameter register. The following 
table shows the APP_IDs and their associated register offsets and reset values.

Table 4-10. sched_parms registers’ differentiating values

Register Resets

Offset Name Application Bits 7:6 Bits 5:0

0x00 Version

0x2C sched_parms_APP_ID_0x00 Scheduler 0x00 0x00

0x2D sched_parms_APP_ID_0x01 0x00 0x17

0x2E sched_parms_APP_ID_0x02 Communications 0x03 0xD7

0x2F sched_parms_APP_ID_0x03 GPIO 0x03 0xD7

0x30 sched_parms_APP_ID_0x04 Mailbox 0x03 0x17

0x31 sched_parms_APP_ID_0x05 Reserved — —

0x32 sched_parms_APP_ID_0x06 AFE 0x03 0xD7

0x33
sched_parms_APP_ID_0x07 Portrait/Landscape 

Detection
0x00 0x00

0x34 sched_parms_APP_ID_0x08 High-g Detection 0x00 0x00

0x35 sched_parms_APP_ID_0x09 Low-g Detection 0x00 0x00

0x36 sched_parms_APP_ID_0x0A Tap Detection 0x00 0x00

0x37 sched_parms_APP_ID_0x0B Tilt 0x00 0x00

0x38 sched_parms_APP_ID_0x0C (User application) 0x00 0x00

0x39 sched_parms_APP_ID_0x0D (User application) 0x00 0x00

0x3A sched_parms_APP_ID_0x0E Frame Counter 0x00 0x00

0x3B sched_parms_APP_ID_0x0F Data FIFO 0x03 0xD7

0x3C sched_parms_APP_ID_0x10 Event Queue 0x03 0xD7

0x3D sched_parms_APP_ID_0x11 Status Register 0x03 0xD7

0x3E sched_parms_APP_ID_0x12 Wake/Sleep 0x03 0xD7

0x3F sched_parms_APP_ID_0x13 (User application) 0x00 0x00

0x40 sched_parms_APP_ID_0x14 (User application) 0x00 0x00

0x41 sched_parms_APP_ID_0x15 (User application) 0x00 0x00

0x42 sched_parms_APP_ID_0x16 (User application) 0x00 0x00

0x43 sched_parms_APP_ID_0x17 Reset/Suspend/Clear 0x03 0xD7

0x44 sched_parms_APP_ID_0x18 Mailbox Configuration 0x00 0x00



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

52 Freescale Semiconductor, Inc.

0x45 sched_parms_APP_ID_0x19 (User application) 0x00 0x00

0x46 sched_parms_APP_ID_0x1A (User application) 0x00 0x00

0x47 sched_parms_APP_ID_0x1B (User application) 0x00 0x00

0x48 sched_parms_APP_ID_0x1C (User application) 0x00 0x00

0x49 sched_parms_APP_ID_0x1D (User application) 0x00 0x00

0x4A sched_parms_APP_ID_0x1E (User application) 0x00 0x00

0x4B sched_parms_APP_ID_0x1F (User application) 0x00 0x00

Table 4-10. sched_parms registers’ differentiating values (continued)

Register Resets

Offset Name Application Bits 7:6 Bits 5:0



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 53

4.7 Scheduler status registers
The scheduler applications contain a set of output or status registers. Status registers can be read by a host 
processor, through the I2C/SPI slave-port read-data commands, or by internal applications, through direct 
reads.

The scheduler status is a 32-bit register that gives the priority levels for applications that have timed out. 
Applications time out when their priority level is the one that is currently running and they have been 
marked with “request_to_start.” Such an application has not finished running before it needs to start again.

4.7.1 Timeouts

A timeout condition indicates that the scheduler has been somehow compromised by a user application.

Table 4-11. Scheduler status register

Offset 0x00(MSB) 0x01

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field timeout_status[31:24] timeout_status[23:16]

Reset 0x00 0x00

Offset 0x02 0x03(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field timeout_status[16:8] timeout_status[7:0]

Reset 0x00 0x00

Table 4-12. sched_parms_APP_ID bit descriptions

Field Description

timeout_status
[31:0]

Indicates the priority level of the task that has timed out, one or more times.
The register sets the corresponding priority-level bit when a task is timed out (currently running and being 
marked “request_to_start”). This bit must be monitored to verify that no user task is compromising the 
scheduler execution.
Units: None.
Range of valid values: 0 to 0xFFFFFFFF.



Scheduler Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

54 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 55

Chapter 5 Communication Interface

5.1 Overview of Communication Interface
All access to the MMA955xL platform is made via the slave, serial Communication Interface that is part 
of the hardware and firmware infrastructure of the platform.

Commands are sent from the host and through the slave communications port (either SPI or I2C). The 
Communication Interface interprets the command and sends the data to the correct application. It also 
responds with error codes when appropriate.

The Communications Interface works with the Mailbox application to implement the command and 
response. The mailboxes’ functionality is configured with two applications: the MBOX Configuration 
application (APP_ID = 0x18) and the MBOX application (APP_ID = 0x04).

5.2 Mailbox interface
Commands are received through a set of 32 mailboxes that are arranged consecutively to provide 
addressable memory regions. Each mailbox can hold one byte of data.

After a command has completed, the Communication Interface writes the results to the mailboxes and the 
results (response out) are retrieved by the host via the SPI or the I2C slave interface.

The following figure shows the structure of the data packet when writing one byte into a specific mailbox.

If the transaction contains more than one data byte, the internal-destination mailbox address is 
automatically incremented so that the incoming byte is placed in the next mailbox. For mailbox addresses 
greater than 31 bytes or for transactions where the mailbox address auto-increments past mailbox 31, the 
destination address wraps back to the start of the mailbox addresses.

S 1 0 0 1 1 0 0 0 A A7 A6 A5 A4 A3 A2 A1 A0 A D7 D6 D5 D4 D3 D2 D1 D0 A P

Figure 5-1. I2C interface writing one byte of information to a mailbox

StopDestination Mailbox Address Data ByteR/WDevice Address = 0x4C

Start AcknowledgeAcknowledge Acknowledge



Communication Interface

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

56 Freescale Semiconductor, Inc.

5.2.1 Mailbox timing diagrams

Figure 5-2. I2C timing diagram

Figure 5-3. SPI timing diagram

5.3 Mailbox usage
Commands to the MMA955xL platform consist of a write followed by one or more reads. It may take some 
time to complete the command and a flag can be checked to determine if the command has completed. 
That flag is the Command Complete (COCO) bit, the seventh bit of the read data in the second mailbox. 
(See Table 5-4 on page 60.)

On a read operation, the COCO bit indicates if the command has been processed. The host processor can 
determine the status of the command’s processing by repeatedly reading or polling the second mailbox 
until the COCO bit is set. Alternatively, the MMA955xL platform can be configured to assert an interrupt 
signal at the completion of a command. If configured, the INT_O interrupt will be set immediately after 
the COCO bit has been set.

For more information, see “Configuring mailbox operational mode” on page 191.

Clock

Data

Data
values S A A A A P

S

A

P

98 00 00 00

Start

Acknowledge

Stop

80

Enable

Clock
MOSI
MISO

MOSI values

MISO values FF

00

FF

00

FF

MISO: SPI Master In , Slave Out
MOSI: SPI Master Out, Slave In
SPI: Serial, Peripheral Interface



Communication Interface

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 57

5.3.1 Mailbox command format for a write

Commands written to the MMA955xL platform are sent in the format shown in the following table. 
Mailboxes are filled with data, depending on the target application. All commands start with the APP_ID, 
the command, the destination offset, and the number of data bytes to write.

All commands must be written in a single, I2C/SPI transaction starting at Mailbox 0, but the response can 
be read from any subset of the mailbox registers.

For a write-request command, the first four mailboxes must be written with enough bytes to hold the 
requested number of bytes. The format of the data bytes is specific to the targeted application. 
(Applications are described in Table 5-3.)

The following table gives the details of the different parts of the data packet for a Write command.

Table 5-1. Mailbox commands formats

Offset 7 6 5 4 3 2 1 0

0x00 Application ID (APP_ID)

0x01 0 Command Byte offset (upper 4 bits)

0x02 Byte offset (lower 8 bits)

0x03 Requested number of bytes to read/write

0x04 Write data 0

0x05 Write data 1

0x06 Write data 2

…. Write data n

Table 5-2. Mailbox command format details

Block Description

Application ID Application targeted for the issued command. (See the next table.)

Command Command to be performed:
 • 0: Read application fixed bytes (version information)
 • 1: Read application configuration bytes
 • 2: Write application configuration bytes
 • 3: Read application status or output

Byte offset Sets the offset of the first byte to be accessed, counting from the start of the register space. This enables 
a subset of the registers to be accessed by setting the start location to something other than zero.

Requested number 
of bytes

Number of bytes requested to be read or written.

Write data The data being written.



Communication Interface

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

58 Freescale Semiconductor, Inc.

5.3.2 Application IDs, names, and descriptions

The following table gives the names and IDs of the Freescale applications associated with MMA95590L, 
MMA95591L, and MMA95593L platforms.

Table 5-3. Application descriptions((1))

Application ID Application Name Description

0x00 Version
Returns a 12-byte pack with the device identifier number and the version 
numbers of the ROM, firmware, and hardware.
(For more details, see “Version Application” on page 31.)

0x01 Scheduler
Configures the system, applications, and the MMA955xL infrastructure to run 
at specific sample rates. Additionally, the identifier reads the number of times 
each task has been executed.

0x02 Reserved

0x03 GPIO
Configures the GPIO application to map a specific application output bit to 
specific GPIO pins. (For more details, see Chapter 6, “GPIO Application””.) 
The GPIO pins are limited to GPIO6 through 9.

0x04 Mailbox

Configures an internal mailbox table to map which output bytes from specific 
application identifiers will be accessible in the Normal mode and the Legacy 
mode’s Quick-Read registers mailboxes. The application identifier can perform 
a table reset to reinstall the default values when the MMA955xL resets. 

0x05 Reserved

0x06 Analog Front End
Configures different parameters of the AFE and reads XYZ data from the 
accelerometer. For further details, see Chapter 8, “Analog Front End 
Application”.

0x07 Portrait/landscape detection
Configures different parameters of the portrait and landscape application and 
reads and writes data from and to the applications. For further details, see 
Chapter 9, “Portrait/Landscape Application”.

0x08 High-g detection
Configures different parameters of the high_g application. The application 
identifier reads the output bytes from its output structure. For further details, 
see Chapter 10, “High-g/Low-g Application”.

0x09 Low-g detection
Configures different parameters of the low_g application. The application 
identifier reads the output bytes from its output structure. For further details, 
see Chapter 10, “High-g/Low-g Application”.

0x0A Tap detection
Configures different parameters of the tap-detection application. The 
application identifier reads the output bytes from its output structure.

0x0B Tilt sensing
Configures parameters of the tilt-detection application and reads the output 
bytes from its output structure.

0x0C-0x0D Available for user applications Application IDs that can be used for user applications.

0x0E Frame counter Reads the system frame counter value.

0x0F Data FIFO
Configures parameters of the Data-FIFO application and reads the output 
bytes from its output structure and the contents of the FIFO buffer. 

1. Shaded rows indicate unused application identifiers available for user applications.



Communication Interface

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 59

0x10 Event queue
Configures parameters of the Event-queue application and reads the output 
bytes from its output structure and the contents of the Event-queue buffer.

0x11 Status register Provides access to the MMA955xL platform’s system-status information.

0x12 Sake/Sleep
Configures the power-control modes of the accelerometer. The application has 
three modes of operation: Run, Doze, and Sleep.

0x013-0x016 Available for user applications Application IDs that can be used for user applications.

0x17 Reset/suspend/clear Controls the Reset/Suspend/Clear functions of the MMA955xL platform.

0x18 Mailbox mode config
Configures different operation modes of the mailbox and provides the status 
value of the mailbox when Stream mode is running.

0x19 – 0x1F Available for user applications Application IDs that can be used for user applications.

0x20 – 0xFF Reserved Indicates an invalid application index.

Table 5-3. Application descriptions((1)) (continued)

Application ID Application Name Description

1. Shaded rows indicate unused application identifiers available for user applications.



Communication Interface

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

60 Freescale Semiconductor, Inc.

5.3.3 Mailbox command format for a read

Though all commands must be written in a single I2C/SPI transaction starting at Mailbox 0, the response 
can be read from any subset of the mailbox registers. When the MMA955xL platform is configured to 
stream data (as in FIFO mode), the read commands must be constructed as multiples of 32 bytes in order 
to trigger the internal transfer of the next set of data to the mailboxes.

A read-request command requires a write to the first four mailboxes.

The format of the information returned from the MMA955xL platform is shown in the following table. 
Similar to the command format, the response format follows the specific application’s format.

Mailboxes are filled with data depending on the target application.

All responses start with the responding APP_ID, the COCO the ERROR STATUS, the actual data count, 
and the requested data count.

The format of the remaining data bytes is specific to the responding application.

Table 5-4. Mailbox response formats

Mailbox 7 6 5 4 3 2 1 0

0x00 Application ID (APP_ID)

0x01 COCO Error code

0x02 Actual number of bytes read/written

0x03 Requested number of bytes to read/write

0x04 Read data 0

0x05 Read data 1

0x06 Read data 2

…. Read data n



Communication Interface

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 61

The following table describes the details of the different parts and fields of a response message.

The following table describes the status or error-code results returned in Mailbox 0x01.
 

Table 5-5. Mailbox response format details

Block Description

Application ID 
(APP_ID)

The ID of the application that is responding. (See the preceding table.)

COCO
Command complete.
This bit must be set to 0b when a command is written and is set to 1b by the MMA955xL platform, when 
the command has been processed. The other registers do not contain valid results until this bit is set.

Error code
The seven bytes that store the error code of the command. A zero indicates there was no error. (For more 
information, see Table 5-6 on page 61.)

Actual number of 
bytes

Actual number of bytes read or written.
This block reports back the actual number of bytes that were read or written. It is normally the same as 
the requested number of bytes, but it will be reduced if the requested number of bytes plus the Byte Offset 
exceeds the number of bytes in the requested block’s data structure.

Requested number 
of bytes

Number of bytes requested to be read or written.

Read data The data that was read.

Table 5-6. Error-Status codes returned in Mailbox 0x01

Error Code Name Description

0x00 MCI _ERROR_NONE Command completed with no errors.

0x04 MCI _ERROR_PARAM
Incorrect input parameter. 
Error may be due to an incorrect application ID, an incomplete command, 
or an incorrect offset.

0x19 MCI _INVALID_COUNT
Returned when the command COUNT is greater than the output structure 
size.

0x1C MCI_ERROR_COMMAND
Returned any time that the command interpreter does not recognize a 
command code.

0x21 MCI_ERROR_INVALID_LENGTH
Returned when the host sends a number of bytes with a wrong payload. 
MMA955xL checks any mismatches between the amount of bytes 
received and the actual payload sent by the host.

0x22 MCI_ERROR_FIFO_BUSY
FIFO is busy performing a push operation and it is not possible to execute 
any other function.

0x23 MCI_ERROR_FIFO_ALLOCATED

Returned when the host tries to reconfigure the FIFO module. The FIFO 
application configuration can only be written once. In order to re-configure 
the FIFO, the whole device must be reset. This is because the FIFO 
application requests RAM and RAM can only be allocated one time.

0x24 MCI_ERROR_FIFO_OVERSIZE
Returned when the host wants to set a FIFO buffer size out of the memory 
boundaries within the MMA955xL device.



Communication Interface

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

62 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 63

Chapter 6 GPIO Application

6.1 Overview of GPIO application
The GPIO application assigns a bit from an application’s status register to a 
specific GPIO pin. The configuration registers contain the application ID 
and the bit number of the output byte for each GPIO pin.

The GPIO application connects the MMA955xL platform’s physical GPIO 
pins to status bits in an applications' status registers. The GPIO application 
can control four physical GPIO pins. Each of the four GPIO pins (GPIO6, 
7, 8, and 9) has an associated APP_ID register and an SR_bit register.

The GPIO application also has a general polarity register where the GPIO pins can be set to be active high 
or active low. The default or start-up condition of the GPIO pins are unassigned.

The GPIO pins that are controlled by the MMA955xL platform are described in the following table.

6.2 GPIO configuration registers
The GPIO application’s configurations registers consist of 10 eight-bit registers. This includes two 
registers for each of the four GPIO pins and two registers for setting the polarity of the GPIO pin. Each 
GPIO pin is assigned to an APP_ID and as an output bit from the assigned application.

The following table gives the bit descriptions for the GPIO application’s registers. The application’s 
registers are shown in Table 6-3 through Table 6-11 on page 65.

The bit descriptions are given in Table 6-13 on page 66.

Table 6-1. GPIO pin names, numbers and functions

Name Pin number

GPIO6 12

GPIO7 13

GPIO8 15

GPIO9 2

Application
ID 0x03

Default speed 488 Hz

Configuration 
registers

Start on 
page 63.

Status 
registers

None.



GPIO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

64 Freescale Semiconductor, Inc.

6.2.1 GPIO register tables

Table 6-2. APP_ID GPIO6 register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field APP_ID GPIO6

Reset 0xFF

Table 6-3. SR_bitnum GPIO6 register

Offset 0x01

Bit 7 6 5 4 3 2 1 0

Field SR_bitnum GPIO6

Reset 0x00

Table 6-4. APP_ID GPIO7 register

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Field APP_ID GPIO7

Reset 0xFF

Table 6-5. SR_bitnum GPIO7 register

Offset 0x03

Bit 7 6 5 4 3 2 1 0

Field SR_bitnum GPIO7

Reset 0x00

Table 6-6. APP_ID GPIO8 register

Offset 0x04

Bit 7 6 5 4 3 2 1 0

Field APP_ID GPIO8

Reset 0xFF



GPIO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 65

Table 6-7. SR_bitnum GPIO8 register

Offset 0x05

Bit 7 6 5 4 3 2 1 0

Field SR_bitnum GPIO8

Reset 0x00

Table 6-8. APP_ID GPIO9 register

Offset 0x06

Bit 7 6 5 4 3 2 1 0

Field APP_ID GPIO9

Reset 0xFF

Table 6-9. SR_bitnum GPIO9 register

Offset 0x07

Bit 7 6 5 4 3 2 1 0

Field SR_bitnum GPIO9

Reset 0x00

Table 6-10. GPIO_pol MSB register

Offset 0x08(MSB)

Bit 7 6 5 4 3 2 1 0

Field Reserved GPIO9 GPIO8

Reset 0x00 0 0

Table 6-11. GPIO_pol LSB register

Offset 0x09(LSB)

Bit 7 6 5 4 3 2 1 0

Field GPIO7 GPIO6 Reserved

Reset 0 0 0x00



GPIO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

66 Freescale Semiconductor, Inc.

6.2.2 GPIO polarity configuration

6.2.3 GPIO application bit descriptions

Table 6-12. GPIO output, depending on polarity configuration and bit value

Input Bits Output Bit

GPIO_POLARITY SR_bit x VAL GPIO x

0 0 0

0 1 1

1 0 1

1 1 0

Table 6-13. GPIO application bit descriptions

Field Description

APP_ID GPIOx
[7:0]

The application identifier (APP_ID) of the application assigned to the GPIO pin. A value of 0xFF indicates 
there is no application assigned.
After a reset, no application output bits are mapped to a GPIO.
Units: None.
Range of valid values: [0:31] and 0xFF.

SR_bitnum GPIOx
[7:0]

The bit number of the application status registers being assigned to the GPIO pin.
The bit number depends of the amount of output bytes and the position of the bit in the register. For 
example, if the QUADFLAG bit in tilt_xz_yz_xy_quad register of the Tilt algorithm to be assigned, 
SR_bitnum = 31 because it corresponds to the seventh bit of the fourth output byte. (For more information, 
see “Tilt Application” on page 127.)
Units: None.
Range of valid values: [0:255]

GPIO_polx Defines the output polarity of the GPIO pin designated by the n variable in the field name.
This register uses negative logic 0 to configure active high and 1 for active low. Table 6-2 on page 64 
indicates which pin of the register corresponds to each GPIO.
Units: None.
Range of valid values: 
 • 0: Output is active high (output bit = high → high on GPIO pin).
 • 1: Output is active low (output bit = high → low on GPIO pin).

Reserved Indicates that the bit is reserved.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 67

Chapter 7 Mailbox Application

7.1 Overview of Mailbox application
The Mailbox (MBOX) application gathers output data from other 
applications and puts that data into the mailbox registers. This enables users 
to customize and group up to 28 applications’ specific data bytes for quick 
reads.

Normally, the host may need to read the status and output data from many 
applications. This requires multiple, serial-slave-port transactions. Using 
the mailbox application enables the host to read all necessary data in one 
serial, I2C or SPI transaction.

The MBOX application provides a shortcut for the user to read different pieces of data from different 
applications by combining the data for reading in one I2C or SPI read transaction.

The MBOX application is different than the hardware mailboxes used by the Communication Interface 
application. The MBOX application combines selected data bytes from specific applications and loads 
them into the Communications Interface mailboxes.

In order to properly configure the system Communications Interface, both the MBOX Configuration and 
Mailbox applications also must be properly configured. The MBOX Configuration application controls 
how the mailboxes behave and the Mailbox application controls what is placed in the mailboxes.

7.2 Mailbox configuration registers
The Mailbox application’s registers are described in the following table. The registers’ bit descriptions are 
given in “MBOX bit descriptions” on page 72.

Each response mailbox (MB4 to MB31) has two associated configuration registers: APP_ID register and 
Byte_ID register. When the Mailbox application runs, it copies the data at the Byte_ID from the specified 
APP_ID and puts that value in the associated mailbox.

Users can configure mailboxes 4 through 31. Mailboxes 20 through 31 have a special function in Legacy 
mode. They are updated automatically in the Legacy/Quick-Read mode.

Application
ID 0x04

Default speed 488 Hz

Configuration 
registers

Start on 
page 67.

