Motion with SoMachine

Training Manual
ACE University 2012

Schneider

Contents

_Toc336438563
RS AAESY o] g I 1= (o Y/ PR 5
(O =T o) (= e [1 o Yo [0 Yo o 1 o 6
COUTSE OVEIVIEW ...ovevevieeeeeereeesereeseesesesesssssssssssesssesessssrsres 6
(00101 1= I @] o =1 1Y S 6
COUISE OFQANIZALION. .. c.ttetieiittee ettt ettt ettt s bttt e e st e e et et e e e abb e e e s anb b e e e e enbe e e e enbeeeeannnes 7
B = UL LT T Y= L= = PSR 7
Related DOCUMENTATIONuuuiiiiiieeiiiii et e et e e e e e e et et e e e e e eeess b e e eeeesesstataaseeeeersssrenan 7
SoMachine Training MOGUIEcooi it et e e st e e e s seeee e e 8
TraINING MOUUIB ... e e e ettt e e e anb et e ennb e e e e ennees 8
(Y L0 1St I @0 a1 (] 11T 9
LXIMB2A SEIVO GXES . cuun it e e et e et e ettt e e et e e ettt e e e e et e e e e et e e e eaan e e e st e aeesta e e eenanaesstnnaaeaeernnns 9
Chapter 2: Motion FUNAAMENTAISuiiiiiiiie ettt e e e e e e e sttt e e e e e e e sennanraeeeeeaeannes 10
F N (E T Y 01T SO TP PP UR P PPPRP 10
LT T (=R 10
10T U] 2 11
AV (0 = 11
=TS (T g =t To o T L= U 11
MOVEMENT PAtNS ..ot 12
POINt-10-POINT IMOVEMENTiiiiiiiiiieeeiee et e e e e e et a e e e e e e e eess b e e e eeeseesbabanseeeseeeeees 12
SYNCIONIZEA MOVEMENT ...ttt et e et b e e e ab e e e et e e e enes 13
L= L= =T Yo 1 o SRR 14
LR (= 0= gLt o 1Y, o) SRR 14
7= 2o 1S 110 o [OOSR URPUPPPPP 15
MUIti-tUrn ADSOIULE ENCOUEIS ...uvvviiiiiiiiiiiiiti e e e s e s eeeeeeens 15
AdItioNal INFOIMALIONoiiiii et e e e e e e e ettt e e e e e s eeebabanseeaaeeeeees 15
N[o SO PP PP PP PTPPPPI 15
Chapter 3: AXiS COMMISSIONING ..utiiiitiiiieiitit ettt e e e e ettt e e e st et e e e abb e e e e abbe e e e e nnbeeeeateeeeeannees 16
CANMOtION / CANOPEN PaAr@mMELEIS...ccci it iietieeee e e e e e ceette e et e e e s e st eee e e e e e s s s st aeeeeeeessannrnnneeeeeeeeeanns 16
AXIS COMMISSIONING .. ttetieiiitite ettt ettt et e ettt e e e st b et e e e aa b et e e e aab bt e e s anbb e e e e anbbeeeesbreeeennnnes 17
[[=Tod 1 Tor= 1B =0T VAT o SRS 17
Ly LeTo o [T oYY o o F= o G 18
(©00]1.010 o101 =1 1[0] o [P RTN 18
PN o] o] o= L1 To] ST 111V [PR 18
Exercise — Lexium32 COMMISSIONING ..c.uuuiiiiiiee ittt e ee e e s e ssiteee e e e e e s s e sabereeeeeeessssanssaeeeeaaeessnnnnnes 19
Chapter 4: Motion With SOMAaCKHINEuuiiii e e e e e e e s 27
SOMACINE BIOWSEN ...oeiiiiiiieiiieeeieeeeeteeeeeseteseaeseseseaebabeseseserste s e bsbebsbeasse b e es b s e sssss s s asbsssasasasasssassnnnsnsnsnrnnes 27
YO NV EY =T = €1 - T o] T 27
Expert and TM5 STANCAId 1Ooouiiiiiiiiiiie ettt e b e 28
(OF Y NI o 0T £ T PSP T PUPP PPN 28

Page 2 of 140

POUS ...ttt e —— e e e b —e e e b e e et b e e e e et be e e e anbaeannraeaeeanres 29

