
ParFlow User’s Manual

GMWI 2009-01
December, 2009

Reed M. Maxwell1, Stefan J. Kollet2, Steven G. Smith3, Carol S. Woodward4,
Robert D. Falgout5, Ian M. Ferguson6, Chuck Baldwin, William J. Bosl 7, Richard
Hornung8, Steven Ashby9

1 Department of Geology and Geologic Engineering and International Groundwater Mod-

eling Center, Colorado School of Mines, Golden, CO, USA. rmaxwell@mines.edu
2Meteorological Institute, Bonn University, Bonn, Germany. stefan.kollet@uni-bonn.de
3Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Liv-

ermore, CA. USA. sgsmith@llnl.gov
4Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Liv-

ermore, CA, USA. cswoodward@llnl.gov
5Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Liv-

ermore, CA, USA.
6 Department of Geology and Geologic Engineering and International Groundwater Mod-

eling Center, Colorado School of Mines, Golden, CO, USA. imfergus@mines.edu
7Children’s Hospital Informatics Program, Harvard Medical School, Boston, MA, USA.
8Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Liv-

ermore, CA, USA.
9Pacific Northwest National Laboratory, Richland, WA, USA.

Suggested citation: Maxwell, R.M., S.J. Kollet, S.G. Smith, C.S. Woodward, R.D. Falgout, I.M.
Ferguson, C. Baldwin, W.J. Bosl, R. Hornung, S. Ashby, ParFlow User’s Manual. International
Ground Water Modeling Center Report GWMI 2009-01, 129p.

ParFlow is released under the GNU LPGL License
Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
http://fsf.org/

This manual is licensed under the GNU Free Documentation License.
Copyright c© 2009 Reed M. Maxwell, Stefan J. Kollet, Steven G. Smith, Carol S. Woodward.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy
of the license is included in the section entitled ”GNU Free Documentation License”. Permission is
granted to make and distribute verbatim copies of this manual provided the copyright notice and
this permission notice are preserved on all copies.

This computer software and documentation was prepared as an account of work sponsored by

an agency of the United States Government. Neither the United States Government nor the
University of California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial products, process, or service
by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its
endorsement, recommendation, or favoring by the United States Government or the University of
California. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

Contents

1 Introduction 1

2 Getting Started 3

2.1 Installing ParFlow . 3

2.2 Running the Sample Problem . 6

2.3 ParFlow Solvers . 8

3 The ParFlow System 11

3.1 Defining the Problem . 11

3.2 Running ParFlow . 12

3.3 Restarting a Run . 13

3.4 Visualizing Output . 14

3.5 Manipulating Data . 14

3.5.1 Introduction to the ParFlow TCL commands (PFTCL) 14

3.5.2 PFTCL Commands . 15

3.5.3 Common examples using ParFlow TCL commands (PFTCL) 21

3.6 Directory of Test Cases . 22

3.7 Annotated Input Script . 23

4 Model Equations 39

4.1 Multi-Phase Flow Equations . 39

4.2 Transport Equations . 41

4.3 Notation and Units . 41

4.4 Steady-State, Saturated Groundwater Flow . 43

4.5 Richards’ Equation . 43

4.6 Overland Flow . 44

4.7 Water Balance . 45

5 ParFlow Files 47

5.1 Main Input File (.pftcl) . 49

5.1.1 Input File Format Number . 49

5.1.2 Geometries . 50

i

ii CONTENTS

5.1.3 Timing Information . 54
5.1.4 Time Cycles . 56
5.1.5 Domain . 57
5.1.6 Phases and Contaminants . 57
5.1.7 Gravity, Phase Density and Phase Viscosity 58
5.1.8 Chemical Reactions . 59
5.1.9 Permeability . 59
5.1.10 Porosity . 65
5.1.11 Specific Storage . 66
5.1.12 Manning’s Roughness Values . 66
5.1.13 Topographical Slopes . 67
5.1.14 Retardation . 69
5.1.15 Full Multiphase Mobilities . 70
5.1.16 Richards’ Equation Relative Permeabilities 70
5.1.17 Phase Sources . 73
5.1.18 Capillary Pressures . 74
5.1.19 Saturation . 75
5.1.20 Internal Boundary Conditions . 78
5.1.21 Boundary Conditions: Pressure . 79
5.1.22 Boundary Conditions: Saturation . 83
5.1.23 Initial Conditions: Phase Saturations . 85
5.1.24 Initial Conditions: Pressure . 86
5.1.25 Initial Conditions: Phase Concentrations . 87
5.1.26 Known Exact Solution . 88
5.1.27 Wells . 89
5.1.28 Code Parameters . 94
5.1.29 Richards’ Equation Solver Parameters . 99

5.2 ParFlow Binary Files (.pfb) . 108
5.3 ParFlow Scattered Binary Files (.pfsb) . 109
5.4 ParFlow Solid Files (.pfsol) . 110
5.5 ParFlow Well Output File (.wells) . 111
5.6 ParFlow Simple ASCII and Simple Binary Files (.sa and .sb) 115

6 GNU Free Documentation License 117

GNU Free Documentation License 117

1. APPLICABILITY AND DEFINITIONS . 117
2. VERBATIM COPYING . 119
3. COPYING IN QUANTITY . 119
4. MODIFICATIONS . 120
5. COMBINING DOCUMENTS . 121
6. COLLECTIONS OF DOCUMENTS . 122
7. AGGREGATION WITH INDEPENDENT WORKS 122

CONTENTS iii

8. TRANSLATION . 122
9. TERMINATION . 123
10. FUTURE REVISIONS OF THIS LICENSE . 123
11. RELICENSING . 123

iv CONTENTS

Chapter 1

Introduction

ParFlow [1, 7, 8] is a parallel simulation platform that operates in three modes:

1. steady-state saturated;

2. variably saturated;

3. and integrated-watershed flow.

ParFlow is especially suitable for large scale problems on a range of single and multi-processor
computing platforms. ParFlow simulates the three-dimensional saturated and variably satu-
rated subsurface flow in heterogeneous porous media in three spatial dimensions using a mulitgrid-
preconditioned conjugate gradient solver [1] and a Newton-Krylov nonlinear solver [7]. ParFlow

has recently been extended to coupled surface-subsurface flow to enable the simulation of hillslope
runoff and channel routing in a truly integrated fashion [8]. ParFlow is also fully-coupled with the
land surface model CLM [2] as described in [12, 9]. The development and application of ParFlow

has been on-going for more than 10 years [19, 3, 18, 10, 9, 17, 16, 15, 14, 8, 12, 25, 11, 24, 29,
7, 13, 23, 22, 21, 1] and resulted in some of the most advanced numerical solvers and multigrid
preconditioners for massively parallel computer environments that are available today. Many of
the numerical tools developed within the ParFlow platform have been turned into or are from
libraries that are now distributed and maintained at LLNL (Hypre and SUNDIALS, for exam-
ple). An additional advantage of ParFlow is the use of a sophisticated octree-space partitioning
algorithm to depict complex structures in three-space, such as topography, different hydrologic
facies, and watershed boundaries. All these components implemented into ParFlow enable large
scale, high resolution watershed simulations. ParFlow simulates the three-dimensional variably
saturated subsurface flow in strongly heterogeneous porous media in three spatial dimensions.

ParFlow is primarily written in C, uses a module architecture and contains a flexible com-
munications layer to encapsolate parallel process interaction on a range of platforms. CLM is fully-
integrated into ParFlow as a module and has been parallelized (including I/O) and is written in
FORTRAN 90/95. ParFlow is organized into a main executable pfdir/pfsimulator/parflow_exe
and a library pfdir/pfsimulator/parflow lib (where pfdir is the main directory location) and
is comprised of more than 190 separate source files. ParFlow is structured to allow it to be

1

2 CHAPTER 1. INTRODUCTION

called from within another application (e.g. WRF) or as a stand-alone application. There is also a
directory structure for the message-passing layer pfdir/pfsimulator/amps for the associated tools
pfdir/pftools for CLM pfdir/pfsimulator/clm and a directory of test cases pfdir/test.

This manual describes how to use ParFlow, and is intended for hydrologists, geoscientists,
environmental scientists and engineers. In Chapter 2, we describe how to install ParFlow. Then,
we lead the user through a simple ParFlow run. In Chapter 3, we describe the ParFlow system
in more detail. Chapter 5 describes the formats of the various files used by ParFlow.

Chapter 2

Getting Started

This chapter is an introduction to setting up and running ParFlow. In § 2.1, we describe how to
install ParFlow. In § 2.2, we lead the user through a simple groundwater problem, supplied with
the ParFlow distribution.

2.1 Installing ParFlow

ParFlow uses a configure/make system based on the standard GNU autoconf configure system.
This replaces the home grown set of scripts used in previous versions and is much more portable
to a range of machines.

For greater portability the ParFlow build process seperates configuration and compilation of
the simulator and associated tools. This seperation allows easier porting to platforms where the
architecture is different on the nodes and the front-end.

These instructions are for building ParFlow on a range of serial and parallel linux, unix
and OSX machines, including stand-alone single and multi-core to large parallel clusters. These
instructions do NOT include compilation on Windows machines.

ParFlow requires a Standard ANSI C and FORTRAN 90/95 compiler to build code. GCC

and gFortran, available for free on almost every platform, are good options and may be found at:

http://gcc.gnu.org/

and

http://gcc.gnu.org/wiki/GFortran

ParFlow also requires TCL/TK version 8.0 (or higher). TCL/TK can be obtained from:

http://www.tcl.tk/

These three packages are often pre-installed on most computers and generally do not need to be
installed by the user. The following steps are designed to take you through the process of installing
ParFlow from a source distribution. ParFlow uses the gnu package autoconf to create a
configuration file for building and installing the ParFlow program.

3

4 CHAPTER 2. GETTING STARTED

1. Setup

Decide where you wish to install Parflow and associated libraries. The following environment
variable should be set up in your .profile, .cshrc, or other file. Set the environment variable
PARFLOW_DIR to your chosen location (if you are using bash or a bourne syntax shell):

export PARFLOW_DIR=~/parflow

If you are using a csh like shell you will need the following in your .cshrc file:

setenv PARFLOW_DIR ~/parflow

The variable PARFLOW_DIR specifies the location of the installed version of ParFlow. This
is where executables and support files will be placed. If you have a directory which is shared
on multiple architectures you can set different PARFLOW_DIRs on the different machines (for
example ~/parflow-arch1 and ~/parflow-arch2). We will use the ~/parflow directory as
the root directory for building ParFlow in this user manual; you can use a different directory
if you wish.

2. Extract the source

Extract the source files from the distribution compressed tar file. This example assumes the
parflow.tar.Z file is in your home directory and you are building it in a directory ~/parflow.

mkdir ~/parflow

cd ~/parflow

gunzip ../parflow.tar.Z

tar -xvf ../parflow.tar

3. Build and install ParFlow

This step builds the ParFlow library and executable that runs on the nodes of the parallel
machine. The library is used when ParFlow is used as a component of another simulation
(e.g. WRF).

cd $PARFLOW_DIR

cd pfsimulator

./configure --prefix=$PARFLOW_DIR --with-amps=mpi1

make

make install

This will build a parallel version of /parflow using the MPI1 libraries. You can control build
options for /parflow, use

./configure --help

to see other configure options. Note that ParFlow defaults to building a sequential version
so --with-amps is needed when building for a parallel computer. You can explicitly specify

2.1. INSTALLING PARFLOW 5

the path to the MPI to use with the --with-mpi option to configure. This controls AMPS
which stands for Another M essage Passing Sytem. AMPS is a flexible message-passing layer
within ParFlow that allows a common code core to be quickly and easily adapted to different
parallel environments.

4. Build and install pftools

pftools is a package of utilities and a TCL library that is used to setup and postprocess
Parflow files. The input files to ParFlow are TCL scripts so TCL must be installed on the
system.

The first command will build ParFlow and the bundled tools and install them in the
$PARFLOW_DIR directory. The second command will build and install the documentation.
A typical configure and build looks like:

cd $PARFLOW_DIR

cd pftools

./configure --prefix=$PARFLOW_DIR --with-amps=mpi1

make

make install

make doc_install

Note that pftools is NOT parallel but some options for how files are written are based on
the communication layer so pftools needs to have the same options that were used to build
the ParFlow library.

If TCL is not installed in the system locations (/usr or /usr/local) you need to specify the
path with the --with-tcl=<PATH> configure option.

See ./configure --help for additional configure options for pftools.

5. Running a sample problem

There is a test directory that contains not only example scripts of ParFlow problems but
the correct output for these scripts as well. This may be used to test the compilation process
and verify that ParFlow is installed correctly. If all went well a sample ParFlow problem
can be run using:

cd $PARFLOW_DIR

cd test

tclsh default_single.pftcl

Note that PAFLOW_DIR must be set for this to work and it assume tclsh is in your path. Make
sure to use the same TCL as was used in the pftools configure. The entire suite of test cases
may be run at once to test a range of functionality in ParFlow. This may be done by:

cd $PARFLOW_DIR

cd test

make check

6 CHAPTER 2. GETTING STARTED

6. Notes and other options:

ParFlow may be compiled with a number of options using the configure script. Some
common options are compiling CLM as in [12, 9] to compile with timing and optimization or
to use a compiler other than gcc. To compile with CLM add --with-clm to the configure line
such as:

./configure --prefix=$PARFLOW_DIR --with-amps=mpi1 --with-clm

To enable detailed timing of the performance of several different components within ParFlow

use the --enable-timing option. To use compiler optimizations use the --enable-opt=STRING
where the =STRING is an optional flag to specify the level and type of optimization.

IMPORTANT NOTE: Optimization and debugging are controlled independent of one an-
other. So to compile with optimization and no debugging you need to specify both --enable-opt=STRING

AND --disable-debug.

It is often desirable to use different C and F90/95 compilers (such as Intel or Porland Group)
to match hardware specifics, for performance reasons or simply personal preference. To change
compilers, set the CC, FC and F77 variables (these may include a path too). For example to
change to the Intel compilers in c-shell:

setenv CC icc

setenv FC ifort

setenv F77 ifort

Many of the features of ParFlow use a file structure called Silo. Silo is a free, open-source,
format detailed at:

https://wci.llnl.gov/codes/silo/

Support for Silo is integrated into ParFlow but the Silo libraries must be built separately and
then linked into ParFlow during the build and configure process. This may be done using the
--with-silo=PATH where the PATH is the location of the Silo libraries.

Some features of ParFlow need to call the solver package Hypre externally. These include the
command options SMG and PFMGOctree. Hypre is a free, open-source, library detailed at:

https://computation.llnl.gov/casc/hypre/software.html

Support for Hypre 2.4.0b or later is integrated into ParFlow but the libraries must be built
separately and then linked into ParFlow during the build and configure process. This may be
done using the --with-hypre=PATH where the PATH is the location of the Hypre libraries.

2.2 Running the Sample Problem

Here, we assume that ParFlow is already built. The following steps will allow you to run a simple
test problem supplied with the distribution.

2.2. RUNNING THE SAMPLE PROBLEM 7

1. We first create a directory in which to run the problem, then copy into it some supplied
default input files. So, do the following anywhere in your $HOME directory:

mkdir foo

cd foo

cp $PARFLOW_DIR/test/default_single.tcl .

chmod 640 *

We used the directory name foo above; you may use any name you wish. The last line
changes the permissions of the files so that you may write to them.

2. Run ParFlow using the pftcl file as a TCL script

tclsh default_single.tcl

You have now successfully run a simple ParFlow problem. For more information on running
ParFlow, see § 3.2.

Adding a Pumping Well

Let us change the input problem by adding a pumping well:

1. Edit the file default_single.tcl using your favorite text editor.

2. Add the following lines to the input file near where the existing well information is in the
input file. You need to replace the “Wells.Names” line with the one included here to get both
wells activated (this value lists the names of the wells):

pfset Wells.Names {snoopy new_well}

pfset Wells.new_well.InputType Recirc

pfset Wells.new_well.Cycle constant

pfset Wells.new_well.ExtractionType Flux

pfset Wells.new_well.InjectionType Flux

pfset Wells.new_well.X 10.0

pfset Wells.new_well.Y 10.0

pfset Wells.new_well.ExtractionZLower 5.0

pfset Wells.new_well.ExtractionZUpper 5.0

pfset Wells.new_well.InjectionZLower 2.0

pfset Wells.new_well.InjectionZUpper 2.0

pfset Wells.new_well.ExtractionMethod Standard

8 CHAPTER 2. GETTING STARTED

pfset Wells.new_well.InjectionMethod Standard

pfset Wells.new_well.alltime.Extraction.Flux.water.Value 5.0

pfset Wells.new_well.alltime.Injection.Flux.water.Value 7.5

pfset Wells.new_well.alltime.Injection.Concentration.water.tce.Fraction 0.1

For more information on defining the problem, see § 3.1.

2.3 ParFlow Solvers

ParFlow can operate using a number of different solvers. Two of these solvers, IMPES (running
in single-phase, fully-saturated mode, not multiphase) and RICHARDS are detailed below. This is
a brief summary of solver settings used to simulate under three sets of conditions, fully-saturated,
variably-saturated and variably-saturated with overland flow. A complete, detailed explanation of
the solver parameters for ParFlow may be found later in this manual. To simulate fully saturated,
steady-state conditions set the solver to IMPES, an example is given below. This is also the default
solver in ParFlow, so if no solver is specified the code solves using IMPES.

pfset Solver Impes

To simulate variably-saturated, transient conditions, using Richards equation, variably/fully
saturated, transient w/ compressible storage set the solver to RICHARDS. An example is below.
This is also the solver used to simulate surface flow or coupled surface-subsurface flow.

pfset Solver Richards

To simulate overland flow, using the kinematic wave approximation to the shallow-wave equa-
tions, set the solver to RICHARDS and set the upper patch boundary condition for the domain
geometry to OverlandFlow, an example is below. This simulates overland flow, independently or
coupled to Richards Equation as detailed in [8]. The overland flow boundary condition can simulate
both uniform and spatially-distributed sources, reading a distribution of fluxes from a binary file
in the latter case. The two cases are set in a ParFlow input script as follows:

pfset Patch.z-upper.BCPressure.Type OverlandFlow

or

pfset Patch.z-upper.BCPressure.Type OverlandFlowPFB

For either case, the solver needs to be set to RICHARDS:

pfset Solver Richards

and the jacobian is approximated:

2.3. PARFLOW SOLVERS 9

pfset Solver.Nonlinear.UseJacobian False

In both cases the boundary fluxes may be set as a function of time cycle. For the Overland-
FlowPFB case:

pfset Patch.z-upper.BCPressure.Cycle "rainrec"

pfset Patch.z-upper.BCPressure.rain.FileName "bc.flux.test.1.pfb"

pfset Patch.z-upper.BCPressure.rec.FileName "bc.flux.test.0.pfb"

ParFlow may also be coupled with the land surface model CLM [2]. This version of CLM

has been extensively modified to be called from within ParFlow as a subroutine, to support
parallel infrastructure including I/O and most importantly with modified physics to support coupled
operation to best utilize the more sophisticated physics in ParFlow [12, 9]. To couple CLM into
ParFlow first the --with-clm option is needed in the ./configure command as indicated in
§ 2.1. Second, the CLM module needs to be called from within ParFlow, this is done using the
following solver key:

pfset Solver.LSM CLM

Note that this key is used to call CLM from within the nonlinear solver time loop and requires that
the solver bet set to RICHARDS to work. Note also that this key defaults to not call CLM so if this
line is omitted CLM will not be called from within ParFlow even if compiled and linked. Currently,
CLM gets some of it’s information from ParFlow such as grid, topology and discretization, but
also has some of it’s own input files for land cover, land cover types and atmospheric forcing.

10 CHAPTER 2. GETTING STARTED

Chapter 3

The ParFlow System

The ParFlow system is still evolving, but here we discuss how to define the problem in § 3.1, how
to run ParFlow in § 3.2, and options for to visualizing the results in § 3.4. There is also a utility
providing a set of functions for manipulating ParFlow data. This utility is discussed in § 3.5.
Lastly, § 3.6 discusses the contents of a directory of test problems provided with ParFlow.

3.1 Defining the Problem

Defining the problem may involve several steps. One of these steps may require definition com-
plicated geometries such as hydrostratigraphic layers. These geometries are then converted to the
.pfsol file format (§ 5.4) using the appropriate PFTools conversion utility (§ 3.5).

The ”main” ParFlow input file is the .tcl file. This input file is a TCL script with some
special routines to create a database which is used as the input for ParFlow. See § 5.1 for details
on the format of this file. The input values into ParFlow are defined by a key/value pair. For
each key you provide the associated value using the pfset command inside the input script. To
set the computational grid for the problem you would enter:

#---

Computational Grid

#---

pfset ComputationalGrid.Lower.X -10.0

pfset ComputationalGrid.Lower.Y 10.0

pfset ComputationalGrid.Lower.Z 1.0

pfset ComputationalGrid.DX 8.8888888888888893

pfset ComputationalGrid.DY 10.666666666666666

pfset ComputationalGrid.DZ 1.0

pfset ComputationalGrid.NX 18

pfset ComputationalGrid.NY 15

11

12 CHAPTER 3. THE PARFLOW SYSTEM

pfset ComputationalGrid.NZ 8

The value is normally a single string, double, or integer. In some cases, in particular for a list
of names, you need to supply a space seperated sequence. This can be done using either a double
quote or braces.

pfset Geom.domain.Patches "left right front back bottom top"

pfset Geom.domain.Patches {left right front back bottom top}

For commands longer than a single line, the TCL continuation character can be used,

pfset Geom.domain.Patches "very_long_name_1 very_long_name_2 very_long_name_3 \

very_long_name_4 very_long_name_5 very_long_name_6"

Since the input file is a TCL script you can use any feature of TCL to define the problem. This
manual will make no effort to teach TCL so refer to one of the available TCL manuals for more
information (“Practical Programming in TCL and TK” by Brent Welch [27] is a good starting
point). This is NOT required, you can get along fine without understanding TCL/TK.

Looking at the example programs in the test directory is one of the best ways to understand
what a ParFlow input file looks like. See § 3.6.

3.2 Running ParFlow

Once the problem input is defined, you need to add a few things to the script to make it execute
ParFlow. First you need to add the TCL commands to load the ParFlow command package.

#

Import the ParFlow TCL package

#

lappend auto_path $env(PARFLOW_DIR)/bin

package require parflow

namespace import Parflow::*

This loads the pfset and other ParFlow commands into the TCL shell.
Since this is a script you need to actually run ParFlow. These are normally the last lines of

the input script.

#---

Run and Unload the ParFlow output files

#---

pfrun default_single

pfundist default_single

3.3. RESTARTING A RUN 13

The pfrun command runs ParFlow with the database as it exists at that point in the file. The
argument is the name to give to the output files (which will normally be the same as the name of
the script). Advanced users can set up multiple problems within the input script by using different
output names.

The pfundist command takes the output files from the ParFlow run and undistributes them.
ParFlow uses a virtual file system which allows files to be distributed across the processors. The
pfundist takes these files and collapses them into a single file. On some machines if you don’t do
the pfundist you will see many files after the run. Each of these contains the output from a single
node; before attempting using them you should undistribute them.

Since the input file is a TCL script run it using TCL:

tclsh runname.tcl

NOTE: Make sure you are using TCL 8.0 or later. The script will not work with earlier releases.
One output file of particular interest is the <run name>.out.log file. This file contains informa-

tion about the run such as number of processes used, convergence history of algorithms, timings and
MFLOP rates. For Richards’ equation problems (including overland flow) the <run name>.out.kinsol.log

file contains the nonlinear convergence information for each timestep. Additionally, the <run name>.out.tx

contains all information routed to standard out of the machine you are running on and often con-
tains error messages and other control information.

3.3 Restarting a Run

A ParFlow run may need to be restarted because either a system time limit has been reached,
ParFlow has been prematurely terminated or the user specifically sets up a problem to run in
segments. In order to restart a run the user needs to know the conditions under which ParFlow

stopped. If ParFlow was prematurely terminated then the user must examine the output files
from the last ”timed dump” to see if they are complete. If not then those data files should be
discarded and the output files from the next to last ”timed dump” will be used in the restarting
procedure. As an important note, if any set of ”timed dump” files are deleted remember to also
delete corresponding lines in the well output file or recombining the well output files from the
individual segments afterwards will be difficult. It is not necessary to delete lines from the log file
as you will only be noting information from it. To summarize, make sure all the important output
data files are complete, accurate and consistent with each other.

Given a set of complete, consistent output files - to restart a run follow this procedure :

1. Note the important information for restarting :

• Write down the dump sequence number for the last collection of “timed dump” data.

• Examine the log file to find out what real time that ”timed dump” data was written out
at and write it down.

2. Prepare input data files from output data files :

14 CHAPTER 3. THE PARFLOW SYSTEM

• Take the last pressure output file before the restart with the sequence number from
above and format them for regular input using the keys detailed in § 5.1.24 and possibly
the pfdist utility in the input script.

3. Change the Main Input File § 5.1 :

• Edit the .tcl file (you may want to save the old one) and utilize the pressure initial
condition input file option (as referenced above) to specify the input files you created
above as initial conditions for concentrations.

4. Restart the run :

• Utilizing an editor recreate all the input parameters used in the run except for the
following two items :

– Use the dump sequence number from step 1 as the start count.

– Use the real time that the dump occured at from step 1 as the start time.

3.4 Visualizing Output

While ParFlow does not have any visualization capabilities built-in, there are a number flexible,
free options. Probably the best option is to use VisIt. VisIt is a powerful, free, open-source,
rendering environment. It is multiplatform and may be downloaded directly from:

https://wci.llnl.gov/codes/visit/

The most flexible option for using VisIt to view ParFlow output is to write files using the SILO
format, which is available either as a direct output option (described in § 5.1.28) or a conversion
option using pftools. Many other output conversion options exist as described in § 3.5 and this
allows ParFlow output to be converted into formats used by almost all visualization software.