Status 
registers

None



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

68 Freescale Semiconductor, Inc.

Table 7-1. MBOX registers

Offset 0x00 0x01

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_4 Byte_ID MBOX_4

Reset 0x00 0x00

Offset 0x02 0x03

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_5 Byte_ID MBOX_5

Reset 0x00 0x00

Offset 0x04 0x05

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_6 Byte_ID MBOX_6

Reset 0x00 0x00

Offset 0x06 0x07

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_7 Byte_ID MBOX_7

Reset 0x00 0x00

Offset 0x08 0x09

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_8 Byte_ID MBOX_8

Reset 0x00 0x00

Offset 0x0A 0x0B

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_9 Byte_ID MBOX_9

Reset 0x00 0x00



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 69

Offset 0x0C 0x0D

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_10 Byte_ID MBOX_10

Reset 0x00 0x00

Offset 0x0E 0x0F

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_11 Byte_ID MBOX_11

Reset 0x00 0x00

Offset 0x10 0x11

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_12 Byte_ID MBOX_12

Reset 0x00 0x00

Offset 0x12 0x13

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_13 Byte_ID MBOX_13

Reset 0x00 0x00

Offset 0x14 0x15

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_14 Byte_ID MBOX_14

Reset 0x00 0x00

Offset 0x16 0x17

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_15 Byte_ID MBOX_15

Reset 0x00 0x00

Offset 0x18 0x19

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_16 Byte_ID MBOX_16

Reset 0x00 0x00

Table 7-1. MBOX registers (continued)



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

70 Freescale Semiconductor, Inc.

Offset 0x1A 0x1B

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_17 Byte_ID MBOX_17

Reset 0x00 0x00

Offset 0x1C 0x1D

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_18 Byte_ID MBOX_18

Reset 0x00 0x00

Offset 0x1E 0x1F

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_19 Byte_ID MBOX_19

Reset 0x00 0x00

Offset 0x20 0x21

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_20 Byte_ID MBOX_20

Reset 0x11 (Defaults to Status Register application) 0x00 (Status application - MSB)

Offset 0x22 0x23

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_21 Byte_ID MBOX_21

Reset 0x11 (Defaults to Status Register application) 0x01 (Status application - LSB)

Offset 0x24 0x25

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_22 Byte_ID MBOX_22

Reset 0x10 (Defaults to Event Queue application) 0x03 (Event Queue Status)

Offset 0x26 0x27

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_23 Byte_ID MBOX_23

Reset 0x0F (Defaults to Data FIFO application) 0x03 (FIFO status)

Table 7-1. MBOX registers (continued)



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 71

Offset 0x28 0x29

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_24 Byte_ID MBOX_24

Reset 0x06 (Defaults to Analog Front End application) 0x28 (Analog Front End Frame Counter - MSB)

Offset 0x2A 0x2B

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_25 Byte_ID MBOX_25

Reset 0x06 (Defaults to Analog Front End application) 0x29 (Analog Front End Frame Counter - LSB)

Offset 0x2C 0x2D

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_26 Byte_ID MBOX_26

Reset 0x06 (Defaults to Analog Front End application) 0x00 Analog Front End Stage 0 - X MSB

Offset 0x2E 0x2F

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_27 Byte_ID MBOX_27

Reset 0x06 (Defaults to Analog Front End application)  0x01 (Analog Front End Stage 0 - X LSB)

Offset 0x30 0x31

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_28 Byte_ID MBOX_28

Reset 0x06 (Defaults to Analog Front End application) 0x02 (Analog Front End Stage 0 - Y MSB)

Offset 0x32 0x33

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_29 Byte_ID MBOX_29

Reset 0x04 (Analog Front End Stage 0 - Z MSB) 0x03 (Analog Front End Stage 0 - Y LSB)

Offset 0x34 0x35

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_30 Byte_ID MBOX_30

Reset 0x06 (Defaults to Analog Front End application) 0x04 (Analog Front End Stage 0 - Z MSB)

Table 7-1. MBOX registers (continued)



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

72 Freescale Semiconductor, Inc.

7.2.1 MBOX bit descriptions

Offset 0x36 0x37

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field APP_ID MBOX_31 Byte_ID MBOX_31

Reset 0x06 (Defaults to Analog Front End application) 0x05 (Analog Front End Stage 0 - Z LSB)

Table 7-2. MBOX bit descriptions

Field Description

APP_ID 
MBOX_x

Specifies the application to provide the output byte, using the application identifier.
Units: None.
Range of valid values: 1 to 31. Values outside this range or values for a nonexistent application may cause 
unexpected system behavior.

Byte_ID 
MBOX_x

Indicates the byte number of the application’s status or output registers that are being sent to this mailbox. 
The most-significant byte for a specific application’s output is identified as Byte 0 and the least-significant byte 
is Byte x.
Units: Non-dimensional.
Range of valid values: 0 to 255.

Table 7-1. MBOX registers (continued)



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 73

7.2.2 Configuring XYZ data

The MBOX application aggregates application data and presents it in the mailboxes.

The AFE application (APP_ID 0x06) provides the XYZ accelerometer data with output registers 0 through 
5 containing the FRONTEND_Stage_0 XYZ data. The following example shows what a host would send 
to the MMA955xL device to create the configuration to set up quick-read mailboxes 4–9 to contain the 
following, FRONTEND_Stage_0_XYZ data:

• Data X to mailboxes 4 and 5

• Data Y to mailboxes 6 and 7

• Data Z to mailboxes 8 and 9

Example 7-1. 

MBOX0 = 0x04 /* Host communicating to MBOX Application */
MBOX1 = 0x20 /* CONFIG_W command */
MBOX2 = 0x00 /* Starting at Offset 0 which is the config for MB4 */
MBOX3 = 0x0C /* Number of bytes to write 12 bytes */
MBOX4 = 0x06 /* APP_ID_MBOX4 0x06 - AFE APP_ID = 0x06 */
MBOX5 = 0x00 /* Byte_ID_MBOX4 Data - X MSB */
MBOX6 = 0x06 /* APP_ID_MBOX5 */
MBOX7 = 0x01 /* Byte_ID_MBOX5 Data - X LSB */
MBOX8 = 0x06 /* APP_ID_MBOX6 */
MBOX9 = 0x02 /* Byte_ID_MBOX6 Data - Y MSB */
MBOX10 = 0x06 /* APP_ID_MBOX7 */
MBOX11 = 0x03 /* Byte_ID_MBOX7 Data - Y LSB */
MBOX12 = 0x06 /* APP_ID_MBOX8 */
MBOX13 = 0x04 /* Byte_ID_MBOX8 Data - Z MSB */
MBOX14 = 0x06 /* APP_ID_MBOX9 */
MBOX15 = 0x05 /* Byte_ID_MBOX9 Data Z - LSB */



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

74 Freescale Semiconductor, Inc.

7.3 Mailbox status registers
There are no status registers for this application.

7.4 Reading aggregated data (Legacy mode - Quick read)
Once the MBOX application is configured and the device is set to Legacy communication mode, the 
aggregated data can be read.

Assuming that the MBOX application was set up as show in Section 7.2.2, “Configuring XYZ data”, the 
X, Y, and Z acceleration data output will be available in mailboxes 4 through 9, through the normal 
command/response Communications Interface.

If the host needs to just read the data without the finer control of the command/response model, the 
MMA955xL can be put into Legacy mode. This assigns the desired data to registers in the Quick-Read 
section of the Mailbox registers (MB20-MB31).

In Legacy mode, the lower mailbox registers continue to operate in the command/response mode and the 
upper registers operate in the Quick-Read mode. The data in the Quick-Read registers is automatically 
updated, so a read-request command is not required before reading the data form the upper mailboxes.

The following examples show how to wake up the device, configure it for quick-reading the 
low-passed-filtered XYZ data, enable the Legacy mode, and read the data.

The MMA955xL platform comes out of reset in the Low-Power or Sleep mode. In order to start the AFE 
application and start collecting samples, the MMA955xL must be brought out of Sleep mode and into Run 
mode

This example shows how to disable Sleep mode and enable Wake mode.

Example 7-2. 

MBOX0 = 0x12 /* Host communicating to Sleep/Wake Application */
MBOX1 = 0x20 /* CONFIG_Write command */
MBOX2 = 0x06 /* Starting at Offset 0x6 */
MBOX3 = 0x01 /* Number of bytes to write 1 byte */
MBOX4 = 0x00 /* Write 0x00 which wakes up the device */

Bytes to Send: 0x12, 0x20, 0x06, 0x01, 0x00 

The AFE application (APP_ID 0x06) provides the XYZ accelerometer data with output registers 0 through 
5 containing the FRONTEND_Stage_0 XYZ data. By default, the Quick-Read registers (MB26-MB31) 
are assigned 0x00 Analog Front End Stage 0 - X MSB.

The AFE application, however, provides XYZ, low-pass-filtered data in registers 0x18 through 0x1D 
(FRONTEND_488_100_LPF). To quickly read this data, the Quick-Read mailbox registers would have to 
be configured so that they are populated with the low-passed-filtered, XYZ data.

The following example shows how a host would direct the MMA955xL device to set up quick-read 
mailboxes to contain the following, FRONTEND_488_100_LPG XYZ data:



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 75

• Data X to mailboxes 26 and 27

• Data Y to mailboxes 28 and 29

• Data Z to mailboxes 30 and 31

Example 7-3. 

MBOX0 = 0x04 /* Host communicating to MBOX Application */
MBOX1 = 0x20 /* CONFIG_W command */
MBOX2 = 0x2C /* Starting at Offset 0x2C, the configuration starting point for MB26 */
MBOX3 = 0x0C /* Number of bytes to write 12 bytes */
MBOX4 = 0x06 /* APP_ID_MBOX26 = 0x06 - AFE APP_ID = 0x06 */
MBOX5 = 0x18 /* Byte_ID_MBOX26 = 0x18 - LPF Data starts at register 0x18 - X MSB */
MBOX6 = 0x06 /* APP_ID_MBOX27 */
MBOX7 = 0x19 /* Byte_ID_MBOX27 Data - X LSB */
MBOX8 = 0x06 /* APP_ID_MBOX28 */
MBOX9 = 0x1A /* Byte_ID_MBOX28 Data - Y MSB */
MBOX10 = 0x06 /* APP_ID_MBOX29 */
MBOX11 = 0x1B /* Byte_ID_MBOX29 Data - Y LSB */
MBOX12 = 0x06 /* APP_ID_MBOX30 */
MBOX13 = 0x1C /* Byte_ID_MBOX30 Data - Z MSB */
MBOX14 = 0x06 /* APP_ID_MBOX31 */
MBOX15 = 0x1D /* Byte_ID_MBOX31 Data Z - LSB */

Bytes to send: 0x04, 0x20, 0x2C, 0x0C, 0x06, 0x18, 0x06, 0x19, 0x06, 0x1A, 0x06, 0x1B, 0x06, 0x1C, 
0x06, 0x1D.

The host then must configure the Mailbox application to operate in Legacy mode, as shown in the 
following example.

Example 7-4. 

1. MB0 = 0x18.

Sets the “APP_ID: Mailbox Mode Config” application identifier (0x18).
2. MB1 = 0x20.

Sets the “Command: Write Config” (0x20).
3. MB2 = 0x00.

Sets the Offset to Zero field (0x00) to point to the configuration register.
4. MB3 = 0x01.

Sets the Count field to 0x01 because only one data byte needs to be sent.
5. MB4 = 0x10.

Sets the DATA value to 0x10, which sets the LEGACY field to 1b or Legacy mode.

Bytes to send: 0x18, 0x20, 0x00, 0x01, 0x10.

The MMA955xL platform now is set to Legacy mode and the Quick-Read registers are being constantly 
updated with the low-passe-filtered, AFE data.



Mailbox Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

76 Freescale Semiconductor, Inc.

All that remains is the issuing of a command to read the six bytes starting at MB26, which contains the 
XYZ data in constant-read mode.

In the following example, “0x__” represents the data that is sent back to the host.

Example 7-5. 

MBOX0 = 0x04 /* Host communicating to MBOX Application */
MBOX1 = 0x30 /* Read Output Data command */
MBOX2 = 0x1A /* Starting at Offset 0x1A, the hexadecimal offset for mailbox 26 */
MBOX3 = 0x06 /* Number of bytes to read 6 bytes two bytes each for X, Y, andZ*/
MBOX4 = 0x__ /* MSB  - X */
MBOX5 = 0x__ /* LSB - X */
MBOX6 = 0x__ /* MSB - Y */
MBOX7 = 0x__ /* LSB - Y */
MBOX8 = 0x__ /* MSB - Z */
MBOX9 = 0x__ /* LSB - Z*/

Bytes to send: 0x04, 0x30, 0x1A, 0x06, 0x__, 0x__, 0x__, 0x__, 0x__, 0x__.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 77

Chapter 8 Analog Front End Application

8.1 Overview of Analog Front End application
The Analog Front End application (AFE) samples raw accelerometer data 
from the analog-to-digital converter (ADC) at the execution rate of the 
application, applies factory and user trim correction terms, and filters data 
to several configurable bandwidths.

Figure 8-1. Front-end signal processing

Application
ID 0x06

Default speed 488 Hz

Configuration 
registers

Start on 
page 83.

Status 
registers

Start on 
page 87.

Analog Front End

34
ADC data

Sample rate

Offset 
correction

Scale 
correction

Anti-aliasing 
filter

Normalize

Configurable, low-pass 
filter

Configurable,
low-pass filter

Anti-aliasing
filter

ABS

Configurable,
high-pass filter

Temperature output

External input 
conversion

1:2

Outputs

Raw

488/100 Hz

Normalized

488/100 Hz

Normalized
244/50 Hz

Absolute value
488/100 Hz

Normalized 488 Hz / 
Low-pass filter

Normalized 488 Hz / 
High-pass filter

Temperature

External



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

78 Freescale Semiconductor, Inc.

8.1.1 Sample rate

The rate at which the ADC samples the accelerometer data is defined by the sfd_rate register, which is 
offset 0x0C in the configuration registers of this application. The sample rate can be changed from 488 Hz 
to 3.81 Hz by setting the appropriate value in the sfd_rate register. For more details, see Example 8-12 on 
page 86 and Table 8-13 on page 86.

NOTE
Although the sample rate can be changed in the hardware, it is 
recommended that the 488-Hz sample rate not be changed because the 
system’s other applications expect the sample rate to be 488 Hz.

8.1.2 Offset and scale correction

The AFE’s offset and scale correction stages of the signal chain applies trim offset and scaling correction 
factors which were measured at factory calibration and stored inside each device. Since user offsets are 
defined at 8-g resolution, those offsets are shifted according to the g mode.

User offsets are used to calibrate and compensate for the physical mounting of the part inside the final 
product. After board mount and assembly, the final test process may include a test to fine tune and 
compensate the accelerometer orientation.

8.1.3 Anti-aliasing filter

After trim correction, the front end uses a sixth-order Chebyshev filter, running at 488 Hz, to limit the 
signal bandwidth to 100 Hz.

Figure 8-2. Frequency response of Analog Front End anti-aliasing filter



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 79

The bandwidth of the anti-aliasing filter depends on the sample rate at which the front end application is 
running. The following table shows the variation of the filter bandwidth according to the sample rate.

8.1.4 Raw data

The output of the sensor is a 16-bit, signed value. The sensor always uses all the bits for high accuracy. 
Depending on the range setting—either 2, 4, or 8 g mode—the output value per g changes.

The following table shows the full scale value at the different g ranges, as well as the value of a measured 
1g acceleration at the different g ranges.

8.1.5 Normalization

The filtered data is shifted according to the g mode to normalize the resolution to the 8-g range. The 
normalized data allows for common handling of the data in the other applications. Data is normalized so 
that 1-g force acceleration shows output of 0x1000 counts or 4096 decimal counts.

Table 8-1. Anti-aliasing filter bandwidth for different sample rates

 Sample rate
Stage-0 anti-aliasing Filter Stage-1 anti-aliasing Filter

Bandwidth (Hz) Bandwidth (Hz)

488.28 100 50

244.17 50 25

122.07 25 12.5

61.04 12.5 6.25

31.52 6.25 3.125

15.26 3.125 1.562

7.63 1.562 0.781

3.81 0.781 0.390

Table 8-2. Raw accelerometer output, according to g mode

Range Full scale
1-g 

acceleration

+/- 2g + 32K 16K

+/- 4g + 32K 8K

+/- 8g + 32K 4K



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

80 Freescale Semiconductor, Inc.

8.1.6 Down-sampling and stage-1, anti-aliasing filter

The output of the normalizer is down-sampled by two to generate data sampled at 244 Hz. The previous, 
sixth-order Chebyshev filter is applied to down-sampled (244 Hz) data, to create a 50-Hz bandwidth data 
stream.

Table 8-13 provides more details about the varying of the bandwidth, depending of the sample rate of the 
front-end application.

8.1.7 Absolute value

The absolute value of the sensor output is computed.

8.1.8 Configurable, low-pass and high-pass filters

First-order, low-pass and high-pass filters—with separate configurable cutoff frequencies at -3 dB—are 
provided.

Eqn. 8-1

Eqn. 8-2

Figure 8-3. Frequency response of configurable, high- and low-pass filters

The two following tables contain the cut-off frequency of the filters, varying with the value of K and the 
sample rate at which the front-end application is executed.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 81

Table 8-3. Cut-off frequency as a function of K and the sample rate for low-pass filter

K

LPF cut-off frequency (Hz)

Sample rate 
= 488.28

Sample rate 
= 244.14

Sample rate 
= 122.07

Sample rate 
= 61.04

Sample rate 
= 30.52

Sample rate 
= 15.26

Sample 
rate = 7.63

Sample rate 
= 3.81

1 56.13 28.07 14.03 7.02 3.51 1.75 0.88 0.4385

2 22.50 11.25 5.62 2.81 1.40 0.70 0.3516 0.1758

3 10.39 5.19 2.60 1.30 0.65 0.32 0.1623 0.0811

4 5.014 2.51 1.25 0.63 0.31 0.16 0.0783 0.0392

5 2.47 1.23 0.62 0.31 0.15 0.08 0.0385 0.0193

6 1.22 0.6116 0.31 0.15 0.08 0.04 0.0191 0.0096

7 0.61 0.30 0.15 0.08 0.04 0.02 0.0095 0.0048

8 0.30 0.15 0.08 0.04 0.02 0.01 0.0048 0.0024

9 0.15 0.076 0.04 0.02 0.01 0.0047 0.0024 0.0012

10 0.0759 0.038 0.019 0.0095 0.0047 0.0024 0.0012 0.0006

11 0.0379 0.019 0.0095 0.0047 0.0024 0.0012 0.0006 0.0003

12 0.019 0.0095 0.0048 0.0024 0.0012 0.0006 0.0003 0.0001

13 0.0095 0.0048 0.0024 0.0012 0.0006 0.0003 0.0001 0.00007

14 0.0047 0.0024 0.0012 0.0006 0.0003 0.0001 0.0007 0.00004

15 0.0024 0.0012 0.0006 0.0003 0.0002 0.00008 0.00004 0.00002



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

82 Freescale Semiconductor, Inc.

Table 8-4. Cut-off frequency as a function of K and the sample rate for high-pass filter

K

HPF cut-off frequency (Hz)

Sample rate = 
488.28

Sample rate = 
244.14

Sample rate = 
122.07

Sample rate 
= 61.04

Sample rate 
= 30.52

Sample rate 
= 15.26

Sample rate 
= 7.63

Sample rate = 
3.81

1 31.932 15.966 7.9831 3.9915 1.9958 0.9979 0.4989 0.2495

2 17.405 8.7023 4.3511 2.1756 1.0878 0.5439 0.2719 0.136

3 9.1573 4.5787 2.2893 1.1447 0.5723 0.2862 0.1431 0.0715

4 4.7092 2.3546 1.1773 0.5887 0.2943 0.1472 0.0736 0.0368

5 2.3912 1.1956 0.5978 0.2989 0.1495 0.0747 0.0374 0.0187

6 1.2054 0.6027 0.3014 0.1507 0.0753 0.0377 0.0188 0.0094

7 0.6051 0.3026 0.1513 0.0756 0.0378 0.0189 0.0095 0.0047

8 0.3026 0.1513 0.0757 0.0378 0.0189 0.0095 0.0047 0.0024

9 0.1513 0.0757 0.0378 0.0189 0.0095 0.0047 0.0024 0.0012

10 0.0756 0.0378 0.0189 0.0095 0.0047 0.0024 0.0012 0.0006

11 0.039 0.0195 0.0098 0.0049 0.0024 0.0012 0.0006 0.0003

12 0.0195 0.0098 0.0049 0.0024 0.0012 0.0006 0.0003 0.0002

13 0.0098 0.0049 0.0025 0.0012 0.0006 0.0003 0.0002 8E-05

14 0.0049 0.0025 0.0012 0.0006 0.0003 0.0002 8E-05 4E-05

15 0.0024 0.0012 0.0006 0.0003 0.0002 8E-05 4E-05 2E-05



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 83

8.2 AFE configuration registers

8.2.1 afe_csr

Table 8-5. afe_csr registers

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field
FS Ext

ADC
Tem

p
CM Reserved Reserved

Reset 0x00 0 0 0x00 0x00 0x00

Table 8-6. afe_csr bit descriptions

Field Description

FS Full-scale selection. AFE_CSR[FS] and AFE_BIAS[SC_AAF_EN] are combined to control AFE gain and 
tgrim mode.
Units: Note.
Range of values: For valid values, see the MMA955xL 3-Axis Accelerometer Reference Manual 
(MMA955xLRM).

Ext ADC Specifies whether an external input will be measured during the next analog acquisition phase.
Note: The ExtADC and Temp bits must not be set at the same time.

Units: None.
 • 0: No external input is measured during the next analog acquisition phase.
 • 1: Enables the four AFE channels to measure the external analog input during the next analog 

acquisition phase.

Temp Specifies whether the temperature sensor output will be measured during the next analog acquisition 
phase.
Note: The ExtADC and Temp bits must not be set at the same time.
Units: None.
Temperature will change slowly so it can be measured with a very low sample rate (1Hz or less) by 
occasionally replacing an external ADC measurement with the Temperature ADC measurement. This 
could be done with a customized user application.
Range of valid values: For valid values for FS and CM parameters, see the MMA955xL 3-Axis 
Accelerometer Reference Manual (MMA955xLRM).
 • 0: No temperature sensor output will be measured during the next analog acquisition phase.
 • 1: The temperature sensor output will be measured during the next analog acquisition phase.

CM Conversion Mode. Controls the ADC resolution/accuracy versus power and conversion time trade-offs.
Units: None
 • 00: Conversion complete in 32 cycles
 • 01: Conversion complete in 16 cycle
 • 10: Conversion complete in eight cycles
 • 11: Conversion complete in four cycles

Reserved Bit field reserved.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

84 Freescale Semiconductor, Inc.

8.2.2 user_offset [XYZ]

Often, due to the user manufacturing process, the accelerometer sensor is not mounted perfectly flat to the 
board and may also be rotated slightly. This register enables a user to make an after-manufacturing 
calibration correction.

Table 8-7. user_offset [XYZ] registers

Offset 0x02(MSB) 0x03(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field user_offset[X] user_offset[X][

Reset 0xFF 0xFF

Offset 0x04(MSB) 0x05(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field user_offset[Y] user_offset[Y]

Reset 0xFF 0xFF

Offset 0x06(MSB) 0x07(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field user_offset[Z] user_offset[Z]

Reset 0xFF 0xFF

Table 8-8. user_offset [XYZ] bit descriptions

Field Description

user_offset[XYZ] Sets user offsets in the X, Y, and Z axes for the accelerometer, depending on the position on the device in 
the user board. These values are considered as post-mount offsets.
Units: 0.244 mg/LSB.
Range of valid values: -32,768 to 32,767.
Reset value: 0xFF which is interpreted as -1.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 85

8.2.3 config_k

This register’s bits are shown in the following table.