LI 52T ST PRERR 29
Exercise — Create a SoMachine AppliCationcccouveeiieeii i 31
SoftMotion AxXis — Mapping the HardWare ..o e e e e e e e 34
107N) o o APPSR PTPPPPPRPPPP 34
CANMOLION IMASEELeeiiie ettt ettt ettt et e e e e e ek b b e et e e e e e e e e annbbbeeeeaaeseaannbbsneeaaaesannnes 35

(07 2N\ 4o 110 o I @Yo = T I T 4= PSS 35
CANMOtIoN AXIS - CANOPEN DEVICEuuviiiiiiiee ittt e sttt e e e e e e e st e e e e e s e s st raeeeaaeeeeaans 36
SErVICE DAta ODJECTS.....eiiiii ittt ettt e e 36
SOftMOION AXIS ODJECT ..ceii it e e e e e e s s e e e e e e e e s e srnreeeeeeeananns 37

F LS Y/ o1 TSP 37
Yoz 111 o L0 £ =T g1 OSSR 37
Exercise — Mapping an AXiS 0N CANMOLION........ccuiiiiiiee e r e e e 39
Motion Control — Mapping the FUNCLIONalitycccuviiiiiee e 46
LI L] OV PR PRRRTRR 46
Y0111, L] (o] o NS TP RRTT R PPRPRPT 47

The PLCOPEN State DIagramuueeieeeiiiiiiiiieieee e e e sttt e e e e e e s snstateeee e e e s s ssnnnraeeeeeessesnnrnreeeeeeesen 48
MC_ REAAXISSIALUS ...uvvviiiiiiiiiiiiiiiiii s s e s e e e e e e e e e e e e e e e e e s e e e e e e eaeaeeeeaaaeeaeaanans 49
PLCopeN - General CharaCteriStCS.uiiiiiieieiiiiiee ettt 49

T 01U (o U1 o N 1Y/ 01T PRSP 50

E N T = I OO PP TTPPRPPP 50
Exercise — Create an AXiS CONTIOl POU.......oooiiiiiiiiiiiiic et a e e 51
Controlling an Axis Using System Variables ... 60
Online Declaration Variablesuiii i s 60
EXErciSe — CONIIOL AN AXIS ciiiiiii ittt ettt e e st e e e sbb e e e s nbbe e e e s srbeeeesabeeeesns 61
Chapter 5: INTEITACE STTUCTUTES ...uiiiiiiiiiie ettt e et e e e bt e e bbe e e e s 71
A Note about StandardiZatiONooueiiiiiiiii e 71
Variable Naming CONVENTION.........cuuuiiiiieee s ieciiieee e e e e e s s e e e e e e s s e e e e e e s e s snnaaeeeaeeeeessnnnrnreenees 72

F N I =] = Tod = USSR PTPR 73
Structures — CoOmMPOUNd DAA LYPESuueeiiiiiiei ittt e e e e e e abae e ee e e e e e e aaanees 74
AXIS INEEITACE STIUCTUIEeviiiieie ettt e e e e e e e e e e e s e st e e e e e e s e snnnrreeeaaeeas 74
Exercise — Create an AXiS INterface StrUCIUIEooii i 75
INTEITACE APPIICATION ...ttt e et e e et b e e e e bb e e nb e e e e annees 79
Exercise — Apply the Interface Structure to YOUTr Programcceeeiiiieeeeiiieeeeiiiieee s e sieeeee s 80
Chapter 6: Machine Control With SOftSTIUXUIE........eiiiii i e e 87
SOFESTTUXUIE OVEIVIBWieieiieeieieitt ettt e ettt e e e e e e bbbttt e e e e e e s s abbbe e e e e e e e e s e anbbbeeeeaaaeeeaannbaeeeeeaaannes 87
BIrOWSEE @t @ GIANCE ...t e e e e s s et ee e e e e e e s e s bt teeeeeeeenrnnreees 88