3.5 Manipulating Data

3.5.1 Introduction to the ParFlow TCL commands (PFTCL)

Several tools for manipulating data are provided in PFTCL command set. In order to use them you
need to load the ParFlow package into the TCL shell. If you are doing simple data manipulation
the xpftools provides GUI access to most of these features. All of these tools are accessible inside
of a ParFlow input script. You can use them to do post and pre processing of datafiles each time
you execute a run.

#

To Import the ParFlow TCL package

#

lappend auto_path $env(PARFLOW_DIR)/bin

3.5. MANIPULATING DATA 15

package require parflow

namespace import Parflow::*

Use pfhelp to get a list of commands.
PFTCL assigns identifiers to each data set it stores. For example, if you read in a file called

foo.pfb, you get the following:

parflow> pfload foo.pfb

dataset0

The first line is typed in by the user and the second line is printed out by PFTCL. It indicates that
the data read from file foo.pfb is associated with the identifier dataset0.

To exit use the standard TCL command exit.

3.5.2 PFTCL Commands

The following gives a list of ParFlow commands and instructions for their use: Note that com-
mands that perform operations on data sets will require an identifier for each data set it takes as
input.

pfaxpy alpha x y

This command computes y = alpha*x+y where alpha is a scalar and x and y are identifiers
representing data sets. No data set identifier is returned upon successful completion since
data set y is overwritten.

pfcomputetop mask

This command computes the the top of the domain based on the mask of active and inactive
zones. This is the land-surface in clm or overland flow simulations. The identifier of the data
set created by this operation is returned upon successful completion.

pfwatertabledepth top saturation

This command computes the the water table depth (distance from top to first cell with
saturation = 1). The identifier of the data set created by this operation is returned upon
successful completion.

pfcvel conductivity phead

This command computes the Darcy velocity in cells for the conductivity data set represented
by the identifier ‘conductivity’ and the pressure head data set represented by the identifier
‘phead’. (note: This ”cell” is not the same as the grid cells; its corners are defined by the grid
vertices.) The identifier of the data set created by this operation is returned upon successful
completion.

pfdelete dataset

This command deletes the data set represented by the identifier ‘dataset’.

16 CHAPTER 3. THE PARFLOW SYSTEM

pfdiffelt datasetp datasetq i j k digits [zero]

This command returns the difference of two corresponding coordinates from ‘datasetp’ and
‘datasetq’ if the number of digits in agreement (significant digits) differs by more than ‘digits’
significant digits and the difference is greater than the absolute zero given by ‘zero’.

pfdist filename

Distribute the file onto the virtual file system. This utility must be used to create files which
ParFlow can use as input. ParFlow uses a virtual file system which allows each node of
the parallel machine to read from the input file independentaly. The utility does the inverse
of the pfundist command. If you are using a ParFlow binary file for input you should do a
pfdist just before you do the pfrun. This command requires that the processor topology and
computational grid be set in the input file so that it knows how to distribute the data.

pfflux conductivity hhead

This command computes the net Darcy flux at vertices for the conductivity data set ‘conduc-
tivity’ and the hydraulic head data set given by ‘hhead’. An identifier representing the flux
computed will be returned upon successful completion.

pfextracttop top data

This command computes the the top of the domain based on the top of the domain and
another dataset. The identifier of the data set created by this operation is returned upon
successful completion.

pfgetelt dataset i j k

This command returns the value at element (i,j,k) in data set ‘dataset’. The i, j, and k above
must range from 0 to (nx - 1), 0 to (ny - 1), and 0 to (nz - 1) respectively. The values nx,
ny, and nz are the number of grid points along the x, y, and z axes respectively. The string
‘dataset’ is an identifier representing the data set whose element is to be retrieved.

pfgetgrid dataset

This command returns a description of the grid which serves as the domain of data set
‘dataset’. The format of the description is given below.

• (nx, ny, nz)

The number of coordinates in each direction.

• (x, y, z)

The origin of the grid.

• (dx, dy, dz)

The distance between each coordinate in each direction.

The above information is returned in the following Tcl list format: nx ny nz x y z dx dy dz

3.5. MANIPULATING DATA 17

pfgridtype gridtype

This command sets the grid type to either cell centered if ‘gridtype’ is set to ‘cell’ or vetex
centered if ‘gridtype’ is set to ‘vertex’. If no new value for ‘gridtype’ is given, then the
current value of ‘gridtype’ is returned. The value of ‘gridtype’ will be returned upon successful
completion of this command.

pfhhead phead

This command computes the hydraulic head from the pressure head represented by the iden-
tifier ‘phead’. An identifier for the hydraulic head computed is returned upon successful
completion.

pflistdata dataset

This command returns a list of pairs if no argument is given. The first item in each pair will
be an identifier representing the data set and the second item will be that data set’s label. If
a data set’s identifier is given as an argument, then just that data set’s name and label will
be returned.

pfload [file format] filename

Loads a dataset into memory so it can be manipulated using the other utilities. A file format
may preceed the filename in order to indicate the file’s format. If no file type option is given,
then the extension of the filename is used to determine the default file type. An identifier
used to represent the data set will be returned upon successful completion.

File type options include:

• pfb

ParFlow binary format. Default file type for files with a ‘.pfb’ extension.

• pfsb

ParFlow scattered binary format. Default file type for files with a ‘.pfsb’ extension.

• sa

ParFlow simple ASCII format. Default file type for files with a ‘.sa’ extension.

• sb

ParFlow simple binary format. Default file type for files with a ‘.sb’ extension.

• silo

Silo binary format. Default file type for files with a ‘.silo’ extension.

• rsa

ParFlow real scattered ASCII format. Default file type for files with a ‘.rsa’ extension

pfloadsds filename dsnum

This command is used to load Scientific Data Sets from HDF files. The SDS number ‘dsnum’
will be used to find the SDS you wish to load from the HDF file ‘filename’. The data set

18 CHAPTER 3. THE PARFLOW SYSTEM

loaded into memory will be assigned an identifier which will be used to refer to the data set
until it is deleted. This identifier will be returned upon successful completion of the command.

pfmdiff datasetp datasetq digits [zero]

If ‘digits’ is greater than or equal to zero, then this command computes the grid point at which
the number of digits in agreement (significant digits) is fewest and differs by more than ‘digits’
significant digits. If ‘digits’ is less than zero, then the point at which the number of digits
in agreement (significant digits) is minimum is computed. Finally, the maximum absolute
difference is computed. The above information is returned in a Tcl list of the following form:
mi mj mk sd adiff

Given the search criteria, (mi, mj, mk) is the coordinate where the minimum number of
significant digits ‘sd’ was found and ‘adiff’ is the maximum absolute difference.

pfnewdata {nx ny nz} {x y z} {dx dy dz} label

This command creates a new data set whose dimension is described by the lists nx ny nz, x
y z, and dx dy dz. The first list, describes the dimensions, the second indicates the origin,
and the third gives the length intervals between each coordinate along each axis. The ‘label’
argument will be the label of the data set that gets created. This new data set that is created
will have all of its data points set to zero automatically. An identifier for the new data set
will be returned upon successful completion.

pfnewlabel dataset newlabel

This command changes the label of the data set ‘dataset’ to ‘newlabel’.

pfphead hhead

This command computes the pressure head from the hydraulic head represented by the iden-
tifier ‘hhead’. An identifier for the pressure head is returned upon successful completion.

pfsavediff datasetp datasetq digits [zero] -file filename

This command saves to a file the differences between the values of the data sets represented
by ‘datasetp’ and ‘datasetq’ to file ‘filename’. The data points whose values differ in more
than ‘digits’ significant digits and whose differences are greater than ‘zero’ will be saved. Also,
given the above criteria, the minimum number of digits in agreement (significant digits) will
be saved.

If ‘digits’ is less than zero, then only the minimum number of significant digits and the
coordinate where the minimum was computed will be saved.

In each of the above cases, the maximum absolute difference given the criteria will also be
saved.

pfsave dataset -filetype filename

This command is used to save the data set given by the identifier ‘dataset’ to a file ‘filename’
of type ‘filetype’ in one of the ParFlow formats below.

3.5. MANIPULATING DATA 19

File type options include:

• pfb ParFlow binary format.

• sa ParFlow simple ASCII format.

• sb ParFlow simple binary format.

• silo Silo binary format.

• vis Vizamrai binary format.

pfsavesds dataset -filetype filename

This command is used to save the data set represented by the identifier ‘dataset’ to the file
‘filename’ in the format given by ‘filetype’.

The possible HDF formats are:

• -float32

• -float64

• -int8

• -uint8

• -int16

• -uint16

• -int32

• -uint32

pfstats dataset

This command prints various statistics for the data set represented by the identifier ‘dataset’.
The minimum, maximum, mean, sum, variance, and standard deviation are all computed.
The above values are returned in a list of the following form: min max mean sum variance
(standard deviation)

pfsubsurfacestorage mask porosity pressure saturation specific_storage

This command computes the sub-surface water storage (compressible and incompressible com-
ponents) based on mask, porosity, saturation, storativity and pressure fields. The equations
used to calculate this quantity are given in § 4.7. The identifier of the data set created by
this operation is returned upon successful completion.

pfsum dataset

This command computes the sum over the domain of the dataset.

pfsurfacerunoff top slope_x slope_y mannings pressure

This command computes the surface water runoff (out of the domain) based on a computed
top, pressure field, slopes and mannings roughness values. This is integrated along all domain

20 CHAPTER 3. THE PARFLOW SYSTEM

boundaries and is calculated any location that slopes at the edge of the domain point outward.
This data is in units of [L3T−1] and the equations used to calculate this quantity are given
in § 4.7. The identifier of the data set created by this operation is returned upon successful
completion.

pfsurfacestorage top pressure

This command computes the surface water storage (ponded water on top of the domain)
based on a computed top and pressure field. The equations used to calculate this quantity
are given in § 4.7. The identifier of the data set created by this operation is returned upon
successful completion.

pfvmag datasetx datasety datasetz

This command computes the velocity magnitude when given three velocity components. The
three parameters are identifiers which represent the x, y, and z components respectively. The
identifier of the data set created by this operation is returned upon successful completion.

pfvvel conductivity phead

This command computes the Darcy velocity in cells for the conductivity data set represented
by the identifier ‘conductivity’ and the pressure head data set represented by the identifier
‘phead’. The identifier of the data set created by this operation is returned upon successful
completion.

pfprintdata dataset

This command executes ‘pfgetgrid’ and ‘pfgetelt’ in order to display all the elements in the
data set represented by the identifier ‘dataset’.

pfprintdiff datasetp datasetq digits [zero]

This command executes ‘pfdiffelt’ and ‘pfmdiff’ to print differences to standard output. The
differences are printed one per line along with the coordinates where they occur. The last
two lines displayed will show the point at which there is a minimum number of significant
digits in the difference as well as the maximum absolute difference.

pfprintgrid dataset

This command executes pfgetgrid and formats its output before printing it on the screen.
The triples (nx, ny, nz), (x, y, z), and (dx, dy, dz) are all printed on seperate lines along with
labels describing each.

pfprintlist [dataset]

This command executes pflistdata and formats the output of that command. The formatted
output is then printed on the screen. The output consists of a list of data sets and their labels
one per line if no argument was given or just one data set if an identifier was given.

3.5. MANIPULATING DATA 21

pfprintmdiff datasetp datasetq digits [zero]

This command executes ‘pfmdiff’ and formats that command’s output before displaying it on
the screen. Given the search criteria, a line displaying the point at which the difference has
the least number of significant digits will be displayed. Another line displaying the maximum
absolute difference will also be displayed.

printstats dataset

This command executes ‘pfstats’ and formats that command’s output before printing it on
the screen. Each of the values mentioned in the description of ‘pfstats’ will be displayed along
with a label.

pfundist filename, pfundist runname

The command undistributes a ParFlow output file. ParFlow uses a distributed file system
where each node can write to its own file. The pfundist command takes all of these individual
files and collapses them into a single file.

The arguments can be a runname or a filename. If a runname is given then all of the output
files associated with that run are undistributed.

Normally this is done after every pfrun command.

3.5.3 Common examples using ParFlow TCL commands (PFTCL)

This section contains some brief examples of how to use the pftools commands (along with standard
TCL commands) to postprocess data.

Load a file as one format and write as another format.

set press [pfload harvey_flow.out.press.pfb]

pfsave $press -sa harvey_flow.out.sa

Load pressure-head output from a file, convert to head-potential and write out as a new file.

set press [pfload harvey_flow.out.press.pfb]

set head [pfhhead $press]

pfsave $head -pfb harvey_flow.head.pfb

Use the mask to calculate the top of the domain, save the top of the domain as a file, apply it
to the pressure output and write out as a new file.

set mask [pfload clm.out.mask.pfb]

set top [Parflow::pfcomputetop $mask]

pfsave $top -pfb "clm.out.top_index.pfb"

set data [pfload clm.out.press.00000.pfb]

set top_data [Parflow::pfextracttop $top $data]

22 CHAPTER 3. THE PARFLOW SYSTEM

pfsave $top_data -pfb "clm.out.top.press.00000.pfb"

Calculate and output the subsurface storage in the domain at a point in time.

set saturation [pfload runname.out.satur.00001.silo]

set pressure [pfload runname.out.press.00001.silo]

set specific_storage [pfload runname.out.specific_storage.silo]

set porosity [pfload runname.out.porosity.silo]

set mask [pfload runname.out.mask.silo]

set subsurface_storage [pfsubsurfacestorage $mask $porosity \

$pressure $saturation $specific_storage]

set total_subsurface_storage [pfsum $subsurface_storage]

puts [format "Subsurface storage\t\t\t\t : %.16e" $total_subsurface_storage]

Calculate and output the surface storage in the domain at a point in time.

set pressure [pfload runname.out.press.00001.silo]

set mask [pfload runname.out.mask.silo]

set top [pfcomputetop $mask]

set surface_storage [pfsurfacestorage $top $pressure]

set total_surface_storage [pfsum $surface_storage]

puts [format "Surface storage\t\t\t\t : %.16e" $total_surface_storage]

Calculate and output the runoff out of the domain over a timestep.

set pressure [pfload runname.out.press.00001.silo]

set slope_x [pfload runname.out.slope_x.silo]

set slope_y [pfload runname.out.slope_y.silo]

set mannings [pfload runname.out.mannings.silo]

set mask [pfload runname.out.mask.silo]

set top [pfcomputetop $mask]

set surface_runoff [pfsurfacerunoff $top $slope_x $slope_y $mannings $pressure]

set total_surface_runoff [expr [pfsum $surface_runoff] * [pfget TimeStep.Value]]

puts [format "Surface runoff from pftools\t\t\t : %.16e" $total_surface_runoff]

3.6 Directory of Test Cases

ParFlow comes with a directory containing a few simple input files for use as templates in making
new files and for use in testing the code. These files sit in the /test directory described earlier.
This section gives a brief description of the problems in this directory.

3.7. ANNOTATED INPUT SCRIPT 23

crater2D.tcl An example of a two-dimensional, variably-saturated crater infiltration prblem
with time-varying boundary conditions. It uses the solid file crater2D.pfsol.

default_richards.tcl The default variably-saturated Richards Equation simulation test script.

default_single.tcl The default parflow, single-processor, fully-saturated test script.

forsyth2.tcl An example two-dimensional, variably-saturated infiltration problem with layers of
different hydraulic properties. It runs problem 2 in [5] and uses the solid file fors2_hf.pfsol.

harvey.flow.tcl An example from [14] for the Cape Cod bacterial injection site. This example is
a three-dimensional, fully-saturated flow problem with spatially heterogeneous media (using
a correlated, random field approach). It also provides examples of how tcl/tk scripts may be
used in conjunction with ParFlow to loop iteratively or to run other scripts or programs. It
uses the input text file stats4.txt. This input script is fully detailed in § 3.7

default_overland.tcl An overland flow boundary condition test and example script based
loosely on the V-catchment problem in [8]. There are options provided to expand this prob-
lem into other overland flow-type, transient boundary-type problems included in the file as
well.

/clm/clm.tcl An example of how to use ParFlow coupled to clm. This directory also includes
clm-specific input. Note: this problem will only run if --with-clm flag is used during the
configure and build process.

water_balance_x.tcl and water_balance_y.tcl. An overland flow example script that uses
the water-balance routines integrated into pftools. These two problems are based on simple
overland flow conditions with slopes primarily in the x or y-directions. Note: this problem
only will run if the Silo file capability is used, that is a --with-silo=PATH flag is used during
the configure and build process.

pfmg.tcl and pfmg_octree.tcl. Tests of the external Hypre preconditioner options. Note: this
problem only will run if the Hypre capability is used, that is a --with-hypre=PATH flag is
used during the configure and build process.

pfmg.tcl and pfmg_octree.tcl. Tests of the external Hypre preconditioner options. Note: this
problem only will run if the Hypre capability is used, that is a --with-hypre=PATH flag is
used during the configure and build process.

test_x.tcl A test problem for the Richards’ solver that compares output to an analytical solution.

3.7 Annotated Input Script

This tutorial matches the harvey_flow.tcl file found in the /test directory. This example is
directly from [14]. This example demonstrates how to set up and run a fully saturated flow problem
with heterogeneous hydraulic conductivity. Given statistical parameters describing the geology of

24 CHAPTER 3. THE PARFLOW SYSTEM

your site, this script can be easily modified to make as many realizations of the subsurface as
you like, each different and yet having the same statistical parameters, useful for a Monte Carlo
simulation.

To run ParFlow, you use a script written in Tcl/TK. This script has a lot of flexibility, as it
is somewhere in between a program and a user interface. The tcl script gives ParFlow the data
it requires (or tells ParFlow where to find or read in that data) and also tells ParFlow to run.

As stated above, the tcl script for the Cape Cod simulation is called harvey.flow.tcl

When the script runs, it creates a new directory named /flow right in the directory where the
tcl script is stored. ParFlow then puts all its output in /flow. Of course, you can change the
name and location of this output directory by modifying the tcl script that runs ParFlow.

To run the simulation:

1. make any modifications to the tcl input script (and give a new name, if you want to)

2. save the tcl script

3. For Windows: double click on it to run ParFlow

4. For Linux/Unix/OSX: invoke the script from the command line using the tcl-shell, this looks
like: >tclsh harvey_flow.tcl

5. Wait patiently for a small empty square window to appear (Windows) or the command
prompt to return (Linux/Unix/OSX) indicating that ParFlow has finished. Intermediate
files are written as the simulation runs, however there is no other indication that ParFlow

is running.

To modify a tcl script, you right-click and select edit from the menu. If you select open, you
will run the script.

Note: The units for K (ım/d, usually) are critical to the entire construction. These length
and time units for K set the units for all other variables (input or generated, throughout the entire
simulation) in the simulation. ParFlow can set to solve using hydraulic conductivity by literally
setting density, viscosity and gravity to one (as is done in the script below). This means the pressure
units are in length (meters), so pressure is now so-called pressure-head.

Now for the tcl script:

#

Import the ParFlow TCL package

#

These first three lines are what link Parflow and the tcl script, thus allowing you to use a set
of commands seen later, such as pfset, etc.

lappend auto_path $env(PARFLOW_DIR)/bin

package require parflow

namespace import Parflow::*

3.7. ANNOTATED INPUT SCRIPT 25

#---

File input version number

#---

pfset FileVersion 4

These next lines set the parallel process topology. The domain is divided in x,y and z by P, Q
and R. The total number of processors is P*Q*R.

#--

Process Topology

#--

pfset Process.Topology.P 1

pfset Process.Topology.Q 1

pfset Process.Topology.R 1

Next we set up the computational grid (see § 3.1).

#--

Computational Grid

#--

Locate the origin in the domain.

pfset ComputationalGrid.Lower.X 0.0

pfset ComputationalGrid.Lower.Y 0.0

pfset ComputationalGrid.Lower.Z 0.0

Define the size of the domain grid block. Length units, same as those on hydraulic conductivity.

pfset ComputationalGrid.DX 0.34

pfset ComputationalGrid.DY 0.34

pfset ComputationalGrid.DZ 0.038

Define the number of grid blocks in the domain.

pfset ComputationalGrid.NX 50

pfset ComputationalGrid.NY 30

pfset ComputationalGrid.NZ 100

This next piece is comparable to a pre-declaration of variables. These will be areas in our
domain geometry. The regions themselves will be defined later. You must always have one that is
the name of your entire domain. If you want subsections within your domain, you may declare these
as well. For Cape Cod, we have the entire domain, and also the 2 (upper and lower) permeability
zones in the aquifer.

26 CHAPTER 3. THE PARFLOW SYSTEM

#--

The Names of the GeomInputs

#--

pfset GeomInput.Names "domain_input upper_aquifer_input lower_aquifer_input"

Now you characterize your domain that you just pre-declared to be a box (see § 5.1.2), and
you also give it a name, domain.

#--

Domain Geometry Input

#--

pfset GeomInput.domain_input.InputType Box

pfset GeomInput.domain_input.GeomName domain

Here, you set the limits in space for your entire domain. The span from Lower.X to Upper.X

will be equal to the product of ComputationalGrid.DX times ComputationalGrid.NX. Same for
Y and Z (i.e. the number of grid elements times size of the grid element has to equal the size of
the grid in each dimension). The Patches command assigns names to the outside edges, because
the domain is the limit of the problem in space.

#--

Domain Geometry

#--

pfset Geom.domain.Lower.X 0.0

pfset Geom.domain.Lower.Y 0.0

pfset Geom.domain.Lower.Z 0.0

pfset Geom.domain.Upper.X 17.0

pfset Geom.domain.Upper.Y 10.2

pfset Geom.domain.Upper.Z 3.8

pfset Geom.domain.Patches "left right front back bottom top"

Just like domain geometry, you also set the limits in space for the individual components (upper
and lower, as defined in the Names of GeomInputs pre-declaration). There are no patches for these
geometries as they are internal to the domain.

#--

Upper Aquifer Geometry Input

#--

pfset GeomInput.upper_aquifer_input.InputType Box

pfset GeomInput.upper_aquifer_input.GeomName upper_aquifer

3.7. ANNOTATED INPUT SCRIPT 27

#--

Upper Aquifer Geometry

#--

pfset Geom.upper_aquifer.Lower.X 0.0

pfset Geom.upper_aquifer.Lower.Y 0.0

pfset Geom.upper_aquifer.Lower.Z 1.5

pfset Geom.upper_aquifer.Upper.X 17.0

pfset Geom.upper_aquifer.Upper.Y 10.2

pfset Geom.upper_aquifer.Upper.Z 1.5

#--

Lower Aquifer Geometry Input

#--

pfset GeomInput.lower_aquifer_input.InputType Box

pfset GeomInput.lower_aquifer_input.GeomName lower_aquifer

#--

Lower Aquifer Geometry

#--

pfset Geom.lower_aquifer.Lower.X 0.0

pfset Geom.lower_aquifer.Lower.Y 0.0

pfset Geom.lower_aquifer.Lower.Z 0.0

pfset Geom.lower_aquifer.Upper.X 17.0

pfset Geom.lower_aquifer.Upper.Y 10.2

pfset Geom.lower_aquifer.Upper.Z 1.5

Now you add permeability data to the domain sections defined above (§ 5.1.9). You can reassign
values simply by re-stating them – there is no need to comment out or delete the previous version
– the final statement is the only one that counts.

#--

Perm

#--

Name the permeability regions you will describe.

pfset Geom.Perm.Names "upper_aquifer lower_aquifer"

You can set, for example homogeneous, constant permeability, or you can generate a random
field that meets your statistical requirements. To define a constant permeability for the entire
domain:

28 CHAPTER 3. THE PARFLOW SYSTEM

#pfset Geom.domain.Perm.Type Constant

#pfset Geom.domain.Perm.Value 4.0

However, for Cape Cod, we didnt want a constant permeability field, so we instead generated a
random permeability field meeting our statistical parameters for each the upper and lower zones.
Third from the bottom is the Seed. This is a random starting point to generate the K field. Pick
any large ODD number. First we do something tricky with Tcl/TK. We use the native commands
within tcl to open a text file and read in locally set variables. Note we use set here and not
pfset. One is a native tcl command, the other a ParFlow-specific command. For this problem,
we are linking the parameter estimation code, PEST to ParFlow. PEST writes out the ascii file
stats4.txt (also located in the /test directory) as the result of a calibration run. Since we are not
coupled to PEST in this example, we just read in the file and use the values to assign statistical
properties.

we open a file, in this case from PEST to set upper and lower # kg and sigma

#

set fileId [open stats4.txt r 0600]

set kgu [gets $fileId]

set varu [gets $fileId]

set kgl [gets $fileId]

set varl [gets $fileId]

close $fileId

Now we set the heterogeneous parameters for the Upper and Lower aquifers (see § 5.1.9). Note
the special section at the very end of this block where we reset the geometric mean and standard
deviation to our values we read in from a file. Note: ParFlow uses Standard Deviation not
Variance.

pfset Geom.upper_aquifer.Perm.Type "TurnBands"

pfset Geom.upper_aquifer.Perm.LambdaX 3.60

pfset Geom.upper_aquifer.Perm.LambdaY 3.60

pfset Geom.upper_aquifer.Perm.LambdaZ 0.19

pfset Geom.upper_aquifer.Perm.GeomMean 112.00

pfset Geom.upper_aquifer.Perm.Sigma 1.0

pfset Geom.upper_aquifer.Perm.Sigma 0.48989794

pfset Geom.upper_aquifer.Perm.NumLines 150

pfset Geom.upper_aquifer.Perm.RZeta 5.0

pfset Geom.upper_aquifer.Perm.KMax 100.0

pfset Geom.upper_aquifer.Perm.DelK 0.2

pfset Geom.upper_aquifer.Perm.Seed 33333

pfset Geom.upper_aquifer.Perm.LogNormal Log

pfset Geom.upper_aquifer.Perm.StratType Bottom

3.7. ANNOTATED INPUT SCRIPT 29

pfset Geom.lower_aquifer.Perm.Type "TurnBands"

pfset Geom.lower_aquifer.Perm.LambdaX 3.60

pfset Geom.lower_aquifer.Perm.LambdaY 3.60

pfset Geom.lower_aquifer.Perm.LambdaZ 0.19

pfset Geom.lower_aquifer.Perm.GeomMean 77.0

pfset Geom.lower_aquifer.Perm.Sigma 1.0

pfset Geom.lower_aquifer.Perm.Sigma 0.48989794

pfset Geom.lower_aquifer.Perm.NumLines 150

pfset Geom.lower_aquifer.Perm.RZeta 5.0

pfset Geom.lower_aquifer.Perm.KMax 100.0

pfset Geom.lower_aquifer.Perm.DelK 0.2

pfset Geom.lower_aquifer.Perm.Seed 33333

pfset Geom.lower_aquifer.Perm.LogNormal Log

pfset Geom.lower_aquifer.Perm.StratType Bottom

#pfset lower aqu and upper aq stats to pest/read in values

pfset Geom.upper_aquifer.Perm.GeomMean $kgu

pfset Geom.upper_aquifer.Perm.Sigma $varu

pfset Geom.lower_aquifer.Perm.GeomMean $kgl

pfset Geom.lower_aquifer.Perm.Sigma $varl

The following section allows you to specify the permeability tensor. In the case below, perme-
ability is symmetric in all directions (x, y, and z) and therefore each is set to 1.0.

pfset Perm.TensorType TensorByGeom

pfset Geom.Perm.TensorByGeom.Names "domain"

pfset Geom.domain.Perm.TensorValX 1.0

pfset Geom.domain.Perm.TensorValY 1.0

pfset Geom.domain.Perm.TensorValZ 1.0

Next we set the specific storage, though this is not used in the IMPES/steady-state calculation.