Table 8-9. config_k registers

Offset 0x08 0x09

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field config_k[HIGHPASS] config_k[LOWPASS]

Reset 0x00 0x00

Offset 0x0A 0x0B

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field config_k[TEMP_LPF] config_k[EIC_LPF]

Reset 0x00 0x00

Table 8-10. config_k bit descriptions

Field Description

config_k
[HIGHPASS]

High-pass filter configurable cutoff.
Units: None.
Range of valid values: 0 to 15.

config_k
[LOWPASS]

Low-pass filter configurable cutoff.
Units: None.
Range of valid values: 0 to 15.

config_k
[TEMP_LPF]

Low-pass filter, configurable cutoff for temperature sensor output.
Units: None.
Range of valid values: 0 to 15.

config_k
[EIC_LPF]

Low-pass filter, configurable cutoff for external input conversion output.
Units: None.
Range of valid values: 0 to 15.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

86 Freescale Semiconductor, Inc.

8.2.4 sfd_rate

This register’s bits are shown in the following table. The system defaults to 488 Hz, so this document 
assumes that is the rate being run. If the user slows down the rate by changing the sfd_rate register, all 
references to 488 Hz or the system frame rate will scale accordingly.

Table 8-11. sfd_rate register

Offset 0x0C

Bit 7 6 5 4 3 2 1 0

Field sfd_rate

Reset 0 0 0 0 0 1 1 1

Table 8-12. sfd_rate bit description

Field Description

sfd_rate Defines the system frame interval, the time period for each sample or the system sample rate in Hz.
Units: None.
Range of valid values: 7 to 14. Table 8-12 shows the relation between the register value and the interval 
between each frame.

Table 8-13. Frame interval, according to the sfd_rate value

sfd_rate value Time frame (s) Max frames per second

7 2.05E-3 488.28

8 4.10E-3 244.17

9 8.19E-3 122.07

10 1.64E-2 61.04

11 3.28E-2 30.52

12 6.55E-2 15.26

13 1.31E-1 7.63

14 2.62E-1 3.81



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 87

8.3 AFE status registers

8.3.1 output[FRONTEND_Stage_0][XYZ]

These registers’ bits are shown in the following table.

Table 8-14. output[FRONTEND_Stage_0][XYZ] registers

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0][X] output[FRONTEND_Stage_0][X]

Reset 0x00 0x00

Offset 0x02(MSB) 0x03(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0][Y] output[FRONTEND_Stage_0][Y]

Reset 0x00 0x00

Offset 0x04(MSB) 0x05(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0][Z] output[FRONTEND_Stage_0][Z]

Reset 0x00 0x00

Table 8-15. output[FRONTEND_Stage_0][XYZ] bit description

Field Description

output
[FRONTEND_Stage_0]

[XYZ]

Normalized accelerometer data sampled at the default rate of 488 Hz, with a 100-Hz 
bandwidth.
Units: 0.244 mg/LSB.
Range of valid values: -32,768 to 32,767.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

88 Freescale Semiconductor, Inc.

8.3.2 output[FRONTEND_Stage_1][XYZ]

These registers’ bits are shown in the following table.

Table 8-16. output[FRONTEND_Stage_1][XYZ] registers

Offset 0x06(MSB) 0x07(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_1][X] output[FRONTEND_Stage_1][X]

Reset 0x00 0x00

Offset 0x08(MSB) 0x09(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_1][Y] output[FRONTEND_Stage_1][Y]

Reset 0x00 0x00

Offset 0x0A(MSB) 0x0B(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_1][Z] output[FRONTEND_Stage_1][Z]

Reset 0x00 0x00

Table 8-17. output[FRONTEND_Stage_1][XYZ] bit description

Field Description

output
[FRONTEND_Stage_1]

[XYZ]

Normalized accelerometer data sampled at the default rate of 244 Hz, with a 50-Hz bandwidth.
Units: 0.244 mg/LSB.
Range of valid values: -32,768 to 32,767.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 89

8.3.3 output[FRONTEND_Stage_0_ABS][XYZ]

These registers’ bits are shown in the following table.

Table 8-18. output[FRONTEND_Stage_0_ABS][XYZ] registers

Offset 0x0C(MSB) 0x0D(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_ABS][X] output[FRONTEND_Stage_0_ABS][X]

Reset 0x00 0x00

Offset 0x0E(MSB) 0x0F(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_ABS][Y] output[FRONTEND_Stage_0_ABS][Y]

Reset 0x00 0x00

Offset 0x10(MSB) 0x11(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_ABS][Z] output[FRONTEND_Stage_0_ABS][Z]

Reset 0x00 0x00

Table 8-19. output[FRONTEND_Stage_0_ABS][XYZ] bit description

Field Description

output
[FRONTEND_Stage_0_ABS]

[XYZ]

Absolute value normalized accelerometer data sampled at the default rate of 488 Hz, with a 
100-Hz bandwidth.
Units: 0.244 mg/LSB.
Range of valid values: 0 to 32,767.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

90 Freescale Semiconductor, Inc.

8.3.4 output[FRONTEND_Stage_0_GM][XYZ]

These registers’ bits are shown in the following table.

Table 8-20. output[FRONTEND_Stage_0_GM][XYZ] registers

Offset 0x12(MSB) 0x13(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_GM][X] output[FRONTEND_Stage_0_GM][X]

Reset 0x00 0x00

Offset 0x14(MSB) 0x15(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_GM][Y] output[FRONTEND_Stage_0_GM][Y]

Reset 0x00 0x00

Offset 0x16(MSB) 0x17(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_GM][Z] output[FRONTEND_Stage_0_GM][Z]

Reset 0x00 0x00

Table 8-21. output[FRONTEND_Stage_0_GM][XYZ] bit description

Field Description

output
[FRONTEND_Stage_0_GM]

[XYZ]

Raw accelerometer data sampled at the default rate of 488 Hz, with a 100-Hz bandwidth. The 
resolution depends on the g-mode setting configured by afe_csr[fs].
Units:
 • 2g mode: 0.061 mg/LSB
 • 4g mode: -.122 mg/LSB
 • 8g mode: 0.244 mg/LSB
Range of valid values:
 • +/- 2g Mode: 0.061mg/LSB = -32768 to 32767
 • +/- 4g Mode: 0.122mg/LSB = - 8192 to 8192
 • +/- 8g Mode: 0.244mg/LSB = -4096 to 4096 



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 91

8.3.5 output[FRONTEND_Stage_0_LPF][XYZ]

These registers’ bits are shown in the following table.

Table 8-22. output[FRONTEND_Stage_0_LPF][XYZ] registers

Offset 0x18(MSB) 0x19(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_LPF][X] output[FRONTEND_Stage_0_LPF][X]

Reset 0x00 0x00

Offset 0x1A(MSB) 0x1B(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_LPF][Y] output[FRONTEND_Stage_0_LPF][Y]

Reset 0x00 0x00

Offset 0x1C(MSB) 0x1D(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_LPF][Z] output[FRONTEND_Stage_0_LPF][Z]

Reset 0x00 0x00

Table 8-23. output[FRONTEND_Stage_0_LPF][XYZ] bit description

Field Description

output
[FRONTEND_Stage_0_LPF]

[XYZ]

Normalized accelerometer data sampled at the default rate of 488 Hz mode, with configurable, 
low-pass filter cutoff.
Units: 0.244 mg/LSB.
Range of valid values: -32,768 to 32,767.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

92 Freescale Semiconductor, Inc.

8.3.6 output[FRONTEND_Stage_0_HPF][XYZ]

These registers’ bits are shown in the following table.

Table 8-24. output[FRONTEND_Stage_0_HPF][XYZ] registers

Offset 0x1E(MSB) 0x1F(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_HPF][X] output[FRONTEND_Stage_0_HPF][X]

Reset 0x00 0x00

Offset 0x20(MSB) 0x21LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_HPF][Y] output[FRONTEND_Stage_0_HPF][Y]

Reset 0x00 0x00

Offset 0x22(MSB) 0x23(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output[FRONTEND_Stage_0_HPF][Z] output[FRONTEND_Stage_0_HPF][Z]

Reset 0x00 0x00

Table 8-25. output[FRONTEND_Stage_0_HPF][XYZ] bit description

Field Description

output
[FRONTEND_Stage_0_HPF]

[XYZ]

Normalized accelerometer data sampled at the default rate of 488 Hz mode, with configurable, 
high-pass filter cutoff.
Units: 0.244 mg/LSB.
Range of valid values: -32,768 to 32,767.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 93

8.3.7 output_temp

This register’s bits are shown in the following table.

8.3.8 output_EIC

This register’s bits are shown in the following table.

Table 8-26. output_temp registers

Offset 0x24(MSB) 0x25(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output_temp output_temp

Reset 0x00 0x00

Table 8-27. output_temp bit description

Field Description

output_temp Temperature sensor output measurement.
Units: ADC counts.
Range of valid values: -32,768 to 32,767.

Table 8-28. output_EIC registers

Offset 0x26(MSB) 0x27(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field output_EIC output_EIC

Reset 0x00 0x00

Table 8-29. output_EIC bit description

Field Description

output_EIC Output of the external, analog-input conversion value.
Units: 3.472 mV/LSB.
Range of valid values: -32,768 to 32,767.



Analog Front End Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

94 Freescale Semiconductor, Inc.

8.3.9 frame_counter

This register’s bits are shown in the following table.

The frame_counter register also can be read with the Frame Counter application. See Chapter 13, “Frame 
Counter Application” on page 135.

Table 8-30. frame_counter registers

Offset 0x28(MSB) 0x29(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field frame_counter frame_counter

Reset 0x00 0x00

Table 8-31. output_EIC bit description

Field Description

frame_counter Provides the number of frames that have been processed at the configured sample rate. It is not a 
real-time representative because the time that the device remains in the stop mode is not taken into 
account.
The frame counter will restart at zero when it reaches 65,535.
Units: Non-dimensional.
Range of valid values: 0 to 65,535.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 95

Chapter 9 Portrait/Landscape Application

9.1 Overview of Portrait/Landscape application
The Portrait/Landscape (PL) application detects positions in two and three 
dimensions. In the two-dimensional X/Y plane, it determines whether the 
device orientation is portrait up or portrait down and landscape right or 
landscape left (PU, PD, LR, and LL, respectively). In the third, z-axis 
dimension, the application detects whether the device is facing front or 
facing back.

The PL application uses outputs from the Tilt application (APP_ID = 0x0B) 
to determine the position of the device.

This application assumes a specific mounting of the MMA955xL platform on a board. The meanings of 
up, down, front, and back can change with the device’s mounting on the board.

The following figure shows PL orientations in the X/Y plane:.

Figure 9-1. Portrait and landscape detection in the X/Y plane

The preceding figure shows the axes at which the landscape and portrait positions are detected and the 
polarities of those positions. The angles of the axes are configurable.

The region between the landscape and portrait axes is the hysteresis area where the previous state remains 
reported until the second axis is crossed.

Application
ID 0x07

Default speed 122 Hz

Configuration 
registers

Start on 
page 98.

Status 
registers

Start on 
page 102.

+Y

-Y

+X-X

PU

PD

LL LR

(X,  Y)

PU (0 , +Y)
PD (0, -Y)
LR (-X, 0)
LL (+X, 0)

Landscape_angle

Portrait_angle

Hysteresis area



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

96 Freescale Semiconductor, Inc.

The PL application determines the position by comparing the X/Y angle, obtained from the tilt application, 
with landscape and portrait configured angles. The application uses the quadrant value to select direction 
up or down, for portrait, or right or left, for landscape.

The following figure shows the package orientation and measured values reported by the tilt application. 
In the Portrait Up orientation, both X and Z axes read 0g and the Y axis reads back the equivalent of -1g.

Figure 9-2. Sensing direction and output response

Top view
Portrait Up

Earth gravity

Pin 1

Xout @ 0g
Yout @ -1g
Zout @ 0g

Xout @ 1g
Yout @ 0g
Zout @ 0g

Xout @ 0g
Yout @ 1g
Zout @ 0g

Xout @ -1g
Yout @ 0g
Zout @ 0g

Landscape Left

Portrait Down

Landscape Right
Side view

Front

Xout @ 0g
Yout @ 0g
Zout @ 1g

Back

Xout @ 0g
Yout @ 0g
Zout @ -1g



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 97

Figure 9-3. Angles for portrait and landscape detection

The 3D detection for back or front is done using the sign of the z axis. The PL application returns positive 
z for the back orientation and a negative z for front orientation.

Portrait

Landscape-to-Portrait

90°

Trip angle = 60°

0° Landscape

Portrait

Portrait-to-Landscape

90°

Trip angle =30°

0° Landscape

Non-Lockout
0°

Lockout

90° Lockout

Trip angle = 30°



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

98 Freescale Semiconductor, Inc.

9.2 Portrait/Landscape configuration registers

9.2.1 threshold_tilt

9.2.2 landscape_angle

Table 9-1. threshold_tilt register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field threshold_tilt

Reset 0 0 1 0 0 0 1 1

Table 9-2. threshold_tilt bit description

Field Description

threshold_tilt Determines the angle of the Z axis at which the application enters and exits the lock-out state.
Units: Degrees.
Range of valid values: 0 to 90.

Table 9-3. landscape_angle register

Offset 0x01

Bit 7 6 5 4 3 2 1 0

Field landscape_angle

Reset 0 0 1 0 1 1 0 0

Table 9-4. landscape_angle Bit Description

Field Description

landscape_angle Determines the angle in the X/Y plane at which the application changes between portrait and landscape.
Units: Degrees.
Range of valid values: 0 to 90.



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 99

9.2.3 portrait_angle

9.2.4 debounce_count

Table 9-5. portrait_angle register

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Field portrait_angle

Reset 0 0 1 0 1 1 0 1

Table 9-6. portrait_angle bit description

Field Description

portrait_angle Determines the angle in the X/Y plane at which the application changes between landscape and portrait.
Units: Degrees.
Range of valid values: 0 to 90.

Table 9-7. debounce_count register

Offset 0x03

Bit 7 6 5 4 3 2 1 0

Field debounce_count

Reset 0 0 1 0 0 0 0 0

Table 9-8. debounce_count bit description

Field Description

debounce_count Sets the number of continuous counts required in a state before changing to the new state. This avoids 
false decisions of position for high frequencies.
Units: Samples.
Range of valid values: 0 to 255.



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

100 Freescale Semiconductor, Inc.

9.2.5 hysteresis_LO

9.2.6 hysteresis_BAFRO

Table 9-9. hysteresis_LO register

Offset 0x04

Bit 7 6 5 4 3 2 1 0

Field hysteresis_LO

Reset 0x00

Table 9-10. hysteresis_LO bit description

Field Description

hysteresis_LO Configures the hysteresis for the lockout state.
Units: Degrees.
Range of valid values: 5 to 40.

Table 9-11. hysteresis_BAFRO register

Offset 0x05

Bit 7 6 5 4 3 2 1 0

Field hysteresis_BAFRO

Reset 1 0 1 0 1 1 1 1

Table 9-12. hysteresis_BAFRO bit description

Field Description

hysteresis_BAFRO Configures the hysteresis for back and front angle transition. This value can be calculated, based on the 
desired angle, using the following formula: 

Where the desired angle is between 0 and 30°.
Units: Non-dimensional.
Range of valid values: 0 to 255.

hysteresis_BAFRO desired angle( ) 4096⋅sin( )
8

----------------------------------------------------------------------=



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 101

9.2.7 cfg

Table 9-13. cfg register

Offset 0x06

Bit 7 6 5 4 3 2 1 0

Field PLFDE PL_EN BKFR_EN — DBCNTM —

Reset 0 1 1 0 0 0

Table 9-14. cfg bit descriptions

Field Description

PLFDE Indicates if an event is saved into the Event Q.
 • 0: No event saved to Event Q.
 • 1: Event saved to Event Q.

PL_EN Enables 2D functionality.
 • 0: 2D not enabled.
 • 1: 2D enabled

BKFR_EN Enables 3D functionality.
 • 0: 3D not enabled.
 • 1: 3D enabled

— Reserved.

DBCNTM Debounce counter mode.
 • 0: The debounce counter decrements when the condition is no longer valid.
 • 1: The counter clears when the condition is no longer valid.

— Reserved.



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

102 Freescale Semiconductor, Inc.

9.3 Portrait/Landscape status registers

9.3.1 PL_Out

Table 9-15. PL_Out register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field Evnt Lock * LAPO BAFRO

Reset 0 0 0 0x00 0x00

Table 9-16. PL_Out bit descriptions

Field Description

Evnt Reports a PL event.
 • 0: No event detected.
 • 1: PL change orientation event detected.

Lock Reports a z-tilt angle lockout
 • 0: Lockout condition has not been detected.
 • 1: Z-tilt lockout trip angle has been exceeded. Lockout has been detected .

LAPO Reports a new portrait/landscape orientation event.
 • 000: Undefined. The default, power-up state.
 • 001: Portrait up – Device is standing vertically in the normal orientation.
 • 010: Portrait down – Device is standing vertically in the inverted orientation.
 • 011: Landscape right – Device is in the landscape mode to the right.
 • 100: Landscape left – Device is in the landscape mode to the left.

BAFRO Reports a new back or front orientation event.
 • 00: Undefined – This is the default power up state.
 • 01: Front – Device is in the front-facing orientation.
 • 10: Back – Device is in the back-facing orientation.



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 103

9.3.2 Programming example

The following example shows how the PL application could be connected to a GPIO pin. In the code, the 
PL application is APP_ID = 0x07 and the bit that indicates an orientation changes is bit 7 of the PL 
application’s status register.

If the user wants to toggle GPIO Pin 8 whenever an orientation change is detected, the example shows what 
a host should send to the MMA955xL device to create this configuration.

Example 9-1. Connecting the PL application to a GPIO pin

MBOX0 = 0x03 /*GPIO Application ID*/
MBOX1 = 0x20 /*CONFIG_W command*/
MBOX2 = 0x04 /*Starting at Offset 4 for the GPIO 8 registers*/
MBOX3 = 0x02 /*Number of bytes to write 12 bytes*/
MBOX4 = 0x07 /*APP_ID_GPIO8 =  0x07 for the PL Application */
MBOX5 = 0x07 /* SR_bitnum_GPIO8 = 0x07 for the 7th bit in the PL Application

 status which is the PL Event.*/



Portrait/Landscape Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

104 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 105

Chapter 10 High-g/Low-g Application

10.1 Overview of High-g/Low-g application
This application reads the acceleration values of each axis, tests the value 
for each axis, and determines if the value is above the high-g threshold or 
below the low-g threshold. The application outputs a bit for each axis value 
detected as low-g or high-g. The application also outputs a bit with the 
high-g flags ORed or ANDed and one bit for the low-g flags ORed or 
ANDed.

High-g and low-g thresholds are configurable by the user.

The High-g/Low-g application uses the 3-axis data from the accelerometer and transforms it into absolute 
values. These values are used to determine if any of the axes values are above the high-g threshold or 
below the low-g threshold.

For user convenience, this application appears at both APP_IDs 0x08 and 0x09. The High-g and Low-g 
configurations and outputs are all in the same registers, at both of the APP_IDs.

The following figure shows the high-g/low-g block diagram.

Figure 10-1. High-g and low-g signal-flow diagram

Application
ID

0x08 (high)
0x09 (low)

Default speed 244 Hz

Configuration
registers

Start on 
page 108.

Status 
registers

Start on 
page 115.

High-g/Low-g application

Sensor
data

Absolute
(x, y, z) Decision logic

low_g_x_flag

low_g_y_flag

low_g_z_flag

AND/OR low g flag

high_g_x_flag

high_g_y_flag

high_g_z_flag

low_g_thresh

high_g_thresh

low_g_cnt_min

high_g_cnt_min

Outputs

Inputs



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

106 Freescale Semiconductor, Inc.

When the signal goes above the high-g threshold for the minimum number of times configured in the 
high_g_cnt_min register, the application detects a high-g condition for the single axis. When the signal 
goes below the low-g threshold for the minimum number of times configured in the low_g_cnt_min 
register, a low-g condition is detected for a single axis.

When the high-g/low-g condition is detected, logic starts incrementing a debounce counter. If the signal is 
no longer detected as high-g or low-g and the counter did not reach the high_g_cnt_min/ low_g_cnt_min 
value, the counter is cleared or decremented according to what is configured in the DBCNT bit of the 
configuration register.

The following figure shows the described behavior.

Figure 10-2. DBCNT bit function

High/low-g condition

Count threshold

Debounce count value

LGE / HGE

High/low-g condition

Count threshold

Debounce count value

LGE / HGE

High/low-g condition

Count threshold

Debounce count value

LGE / HGE

a)

DBCNT = 0

b)

DBCNT = 1

c)



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 107

For the AND flag to be set, the application must detect all the enabled axes as a low-g signal or as a high-g 
signal at the same time. If this condition is not met, the AND flag will remain cleared even when one or 
more single-axis flags are set.

For the OR flag to be set, the application must detect at least one of the enabled axes as a low-g or high-g 
signal.

The HGOAE/LGOAE bits allow the selection between the logical OR or AND of the low-g/high-g X, Y, 
and Z signals.

The threshold registers are low_g_thresh/high_g_thresh. The values from these registers are used to 
determine if the raw data signal has met the conditions to be interpreted as a high-g/low-g signal.

The following figure shows the region where the signal is interpreted as a low-g and high-g signal.

Figure 10-3. Low-g/High-g thresholds

 + Full Scale 

X, Y, Z High g Region

No signal Region

X, Y, Z Low g Region

X, Y, Z Low g Region

No signal Region

X, Y, Z High g Region

- Full Scale 

High-g - Threshold 

High-g + Threshold 

Low-g + Threshold 

Low-g + Threshold 

0 g 

Positive 
acceleration 

Negative 
acceleration 



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

108 Freescale Semiconductor, Inc.

10.2 High-g/Low-g configuration registers

10.2.1 low_g_thresh

10.2.2 low_g_cnt_min

Table 10-1. low_g_thresh registers

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field low_g_thresh low_g_thresh

Reset 0 0 0 0 0 0 1 1 1 1 1 0 1 0 0 0

Table 10-2. low_g_thresh bit description

Field Description

low_g_thresh A 16-bit element that indicates the low-g threshold. Any measurement below the low-g threshold will be 
considered as a low-g event. This value applies to all three axes.
The reset value is 0x3E8 (decimal, 1000).
Units: Gravity units (1 ADC count = 244 µg).
Range of valid values: 1 (244 µg) to 32,767 (0x7FFF) for 8g.

Table 10-3. low_g_cnt_min registers

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Field low_g_cnt_min

Reset 0 0 0 0 1 0 0 0

Table 10-4. low_g_cnt_min bit description

Field Description

low_g_cnt_min An eight-bit number that sets the time that a signal must be kept below the low-g threshold in order to be 
considered as a low-g event. This value applies to all three axes.
Units: Algorithm cycles (Time = [low_g_cnt_min] * [1/SRLGHG]).
Range of valid values: from 1 to 255. Reset value is 0x08, which corresponds to about 33 ms (8 x 1/244 Hz).