[F= U0 VLT TN V- T o TSP 89

[et Te] gt L Y= o TP UTT SRR 90

ST R o] 11 (o (o] o I PP PTPPRPPP 91
Y0141, o] (0T T =SSP 92

F N] 1Y oo [TSP 92

Page 3 of 140

[[o]o [T @Xo] 111 (o] IR TP 94
LU= o o o o PSP PSP P TPPPRON 94
Exercise — Operate the SoftStruXure teMPIlateovveviieii i 95
Chapter 7: Applying SOftStruXure — RODOToueiiiiiiiiie e 105
=T o T TSI @ A= YT PR 105
(2o Y ol =0 [T (=0 =T £ S 105

18] o]0 £ ST PTOPPPPTPRPROR 105
AXIS CONFIGUIALION ..ottt e e e oo et e et e e e e e s e bbb b e et e e e e e e e e anbbeeeeeaessannrnnees 106
Exercise — Configure the RODOT AXES ...t e e 108
HAPAWEAIE INPULS ..ottt e e e e ettt et e e e s e e aab bt e e e e e e e e e e annbbeaeeeeeeannbeneeas 111
Exercise — Configure the Hardware INPULSoociiiiiiiie et rrree e e e e 113
L LYY o o Yo | o SPRRO 117
RODOt MOVEMENT PAIN.....coiiiiiiii e e e e e e 118

Yol ol0] @] o =T - 111o] o U PP TP PP PURN 118
What iS @ State MACKhINE? ... et e et e e e s sreeeeee 119
CASE SEAEIMENT ...ttt e e e e e e e e e e s e bbb e e e e e e e e e s s bbb b e e e e e e e e s aannnreeeeeesannnes 119
Exercise — Build the RoObot State MaChiNecoccuiiiiiiiiii e 121
Exercise — Operate the MaChiNe ... e e 129
Managing the State MaCRhiNecovii i e e 134
[0 o @o g To [i o] o = PP 134
LTS A @ o o 111 o £ P ERRSR 135
Exercise — State Machine ManAgQeroooiiiiiiiiiiii e 136
L LT N =T 1 PR 138
EXercise — Managing AlGITNS ...ttt e b e s e e e anae s 140

Page 4 of 140

Revision History

Tab J Smith
Motion Application Specialist
OEM Business

Revision Date Comments

Version 1.0.0.1 09 06 2012 Initial release

Corrected error in Robot State machine. Repositioned State
Version 1.0.0.2 09 25 2012 machine description section. Added SoMove configuration of axis
address, baud rate, 10, and homing mode.

Page 5 of 140

Chapter 1: Introduction

The following course material is provided to assist in the understanding and
development of basic machine control in a motion-centric application. The training is
based upon the fundamental concept of Hardware mapping and Functional Mapping
to accomplish the operational requirements for simple and complex machines.

SoMachine software is the programming environment, and this course will make use
of the SoftStruXure template program. Hardware is provided in the form of the
SoMachine Motion training module as described in the following sections. If a
comparable training module is not available, the course can be completed with an
LMCO058 motion controller, and 2 LXM32A axes, with appropriate network cables.

Course Overview

Course
Objectives

Historically, motion training has been product-focused. OEM machine builders and
programmers are well-versed in the specific requirements of their machine, and often
only required a fundamental knowledge of the product functionality. However,
efficiency, flexibility, productivity and time-to-market pressure are forcing
programmers to accommodate more flexibility, along with a larger information
stream.

This course is designed to force the programmer to re-think the objectives of
programming with the entire machine as the training focus. The software tools
provided will help the programmer bypass administrative program tasks, minimize
programming errors, and ultimately focus the development effort on the specific
requirements of the machine.... as it should be!

The objectives of this course are to provide the student with the tools and skills
necessary to develop a working motion-centric machine as efficiently as possible.
In this course the student will:

» Apply the principles of basic motion axis and movement types
Apply the PLCopen state diagram in the SoMachine program environment
Develop re-useable code in the form of Structured Variables.
Apply the concept of a State Machine

Apply the SoftStruXure template to program and operate a multi-axis,
pick-n-place robot.

V V V V

It should be clearly understood that this course is does NOT overlook the
basic comprehension that comes with years of experience and understanding
of mechanical systems. Motion control is a highly complex electro-mechanical
process, and proper configuration, programming, and tuning require a
thorough understanding of the limitations imposed by control loop technology,
mechanical response, and inertia.

Even the most experienced programmer may face an uphill challenge in the
development of motion-centric machine functionality without this basic
understanding.