#--

Specific Storage

#--

specific storage does not figure into the impes (fully sat)

case but we still need a key for it

30 CHAPTER 3. THE PARFLOW SYSTEM

pfset SpecificStorage.Type Constant

pfset SpecificStorage.GeomNames ""

pfset Geom.domain.SpecificStorage.Value 1.0e-4

ParFlow has the capability to deal with a multiphase system, but we only have one (water)
at Cape Cod. As we stated earlier, we set density and viscosity artificially (and later gravity) both
to 1.0. Again, this is merely a trick to solve for hydraulic conductivity and pressure head. If you
were to set density and viscosity to their true values, the code would calculate k (permeability).
By using the normalized values instead, you effectively imbed the conversion of k to K (hydraulic
conductivity). So this way, we get hydraulic conductivity, which is what we want for this problem.

#--

Phases

#--

pfset Phase.Names "water"

pfset Phase.water.Density.Type Constant

pfset Phase.water.Density.Value 1.0

pfset Phase.water.Viscosity.Type Constant

pfset Phase.water.Viscosity.Value 1.0

We will not use the ParFlow grid based transport scheme. We will then leave contaminants
blank because we will use a different code for to model (virus, tracer) contamination.

#--

Contaminants

#--

pfset Contaminants.Names ""

As with density and viscosity, gravity is normalized here. If we used the true value (in the [L]
and [T] units of hydraulic conductivity) the code would be calculating permeability. Instead, we
normalize so that the code calculates hydraulic conductivity.

#--

Gravity

#--

pfset Gravity 1.0

#--

Setup timing info

#--

3.7. ANNOTATED INPUT SCRIPT 31

This basic time unit of 1.0 is used for transient boundary and well conditions. We are not using
those features in this example.

pfset TimingInfo.BaseUnit 1.0

Cape Cod is a steady state problem, so these timing features are again unused, but need to be
included.

pfset TimingInfo.StartCount -1

pfset TimingInfo.StartTime 0.0

pfset TimingInfo.StopTime 0.0

Set the dump interval to -1 to report info at the end of every calculation, which in this case is
only when steady state has been reached.

pfset TimingInfo.DumpInterval -1

Next, we assign the porosity (see § 5.1.10). For the Cape Cod, the porosity is 0.39.

#--

Porosity

#--

pfset Geom.Porosity.GeomNames domain

pfset Geom.domain.Porosity.Type Constant

pfset Geom.domain.Porosity.Value 0.390

Having defined the geometry of our problem before and named it domain, were now ready to
report/upload that problem, which we do here.

#--

Domain

#--

pfset Domain.GeomName domain

Mobility between phases is set to 1.0 because we only have one phase (water).

#--

Mobility

#--

pfset Phase.water.Mobility.Type Constant

pfset Phase.water.Mobility.Value 1.0

32 CHAPTER 3. THE PARFLOW SYSTEM

Again, ParFlow has more capabilities that we are using for Cape Cod. We will deal with our
monitoring wells in a separate code as we assume the do not remove a significant amount of water
from the domain. Note that since there are no well names listed here, ParFlow assumes we have
no wells. If we had pumping wells, we would have to include them here, because they would affect
the head distribution throughout our domain.

#--

Wells

#--

pfset Wells.Names ""

You can give certain periods of time names if you want to (ie. Pre-injection, post-injection,
etc). Here, however we do not have multiple time intervals and are simulating in steady state, so
time cycle keys are simple. We have only one time cycle and its constant for the duration of the
simulation. We accomplish this by giving it a repeat value of -1, which repeats indefinitely. The
length of the cycle is the length specified below (an integer) multiplied by the base unit value we
specified earlier.

#--

Time Cycles

#--

pfset Cycle.Names constant

pfset Cycle.constant.Names "alltime"

pfset Cycle.constant.alltime.Length 1

pfset Cycle.constant.Repeat -1

Now, we assign Boundary Conditions for each face (each of the Patches in the domain defined
before). Recall the previously stated Patches and associate them with the boundary conditions
that follow.

pfset BCPressure.PatchNames "left right front back bottom top"

These are Dirichelet BCs (i.e. constant head over cell so the pressure head is set to hydrostatic–
see § 5.1.21). There is no time dependence, so use the constant time cycle we defined previously.
RefGeom links this to the established domain geometry and tells ParFlow what to use for a datum
when calculating hydrostatic head conditions.

pfset Patch.left.BCPressure.Type DirEquilRefPatch

pfset Patch.left.BCPressure.Cycle "constant"

pfset Patch.left.BCPressure.RefGeom domain

Reference the current (left) patch to the bottom to define the line of intersection between the
two.

3.7. ANNOTATED INPUT SCRIPT 33

pfset Patch.left.BCPressure.RefPatch bottom

Set the head permanently to 10.0m. Pressure-head will of course vary top to bottom because
of hydrostatics, but head potential will be constant.

pfset Patch.left.BCPressure.alltime.Value 10.0

Repeat the declarations for the rest of the faces of the domain. The left to right (X) dimension
is aligned with the hydraulic gradient. The difference between the values assigned to right and left
divided by the length of the domain corresponds to the correct hydraulic gradient.

pfset Patch.right.BCPressure.Type DirEquilRefPatch

pfset Patch.right.BCPressure.Cycle "constant"

pfset Patch.right.BCPressure.RefGeom domain

pfset Patch.right.BCPressure.RefPatch bottom

pfset Patch.right.BCPressure.alltime.Value 9.97501

pfset Patch.front.BCPressure.Type FluxConst

pfset Patch.front.BCPressure.Cycle "constant"

pfset Patch.front.BCPressure.alltime.Value 0.0

pfset Patch.back.BCPressure.Type FluxConst

pfset Patch.back.BCPressure.Cycle "constant"

pfset Patch.back.BCPressure.alltime.Value 0.0

pfset Patch.bottom.BCPressure.Type FluxConst

pfset Patch.bottom.BCPressure.Cycle "constant"

pfset Patch.bottom.BCPressure.alltime.Value 0.0

pfset Patch.top.BCPressure.Type FluxConst

pfset Patch.top.BCPressure.Cycle "constant"

pfset Patch.top.BCPressure.alltime.Value 0.0

Next we define topographic slopes and Mannings n values. These are not used, since we do not
solve for overland flow. However, the keys still need to appear in the input script.

#---

Topo slopes in x-direction

#---

topo slopes do not figure into the impes (fully sat) case but we still

need keys for them

pfset TopoSlopesX.Type "Constant"

34 CHAPTER 3. THE PARFLOW SYSTEM

pfset TopoSlopesX.GeomNames ""

pfset TopoSlopesX.Geom.domain.Value 0.0

#---

Topo slopes in y-direction

#---

pfset TopoSlopesY.Type "Constant"

pfset TopoSlopesY.GeomNames ""

pfset TopoSlopesY.Geom.domain.Value 0.0

#---

Mannings coefficient

#---

mannings roughnesses do not figure into the impes (fully sat) case but we still

need a key for them

pfset Mannings.Type "Constant"

pfset Mannings.GeomNames ""

pfset Mannings.Geom.domain.Value 0.

Phase sources allows you to add sources other than wells and boundaries, but we do not have
any so this key is constant, 0.0 over entire domain.

#--

Phase sources:

#--

pfset PhaseSources.water.Type Constant

pfset PhaseSources.water.GeomNames domain

pfset PhaseSources.water.Geom.domain.Value 0.0

Next we define solver parameters for IMPES. Since this is the default solver, we do not need a
solver key.

#---

Solver Impes

#---

We allow up to 50 iterations of the linear solver before it quits or converges.

pfset Solver.MaxIter 50

3.7. ANNOTATED INPUT SCRIPT 35

The solution must be accurate to this level

pfset Solver.AbsTol 1E-10

We drop significant digits beyond E-15

pfset Solver.Drop 1E-15

#--

Run and Unload the ParFlow output files

#---

Here you set the number of realizations again using a local tcl variable. We have set only one
run but by setting the n_runs variable to something else we can run more than one realization of
hydraulic conductivity.

this script is setup to run 100 realizations, for testing we just run one

###set n_runs 100

set n_runs 1

Here is where you tell ParFlow where to put the output. In this case, its a directory called
flow. Then you cd (change directory) into that new directory. If you wanted to put an entire
path rather than just a name, you would have more control over where your output file goes.
For example, you would put file mkdir "C:/cape_cod/revised_statistics/flow" and then
change into that directory. Note that for Windows you must use a DOUBLE backslash in the file
path; the single backslash is a control character.

file mkdir "flow"

cd "flow"

Now we loop through the realizations, again using tcl. k is the integer counter that is incre-
mented for each realization. When you use a variable (rather than define it), you precede it with$.
The hanging character { opens the do loop for k.

#

Loop through runs

#

for {set k 1} {$k <= $n_runs} {incr k 1} {

The following expressions sets the variable seed equal to the expression in brackets, which
increments with each turn of the do loop and each seed will produce a different random field of K.
You set upper and lower aquifer, because in the Cape Cod site, these are the two subsets of the
domain. Note the seed starts at a different point to allow for different random field generation for
the upper and lower zones.

36 CHAPTER 3. THE PARFLOW SYSTEM

#

set the random seed to be different for every run

#

pfset Geom.upper_aquifer.Perm.Seed [expr 33333+2*$k]

pfset Geom.lower_aquifer.Perm.Seed [expr 31313+2*$k]

The following command runs ParFlow and gives you a suite of output files for each realization.
The file names will begin harvey_flow.1.xxxxx, harvey_flow.2.xxxx, etc up to as many real-
izations as you run. The .xxxxx part will designate x, y, and z permeability, etc. Recall that in
this case, since we normalized gravity, viscosity, and density, remember that were really getting
hydraulic conductivity.

pfrun harvey_flow.$k

This command removes a large number of superfluous dummy files.

pfundist harvey_flow.$k

The following commands take advantage of PFTools (see § 3.5.2) and load pressure head output
of the Parflow model into a pressure matrix.

we use pf tools to convert from pressure to head

we could do a number of other things here like copy files to different

format

set press [pfload harvey_flow.$k.out.press.pfb]

The next command takes the pressures that were just loaded and converts it to head and loads
them into a head matrix tcl variable.

set head [pfhhead $press]

Finally, the head matrix is saved as a ParFlow binary file (.pfb) and the k do loop is closed by
the } character. The we move up to the root directory when we are finished

pfsave $head -pfb harvey_flow.$k.head.pfb

}

cd ".."

Once you have modified the tcl input script (if necessary) and run ParFlow, you will have
as many realizations of your subsurface as you specified. Each of these realizations will be used
as input for a particle or streamline calculation in the future. We can see below, that since we
have a tcl script as input, we can do a lot of different operations, for example, we might run a
particle tracking transport code simulation using the results of the ParFlow runs. This actually
corresponds to the example presented in the users manual.

3.7. ANNOTATED INPUT SCRIPT 37

this could run other tcl scripts now an example is below

#puts stdout "running SLIM"

#source bromide_trans.sm.tcl

We could also visualize the results of the ParFlow simulations, using a number of codes. For ex-
ample, if we used chunk to create visual representations of your results, the file harvey_flow.#.out.perm_x.pfb
(where # is the realization number) will be the field of your domain, showing the variation in x-
permeability in 3-D space. You can also generate representations of head or pressure (or y or z
permeability) throughout your domain using parflow output files. See the section on visualization
for more details.

38 CHAPTER 3. THE PARFLOW SYSTEM

Chapter 4

Model Equations

In this chapter, we discuss the model equations used by ParFlow for both its multiphase flow and
transport model and the variably saturated flow model. In section 4.1 we describe the multi-phase
flow equations (specified by solver IMPES), and in section 4.2 we describe the transport equations.
Next we describe how the multiphase flow equations may be reduced to solve for steady-state,
saturated groundwater flow. Then, section 4.5 describes the Richards’ equation model (specified
by solver RICHARDS) for variably saturated flow as implemented in ParFlow. Lastly, the
overland flow equations are presented.

4.1 Multi-Phase Flow Equations

The flow equations are a set of mass balance and momentum balance (Darcy’s Law) equations, given
respectively by,

∂

∂t
(φSi) + ∇ · ~Vi − Qi = 0, (4.1)

~Vi + λi · (∇pi − ρi~g) = 0, (4.2)

for i = 0, . . . , np − 1 (np ∈ {1, 2, 3}), where

λi =
k̄kri

µi
, (4.3)

~g = [0, 0,−g]T , (4.4)

Table 4.1 defines the symbols in the above equations, and outlines the symbol dependencies and
units. Here, φ describes the fluid capacity of the porous medium, and Si describes the content of
phase i in the porous medium, where we have that 0 ≤ φ ≤ 1 and 0 ≤ Si ≤ 1. The coefficient k̄ is
considered a scalar here. We also assume that ρi and µi are constant. Also note that in ParFlow,
we assume that the relative permeability is given as kri(Si). The Darcy velocity vector is related
to the velocity vector, ~vi, by the following:

~Vi = φSi~vi. (4.5)

39

40 CHAPTER 4. MODEL EQUATIONS

Table 4.1: Notation and units for flow equations.

symbol quantity units

φ(~x, t) porosity []

Si(~x, t) saturation []
~Vi(~x, t) Darcy velocity vector [LT−1]

Qi(~x, t) source/sink [T−1]

λi mobility [L3TM−1]

pi(~x, t) pressure [ML−1T−2]

ρi mass density [ML−3]

~g gravity vector [LT−2]

k̄(~x, t) intrinsic permeability tensor [L2]

kri(~x, t) relative permeability []

µi viscosity [ML−1T−1]

g gravitational acceleration [LT−2]

To complete the formulation, we have the following np consititutive relations

∑

i

Si = 1, (4.6)

pi0 = pi0(S0), i = 1, . . . , np − 1. (4.7)

where, pij = pi − pj is the capillary pressure between phase i and phase j. We now have the 3np

equations, (4.1), (4.2), (4.6), and (4.7), in the 3np unknowns, Si, ~Vi, and pi.

For technical reasons, we want to rewrite the above equations. First, we define the total mobility,
λT , and the total velocity, ~VT , by the relations

λT =
∑

i

λi, (4.8)

~VT =
∑

i

~Vi. (4.9)

After doing a bunch of algebra, we get the following equation for p0:

−
∑

i

{∇ · λi (∇(p0 + pi0) − ρi~g) + Qi} = 0. (4.10)

After doing some more algebra, we get the following np − 1 equations for Si:

∂

∂t
(φSi) + ∇ ·

λi

λT

~VT +
∑

j 6=i

λiλj

λT
(ρi − ρj)~g

 +
∑

j 6=i

∇ ·
λiλj

λT
∇pji − Qi = 0. (4.11)

4.2. TRANSPORT EQUATIONS 41

The capillary pressures pji in (4.11) are rewritten in terms of the constitutive relations in (4.7) so
that we have

pji = pj0 − pi0, (4.12)

where by definition, pii = 0. Note that equations (4.11) are analytically the same equations as in
(4.1). The reason we rewrite them in this latter form is because of the numerical scheme we are
using. We now have the 3np equations, (4.10), (4.11), (4.9), (4.2), and (4.7), in the 3np unknowns,

Si, ~Vi, and pi.

4.2 Transport Equations

The transport equations in ParFlow are currently defined as follows:
(

∂

∂t
(φci,j) + λj φci,j

)

+ ∇ ·
(

ci,j ~Vi

)

= (4.13)

−

(

∂

∂t
((1 − φ)ρsFi,j) + λj (1 − φ)ρsFi,j

)

+
nI
∑

k

γI;i
k χΩI

k

(

ci,j − c̄kij

)

−
nE
∑

k

γE;i
k χΩE

k
ci,j

where i = 0, . . . , np − 1 (np ∈ {1, 2, 3}) is the number of phases, j = 0, . . . , nc − 1 is the number
of contaminants, and where ci,j is the concentration of contaminant j in phase i. Recall also, that
χA is the characteristic function of set A, i.e. χA(x) = 1 if x ∈ A and χA(x) = 0 if x 6∈ A. Table
4.2 defines the symbols in the above equation, and outlines the symbol dependencies and units.
The equation is basically a statement of mass conservation in a convective flow (no diffusion) with
adsorption and degradation effects incorporated along with the addition of injection and extraction
wells. These equations will soon have to be generalized to include a diffusion term. At the present
time, as an adsorption model, we take the mass concentration term (Fi,j) to be instantaneous in
time and a linear function of contaminant concentration :

Fi,j = Kd;jci,j , (4.14)

where Kd;j is the distribution coefficient of the component ([L3M−1]). If 4.14 is substituted into
4.13 the following equation results (which is the current model used in ParFlow) :

(φ+ (1 − φ)ρsKd;j)
∂

∂t
ci,j + ∇ ·

(

ci,j ~Vi

)

=

− (φ+ (1 − φ)ρsKd;j)λjci,j +
nI
∑

k

γI;i
k χΩI

k

(

ci,j − c̄kij

)

−
nE
∑

k

γE;i
k χΩE

k
ci,j (4.15)

4.3 Notation and Units

In this section, we discuss other common formulations of the flow and transport equations, and
how they relate to the equations solved by ParFlow.

42 CHAPTER 4. MODEL EQUATIONS

Table 4.2: Notation and units for transport equation.

symbol quantity units

φ(~x) porosity []

ci,j(~x, t) concentration fraction []
~Vi(~x, t) Darcy velocity vector [LT−1]

λj degradation rate [T−1]

ρs(~x) density of the solid mass [ML−3]]

Fi,j(~x, t) mass concentration [L3M−1]

nI number of injection wells []

γI;i
k (t) injection rate [T−1]

ΩI
k(~x) injection well region []

c̄kij() injected concentration fraction []

nE number of extraction wells []

γE;i
k (t) extraction rate [T−1]

ΩE
k (~x) extraction well region []

Table 4.3: Notation and units for reformulated flow equations.

symbol quantity units

~Vi Darcy velocity vector [LT−1]

K̄i hydraulic conductivity tensor [LT−1]

hi pressure head [L]

γ constant scale factor [ML−2T−2]

~g gravity vector [LT−2]

We can rewrite equation (4.2) as

~Vi + K̄i · (∇hi −
ρi

γ
~g) = 0, (4.16)

where

K̄i = γλi, (4.17)

hi = (pi − p̄)/γ. (4.18)

Table 4.3 defines the symbols and their units. We can then rewrite equations (4.10) and (4.11) as

−
∑

i

{

∇ · K̄i

(

∇(h0 + hi0) −
ρi

γ
~g

)

+ Qi

}

= 0, (4.19)

4.4. STEADY-STATE, SATURATED GROUNDWATER FLOW 43

∂

∂t
(φSi) + ∇ ·

K̄i

K̄T

~VT +
∑

j 6=i

K̄iK̄j

K̄T

(

ρi

γ
−
ρj

γ

)

~g

 +
∑

j 6=i

∇ ·
K̄iK̄j

K̄T
∇hji − Qi = 0. (4.20)

Note that K̄i is supposed to be a tensor, but we treat it as a scalar here. Also, note that by
carefully defining the input to ParFlow, we can use the units of equations (4.19) and (4.20). To
be more precise, let us denote ParFlow input symbols by appending the symbols in table 4.1 with
(I), and let γ = ρ0g (this is a typical definition). Then, we want:

k̄(I) = γk̄/µ0; (4.21)

µi(I) = µi/µ0; (4.22)

pi(I) = hi; (4.23)

ρi(I) = ρi/ρ0; (4.24)

g(I) = 1. (4.25)

By doing this, k̄(I) represents hydraulic conductivity of the base phase K̄0 (e.g. water) under
saturated conditions (i.e. kr0 = 1).

4.4 Steady-State, Saturated Groundwater Flow

Many groundwater problems are solved assuming steady-state, fully-saturated groundwater flow.
This follows the form often written as:

∇ · q = Q(x) (4.26)

where Q is the spatially-variable source-sink term (to represent wells, etc) and q is the Darcy flux
[L2T−1] which is commonly written as:

q = −K∇H (4.27)

where K is the saturated, hydraulic conductivity tensor [LT−1] and H [L] is the head-potential.
Inspection of 4.1 and 4.2 show that these equations agree with the above formulation for a single-
phase (i = 1), fully-satured (Si = S = 1), problem where the mobility, λi, is set to the saturated
hydraulic conductivity, K, above. This is accomplished by setting the relative permeability and
viscosity terms to unity in 4.3 as well as the gravity and density terms in 4.2. This is shown in
the example in § 3.7, but please note that the resulting solution is in pressure-head, h, not head
potential, H, and will still contain a hydrostatic pressure gradient in the z direction.

4.5 Richards’ Equation

The form of Richards’ equation implemented in ParFlow is given as,

S(p)Ss
∂p

∂t
−
∂(S(p)ρ(p)φ)

∂t
−∇ · (K(p)ρ(p)(∇p− ρ(p)~g)) = Q, in Ω, (4.28)

44 CHAPTER 4. MODEL EQUATIONS

where Ω is the flow domain, p is the pressure-head of water [L], S is the water saturation, Ss is the
specific storage coefficient [L−1], φ is the porosity of the medium, K(p) is the hydraulic conductivity
tensor [LT−1], and Q is the water source/sink term [L3T−1] (includes wells and surface fluxes).
The hydraulic conductivity can be written as,

K(p) =
k̄kr(p)

µ
(4.29)

Boundary conditions can be stated as,

p = pD, on ΓD, (4.30)

−K(p)∇p · n = gN , on ΓN , (4.31)

where ΓD ∪ ΓN = ∂Ω, ΓD 6= ∅, and n is an outward pointing, unit, normal vector to Ω. This is
the mixed form of Richards’ equation. Note here that due to the constant (or passive) air phase
pressure assumption, Richards’ equation ignores the air phase except through its effects on the
hydraulic conductivity, K. An initial condition,

p = p0(x), t = 0, (4.32)

completes the specification of the problem.

4.6 Overland Flow

As detailed in [8], ParFlow may simulate fully-coupled surface and subsurface flow via an overland
flow boundary condition. While complete details of this approach are given in that paper, a brief
summary of the equations solved are presented here. Shallow overland flow is now represented in
ParFlow by the kimematic wave equation. In two spatial dimensions, the continuity equation can
be written as:

∂ψs

∂t
= ∇ · (~vψs) + qr(x) (4.33)

where ~v is the depth averaged velocity vector [LT−1]; ψs is the surface ponding depth [L] and
qr(x) is the a general source/sink (e.g. rainfall) rate [LT−1]. If diffusion terms are neglected the
momentum equation can be written as:

Sf,i = So,i (4.34)

which is commonly referred to as the kinematic wave approximation. In Equation 4.34 So,i is the
bed slope (gravity forcing term) [−], which is equal to the friction slope Sf,i [L]; i stands for the x-
and y-direction. Mannings equation is used to establish a flow depth-discharge relationship:

vx = −

√

Sf,x

n
ψ2/3

s (4.35)

4.7. WATER BALANCE 45

and

vy = −

√

Sf,y

n
ψ2/3

s (4.36)

where n [TL−1/3] is the Mannings coefficient.
Though complete details of the coupled approach are given in [8], brief details of the approach
are presented here. The coupled approach takes Equation 4.33 and adds a flux for subsurface
exchanges, qe(x).

∂ψs

∂t
= ∇ · (~vψs) + qr(x) + qe(x) (4.37)

We then assign a continuity of pressure at the top cell of the boundary between the surface and
subsurface systems by setting pressure-head, p in 4.28 equal to the vertically-averaged surface
pressure, ψs as follows:

p = ψs = ψ (4.38)

If we substitute this relationship back into Equation 4.39 as follows:

∂ ‖ ψ, 0 ‖

∂t
= ∇ · (~v ‖ ψ, 0 ‖) + qr(x) + qe(x) (4.39)

Where the ‖ ψ, 0 ‖ operator chooses the greater of the two quantities, ψ and 0. We may now solve
this term for the flux qe(x) which we may set equal to flux boundary condition shown in Equation
4.31. This yields the following equation, which is referred to as the overland flow boundary condition
[8]:

−K(ψ)∇ψ · n =
∂ ‖ ψ, 0 ‖

∂t
−∇ · (~v ‖ ψ, 0 ‖) − qr(x) (4.40)

This results a version of the kinematic wave equation that is only active when the pressure at the
top cell of the subsurface domain has a ponded depth and is thus greater than zero. This method
solves both systems, where active in the domain, over common grids in a fully-integrated, fully-mass
conservative manner.