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 109

10.2.3 low_g_cfg

0g detection example

The device powers up in Sleep mode, but it may become necessary to wake the part. This process uses the 
following mailboxes:

MB0 0x12 App_ID = 0x12; Power Controller modes

MB1 0x20 Command 0x2 = Write configuration; Offset = 0b

MB2 0x06 Offset = 0x06

MB3 0x01 Count of data to write

MB4 0x00 Actual Data Value: Clears the Sleep bit

Bytes to Send: 0x12, 0x20, 0x06, 0x01, 0x00.

Table 10-5. low_g_cfg registers

Offset 0x03

Bit 7 6 5 4 3 2 1 0

Field Reserved DBCNT LGOAE LGZEE LGYEE LGXEE

Reset 0x00 1 0 1 1 1

Table 10-6. low_g_cfg bit descriptions

Field Description

DBCNT Determines whether the debounce counter will be decremented or cleared.
Range of valid values: from 0 to 1.
 • 0: Clear the debounce counter.
 • 1: Decrement the debounce counter.

LGOAE Sets whether the low-g outputs will be ORed or ANDed.
Range of valid values: from 0 to 1.
 • 0: Selects logical AND combination of low-g X, Y, Z axes event flag.
 • 1: Selects logical OR combination of low-g X, Y, Z axes event flag.

LGZEE Enables or disables the low-g sensing for the Z axis. 
Range of valid values: from 0 to 1.
 • 0: Low-g event on Z axis disable.
 • 1: Low-g event on Z axis enable.

LGYEE Enables or disables the low-g sensing for the Y axis.
Range of valid values: from 0 to 1.
 • 0: Disables low-g event on Y axis.
 • 1: Enables low-g event on Y axis.

LGXEE Enables or disables the low-g sensing for the X axis.
Range of valid values: from 0 to 1.
 • 0: Disables low-g event on X axis.
 • 1: Enables low-g event on X axis.



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

110 Freescale Semiconductor, Inc.

Example 10-1. 

To configure the MMA955xL platform to detect 0g type events, write the following transaction to the 
High-g/Low-g application:

1. MB0: Set APP_ID to (0x09).

Selects the Low-g application.
2. MB1: Command to (0x20). 

Sends a Write Configuration space command.
3. MB2: Set offset to zero (0x00).

Starts writing configuration values at register 0.
4. MB3: Set count field to (0x04).

5. MB3: Send Data (0x03).

Sends 0x03E8, the 1000 decimal for the acceleration threshold.
6. MB3: Send Data (0xE8).

7. MB3: Send Data (0x08).

Specifies 33 ms.
8. MB3: Send Data (0x17).

Bytes to Send: 0x09, 0x20, 0x00, 0x04, 0x03, 0xE8, 0x08, 0x17.

To determine if the low-g event happened, read the Low g application’s status register. Send the following 
command to set up for reading the status register.

Example 10-2. 

1. MB0: Set APP_ID to (0x09).

Selects the Low-g application.
2. MB1: Command to (0x30).

Sends a Write Configuration space command
3. MB2: Set offset to zero (0x00).

Starts writing configuration values at register 0.
4. MB3: Set count field to (0x01).

Bytes to Send: 0x09, 0x30, 0x00, 0x01.

Keeping the device flat on the desk, note that only X and Y should report a low-g event. That is indicated 
by the two lower bits being set in the status register.

Now read the mailboxes. The expected response to these commands is:

09 80 01 01 03 

MB0: APP_ID = 0x09.

MB1: STATUS = 0x80.

Command Complete, no errors.



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 111

MB2: RequestedData count = 0x01.

MB3: Actual Data Count = 0x01.

MB4: Data = 0x03.

Only X and Y are showing a Low-g event.

At this point, the evaluation board was tossed up, so that it would go through a 0g event.

Request the status data by sending the following command to set up for reading the status register.

Example 10-3. 

1. MB0: Set APP_ID to (0x09).

Selects the Low-g application.
2. MB1: Command to (0x30).

Sends a Write Configuration space command.
3. MB2: Set offset to zero (0x00).

Starts writing configuration values at register 0.
4. MB3: Set count field to (0x01).

Bytes to Send: 0x09, 0x30, 0x00, 0x01.

Read the mailboxes. The expected response to these commands is:

09 80 01 01 0F 

MB0: APP_ID = 0x09.

MB1: STATUS = 0x80.

Command Complete, no errors.

MB2: RequestedData count = 0x01.

MB3: Actual Data Count= 0x01.

MB4: Data = 0x0F.

All axes—X, Y, and Z—and/or flags are set.



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

112 Freescale Semiconductor, Inc.

10.2.4 high_g_thresh

10.2.5 high_g_cnt_min

Table 10-7. high_g_thresh registers

Offset 0x04(MSB) 0x05(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field high_g_thresh high_g_thresh

Reset 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0 0

Table 10-8. high_g_thresh bit description

Field Description

high_g_thresh A 16-bit element that indicates the high-g threshold. Any signal above the high-g threshold will be considered 
a high-g signal. This value applies to all three axes.
Units: Gravity units (1 ADC count = 244 µg).
Range of valid values: 1 (244 µg) to 32,767 (0x7FFF) for 8g.

Table 10-9. high_g_cnt_min register

Offset 0x06

Bit 7 6 5 4 3 2 1 0

Field high_g_cnt_min

Reset 0 0 0 0 1 0 0 0

Table 10-10. high_g_cnt_min bit description

Field Description

high_g_cnt_min An eight-bit element that configures the time that a signal must be kept above the high-g threshold in order 
to be considered as a high-g signal.
Units: Algorithm cycles (Time = [Algorithm cycles] * [1/SRLGHG]).
Range of valid values: 1 to 255.



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 113

10.2.6 high_g_cfg

Table 10-11. high_g_cfg register

Offset 0x07

Bit 7 6 5 4 3 2 1 0

Field Reserved DBCNT HGOAE HGZEE HGYEE HGXEE

Reset 0x00 1 1 1 1 1

Table 10-12. high_g_cfg bit descriptions

Field Description

Reserved Bit field reserved.

DBCNT Determines if the debounce counter will be decremented or cleared.
Range of valid values: from 0 to 1.
 • 0: Clears the debounce counter.
 • 1: Decrements the debounce counter.

HGOAE Sets whether the high-g outputs will be ORed or ANDed.
Range of valid values: from 0 to 1.
 • 0: Enables the logical AND combination of the high-g X, Y, and Z axes.
 • 1: Enables the logical OR combination of high-g X, Y, and Z axes.

HGZEE Enables or disables the high-g sensing for the Z axis.
Range of valid values: from 0 to 1.
 • 0: Disables high-g event on Z axis.
 • 1: Enables high-g event on Z axis.

HGYEE Enables or disables the high-g sensing for the Y axis.
Range of valid values: from 0 to 1.
 • 0: Disables the high-g event on the Y axis.
 • 1: Enables the high-g event on the Y axis.

HGXEE Enables or disables the high-g sensing for the X axis.
Range of valid values: from 0 to 1.
 • 0: Disables the high-g event on the X axis.
 • 1: Enables the high-g event on the X axis.



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

114 Freescale Semiconductor, Inc.

10.2.7 lhg_event_mask

Table 10-13. lhg_event_mask register

Offset 0x09

Bit 7 6 5 4 3 2 1 0

Field FIFOHGE — — — FIFOLGE — — —

Reset 0 0x00 0 0x00

Table 10-14. lhg_event_mask bit descriptions

Field Description

FIFOHGE Pushes the high-g events into the Event queue.
Range of valid values: from 0 to 1.
 • 0: Disables the push high-g events to the Event queue.
 • 1: Enables the push high-g events to the Event queue.

FIFOLGE Pushes the low-g events into the Event queue.
Range of valid values: from 0 to 1.
 • 0: Disables the push low-g events to the Event queue.
 • 1: Enables the push low-g events to the Event queue.



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 115

10.3 High-g/Low-g status register

10.3.1 lhg_out

Table 10-15. lhg_out register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field HGE HGZ HGY HGX LGE LGZ LGY LGX

Reset 0 0 0 0 0 0 0 0

Table 10-16. lhg_out bit descriptions

Field Description

HGE Indicates the detection of logical AND/OR of all the enabled high-g events.
Range of valid values:
 • 0: No high-g AND/OR event detected.
 • 1: A high-g AND/OR event detected.

HGZ Indicates the detection of high-g signals on the Z axis.
Range of valid values:
 • 0: No high-g event detected on the Z axis.
 • 1: A high-g event detected on the Z axis.

HGY Indicates the detection of high-g signals on the Y axis.
Range of valid values:
 • 0: No high-g event detected on the Y axis.
 • 1: A high-g event detected on the Y axis.

HGX Indicates the detection of high-g signals on the X axis.
Range of valid values: 
 • 0: No high-g event detected on the X axis.
 • 1: A high-g event detected on the X axis.

LGE Indicates the detection of logical AND/OR low-g events.
Range of valid values:
 • 0: No low-g AND/OR events detected.
 • 1: A low-g AND/OR events detected.

LGZ Indicates the detection of low-g signals on the Z axis.
Range of valid values: 
 • 0: No low-g event detected on the Z axis.
 • 1: A low-g event detected on the Z axis.

LGY Indicates the detection of low-g signals on the Y axis.
Range of valid values: 
 • 0: No low-g event detected on the Y axis
 • 1: A low-g event detected on the Y axis.

LGX Indicates the detection of low-g signals on the X axis.
Range of valid values: 
 • 0: No low-g event detected on the X axis
 • 1: A low-g event detected on the X axis.



High-g/Low-g Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

116 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 117

Chapter 11 Tap Detection Application

11.1 Overview of Tap Detection application
This application detects a “tap” or a “double-tap” event on any of the three 
accelerometer axes (X, Y, or Z). The result is reported independently along 
with the direction of the tap, positive or negative.

A “tap” is defined as an accelerometer movement that exceeds a 
user-defined magnitude threshold for a time falling between a user-specified 
minimum and maximum duration. A “double-tap” is two consecutive taps 
occurring in a user-defined period of time.

The acceleration data in the different ranges (2g, 4g, or 8g) is scaled or normalized to +8g full scale, to 
ensure that the tap detection application will work the same in all ranges.

This algorithm works best with 8-g and 4-g, front-end configurations. This is because a 2-g configuration 
could produce saturated accelerometer values and report unexpected event or direction results.

Most taps have a magnitude greater than 0.75g and last for about 0.05 seconds. Double-taps generally are 
spaced at 0.2 seconds.

Figure 11-1. Tap detection application signal flow

Application
ID 0x0A

Default speed 488 Hz

Configuration 
registers

Start on 
page 120.

Status 
registers

Start on 
page 124.

Signal flow

Input parameters

Sensor
data
XYZ

Decision logic 
and state 
machine

Energy detection logic

Output events

tap_axis_event
tap_axis_sign
dtap_axis_event
dtap_sign_event

tap_thresh
tap_on_min
tap_on_max
tap_tap_min_time

tap_K_LP

X

Y

Z

+
ABS

2 bytes

2 bytes

2 bytes

2 bytes 2 bytes

tap_K_HP

HP filter
LP filter



Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

118 Freescale Semiconductor, Inc.

Figure 11-2. Two single-tap detection sequence

When the signal coming from the LP filter crosses above the tap_thresh and continues higher—for more 
time than tap_on_min and less time than tap_on_max—the application captures the tap event. 
Subsequently, the signal must be lower than the tap_thresh until the double_tap_min_time is reached.

When all of these conditions occur, the tap detection event is triggered and reported.

Time

A
D

C
 c

o
u

n
ts

tap_thresh

tap_min

Tap event 
triggered

tap_min

Single tap Single tap

tap_min_time tap_min_time

tap_max tap_max

S
ig

n
a

l

Legend:
• Bold text: Triggered events.
• Italicized text: Configuration settings.



Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 119

Figure 11-3. Double-tap detection sequence

For double-tap detection, the sequence is almost identical. Just after the first tap has been detected, 
however, and before the double_tap_min_time has expired, a second input signal rises above the 
tap_thresh magnitude. The application evaluates the second tap to determine if it is valid or not. If both 
taps are valid, the algorithm reports a double-tap event instead of two separate taps.

For more information, see MMA8450Q Single/Double and Directional Tap Detection Application Note 
(AN3919).

The double_tap_min_time time determines how quickly the second tap must occur to qualify as a 
double-tap event.

Time

A
D

C
 c

o
u

n
ts

tap_thresh

tap_min tap_min

Double-tap event 
triggered

First tap Second tap

S
ig

n
a

l

tap_maxtap_max
Double_tap_min_time

Legend:
• Bold text: Triggered events.
• Italicized text: Configuration settings.

http://cache.freescale.com/files/sensors/doc/app_note/AN3919.pdf


Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

120 Freescale Semiconductor, Inc.

11.2 Tap-Detection configuration registers

11.2.1 tap_thresh

11.2.2 tap_on_min

Table 11-1. tap_thresh registers

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field tap_thresh tap_thresh

Reset 0x0B 0x0B

Table 11-2. tap_thresh bit description

Field Description

tap_thresh
[7:0]

Sets the minimum magnitude that the signal must reach to be detected as a tap/double-tap event.
Units: ADC Counts. (1 ADC count = 244 µg.)
Range of valid values: -32,767 to 32,767 (that is, + 8g).
Reset value: 0x0B0B, decimal 2827 or about 0.69g.

Table 11-3. tap_on_min register

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Field tap_on_min

Reset 0x0A

Table 11-4. tap_on_min bit description

Field Description

tap_on_min
[7:0]

Sets the minimum time that the signal must remain above the threshold to be considered a tap event.
Units: Algorithm cycles (Time = [Algorithm cycles] * [1/SRTAP]).
Range of valid values: 1 to 255.



Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 121

11.2.3 tap_on_max

11.2.4 double_tap_min_time

Table 11-5. tap_on_max register

Offset 0x03

Bit 7 6 5 4 3 2 1 0

Field tap_on_max

Reset 0x78

Table 11-6. tap_on_max bit description

Field Description

tap_on_max
[7:0]

Sets the maximum time that the signal must remain above the threshold in order to consider a tap event.
Units: Algorithm cycles (Time = [Algorithm cycles] * [1/SRTAP]).
Range of valid values: 1 to 255.

Table 11-7. double_tap_min_time register

Offset 0x04

Bit 7 6 5 4 3 2 1 0

Field double_tap_min_time

Reset 0xFF

Table 11-8. double_tap_min_time bit description

Field Description

double_tap_min_ti
me

[7:0]

Sets the time required between taps to qualify as a double-tap, rather than two separate taps. If the 
second tap occurs before the defined time, the event is considered a double-tap.
Units: Application cycles (Time = [Algorithm cycles] * [1/SRTAP]).
Range of valid values: 1 to 255.



Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

122 Freescale Semiconductor, Inc.

11.2.5 tap_K_HP

11.2.6 tap_K_LP

Table 11-9. tap_K_HP register

Offset 0x05

Bit 7 6 5 4 3 2 1 0

Field tap_K_HP

Reset 0x05

Table 11-10. tap_K_HP bit description

Field Description

tap_K_HP
[7:0]

High-pass filter’s configurable cutoff.
For high-pass filter K values, see Table 8-4 on page 82.
Units: None.
Range of valid values: 0 to 15. (Value of zero means no filter.)

Table 11-11. tap_K_LP register

Offset 0x06

Bit 7 6 5 4 3 2 1 0

Field tap_K_LP

Reset 0x04

Table 11-12. tap_K_LP bit description

Field Description

tap_K_LP
[7:0]

Low-pass filter’s configurable cutoff.
For high-pass filter K values, see Table 8-3 on page 81.
Units: None.
Range of valid values: 0 to 15. (Value of zero means no filter.)



Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 123

11.2.7 tap_axis_enable

11.2.8 tap_events_mask

Table 11-13. tap_axis_enable register

Offset 0x07

Bit 7 6 5 4 3 2 1 0

Field Reserved Z_enable Y_enable X_enable

Reset 0x00 1 1 1

Table 11-14. tap_axis_enable bit descriptions

Field Description

Reserved
[7:3]

Bit field reserved.

Z_enable
Y_enable
X_enable

[2:0]

Enables or disables detection of each axis.
Units: Non-dimensional.
Range of valid values: 0 to 255.
 • 0: Disables the axis.
 • 1: Enables the axis.

Table 11-15. tap_events_mask registers

Offset 0x08

Bit 7 6 5 4 3 2 1 0

Field
Reserved Tap/

DTap mask

Reset 0x00 0

Table 11-16. tap_events_mask bit description

Field Description

tap_events_mask Masks a specific event of the application to be pushed into the event queue.
Units: Non-dimensional.
Range of valid values: 0 to 255.
 • 0: Disables event to be pushed into the event queue.
 • 1: Enables event to be pushed into the event queue.



Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

124 Freescale Semiconductor, Inc.

11.3 Tap-Detection status registers

11.3.1 TAP_Out

Table 11-17. TAP_Out register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field TAP — Z Dir Z Ev Y Dir Y Ev X Dir X Ev

Reset 0 0 0 0 0 0 0 0

Table 11-18. TAP_Out bit description

Field Description

TAP Reports whether a tap event has been detected.
 • 0: Event not detected.
 • 1: Event detected.

Z Dir Indicates the direction of the Z-axis event.
 • 0: Event in positive direction.
 • 1: Event in negative direction.

Z Ev Reports whether a Z-Axis event has been detected.
 • 0: Event not detected.
 • 1: Event detected.

Y Dir Indicates the direction of the Y-axis event.
 • 0: Event in positive direction.
 • 1: Event in negative direction.

Y Ev Reports whether a X-Axis event has been detected.
 • 0: Event not detected.
 • 1: Event detected.

X Dir Indicates the direction of the X-axis event.
 • 0: Event in positive direction.
 • 1: Event in negative direction.

X Ev Reports whether a X-Axis event has been detected.
 • 0: Event not detected.
 • 1: Event detected.



Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 125

11.3.2 DTAP_Out

Table 11-19. DTAP_Out register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field DTAP — Z Dir Z Ev Y Dir Y Ev X Dir X Ev

Reset 0 0 0 0 0 0 0 0

Table 11-20. DTAP_Out bit description

Field Description

DTAP Reports whether a double-tap event has been detected.
 • 0: Event not detected.
 • 1: Event detected.

Z Dir Indicates the direction of the Z-axis event.
 • 0: Event in positive direction.
 • 1: Event in negative direction.

Z Ev Reports whether a Z-Axis event has been detected.
 • 0: Event not detected.
 • 1: Event detected.

Y Dir Indicates the direction of the Y-axis event.
 • 0: Event in positive direction.
 • 1: Event in negative direction.

Y Ev Reports whether a X-Axis event has been detected.
 • 0: Event not detected.
 • 1: Event detected.

X Dir Indicates the direction of the X-axis event.
 • 0: Event in positive direction.
 • 1: Event in negative direction.

X Ev Reports whether a X-Axis event has been detected.
 • 0: Event not detected.
 • 1: Event detected.



Tap Detection Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

126 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 127

Chapter 12 Tilt Application

12.1 Overview of Tilt application
This application senses the angle between the Y/Z and X/Z planes with the 
fixed reference to gravity. The application also determines the quadrant of 
each of the enabled planes, referenced to gravity.

The application collects the three-axis data from the sensor and passes the 
accelerometer data through a low-pass filter with a user-configurable cut-off 
frequency. The filter output data determines the quadrant and the tilt angle.

The following figure shows the tilt application block diagram. All the outputs referring to the X/Y plane 
always read zero due to the ambiguous relationship between that plane and the axes.

Figure 12-1. Tilt application signal flow

The following figure shows the X/Z and Y/Z tilt angle outputs, relative to the fixed ground reference plane.

Application
ID 0x0B

Default speed 122 Hz

Configuration 
registers

Start on 
page 129.

Status 
registers

Start on 
page 132.

Input parameters

Output events

tilt_delta_xz_ang;

tilt_delta_yz_ang;

tilt_delta_xy_ang;

tilt_xz_yz_quad;

tilt_K_LP
tilt_cfg1

Tilt_fifo_mask

Sensor
data

Tilt Detection Application

Application
logic

LP filter



Tilt Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

128 Freescale Semiconductor, Inc.

Figure 12-2. X/Z and Y/Z tilt angle outputs, relative to fixed ground

The following table shows the quadrant definition for planes X/Z and Y/Z, depending on the sign of the 
axis signals.

Table 12-1. X/Z and Y/Z quadrant definitions

Quadrant X/Y acceleration Z acceleration

1 + +

2 + -

3 - -

4 - +

90°90°

0°

0°
Z

X, Y

90°90°

0° 

0° 

Q1Q2

Q3 Q4

Direction of 
rotation 



Tilt Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 129

12.2 Tilt configuration registers

12.2.1 tilt_K_LP

Table 12-2. tilt_K_LP register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field tilt_K_LP

Reset 0 0 0 0 0 1 0 1

Table 12-3. tilt_K_LP bit description

Field Description

tilt_K_LP This element and the sample rate define the bandwidth of the low-pass filter.
For the relationship between the K constant and the cut-off frequency, see Table 4-5 on page 43 and 
Table 4-10 on page 51. The cutoff frequency is given at -3 dB. 
Units: None.
Range of valid values: 0 to 7.
Reset: Values to 0x05g.



Tilt Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

130 Freescale Semiconductor, Inc.

12.2.2 tilt_cfg1

Table 12-4. tilt_cfg1 register

Offset 0x01

Bit 7 6 5 4 3 2 1 0

Field Reserved XYEN YZEN XZEN Angle_thresh [3:0]

Reset 0 1 1 1 1 0 0 1

Table 12-5. tilt_cfg1 bit descriptions

Field Description

Reserved Bit field reserved.

XYEN Enables or disables the sensing of the X/Yplane.
Range of valid values: from 0 to 1.
 • 0: Disables X/Y-plane sensing angle.
 • 1: Enables X/Y-plane sensing angle.

YZEN Enables or disables the sensing of the Y/Z plane.
Range of valid values: from 0 to 1.
 • 0: Disables Y/Z-plane sensing angle.
 • 1: Enables Y/Z-plane sensing angle.

XZEN Enables or disables the sensing of the X/Z plane.
Range of valid values: from 0 to 1.
 • 0: Disables X/Z-plane sensing angle.
 • 1: Enables X/Z-plane sensing angle.

Angle_thresh Configures a delta angle threshold.
Whenever the algorithm detects a delta angle variation above the established threshold, from one 
execution to the next, the angle flag is set.
Units: Degrees.
Range of valid values: 1 to 10.