Page 6 of 140

Course
Organization

Training
Materials

Related
Documentation

The course is designed to accommodate two, 4 hour sessions:

Day 1 (4 hours)

>

YV V V V

Fundamentals including Axis type, movement types, and referencing
Introduction to the SoMachine Motion environment — Hardware Mapping
Functional Mapping — PLCopen State Diagram

Functional Mapping — Axis control with SoftMotion

Creation and use of Interface Structures

Day 2 (4 hours)

>
>
>

Machine Control — Overview of the SoftStruXure template
Introduction to State Machines — Program a Pick-n-Place Robot
Configuration and Application of FDR

Training materials used in this course include:

YV V V V VY V

SoMachine V3.1 software

SoMove Commissioning software

SoftStruXure template project archive

SoMachine Training Module Hardware

Ethernet patch cable for programming

USB to RS485 (RJ45) programming cable for LXM32 commissioing

Additional documentation may be useful for reference purposes:

>
>

SoftStruXure Machine Template User Guide V1.0.0.1
LXM32A (or M) User Manual

Page 7 of 140

SoMachine Training module

A Machine StruXure training module is provided for this course.

The training module comprises:

LMCO058 Machine StruXure (MSX) controller

LXM32A servo drives (x2) with BMH motors on CANmotion
Magelis XBTGC — series HMI

ATV312 variable frequency drive on CANopen
Input/Output control block

Emergency Stop

VVV V YVYY

Training The Module is illustrated in Block diagram form as shown...
Module

s
'""TE B
) Ethernet

CANmotion

The module can easily be adapted for use with an M258 or other controller as
the training content requires.

Page 8 of 140

LMCO058
Controller

LXM32A Servo

axes

At the heart of the training module is the LMC058 motion controller. The controller
manages general machine tasks, communication and fieldbus networks, and 1/O. In
addition, it serves as the position path generator for multiple independent or
synchronized axes on the CANmotion bus. The LMCO058 supports a physical master
encoder, as well as multiple virtual axes. These can be used as a pacing axis, or as
a master axis in one or more master—slave follower sets.

A few of the relevant hardware connections are shown in the following illustration.

- . EEEEE

T imaam:

sovsmomene
~ 1 yamersyene
2 B gamensy e

CAN1 J
(CANmotion)
CANO

CAN ports 0 and 1 are provided on the controller. Both of these ports can be
configured for use as a CANopen master. However, only CAN1 can be
configure as a master port for CANmotion.

TM5 10

Ethernet

Master Encoder

This training focuses on the configuration and operation of a motion-centric machine.
Two LXM32A servo drives are provided for use as physical servo axes. These are
connected to the LMCO058 via the CANmotion (CAN1) port as indicated.

From CAN1
master

RJ45 CAN
‘ terminator

Both Lexium32A and Lexium32M with CANopen fieldbus adapter are supported n
the CANopen/CANmotion bus.

Page 9 of 140

Chapter 2: Motion Fundamentals

The purpose of motion control is to precisely dictate the position and/or velocity of an
object. The object is moved by mechanical connection to a servo motor, and the
position and speed of the motor are controlled by a drive. Together, the load, power
train, motor, and drive, form an axis. In many case, the motion path is critical, and
may require the synchronized interaction of a collection of axes. In order to
implement motion control in a machine, we have to understand the types of axes
available, and the specific movement requirements.

In the following sections, we will take a rudimentary look at axis types, independent
and multi-axis movement, and the concept of referencing for a typical motion control
system.

Axis Types

As mention above, an “axis” comprises servo motor, drive, and mechanical power
train as illustrated. The response of the axis to a command is determined by the
configured axis type

gearbox
Linear
actuator
Finite A Finite axis is characterized by a limited working range. Typically, the movement is

bi-directional, and knowledge of the exact position within the working range is
important for the application.

A
v

The position reported by a Finite axis will always be within the working range of the
axis.

Page 10 of 140

Modulo

Virtual

Master Encoder

A Modulo axis has an “infinite” working range. The position may not be important,
indicative of a conveyor. Alternatively, the position may be critical, as in the case of a
turntable or rotary knife, for which the position must be reported as a repeating
measure of rotation angle.