4.7 Water Balance

ParFlow can calculate a water balance for the Richards’ equation, overland flow and clm capa-
bilities. This water balance is computes using pftools commands as described in § 3.5. There are
two water balance storage components, subsurface and surface, and two flux calculations, overland
flow and evapotranspiration. The storage components have units [L3] while the fluxes may be
instantaneous and have units [L3T−1] or cumulative over an output interval with units [L3]. Ex-
amples of water balance calculations and errors are given in the scripts water_balance_x.tcl and
water_balance_y.tcl. The size of water balance errors depend on solver settings and tolerances

46 CHAPTER 4. MODEL EQUATIONS

but are typically very small, < 10−10[−].
The water balance takes the form:

V olsubsurface + V olsurface =
∑

[Qoverland +Qevapotranspiration +Qsourcesink]∆t (4.41)

where V olsubsurface is the subsurface storage [L3]; V olsurface is the surface storage [L3]; Qoverland

is the overland flux [L3T−1]; Qevapotranspiration is the evapotranspiration flux passed from clm or
other LSM, etc, [L3T−1]; and Qsourcesink are any other source/sink fluxes specified in the simulation
[L3T−1]. The surface and subsurface storage routines are calculated using the ParFlow toolset
commands pfsurfacestorage and pfsubsurfacestorage respectively. Overland flow out of the
domain is calculated by pfsurfacerunoff. Details for the use of these commands are given in
§ 3.5.2 and § 3.5.3. Qevapotranspiration must be written out by ParFlow as a variable (as shown in
§ refCode Parameters) and only contains the external fluxes passed from a module such as clm or
WRF. Note that these volume and flux quantities are calculated spatially over the domain and are
returned as array values, just like any other quantity in ParFlow. The tools command pfsum will
sum these arrays into a single value for the enrite domain. All other fluxes must be determined by
the user.
The subsurface storage is calculated over all active cells in the domain, Ω, and contains both
compressible and incompressible parts based on Equation 4.28. This is computed on a cell-by-cell
basis (with the result being an array of balances over the domain) as follows:

V olsubsurface =
∑

Ω

[S(ψ)Ssψ∆x∆y∆z + S(ψ)(ψ)φ∆x∆y∆z] (4.42)

The surface storage is calculated over the upper surface boundary cells in the domain, Γ, as com-
puted by the mask and contains based on Equation 4.33. This is again computed on a cell-by-cell
basis (with the result being an array of balances over the domain) as follows:

V olsurface =
∑

Γ

ψ∆x∆y (4.43)

For the overland flow outflow from the domain, any cell at the top boundary that has a slope that
points out of the domain and is ponded will remove water from the domain. This is calculated, for
example in the y-direction, as the multiple of Equation 4.36 and the area:

Qoverland = vA = −

√

Sf,y

n
ψ2/3

s ψ∆x = −

√

Sf,y

n
ψ5/3

s ∆x (4.44)

Chapter 5

ParFlow Files

In this chapter, we discuss the various file formats used in ParFlow. To help simplify the descrip-
tion of these formats, we use a pseudocode notation composed of fields and control constructs.

A field is a piece of data having one of the field types listed in Table 5.1 (note that field types
may have one meaning in ASCII files and another meaning in binary files). Fields are denoted by
enclosing the field name with a < on the left and a > on the right. The field name is composed
of alphanumeric characters and underscores (_). In the defining entry of a field, the field name
is also prepended by its field type and a :. The control constructs used in our pseudocode have
the keyword names FOR, IF, and LINE, and the beginning and end of each of these constructs is
delimited by the keywords BEGIN and END.

The FOR construct is used to describe repeated input format patterns. For example, consider
the following file format:

<integer : num_coordinates>

FOR coordinate = 0 TO <num_coordinates> - 1

BEGIN

<real : x> <real : y> <real : z>

END

The field <num_coordinates> is an integer specifying the number of coordinates to follow. The
FOR construct indicates that <num_coordinates> entries follow, and each entry is composed of the

Table 5.1: Field types.

field type ASCII binary

integer integer XDR integer

real real -

string string -

double - IEEE 8 byte double

float - IEEE 4 byte float

47

48 CHAPTER 5. PARFLOW FILES

three real fields, <x>, <y>, and <z>. Here is an example of a file with this format:

3

2.0 1.0 -3.5

1.0 1.1 -3.1

2.5 3.0 -3.7

The IF construct is actually an IF/ELSE construct, and is used to describe input format patterns
that appear only under certain circumstances. For example, consider the following file format:

<integer : type>

IF (<type> = 0)

BEGIN

<real : x> <real : y> <real : z>

END

ELSE IF (<type> = 1)

BEGIN

<integer : i> <integer : j> <integer : k>

END

The field <type> is an integer specifying the “type” of input to follow. The IF construct indicates
that if <type> has value 0, then the three real fields, <x>, <y>, and <z>, follow. If <type> has value
1, then the three integer fields, <i>, <j>, and <k>, follow. Here is an example of a file with this
format:

0

2.0 1.0 -3.5

The LINE construct indicates fields that are on the same line of a file. Since input files in
ParFlow are all in “free format”, it is used only to describe some output file formats. For
example, consider the following file format:

LINE

BEGIN

<real : x>

<real : y>

<real : z>

END

The LINE construct indicates that the three real fields, <x>, <y>, and <z>, are all on the same line.
Here is an example of a file with this format:

2.0 1.0 -3.5

Comment lines may also appear in our file format pseudocode. All text following a # character
is a comment, and is not part of the file format.

5.1. MAIN INPUT FILE (.PFTCL) 49

5.1 Main Input File (.pftcl)

The main ParFlow input file is a TCL script. This might seem overly combersome at first but
the basic input file structure is not very complicated (although it is somewhat verbose). For more
advanced users, the TCL scripting means you can very easily create programs to run ParFlow. A
simple example is creating a loop to run several hundred different simulations using different seeds
to the random field generators. This can be automated from within the ParFlow input file.

The basic idea behind ParFlow input is a simple database. The database contains entries
which have a key and a value associated with that key. This is very similiar in nature to the
Windows XP/Vista registry and several other systems. When ParFlow runs, it queries the
database you have created by key names to get the values you have specified.

The command pfset is used to create the database entries. A simple ParFlow input script
contains a long list of pfset commands.

It should be noted that the keys are “dynamic” in that many are built up from values of other
keys. For example if you have two wells named northwell and southwell then you will have to set
some keys which specify the parameters for each well. The keys are built up in a simple sort of
heirarchy.

The following sections contain a description of all of the keys used by ParFlow. For an example
of input files you can look at the test subdirectory of the ParFlow distribution. Looking over
some examples should give you a good feel for how the file scripts are put together.

Each key’s entry has the form:

type KeyName [default value]
Description

Example Useage:

The “type” is one of integer, double, string, list. Integer and double are IEEE numbers. String
is a text string (for example, a filename). Strings can contain spaces if you use the proper TCL
syntax (i.e. using double quotes). These types are standard TCL types. Lists are strings but they
indicate the names of a series of items. For example you might need to specify the names of the
geometries. You would do this using space seperated names (what we are calling a list) “layer1
layer2 layer3”.

The descriptions that follow are organized into functional areas. An example for each database
entry is given.

Note that units used for each physical quantity specified in the input file must be consistent with
units used for all other quantities. The exact units used can be any consistent set as ParFlow does
not assume any specific set of units. However, it is up to the user to make sure all specifications
are indeed consistent.

5.1.1 Input File Format Number

integer FileVersion [no default]

50 CHAPTER 5. PARFLOW FILES

This gives the value of the input file version number that this file fits.
Example Useage:

pfset FileVersion 4

As development of the ParFlow code continues, the input file format will vary. We have thus
included an input file format number as a way of verifying that the correct format type is being
used. The user can check in the parflow/config/file_versions.h file to verify that the format
number specified in the input file matches the defined value of PFIN_VERSION.

5.1.2 Geometries

Here we define all “geometrical” information needed by ParFlow. For example, the domain (and
patches on the domain where boundary conditions are to be imposed), lithology or hydrostrati-
graphic units, faults, initial plume shapes, and so on, are considered geometries.

This input section is a little confusing. Two items are being specified, geometry inputs and
geometries. A geometry input is a type of geometry input (for example a box or an input file). A
geometry input can contain more than one geometry. A geometry input of type Box has a single
geometry (the square box defined by the extants of the two points). A SolidFile input type can
contain several geometries.

list GeomInput.Names [no default]
This is a list of the geometry input names which define the containers for all of the geometries

defined for this problem.
Example Useage:

pfset GeomInput.Names "solidinput indinput boxinput"

string GeomInput.geom input name.InputType [no default]
This defines the input type for the geometry input with geom input name. This key must be

one of: SolidFile, IndicatorField, Box.
Example Useage:

pfset GeomInput.solidinput.InputType SolidFile

list GeomInput.geom input name.GeomNames [no default]
This is a list of the names of the geometries defined by the geometry input. For a geometry

input type of Box, the list should contain a single geometry name. For the SolidFile geometry type
this should contain a list with the same number of gemetries as were defined using GMS. The order
of geometries in the SolidFile should match the names. For IndicatorField types you need to specify
the value in the input field which matches the name using GeomInput.geom input name.Value.
Example Useage:

pfset GeomInput.solidinput.GeomNames "domain bottomlayer \

middlelayer toplayer"

5.1. MAIN INPUT FILE (.PFTCL) 51

string GeomInput.geom input name.Filename [no default]
For IndicatorField and SolidFile geometry inputs this key specifies the input filename which

contains the field or solid information.
Example Useage:

pfset GeomInput.solidinput.FileName ocwd.pfsol

integer GeomInput.geometry input name.Value [no default]
For IndicatorField geometry inputs you need to specify the mapping between values in the

input file and the geometry names. The named geometry will be defined whereever the input file
is equal to the specifed value.
Example Useage:

pfset GeomInput.sourceregion.Value 11

For box geometries you need to specify the location of the box. This is done by defining two
corners of the the box.

double Geom.box geom name.Lower.X [no default]
This gives the lower X real space coordinate value of the previously specified box geometry of

name box geom name.
Example Useage:

pfset Geom.background.Lower.X -1.0

double Geom.box geom name.Lower.Y [no default]
This gives the lower Y real space coordinate value of the previously specified box geometry of

name box geom name.
Example Useage:

pfset Geom.background.Lower.Y -1.0

double Geom.box geom name.Lower.Z [no default]
This gives the lower Z real space coordinate value of the previously specified box geometry of

name box geom name.
Example Useage:

pfset Geom.background.Lower.Z -1.0

double Geom.box geom name.Upper.X [no default]
This gives the upper X real space coordinate value of the previously specified box geometry of

name box geom name.
Example Useage:

pfset Geom.background.Upper.X 151.0

52 CHAPTER 5. PARFLOW FILES

double Geom.box geom name.Upper.Y [no default]
This gives the upper Y real space coordinate value of the previously specified box geometry of

name box geom name.
Example Useage:

pfset Geom.background.Upper.Y 171.0

double Geom.box geom name.Upper.Z [no default]
This gives the upper Z real space coordinate value of the previously specified box geometry of

name box geom name.
Example Useage:

pfset Geom.background.Upper.Z 11.0

list Geom.geom name.Patches [no default]
Patches are defined on the surfaces of geometries. Currently you can only define patches on

Box geometries and on the the first geometry in a SolidFile. For a Box the order is fixed (left right
front back bottom top) but you can name the sides anything you want.

For SolidFiles the order is printed by the conversion routine that converts GMS to SolidFile
format.
Example Useage:

pfset Geom.background.Patches "left right front back bottom top"

Here is an example geometry input section which has three geometry inputs.

#---

Geometries:

#---

#

This defines the three geometry input names

#

pfset GeomInput.Names "solidinput indinput boxinput"

#

For a solid file geometry input type you need to specify the names

of the gemetries and the filename

#

pfset GeomInput.solidinput.InputType SolidFile

#

5.1. MAIN INPUT FILE (.PFTCL) 53

The names of the geometries contained in the solid file. Order is

important and defines the mapping. First geometry gets the first name.

#

pfset GeomInput.solidinput.GeomNames

"domain bottomlayer middlelayer toplayer"

#

Filename that contains the geometry

#

pfset GeomInput.solidinput.FileName ocwd.pfsol

#

Order is important here, must match what is solid file, what is

printed by the conversion routine.

#

pfset Geom.domain.Patches "henry frank jane betsy al nellie"

#

An indicator field is a 3D field of values. The values within the

field can be mapped to ParFlow geometries

Indicator fields must match the computation grid exactly!

#

pfset GeomInput.indinput.InputType IndicatorField

pfset GeomInput.indinput.GeomNames "sourceregion concenregion"

pfset GeomInput.indinput.FileName ocwd.pfb

#

Here we set up the mapping between values in the field and

ParFlow geometries

#

pfset GeomInput.sourceregion.Value 11

pfset GeomInput.concenregion.Value 21

#

A box is just a box defined by two points.

#

pfset GeomInput.boxinput.InputType Box

pfset GeomInput.boxinput.GeomName background

pfset Geom.background.Lower.X -1.0

pfset Geom.background.Lower.Y -1.0

pfset Geom.background.Lower.Z -1.0

54 CHAPTER 5. PARFLOW FILES

pfset Geom.background.Upper.X 151.0

pfset Geom.background.Upper.Y 171.0

pfset Geom.background.Upper.Z 11.0

#

Order is fixed, but you can change the name

#

pfset Geom.background.Patches "left right front back bottom top"

5.1.3 Timing Information

The data given in the timing section describe all the “temporal” information needed by ParFlow.
The data items are used to describe time units for later sections, sequence iterations in time,
indicate actual starting and stopping values and give instructions on when data is printed out.

double TimingInfo.BaseUnit [no default]
This key is used to indicate the base unit of time for entering time values. All time should be

expressed as a multiple of this value. This should be set to the smallest interval of time to be used
in the problem. For example, a base unit of “1” means that all times will be integer valued. A base
unit of “0.5” would allow integers and fractions of 0.5 to be used for time input values.

The rational behind this restriction is to allow time to be discretized on some interval to
enable integer arithmetic to be used when computing/comparing times. This avoids the problems
associated with real value comparisons which can lead to events occurring at different timesteps on
different architectures or compilers.

This values is also used when describing “time cycling data” in, currently, the well and boundary
condition sections. The lengths of the cycles in those sections will be integer multiples of this value,
therefore it needs to be the smallest divisor which produces an integral result for every “real time”
cycle interval length needed.
Example Useage:

pfset TimingInfo.BaseUnit 1.0

integer TimingInfo.StartCount [no default]
This key is used to indicate the time step number that will be associated with the first advection

cycle in a transient problem. The value -1 indicates that advection is not to be done. The value 0

indicates that advection should begin with the given initial conditions. Values greater than 0 are
intended to mean “restart” from some previous “checkpoint” time-step, but this has not yet been
implemented.
Example Useage:

pfset TimingInfo.StartCount 0

double TimingInfo.StartTime [no default]
This key is used to indicate the starting time for the simulation.

5.1. MAIN INPUT FILE (.PFTCL) 55

Example Useage:

pfset TimingInfo.StartTime 0.0

double TimingInfo.StopTime [no default]
This key is used to indicate the stopping time for the simulation.

Example Useage:

pfset TimingInfo.StopTime 100.0

double TimingInfo.DumpInterval [no default]
This key is the real time interval at which time-dependent output should be written. A value

of 0 will produce undefined behavior. If the value is negative, output will be dumped out every n
time steps, where n is the absolute value of the integer part of the value.
Example Useage:

pfset TimingInfo.DumpInterval 10.0

For Richards’ equation cases only input is collected for time step selection. Input for this section
is given as follows:

list TimeStep.Type [no default]
This key must be one of: Constant or Growth. The value Constant defines a constant time

step. The value Growth defines a time step that starts as dt0 and is defined for other steps as
dtnew = γdtold such that dtnew ≤ dtmax and dtnew ≥ dtmin.
Example Useage:

pfset TimeStep.Type Constant

double TimeStep.Value [no default]
This key is used only if a constant time step is selected and indicates the value of the time step

for all steps taken.
Example Useage:

pfset TimeStep.Value 0.001

double TimeStep.InitialStep [no default]
This key specifies the initial time step dt0 if the Growth type time step is selected.

Example Useage:

pfset TimeStep.InitialStep 0.001

56 CHAPTER 5. PARFLOW FILES

double TimeStep.GrowthFactor [no default]
This key specifies the growth factor γ by which a time step will be multiplied to get the new

time step when the Growth type time step is selected.
Example Useage:

pfset TimeStep.GrowthFactor 1.5

double TimeStep.MaxStep [no default]
This key specifies the maximum time step allowed, dtmax, when the Growth type time step

is selected.
Example Useage:

pfset TimeStep.MaxStep 86400

double TimeStep.MinStep [no default]
This key specifies the minimum time step allowed, dtmin, when the Growth type time step is

selected.
Example Useage:

pfset TimeStep.MinStep 1.0e-3

5.1.4 Time Cycles

The data given in the time cycle section describe how time intervals are created and named to be
used for time-dependent boundary and well information needed by ParFlow. All the time cycles
are synched to the TimingInfo.BaseUnit key described above and are integer multipliers of that
value.

list CycleNames [no default]
This key is used to specify the named time cycles to be used in a simulation. It is a list of

names and each name defines a time cycle and the number of items determines the total number
of time cycles specified. Each named cycle is described using a number of keys defined below.
Example Useage:

pfset Cycle.Names constant onoff

list Cycle.cycle name.Names [no default]
This key is used to specify the named time intervals for each cycle. It is a list of names and

each name defines a time interval when a specific boundary condition is applied and the number of
items determines the total number of intervals in that time cycle.
Example Useage:

pfset Cycle.onoff.Names "on off"

5.1. MAIN INPUT FILE (.PFTCL) 57

integer Cycle.cycle name.interval name.Length [no default]
This key is used to specify the length of a named time intervals. It is an integer multiplier of

the value set for the TimingInfo.BaseUnit key described above. The total length of a given time
cycle is the sum of all the intervals multiplied by the base unit.
Example Useage:

pfset Cycle.onoff.on.Length 10

integer Cycle.cycle name.Repeat [no default]
This key is used to specify the how many times a named time interval repeats. A positive

value specifies a number of repeat cycles a value of -1 specifies that the cycle repeat for the entire
simulation.
Example Useage:

pfset Cycle.onoff.Repeat -1

5.1.5 Domain

The domain may be represented by any of the solid types in § 5.1.2 above that allow the definition
of surface patches. These surface patches are used to define boundary conditions in § 5.1.21 and
§ 5.1.22 below. Subsequently, it is required that the union of the defined surface patches equal the
entire domain surface. NOTE: This requirement is NOT checked in the code.

string Domain.GeomName [no default]
This key specifies which of the named geometries is the problem domain.

Example Useage:

pfset Domain.GeomName domain

5.1.6 Phases and Contaminants

list Phase.Names [no default]
This specifies the names of phases to be modeled. Currently only 1 or 2 phases may be modeled.

Example Useage:

pfset Phase.Names "water"

list Contaminant.Names [no default]
This specifies the names of contaminants to be advected.

Example Useage:

pfset Contaminants.Names "tce"

58 CHAPTER 5. PARFLOW FILES

5.1.7 Gravity, Phase Density and Phase Viscosity

double Gravity [no default]
Specifies the gravity constant to be used.

Example Useage:

pfset Gravity 1.0

string Phase.phase name.Density.Type [no default]
This key specifies whether density will be a constant value or if it will be given by an equation of

state of the form (rd)exp(cP), where P is pressure, rd is the density at atmospheric pressure, and c
is the phase compressibility constant. This key must be either Constant or EquationOfState.
Example Useage:

pfset Phase.water.Density.Type Constant

double Phase.phase name.Density.Value [no default]
This specifies the value of density if this phase was specified to have a constant density value

for the phase phase name.
Example Useage:

pfset Phase.water.Density.Value 1.0

double Phase.phase name.Density.ReferenceDensity [no default]
This key specifies the reference density if an equation of state density function is specified for

the phase phase name.
Example Useage:

pfset Phase.water.Density.ReferenceDensity 1.0

double Phase.phase name.Density.CompressibilityConstant [no default]
This key specifies the phase compressibility constant if an equation of state density function is

specified for the phase phase—-name.
Example Useage:

pfset Phase.water.Density.CompressibilityConstant 1.0

string Phase.phase name.Viscosity.Type [Constant]
This key specifies whether viscosity will be a constant value. Currently, the only choice for this

key is Constant.
Example Useage:

pfset Phase.water.Viscosity.Type Constant

5.1. MAIN INPUT FILE (.PFTCL) 59

double Phase.phase name.Viscosity.Value [no default]
This specifies the value of viscosity if this phase was specified to have a constant viscosity value.

Example Useage:

pfset Phase.water.Viscosity.Value 1.0

5.1.8 Chemical Reactions

double Contaminants.contaminant name.Degradation.Value [no default]
This key specifies the half-life decay rate of the named contaminant, contaminant name. At

present only first order decay reactions are implemented and it is assumed that one contaminant
cannot decay into another.
Example Useage:

pfset Contaminants.tce.Degradation.Value 0.0

5.1.9 Permeability

In this section, permeability property values are assigned to grid points within geometries (specified
in § 5.1.2 above) using one of the methods described below. Permeabilities are assumed to be a
diagonal tensor with entries given as,

kx(x) 0 0
0 ky(x) 0
0 0 kz(x)

K(x),

where K(x) is the permeability field given below. Specification of the tensor entries (kx, ky and kz)
will be given at the end of this section.

The random field routines (turning bands and pgs) can use conditioning data if the user so
desires. It is not necessary to use conditioning as ParFlow automatically defaults to not use
conditioning data, but if conditioning is desired, the following key should be set:

string Perm.Conditioning.FileName [“NA”]
This key specifies the name of the file that contains the conditioning data. The default string

NA indicates that conditioning data is not applicable.
Example Useage:

pfset Perm.Conditioning.FileName "well_cond.txt"

The file that contains the conditioning data is a simple ascii file containing points and values.
The format is:

nlines

x1 y1 z1 value1

x2 y2 z2 value2

. . . .

60 CHAPTER 5. PARFLOW FILES

. . . .

. . . .

xn yn zn valuen

The value of nlines is just the number of lines to follow in the file, which is equal to the number
of data points.

The variables xi,yi,zi are the real space coordinates (in the units used for the given parflow run)
of a point at which a fixed permeability value is to be assigned. The variable valuei is the actual
permeability value that is known.

Note that the coordinates are not related to the grid in any way. Conditioning does not require
that fixed values be on a grid. The PGS algorithm will map the given value to the closest grid point
and that will be fixed. This is done for speed reasons. The conditioned turning bands algorithm
does not do this; conditioning is done for every grid point using the given conditioning data at the
location given. Mapping to grid points for that algorithm does not give any speedup, so there is
no need to do it.

NOTE: The given values should be the actual measured values - adjustment in the conditioning
for the lognormal distribution that is assumed is taken care of in the algorithms.