Tilt Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 131

12.2.3 tilt_event_mask

Table 12-6. tilt_event_mask register

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Field Quad_Change Reserved

Reset 0 0x00

Table 12-7. tilt_event_mask bit descriptions

Field Description

Quad_Change Configures the event that will be pushed into the Event Queue Application.
Currently there is one event available. If enabled, the application will push the new quadrant byte into the 
Event Queue every time the quadrant information changes.
Range of valid values: 0 to 1.
 • 0: Disables events being added to the Event Queue.
 • 1: Enables tilt events to be added to the Event Queue.

Reserved Bit field reserved.



Tilt Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

132 Freescale Semiconductor, Inc.

12.3 Tilt status registers

12.3.1 tilt_delta_xz_ang

Table 12-8. tilt_delta_xz_ang register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field ANGFLG XZANGLE [6:0]

Reset 0 0x00

Table 12-9. tilt_delta_xz_ang bit descriptions

Field Description

ANGFLG Stores the angle flag that is set whenever the difference between the current angle and the last-calculated 
angle is bigger than the Angle_thresh.
The computation uses an approximation of the atan formula > within + 1° of accuracy only.
Units: Flag.
Range of valid values: from 0 to 1.
 • 0: Delta angle is not above the threshold.
 • 1: Delta angle went above the threshold.

XZANGLE Stores the tilt angle of the X and Z axes.
Units: Degrees.
Range of valid values: 0 to 90.



Tilt Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 133

12.3.2 tilt_delta_yz_ang

12.3.3 tilt_delta_xy_ang

Table 12-10. tilt_delta_yz_ang register

Offset 0x01

Bit 7 6 5 4 3 2 1 0

Field ANGFLG YZANGLE[6:0]

Reset 0 0x00

Table 12-11. tilt_delta_yz_ang bit descriptions

Field Description

ANGFLG Stores the angle flag that is set whenever the difference from the current angle with the last-calculated 
angle is bigger than the configured threshold.
Units: Flag.
Range of valid values: 0 to 1.
 • 0: No occurrence of delta angle above threshold.
 • 1: Delta angle went above threshold.

YZANGLE Stores the tilt angle of Y and Z axes.
Units: Degrees.
Range of valid values: 0 to 90.

Table 12-12. tilt_delta_xy_ang register

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Field ANGFLG XYANGLE [6:0]

Reset 0 0x00

Table 12-13. tilt_delta_xy_ang bit descriptions

Field Description

ANGFLG Disabled by default and always reads zero.
Units: Flag.
Range of valid values: Always reads zero.

XYANGLE Disabled by default and always reads zero.
Units: Degrees.
Range of valid values: Always reads zero.



Tilt Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

134 Freescale Semiconductor, Inc.

12.3.4 tilt_xz_yz_quad

Table 12-14. tilt_xz_yz_quad register

Offset 0x03

Bit 7 6 5 4 3 2 1 0

Field QUADFLAG UNUSED XZ_QUAD YZ_QUAD XY_QUAD

Reset 0 0 0x00 0x00 0x00

Table 12-15. tilt_xz_yz_quad bit descriptions

Field Description

QUADFLAG Records when a change in quadrant is detected.
Units: Flag.
Range of valid values: 
 • 0: No change detected.
 • 1: Change detected.

XZ_QUAD
[5:4]

Stores the quadrant change detected between X and Z axes.
Units: Quadrant number.
Range of valid values: 
 • 00: Quadrant 1.
 • 01: Quadrant 2.
 • 10: Quadrant 3.
 • 11: Quadrant 4.

YZ_QUAD
[3:2]

Stores the quadrant detected between Y and Z axes.
Units: Quadrant number.
Range of valid values:
 • 00: Quadrant 1.
 • 01: Quadrant 2.
 • 10: Quadrant 3.
 • 11: Quadrant 4.

XY_QUAD
[1:0]

Stores the quadrant-change detected between the X and Y axes. This information is disabled by default.
Units: Quadrant number.
Range of valid values: Always reads zero.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 135

Chapter 13 Frame Counter Application

13.1 Overview of Frame Counter application
The Frame Counter application reports the number of frames that have been 
processed at the application’s execution rate.

The application counts frames, not time. It is not real-time because the 
device can be put into a Stop mode where time passes, but no samples are 
taken. It does not count when the device is in stop mode.

13.2 Frame-Counter configuration registers
There are no configuration registers for this application.

13.3 Frame-Counter status register

13.3.1 frame_cnt

Table 13-1. frame_cnt registers

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field frame_cnt

Reset 0x00

Table 13-2. frame_cnt bit description

Field Description

frame_cnt Counter with the total of frames at 488 Hz.
Units: Non-dimensional.
Range of valid values: 0 to 65535.

Application
ID 0x0E

Default speed 488 Hz

Configuration 
registers

None.

Status 
registers

Start on 
page 135.



Frame Counter Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

136 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 137

Chapter 14 Data FIFO Application

14.1 Overview of Data FIFO application
The Data FIFO (First In First Out) application is a buffer intended to store 
the output data from an application. Every scheduler interval, the Data FIFO 
application gathers the output data from an application and stores it until the 
host processor reads the data.

The FIFO application uses the mailboxes differently than other 
applications—operating in the streaming mode. In streaming mode, the host 
continues reading data until a maximum of up to 255 bytes is read per host 
request. The host must read all the data that it requested.

The FIFO can be connected to one application and can collect packets of data in different sizes (one, two, 
four, or six bytes).

The Data FIFO has two different modes of operation: Stop on Overflow and Free Run.

The application’s status register displays current status values such as overflow condition, watermark 
reached, and buffer empty. These conditions have a flag that is asserted individually each time one of these 
conditions occurs.

The user can configure the FIFO buffer size by writing to the fifo_size word within the configuration 
registers. The buffer size can be configured only once and is limited by the amount of RAM available. The 
amount of available RAM can be impacted by the Event Queue Application which also can be configured 
to use large amounts of RAM.

NOTE
Before configuring the Data FIFO application, it is recommended that the 
Data FIFO Application be suspended. After the parameter is configured, 
remove the application from suspend. A suspend is done with the 
Reset/Suspend/Clear Application (APP_ID 0x17).

14.2 Modes of operation
This section examines the modes of operation of the FIFO buffer.

14.2.1 Stop-on-overflow

The FIFO stores data from an application, every single frame (a scheduler interval), as long as the FIFO 
is enabled. In this mode, the FIFO stores data until an overflow condition is reached. At an overflow, the 
overflow flag is set.

Application
ID 0x0F

Default speed 488 Hz

Configuration 
registers

Start on 
page 145.

Status 
registers

Start on 
page 148.



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

138 Freescale Semiconductor, Inc.

The host asynchronously reads payload packets from the Data FIFO application. Reading payload packets 
frees up slots for new entries into the FIFO. If the host reads data faster than the applications put data into 
the FIFO, the overflow condition will never happen.

The overflow condition occurs when the available buffer memory is full and there is no space available for 
another packet.

14.2.2 Free-run

The FIFO behaves as a circular buffer that stores data from the configured channel, every single frame, as 
long as the FIFO is enabled. In this mode, the FIFO never stops storing data, even though the overflow 
condition is reached and the overflow flag is set.

When the FIFO becomes full, the oldest data in the buffer will be overwritten first.

14.3 Reading process
To read the data FIFO, the host sends a read-data command to the MMA955xL device that calls the Data 
FIFO application, stores the requested data within the FIFO into a buffer, and returns the number of bytes 
read. The data FIFO does not tag each entry with a timestamp, only storing a timestamp for the last entry.

When the reading process is performed, the Data FIFO application calculates the timestamp for the first 
group of requested data and appends the timestamp to the data. If the host requests N bytes and that is 
bigger than the entry size, the pop routine will append the timestamp only for the first entry that fits in the 
N bytes requested. The host must calculate the timestamps for the extra entries requested within the N 
bytes.

The host can request to read up to 255 bytes at a time. Assuming the AFE is providing data, this is exactly 
36 packets of AFE data.

Each host, FIFO-read transaction includes a status byte and a timestamp word. These three bytes are 
prefixed to the payload data.

Payload data is prefixed with the APP_ID of the application that has provided the data. In the AFE case, 
the APP_ID is 0x06.

(255 - 3 (status and timestamp) ) / 7 (APP_ID + 6 byte XYZ data) = 36

Reading the FIFO example

The device powers up in Sleep mode, but it may become necessary to wake the MMA955xL device.

Waking the device uses the following mailboxes:

MB0 0x12 App_ID = 0x12; Power Controller modes

MB1 0x20 Command 0x2 = Write configuration; Offset = 0

MB2 0x06 Offset = 0x06

MB3 0x01 Count of data to write



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 139

MB4 0x00 Actual Data Value; Clears sleep bit

Bytes to Send: 0x12, 0x20, 0x06, 0x01, 0x00.

Example 14-1. 

To configure for FIFO operation, write the following transaction to the Data-FIFO application:

1. MB0: Set APP_ID to (0x0F).

Selects the Data-FIFO application.
2. MB1: Command to (0x20).

Command is a Write Configuration space.
3. MB2: Set offset to zero (0x00).

Start writing configuration values at register 0.
4. MB3: Set count field to (0x0A).

Sends nine bytes.
5. MB4: Send Data (0x0C).

Sends six bytes, free-run mode.
6. MB5: Send Data (0x00).

7. MB6: Send Data (0x00).

8. MB7: Send Data (0x00).

9. MB8: Send Data (0x00).

10. MB6: Send Data (0x3C).

Reserves 60 bytes—10 packets of six bytes each.
11. MB7: Send Data (0x06).

Associates APP ID = AFE - .
12. MB5: Send Data (0x00).

13. MB6: Send Data (0x00).

14. MB7: Send Data (0x00).

Bytes to Send: 0x0F, 0x20, 0x00, 0x0A, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x3C, 0x06, 0x00, 0x00, 0x00.

The configuration registers can only be written once. To reconfigure the FIFO, the device first must be 
reset.

Read the FIFO applications status register to get the data.

Send the following command to set up for reading the status register.

Example 14-2. 

1. MB0: Set APP_ID to (0x0F).

Selects the Data-FIFO application.
2. MB1: Command to (0x30).

Sends a Read Status space command.



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

140 Freescale Semiconductor, Inc.

3. MB2: Set offset to zero (0x03).

Starts reading the configuration values from register 0x03.
4. MB3: Set count field to (0x0A).

Reads 10 bytes (three status bytes, one APP_ID, and six bytes of data).

Bytes to Send: 0x0F, 0x30, 0x03, 0x0A.

This results in the following response.

0F 80 0A 0A 05 83 13 06 00 81 FF EA 11 0C 

The last six bytes are the AFE data: X, Y, and Z.

This response was with the device flat, in the Face-Up orientation. The X and Y data are close to 
0x0000—or 0-g—and the Z data is close to 0x1000—or 1-g.

MB0: APP_ID = 0x0F; FIFO application

MB1: STATUS = 0x80; Command Complete, no errors

MB2: RequestedData count = 0x0A; 10 bytes of data

MB3: Actual Data Count = 0x0A; 10 bytes of data

MB4: 0x05 = FIFO Status; Watermark and Overflow flag is set

MB5-6: = 0x8313; Timestamp

MB7: APP ID of the application providing the actual data = 0x06; AFE application

MB8-9: AFE X data; 0x0081

MB10-11: AFE Y data; 0xFFEA

MB12-13: AFE Z Data; 0x110C

The read size for one (1+6 byte) payload is 10 bytes. The size for two payloads is 17 bytes, 3 = 24 bytes.

Reading three payloads

Send the following command to set up for reading the status register.

Example 14-3. 

1. MB0: Set APP_ID to (0x0F).

Selects the Low-g application.
2. MB1: Command to (0x30)

Sends a Write Configuration space command.
3. MB2: Set offset to zero (0x03).

Starts writing configuration values at register 0.
4. MB3: Set count field to (0x18)

Reads 24 bytes (3 status byes + 3x(APP_ID+6 data)).



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 141

Bytes to Send: 0x0F, 0x30, 0x03, 0x18.

The response is below:

0F 80 18 18 05 33 53 06 00 93 00 7F 11 06 06 00 A2 00 7D 11 08 06 00 9C 00 79 11 07 

The last six bytes are the AFE data, X, Y, and Z.

This response was with the device flat, in the Face-Up orientation. The X and Y data are close to 
0x0000—or 0-g—and the Z data is close to 0x1000—or 1-g.

MB0: APP_ID = 0x0F; FIFO application

MB1: STATUS = 0x80; Command Complete, no errors

MB2: Requested data count = 0x18; 24 bytes of data

MB3: Actual Data Count = 0x18; 24 bytes of data

MB4: 0x05 = FIFO Status; Watermark and Overflow flag is set

MB5-6: = 0x3353; Timestamp

MB7: APP ID of the application providing the actual data = 0x06; The AFE application

MB8-9: AFE X data; 0x0093

MB10-11: AFE Y data; 0x007F

MB12-13: AFE Z Data; 0x1106

MB14: APP ID of the application providing the actual data = 0x06; the AFE application

MB15-16: AFE X data; 0x00A1

MB17-18: AFE Y data; 0x007D

MB19-20: AFE Z Data; 0x1108

MB21: APP ID of the application providing the actual data = 0x06; the AFE application

MB22-23: AFE X data; 0x009C

MB24-25: AFE Y data; 0x0079

MB26-27: AFE Z Data; 0x1107

To read data stored by the data FIFO application, the host must send a Read Data command along with a 
specific offset value.

This process has three conditions:

• The offset must be fixed to three

• The number of bytes to read must be larger than one and a multiple of the entry size

• The host must add three bytes to de-count the total bytes to read



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

142 Freescale Semiconductor, Inc.

It is extremely important to adhere to these three conditions or the data FIFO could enter into an error state 
and be unable to pop coherent data. To recover the data FIFO, reset the flag in the Reset_control byte 
(APP_ID 0x17).

When the command is sent, the first four bytes that the MMA955xL device returns correspond to the 
response of the command. The next byte gives the status of the data FIFO application module and the 
following two bytes represent the timestamp. Hence the three-byte offset.

These bytes are part of those requested by the host, so it is very important that the user add three bytes to 
the number of bytes to read. The data stored in the data FIFO comes after these seven bytes.

If the module is storing data at the exact moment that a read is issued by the host, the MMA955xL device 
will return an error condition (A2). When this occurs, the host must retry reading the data. If any other 
error is returned, the host must take the proper action.



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 143

14.4 Data FIFO block diagram

Figure 14-1. Data FIFO model

The preceding figure shows the block-level model of the data FIFO. The application is driven by the 
watermark and mode inputs that configure the functionality.

The watermark level helps the host prevent data loss by raising a warning just before the overflow 
condition occurs. When the number of bytes in the buffer approaches its capacity, the data FIFO asserts 
the watermark flag in the status register. The warning level is user-configurable. If the level of 0 is 
configured, the watermark is disabled.

The channel has its own data format code (DFC) bit field that configures the payload to be stored (one, 
two, four, or six bytes). A NULL or zero value in the APP_ID Channel register means the channel is 
disabled. Any valid APP_ID value means the channel is enabled.

The data FIFO has a status register in its output structure that contains status flags such as watermark, 
overflow, and buffer empty. These flags can be mapped to the GPIO pins to generate an interrupt to the 
host.

The output also has an Entry Size register that shows the size, in bytes, of each entry that the data FIFO 
calculated, according to its payload configuration. A Records Number register records the number of 
entries stored in the data FIFO. Both registers help the host to calculate how many bytes to request, so that 
it can dump the entire FIFO buffer. A simple multiplication of those two registers’ value gives the total 
number of bytes stored in the FIFO.

TimeStamp register

FIFO buffer
(Host decides the size

in bytes)

Entry
size

Records
number

GPIO mapping logic

Frame
counter

APP_ID =
nn

Watermark
level

Mode

FIFO size

• Stop on overflow

• Free run

Interrupt

WM OvF Empty
flag flag flag



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

144 Freescale Semiconductor, Inc.

14.4.1 Entries format

Channel enabled

Figure 14-2. FIFO-entry formats, when channel enabled

APP_ID (1 byte) Payload (N bytes)

APP_ID (1 byte) Payload (N bytes)

APP_ID (1 byte) Payload (N bytes)

Entry 1

Entry 2

•
•
•

Entry M

Size defined by DFC1
(1, 2, 4, or 6 bytes)



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 145

14.5 Data FIFO configuration registers
This section contains the FIFO configuration registers. These registers can only be written once. To 
re-configure the FIFO, the device must be reset. This is because the FIFO application requests RAM and 
RAM can only be allocated one time.

14.5.1 FIFO configuration byte

Table 14-1. FIFO Config Byte register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field Reserved DFC1 Mode

Reset 0x00 0x00 0x00

Table 14-2. FIFO Config Byte bit descriptions

Field Description

Reserved Bit field reserved.

DFC1
(Data Format 

Code) 

Configures the payload size of the channel.
Units: Non-dimensional.
Range of valid values: 0 to 3.
 • 00: One byte.
 • 01: Two bytes.
 • 10: Four bytes
 • 11: Six bytes.

Mode Configures the FIFO mode.
Units: Non-dimensional.
Range of valid values:
 • 00: Free Run.
 • 01: Stop On Overflow.



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

146 Freescale Semiconductor, Inc.

14.5.2 FIFO size word

14.5.3 FIFO APP_ID

Table 14-3. FIFO-size word registers

Offset 0x04(MSB) 0x05(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field FIFO Size Word 1 FIFO Size Word 2

Reset 0x00 0x00

Table 14-4. FIFO-size word bit description

Field Description

FIFO Size Word Reserves the maximum size (in bytes) that the FIFO can use. This is limited by the available RAM.
Units: Bytes..
Range of valid values: 0 to available RAM.
0x1C8 (decimal, 456) is the maximum amount of RAM that can be requested from the MMA955xL device.
The RAM is shared by multiple applications, so be careful not to set the FIFO to use more memory than 
is physically available. That will cause unknown and undesirable results.

Table 14-5. FIFO Channel APP_ID register

Offset 0x06

Bit 7 6 5 4 3 2 1 0

Field FIFO Ch APP_ID

Reset 0x00

Table 14-6. FIFO Channel APP_ID bit description

Field Description

FIFO Ch APP_ID The APP_ID of the application that supplied data to be buffered by the FIFO.
Range of valid values: 0 to 0xFF.



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 147

14.5.4 Watermark

Table 14-7. Watermark registers

Offset 0x08(MSB) 0x09(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field Watermark Watermark

Reset 0x00 0x00

Table 14-8. Watermark bit description

Field Description

Watermark Sets the count, in bytes, for the FIFO to set or clear the watermark flag.
Units: Bytes..
Range of valid values: 0 - available RAM.



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

148 Freescale Semiconductor, Inc.

14.6 Data FIFO status registers

14.6.1 Records number

Table 14-9. Records-number register

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field Records Number Records Number

Reset 0x00 0x00

Table 14-10. Records-number bit description

Field Description

Records Number This word stores the current number of records in the FIFO buffer.
A record is the payload packet of data comprised of an APP_ID and the actual data—which could be one, 
two, four, or six bytes long. A record can be two, three, four, or seven bytes long.
Units: Number of entries in the Data FIFO (entry size in bytes = Ch APP_ID+ DFC1).
Range of valid values: 0 to available oxFFFF.



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 149

14.6.2 Entry size

14.6.3 FIFO_Status

Table 14-11. Entry-size register

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Field Entry Size

Reset 0x00

Table 14-12. FIFO config-byte/bit description

Field Description

Entry Size This byte shows the size in bytes of each entry that the data FIFO has stored, that calculation based on 
its configuration.
Units: Bytes.
Range of valid values: 0 to 6. 

Table 14-13. FIFO_Status register

Offset 0x03

Bit 7 6 5 4 3 2 1 0

Field on_going_push on_going_pop Reserved ovf_flag empty_ flag wmrk_ flag

Reset 0x00 0x00 0x00 0 0 0

Table 14-14. FIFO_Status bit descriptions

Field Description

fifo_on_going_push Indicates that a push operation is being executed—the FIFO receiving data from the application.
Units: Non-dimensional.
Range of valid values: 0 to 1.
 • 0: A push is not being executed.
 • 1: A push is being executed.

fifo_on_going_pop Indicates that a pop operation is being executed. The FIFO is sending out data and it is being read.
Units: Non-dimensional.
Range of valid values: 0 to 1.
 • 0: A pop operation is not being executed.
 • 1: A pop operation is being executed.

Reserved Bit field reserved.



Data FIFO Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

150 Freescale Semiconductor, Inc.

fifo_ovf_flag Indicates that FIFO buffer has reached the maximum number of entries allowed. This meaning can vary 
depending of the mode of operation.
Units: Non-dimensional.
Range of valid values:
 • 0: Not overflow condition.
 • 1: Overflow condition.

fifo_empty_flag Indicates whether the FIFO buffer is empty.
Units: Non-dimensional.
Range of valid values:
 • 0: FIFO buffer is not empty.
 • 1: FIFO buffer is empty.

fifo_wmrk_flag Indicates when the entries in the FIFO buffer have reached the watermark count.
Units: Non-dimensional..
Range of valid values:
 • 0: Watermark not reached.
 • 1: Watermark reached.

Table 14-14. FIFO_Status bit descriptions (continued)

Field Description



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 151

Chapter 15 Event Queue Application

15.1 Overview of Event Queue application
This application manages a queue of asynchronous events. The size of the 
queue is flexible and can be configured by writing to the queue_size word 
within the configuration registers of the Event Queue Application.

The size of the Event Queue is limited by the available RAM. The amount 
of RAM may be reduced by the Data FIFO Application which also can be 
configured to use the RAM.

Some applications inside the MMA955xL platform have an eight-bit event mask register within 
configuration-registers structure that selects the specific event to be stored into the Event Queue. The user 
can set an application’s event-mask bit to enable or prevent that application’s events from being added to 
the Event Queue.

When the selected event happens, Event Queue Application calls a routine with the following prototype 
to push the application’s event into the Event Queue:

void eventQueue_push(void *data, uint8_t size) 

With these variables:

• Data: Pointer to the first element of the data to be stored into the queue. The data must have the 
order: APP_ID + Payload bytes.

• Size: Amount of data (in bytes) to be stored into the queue.

Each entry into the Event Queue is of fixed size and has the following format:

Figure 15-1. Entry format for the Event Queue

If an application has its payload less than three bytes, the Event Queue will store the data and complete the 
entry padding with zeros. If the application has a payload more than three bytes, the Event Queue will 
calculate the number of entries that this payload needs to be successfully stored, split in the format shown 
in the preceding illustration.

Application
ID 0x10

Default speed 488 Hz

Configuration 
registers

Start on 
page 156.

Status 
registers

Start on 
page 158.

Frame Counter APP ID Payload 

Six bytes per entry



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

152 Freescale Semiconductor, Inc.

If an application tries to push data into the Event Queue and there is not enough space to store it, the Event 
Queue will ignore the attempt. This will be transparent for the application since there is no communication 
between the application and the Event Queue.

15.1.1 Modes of operation

The Event Queue works only in one mode. It stores data and stops when the end of the queue is reached 
and asserts an overflow flag. The queue is not circular.