=il

The position reported by a Modulo axis increases from 0 to the Modulo value, then
automatically resets to 0 as the Modulo position is crossed. The characteristic
position profile for a rotary axis moving in one direction is a “sawtooth”. In this
example, the Modulo value is set to 360 degrees.

Position
A

360

» time

A Virtual Axis is one of 2 “special” axis types that may be defined as finite or modulo
depending upon the implementation. What makes a Virtual axis “special” is that it
exists only as a mathematical model. In software, the virtual axis exhibits the same
characteristic movement behavior as a real axis.

A virtual axis is most often used as the Master axis in a Master-Slave pair, to set the
“pacing” of the machine, or movement synchronization of the slave axes.

When used as a Master axis on a machine, the Virtual axis is often configured
as a Modulo axis, for which one revolution (or sawtooth) represents one
complete machine cycle.

Though not a true axis, a machine encoder may be used as a Master axis in the
same way as a virtual axis. The main difference is that the encoder is a read-only
device that provides the same position and velocity information that would come
from the feedback of a virtual (or real) axis.

Page 11 of 140

Movement Paths

Point-to-Point
Movement

The path followed by an axis or a set of axes is often critical in a machine. For
example, wasted movement must be eliminated to achieve high throughput.

It is convenient to classify the movement types for a positioning axis as Point-To-
Point (PTP) or Synchronized. A single, positioning axis system is always PTP unless
the axis is a slave...following a virtual or encoder master.

Consider a pair of axes that move an object from A to B in an XY plane as shown. If
the requirement is only to move the object, a simple PTP movement is adequate.

Example 1. The X axis moves first, followed by the Y axis.
Y

s

A

@ > » X

This type of movement is simple to control and can be managed by a PLC such as
the M258. However, the movement is inefficient because the time required perform
each move is added together.

Example 2. The X and Y axes are commanded to move at the same time.

We can improve the efficiency by starting the movements at the same time as
shown. Now the move is combined X and Y. Visually, Y completes its movement
first, followed by the X axis, due to the slightly longer path length.

Y

A

@ > X

In each of these examples, the axes are commanded to move independently.
Suppose now that the shortest possible path is required, or that a precise non-linear
path must be used to avoid an obstacle. This leads to the requirement for axis
synchronization.

Page 12 of 140

Synchronized
Movement

Unlike the independent PTP movement commands described above, synchronized
axes behave as a “set”, and respond to a single movement command that manages
the path for all of the included axes. Synchronization requires a path planner in a
Motion controller such as the LMCO058.

SoMachine provides 2 options for axis synchronization using the native SoftMotion
functions. These are:

1. Interpolation, and

2. Master-Slave control

Example 3. The X and Y axes are interpolated.

A single command moves X and Y together along a straight line path given a target
coordinate (X,Y) and a velocity. The motion controller determines the individual
acceleration, deceleration, and velocities required to complete the path in one
continuous move.

Y

a

Interpolation is programmed in the SoMachine environment using G-Codes.

G-code programming is part of the CNC library functions, and is not covered
in this training.

Note that the linear Example 3 above could also be processed using
electronic gear-based Master Slave synchronization

Example 4. An obstacle is avoided using a Master Slave Cam profile.

A single command moves X and Y together along a predetermined path. The X and
Y axes are each slaves to a common Master (virtual), and the master is given a
single PTP move command. The slave positions are interpolated by a CAM profile.

Y

A

Page 13 of 140

Referencing

How do we know where to command an axis to move?

When a machine moves a load, the actual target position is meaningless until the
axis that moves the load is “referenced to the machine.

An axis is referenced by associating a specific position of the motor feedback to a
corresponding location on the machine.

Q Motor encoder

-10 0 16
Machine Workspace

Referencing can be accomplished by:

» Aligning the axis to the Machine (Referencing move)
» Aligning the Machine to the axis (Set position)

Referencing When a reference move is performed, the axis rotates the motor shaft until the load
Move reaches a reference position (generally a switch) on the machine. The motor then
stops, and the Axis position (encoder offset position) is set to the machine position.

36.000

.
O

36.000

At the conclusion of the movement, the axis is assigned the mechanical position of
the machine.

Page 14 of 140

Set Position In some cases, the machine mechanical position is arbitrary, and it is only necessary
to align the motor and machine (without moving the axis) for subsequent relative
movement. This can be done using a Set Position command.