The general format for the permeability input is as follows:

list Geom.Perm.Names [no default]
This key specifies all of the geometries to which a permeability field will be assigned. These

geometries must cover the entire computational domain.
Example Useage:

pfset GeomInput.Names "background domain concen_region"

string Geom.geometry name.Perm.Type [no default]
This key specifies which method is to be used to assign permeability data to the named

geometry, geometry name. It must be either Constant, TurnBands, ParGuass, or PFBFile.
The Constant value indicates that a constant is to be assigned to all grid cells within a geometry.
The TurnBand value indicates that Tompson’s Turning Bands method is to be used to assign
permeability data to all grid cells within a geometry [20]. The ParGauss value indicates that a
Parallel Gaussian Simulator method is to be used to assign permeability data to all grid cells within
a geometry. The PFBFile value indicates that premeabilities are to be read from the “ParFlow
Binary” file. Both the Turning Bands and Parallel Gaussian Simulators generate a random field
with correlation lengths in the 3 spatial directions given by λx, λy, and λz with the geometric
mean of the log normal field given by µ and the standard deviation of the normal field given by
σ. In generating the field both of these methods can be made to stratify the data, that is follow
the top or bottom surface. The generated field can also be made so that the data is normal or
log normal, with or without bounds truncation. Turning Bands uses a line process, the number of
lines used and the resolution of the process can be changed as well as the maximum normalized
frequency Kmax and the normalized frequency increment δK. The Parallel Gaussian Simulator uses
a search neighborhood, the number of simulated points and the number of conditioning points can

5.1. MAIN INPUT FILE (.PFTCL) 61

be changed.
Example Useage:

pfset Geom.background.Perm.Type Constant

double Geom.geometry name.Perm.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if

the type was set to constant.
Example Useage:

pfset Geom.domain.Perm.Value 1.0

double Geom.geometry name.Perm.LambdaX [no default]
This key specifies the x correlation length, λx, of the field generated for the named geometry,

geometry name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

pfset Geom.domain.Perm.LambdaX 200.0

double Geom.geometry name.Perm.LambdaY [no default]
This key specifies the y correlation length, λy, of the field generated for the named geometry,

geometry name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

pfset Geom.domain.Perm.LambdaY 200.0

double Geom.geometry name.Perm.LambdaZ [no default]
This key specifies the z correlation length, λz, of the field generated for the named geometry,

geometry name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

pfset Geom.domain.Perm.LambdaZ 10.0

double Geom.geometry name.Perm.GeomMean [no default]
This key specifies the geometric mean, µ, of the log normal field generated for the named

geometry, geometry name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

pfset Geom.domain.Perm.GeomMean 4.56

double Geom.geometry name.Perm.Sigma [no default]
This key specifies the standard deviation, σ, of the normal field generated for the named

geometry, geometry name, if either the Turning Bands or Parallel Gaussian Simulator are chosen.
Example Useage:

62 CHAPTER 5. PARFLOW FILES

pfset Geom.domain.Perm.Sigma 2.08

integer Geom.geometry name.Perm.Seed [1]
This key specifies the initial seed for the random number generator used to generate the field for

the named geometry, geometry name, if either the Turning Bands or Parallel Gaussian Simulator
are chosen. This number must be positive.
Example Useage:

pfset Geom.domain.Perm.Seed 1

integer Geom.geometry name.Perm.NumLines [100]
This key specifies the number of lines to be used in the Turning Bands algorithm for the named

geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.NumLines 100

double Geom.geometry name.Perm.RZeta [5.0]
This key specifies the resolution of the line processes, in terms of the minimum grid spacing,

to be used in the Turning Bands algorithm for the named geometry, geometry name. Large values
imply high resolution.
Example Useage:

pfset Geom.domain.Perm.RZeta 5.0

double Geom.geometry name.Perm.KMax [100.0]
This key specifies the the maximum normalized frequency, Kmax, to be used in the Turning

Bands algorithm for the named geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.KMax 100.0

double Geom.geometry name.Perm.DelK [0.2]
This key specifies the normalized frequency increment, δK, to be used in the Turning Bands

algorithm for the named geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.DelK 0.2

integer Geom.geometry name.Perm.MaxNPts [no default]
This key sets limits on the number of simulated points in the search neighborhood to be used

in the Parallel Gaussian Simulator for the named geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.MaxNPts 5

5.1. MAIN INPUT FILE (.PFTCL) 63

integer Geom.geometry name.Perm.MaxCpts [no default]
This key sets limits on the number of external conditioning points in the search neighborhood

to be used in the Parallel Gaussian Simulator for the named geometry, geometry name.
Example Useage:

pfset Geom.domain.Perm.MaxCpts 200

string Geom.geometry name.Perm.LogNormal [”LogTruncated”]
The key specifies when a normal, log normal, truncated normal or truncated log normal field

is to be generated by the method for the named geometry, geometry name. This value must be
one of Normal, Log, NormalTruncated or LogTruncate and can be used with either Turning
Bands or the Parallel Gaussian Simulator.
Example Useage:

pfset Geom.domain.Perm.LogNormal "LogTruncated"

string Geom.geometry name.Perm.StratType [”Bottom”]
This key specifies the stratification of the permeability field generated by the method for the

named geometry, geometry name. The value must be one of Horizontal, Bottom or Top and can
be used with either the Turning Bands or the Parallel Gaussian Simulator.
Example Useage:

pfset Geom.domain.Perm.StratType "Bottom"

double Geom.geometry name.Perm.LowCutoff [no default]
This key specifies the low cutoff value for truncating the generated field for the named geometry,

geometry name, when either the NormalTruncated or LogTruncated values are chosen.
Example Useage:

pfset Geom.domain.Perm.LowCutoff 0.0

double Geom.geometry name.Perm.HighCutoff [no default]
This key specifies the high cutoff value for truncating the generated field for the named geom-

etry, geometry name, when either the NormalTruncated or LogTruncated values are chosen.
Example Useage:

pfset Geom.domain.Perm.HighCutoff 100.0

string Geom.geometry name.Perm.FileName [no default]
This key specifies that permeability values for the specified geometry, geometry name, are given

according to a user-supplied description in the “ParFlow Binary” file whose filename is given as
the value. For a description of the ParFlow Binary file format, see § 5.2. The ParFlow Binary file
associated with the named geometry must contain a collection of permeability values corresponding
in a one-to-one manner to the entire computational grid. That is to say, when the contents of

64 CHAPTER 5. PARFLOW FILES

the file are read into the simulator, a complete permeability description for the entire domain is
supplied. Only those values associated with computational cells residing within the geometry (as
it is represented on the computational grid) will be copied into data structures used during the
course of a simulation. Thus, the values associated with cells outside of the geounit are irrelevant.
For clarity, consider a couple of different scenarios. For example, the user may create a file for each
geometry such that appropriate permeability values are given for the geometry and “garbage” values
(e.g., some flag value) are given for the rest of the computational domain. In this case, a separate
binary file is specified for each geometry. Alternatively, one may place all values representing the
permeability field on the union of the geometries into a single binary file. Note that the permeability
values must be represented in precisely the same configuration as the computational grid. Then,
the same file could be specified for each geounit in the input file. Or, the computational domain
could be described as a single geouint (in the ParFlow input file) in which case the permeability
values would be read in only once.
Example Useage:

pfset Geom.domain.Perm.FileName "domain_perm.pfb"

string Perm.TensorType [no default]
This key specifies whether the permeability tensor entries kx, ky and kz will be specified as

three constants within a set of regions covering the domain or whether the entries will be specified
cell-wise by files. The choices for this key are TensorByGeom and TensorByFile.
Example Useage:

pfset Perm.TensorType TensorByGeom

string Geom.Perm.TensorByGeom.Names [no default]
This key specifies all of the geometries to which permeability tensor entries will be assigned.

These geometries must cover the entire computational domain.
Example Useage:

pfset Geom.Perm.TensorByGeom.Names "background domain"

double Geom.geometry name.Perm.TensorValX [no default]
This key specifies the value of kx for the geometry given by geometry name.

Example Useage:

pfset Geom.domain.Perm.TensorValX 1.0

double Geom.geometry name.Perm.TensorValY [no default]
This key specifies the value of ky for the geometry given by geom name.

Example Useage:

pfset Geom.domain.Perm.TensorValY 1.0

5.1. MAIN INPUT FILE (.PFTCL) 65

double Geom.geometry name.Perm.TensorValZ [no default]
This key specifies the value of kz for the geometry given by geom name.

Example Useage:

pfset Geom.domain.Perm.TensorValZ 1.0

string Geom.geometry name.Perm.TensorFileX [no default]
This key specifies that kx values for the specified geometry, geometry name, are given according

to a user-supplied description in the “ParFlow Binary” file whose filename is given as the value.
The only choice for the value of geometry name is “domain”.
Example Useage:

pfset Geom.domain.Perm.TensorByFileX "perm_x.pfb"

string Geom.geometry name.Perm.TensorFileY [no default]
This key specifies that ky values for the specified geometry, geometry name, are given according

to a user-supplied description in the “ParFlow Binary” file whose filename is given as the value.
The only choice for the value of geometry name is “domain”.
Example Useage:

pfset Geom.domain.Perm.TensorByFileY "perm_y.pfb"

string Geom.geometry name.Perm.TensorFileZ [no default]
This key specifies that kz values for the specified geometry, geometry name, are given according

to a user-supplied description in the “ParFlow Binary” file whose filename is given as the value.
The only choice for the value of geometry name is “domain”.
Example Useage:

pfset Geom.domain.Perm.TensorByFileZ "perm_z.pfb"

5.1.10 Porosity

Here, porosity values are assigned within geounits (specified in § 5.1.2 above) using one of the
methods described below.

The format for this section of input is:

list Geom.Porosity.GeomNames [no default]
This key specifies all of the geometries on which a porosity will be assigned. These geometries

must cover the entire computational domain.
Example Useage:

pfset Geom.Porosity.GeomNames "background"

string Geom.geometry name.Porosity.Type [no default]
This key specifies which method is to be used to assign porosity data to the named geometry,

66 CHAPTER 5. PARFLOW FILES

geometry name. The only choice currently available is Constant which indicates that a constant
is to be assigned to all grid cells within a geometry.
Example Useage:

pfset Geom.background.Porosity.Type Constant

double Geom.geometry name.Porosity.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if

the type was set to constant.
Example Useage:

pfset Geom.domain.Porosity.Value 1.0

5.1.11 Specific Storage

Here, specific storage (Ss in Equation 4.28) values are assigned within geounits (specified in § 5.1.2
above) using one of the methods described below.

The format for this section of input is:

list Specific Storage.GeomNames [no default]
This key specifies all of the geometries on which a different specific storage value will be

assigned. These geometries must cover the entire computational domain.
Example Useage:

pfset SpecificStorage.GeomNames "domain"

string SpecificStorage.Type [no default]
This key specifies which method is to be used to assign specific storage data. The only choice

currently available is Constant which indicates that a constant is to be assigned to all grid cells
within a geometry.
Example Useage:

pfset SpecificStorage.Type Constant

double Geom.geometry name.SpecificStorage.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if

the type was set to constant.
Example Useage:

pfset Geom.domain.SpecificStorage.Value 1.0e-4

5.1.12 Manning’s Roughness Values

Here, Manning’s roughness values (n in Equations 4.35 and 4.36) are assigned to the upper boundary
of the domain using one of the methods described below.

The format for this section of input is:

5.1. MAIN INPUT FILE (.PFTCL) 67

list Mannings.GeomNames [no default]
This key specifies all of the geometries on which a different Mannings roughness value will be

assigned. Mannings values may be assigned by PFBFile or as Constant by geometry. These
geometries must cover the entire upper surface of the computational domain.
Example Useage:

pfset Mannings.GeomNames "domain"

string Mannings.Type [no default]
This key specifies which method is to be used to assign Mannings roughness data. The choices

currently available are Constant which indicates that a constant is to be assigned to all grid cells
within a geometry and PFBFile which indicates that all values are read in from a distributed,
grid-based ParFlow binary file.
Example Useage:

pfset Mannings.Type "Constant"

double Mannings.Geom.geometry name.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if

the type was set to constant.
Example Useage:

pfset Mannings.Geom.domain.Value 5.52e-6

double Mannings.FileName [no default]
This key specifies the value assigned to all points be read in from a ParFlow binary file.

Example Useage:

pfset Mannings.FileName roughness.pfb

Complete example of setting Mannings roughness n values by geometry:

pfset Mannings.Type "Constant"

pfset Mannings.GeomNames "domain"

pfset Mannings.Geom.domain.Value 5.52e-6

5.1.13 Topographical Slopes

Here, topographical slope values (Sf,x and Sf,y in Equations 4.35 and 4.36) are assigned to the
upper boundary of the domain using one of the methods described below. Note that due to the
negative sign in these equations Sf,x and Sf,y take a sign in the direction opposite of the direction
of the slope. That is, negative slopes point ”downhill” and positive slopes ”uphill”.

The format for this section of input is:

list ToposlopesX.GeomNames [no default]
This key specifies all of the geometries on which a different x topographic slope values will be

68 CHAPTER 5. PARFLOW FILES

assigned. Topographic slopes may be assigned by PFBFile or as Constant by geometry. These
geometries must cover the entire upper surface of the computational domain.
Example Useage:

pfset ToposlopesX.GeomNames "domain"

list ToposlopesY.GeomNames [no default]
This key specifies all of the geometries on which a different y topographic slope values will be

assigned. Topographic slopes may be assigned by PFBFile or as Constant by geometry. These
geometries must cover the entire upper surface of the computational domain.
Example Useage:

pfset ToposlopesY.GeomNames "domain"

string ToposlopesX.Type [no default]
This key specifies which method is to be used to assign topographic slopes. The choices

currently available are Constant which indicates that a constant is to be assigned to all grid cells
within a geometry and PFBFile which indicates that all values are read in from a distributed,
grid-based ParFlow binary file.
Example Useage:

pfset ToposlopesX.Type "Constant"

double ToposlopeX.Geom.geometry name.Value [no default]
This key specifies the value assigned to all points in the named geometry, geometry name, if

the type was set to constant.
Example Useage:

pfset ToposlopeX.Geom.domain.Value 0.001

double ToposlopesX.FileName [no default]
This key specifies the value assigned to all points be read in from a ParFlow binary file.

Example Useage:

pfset TopoSlopesX.FileName lw.1km.slope_x.pfb

double ToposlopesY.FileName [no default]
This key specifies the value assigned to all points be read in from a ParFlow binary file.

Example Useage:

pfset TopoSlopesY.FileName lw.1km.slope_y.pfb

Example of setting x and y slopes by geometry:

5.1. MAIN INPUT FILE (.PFTCL) 69

pfset TopoSlopesX.Type "Constant"

pfset TopoSlopesX.GeomNames "domain"

pfset TopoSlopesX.Geom.domain.Value 0.001

pfset TopoSlopesY.Type "Constant"

pfset TopoSlopesY.GeomNames "domain"

pfset TopoSlopesY.Geom.domain.Value -0.001

Example of setting x and y slopes by file:

pfset TopoSlopesX.Type "PFBFile"

pfset TopoSlopesX.GeomNames "domain"

pfset TopoSlopesX.FileName lw.1km.slope_x.pfb

pfset TopoSlopesY.Type "PFBFile"

pfset TopoSlopesY.GeomNames "domain"

pfset TopoSlopesY.FileName lw.1km.slope_y.pfb

5.1.14 Retardation

Here, retardation values are assigned for contaminants within geounits (specified in § 5.1.2 above)
using one of the functions described below. The format for this section of input is:

list Geom.Retardation.GeomNames [no default]
This key specifies all of the geometries to which the contaminants will have a retardation

function applied.
Example Useage:

pfset GeomInput.Names "background"

string Geom.geometry name.contaminant name.Retardation.Type [no default]
This key specifies which function is to be used to compute the retardation for the named con-

taminant, contaminant name, in the named geometry, geometry name. The only choice currently
available is Linear which indicates that a simple linear retardation function is to be used to com-
pute the retardation.
Example Useage:

pfset Geom.background.tce.Retardation.Type Linear

double Geom.geometry name.contaminant name.Retardation.Value [no default]
This key specifies the distribution coefficient for the linear function used to compute the

retardation of the named contaminant, contaminant name, in the named geometry, geometry name.
The value should be scaled by the density of the material in the geometry.
Example Useage:

pfset Geom.domain.Retardation.Value 0.2

70 CHAPTER 5. PARFLOW FILES

5.1.15 Full Multiphase Mobilities

Here we define phase mobilities by specifying the relative permeability function. Input is speci-
fied differently depending on what problem is being specified. For full multi-phase problems, the
following input keys are used. See the next section for the correct Richards’ equation input format.

string Phase.phase name.Mobility.Type [no default]
This key specifies whether the mobility for phase name will be a given constant or a polynomial

of the form, (S − S0)
a, where S is saturation, S0 is irreducible saturation, and a is some exponent.

The possibilities for this key are Constant and Polynomial.
Example Useage:

pfset Phase.water.Mobility.Type Constant

double Phase.phase name.Mobility.Value [no default]
This key specifies the constant mobility value for phase phase name.

Example Useage:

pfset Phase.water.Mobility.Value 1.0

double Phase.phase name.Mobility.Exponent [2.0]
This key specifies the exponent used in a polynomial representation of the relative permeability.

Currently, only a value of 2.0 is allowed for this key.
Example Useage:

pfset Phase.water.Mobility.Exponent 2.0

double Phase.phase name.Mobility.IrreducibleSaturation [0.0]
This key specifies the irreducible saturation used in a polynomial representation of the relative

permeability. Currently, only a value of 0.0 is allowed for this key.
Example Useage:

pfset Phase.water.Mobility.IrreducibleSaturation 0.0

5.1.16 Richards’ Equation Relative Permeabilities

The following keys are used to describe relative permeability input for the Richards’ equation
implementation. They will be ignored if a full two-phase formulation is used.

string Phase.RelPerm.Type [no default]
This key specifies the type of relative permeability function that will be used on all specified

geometries. Note that only one type of relative permeability may be used for the entire problem.
However, parameters may be different for that type in different geometries. For instance, if the
problem consists of three geometries, then VanGenuchten may be specified with three different
sets of parameters for the three different goemetries. However, once VanGenuchten is specified,

5.1. MAIN INPUT FILE (.PFTCL) 71

one geometry cannot later be specified to have Data as its relative permeability. The possible
values for this key are Constant, VanGenuchten, Haverkamp, Data, and Polynomial.
Example Useage:

pfset Phase.RelPerm.Type Constant

The various possible functions are defined as follows. The Constant specification means that
the relative permeability will be constant on the specified geounit. The VanGenuchten specifica-
tion means that the relative permeability will be given as a Van Genuchten function [26] with the
form,

kr(p) =
(1 − (αp)n−1

(1+(αp)n)m)2

(1 + (αp)n)m/2
, (5.1)

where α and n are soil parameters and m = 1−1/n, on each region. The Haverkamp specification
means that the relative permeability will be given in the following form [6],

kr(p) =
A

A+ pγ
, (5.2)

where A and γ are soil parameters, on each region. The Data specification is currently unsupported
but will later mean that data points for the relative permeability curve will be given and ParFlow

will set up the proper interpolation coefficients to get values between the given data points. The
Polynomial specification defines a polynomial relative permeability function for each region of the
form,

kr(p) =
degree
∑

i=0

cip
i. (5.3)

list Phase.RelPerm.GeomNames [no default]
This key specifies the geometries on which relative permeability will be given. The union of

these geometries must cover the entire computational domain.
Example Useage:

pfset Phase.RelPerm.Geonames domain

double Geom.geom name.RelPerm.Value [no default]
This key specifies the constant relative permeability value on the specified geometry.

Example Useage:

pfset Geom.domain.RelPerm.Value 0.5

integer Phase.RelPerm.VanGenuchten.File [0]
This key specifies whether soil parameters for the VanGenuchten function are specified in a pfb

72 CHAPTER 5. PARFLOW FILES

file or by region. The options are either 0 for specification by region, or 1 for specification in a
file. Note that either all parameters are specified in files (each has their own input file) or none are
specified by files. Parameters specified by files are: α and N.
Example Useage:

pfset Phase.RelPerm.VanGenuchten.File 1

string Geom.geom name.RelPerm.Alpha.Filename [no default]
This key specifies a pfb filename containing the alpha parameters for the VanGenuchten function

cell-by-cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.RelPerm.Alpha.Filename alphas.pfb

string Geom.geom name.RelPerm.N.Filename [no default]
This key specifies a pfb filename containing the N parameters for the VanGenuchten function

cell-by-cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.RelPerm.N.Filename Ns.pfb

double Geom.geom name.RelPerm.Alpha [no default]
This key specifies the α parameter for the Van Genuchten function specified on geom name.

Example Useage:

pfset Geom.domain.RelPerm.Alpha 0.005

double Geom.geom name.RelPerm.N [no default]
This key specifies the N parameter for the Van Genuchten function specified on geom name.

Example Useage:

pfset Geom.domain.RelPerm.N 2.0

double Geom.geom name.RelPerm.A [no default]
This key specifies the A parameter for the Haverkamp relative permeability on geom name.

Example Useage:

pfset Geom.domain.RelPerm.A 1.0

double Geom.geom name.RelPerm.Gamma [no default]
This key specifies the the γ parameter for the Haverkamp relative permeability on geom name.

Example Useage:

pfset Geom.domain.RelPerm.Gamma 1.0

5.1. MAIN INPUT FILE (.PFTCL) 73

integer Geom.geom name.RelPerm.Degree [no default]
This key specifies the degree of the polynomial for the Polynomial relative permeability given

on geom name.
Example Useage:

pfset Geom.domain.RelPerm.Degree 1

double Geom.geom name.RelPerm.Coeff.coeff number [no default]
This key specifies the coeff numberth coefficient of the Polynomial relative permeability given

on geom name.
Example Useage:

pfset Geom.domain.RelPerm.Coeff.0 0.5

pfset Geom.domain.RelPerm.Coeff.1 1.0

NOTE: For all these cases, if only one region is to be used (the domain), the background region
should NOT be set as that single region. Using the background will prevent the upstream weighting
from being correct near Dirichlet boundaries.

5.1.17 Phase Sources

The following keys are used to specify phase source terms. The units of the source term are 1/T .
So, for example, to specify a region with constant flux rate of L3/T , one must be careful to convert
this rate to the proper units by dividing by the volume of the enclosing region. For Richards’
equation input, the source term must be given as a flux multiplied by density.

string PhaseSources.phase name.Type [no default]
This key specifies the type of source to use for phase phase name. Possible values for this key

are Constant and PredefinedFunction. Constant type phase sources specify a constant phase
source value for a given set of regions. PredefinedFunction type phase sources use a preset
function (choices are listed below) to specify the source. Note that the PredefinedFunction type
can only be used to set a single source over the entire domain and not separate sources over different
regions.
Example Useage:

pfset PhaseSources.water.Type Constant

list PhaseSources.phase name.GeomNames [no default]
This key specifies the names of the geometries on which source terms will be specified. This is

used only for Constant type phase sources. Regions listed later “overlay” regions listed earlier.
Example Useage:

pfset PhaseSources.water.GeomNames "bottomlayer middlelayer toplayer"

double PhaseSources.phase name.Geom.geom name.Value [no default]
This key specifies the value of a constant source term applied to phase phase name on geometry

74 CHAPTER 5. PARFLOW FILES

geom name.
Example Useage:

pfset PhaseSources.water.Geom.toplayer.Value 1.0

string PhaseSources.phase name.PredefinedFunction [no default]
This key specifies which of the predefined functions will be used for the source. Possible values

for this key are X, XPlusYPlusZ, X3Y2PlusSinXYPlus1,

X3Y4PlusX2PlusSinXYCosYPlus1, XYZTPlus1 and XYZTPlus1PermTensor.
Example Useage:

pfset PhaseSources.water.PredefinedFunction XPlusYPlusZ

The choices for this key correspond to sources as follows:

X: source = 0.0

XPlusYPlusX: source = 0.0

X3Y2PlusSinXYPlus1: source = −(3x2y2+y cos(xy))2−(2x3y+x cos(xy))2−(x3y2+sin(xy)+
1)(6xy2 + 2x3 − (x2 + y2) sin(xy))
This function type specifies that the source applied over the entire domain is as noted above.
This corresponds to p = x3y2 + sin(xy) + 1 in the problem −∇ · (p∇p) = f .

X3Y4PlusX2PlusSinXYCosYPlus1: source = −(3x22y4 + 2x+ y cos(xy) cos(y))2 − (4x3y3 +
x cos(xy) cos(y) − sin(xy) sin(y))2 − (x3y4 + x2 + sin(xy) cos(y) + 1)(6xy4 + 2 − (x2 + y2 +
1) sin(xy) cos(y) + 12x3y2 − 2x cos(xy) sin(y))
This function type specifies that the source applied over the entire domain is as noted above.
This corresponds to p = x3y4 + x2 + sin(xy) cos(y) + 1 in the problem −∇ · (p∇p) = f .

XYZTPlus1: source = xyz − t2(x2y2 + x2z2 + y2z2)
This function type specifies that the source applied over the entire domain is as noted above.
This corresponds to p = xyzt+ 1 in the problem ∂p

∂t −∇ · (p∇p) = f .

XYZTPlus1PermTensor: source = xyz − t2(x2y23 + x2z22 + y2z2)
This function type specifies that the source applied over the entire domain is as noted above.
This corresponds to p = xyzt+1 in the problem ∂p

∂t −∇·(Kp∇p) = f , whereK = diag(1 2 3).

5.1.18 Capillary Pressures

Here we define capillary pressure. Note: this section needs to be defined only for multi-phase flow
and should not be defined for single phase and Richards’ equation cases. The format for this section
of input is:

string CapPressure.phase name.Type [”Constant”]
This key specifies the capillary pressure between phase 0 and the named phase, phase name.

5.1. MAIN INPUT FILE (.PFTCL) 75

The only choice available is Constant which indicates that a constant capillary pressure exists
between the phases.
Example Useage:

pfset CapPressure.water.Type Constant

list CapPressure.phase name.GeomNames [no default]
This key specifies the geometries that capillary pressures will be computed for in the named

phase, phase name. Regions listed later “overlay” regions listed earlier. Any geometries not listed
will be assigned 0.0 capillary pressure by ParFlow.
Example Useage:

pfset CapPressure.water.GeomNames "domain"

double Geom.geometry name.CapPressure.phase name.Value [0.0]
This key specifies the value of the capillary pressure in the named geometry, geometry name,

for the named phase, phase name.
Example Useage:

pfset Geom.domain.CapPressure.water.Value 0.0

Important note: the code currently works only for capillary pressure equal zero.

5.1.19 Saturation

This section is only relevant to the Richards’ equation cases. All keys relating to this section will
be ignored for other cases. The following keys are used to define the saturation-pressure curve.

string Phase.Saturation.Type [no default]
This key specifies the type of saturation function that will be used on all specified geometries.

Note that only one type of saturation may be used for the entire problem. However, parameters
may be different for that type in different geometries. For instance, if the problem consists of
three geometries, then VanGenuchten may be specified with three different sets of parameters for
the three different goemetries. However, once VanGenuchten is specified, one geometry cannot
later be specified to have Data as its saturation. The possible values for this key are Constant,

VanGenuchten, Haverkamp, Data, Polynomial and PFBFile.
Example Useage:

pfset Phase.Saturation.Type Constant

The various possible functions are defined as follows. The Constant specification means that
the saturation will be constant on the specified geounit. The VanGenuchten specification means
that the saturation will be given as a Van Genuchten function [26] with the form,

s(p) =
ssat − sres

(1 + (αp)n)m
+ sres, (5.4)

76 CHAPTER 5. PARFLOW FILES

where ssat is the saturation at saturated conditions, sres is the residual saturation, and α and n
are soil parameters with m = 1 − 1/n, on each region. The Haverkamp specification means that
the saturation will be given in the following form [6],

s(p) =
α(ssat − sres)

A+ pγ
+ sres, (5.5)

where A and γ are soil parameters, on each region. The Data specification is currently unsupported
but will later mean that data points for the saturation curve will be given and ParFlow will set up
the proper interpolation coefficients to get values between the given data points. The Polynomial

specification defines a polynomial saturation function for each region of the form,

s(p) =
degree
∑

i=0

cip
i. (5.6)

The PFBFile specification means that the saturation will be taken as a spatially varying but
constant in pressure function given by data in a ParFlow binary (.pfb) file.

list Phase.Saturation.GeomNames [no default]
This key specifies the geometries on which saturation will be given. The union of these geome-

tries must cover the entire computational domain.
Example Useage:

pfset Phase.Saturation.Geonames domain

double Geom.geom name.Saturation.Value [no default]
This key specifies the constant saturation value on the geom name region.