The application has a configurable watermark that asserts a flag when entries have reached the configured 
point.

15.1.2 Reading process 

To read the Event Queue, the host sends a read-status command to the MMA955xL device, calling the 
Event Queue application that stores the data within the queue into a buffer and returns the number of bytes 
read. If the number of requested bytes is not a multiple of the entry size, the pop routine ignores the extra 
bytes and tells the host how many effective bytes were popped.

To read data stored by the Event Queue application, the host must send a Read Data command along with 
a specific offset value. The following table shows the command for reading the data stored by the Event 
Queue Application.

Reading Event Queue example

The following example shows how to configure the Event Queue application.

Example 15-1. 

1. MB0: Set APP_ID to (0x10).

Selects the Data-FIFO application.
2. MB1: Command to (0x20).

Sends a Write Configuration space command.
3. MB2: Set offset to zero (0x00).

Starts writing configuration values at register 0.
4. MB3: Set count field to (0x06).

Sends nine bytes.
5. MB4: Send Data (0x00).

Sets Queue size.
6. MB5: Send Data (0x50).

7. MB6: Send Data (0x00).

Watermark
8. MB7: Send Data (0x05).

9. MB8: Send Data (0x00).

Timeout.
10. MB6: Send Data (0x00).



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 153

Bytes to Send: 0x10, 0x20, 0x00, 0x06, 0x00, 0x50, 0x00, 0x05, 0x00, 0x00.

The configuration registers can only be written once. If the Event Queue must be re-configured, the device 
must be reset and the configuration re-written.

Some data now must be sent to the event queue. In this example, the Low-g application is configured to 
send an event.

Example 15-2. 

1. MB0: Set APP_ID to (0x09).

Specifies the Low-g application.
2. MB1: Command to (0x20).

Sends a Write Configuration space command.
3. MB2: Set offset to zero (0x09).

4. Start writing configuration values at Register 9.

5. MB3: Set count field to (0x01).

Sends nine bytes.
6. MB4: Send Data (0x08) - Event Mask Register.

Enables Low-g events.

Bytes to Send: 0x09, 0x20, 0x09, 0x01, 0x08.

In this example, all other Low-g configuration register values are at the reset default values.

The device powers up in Sleep mode, but it may become necessary to wake the part. That process is done 
in the following example.

Example 15-3. 

1. MB0: Set App_ID to (0x12).

Selects the Power Controller modes.
2. MB1: Command to (0x20).

Sends a write configuration, with offset = 0.
3. MB2: Set offset to (0x06).

4. MB3: Set count field to (0x01).

5. MB4: Send the data value (0x00).

Bytes to Send: 0x12, 0x20, 0x06, 0x01, 0x00.

The device is enabled and configured to have an event Queue and send Low-g events to the Event Queue.

To cause a Low-g that can be measured on the X, Y, and Z axes, toss the board into the air. Read the Event 
Queue applications status register to get the data.



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

154 Freescale Semiconductor, Inc.

To set up for reading the status register, send the command in the following example.

Example 15-4. 

1. MB0: Set APP_ID to (0x10).

Selects the Event Queue application.
2. MB1: Command to (0x30).

Sends a Read Status space command.
3. MB2: Set offset to zero (0x03).

Start reading status values at register 0.
4. MB3: Set count field to (0x20).

Reads 10 bytes (3 status + APP_ID+6 data)

Bytes to Send: 0x10, 0x30, 0x03, 0x20.

The following response is returned:

10 80 13 20 09 95 AC 09 0F 00 00 95 BE 09 0F 00 00 95 D0 09 0F 00 00

MB0: APP_ID = 0x10; Event Queue application

MB1: STATUS = 0x80; Command Complete, no errors

MB3: Actual Data Count = 0x13; 10 bytes of data

MB2: Requested Data count = 0x20; 10 bytes of data

MB4: 0x09 = Event Queue Status; Watermark and Overflow flags are set

MB5-6: = 0x95AC; Timestamp

MB7: APP ID of the application providing the actual data = 0x09; the AFE application

MB8-10: 0x0F0000 = 0x0F is the status register from the Low-g applications; 0x0F indicates a Low-g 
event on all axes.

MB5-6: = 0x95BE; Timestamp

MB7: APP ID of the application providing the actual data = 0x09; the AFE application

MB8-10: 0x0F0000

MB5-6: = 0x95D0; Timestamp

MB7: APP ID of the application providing the actual data = 0x09; the AFE applications

MB8-10: 0x0F0000

The offset is fixed to three bytes.



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 155

When the command is sent, the first four bytes that the MMA955xL device returns correspond to the 
response of the command.

The next byte is the status from the Event Queue application. This fifth byte is part of the bytes requested 
by the host, so it is very important that the user add one byte to the number of bytes to be read.

Due to the application’s read functionality, if the application is storing data at the exact moment a read is 
issued by the host, the MMA955xL device will return an error condition. When this occurs, the host must 
retry reading the data. If any other error is returned, the host must take the proper action.

15.1.3 Event Queue block diagram

The following figure shows the Event Queue Data Flow Model that receives the Application ID and N size 
of the payload from a specific application. The Event Queue logic appends the frame counter with this data 
and pushes the entry (six bytes in size) into the queue. If the queue is full, the logic will ignore the push 
request.

Figure 15-2. Event Queue data flow

APP (AP_ID)

Queue processing

Data Array

Host decides 
the size

(in bytes)

Frame
Counter

GPIO mapping
logic

Event_Queue_Flag Register

AP_ID – Payload N

Event_Queue_Mask Register

Event_Queue_Flag Register

Various elements in the application 
can set or clear bits in this register.

Logical AND

Payload N

Config command can
Modify this register.

Config command can
modify this table.

Command calls a 
pop routine to dump 
the memory.

Full WM First entry (after reset)

Interrupt

Push
subroutine

16-bit frame count AP_ID Payload



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

156 Freescale Semiconductor, Inc.

15.2 Event Queue configuration registers
The Event Queue application’s configuration can only be written once. In order to re-configure the Event 
Queue, the whole device must be reset. This is because the Event Queue application requests RAM and 
RAM can only be allocated one time.

15.2.1 queue_size

15.2.2 queue_wmrk

Table 15-1. queue_size registers

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field queue_size

Reset

Table 15-2. queue_size bit description

Field Description

queue_size Defines the size in bytes that the Event Queue will reserve, in order to store the data sent by any 
application.
Units: Bytes
Range of valid values: 0 - available RAM.
0x1C8 (decimal 456) is the maximum amount of RAM that can be requested from the MMA955xL device.
The RAM is shared by multiple applications, so be careful not to set the FIFO to use more memory than 
is physically available. That will cause unknown and undesirable results.

Table 15-3. queue_wmrk registers

Offset 0x02(MSB) 0x03(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field queue_wmrk

Reset

Table 15-4. queue_wmrk bit description

Field Description

queue_wmrk Sets the count, in bytes, for the Event Queue to set or clear the watermark flag.
Units: Bytes.
Range of valid values: 0 to available bytes in the buffer.



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 157

15.2.3 queue_timeout

Table 15-5. queue_timeout registers

Offset 0x04(MSB) 0x05(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field queue_timeout

Reset

Table 15-6. queue_timeout bit description

Field Description

queue_timeout Sets the count, in cycles, for the Event Queue to set or clear the time-out flag.
Units: Time; [queue_timeout] * [1/SRqueue] ).
Range of valid values: 0 to 65,535.
SR_queue is the sample rate of the Event Queue application, which defaults to 488 Hz.



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

158 Freescale Semiconductor, Inc.

15.3 Event Queue status registers

15.3.1 records_number

15.3.2 entry_size

Table 15-7. records_number registers

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field records_number

Reset

Table 15-8. records_number bit description

Field Description

records_number Shows the current number of entries or records stored in the queue.
Units: Entries (Entry = six bytes).
Range of valid values: 0 to 65,535. Realistically this number should never be more than the available RAM 
divided by the payload size.

Table 15-9. entry_size registers

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Set-bit values 0 0 0 0 0 1 1 0

Field entry_size

Reset 0 0 0 0 0 1 1 0

Table 15-10. entry_size bit description

Field Description

entry_size Shows the size in bytes of each entry or record in the queue. This value is six bytes fixed and is not 
user-configurable.
Units: Bytes.
Range of valid values: Fixed to six.



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 159

15.3.3 queue_status

Table 15-11. queue_status registers

Offset 0x03

Bit 7 6 5 4 3 2 1 0

Field on_going_push on_going_pop Reserved to_flag ovf_flag empty_flag wmrk_flag

Reset

Table 15-12. queue_status bit descriptions

Field Description

on_going_push Indicates that a push operation is being executed.
Units: Non-dimensional.
Range of valid values: 0 to 1.

on_going_pop Indicates that a pop operation is being executed.
Units: Non-dimensional..
Range of valid values: 0 to 1.

Reserved Bit field reserved.

to_flag Indicates when the Event Queue has not been read for the time configured by the “queue TimeOut” 
parameter once the overflow marker has been reached.
Units: Non-dimensional.
Range of valid values: 0 to 1.

ovf_flag Indicates when the Event Queue is full and no more entries can be stored.
Units: Non-dimensional.
Range of valid values: 0 to 1.

empty_flag Indicates when the Event Queue is empty, no records or entries having been stored.
Units: Non-dimensional.
Range of valid values: 0 to 1.

wmrk_flag Indicates when the numbers of bytes within the Event Queue have reached the watermark.
Units: Non-dimensional.
Range of valid values: 0 to 1.



Event Queue Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

160 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 161

Chapter 16 Status Register Application

16.1 Overview of Status Register application
The Status Register Application provides a simple way for users to combine 
specific status information bits from multiple applications and read that 
combined information from one place.

The Status Register Application configures the output of its status register 
by mapping a specific status register bit to a specific output bit of a specific 
application. This enables the Status Register Application to provide a 
combined status from the selected bits of user-specified applications.

There are eight, user-configurable bits in the Status Register. Each bit mirrors an output bit in the related 
application.

The following example maps some of the output bits of the Portrait Landscape Application (P/L) to the 
Status Register. The example uses the P/L application ID (0x07) and maps the following bits:

• P/L output bit 0 to Status Register bit 0

• P/L output bit 1 to Status register bit 1

The two P/L bit are the back/front orientation bits.

Example 16-1. 

1. MB0: Set the “APP_ID: Status Register Application” (0x11) application identifier.

2. MB1: Set the “Command: Write Config” (0x20).

3. MB2: Set the Offset to (0x00) to point to the start of the configuration register.

4. MB3: Set the Count field to (0x04) to indicate four bytes of data will follow.

5. MB4: Set the DATA (0x07) Portrait/Landscape application ID.

6. MB5: Set the DATA (0x00) Portrait/Landscape application status bit 0.

7. MB6: Set the DATA (0x07) Portrait/Landscape application ID.

8. MB7: Set the DATA (0x00) Portrait/Landscape application status bit 1.

Bytes to Send: 0x11, 0x20, 0x00, 0x04, 0x07, 0x00, 0x07, 0x00.

Application
ID 0x11

Default speed 488 Hz

Configuration 
registers

Start on 
page 162.

Status 
registers

Start on 
page 167.



Status Register Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

162 Freescale Semiconductor, Inc.

16.2 Status Register configuration registers
The following tables show the configuration registers for the Status Register Application. The bit 
descriptions are given in Table 16-17 on page 166.

16.2.1 APP_ID SR_00

16.2.2 Output_Bit_ID SR_00

16.2.3 APP_ID SR_01

Table 16-1. APP_ID SR_00 register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field APP_ID SR_00

Reset 0x07

Table 16-2. Output_Bit_ID SR_00 register

Offset 0x01

Bit 7 6 5 4 3 2 1 0

Field Output_Bit_ID SR_00

Reset 0x00

Table 16-3. APP_ID SR_01 register

Offset 0x02

Bit 7 6 5 4 3 2 1 0

Field APP_ID SR_01

Reset 0x07



Status Register Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 163

16.2.4 Output_Bit_ID SR_01

16.2.5 APP_ID SR_02

16.2.6 Output_Bit_ID SR_02

16.2.7 APP_ID SR_03

Table 16-4. Output_Bit_ID SR_01 register

Offset 0x03

Bit 7 6 5 4 3 2 1 0

Field Output_Bit_ID SR_01

Reset 0x01

Table 16-5. APP_ID SR_02 register

Offset 0x04

Bit 7 6 5 4 3 2 1 0

Field APP_ID SR_02

Reset 0x07

Table 16-6. Output_Bit_ID SR_02 register

Offset 0x05

Bit 7 6 5 4 3 2 1 0

Field Output_Bit_ID SR_02

Reset 0x02

Table 16-7. APP_ID SR_03 register

Offset 0x06

Bit 7 6 5 4 3 2 1 0

Field APP_ID SR_03

Reset 0x07



Status Register Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

164 Freescale Semiconductor, Inc.

16.2.8 Output_Bit_ID SR_03

16.2.9 APP_ID SR_04

16.2.10 Output_Bit_ID SR_04

16.2.11 APP_ID SR_05

Table 16-8. Output_Bit_ID SR_03 register

Offset 0x07

Bit 7 6 5 4 3 2 1 0

Field Output_Bit_ID SR_03

Reset 0x03

Table 16-9. APP_ID SR_04 register

Offset 0x08

Bit 7 6 5 4 3 2 1 0

Field APP_ID SR_04

Reset 0x07

Table 16-10. Output_Bit_ID SR_04 register

Offset 0x09

Bit 7 6 5 4 3 2 1 0

Field Output_Bit_ID SR_04

Reset 0x04

Table 16-11. APP_ID SR_05 register

Offset 0x0A

Bit 7 6 5 4 3 2 1 0

Field APP_ID SR_05

Reset 0x00



Status Register Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 165

16.2.12 Output_Bit_ID SR_05

16.2.13 APP_ID SR_06

16.2.14 Output_Bit_ID SR_06

16.2.15 APP_ID SR_07

Table 16-12. Output_Bit_ID SR_05 register

Offset 0x0B

Bit 7 6 5 4 3 2 1 0

Field Output_Bit_ID SR_05

Reset 0x00

Table 16-13. APP_ID SR_06 register

Offset 0x0C

Bit 7 6 5 4 3 2 1 0

Field APP_ID SR_06

Reset 0x07

Table 16-14. Output_Bit_ID SR_06 register

Offset 0x0D

Bit 7 6 5 4 3 2 1 0

Field Output_Bit_ID SR_06

Reset 0x06

Table 16-15. APP_ID SR_07 register

Offset 0x0E

Bit 7 6 5 4 3 2 1 0

Field APP_ID SR_07

Reset 0x00



Status Register Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

166 Freescale Semiconductor, Inc.

16.2.16 Output_Bit_ID SR_07

COMMENT: 32 data registers x8 bits each = 256 possibilities (selection is similar to as 
GPIO_Application, give an practical example as well...) probably similar to the GPIO application.

Table 16-16. Output_Bit_ID SR_07 register

Offset 0x0F

Bit 7 6 5 4 3 2 1 0

Field Output_Bit_ID SR_07

Reset 0x00

Table 16-17. Status Register bit descriptions

Field Description

APP_ID (APP_ID SR_n) [7:0] The application identifier. Zero value and 0xFF are reserved.
Units: None.
Range of valid values: [0 to 31] and 0xFF, realistically up to 0x1F.

Bit_ID (Output_Bit_ID SR_n) [7:0] The bit number to be mapped on the Status Register bit n.
Units: Non-dimensional.
Range of valid values: [0 to 255].



Status Register Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 167

16.3 Status Register default configuration
After reset, the status register configuration registers contains the Portrait LAPO, BAFRO, and Z-Tilt 
lockout bits as well as the Data Ready and Command Complete bits.

NOTE
The upper two bits in the upper byte are fixed, but the lower eight bits in the 
lower byte can be remapped by the user to any application and bits.

The Status Register Application’s default settings are configured to meet the needs of most users. (See the 
following table.)

The Portrait/Landscape Application output bits are mapped to the status bits. For detailed information 
about the Portrait/Landscape Application's outputs, see Table 9-16 on page 102.

Table 16-18. Status Register MSB

Offset 0x00

Bit 15 14 13 12 11 10 9 8

Field
Command
Complete

Data
Ready

N/A N/A N/A N/A N/A N/A

Reset

Table 16-19. Status Register LSB

Offset 0x01

Bit 7 6 5 4 3 2 1 0

Field
Unassigned PL Z-Tilt

Lockout
Unassigned PL

LAPO
PL

BAFRO

Reset



Status Register Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

168 Freescale Semiconductor, Inc.

Table 16-20. Status Register application’s default settings

Field Description

PL Z-Tilt Lockout

Reports a Z-tilt angle lockout.
Range of valid values:
 • 0: Lockout condition has not been detected.
 • 1: Z-tilt lockout trip angle has been exceeded. Lockout has been detected.

PL LAPO

Reports a new portrait/landscape orientation event.
Range of valid values:
 • 000: Undefined. The default, power-up state.
 • 001: Portrait up – Device is standing vertically in the normal orientation.
 • 010: Portrait down – Device is standing vertically in the inverted orientation.
 • 011: Landscape right – Device is in the landscape mode to the right.
 • 100: Landscape left – Device is in the landscape mode to the left.

PL BAFRO

Reports a new back or front orientation event.
Range of valid values:
 • 00: Undefined – This is the default power-up state.
 • 01: Front – Device is in the front-facing orientation.
 • 11: Back – Device is in the back-facing orientation.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 169

Chapter 17 Sleep/Wake Application

17.1 Overview of Sleep/Wake application
This application configures and controls the power-control modes of the 
accelerometer provides configuration flexibility for minimizing power 
consumption.

The application has three modes of operation: Run, Doze, and Sleep. The 
Sleep/Wake module puts the accelerometer into Doze mode automatically 
when no movement is detected. When a change in orientation or movement 
above the threshold is detected for the specified time period, the application 
returns to the Run mode.

To save a significant amount of power, only run the calculation-intensive applications when the 
accelerometer is in motion.

Using the activity level settings, some tasks may easily be bypassed when the accelerometer is sleeping. 
For example, it may not be necessary to run the Portrait / Landscape application while the device is sitting 
undisturbed flat on a desk top.

17.1.1 Run mode

In Run mode, all applications are scheduled to run at their maximum established frame rate. An application 
enters Run mode if the following conditions are met:

• The GPIO interrupt is asserted (RGPIO4/INT)

• A write command is issued from the host to the accelerometer

• Movement above the threshold is detected and the previous state was Doze mode

Application
ID 0x12

Default speed 488 Hz

Configuration 
registers

Start on 
page 172.

Status 
registers

Start on 
page 176.



Sleep/Wake Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

170 Freescale Semiconductor, Inc.

Figure 17-1. Platform’s power modes state diagram

17.1.2 Doze mode

In Doze mode, the application only executes four AFE samples at a sample rate defined by the user. The 
user can configure two sample rate values: long time and short time. These parameters are configured in 
the long_time_off and short_time_off registers, respectively.

The short-time sample rate is used when the sensor detects some movement, but not enough to change to 
Run mode.

The long-time sample rate is used when the Sleep/Wake module detects no movement in the 
accelerometer.

The application enters Doze mode when the Sleep/Wake module detects no movement in the 
accelerometer for a specified period of time. The amount of time is configured in the doze_thresh register.

17.1.3 Sleep mode

In Sleep mode, the MMA955xL device does nothing and remains in the lowest-power mode. The device 
can enter this mode only when the user sets the SNCEN bit from the cfg configuration register or when the 
application starts. Since the SNCEN bit is set by default, the application starts in Sleep mode.

To exit the Sleep mode, the user must clear the SNCEN bit from the cfg configuration register. This is done 
by issuing the corresponding write configuration command through the slave communications interface.

If the sensor is being used as a standalone, without a slave communication interface, the user must 
overwrite the default configuration to have the sensor start in the Run mode. To overwrite the default 

Sleep mode,
nothing done

Run mode,
all applications

executing

Doze mode,
short time between

AFE samples

Doze mode,
long time between

AFE samples

Sleep = 1

Sleep = 0

Sleep = 1

Some movement
detected

No movement or 
host command 
for the short
configured time

Movement 
above threshold
detected

No movement or host
command for the short
configured time

Average sample rate

0 Hz SR 1/(long time) Hz SR 1/(short time? Hz SR 488 Hz SR



Sleep/Wake Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 171

configuration, a user application must be added. Since each task must have an initialization function, the 
user must add the write instruction of the cfg register to change the sensor from Sleep to Run mode.

This configuration can only be done in the initialization function or the sensor will start in Sleep mode and 
never run the user applications. The following example shows how to overwrite the default configuration 
of the cfg register.

Example 17-1. 

void initCbFunction(void)
{  

/* power control structure pointer */
power_data_struct_t *sleep_ptr; 

/* Assign power control structure address to pointer */
sleep_ptr = GetDataPtr(LONG_SHORT_INT_APP_ID);

/* configure power ctrl module to be in run mode */
sleep_ptr->param.pc_cfg = 0x00;   

...
}



Sleep/Wake Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

172 Freescale Semiconductor, Inc.

17.2 Sleep/Wake configuration registers
The following sections give the configuration registers for the Sleep/Wake application.

17.2.1 sensitivity_thresh

17.2.2 doze_time_thresh

Table 17-1. sensitivity_thresh registers

Offset 0x00(MSB) 0x01(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field sensitivity_thresh sensitivity_thresh

Reset 0x00 1 0 1 0 0 0 0 0

Table 17-2. sensitivity_thresh bit description

Field Description

sensitivity_thresh Configures the movement threshold of the application to change from Doze to Run mode.
Units: Non-dimensional.
Range of valid values: 120 to 300.

Table 17-3. doze_time_thresh registers

Offset 0x02(MSB) 0x03(LSB)

Bit 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Field doze_thresh doze_thresh

Reset 0 0 0 0 1 1 1 1 1 0 1 0 0 0 0 0

Table 17-4. doze_time_thresh bit description

Field Description

doze_thresh Configures the time that the device must be still before entering Doze mode.
For example, if the system sample rate if 488 Hz, then to set a time of 1 second, write 488 (0x1EB) to this 
register.
Units: Algorithm cycles (Time = [Algorithm cycles] * [1/SRPWRCTRL]).
Range of valid values: 1 to 65,535



Sleep/Wake Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 173

17.2.3 long_time_off

Table 17-5. long_time_off registers

Offset 0x04

Bit 7 6 5 4 3 2 1 0

Field Reserved long_time_off [3:0]

Reset 0x00 0 1 1 1

Table 17-6. long_time_off bit description

Field Description

Reserved Bit field reserved.

long_time_off Configures the long-time interval between AFE samples when the application is in Doze mode.
Units: Time. (For more information, see Section 10.3, “High-g/Low-g status register,” on page 115)
Range of valid values: from 0 to 10.