™ . 0 !

\ﬁ
SN

Here, the machine reference is “moved” to accommodate the current position of the
motor, and the axis is set to the reference position.

36.000

0 36.000

Multi-turn The machine referencing process described above is required every time the

Absolute machine is powered up. However, for some machines, particularly those with very

Encoders high axis count, this is too inconvenient (or time consuming) to be practical. The
reference process can be reduced to a one-time event by using multi-turn absolute
encoders.

These encoders capture the shaft position as well as the motor revolution count.
Once referenced, the multi-turn absolute encoder will provide the actual motor
position on the machine on every power cycle.

Additional The Lexium32 supports a wide variety of Referencing movements, Please see the
information Lexium32A User Manual for a complete listing and description.
Next up In the next section, we will explore the basic commissioning of the Lexium32 drive,

and prepare the axis for use on the CANmotion (or CANopen) bus.

Page 15 of 140

Chapter 3. Axis Commissioning

In order for the Lexium32 servo axis to operate as intended on the CANmotion (or

CANopen) bus, the axis must be assigned a uniqgue CANopen address (Node ID). In
addition, the communication baud rate must be configured to match the baud rate of
the CANopen master.

In the following sections, we will take a look at the configuration of the

communication parameters for the Lexium 32 on CANopen using SoMove lite
software. In addition, we will take some simple tests to verify proper feedback,
commutation, and operation of the axis.

CANmotion / CANopen parameters

Access to the fieldbus communication parameters for a slave device on CANopen is
provided in the Simply Start menu of SoMove.

My Device

Patarmeters lisk

E- L3248,

= Simply start

i~ Basic configuration
: - Profile Position
B Axis configuration
-- Operation configuration
- Motar contral

-- Monitoring configuration
- Error handling
- Communication

B |dentification

Etrar memary Wisualization Scope Tuning Skartup mess
In: |l | Search
Mame Walue Des
W Basic configuration
_Imax_system 0.00 Arms Current limitation of the system
DEYcmdinterf Fieldhus Control Mode Specification ofthe control mode
CTRL_¥_max 13200 usr_y Velacity limitation
CTRL_I_max 0.00 Arms Current limitation
LIM_l_max2asTP 0.01 Arms Currentvalue far Quick Stop
LIM_I_maxHalt 0.01 Arms Current value for Halt
ImvertDirOMlove Imversion Off Inversion of direction of movement
Mains_reactar il] Mains reactar
ShiftEncYworkRang Off Shifting ofthe encoder woarking ran
CAkaddress i] CAkopen address (node number)
CAMNbaud 250 kBaud CANopen baud rate

Ip Frofile Position

Unless the bus length is unusually long (> 20m), the recommended baud rate for an
axis on the CANmotion bus is 1000 kBaud.

By convention, axes on the CANmotion bus are addressed in order from 1 to 8.

Page 16 of 140

Axis Commissioning

Electrical
Power Wiring

Axis commissioning is generally the first step in the preparation of a servo axis on a
physical machine. The commissioning process confirms:

Proper electrical wiring

Proper position feedback connection between the motor and drive
Proper commutation of the motor

Basic settings including input function and motor rotation direction
Proper “Homing” behavior

YV V V V VY

For safety reasons, and as a general rule of caution, these steps are usually
performed with the motor uncoupled from the machine.

Although this can be done directly from the SoMachine programming environment, it
is usually more convenient, and more informative, to commission the axes using a
dedicated tool. In this way, any potential problems associated with the PLC, motion
controller, or programming are avoided.

The Lexium32 is an extremely user-friendly and informative device. The front panel
LED display provides a wealth of information regarding basic electrical power wiring,
feedback, motor connection, and axis status by way of LED status or fault codes.

Most of the important commissioning settings can be accessed, and edited from the
front panel HMI. However, for the purposes of this training, we will use SoMove lite
software to perform the basic commissioning steps as outlined above

Depending upon the model number, the Lexium32 drive will operate over a wide
range of AC input voltages including single phase 115/ 230 VAC, or 208 to 480
VAC three-phase. In order to safely monitor the DC bus voltage and AC Mains input
power, the drive must be configured for the correct mains voltage.

The default setting is Automatic Mains detection, and generally no further
intervention is required.