Example Useage:

pfset Geom.domain.Saturation.Value 0.5

integer Phase.Saturation.VanGenuchten.File [0]
This key specifies whether soil parameters for the VanGenuchten function are specified in a pfb

file or by region. The options are either 0 for specification by region, or 1 for specification in a
file. Note that either all parameters are specified in files (each has their own input file) or none are
specified by files. Parameters specified by files are α, N, SRes, and SSat.
Example Useage:

pfset Phase.Saturation.VanGenuchten.File 1

string Geom.geom name.Saturation.Alpha.Filename [no default]
This key specifies a pfb filename containing the alpha parameters for the VanGenuchten function

cell-by-cell. The ONLY option for geom name is “domain”.
Example Useage:

5.1. MAIN INPUT FILE (.PFTCL) 77

pfset Geom.domain.Saturation.Filename alphas.pfb

string Geom.geom name.Saturation.N.Filename [no default]
This key specifies a pfb filename containing the N parameters for the VanGenuchten function

cell-by-cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.Saturation.N.Filename Ns.pfb

string Geom.geom name.Saturation.SRes.Filename [no default]
This key specifies a pfb filename containing the SRes parameters for the VanGenuchten function

cell-by-cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.Saturation.SRes.Filename SRess.pfb

string Geom.geom name.Saturation.SSat.Filename [no default]
This key specifies a pfb filename containing the SSat parameters for the VanGenuchten function

cell-by-cell. The ONLY option for geom name is “domain”.
Example Useage:

pfset Geom.domain.Saturation.SSat.Filename SSats.pfb

double Geom.geom name.Saturation.Alpha [no default]
This key specifies the α parameter for the Van Genuchten function specified on geom name.

Example Useage:

pfset Geom.domain.Saturation.Alpha 0.005

double Geom.geom name.Saturation.N [no default]
This key specifies the N parameter for the Van Genuchten function specified on geom name.

Example Useage:

pfset Geom.domain.Saturation.N 2.0

Note that if both a Van Genuchten saturation and relative permeability are specified, then the
soil parameters should be the same for each in order to have a consistent problem.

double Geom.geom name.Saturation.SRes [no default]
This key specifies the residual saturation on geom name.

Example Useage:

pfset Geom.domain.Saturation.SRes 0.0

double Geom.geom name.Saturation.SSat [no default]
This key specifies the saturation at saturated conditions on geom name.

Example Useage:

78 CHAPTER 5. PARFLOW FILES

pfset Geom.domain.Saturation.SSat 1.0

double Geom.geom name.Saturation.A [no default]
This key specifies the A parameter for the Haverkamp saturation on geom name.

Example Useage:

pfset Geom.domain.Saturation.A 1.0

double Geom.geom name.Saturation.Gamma [no default]
This key specifies the the γ parameter for the Haverkamp saturation on geom name.

Example Useage:

pfset Geom.domain.Saturation.Gamma 1.0

integer Geom.geom name.Saturation.Degree [no default]
This key specifies the degree of the polynomial for the Polynomial saturation given on geom name.

Example Useage:

pfset Geom.domain.Saturation.Degree 1

double Geom.geom name.Saturation.Coeff.coeff number [no default]
This key specifies the coeff numberth coefficient of the Polynomial saturation given on geom name.

Example Useage:

pfset Geom.domain.Saturation.Coeff.0 0.5

pfset Geom.domain.Saturation.Coeff.1 1.0

string Geom.geom name.Saturation.FileName [no default]
This key specifies the name of the file containing saturation values for the domain. It is assumed

that geom name is “domain” for this key.
Example Useage:

pfset Geom.domain.Saturation.FileName "domain_sats.pfb"

5.1.20 Internal Boundary Conditions

In this section, we define internal Dirichlet boundary conditions by setting the pressure at points
in the domain. The format for this section of input is:

string InternalBC.Names [no default]
This key specifies the names for the internal boundary conditions. At each named point, x,

y and z will specify the coordinate locations and h will specify the hydraulic head value of the
condition. This real location is “snapped” to the nearest gridpoint in ParFlow.

5.1. MAIN INPUT FILE (.PFTCL) 79

NOTE: Currently, ParFlow assumes that internal boundary conditions and pressure wells are
separated by at least one cell from any external boundary. The user should be careful of this when
defining the input file and grid.
Example Useage:

pfset InternalBC.Names "fixedvalue"

double InternalBC.internal bc name.X [no default]
This key specifies the x-coordinate, x, of the named, internal bc name, condition.

Example Useage:

pfset InternalBC.fixedheadvalue.X 40.0

double InternalBC.internal bc name.Y [no default]
This key specifies the y-coordinate, y, of the named, internal bc name, condition.

Example Useage:

pfset InternalBC.fixedheadvalue.Y 65.2

double InternalBC.internal bc name.Z [no default]
This key specifies the z-coordinate, z, of the named, internal bc name, condition.

Example Useage:

pfset InternalBC.fixedheadvalue.Z 12.1

double InternalBC.internal bc name.Value [no default]
This key specifies the value of the named, internal bc name, condition.

Example Useage:

pfset InternalBC.fixedheadvalue.Value 100.0

5.1.21 Boundary Conditions: Pressure

Here we define the pressure boundary conditions. The Dirichlet conditions below are hydrostatic
conditions, and it is assumed that at each phase interface the pressure is constant. It is also assumed
here that all phases are distributed within the domain at all times such that the lighter phases are
vertically higher than the heavier phases.

Boundary condition input is associated with domain patches (see § 5.1.5). Note that different
patches may have different types of boundary conditions on them.

list BCPressure.PatchNames [no default]
This key specifies the names of patches on which pressure boundary conditions will be specified.

Note that these must all be patches on the external boundary of the domain and these patches
must “cover” that external boundary.
Example Useage:

80 CHAPTER 5. PARFLOW FILES

pfset BCPressure.PatchNames "left right front back top bottom"

string Patch.patch name.BCPressure.Type [no default]
This key specifies the type of boundary condition data given for patch patch name. Possible

values for this key are DirEquilRefPatch, DirEquilPLinear, FluxConst, FluxVolumetric,

PressureFile, FluxFile, OverlandFow, OverlandFlowPFB and ExactSolution. The choice
DirEquilRefPatch specifies that the pressure on the specified patch will be in hydrostatic equilib-
rium with a constant reference pressure given on a reference patch. The choice DirEquilPLinear

specifies that the pressure on the specified patch will be in hydrostatic equilibrium with pressure
given along a piecewise line at elevation z = 0. The choice FluxConst defines a constant normal
flux boundary condition through the domain patch. This flux must be specified in units of [L]/[T].
For Richards’ equation, fluxes must be specified as a mass flux and given as the above flux multi-
plied by the density. Thus, this choice of input type for a Richards’ equation problem has units
of ([L]/[T])([M]/[L]3). The choice FluxVolumetric defines a volumetric flux boundary condition
through the domain patch. The units should be consistent with all other user input for the problem.
For Richards’ equation fluxes must be specified as a mass flux and given as the above flux multi-
plied by the density. The choice PressureFile defines a hydraulic head boundary condition that
is read from a properly distributed .pfb file. Only the values needed for the patch are used. The
choice FluxFile defines a flux boundary condition that is read form a properly distributed .pfb file
defined on a grid consistent with the pressure field grid. Only the values needed for the patch are
used. The choices OverlandFlow and OverlandFlowPFB both turn on fully-coupled overland
flow routing as described in [8] and in § 4.6. The key OverlandFlow corresponds to a Value key
with a positive or negative value, to indicate uniform fluxes (such as rainfall or evapotranspiration)
over the entire domain while the key OverlandFlowPFB allows a .pfb file to contain grid-based,
spatially-variable fluxes. The choice ExactSolution specifies that an exact known solution is to
be applied as a Dirichlet boundary condition on the respective patch. Note that this does not
change according to any cycle. Instead, time dependence is handled by evaluating at the time
the boundary condition value is desired. The solution is specified by using a predefined function
(choices are described below). NOTE: These last three types of boundary condition input is for
Richards’ equation cases only!
Example Useage:

pfset Patch.top.BCPressure.Type DirEquilRefPatch

string Patch.patch name.BCPressure.Cycle [no default]
This key specifies the time cycle to which boundary condition data for patch patch name cor-

responds.
Example Useage:

pfset Patch.top.BCPressure.Cycle Constant

string Patch.patch name.BCPressure.RefGeom [no default]
This key specifies the name of the solid on which the reference patch for the DirEquilRefPatch

5.1. MAIN INPUT FILE (.PFTCL) 81

boundary condition data is given. Care should be taken to make sure the correct solid is specified
in cases of layered domains.
Example Useage:

pfset Patch.top.BCPressure.RefGeom domain

string Patch.patch name.BCPressure.RefPatch [no default]
This key specifies the reference patch on which the DirEquilRefPatch boundary condition

data is given. This patch must be on the reference solid specified by the Patch.patch name.BCPressure.RefGeom
key.
Example Useage:

pfset Patch.top.BCPressure.RefPatch bottom

double Patch.patch name.BCPressure.interval name.Value [no default]
This key specifies the reference pressure value for the DirEquilRefPatch boundary condition

or the constant flux value for the FluxConst boundary condition, or the constant volumetric flux
for the FluxVolumetric boundary condition.
Example Useage:

pfset Patch.top.BCPressure.alltime.Value -14.0

double Patch.patch name.BCPressure.interval name.phase name.IntValue [no default]
Note that the reference conditions for types DirEquilPLinear and DirEquilRefPatch bound-

ary conditions are for phase 0 only. This key specifies the constant pressure value along the interface
with phase phase name for cases with two phases present.
Example Useage:

pfset Patch.top.BCPressure.alltime.water.IntValue -13.0

double Patch.patch name.BCPressure.interval name.XLower [no default]
This key specifies the lower x coordinate of a line in the xy-plane.

Example Useage:

pfset Patch.top.BCPressure.alltime.XLower 0.0

double Patch.patch name.BCPressure.interval name.YLower [no default]
This key specifies the lower y coordinate of a line in the xy-plane.

Example Useage:

pfset Patch.top.BCPressure.alltime.YLower 0.0

double Patch.patch name.BCPressure.interval name.XUpper [no default]
This key specifies the upper x coordinate of a line in the xy-plane.

Example Useage:

82 CHAPTER 5. PARFLOW FILES

pfset Patch.top.BCPressure.alltime.XUpper 1.0

double Patch.patch name.BCPressure.interval name.YUpper [no default]
This key specifies the upper y coordinate of a line in the xy-plane.

Example Useage:

pfset Patch.top.BCPressure.alltime.YUpper 1.0

integer Patch.patch name.BCPressure.interval name.NumPoints [no default]
This key specifies the number of points on which pressure data is given along the line used in

the type DirEquilPLinear boundary conditions.
Example Useage:

pfset Patch.top.BCPressure.alltime.NumPoints 2

double Patch.patch name.BCPressure.interval name.point number.Location [no default]
This key specifies a number between 0 and 1 which represents the location of a point on the

line on which data is given for type DirEquilPLinear boundary conditions. Here 0 corresponds
to the lower end of the line, and 1 corresponds to the upper end.
Example Useage:

pfset Patch.top.BCPressure.alltime.0.Location 0.0

double Patch.patch name.BCPressure.interval name.point number.Value [no default]
This key specifies the pressure value for phase 0 at point number point number and z = 0 for

type DirEquilPLinear boundary conditions. All pressure values on the patch are determined by
first projecting the boundary condition coordinate onto the line, then linearly interpolating between
the neighboring point pressure values on the line.
Example Useage:

pfset Patch.top.BCPressure.alltime.0.Value 14.0

string Patch.patch name.BCPressure.interval name.FileName [no default]
This key specifies the name of a properly distributed .pfb file that contains boundary data to

be read for types PressureFile and FluxFile. For flux data, the data must be defined over a grid
consistent with the pressure field. In both cases, only the values needed for the patch will be used.
The rest of the data is ignored.
Example Useage:

pfset Patch.top.BCPressure.alltime.FileName ocwd_bc.pfb

string Patch.patch name.BCPressure.interval name.PredefinedFunction [no default]
This key specifies the predefined function that will be used to specify Dirichlet boundary con-

ditions on patch patch name. Note that this does not change according to any cycle. Instead, time

5.1. MAIN INPUT FILE (.PFTCL) 83

dependence is handled by evaluating at the time the boundary condition value is desired. Choices for
this key include X, XPlusYPlusZ, X3Y2PlusSinXYPlus1, X3Y4PlusX2PlusSinXYCosYPlus1,

XYZTPlus1 and XYZTPlus1PermTensor.
Example Useage:

pfset Patch.top.BCPressure.alltime.PredefinedFunction XPlusYPlusZ

The choices for this key correspond to pressures as follows.

X: p = x

XPlusYPlusZ: p = x+ y + z

X3Y2PlusSinXYPlus1: p = x3y2 + sin(xy) + 1

X3Y4PlusX2PlusSinXYCosYPlus1: p = x3y4 + x2 + sin(xy) cos y + 1

XYZTPlus1: p = xyzt+ 1

XYZTPlus1PermTensor: p = xyzt+ 1

5.1.22 Boundary Conditions: Saturation

Note: this section needs to be defined only for multi-phase flow and should not be defined for the
single phase and Richards’ equation cases.

Here we define the boundary conditions for the saturations. Boundary condition input is asso-
ciated with domain patches (see § 5.1.5). Note that different patches may have different types of
boundary conditions on them.

list BCSaturation.PatchNames [no default]
This key specifies the names of patches on which saturation boundary conditions will be

specified. Note that these must all be patches on the external boundary of the domain and these
patches must “cover” that external boundary.
Example Useage:

pfset BCSaturation.PatchNames "left right front back top bottom"

string Patch.patch name.BCSaturation.phase name.Type [no default]
This key specifies the type of boundary condition data given for the given phase, phase name, on

the given patch patch name. Possible values for this key are DirConstant, ConstantWTHeight

and PLinearWTHeight. The choice DirConstant specifies that the saturation is constant on
the whole patch. The choice ConstantWTHeight specifies a constant height of the water-table
on the whole patch. The choice PLinearWTHeight specifies that the height of the water-table
on the patch will be given by a piecewise linear function.

Note: the types ConstantWTHeight and PLinearWTHeight assume we are running a 2-
phase problem where phase 0 is the water phase.
Example Useage:

84 CHAPTER 5. PARFLOW FILES

pfset Patch.left.BCSaturation.water.Type ConstantWTHeight

double Patch.patch name.BCSaturation.phase name.Value [no default]
This key specifies either the constant saturation value if DirConstant is selected or the

constant water-table height if ConstantWTHeight is selected.
Example Useage:

pfset Patch.top.BCSaturation.air.Value 1.0

double Patch.patch name.BCSaturation.phase name.XLower [no default]
This key specifies the lower x coordinate of a line in the xy-plane if type PLinearWTHeight

boundary conditions are specified.
Example Useage:

pfset Patch.left.BCSaturation.water.XLower -10.0

double Patch.patch name.BCSaturation.phase name.YLower [no default]
This key specifies the lower y coordinate of a line in the xy-plane if type PLinearWTHeight

boundary conditions are specified.
Example Useage:

pfset Patch.left.BCSaturation.water.YLower 5.0

double Patch.patch name.BCSaturation.phase name.XUpper [no default]
This key specifies the upper x coordinate of a line in the xy-plane if type PLinearWTHeight

boundary conditions are specified.
Example Useage:

pfset Patch.left.BCSaturation.water.XUpper 125.0

double Patch.patch name.BCSaturation.phase name.YUpper [no default]
This key specifies the upper y coordinate of a line in the xy-plane if type PLinearWTHeight

boundary conditions are specified.
Example Useage:

pfset Patch.left.BCSaturation.water.YUpper 82.0

integer Patch.patch name.BCPressure.phase name.NumPoints [no default]
This key specifies the number of points on which saturation data is given along the line used

for type DirEquilPLinear boundary conditions.
Example Useage:

pfset Patch.left.BCPressure.water.NumPoints 2

5.1. MAIN INPUT FILE (.PFTCL) 85

double Patch.patch name.BCPressure.phase name.point number.Location [no default]
This key specifies a number between 0 and 1 which represents the location of a point on the line

for which data is given in type DirEquilPLinear boundary conditions. The line is parameterized
so that 0 corresponds to the lower end of the line, and 1 corresponds to the upper end.
Example Useage:

pfset Patch.left.BCPressure.water.0.Location 0.333

double Patch.patch name.BCPressure.phase name.point number.Value [no default]
This key specifies the water-table height for the given point if type DirEquilPLinear boundary

conditions are selected. All saturation values on the patch are determined by first projecting the
water-table height value onto the line, then linearly interpolating between the neighboring water-
table height values onto the line.
Example Useage:

pfset Patch.left.BCPressure.water.0.Value 4.5

5.1.23 Initial Conditions: Phase Saturations

Note: this section needs to be defined only for multi-phase flow and should not be defined for single
phase and Richards’ equation cases.

Here we define initial phase saturation conditions. The format for this section of input is:

string ICSaturation.phase name.Type [no default]
This key specifies the type of initial condition that will be applied to different geometries for

given phase, phase name. The only key currently available is Constant. The choice Constant

will apply constants values within geometries for the phase.
Example Useage:

ICSaturation.water.Type Constant

string ICSaturation.phase name.GeomNames [no default]
This key specifies the geometries on which an initial condition will be given if the type is set

to Constant.
Note that geometries listed later “overlay” geometries listed earlier.

Example Useage:

ICSaturation.water.GeomNames "domain"

double Geom.geom input name.ICSaturation.phase name.Value [no default]
This key specifies the initial condition value assigned to all points in the named geometry,

geom input name, if the type was set to Constant.
Example Useage:

Geom.domain.ICSaturation.water.Value 1.0

86 CHAPTER 5. PARFLOW FILES

5.1.24 Initial Conditions: Pressure

The keys in this section are used to specify pressure initial conditions for Richards’ equation cases
only. These keys will be ignored if any other case is run.

string ICPressure.Type [no default]
This key specifies the type of initial condition given. The choices for this key are Constant,

HydroStaticDepth, HydroStaticPatch and PFBFile. The choice Constant specifies that the
initial pressure will be constant over the regions given. The choice HydroStaticDepth specifies
that the initial pressure within a region will be in hydrostatic equilibrium with a given pressure
specified at a given depth. The choice HydroStaticPatch specifies that the initial pressure within
a region will be in hydrostatic equilibrium with a given pressure on a specified patch. Note that
all regions must have the same type of initial data - different regions cannot have different types of
initial data. However, the parameters for the type may be different. The PFBFile specification
means that the initial pressure will be taken as a spatially varying function given by data in a
ParFlow binary (.pfb) file.
Example Useage:

pfset ICPressure.Type Constant

list ICPressure.GeomNames [no default]
This key specifies the geometry names on which the initial pressure data will be given. These

geometries must comprise the entire domain. Note that conditions for regions that overlap other
regions will have unpredictable results. The regions given must be disjoint.
Example Useage:

pfset ICPressure.GeomNames "toplayer middlelayer bottomlayer"

double Geom.geom name.ICPressure.Value [no default]
This key specifies the initial pressure value for type Constant initial pressures and the reference

pressure value for types HydroStaticDepth and HydroStaticPatch.
Example Useage:

pfset Geom.toplayer.ICPressure.Value -734.0

double Geom.geom name.ICPressure.RefElevation [no default]
This key specifies the reference elevation on which the reference pressure is given for type

HydroStaticDepth initial pressures.
Example Useage:

pfset Geom.toplayer.ICPressure.RefElevation 0.0

double Geom.geom name.ICPressure.RefGeom [no default]
This key specifies the geometry on which the reference patch resides for type HydroStatic-

Patch initial pressures.
Example Useage:

5.1. MAIN INPUT FILE (.PFTCL) 87

pfset Geom.toplayer.ICPressure.RefGeom bottomlayer

double Geom.geom name.ICPressure.RefPatch [no default]
This key specifies the patch on which the reference pressure is given for type HydorStatic-

Patch initial pressures.
Example Useage:

pfset Geom.toplayer.ICPressure.RefPatch bottom

string Geom.geom name.ICPressure.FileName [no default]
This key specifies the name of the file containing pressure values for the domain. It is assumed

that geom name is “domain” for this key.
Example Useage:

pfset Geom.domain.ICPressure.FileName "ic_pressure.pfb"

5.1.25 Initial Conditions: Phase Concentrations

Here we define initial concentration conditions for contaminants. The format for this section of
input is:

string PhaseConcen.phase name.contaminant name.Type [no default]
This key specifies the type of initial condition that will be applied to different geometries for

given phase, phase name, and the given contaminant, contaminant name. The choices for this
key are Constant or PFBFile. The choice Constant will apply constants values to different
geometries. The choice PFBFile will read values from a “ParFlow Binary” file (see § 5.2).
Example Useage:

PhaseConcen.water.tce.Type Constant

string PhaseConcen.phase name.GeomNames [no default]
This key specifies the geometries on which an initial condition will be given, if the type was

set to Constant.

Note that geometries listed later “overlay” geometries listed earlier.
Example Useage:

PhaseConcen.water.GeomNames "ic_concen_region"

double PhaseConcen.phase name.contaminant name.geom input name.Value [no default]
This key specifies the initial condition value assigned to all points in the named geometry,

geom input name, if the type was set to Constant.
Example Useage:

PhaseConcen.water.tce.ic_concen_region.Value 0.001

88 CHAPTER 5. PARFLOW FILES

string PhaseConcen.phase name.contaminant name.FileName [no default]
This key specifies the name of the “ParFlow Binary” file which contains the initial condition

values if the type was set to PFBFile.
Example Useage:

PhaseConcen.water.tce.FileName "initial_concen_tce.pfb"

5.1.26 Known Exact Solution

For Richards equation cases only we allow specification of an exact solution to be used for testing
the code. Only types that have been coded and predefined are allowed. Note that if this is speccified
as something other than no known solution, corresponding boundary conditions and phase sources
should also be specified.

string KnownSolution [no default]
This specifies the predefined function that will be used as the known solution. Possible choices

for this key are NoKnownSolution, Constant, X, XPlusYPlusZ, X3Y2PlusSinXYPlus1,

X3Y4PlusX2PlusSinXYCosYPlus1, XYZTPlus1 and XYZTPlus1PermTensor.
Example Useage:

pfset KnownSolution XPlusYPlusZ

Choices for this key correspond to solutions as follows.

NoKnownSolution: No solution is known for this problem.

Constant: p = constant

X: p = x

XPlusYPlusZ: p = x+ y + z

X3Y2PlusSinXYPlus1: p = x3y2 + sin(xy) + 1

X3Y4PlusX2PlusSinXYCosYPlus1: p = x3y4 + x2 + sin(xy) cos y + 1

XYZTPlus1: p = xyzt+ 1

XYZTPlus1: p = xyzt+ 1

double KnownSolution.Value [no default]
This key specifies the constant value of the known solution for type Constant known solutions.

Example Useage:

pfset KnownSolution.Value 1.0

Only for known solution test cases will information on the L2-norm of the pressure error be
printed.

5.1. MAIN INPUT FILE (.PFTCL) 89

5.1.27 Wells

Here we define wells for the model. The format for this section of input is:

string Wells.Names [no default]
This key specifies the names of the wells for which input data will be given.

Example Useage:

Wells.Names "test_well inj_well ext_well"

string Wells.well name.InputType [no default]
This key specifies the type of well to be defined for the given well, well name. This key can be

either Vertical or Recirc. The value Vertical indicates that this is a single segmented well whose
action will be specified by the user. The value Recirc indicates that this is a dual segmented,
recirculating, well with one segment being an extraction well and another being an injection well.
The extraction well filters out a specified fraction of each contaminant and recirculates the remain-
der to the injection well where the diluted fluid is injected back in. The phase saturations at the
extraction well are passed without modification to the injection well.