Long-time valuesTime (seconds)
 • 0. . . . . . . . . . . . . . . . . . . 4.1 ms
 • 1. . . . . . . . . . . . . . . . . . . 8.19 ms
 • 2. . . . . . . . . . . . . . . . . . . 16.4 ms
 • 3. . . . . . . . . . . . . . . . . . . .32 ms
 • 4. . . . . . . . . . . . . . . . . . . 65.5 ms
 • 5. . . . . . . . . . . . . . . . . . . 131 ms
 • 6. . . . . . . . . . . . . . . . . . . 162 ms
 • 7. . . . . . . . . . . . . . . . . . . 524 ms
 • 8. . . . . . . . . . . . . . . . . . . . 1.05s
 • 9. . . . . . . . . . . . . . . . . . . . 2.1s
 • 10. . . . . . . . . . . . . . . . . . . 4.19s



Sleep/Wake Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

174 Freescale Semiconductor, Inc.

17.2.4 short_time_off

Table 17-7. short_time_off register

Offset 0x05

Bit 7 6 5 4 3 2 1 0

Field Reserved short_time_off [3:0]

Reset 0x00 0 1 1 0

Table 17-8. short_time_off bit description

Field Description

Reserved Bit field reserved.

short_time_off Configures the short-time interval between AFE samples when the application is in Doze mode.
Units: Time. (For more information, see Section 10.3, “High-g/Low-g status register,” on page 115)
Range of valid values: 0 to 10.

Long-time valuesTime (seconds)
 • 0. . . . . . . . . . . . . . . . . . . 4.1 ms
 • 1. . . . . . . . . . . . . . . . . . . 8.19 ms
 • 2. . . . . . . . . . . . . . . . . . . 16.4 ms
 • 3. . . . . . . . . . . . . . . . . . . .32 ms
 • 4. . . . . . . . . . . . . . . . . . . 65.5 ms
 • 5. . . . . . . . . . . . . . . . . . . 131 ms
 • 6. . . . . . . . . . . . . . . . . . . 162 ms
 • 7. . . . . . . . . . . . . . . . . . . 524 ms
 • 8. . . . . . . . . . . . . . . . . . . . 1.05s
 • 9. . . . . . . . . . . . . . . . . . . . 2.1s
 • 10. . . . . . . . . . . . . . . . . . . 4.19s



Sleep/Wake Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 175

17.2.5 cfg

Table 17-9. cfg register

Offset 0x06

Bit 7 6 5 4 3 2 1 0

Field Reserved Stop_DIS IRQ_EN SCHEN FLEEN SNCEN

Reset 0x00 0 0 0 0 1

Table 17-10. cfg bit descriptions

Field Description

Reserved Bit field reserved.

Stop_DIS Disables or enables the low-power mode. If this bit is set, the device doesn’t execute the STOP assembler 
instruction even if the SNCEN, FLEEN, or SCHEN bits are set as 1b.
 • 0: Enables STOP mode.
 • 1: Disables STOP mode.

IRQ_EN Enables or disables the IRQ interruption in the GPIO 4.
 • 0: Disables IRQ interruption.
 • 1: Enables IRQ interruption.

SCHEN Enables or disables the Doze mode.
 • 0: Disables the Doze mode.
 • 1: Enables the Doze mode.

FLEEN Controls the use of long- and short-time between AFE samples when in Doze mode. If this bit is cleared, 
the application does not use the long- and short-time values to determine the time between AFE samples. 
Instead, the time is fixed as 2.05 ms.
 • 0: Time between AFE samples fixed at 2.05 ms.
 • 1: Long- and short-time values determine the time between AFE samples.

SNCEN Enables or disables the Sleep mode.
Note: When this bit is set, the device will enter Sleep mode. The device can only exit this mode is by 

clearing this bit via a configuration-write command.

 • 0: Disables the Sleep mode.
 • 1: Enables the Sleep mode.



Sleep/Wake Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

176 Freescale Semiconductor, Inc.

17.3 Sleep/Wake status registers

17.3.1 scheduler_mode

Table 17-11. scheduler_mode register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field — — — — — — scheduler_mode

Reset 0 0 0 0 0 0 0 0

Table 17-12. scheduler_mode bit description

Field Description

scheduler_mode Shows the scheduler mode when the SCHED and FLEEN bits are set in the cfg register. If those bits are 
not set, the value of this register may not reflect the actual scheduler mode.
Units: None.
Range of valid values: 0 to 0x02.
 • 00: Doze mode. Frame rate determined by the long_time_off configuration register.
 • 01: Doze mode. Frame rate determined by the short_time_off configuration register.
 • 10: Run mode.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 177

Chapter 18 Reset/Suspend/Clear Control Application

18.1 Overview of Reset/Suspend/Clear Control 
application

This application provides a way to reset, suspend, and clear the outputs of 
the applications in the MMA955xL device. The reset and clear functions 
are implemented in each application as call-back functions. The suspend 
function is handled in the Scheduler Application.

One of the requirements of an application on the MMA955xL device is 
that it have a reset and clear function that can be called by the scheduler or 
another application. This chapter describes how an application’s reset and 
clear callback functions can be called or triggered.

There are three groups of configuration registers for the Reset/Suspend/Clear Control application.

18.1.1 Reset

The reset bit, when set, schedules a reset for an application. At the next system cycle, the reset process is 
handled. The reset bit is automatically cleared by the Scheduler Application.

When the reset bit for an application is set, the following actions occur:

• The application’s reset callback function is executed.

The reset function is part of an application and it typically resets the application’s outputs and 
internal variables.

• The reset bit is cleared.

• The scheduled application is executed.

18.1.2 Suspend

The suspend bit, when set, prevents the an application from executing while the suspend bit is set. Setting 
or clearing the suspend flag is managed by the host through a command or by an application by the API 
functions. (For more information on the latter, see “API functions” on page 195.)

To preserve data coherency in an application, the suspend flag must be set before attempting to modify an 
application’s configuration. The bit then must be cleared after the configuration has been changed.

An application’s reset callback function is executed when its suspend bit flag is set, so such callbacks 
should be implemented in a way to manage reset and suspend conditions.

Application
ID 0x17

Default speed 488 Hz

Configuration
registers

Start on 
page 178 and 

page 184.

Status 
registers

None.



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

178 Freescale Semiconductor, Inc.

18.1.3 Clear

The clear bit clears an application’s outputs. The clear flag is automatically cleared by the scheduler. 

When an application’s clear bit is set, it causes the following actions:

• The application’s clear callback is executed.

This typically resets the application’s outputs.
• The clear flag is cleared.

• The application is executed.

18.2 Configuration registers for Reset/Suspend/Clear Control 
applications

18.2.1 Reset configuration register

Table 18-1. Reset registers

Offset (MSB) 0x00 = reset_bits[31:24]

Bit 31 30 29 28 27 26 25 24

Field
Reserved User 

Application
User 

Application
User 

Application
User 

Application
User 

Application
User 

Application

Reset 1 1 1 1 1 1 1 1

Offset 0x01 = reset_bits[23:16]

Bit 23 22 21 20 19 18 17 16

Field
Rst/Susp/Clr User 

Application
User 

Application
User 

Application
User 

Application
Auto-Wake/

Sleep
Status Event FIFO

Reset 0 1 1 1 1 1 1 1

Offset 0x02 = reset_bits[15:8]

Bit 15 14 13 12 11 10 9 8

Field
Data FIFO Frame 

Counter
User 

Application
User 

Application
Tilt Sensing Tap Detect LG HG

Reset 1 1 1 1 1 1 1 1

Offset (LSB) 0x03 = reset_bits[7:0]

Bit 7 6 5 4 3 2 1 0

Field PL AFE Reserved MBOX GPIO CI Scheduler General Rst

Reset 1 1 1 1 1 1 1 1



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 179

Table 18-2. Reset bit descriptions

Field Description

Reserved
[31:30]

Not used.

User application
[29:24]

These are bits to use to reset user applications assigned to the following APP_IDs
0x1D, 0x1C, 0x1B, 0x1A, 0x19, and 0x18.
 • 0: Normal Operation
 • 1: Initiates the reset sequence if the user application

Reset/Suspend/Clear
[23]

 • 0: Normal operation. 
 • 1: Initiates the reset sequence of the Reset/Suspend/Clear application.

User application
[22:19]

These are bits to use to reset user applications assigned to APP_IDs 0x16, 0x15, 0x14, and 0x13.
 • 0: Normal Operation
 • 1: Initiates the reset sequence if the user application

Auto-Wake/Sleep 
[18]

 • 0: Disables the reset sequence of the Auto-Wake/Sleep application. 
 • 1: Initiates the reset sequence of the Auto-Wake/Sleep application.

Reserved
[17]

Not used.

Event-FIFO
[16]

 • 0: Disables the reset sequence of the Event-Queue application. 
 • 1: Initiates the reset sequence of the Event-Queue application.

Data FIFO
[15]

 • 0: Normal operation. 
 • 1: Initiates the reset sequence of the Data FIFO application.

Frame Counter
[14]

 • 0: Disables the reset sequence of the Frame Counter application. 
 • 1: Initiates the reset sequence of the Frame Counter application.

User Application
[13:12]

These are bits to use to reset user applications assigned to APP_IDs 0x0D and 0x0C.
 • 0: Normal operation.
 • 1: Initiates the reset sequence if the user application

Tilt Sensing
[11]

 • 0: Disables the reset sequence of the Tilt Sensing application. 
 • 1: Initiates the reset sequence of the Tilt Sensing application.

Tap Detection
[10]

 • 0: Disables the reset sequence of the Tap Detection application. 
 • 1: Initiates the reset sequence of the Tap Detection application.

Low-g Detection
[9]

 • 0: Disables the reset sequence of the Low-g detection application. 
 • 1: Initiates the reset sequence of the Low-g detection application.

High-g Detection
[8]

 • 0: Disables the reset sequence of the High-g detection application. 
 • 1: Initiates the reset sequence of the High-g detection application.

Portrait/Landscape
[7]

 • 0: Disables the reset sequence of the portrait/landscape application.
 • 1: Initiates the reset sequence of the portrait/landscape application.

AFE
[6]

 • 0: Disables the reset sequence of the front-end application.
 • 1: Initiate the reset sequence of the front-end application.

Reserved
[5]

Reserved.

Mailbox
[4]

 • 0: Disables the reset sequence of the mailbox application.
 • 1: Initiates the reset sequence of the mailbox application.



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

180 Freescale Semiconductor, Inc.

GPIO
[3]

 • 0: Disables the reset sequence of the GPIO application.
 • 1: Initiates the reset sequence of the GPIO application.

Command Interpreter
[2]

 • 0: Disables the reset sequence of the command-interpreter application.
 • 1: Initiates the reset sequence of the command-interpreter application.

Scheduler
[1]

 • 0: Disables the reset sequence of the scheduler-application. 
 • 1: Initiates the reset sequence of the scheduler-application.

General Reset
[0]

 • 0: Disables a system-wide reset sequence of all MMA955xLapplications. 
 • 1: Initiates a system-wide reset sequence of all MMA955xLapplications.

Table 18-2. Reset bit descriptions (continued)

Field Description



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 181

18.2.2 Suspend configuration register

Table 18-3. Suspend registers

Offset (MSB) 0x04 = reset_bits[31:24]

Bit 31 30 29 28 27 26 25 24

Field
Reserved User 

Application
User 

Application
User 

Application
User 

Application
User 

Application
User 

Application

Reset 1 1 1 1 1 1 1 1

Offset 0x05 = reset_bits[23:16]

Bit 23 22 21 20 19 18 17 16

Field
Rst/Susp/Clr User 

Application
User 

Application
User 

Application
User 

Application
Auto-Wake/

Sleep
Status Event FIFO

Reset 0 1 1 1 1 1 1 1

Offset 0x06 = reset_bits[15:8]

Bit 15 14 13 12 11 10 9 8

Field
Data FIFO Frame 

Counter
User 

Application
User 

Application
Tilt Sensing Tap Detect LG HG

Reset 1 1 1 1 1 1 1 1

Offset (LSB) 0x07 = reset_bits[7:0]

Bit 7 6 5 4 3 2 1 0

Field PL AFE Reserved MBOX GPIO CI Scheduler General Rst

Reset 1 1 1 1 1 1 1 1



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

182 Freescale Semiconductor, Inc.

Table 18-4. Suspend bit descriptions

Field Description

Reserved
[31:30]

Not used.

User application
[29:24]

These are bits to use to reset user applications assigned to the following APP_IDs
0x1D, 0x1C, 0x1B, 0x1A, 0x19, and 0x18.
 • 0: Normal Operation
 • 1: Initiates the reset sequence if the user application

Reset/Suspend/Clear
[23]

 • 0: Normal operation. 
 • 1: Initiates the reset sequence of the Reset/Suspend/Clear application.

User application
[22:19]

These are bits to use to reset user applications assigned to APP_IDs 0x16, 0x15, 0x14, and 0x13.
 • 0: Normal Operation
 • 1: Initiates the reset sequence if the user application

Auto-Wake/Sleep 
[18]

 • 0: Disables the reset sequence of the Auto-Wake/Sleep application. 
 • 1: Initiates the reset sequence of the Auto-Wake/Sleep application.

Reserved
[17]

Not used.

Event-FIFO
[16]

 • 0: Disables the reset sequence of the Event-Queue application. 
 • 1: Initiates the reset sequence of the Event-Queue application.

Data FIFO
[15]

 • 0: Normal operation. 
 • 1: Initiates the reset sequence of the Data FIFO application.

Frame Counter
[14]

 • 0: Disables the reset sequence of the Frame Counter application. 
 • 1: Initiates the reset sequence of the Frame Counter application.

User Application
[13:12]

These are bits to use to reset user applications assigned to APP_IDs 0x0D and 0x0C.
 • 0: Normal operation.
 • 1: Initiates the reset sequence if the user application

Tilt Sensing
[11]

 • 0: Disables the reset sequence of the Tilt Sensing application. 
 • 1: Initiates the reset sequence of the Tilt Sensing application.

Tap Detection
[10]

 • 0: Disables the reset sequence of the Tap Detection application. 
 • 1: Initiates the reset sequence of the Tap Detection application.

Low-g Detection
[9]

 • 0: Disables the reset sequence of the Low-g detection application. 
 • 1: Initiates the reset sequence of the Low-g detection application.

High-g Detection
[8]

 • 0: Disables the reset sequence of the High-g detection application. 
 • 1: Initiates the reset sequence of the High-g detection application.

Portrait/Landscape
[7]

 • 0: Disables the reset sequence of the portrait/landscape application.
 • 1: Initiates the reset sequence of the portrait/landscape application.

AFE
[6]

 • 0: Disables the reset sequence of the front-end application.
 • 1: Initiate the reset sequence of the front-end application.

Reserved
[5]

Reserved.

Mailbox
[4]

 • 0: Disables the reset sequence of the mailbox application.
 • 1: Initiates the reset sequence of the mailbox application.



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 183

GPIO
[3]

 • 0: Disables the reset sequence of the GPIO application.
 • 1: Initiates the reset sequence of the GPIO application.

Command Interpreter
[2]

 • 0: Disables the reset sequence of the command-interpreter application.
 • 1: Initiates the reset sequence of the command-interpreter application.

Scheduler
[1]

 • 0: Disables the reset sequence of the scheduler-application. 
 • 1: Initiates the reset sequence of the scheduler-application.

General Reset
[0]

 • 0: Disables a system-wide reset sequence of all MMA955xLapplications. 
 • 1: Initiates a system-wide reset sequence of all MMA955xLapplications.

Table 18-4. Suspend bit descriptions (continued)

Field Description



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

184 Freescale Semiconductor, Inc.

18.3 Clear configuration register

Table 18-5. Clear registers

Offset (MSB) 0x08 = reset_bits[31:24]

Bit 31 30 29 28 27 26 25 24

Field
Reserved User 

Application
User 

Application
User 

Application
User 

Application
User 

Application
User 

Application

Reset 1 1 1 1 1 1 1 1

Offset 0x09 = reset_bits[23:16]

Bit 23 22 21 20 19 18 17 16

Field
Rst/Susp/Clr User 

Application
User 

Application
User 

Application
User 

Application
Auto-Wake/

Sleep
Status Event FIFO

Reset 0 1 1 1 1 1 1 1

Offset 0x10 = reset_bits[15:8]

Bit 15 14 13 12 11 10 9 8

Field
Data FIFO Frame 

Counter
User 

Application
User 

Application
Tilt Sensing Tap Detect LG HG

Reset 1 1 1 1 1 1 1 1

Offset (LSB) 0x11 = reset_bits[7:0]

Bit 7 6 5 4 3 2 1 0

Field
PL Frontend Reserved MBOX GPIO CI Scheduler General 

Susp

Reset 1 1 1 1 1 1 1 1



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 185

Table 18-6. Clear bit descriptions

Field Description

Reserved
[31:30]

Not used.

User application
[29:24]

These are bits to use to reset user applications assigned to the following APP_IDs
0x1D, 0x1C, 0x1B, 0x1A, 0x19, and 0x18.
 • 0: Normal Operation
 • 1: Initiates the reset sequence if the user application

Reset/Suspend/Clear
[23]

 • 0: Normal operation. 
 • 1: Initiates the reset sequence of the Reset/Suspend/Clear application.

User application
[22:19]

These are bits to use to reset user applications assigned to APP_IDs 0x16, 0x15, 0x14, and 0x13.
 • 0: Normal Operation
 • 1: Initiates the reset sequence if the user application

Auto-Wake/Sleep 
[18]

 • 0: Disables the reset sequence of the Auto-Wake/Sleep application. 
 • 1: Initiates the reset sequence of the Auto-Wake/Sleep application.

Reserved
[17]

Not used.

Event-FIFO
[16]

 • 0: Disables the reset sequence of the Event-Queue application. 
 • 1: Initiates the reset sequence of the Event-Queue application.

Data FIFO
[15]

 • 0: Normal operation. 
 • 1: Initiates the reset sequence of the Data FIFO application.

Frame Counter
[14]

 • 0: Disables the reset sequence of the Frame Counter application. 
 • 1: Initiates the reset sequence of the Frame Counter application.

User Application
[13:12]

These are bits to use to reset user applications assigned to APP_IDs 0x0D and 0x0C.
 • 0: Normal operation.
 • 1: Initiates the reset sequence if the user application

Tilt Sensing
[11]

 • 0: Disables the reset sequence of the Tilt Sensing application. 
 • 1: Initiates the reset sequence of the Tilt Sensing application.

Tap Detection
[10]

 • 0: Disables the reset sequence of the Tap Detection application. 
 • 1: Initiates the reset sequence of the Tap Detection application.

Low-g Detection
[9]

 • 0: Disables the reset sequence of the Low-g detection application. 
 • 1: Initiates the reset sequence of the Low-g detection application.

High-g Detection
[8]

 • 0: Disables the reset sequence of the High-g detection application. 
 • 1: Initiates the reset sequence of the High-g detection application.

Portrait/Landscape
[7]

 • 0: Disables the reset sequence of the portrait/landscape application.
 • 1: Initiates the reset sequence of the portrait/landscape application.

AFE
[6]

 • 0: Disables the reset sequence of the front-end application.
 • 1: Initiate the reset sequence of the front-end application.

Reserved
[5]

Reserved.

Mailbox
[4]

 • 0: Disables the reset sequence of the mailbox application.
 • 1: Initiates the reset sequence of the mailbox application.



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

186 Freescale Semiconductor, Inc.

Once an application has set a flag, it can be reset by one of the following mechanisms:

• Execute a power-on reset.

• Wake the device after a low-power mode.

• Direct the host to write to general, reset/suspend/clear configuration bit.

• Direct the host to write to an application reset/suspend/clear configuration bit.

GPIO
[3]

 • 0: Disables the reset sequence of the GPIO application.
 • 1: Initiates the reset sequence of the GPIO application.

Command Interpreter
[2]

 • 0: Disables the reset sequence of the command-interpreter application.
 • 1: Initiates the reset sequence of the command-interpreter application.

Scheduler
[1]

 • 0: Disables the reset sequence of the scheduler-application. 
 • 1: Initiates the reset sequence of the scheduler-application.

General Reset
[0]

 • 0: Disables a system-wide reset sequence of all MMA955xLapplications. 
 • 1: Initiates a system-wide reset sequence of all MMA955xLapplications.

Table 18-6. Clear bit descriptions (continued)

Field Description



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 187

18.4 Reset/Suspend/Clear status registers
There are no status registers.

18.5 Reboot to ROM CI from flash code
In order to reboot to ROM Command Interpreter, it is necessary to execute the reset callback function of 
the reset/suspend/clear application by setting the respective reset flag. The complete command for this 
operation is:

Example 18-1. 

MBOX0 = 0x17 /*Application ID*/
MBOX1 = 0x20 /*CONFIG_W command*/
MBOX2 = 0x01 /*Offset*/
MBOX3 = 0x01 /*Number of bytes to write*/
MBOX4 = 0x80 /*Data*/

18.6 Reboot to flash code from ROM CI
The operation to reboot into flash code when the ROM Command Interpreter is running can be performed 
by sending a CI_RESET command, the mailbox settings for this command is:

Example 18-2. 

MBOX0 = 0x29 /*ROM Command for boot to flash*/
MBOX1 = 0x00 /*Reserved*/
MBOX2 = 0xFF /*CI_PWR*/
MBOX3 = 0xFF /*CI_PWR*/
MBOX4 = 0xFF /*CI_PWR*/
MBOX5 = 0xFF /*CI_PWR*/

For details about the ROM CI commands, see the MMA955xL Intelligent Motion-Sensing Platform 
Hardware Reference Manual (MMA955xLRM). (See “References” on page 13.)



Reset/Suspend/Clear Control Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

188 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 189

Chapter 19 MBOX Configuration Application

19.1 Overview of MBOX Configuration 
application

The MBOX Configuration application works with the Mailbox application 
(Chapter 7, “Mailbox Application” on page 67) and the Communications 
application (Chapter 5, “Communication Interface” on page 55) to provide 
data back to the host in a way that the host can best use the data.

The MBOX Configuration application configures how the mailboxes 
behave. The Mailbox application configures what data is stored in the 
mailboxes.

By default, the MMA955xL operates in the Commands/Response mode, where a host must issue a write 
command followed by one or more reads to get data. The MMA955xL can also be put into a Legacy mode, 
where the host just issues a read command to get data.

The mailboxes can be accessed in either of two modes: Normal or Legacy. The mailboxes’ default mode 
is Normal, but the mode can be changed through this the mailbox configuration application (APP_ID = 
0x18).

The following figure shows the differences between the Normal and Legacy modes.

Address Normal Mode Legacy Mode

0 Command
/

Response
mailboxes

Command
/

Response
mailboxes...

19

20 Quick-Read
mailboxes

...

