

MotoHawk library for Multiplexed Power Distribution Module (or mVEC)

Overview
The objective of this document is to provide some information for getting started with using the MotoHawk CAN

library for mVEC. The library contains 4 messages that the system is going to need most likely to function. There

are several other CAN messages that you could use to configure, customize and query the mVEC. For more

details on those, please refer to the section on CAN in mVEC user manual.

The library
More likely than not, you would have received a zipped file containing a few MATLAB files, a picture and a

model file. These are 4 CAN messages written using MotoHawk that allow you to control each of the individual

relays and also receive some system status and diagnostic information. Here’s the list:

 mVEC_error_status.m

This message is sent by the mVEC every time a system error occurs, or when there is a specific J1939

request message from an external module to obtain System Error Status information.

 mVEC_fuse_status.m

The mVEC sends this message indicating the fault state of its fuses once every 1000 ms or every time the

state of a fuse is changed (upto once every 25 ms).

 mVEC_relay.m

This message is used to change the state of relays. The mVEC does not respond to this message.

 mVEC_relay_status.m

The mVEC sends this message indicating the fault state of its relays once every 1000 ms or everytime the

state of a relay is changed (no more than once every 25 ms).

 mVEC_relay.jpg

This picture is called by the mask on the library blocks so it should be in the same folder as the other

files, unless you would like to change it or remove the mask.

 ne_mVEC_lib.mdl

This is the main library that contains 4 blocks for sending/receiving CAN messages to/from mVEC.

 slblocks.m

This file configures the library blocks to show in Simulink’s Library Browser

Saving the files on your computer
Once you have unzipped the folder, you have two options to access it from your MotoHawk model.

1. Place the folder under the ‘Blocks’ folder of your MotoHawk installation directory. Once you do that, the

library will appear in your Matlab Simulink Library Browser with the name ‘New Eagle mVEC Library’.

The slblocks.m file is there to do just that. Now you can add the blocks to your model just like any other

MotoHawk or Simulink block.

2. If you’re already working on a MotoHawk project, you could place the folder under the ‘Libraries’ folder

in your project directory. The library would added to Matlab path once you open (or if already open,

close out and reopen) your model. The <model_name>_setup.m file in your project directory does that.

In order to add blocks to your model, you could open the .mdl file in the folder (ne_mVEC_lib.mdl) and

drag the desired block over to your model.

Points to note

Initial steps
As soon as you get the block into your model, the first thing to do would be specifying the CAN bus on which it

would be installed. In your model, that would translate into looking under the mask of the block you just added

to the model and changing the Name parameter to the name of CAN bus (eg. CAN_1, CAN_2 etc.). Also, since

the mVEC works with 250 kBaud only, please make sure the CAN bus you’re trying to use it on has been defined

that way.

Use of multiple mVECs on one system
The CAN messages have been written keeping in mind some of the default settings on the mVEC. The default

base source address of the module is set to 0xB0 and default source address offset is 0x00. So the source

address (= source address base + source address offset) is also 0xB0 by default. This is reflected in the CAN msg

IDs as this module uses J1939 protocol in which source address appears as a part of the CAN msg ID. In order to

use more than one mVEC on one CAN bus, you would need to change the source address of each mVEC. Please

refer to section 7.1.2 in the manual (page 31) to read about that. As a consequence, you may need to maintain a

separate set of m-files that define the CAN message for each unit you use on the bus because the msg IDs would

change.

CAN Message Information

Relay Command
This message would be sent to change the state of relays individually. The message currently is written

to control upto 8 relays (for the 8 relay MPDM) but could easily be extended to be used with a 12 relay

configuration. (Please refer to manual Page 41 for more information about that or contact us at

support@neweagle.net)

Each of the inputs Relay 1 through 8 is a 2 bit value that goes from 0 through 3. Below is a table that

describes each possible command:

Bit Value Hex Value Action

00 0 Turn Relay Off

01 1 Turn Relay On

10 2 Do not change relay state

11 3 Do not change relay state

The ‘do not change’ relay states are used when multiple modules are controlling the same mVEC to

enable you to leave the state of some relays unchanged while changing the state of others with the

same message.

mailto:support@neweagle.net

Fuse Status
The status of fuses is transmitted by the mVEC every 1000 ms in this message or every time the state of

a relay, fuse or error is changed (upto once every 25 ms). It’s a 8 byte long message and each fuse status

is a 2 bit status in which the meaning of 2 bits is as follows:

Bit Value Hex Value Meaning Option to Disable?

00 0 No Fault No

01 1 Blown No

10 2 Not Powered Yes

11 3 Not Used No

Relay Status
The status of fuses is transmitted by the mVEC every 1000 ms in this message or every time the state of

a relay, fuse or error is changed (upto once every 25 ms). It’s a 8 byte long message and each fuse status

is a 4 bit status in which the meaning of 4 bits is as follows:

Bit Value Hex Value Meaning Option to
Disable?

0000 0 Okay No

0001 1 Relay Coil Open or Relay Not present No

0010 2 Coil shorted or failed relay driver No

0011 3 Normally Open (N.O) contact is open (when a
N.O contact is not connected to Common
terminal, but should be)

No

0100 4 Normally Closed (N.C) contact is open (when a
N.C contact is not connected to the Common
terminal, but should be)

No

0101 5 The coil is not receiving power Yes

0110 6 Normally Open (N.O) contact is shorted (when
a N.O contact is connected to the Common
terminal, but should not be)

Yes

0111 7 Normally Closed (N.C) contact is shorted (when
a N.C contact is connected to the Common
terminal, but should not be)

Yes

1000 8 Reserved No

1001 9 Reserved No

1010 A Reserved No

1011 B High Side Driver is reporting fault condition No

1100 C High Side Driver has an open load Yes

1101 D High Side Driver has an over voltage No

1110 E Reserved No

1111 F Relay location not used No

System Error Status
The system error status message contains different types of system errors that may cause the MPDM to

malfunction. Each fault is a bit, when set, meaning the fault has occurred. Below is a table describing

some of the corrective actions that you may try to clear the fault.

Fault Corrective Action

Invalid Configuration Information mVEC must be reconfigured by manufacturer

Internal Grid ID Error mVEC must be serviced by manufacturer

CAN address i/p pin changed Check harness connections, if no result, contact
us at support@neweagle.net

CAN Rx Comm Error Adjust CAN message count threshold, check
harnesses that are sending mVEC messages

CAN Tx Comm Error Cycle system power, check termination on CAN

Unexpected Reset Check power and ground connections on CAN
connector

Over Voltage Batt + is higher than 43 V. Reduce Voltage.

SPI Error Internal Error

Short Message Received Erase Region command incomplete. Check host
application

Bad FLASH Address Invalid address specified for Erase region or
Write Memory command

Invalid Length of data Invalid data length specified by Write Memory
command

Checksum Failure Invalid Checksum for received data for Write
Memory command.

FLASH miscompare FLASH data doesn’t match received data after
Write Memory command.

mailto:support@neweagle.net