Note with the recirculating well, several input options are not needed as the extraction well will
provide these values to the injection well.
Example Useage:

Wells.test_well.InputType Vertical

string Wells.well name.Action [no default]
This key specifies the pumping action of the well. This key can be either Injection or Ex-

traction. A value of Injection indicates that this is an injection well. A value of Extraction

indicates that this is an extraction well.
Example Useage:

Wells.test_well.Action Injection

double Wells.well name.Type [no default]
This key specfies the mechanism by which the well works (how ParFlow works with the well

data) if the input type key is set to Vectical. This key can be either Pressure or Flux. A value
of Pressure indicates that the data provided for the well is in terms of hydrostatic pressure and
ParFlow will ensure that the computed pressure field satisfies this condition in the computational
cells which define the well. A value of Flux indicates that the data provided is in terms of volumetric
flux rates and ParFlow will ensure that the flux field satisfies this condition in the computational
cells which define the well.
Example Useage:

Wells.test_well.Type Flux

90 CHAPTER 5. PARFLOW FILES

string Wells.well name.ExtractionType [no default]
This key specfies the mechanism by which the extraction well works (how ParFlow works

with the well data) if the input type key is set to Recirc. This key can be either Pressure or
Flux. A value of Pressure indicates that the data provided for the well is in terms of hydrostatic
pressure and ParFlow will ensure that the computed pressure field satisfies this condition in the
computational cells which define the well. A value of Flux indicates that the data provided is in
terms of volumetric flux rates and ParFlow will ensure that the flux field satisfies this condition
in the computational cells which define the well.
Example Useage:

Wells.ext_well.ExtractionType Pressure

string Wells.well name.InjectionType [no default]
This key specfies the mechanism by which the injection well works (how ParFlow works

with the well data) if the input type key is set to Recirc. This key can be either Pressure or
Flux. A value of Pressure indicates that the data provided for the well is in terms of hydrostatic
pressure and ParFlow will ensure that the computed pressure field satisfies this condition in the
computational cells which define the well. A value of Flux indicates that the data provided is in
terms of volumetric flux rates and ParFlow will ensure that the flux field satisfies this condition
in the computational cells which define the well.
Example Useage:

Wells.inj_well.InjectionType Flux

double Wells.well name.X [no default]
This key specifies the x location of the vectical well if the input type is set to Vectical or of

both the extraction and injection wells if the input type is set to Recirc.
Example Useage:

Wells.test_well.X 20.0

double Wells.well name.Y [no default]
This key specifies the y location of the vectical well if the input type is set to Vectical or of

both the extraction and injection wells if the input type is set to Recirc.
Example Useage:

Wells.test_well.Y 36.5

double Wells.well name.ZUpper [no default]
This key specifies the z location of the upper extent of a vectical well if the input type is set

to Vectical.
Example Useage:

Wells.test_well.ZUpper 8.0

5.1. MAIN INPUT FILE (.PFTCL) 91

double Wells.well name.ExtractionZUpper [no default]
This key specifies the z location of the upper extent of a extraction well if the input type is set

to Recirc.
Example Useage:

Wells.ext_well.ExtractionZUpper 3.0

double Wells.well name.InjectionZUpper [no default]
This key specifies the z location of the upper extent of a injection well if the input type is set

to Recirc.
Example Useage:

Wells.inj_well.InjectionZUpper 6.0

double Wells.well name.ZLower [no default]
This key specifies the z location of the lower extent of a vectical well if the input type is set to

Vectical.
Example Useage:

Wells.test_well.ZLower 2.0

double Wells.well name.ExtractionZLower [no default]
This key specifies the z location of the lower extent of a extraction well if the input type is set

to Recirc.
Example Useage:

Wells.ext_well.ExtractionZLower 1.0

double Wells.well name.InjectionZLower [no default]
This key specifies the z location of the lower extent of a injection well if the input type is set

to Recirc.
Example Useage:

Wells.inj_well.InjectionZLower 4.0

string Wells.well name.Method [no default]
This key specifies a method by which pressure or flux for a vertical well will be weighted

before assignment to computational cells. This key can only be Standard if the type key is set to
Pressure; or this key can be either Standard, Weighted or Patterned if the type key is set to
Flux. A value of Standard indicates that the pressure or flux data will be used as is. A value of
Weighted indicates that the flux data is to be weighted by the cells permeability divided by the
sum of all cell permeabilities which define the well. The value of Patterned is not implemented.
Example Useage:

Wells.test_well.Method Weighted

92 CHAPTER 5. PARFLOW FILES

string Wells.well name.ExtractionMethod [no default]
This key specifies a method by which pressure or flux for an extraction well will be weighted

before assignment to computational cells. This key can only be Standard if the type key is set to
Pressure; or this key can be either Standard, Weighted or Patterned if the type key is set to
Flux. A value of Standard indicates that the pressure or flux data will be used as is. A value of
Weighted indicates that the flux data is to be weighted by the cells permeability divided by the
sum of all cell permeabilities which define the well. The value of Patterned is not implemented.
Example Useage:

Wells.ext_well.ExtractionMethod Standard

string Wells.well name.InjectionMethod [no default]
This key specifies a method by which pressure or flux for an injection well will be weighted

before assignment to computational cells. This key can only be Standard if the type key is set to
Pressure; or this key can be either Standard, Weighted or Patterned if the type key is set to
Flux. A value of Standard indicates that the pressure or flux data will be used as is. A value of
Weighted indicates that the flux data is to be weighted by the cells permeability divided by the
sum of all cell permeabilities which define the well. The value of Patterned is not implemented.
Example Useage:

Wells.inj_well.InjectionMethod Standard

string Wells.well name.Cycle [no default]
This key specifies the time cycles to which data for the well well name corresponds.

Example Useage:

Wells.test_well.Cycle "all_time"

double Wells.well name.interval name.Pressure.Value [no default]
This key specifies the hydrostatic pressure value for a vectical well if the type key is set to

Pressure.
Note This value gives the pressure of the primary phase (water) at z = 0. The other phase

pressures (if any) are computed from the physical relationships that exist between the phases.
Example Useage:

Wells.test_well.all_time.Pressure.Value 6.0

double Wells.well name.interval name.Extraction.Pressure.Value [no default]
This key specifies the hydrostatic pressure value for an extraction well if the extraction type

key is set to Pressure.
Note This value gives the pressure of the primary phase (water) at z = 0. The other phase

pressures (if any) are computed from the physical relationships that exist between the phases.
Example Useage:

Wells.ext_well.all_time.Extraction.Pressure.Value 4.5

5.1. MAIN INPUT FILE (.PFTCL) 93

double Wells.well name.interval name.Injection.Pressure.Value [no default]
This key specifies the hydrostatic pressure value for an injection well if the injection type key

is set to Pressure.
Note This value gives the pressure of the primary phase (water) at z = 0. The other phase

pressures (if any) are computed from the physical relationships that exist between the phases.
Example Useage:

Wells.inj_well.all_time.Injection.Pressure.Value 10.2

double Wells.well name.interval name.Flux.phase name.Value [no default]
This key specifies the volumetric flux for a vectical well if the type key is set to Flux.

Note only a positive number should be entered, ParFlow assignes the correct sign based on
the chosen action for the well.
Example Useage:

Wells.test_well.all_time.Flux.water.Value 250.0

double Wells.well name.interval name.Extraction.Flux.phase name.Value [no default]
This key specifies the volumetric flux for an extraction well if the extraction type key is set to

Flux.
Note only a positive number should be entered, ParFlow assignes the correct sign based on

the chosen action for the well.
Example Useage:

Wells.ext_well.all_time.Extraction.Flux.water.Value 125.0

double Wells.well name.interval name.Injection.Flux.phase name.Value [no default]
This key specifies the volumetric flux for an injection well if the injection type key is set to

Flux.
Note only a positive number should be entered, ParFlow assignes the correct sign based on

the chosen action for the well.
Example Useage:

Wells.inj_well.all_time.Injection.Flux.water.Value 80.0

double Wells.well name.interval name.Saturation.phase name.Value [no default]
This key specifies the saturation value of a vertical well.

Example Useage:

Wells.test_well.all_time.Saturation.water.Value 1.0

double Wells.well name.interval name.Concentration.phase name.contaminant name.Value

[no default]
This key specifies the contaminant value of a vertical well.

Example Useage:

94 CHAPTER 5. PARFLOW FILES

Wells.test_well.all_time.Concentration.water.tce.Value 0.0005

double Wells.well name.interval name.Injection.Concentration.phase name.contaminant name.Fraction

[no default]
This key specifies the fraction of the extracted contaminant which gets resupplied to the injec-

tion well.
Example Useage:

Wells.inj_well.all_time.Injection.Concentration.water.tce.Fraction 0.01

Multiple wells assigned to one grid location can occur in several instances. The current actions
taken by the code are as follows:

• If multiple pressure wells are assigned to one grid cell, the code retains only the last set of
overlapping well values entered.

• If multiple flux wells are assigned to one grid cell, the code sums the contributions of all
overlapping wells to get one effective well flux.

• If multiple pressure and flux wells are assigned to one grid cell, the code retains the last set of
overlapping hydrostatic pressure values entered and sums all the overlapping flux well values
to get an effective pressure/flux well value.

5.1.28 Code Parameters

In addition to input keys related to the physics capabilities and modeling specifics there are some
key values used by various algorithms and general control flags for ParFlow. These are described
next :

string Solver.Linear [PCG]
This key specifies the linear solver used for solver IMPES. Choices for this key are MGSemi,

PPCG, PCG and CGHS. The choice MGSemi is an algebraic mulitgrid linear solver (not a
preconditioned conjugate gradient) which may be less robust than PCG as described in [1]. The
choice PPCG is a preconditioned conjugate gradient solver. The choice PCG is a conjugate
gradient solver with a multigrid preconditioner. The choice CGHS is a conjugate gradient solver.
Example Useage:

pfset Solver.Linear MGSemi

integer Solver.SadvectOrder [2]
This key controls the order of the explicit method used in advancing the saturations. This

value can be either 1 for a standard upwind first order or 2 for a second order Godunov method.
Example Useage:

pfset Solver.SadvectOrder 1

5.1. MAIN INPUT FILE (.PFTCL) 95

integer Solver.AdvectOrder [2]
This key controls the order of the explicit method used in advancing the concentrations. This

value can be either 1 for a standard upwind first order or 2 for a second order Godunov method.
Example Useage:

pfset Solver.AdvectOrder 2

double Solver.CFL [0.7]
This key gives the value of the weight put on the computed CFL limit before computing a

global timestep value. Values greater than 1 are not suggested and in fact because this is an
approximation, values slightly less than 1 can also produce instabilities.
Example Useage:

pfset Solver.CFL 0.7

integer Solver.MaxIter [1000000]
This key gives the maximum number of iterations that will be allowed for time-stepping. This

is to prevent a run-away simulation.
Example Useage:

pfset Solver.MaxIter 100

double Solver.RelTol [1.0]
This value gives the relative tolerance for the linear solve algorithm.

Example Useage:

pfset Solver.RelTol 1.0

double Solver.AbsTol [1E-9]
This value gives the absolute tolerance for the linear solve algorithm.

Example Useage:

pfset Solver.AbsTol 1E-8

double Solver.Drop [1E-8]
This key gives a clipping value for data written to PFSB files. Data values greater than the

negative of this value and less than the value itself are treated as zero and not written to PFSB
files.
Example Useage:

pfset Solver.Drop 1E-6

string Solver.PrintSubsurf [True]
This key is used to turn on printing of the subsurface data, Permeability and Porosity. The

data is printed after it is generated and before the main time stepping loop - only once during the
run. The data is written as a PFB file.
Example Useage:

96 CHAPTER 5. PARFLOW FILES

pfset Solver.PrintSubsurf False

string Solver.PrintPressure [True]
This key is used to turn on printing of the pressure data. The printing of the data is controlled

by values in the timing information section. The data is written as a PFB file.
Example Useage:

pfset Solver.PrintPressure False

string Solver.PrintVelocities [False]
This key is used to turn on printing of the x, y and z velocity data. The printing of the data

is controlled by values in the timing information section. The data is written as a PFB file.
Example Useage:

pfset Solver.PrintVelocities True

string Solver.PrintSaturation [True]
This key is used to turn on printing of the saturation data. The printing of the data is controlled

by values in the timing information section. The data is written as a PFB file.
Example Useage:

pfset Solver.PrintSaturation False

string Solver.PrintConcentration [True]
This key is used to turn on printing of the concentration data. The printing of the data is

controlled by values in the timing information section. The data is written as a PFSB file.
Example Useage:

pfset Solver.PrintConcentration False

string Solver.PrintWells [True]
This key is used to turn on collection and printing of the well data. The data is collected at

intervals given by values in the timing information section. Printing occurs at the end of the run
when all collected data is written.
Example Useage:

pfset Solver.PrintWells False

string Solver.PrintLSMSink [False]
This key is used to turn on printing of the flux array passed from CLM to ParFlow. Printing

occurs at each DumpInterval time.
Example Useage:

pfset Solver.PrintLSMSink True

5.1. MAIN INPUT FILE (.PFTCL) 97

string Solver.WriteSiloSubsurfData [False]
This key is used to specify printing of the subsurface data, Permeability and Porosity in silo

binary file format. The data is printed after it is generated and before the main time stepping loop
- only once during the run. This data may be read in by VisIT and other visualization packages.
Example Useage:

pfset Solver.WriteSiloSubsurfData True

string Solver.WriteSiloPressure [False]
This key is used to specify printing of the saturation data in silo binary format. The printing

of the data is controlled by values in the timing information section. This data may be read in by
VisIT and other visualization packages.
Example Useage:

pfset Solver.WriteSiloPressure True

string Solver.WriteSiloSaturation [False]
This key is used to specify printing of the saturation data using silo binary format. The printing

of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloSaturation True

string Solver.WriteSiloConcentration [False]
This key is used to specify printing of the concentration data in silo binary format. The printing

of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloConcentration True

string Solver.WriteSiloVelocities [False]
This key is used to specify printing of the x, y and z velocity data in silo binary format. The

printing of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloVelocities True

string Solver.WriteSiloSlopes [False]
This key is used to specify printing of the x and y slope data using silo binary format. The

printing of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloSlopes True

98 CHAPTER 5. PARFLOW FILES

string Solver.WriteSiloMannings [False]
This key is used to specify printing of the Manning’s roughness data in silo binary format. The

printing of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloMannings True

string Solver.WriteSiloSpecificStorage [False]
This key is used to specify printing of the specific storage data in silo binary format. The

printing of the data is controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloSpecificStorage True

string Solver.WriteSiloMask [False]
This key is used to specify printing of the mask data using silo binary format. The mask

contains values equal to one for active cells and zero for inactive cells. The printing of the data is
controlled by values in the timing information section.
Example Useage:

pfset Solver.WriteSiloMask True

string Solver.WriteSiloEvapTrans [False]
This key is used to specify printing of the evaporation and rainfall flux data using silo binary

format. This data comes from either clm or from external calls to ParFlow such as WRF. This
data is in units of [L3T−1]. The printing of the data is controlled by values in the timing information
section.
Example Useage:

pfset Solver.WriteSiloEvapTrans True

string Solver.WriteSiloEvapTransSum [False]
This key is used to specify printing of the evaporation and rainfall flux data using silo binary

format as a running, cumulative amount. This data comes from either clm or from external calls
to ParFlow such as WRF. This data is in units of [L3]. The printing of the data is controlled by
values in the timing information section.
Example Useage:

pfset Solver.WriteSiloEvapTransSum True

string Solver.WriteSiloOverlandSum [False]
This key is used to specify calculation and printing of the total overland outflow from the

domain using silo binary format as a running cumulative amount. This is integrated along all
domain boundaries and is calculated any location that slopes at the edge of the domain point

5.1. MAIN INPUT FILE (.PFTCL) 99

outward. This data is in units of [L3]. The printing of the data is controlled by values in the timing
information section.
Example Useage:

pfset Solver.WriteSiloOverlandSum True

5.1.29 Richards’ Equation Solver Parameters

The following keys are used to specify various parameters used by the linear and nonlinear solvers
in the Richards’ equation implementation. For information about these solvers, see [28] and [1].

double Solver.Nonlinear.ResidualTol [1e-7]
This key specifies the tolerance that measures how much the relative reduction in the nonlinear

residual should be before nonlinear iterations stop. The magnitude of the residual is measured with
the l1 (max) norm.
Example Useage:

pfset Solver.Nonlinear.ResidualTol 1e-4

double Solver.Nonlinear.StepTol [1e-7]
This key specifies the tolerance that measures how small the difference between two consecutive

nonlinear steps can be before nonlinear iterations stop.
Example Useage:

pfset Solver.Nonlinear.StepTol 1e-4

integer Solver.Nonlinear.MaxIter [15]
This key specifies the maximum number of nonlinear iterations allowed before iterations stop

with a convergence failure.
Example Useage:

pfset Solver.Nonlinear.MaxIter 50

integer Solver.Linear.KrylovDimension [10]
This key specifies the maximum number of vectors to be used in setting up the Krylov subspace

in the GMRES iterative solver. These vectors are of problem size and it should be noted that
large increases in this parameter can limit problem sizes. However, increasing this parameter can
sometimes help nonlinear solver convergence.
Example Useage:

pfset Solver.Linear.KrylovDimension 15

integer Solver.Linear.MaxRestarts [0]
This key specifies the number of restarts allowed to the GMRES solver. Restarts start the

development of the Krylov subspace over using the current iterate as the initial iterate for the next
pass.
Example Useage:

100 CHAPTER 5. PARFLOW FILES

pfset Solver.Linear.MaxRestarts 2

integer Solver.MaxConvergencFailures [3]
This key gives the maximum number of convergence failures allowed. Each convergence failure

cuts the timestep in half and the solver tries to advance the solution with the reduced timestep.
The default value is 3.

Note that setting this value to a value greater than 9 may result in errors in how time cycles are
calculated. Time is discretized in terms of the base time unit and if the solver begins to take very
small timesteps smallerthanbasetimeunit1000 the values based on time cycles will be change at
slightly incorrect times. If the problem is failing converge so poorly that a large number of restarts
are required, consider setting the timestep to a smaller value.
Example Useage:

pfset Solver.MaxConvergenceFailures 4

string Solver.Nonlinear.PrintFlag [HighVerbosity]
This key specifies the amount of informational data that is printed to the *.out.kinsol.log

file. Choices for this key are NoVerbosity, LowVerbosity, NormalVerbosity and HighVer-

bosity. The choice NoVerbosity prints no statistics about the nonlinear convergence process.
The choice LowVerbosity outputs the nonlinear iteration count, the scaled norm of the nonlinear
function, and the number of function calls. The choice NormalVerbosity prints the same as for
LowVerbosity and also the global strategy statistics. The choice HighVerbosity prints the same
as for NormalVerbosity with the addition of further Krylov iteration statistics.
Example Useage:

pfset Solver.Nonlinear.PrintFlag NormalVerbosity

string Solver.Nonlinear.EtaChoice [Walker2]
This key specifies how the linear system tolerance will be selected. The linear system is solved

until a relative residual reduction of η is achieved. Linear residuall norms are measured in the
l2 norm. Choices for this key include EtaConstant, Walker1 and Walker2. If the choice
EtaConstant is specified, then η will be taken as constant. The choices Walker1 and Walker2

specify choices for η developed by Eisenstat and Walker [4]. The choice Walker1 specifies that η
will be given by |‖F (uk)‖ − ‖F (uk−1) + J(uk−1) ∗ p‖|/‖F (uk−1)‖. The choice Walker2 specifies
that η will be given by γ‖F (uk)‖/‖F (uk−1)‖α. For both of the last two choices, η is never allowed
to be less than 1e-4.
Example Useage:

pfset Solver.Nonlinear.EtaChoice EtaConstant

double Solver.Nonlinear.EtaValue [1e-4]
This key specifies the constant value of η for the EtaChoice key EtaConstant.

Example Useage:

5.1. MAIN INPUT FILE (.PFTCL) 101

pfset Solver.Nonlinear.EtaValue 1e-7

double Solver.Nonlinear.EtaAlpha [2.0]
This key specifies the value of α for the case of EtaChoice being Walker2.

Example Useage:

pfset Solver.Nonlinear.EtaAlpha 1.0

double Solver.Nonlinear.EtaGamma [0.9]
This key specifies the value of γ for the case of EtaChoice being Walker2.

Example Useage:

pfset Solver.Nonlinear.EtaGamma 0.7

string Solver.Nonlinear.UseJacobian [False]
This key specifies whether the Jacobian will be used in matrix-vector products or whether a

matrix-free version of the code will run. Choices for this key are False and True. Using the
Jacobian will most likely decrease the number of nonlinear iterations but require more memory to
run.
Example Useage:

pfset Solver.Nonlinear.UseJacobian True

double Solver.Nonlinear.DerivativeEpsilon [1e-7]
This key specifies the value of ǫ used in approximating the action of the Jacobian on a vector

with approximate directional derivatives of the nonlinear function. This parameter is only used
when the UseJacobian key is False.
Example Useage:

pfset Solver.Nonlinear.DerivativeEpsilon 1e-8

string Solver.Nonlinear.Globalization [LineSearch]
This key specifies the type of global strategy to use. Possible choices for this key are Inex-

actNewton and LineSearch. The choice InexactNewton specifies no global strategy, and the
choice LineSearch specifies that a line search strategy should be used where the nonlinear step
can be lengthened or decreased to satisfy certain criteria.
Example Useage:

pfset Solver.Nonlinear.Globalization LineSearch

string Solver.Linear.Preconditioner [MGSemi]
This key specifies which preconditioner to use. Currently, the three choices are NoPC, MGSemi,

PFMGOctree and SMG. The choice NoPC specifies that no preconditioner should be used.

102 CHAPTER 5. PARFLOW FILES

The choice MGSemi specifies a semi-coarsening multigrid algorithm which uses a point relaxation
method. The choice SMG specifies a semi-coarsening multigrid algorithm which uses plane re-
laxations. This method is more robust than MGSemi, but generally requires more memory and
compute time. The choice PFMGOctree can be more efficient for problems with large numbers
of inactive cells.
Example Useage:

pfset Solver.Linear.Preconditioner MGSemi

string Solver.Linear.Preconditioner.SymmetricMat [Symmetric]
This key specifies whether the preconditioning matrix is symmetric. Choices fo rthis key are

Symmetric and Nonsymmetric. The choice Symmetric specifies that the symmetric part of
the Jacobian will be used as the preconditioning matrix. The choice Nonsymmetric specifies that
the full Jacobian will be used as the preconditioning matrix. NOTE: ONLY Symmetric CAN BE
USED IF MGSemi IS THE SPECIFIED PRECONDITIONER!
Example Useage:

pfset Solver.Linear.Preconditioner.SymmetricMat Symmetric

integer Solver.Linear.Preconditioner.precond method.MaxIter [1]
This key specifies the maximum number of iterations to take in solving the preconditioner

system with precond method solver.
Example Useage:

pfset Solver.Linear.Preconditioner.SMG.MaxIter 2

integer Solver.Linear.Preconditioner.SMG.NumPreRelax [1]
This key specifies the number of relaxations to take before coarsening in the specified precon-

ditioner method. Note that this key is only relevant to the SMG multigrid preconditioner.
Example Useage:

pfset Solver.Linear.Preconditioner.SMG.NumPreRelax 2

integer Solver.Linear.Preconditioner.SMG.NumPostRelax [1]
This key specifies the number of relaxations to take after coarsening in the specified precondi-

tioner method. Note that this key is only relevant to the SMG multigrid preconditioner.
Example Useage:

pfset Solver.Linear.Preconditioner.SMG.NumPostRelax 0

string Solver.LSM [none]
This key specifies whether a land surface model, such as CLM, will be called each solver timestep.

Choices for this key include none and CLM. Note that CLM must be compiled and linked at runtime
for this option to be active.
Example Useage:

5.1. MAIN INPUT FILE (.PFTCL) 103

pfset Solver.LSM CLM

string Solver.CLM.Print1dOut [False]
This key specifies whether the CLM one dimensional (averaged over each processor) output file

is written or not. Choices for this key include True and False. Note that CLM must be compiled
and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.Print1dOut False

integer Solver.CLM.IstepStart [1]
This key specifies the value of the counter, istep in CLM. This key primarily determines the start

of the output counter for CLM.It is used to restart a run by setting the key to the ending step of
the previous run plus one. Note that CLM must be compiled and linked at runtime for this option
to be active.
Example Useage:

pfset Solver.CLM.IstepStart 8761

String Solver.CLM.MetForcing [no default]
This key specifies defines whether 1D (uniform over the domain) or 2D (spatially distributed)

forcing data is used. Choices for this key are 1D and 2D. This key has no default so the user must
set it to 1D or 2D. Failure to set this key will cause CLM to still be run but with unpredictable values
causing CLM to eventually crash. 1D meteorological forcing files are text files with single columns for
each variable and each timestep per row, while 2D forcing files are distributed ParFlow binary files,
one for each variable and timestep. File names are specified in the Solver.CLM.MetFileName

variable below. Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.MetForcing 2D

String Solver.CLM.MetFileName [no default]
This key specifies defines the file name for 1D or 2D forcing data. 1D meteorological forcing

files are text files with single columns for each variable and each timestep per row, while 2D forcing
files are distributed ParFlow binary files, one for each variable and timestep. Behavior of this
key is different for 1D and 2D cases, as sepcified by the Solver.CLM.MetForcing key above.
For 1D cases, it is the FULL FILE NAME. Note that in this configuration, this forcing file is not

distributed, the user does not provide copies such as narr.1hr.txt.0, narr.1hr.txt.1 for each
processor. ParFlow only needs the single original file (e.g. narr.1hr.txt). For 2D cases, this key
is the BASE FILE NAME for the 2D forcing files, currently set to NLDAS, with individual files
determined as follows NLDAS.<variable>.<time step>.pfb. Where the <variable> is the forcing
variable and <timestep> is the integer file counter corresponding to istep above. Forcing is needed
for following variables:

104 CHAPTER 5. PARFLOW FILES

DSWR: Downward Visible or Short-Wave radiation [W/m2].