31

Figure 19-1. Difference between Normal and Legacy modes

Application
ID

0x18

Default speed
Always 

available

Configuration 
registers

page 191

Status 
registers

None



MBOX Configuration Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

190 Freescale Semiconductor, Inc.

19.2 Normal mode
In Normal mode, only the command/response communications model is supported. In order to read valid 
data from the MMA955xL platform, the host must send a command through the mailboxes and wait for 
the command to be processed. Then, the host must read back the mailboxes that now have the data. The 
host can wait for the command to be processed by polling the Command Complete (COCO) bit or the host 
can wait for the INT_O interrupt.

The Normal mode fully supports streaming-read transactions when the response to a command may be 
more than 32 bytes long.

The following procedure gives the sequence for setting up the interrupt pin to go active after a COCO:

1. MB0: Set the “APP_ID: Communication application” (0x18) application identifier.

2. MB1: Set the “Command: Write Config” (0x20) application identifier.

3. MB2: Set the Offset to Zero field (0x00) to point to the configuration register.

4. MB3: Set the Count field to (0x01).

This is done because only one data byte needs to be sent.
5. MB4: Set the DATA (0x80) bit 7.

This enables the interrupt pin.

Bytes to Send: 0x18, 0x20, 0x00, 0x01, 0x80.

19.3 Legacy mode
In Legacy mode, the lower-address mailboxes operate as described in the Normal mode—in the 
command/response communications model. MB20 through MB31, however, are used as Quick-Read 
registers. These registers are automatically updated at the end of each sample frame with the latest results 
from the chosen applications.

The Mailbox application determines what data will appear in the mailboxes.

The quick-read output data is selected with the configuration of the Mailbox application. (For more detail, 
see “Mailbox Application” on page 67.)

Quick-Read registers enable the host to quickly and directly read a limited set of data directly from the 
MMA955xL platform without first having to issue a command and wait for the completion of the 
command processing. This makes support easier for legacy systems that expect to read sensor data. (In 
Legacy mode, MB20 to MB31 are reserved for mapping the Quick-Read registers.)

By default, the Quick-Read registers (MB20-MB31) contain the following data:

MB20-21 = Status 0,1

MB22 = Event Queue status

MB23 = FIFO status

MV24-25 = AFE Frame Counter

MB26-27 = AFE, Stage 0; X-axis data



MBOX Configuration Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 191

MB28-29 = AFE, Stage 0; Y-axis data

MB30-31 = AFE, Stage 0; Z-axis data

This data—in the Quick-Read registers in Legacy mode—can be changed with the Mailbox application.

19.4 Configuring mailbox operational mode
The operational mode of the slave communications interface mailbox is configured via the Mailbox 
Configuration application. This application allows the host system to configure the slave communications 
interface functions including the mailbox transaction interrupt pin mode, mailbox Normal/Legacy modes, 
and transaction-streaming modes.

The following example shows how to configure the mailbox operating mode from Normal to Legacy

Example 19-1. 

1. MB0: Set the “APP_ID: Mailbox Mode Config” application identifier (0x18).

2. MB1: Set the “Command: Write Config” application identifier (0x20).

3. MB2: Set the Offset to Zero field (0x00) to point to the configuration register.

4. MB3: Set the Count field to 0x01 because only one data byte needs to be sent.

5. MB4: Set the DATA value to 0x10.

This sets the Legacy field to 1b which selects the Legacy mode.

Bytes to send: 0x18, 0x20, 0x00, 0x01, 0x10.

19.5 MBOX Configuration memory map and register

19.5.1 MBOX Configuration memory map

Table 19-1. memory map

Offset 
address

Register Access Reset Details

0x00 MBOX Configuration register Read/Write 0x00 page 192



MBOX Configuration Application

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

192 Freescale Semiconductor, Inc.

19.5.2 MBOX Configuration register

Table 19-2. MBOX Configuration register

Offset 0x00

Bit 7 6 5 4 3 2 1 0

Field
INT_O_EN INT_O_POL INT_O_

FRAME_EN
LEGACY UPDMODES — —

Reset 0 0 0 0 00 0 0

Table 19-3. Communications configuration register field descriptions

Bit(s) Field Description

7 INT_O_EN Enables or disables the assertion of the INT_O signal every time a mailbox command is 
been processed.
Range of valid values:
0 Disables the assertion of the INT_O signal.
1 Enables the assertion of the INT_O signal.

6 INT_O_POL Configures the polarity of the INT_O signal when it is asserted.
Range of valid values:
0 Active high.
1 Active low.

5 INT_O_FRAME_EN If enabled, generates the INT_O interrupt on completion of the AFE sample—once each 
frame. If not enabled, the INT_O signal is generated on a command-complete basis.
This bit was added to support synchronization between the host and the MMA955xL device. 
Data will be ready on a frame basis (488 Hz, 244 Hz, or 122 Hz).
Range of valid values:
0 Interrupt not generated.
1 Interrupt generated on completion of AFE sample.

4 LEGACY Selects between Normal and Legacy mode.
Range of valid values:
0 Normal mode.
1 Legacy mode.

3–2 UPDMODES When in Legacy mode, configures how and when the Quick-Read registers are updated.
This field is valid only if the Mailbox is operating in Legacy mode. See Bit 4.
Range of valid values:
00 Mode 0: Updates the Quick-Read registers (QR) whether the slave port is active or 

inactive.
01 Mode 1: Updates the QR registers only if the slave port is inactive. If the slave port is 

active, the update takes no action and waits until the slave port is inactive.
10 Mode 2: Updates the QR registers if the slave port is inactive. If the slave port is active 

(I2C transactions are running), this mode will enable a receive interrupt in the slave port 
to be triggered immediately after the transaction ends. After this, the QR register is 
immediately updated and the receive interrupt disabled.

1–0 — Reserved.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 193

Chapter 20 Memory Allocation for User Applications

20.1 Overview of memory allocation
User applications can allocate their data variables such as status outputs, configuration inputs and private 
variables. The RAM memory distribution of the MMA955xL device is divided in four sections:

• Firmware SRAM

• User SRAM (Data FIFO, Event FIFO, and user application data)

• User stack

• Supervisor stack.

The memory distribution is shown in the following figure.

Figure 20-1. RAM memory map

0x800000

0x800680

0x800740

0x800800

Note 1

Data FIFO
buffer

Event FIFO
buffer

Customer
application-RAM

data

Note 2 Note 2

Software application
SRAM

Customer
SRAM

User stack

Supervisor
stack

2. For the actual ending address of the software application SRAM, see the release notes.

3. These two buffers are allocated dynamically in the user’s SRAM space. The start and end address of 
each buffer depends on which one is allocated first.



Memory Allocation for User Applications

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

194 Freescale Semiconductor, Inc.

The distribution of the user RAM section will start from the end address of the “software application 
SRAM” section. The actual starting address varies, depending on which device in the MMA955xL family 
is being used. The location of each user block (Data FIFO buffer, Event FIFO buffer, and User Variables) 
depends on the order that the memory blocks were requested.

The RAM memory is reserved in one direction which means that is not possible to free memory. The user 
should avoid using static memory defined by a linker file. If this approach is used, care must be taken to 
not override memory allocated through the API calls.

The definition of the user data structure must start with the outputs, followed immediately by the 
parameters—without any padding in between—and the private variables as is shown in the following 
example:

Example 20-1. 

typedef struct user_filter_struct_tag {
struct user_filter_outs_tag {
int16 xyz[USER_FILTER_AXES];
uint8 counter;
} outs;
struct user_filter_param_tag {
uint8 max_boundary;
uint8 min_boundary;
} param;
struct user_filter_private_tag {
buffer_t buffer[USER_FILTER_AXES];
} private;
} user_filter_struct_t;



Memory Allocation for User Applications

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 195

20.2 API functions
The Freescale-platform firmware provides two API functions for user applications to request and reserve 
RAM memory:

uint8_t * RequestDataRam (uint16_t sz, uint8_t u8appid)

Description: This function reserves the size of memory passed as a parameter starting from the last RAM 
address used. The application data-start address that is reserved is registered into the global application 
data that is used by the communication interface to configure the parameter and read-output structures.

Parameters: 
• u8Size – Number of memory bytes to reserve by the function.

• uint8_t u8appid – The identifier of the application, with valid values [0 to 31]. The identifier value 
cannot duplicate values used by the firmware applications

Return: void * - Pointer to the start address of the reserved memory. If not enough memory is available, 
NULL is returned.

void * GetDataPtr (uint8_t u8appid)

Description: This function returns the pointer to the application data-structure address. The function must 
be called when a user application must access data variables that were not assigned at compilation time.

Parameters: uint8_t u8appid – The application’s identifier.

Return: void * – Pointer to the application data structure. If memory was not previously reserved for the 
specific APP_ID, a NULL value is returned.

 For details on the indices of the previous functions, in the Freescale functions table, see “User 
Applications” on page 197.



Memory Allocation for User Applications

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

196 Freescale Semiconductor, Inc.



MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 197

Chapter 21 User Applications

21.1 Application binding
The MMA955xL platform contains a user flash memory section reserved for up to three user images. User 
images contain an identification table and functions associated with a user application. User applications 
can be executed by the scheduler in the Freescale firmware.

Freescale firmware provides a mechanism for downloading up to three user images and binding them into 
the primary image. A user application must have the defined application table as a header, as shown in 
Figure 21-1 on page 198.

In addition to the main user function, applications must also have associated callback functions for init, 
reset, and clear. These three callback functions allow the scheduler, as well as the host and other 
applications, to control applications.

The init function should allocate and initialize all variables that are used by the application. The reset 
function should put the application in a state to be started or re-started. The clear function should clear out 
all the output or status results of the application.

Each image can have multiple applications.

Application tables must be located at specific locations in the flash memory so that the bootloader can find 
them. In the programming application note and associated templates, the compiler options and linker file 
are configured to properly locate the application tables at appropriate memory locations.

The following image shows the flash memory map with the Freescale and user memory sections:



User Applications

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

198 Freescale Semiconductor, Inc.

Figure 21-1. Flash memory map

The binding mechanism, which happens at boot time, requires that a user-image application table be 
located at the beginning of a new page of 512 bytes. If the table is at another address, the binding process 
will not able to find the user images.

The application table starts with a 32-bit table identifier which is 0x9550C0DE. The application table also 
contains the number of applications and the parameters of each application, in the order to be executed by 
the firmware scheduler.

The initialization function in the user application needs to reserve and initialize the data memory for public 
and private variables. It also needs to configure the priority and activity of the application to be executed 
by the scheduler.

The reset function in the user application needs to do the things needed to reset the user application. This 
function is used by the system and possibly other applications to reset the user application.

The clear function in the user application clears the output bytes of the user application. This function is 
used by the system and possibly other applications to clear the outputs of the user application.

Figure 21-1 shows an example of the structure of a user images with just one application. The total number 
of applications is limited to 31, including the Freescale applications. The number of user images is limited 

__declspec(app_table) app_table_t app_table = {
app_table_t app_table = {

TABLE_IDENTIFIER, // table identifier = 0x9559CODE
1, //num_of_applications

{
{(cbFunction)(&initCbFunction), // init function address
 (cbFunction)(&resetCbFunction), // reset function address
 (cbFunction)(&clearCbFunction), // clear function address
 (cbFunction) &UserApplication, // main function address
 (uint8_t)(CUST_FBID), // application id 
 (7), // number of parameter bytes
 (1) // number of output bytes

 }
} , // call back block for 

application 2,if used....
};

void initCbFucntion(void )

{
/* Request memory RAM for User Application variables*/
/* Set priority and activity of UserApplication1*/
/* Initilize User Application variables*/

}

void  resetCbFunction(void ){}

void clearCbFunction(void){}

void  UserApplication1(void )

{

}

N*512

Primary Freescale firmware

First user image

Second user image

Third user image



User Applications

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

Freescale Semiconductor, Inc. 199

to three. The Freescale firmware uses x of the tasks, leaving x applications for users to implement in their 
systems.

The application identifiers used by the Freescale firmware are documented in “Communication Interface” 
on page 55.

21.2 API
The MMA955xL device’s firmware provides an API for the user application code. These API functions 
can be accessed through the instruction in Assembler Trap 7. The index of the desired function is in 
Register D0.

The indexes of the Freescale API table are described in the following enumeration:

typedef enum fsl_api_indx_tag {
FSL_API_FN_EVNT_Q            = 0,      /*eventFifo_push */
FSL_API_FN_REG_USER_INT      = 1,      /*register_user_int */
FSL_API_FN_REQ_DATA_RAM      = 2,      /*RequestDataRam */
FSL_API_FN_GET_APMAP_PTR     = 3,      /*get_apmap_ptr */
FSL_API_FN_APP_OUT_ADDR      = 4,      /*app_output_addr */
FSL_API_FN_APP_PARAM_ADDR    = 5,      /*app_param_addr */
FSL_API_FN_IIR_FILTER        = 6,      /*iir filter*/
FSL_API_FN_GET_DATA_PTR      = 7,      /*GetDataPtr*/
MAX_FSL_API

}fsl_api_indx_tag;

The definitions of the indexes, in the preceding enumeration, are:

FSL_API_FN_EVENT_Q –

Index of the function that pushes data into the Event FIFO.

FSL_API_FN_REG_USER_INT – 

Index of the function that registers users’ interruption functions.

FSL_API_FN_REQ_DATA_RAM –

Index of the function that dynamically reserves RAM.

FSL_API_FN_GET_APMAP_PTR –

Index of the function that gets the address of an entry in the application table.

FSL_API_FN_APP_OUT_ADDR –

Index of the function that looks for, and returns the address of, the status registers 
for a given APP_ID.

FSL_API_FN_APP_PARAM_ADDR –

Index of the function that looks for, and returns the address of, the configuration 
registers for a given APP_ID.

FSL_API_FN_IIR_FILTER –

Index of the configurable IIR filter function.



User Applications

MMA955xL Intelligent Motion-Sensing Platform Software Reference Manual, Rev. 0

200 Freescale Semiconductor, Inc.

FSL_API_FN_GET_DATA_PTR –

Index of the function that looks for, and returns the address of, the application 
data.

21.3 Additional resources
For additional information on developing custom applications, see:

• Installation of the MMA955xL CodeWarrior Service Pack (AN4128)

• Build Custom Applications on MMA9550/MMA9551L (AN4129). 

To access the webpage with these documents, see “References” on page 13.


	Chapter 1 About This Document
	1.1 Overview
	1.1.1 Purpose
	1.1.2 Audience

	1.2 Terms and acronyms
	1.3 Conventions
	1.4 Register figure conventions
	1.5 References

	Chapter 2 Introduction
	2.1 Functional overview
	2.2 MMA955xL package: axis orientation
	2.3 Data flow
	2.4 User applications
	2.4.1 Application table
	2.4.2 RAM allocation

	2.5 System initialization
	2.5.1 Application identifiers

	2.6 Registers summary

	Chapter 3 Version Application
	3.1 Reading the version information

	Chapter 4 Scheduler Application
	4.1 Scheduler operational overview
	4.2 Scheduler application elements
	4.2.1 Priority levels
	4.2.2 Activity levels

	4.3 Interrupts
	4.4 Scheduler preemption
	4.4.1 High-priority task suspending low-priority task
	4.4.2 Low-priority task becoming ready during high-priority task

	4.5 Error conditions
	4.6 Scheduler configuration registers
	4.6.1 request_to_start register
	4.6.2 request_to_start register configuration example
	4.6.3 Interrupt assignment registers
	4.6.4 Scheduler parameters register

	4.7 Scheduler status registers
	4.7.1 Timeouts


	Chapter 5 Communication Interface
	5.1 Overview of Communication Interface
	5.2 Mailbox interface
	5.2.1 Mailbox timing diagrams

	5.3 Mailbox usage
	5.3.1 Mailbox command format for a write
	5.3.2 Application IDs, names, and descriptions
	5.3.3 Mailbox command format for a read


	Chapter 6 GPIO Application
	6.1 Overview of GPIO application
	6.2 GPIO configuration registers
	6.2.1 GPIO register tables
	6.2.2 GPIO polarity configuration
	6.2.3 GPIO application bit descriptions


	Chapter 7 Mailbox Application
	7.1 Overview of Mailbox application
	7.2 Mailbox configuration registers
	7.2.1 MBOX bit descriptions
	7.2.2 Configuring XYZ data

	7.3 Mailbox status registers
	7.4 Reading aggregated data (Legacy mode - Quick read)

	Chapter 8 Analog Front End Application
	8.1 Overview of Analog Front End application
	8.1.1 Sample rate
	8.1.2 Offset and scale correction
	8.1.3 Anti-aliasing filter
	8.1.4 Raw data
	8.1.5 Normalization
	8.1.6 Down-sampling and stage-1, anti-aliasing filter
	8.1.7 Absolute value
	8.1.8 Configurable, low-pass and high-pass filters

	8.2 AFE configuration registers
	8.2.1 afe_csr
	8.2.2 user_offset [XYZ]
	8.2.3 config_k
	8.2.4 sfd_rate

	8.3 AFE status registers
	8.3.1 output[FRONTEND_Stage_0][XYZ]
	8.3.2 output[FRONTEND_Stage_1][XYZ]
	8.3.3 output[FRONTEND_Stage_0_ABS][XYZ]
	8.3.4 output[FRONTEND_Stage_0_GM][XYZ]
	8.3.5 output[FRONTEND_Stage_0_LPF][XYZ]
	8.3.6 output[FRONTEND_Stage_0_HPF][XYZ]
	8.3.7 output_temp
	8.3.8 output_EIC
	8.3.9 frame_counter


	Chapter 9 Portrait/Landscape Application
	9.1 Overview of Portrait/Landscape application
	9.2 Portrait/Landscape configuration registers
	9.2.1 threshold_tilt
	9.2.2 landscape_angle
	9.2.3 portrait_angle
	9.2.4 debounce_count
	9.2.5 hysteresis_LO
	9.2.6 hysteresis_BAFRO
	9.2.7 cfg

	9.3 Portrait/Landscape status registers
	9.3.1 PL_Out
	9.3.2 Programming example


	Chapter 10 High-g/Low-g Application
	10.1 Overview of High-g/Low-g application
	10.2 High-g/Low-g configuration registers
	10.2.1 low_g_thresh
	10.2.2 low_g_cnt_min
	10.2.3 low_g_cfg
	10.2.4 high_g_thresh
	10.2.5 high_g_cnt_min
	10.2.6 high_g_cfg
	10.2.7 lhg_event_mask

	10.3 High-g/Low-g status register
	10.3.1 lhg_out


	Chapter 11 Tap Detection Application
	11.1 Overview of Tap Detection application
	11.2 Tap-Detection configuration registers
	11.2.1 tap_thresh
	11.2.2 tap_on_min
	11.2.3 tap_on_max
	11.2.4 double_tap_min_time
	11.2.5 tap_K_HP
	11.2.6 tap_K_LP
	11.2.7 tap_axis_enable
	11.2.8 tap_events_mask

	11.3 Tap-Detection status registers
	11.3.1 TAP_Out
	11.3.2 DTAP_Out


	Chapter 12 Tilt Application
	12.1 Overview of Tilt application
	12.2 Tilt configuration registers
	12.2.1 tilt_K_LP
	12.2.2 tilt_cfg1
	12.2.3 tilt_event_mask

	12.3 Tilt status registers
	12.3.1 tilt_delta_xz_ang
	12.3.2 tilt_delta_yz_ang
	12.3.3 tilt_delta_xy_ang
	12.3.4 tilt_xz_yz_quad


	Chapter 13 Frame Counter Application
	13.1 Overview of Frame Counter application
	13.2 Frame-Counter configuration registers
	13.3 Frame-Counter status register
	13.3.1 frame_cnt


	Chapter 14 Data FIFO Application
	14.1 Overview of Data FIFO application
	14.2 Modes of operation
	14.2.1 Stop-on-overflow
	14.2.2 Free-run

	14.3 Reading process
	14.4 Data FIFO block diagram
	14.4.1 Entries format

	14.5 Data FIFO configuration registers
	14.5.1 FIFO configuration byte
	14.5.2 FIFO size word
	14.5.3 FIFO APP_ID
	14.5.4 Watermark

	14.6 Data FIFO status registers
	14.6.1 Records number
	14.6.2 Entry size
	14.6.3 FIFO_Status


	Chapter 15 Event Queue Application
	15.1 Overview of Event Queue application
	15.1.1 Modes of operation
	15.1.2 Reading process
	15.1.3 Event Queue block diagram

	15.2 Event Queue configuration registers
	15.2.1 queue_size
	15.2.2 queue_wmrk
	15.2.3 queue_timeout

	15.3 Event Queue status registers
	15.3.1 records_number
	15.3.2 entry_size
	15.3.3 queue_status


	Chapter 16 Status Register Application
	16.1 Overview of Status Register application
	16.2 Status Register configuration registers
	16.2.1 APP_ID SR_00
	16.2.2 Output_Bit_ID SR_00
	16.2.3 APP_ID SR_01
	16.2.4 Output_Bit_ID SR_01
	16.2.5 APP_ID SR_02
	16.2.6 Output_Bit_ID SR_02
	16.2.7 APP_ID SR_03
	16.2.8 Output_Bit_ID SR_03
	16.2.9 APP_ID SR_04
	16.2.10 Output_Bit_ID SR_04
	16.2.11 APP_ID SR_05
	16.2.12 Output_Bit_ID SR_05
	16.2.13 APP_ID SR_06
	16.2.14 Output_Bit_ID SR_06
	16.2.15 APP_ID SR_07
	16.2.16 Output_Bit_ID SR_07

	16.3 Status Register default configuration

	Chapter 17 Sleep/Wake Application
	17.1 Overview of Sleep/Wake application
	17.1.1 Run mode
	17.1.2 Doze mode
	17.1.3 Sleep mode

	17.2 Sleep/Wake configuration registers
	17.2.1 sensitivity_thresh
	17.2.2 doze_time_thresh
	17.2.3 long_time_off
	17.2.4 short_time_off
	17.2.5 cfg

	17.3 Sleep/Wake status registers
	17.3.1 scheduler_mode


	Chapter 18 Reset/Suspend/Clear Control Application
	18.1 Overview of Reset/Suspend/Clear Control application
	18.1.1 Reset
	18.1.2 Suspend
	18.1.3 Clear

	18.2 Configuration registers for Reset/Suspend/Clear Control applications
	18.2.1 Reset configuration register
	18.2.2 Suspend configuration register

	18.3 Clear configuration register
	18.4 Reset/Suspend/Clear status registers
	18.5 Reboot to ROM CI from flash code
	18.6 Reboot to flash code from ROM CI

	Chapter 19 MBOX Configuration Application
	19.1 Overview of MBOX Configuration application
	19.2 Normal mode
	19.3 Legacy mode
	19.4 Configuring mailbox operational mode
	19.5 MBOX Configuration memory map and register
	19.5.1 MBOX Configuration memory map
	19.5.2 MBOX Configuration register


	Chapter 20 Memory Allocation for User Applications
	20.1 Overview of memory allocation
	20.2 API functions

	Chapter 21 User Applications
	21.1 Application binding
	21.2 API
	21.3 Additional resources