DLWR: Downward Infa-Red or Long-Wave radiation [W/m2]

APCP: Precipitation rate [mm/s]

Temp: Air temperature [K]

UGRD: West-to-East or U-component of wind [m/s]

VGRD: South-to-North or V-component of wind [m/s]

Press: Atmospheric Pressure [pa]

SPFH: Water-vapor specific humidity [kg/kg]

Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.MetFileName narr.1hr.txt

String Solver.CLM.MetFilePath [no default]
This key specifies defines the location of 1D or 2D forcing data. For 1D cases, this is the path to

a single forcing file (e.g. narr.1hr.txt). For 2D cases, this is the path to the directory containing
all forcing files. Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.MetFilePath "path/to/met/forcing/data/"

string Solver.WriteSiloCLM [False]
This key specifies whether the CLM writes two dimensional binary output files to a silo binary

format. This data may be read in by VisIT and other visualization packages. Note that CLM and
silo must be compiled and linked at runtime for this option to be active. These files are all written
according to the standard format used for all ParFlow variables, using the runname, and istep.
Variables are either two-dimensional or over the number of CLM layers (default of ten).
Example Useage:

pfset Solver.WriteSiloCLM True

The output variables are:

eflx_lh_tot for latent heat flux total [W/m2] using the silo variable LatentHeat;

eflx_lwrad_out for outgoing long-wave radiation [W/m2] using the silo variable LongWave;

eflx_sh_tot for sensible heat flux total [W/m2] using the silo variable SensibleHeat;

eflx_soil_grnd for ground heat flux [W/m2] using the silo variable GroundHeat;

5.1. MAIN INPUT FILE (.PFTCL) 105

qflx_evap_tot for total evaporation [mm/s] using the silo variable EvaporationTotal;

qflx_evap_grnd for ground evaporation without sublimation [mm/s] using the silo variable Evap-
orationGroundNoSublimation;

qflx_evap_soi for soil evaporation [mm/s] using the silo variable EvaporationGround;

qflx_evap_veg for vegetation evaporation [mm/s] using the silo variable EvaporationCanopy;

qflx_tran_veg for vegetation transpiration [mm/s] using the silo variable Transpiration;

qflx_infl for soil infiltration [mm/s] using the silo variable Infiltration;

swe_out for snow water equivalent [mm] using the silo variable SWE;

t_grnd for ground surface temperature [K] using the silo variable TemperatureGround; and

t_soil for soil temperature over all layers [K] using the silo variable TemperatureSoil.

string Solver.WriteCLMBinary [True]
This key specifies whether the CLM writes two dimensional binary output files in a generic binary

format. Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.WriteCLMBinary False

string Solver.CLM.BinaryOutDir [True]
This key specifies whether the CLM writes each set of two dimensional binary output files to a

corresponding directory. These directories my be created before ParFlow is run (using the tcl
script, for example). Choices for this key include True and False. Note that CLM must be compiled
and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.BinaryOutDir True

These directories are:

/qflx_top_soil for soil flux;

/qflx_infl for infiltration;

/qflx_evap_grnd for ground evaporation;

/eflx_soil_grnd for ground heat flux;

/qflx_evap_veg for vegetation evaporation;

/eflx_sh_tot for sensible heat flux;

106 CHAPTER 5. PARFLOW FILES

/eflx_lh_tot for latent heat flux;

/qflx_evap_tot for total evaporation;

/t_grnd for ground surface temperature;

/qflx_evap_soi for soil evaporation;

/qflx_tran_veg for vegetation transpiration;

/eflx_lwrad_out for outgoing long-wave radiation;

/swe_out for snow water equivalent; and

/diag_out for diagnostics.

string Solver.CLM.CLMFileDir [no default]
This key specifies what directory all output from the CLM is written to. This key may be set to

"./" or "" to write output to the ParFlow run directory. This directory must be created before
ParFlow is run. Note that CLM must be compiled and linked at runtime for this option to be
active.
Example Useage:

pfset Solver.CLM.CLMFileDir "CLM_Output/"

integer Solver.CLM.CLMDumpInterval [1]
This key specifies how often output from the CLM is written. This key is in integer multipliers

of the CLM timestep. Note that CLM must be compiled and linked at runtime for this option to be
active.
Example Useage:

pfset Solver.CLM.CLMDumpInterval 2

string Solver.CLM.EvapBeta [Linear]
This key specifies the form of the bare soil evaporation β parameter in CLM. The valid types for

this key are None, Linear, Cosine.

None: No beta formulation, β = 1.

Linear: β = φS−φSres

φ−φSres

Cosine: β = 1
2(1 − cos((φ−φSres)

(φS−φSres)
π)

Note that Sres is specified by the key Solver.CLM.ResSat below, that β is limited between zero
and one and also that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

5.1. MAIN INPUT FILE (.PFTCL) 107

pfset Solver.CLM.EvapBeta Linear

double Solver.CLM.ResSat [0.1]
This key specifies the residual saturation for the β function in CLM specified above. Note that

CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.ResSat 0.15

string Solver.CLM.VegWaterStress [Saturation]
This key specifies the form of the plant water stress function βt parameter in CLM. The valid

types for this key are None, Saturation, Pressure.

None: No transpiration water stress formulation, βt = 1.

Saturation: βt =
φS−φSwp

φSfc−φSwp

Pressure: βt =
P−Pwp

Pfc−Pwp

Note that the wilting point, Swp or pwp, is specified by the key Solver.CLM.WiltingPoint below,
that the field capacity, Sfc or pfc, is specified by the key Solver.CLM.FieldCapacity below, that
βt is limited between zero and one and also that CLM must be compiled and linked at runtime for
this option to be active.
Example Useage:

pfset Solver.CLM.VegWaterStress Pressure

double Solver.CLM.WiltingPoint [0.1]
This key specifies the wilting point for the βt function in CLM specified above. Note that the units

for this function are pressure [m] for a Pressure formulation and saturation [−] for a Saturation

formulation. Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.WiltingPoint 0.15

double Solver.CLM.FieldCapacity [1.0]
This key specifies the field capacity for the βt function in CLM specified above. Note that the units

for this function are pressure [m] for a Pressure formulation and saturation [−] for a Saturation

formulation. Note that CLM must be compiled and linked at runtime for this option to be active.
Example Useage:

pfset Solver.CLM.FieldCapacity 0.95

string Solver.CLM.IrrigationTypes [none]
This key specifies the form of the irrigation in CLM. The valid types for this key are none,

Spray, Drip, Instant.
Example Useage:

108 CHAPTER 5. PARFLOW FILES

pfset Solver.CLM.IrrigationTypes Drip

string Solver.CLM.IrrigationCycle [Constant]
This key specifies the cycle of the irrigation in CLM. The valid types for this key are Constant,

Deficit. Note only Constant is currently implemented. Constant cycle applies irrigation each day
from IrrigationStartTime to IrrigationStopTime in GMT.
Example Useage:

pfset Solver.CLM.IrrigationCycle Constant

double Solver.CLM.IrrigationRate [no default]
This key specifies the rate of the irrigation in CLM in [mm/s].

Example Useage:

pfset Solver.CLM.IrrigationRate 10.

double Solver.CLM.IrrigationStartTime [no default]
This key specifies the start time of the irrigation in CLM GMT.

Example Useage:

pfset Solver.CLM.IrrigationStartTime 0800

double Solver.CLM.IrrigationStopTime [no default]
This key specifies the stop time of the irrigation in CLM GMT.

Example Useage:

pfset Solver.CLM.IrrigationStopTime 1200

double Solver.CLM.IrrigationThreshold [0.5]
This key specifies the threshold value for the irrigation in CLM [-].

Example Useage:

pfset Solver.CLM.IrrigationThreshold 0.2

5.2 ParFlow Binary Files (.pfb)

The .pfb file format is a binary file format which is used to store ParFlow grid data. It is written
as BIG ENDIAN binary bit ordering [30]. The format for the file is:

<double : X> <double : Y> <double : Z>

<integer : NX> <integer : NY> <integer : NZ>

<double : DX> <double : DY> <double : DZ>

<integer : num_subgrids>

5.3. PARFLOW SCATTERED BINARY FILES (.PFSB) 109

FOR subgrid = 0 TO <num_subgrids> - 1

BEGIN

<integer : ix> <integer : iy> <integer : iz>

<integer : nx> <integer : ny> <integer : nz>

<integer : rx> <integer : ry> <integer : rz>

FOR k = iz TO iz + <nz> - 1

BEGIN

FOR j = iy TO iy + <ny> - 1

BEGIN

FOR i = ix TO ix + <nx> - 1

BEGIN

<double : data_ijk>

END

END

END

END

5.3 ParFlow Scattered Binary Files (.pfsb)

The .pfsb file format is a binary file format which is used to store ParFlow grid data. This
format is used when the grid data is “scattered”, that is, when most of the data is 0. For data of
this type, the .pfsb file format can reduce storage requirements considerably. The format for the
file is:

<double : X> <double : Y> <double : Z>

<integer : NX> <integer : NY> <integer : NZ>

<double : DX> <double : DY> <double : DZ>

<integer : num_subgrids>

FOR subgrid = 0 TO <num_subgrids> - 1

BEGIN

<integer : ix> <integer : iy> <integer : iz>

<integer : nx> <integer : ny> <integer : nz>

<integer : rx> <integer : ry> <integer : rz>

<integer : num_nonzero_data>

FOR k = iz TO iz + <nz> - 1

BEGIN

FOR j = iy TO iy + <ny> - 1

BEGIN

FOR i = ix TO ix + <nx> - 1

BEGIN

IF (<data_ijk> > tolerance)

110 CHAPTER 5. PARFLOW FILES

BEGIN

<integer : i> <integer : j> <integer : k>

<double : data_ijk>

END

END

END

END

END

5.4 ParFlow Solid Files (.pfsol)

The .pfsol file format is an ASCII file format which is used to define 3D solids. The solids are
represented by closed triangulated surfaces, and surface “patches” may be associated with each
solid.

Note that unlike the user input files, the solid file cannot contain comment lines.

The format for the file is:

<integer : file_version_number>

<integer : num_vertices>

Vertices

FOR vertex = 0 TO <num_vertices> - 1

BEGIN

<real : x> <real : y> <real : z>

END

Solids

<integer : num_solids>

FOR solid = 0 TO <num_solids> - 1

BEGIN

#Triangles

<integer : num_triangles>

FOR triangle = 0 TO <num_triangles> - 1

BEGIN

<integer : v0> <integer : v1> <integer : v2>

END

Patches

<integer : num_patches>

FOR patch = 0 TO <num_patches> - 1

BEGIN

<integer : num_patch_triangles>

5.5. PARFLOW WELL OUTPUT FILE (.WELLS) 111

FOR patch_triangle = 0 TO <num_patch_triangles> - 1

BEGIN

<integer : t>

END

END

END

The field <file_version_number> is used to make file format changes more manageable. The field
<num_vertices> specifies the number of vertices to follow. The fields <x>, <y>, and <z> define the
coordinate of a triangle vertex. The field <num_solids> specifies the number of solids to follow.
The field <num_triangles> specifies the number of triangles to follow. The fields <v0>, <v1>,
and <v2> are vertex indexes that specify the 3 vertices of a triangle. Note that the vertices for
each triangle MUST be specified in an order that makes the normal vector point outward from
the domain. The field <num_patches> specifies the number of surface patches to follow. The field
num_patch_triangles specifies the number of triangles indices to follow (these triangles make up
the surface patch). The field <t> is an index of a triangle on the solid solid.

ParFlow .pfsol files can be created from GMS .sol files using the utility gmssol2pfsol

located in the $PARFLOW_DIR/bin directory. This conversion routine takes any number of GMS
.sol files, concatenates the vertices of the solids defined in the files, throws away duplicate vertices,
then prints out the .pfsol file. Information relating the solid index in the resulting .pfsol file
with the GMS names and material IDs are printed to stdout.

5.5 ParFlow Well Output File (.wells)

A well output file is produced by ParFlow when wells are defined. The well output file contains
information about the well data being used in the internal computations and accumulated statistics
about the functioning of the wells.
The header section has the following format:

LINE

BEGIN

<real : BackgroundX>

<real : BackgroundY>

<real : BackgroundZ>

<integer : BackgroundNX>

<integer : BackgroundNY>

<integer : BackgroundNZ>

<real : BackgroundDX>

<real : BackgroundDY>

<real : BackgroundDZ>

END

LINE

112 CHAPTER 5. PARFLOW FILES

BEGIN

<integer : number_of_phases>

<integer : number_of_components>

<integer : number_of_wells>

END

FOR well = 0 TO <number_of_wells> - 1

BEGIN

LINE

BEGIN

<integer : sequence_number>

END

LINE

BEGIN

<string : well_name>

END

LINE

BEGIN

<real : well_x_lower>

<real : well_y_lower>

<real : well_z_lower>

<real : well_x_upper>

<real : well_y_upper>

<real : well_z_upper>

<real : well_diameter>

END

LINE

BEGIN

<integer : well_type>

<integer : well_action>

END

END

The data section has the following format:

FOR time = 1 TO <number_of_time_intervals>

BEGIN

LINE

BEGIN

<real : time>

5.5. PARFLOW WELL OUTPUT FILE (.WELLS) 113

END

FOR well = 0 TO <number_of_wells> - 1

BEGIN

LINE

BEGIN

<integer : sequence_number>

END

LINE

BEGIN

<integer : SubgridIX>

<integer : SubgridIY>

<integer : SubgridIZ>

<integer : SubgridNX>

<integer : SubgridNY>

<integer : SubgridNZ>

<integer : SubgridRX>

<integer : SubgridRY>

<integer : SubgridRZ>

END

FOR well = 0 TO <number_of_wells> - 1

BEGIN

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

<real : phase_value>

END

END

IF injection well

BEGIN

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

<real : saturation_value>

END

END

114 CHAPTER 5. PARFLOW FILES

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

FOR component = 0 TO <number_of_components> - 1

BEGIN

<real : component_value>

END

END

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

FOR component = 0 TO <number_of_components> - 1

BEGIN

<real : component_fraction>

END

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

<real : phase_statistic>

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

<real : saturation_statistic>

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

5.6. PARFLOW SIMPLE ASCII AND SIMPLE BINARY FILES (.SA AND .SB) 115

BEGIN

FOR component = 0 TO <number_of_components> - 1

BEGIN

<real : component_statistic>

END

END

END

LINE

BEGIN

FOR phase = 0 TO <number_of_phases> - 1

BEGIN

FOR component = 0 TO <number_of_components> - 1

BEGIN

<real : concentration_data>

END

END

END

END

END

END

5.6 ParFlow Simple ASCII and Simple Binary Files (.sa and .sb)

The simple binary,.sa, file format is an ASCII file format which is used by pftools to write out
ParFlow grid data. The simple binary,.sb, file format is exactly the same, just written as BIG
ENDIAN binary bit ordering [30]. The format for the file is:

<integer : NX> <integer : NY> <integer : NZ>

FOR k = 0 TO <nz> - 1

BEGIN

FOR j = 0 TO <ny> - 1

BEGIN

FOR i = 0 TO <nx> - 1

BEGIN

<double : data_ijk>

END

END

END

116 CHAPTER 5. PARFLOW FILES

Chapter 6

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

¡http://fsf.org/¿

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy and
redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get credit for their work, while not
being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is a
copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the same
freedoms that the software does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License. Such
a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any

117

118 CHAPTER 6. GNU FREE DOCUMENTATION LICENSE

member of the public is a licensee, and is addressed as “you”. You accept the license if you copy,
modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter of
historical connection with the subject or with related matters, or of legal, commercial, philosophical,
ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this License.
If a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts
or Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and
standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as
are needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

119

A section “Entitled XYZ” means a named subunit of the Document whose title either is pre-
cisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section
when you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included by
reference in this License, but only as regards disclaiming warranties: any other implication that
these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first
ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete Transparent copy of the
Document, free of added material. If you use the latter option, you must take reasonably prudent
steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time

120 CHAPTER 6. GNU FREE DOCUMENTATION LICENSE

you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the
public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an updated
version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sec-
tions 2 and 3 above, provided that you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document, thus licensing distribution and modifi-
cation of the Modified Version to whoever possesses a copy of it. In addition, you must do these
things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of
the modifications in the Modified Version, together with at least five of the principal authors
of the Document (all of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-
sion to use the Modified Version under the terms of this License, in the form shown in the
Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

121

J. Preserve the network location, if any, given in the Document for public access to a Transparent
copy of the Document, and likewise the network locations given in the Document for previous
versions it was based on. These may be placed in the “History” section. You may omit a
network location for a work that was published at least four years before the Document itself,
or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with
any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Sec-
ondary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of Invari-
ant Sections in the Modified Version’s license notice. These titles must be distinct from any other
section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements
of your Modified Version by various parties—for example, statements of peer review or that the
text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to
25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version.
Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you are acting on behalf
of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the
terms defined in section 4 above for modified versions, provided that you include in the combination
all of the Invariant Sections of all of the original documents, unmodified, and list them all as

122 CHAPTER 6. GNU FREE DOCUMENTATION LICENSE

Invariant Sections of your combined work in its license notice, and that you preserve all their
Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same
name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if
the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some or all

123

Invariant Sections in addition to the original versions of these Invariant Sections. You may include
a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the
original versions of those notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copy-
right holder notifies you of the violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated and
not permanently reinstated, receipt of a copy of some or all of the same material does not give you
any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present version,
but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which
future versions of this License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

11. RELICENSING

124 CHAPTER 6. GNU FREE DOCUMENTATION LICENSE

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiau-
thor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus
published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by
Creative Commons Corporation, a not-for-profit corporation with a principal place of business in
San Francisco, California, as well as future copyleft versions of that license published by that same
organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA
on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

Bibliography

[1] Ashby, S.F. and R. D. Falgout (1996). A parallel multigrid preconditioned conjugate gradient
algorithm for groundwater flow simulations. Nuclear Science and Engineering, 124:145–159.

[2] Dai, Y., X. Zeng, R.E. Dickinson, I. Baker, G.B. Bonan, M.G. Bosilovich, A.S. Denning, P.A.
Dirmeyer, P.R., G. Niu, K.W. Oleson, C.A. Schlosser and Z.L. Yang (2003). The common land
model. The Bulletin of the American Meteorological Society 84(8):1013–1023.

[3] de Barros, F.P.J., Rubin, Y. and Maxwell, R.M. (2009). The concept of comparative infor-
mation yield curves and their application to risk-based site characterization. Water Resources
Research doi:10.1029/2008WR007324, 45, W06401.

[4] Eisenstat, S.C. and H.F. Walker (1996). Choosing the forcing terms in an inexact newton
method. SIAM J. Sci. Comput., 17(1):16–32.

[5] Forsyth, P.A. Wu, Y.S. and Pruess, K. (1995). Robust Numerical Methods for Saturated-
Unsaturated Flow with Dry Initial Conditions. Advances in Water Resources, 17:25–38.

[6] Haverkamp, R. and M. Vauclin (1981). A comparative study of three forms of the Richard
equation used for predicting one-dimensional infiltration in unsaturated soil. Soil Sci. Soc. of
Am. J., 45:13–20.

[7] Jones, J.E. and C. S. Woodward (2001). Newton-krylov-multigrid solvers for large-scale, highly
heterogeneous, variably saturated flow problems. Advances in Water Resources, 24:763–774.

[8] Kollet, S. J. and R. M. Maxwell, (2006). Integrated surface-groundwater flow modeling: A
free-surface overland flow boundary condition in a parallel groundwater flow model. Advances
in Water Resources, 29:945–958 .

[9] Kollet, S.J. and Maxwell, R.M. (2008). Capturing the influence of groundwater dynamics on
land surface processes using an integrated, distributed watershed model, Water Resources
Research,44: W02402.

[10] Kollet, S.J. and Maxwell, R.M. (2008). Demonstrating fractal scaling of baseflow residence time
distributions using a fully-coupled groundwater and land surface model. Geophysical Research
Letters, 35, L07402.

125

126 BIBLIOGRAPHY

[11] Maxwell, R.M., C. Welty, and A.F.B. Tompson (2003). Streamline-based simulation of virus
transport resulting from long term artificial recharge in a heterogeneous aquifer Advances in
Water Resources, 22(3):203–221.

[12] Maxwell, R.M. and N.L. Miller (2005). Development of a coupled land surface and groundwater
model. Journal of Hydrometeorology, 6(3):233–247.

[13] Maxwell, R.M., S.F. Carle and A.F.B. Tompson (2000). Risk-Based Management of Contam-
inated Groundwater: The Role of Geologic Heterogeneity, Exposure and Cancer Risk in De-
termining the Performance of Aquifer Remediation, In Proceedings of Computational Methods
in Water Resources XII, Balkema, 533–539.

[14] Maxwell, R.M., C. Welty and R.W. Harvey (2007). Revisiting the Cape Cod Bacteria Injection
Experiment Using a Stochastic Modeling Approach, Environmental Science and Technology,
41(15):5548–5558.

[15] Maxwell, R.M., F.K. Chow and S.J. Kollet (2007). The groundwater-land-surface-atmosphere
connection: soil moisture effects on the atmospheric boundary layer in fully-coupled simula-
tions. Advances in Water Resources, 30(12):2447–2466 .

[16] Maxwell, R.M., Carle, S.F. and Tompson, A.F.B. (2008). Contamination, Risk, and Hetero-
geneity: On the Effectiveness of Aquifer Remediation. Environmental Geology, 54:1771–1786.

[17] Maxwell, R.M. and Kollet, S.J. (2008). Quantifying the effects of three-dimensional subsurface
heterogeneity on Hortonian runoff processes using a coupled numerical, stochastic approach.
Advances in Water Resources 31(5): 807–817.

[18] Maxwell, R.M. and Kollet, S.J. (2008) Interdependence of groundwater dynamics and land-
energy feedbacks under climate change. Nature Geoscience 1(10): 665–669.

[19] Maxwell, R.M., Tompson, A.F.B. and Kollet, S.J. (2009) A Serendipitous, Long-Term Infil-
tration Experiment: Water and Tritium Circulation Beneath the CAMBRIC Trench at the
Nevada Test Site. Journal of Contaminant Hydrology in press.

[20] Tompson, A.F.B., R. Ababou, and L.W. Gelhar (1989). Implementation of of the three-
dimensional turning bands random field generator. Water Resources Research, 25(10):2227–
2243.

[21] Tompson, A.F.B., R.D. Falgout, S.G. Smith, W.J. Bosl and S.F. Ashby (1998), Analysis of sub-
surface contaminant migration and remediation using high performance computing, Advances
in Water Resources, 22(3):203–221.

[22] Tompson, A. F. B., C. J. Bruton, and G. A. Pawloski, eds. (1999b). Evaluation of the hydrologic
source term from underground nuclear tests in Frenchman Flat at the Nevada Test Site: The
CAMBRIC test, Lawrence Livermore National Laboratory, Livermore, CA (UCRL-ID-132300),
360pp.

BIBLIOGRAPHY 127

[23] Tompson, A.F.B., S.F. Carle, N.D. Rosenberg and R.M. Maxwell (1999). Analysis of ground-
water migration from artificial recharge in a large urban aquifer: A simulation perspective,
Water Resources Research, 35(10):2981–2998.

[24] Tompson AFB., C.J. Bruton, G.A. Pawloski, D.K. Smith, W.L. Bourcier , D.E. Shumaker
A.B. Kersting, S.F. Carle and R.M. Maxwell (2002). On the evaluation of groundwater con-
tamination from underground nuclear tests. Environmental Geology, 42(2-3):235–247.

[25] Tompson, A. F. B., R. M. Maxwell, S. F. Carle, M. Zavarin, G. A. Pawloski, and D. E. Shu-
maker (2005). Evaluation of the Non-Transient Hydrologic Source Term from the CAMBRIC
Underground Nuclear Test in Frenchman Flat, Nevada Test Site, Lawrence Livermore National
Laboratory, Livermore, CA, UCRL-TR-217191.

[26] van Genuchten, M.Th.(1980). A closed form equation for predicting the hydraulic conductivity
of unsaturated soils. Soil Sci. Soc. Am. J., 44:892–898.

[27] B. Welch (1995) Practical Programming in TCL and TK. Prentice Hall.

[28] Woodward, C.S. (1998), A Newton-Krylov-Multigrid solver for variably saturated flow prob-
lems. In Proceedings of the XIIth International Conference on Computational Methods in
Water Resources, June.

[29] Woodward, C.S., K.E. Grant, and R. Maxwell (2002). Applications of Sensitivity Analysis to
Uncertainty Quantification for Variably Saturated Flow. In Proccedings of the XIVth Interna-
tional Conference on Computational Methods in Water Resources, Amsterdam, The Nether-
lands, June.

[30] Endianness, Wikipedia Entry: http://en.wikipedia.org/wiki/Endianness

	Introduction
	Getting Started
	Installing ParFlow
	Running the Sample Problem
	ParFlow Solvers

	The ParFlow System
	Defining the Problem
	Running ParFlow
	Restarting a Run
	Visualizing Output
	Manipulating Data
	Introduction to the ParFlow TCL commands (PFTCL)
	PFTCL Commands
	Common examples using ParFlow TCL commands (PFTCL)

	Directory of Test Cases
	Annotated Input Script

	Model Equations
	Multi-Phase Flow Equations
	Transport Equations
	Notation and Units
	Steady-State, Saturated Groundwater Flow
	Richards' Equation
	Overland Flow
	Water Balance

	ParFlow Files
	Main Input File (.pftcl)
	Input File Format Number
	Geometries
	Timing Information
	Time Cycles
	Domain
	Phases and Contaminants
	Gravity, Phase Density and Phase Viscosity
	Chemical Reactions
	Permeability
	Porosity
	Specific Storage
	Manning's Roughness Values
	Topographical Slopes
	Retardation
	Full Multiphase Mobilities
	Richards' Equation Relative Permeabilities
	Phase Sources
	Capillary Pressures
	Saturation
	Internal Boundary Conditions
	Boundary Conditions: Pressure
	Boundary Conditions: Saturation
	Initial Conditions: Phase Saturations
	Initial Conditions: Pressure
	Initial Conditions: Phase Concentrations
	Known Exact Solution
	Wells
	Code Parameters
	Richards' Equation Solver Parameters

	ParFlow Binary Files (.pfb)
	ParFlow Scattered Binary Files (.pfsb)
	ParFlow Solid Files (.pfsol)
	ParFlow Well Output File (.wells)
	ParFlow Simple ASCII and Simple Binary Files (.sa and .sb)

	GNU Free Documentation License
	GNU Free Documentation License
	1. APPLICABILITY AND DEFINITIONS
	2. VERBATIM COPYING
	3. COPYING IN QUANTITY
	4. MODIFICATIONS
	5. COMBINING DOCUMENTS
	6. COLLECTIONS OF DOCUMENTS
	7. AGGREGATION WITH INDEPENDENT WORKS
	8. TRANSLATION
	9. TERMINATION
	10. FUTURE REVISIONS OF THIS LICENSE
	11. RELICENSING