In some cases, it may be useful to modify this setting. This is generally required
when the drive is powered from an external DC bus.

Page 17 of 140

Encoder
Feedback

Commutation

Application
Settings

Generally the front panel LED display will indicate any problems associated with
encoder feedback by means of a fault code. Proper feedback can also be verified by
monitoring the actual position on the SoMove Command panel. With 24 V logic
power applied, and with the axis disabled, the motor shaft is turned manually. The
actual position should increase smoothly for clockwise rotation as viewed from the
shaft tip.

Control Global info
HALT =
_p_ack = -2147453545
_AccessInfo = 0
_DEvemdinkerf = Mone
_DCOMopmd_act = Reserved

Motor commutation can be confirmed by several methods. With AC input power and
24 VDC logic power applied, the Axis can be Enabled from the Command panel.
The motor shaft should lock into position with a firm resistance to manual rotation.
Any tendency of the shaft to “jump” from one pole position to another would be an
indication of a commutation problem.

The most common cause of improper motor commutation is the reversal of two of
the 3 motor leads at the drive-side motor connector during installation.

Commutation can also be verified by performing a simple jog movement in both
directions. The motor shaft should rotate smoothly with no evidence of jerk or pole
jump.

A Jog test will also confirm proper rotational direction of the motor shaft. If the
default setting is inconvenient for the machine coordinate system, the motor
rotation sense is easily edited within SoMove.

Remaining configuration settings are generally application specific, and may include:

Homing methods and homing parameters
IO function

Motor rotation direction

AC mains configuration

YV V V V

In the following exercise, we will configure the 2 physical axes in the training module
for use on the CANmotion bus. This will require a unique CANopen address and
baud rate settings, as well as 10 function configuration, and homing method.

Page 18 of 140

Exercise — Lexium32 Commissioning
1. Connect to LXM32 drive using SoMove Lite

i. Make sure that the Lexium32 drive is supplied with 24Vdc logic power. A circuit
break is provided on the training module to supply both AC mains and 24 V dc
logic power. The front panel LED display should be illuminated as shown.

i. Connectthe USB/RS485 programming cable from the PC to the Modbus port
on the LXM32 drive.

iii. Start SoMove Lite software...

SoMove Lite

Version 1.4.1.0
Loading SooveieAgpicaion Schneider
—— PElectric

Page 19 of 140

iv. ... and select Edit Connection to configure the connection settings.

& Somowe Lite

Create a Project OFF-line
Connect

Open a Project

Load from Device

e | W

Store to Device

Multi-Loader f SoMove
Mobile

Edit Connection

TE=

<

SolMove Lite

Build 1.5.1.0

v. Select Modbus Serial as indicated, and click Advanced.

Edit Connection

. Modbus . Modbus Remote
Serial BlueTooth TCP Gateway
EMAdvanced
MODBUS
Test Cancel
@ Help (o84] [Cancel

Page 20 of 140

vi. Choose the correct COM Port for your programming cable, and check Auto-
Adaptation as shown. Select OK to continue.

Advanced Settings [zl

COM Fart: COki4 w

Scan Address Hang

) Monopaint

) Multipoint Address:

Farameters

Suto-Sdaptation Drefault

MNane Odd 1 Bit 2 Bits

Evven

ak.] [Cancel

vii. Select Test from the Edit Connection screen.

Serial BlueTooth TCP Gateway

i Aodvanced

MODBUS

]

Test Cancel

The screen will respond with the connection in progress.

Advanced

MODBUS

251]}@ é Connecting...
Te |

4 e

Page 21 of 140

viii. When the Connection has completed successfully, Select OK to adopt the

settings.
Edit Connection |£|
. Modbus Modbus [Remote
Serial BlueTooth TCP Gateway
MODBUS
f Connection Successful
[—
Test Cancel
@ Help L Ok J [Cancel

iX. From the Main screen, select Connect to connect to the drive.

@ SomMove Lite

f’j Create a Project OFF-line

0

Connect

[
T

Open a Project

=
@ Load from Device

@ Store to Device

Multi-Loader / SoMove
i) Mobile

SoMove

Build 1.5.1.0

Lite

This will connect SoMove to the device, and load current device parameters as

shown.

Load from Device

Load from Device in progress, Please Wait. .. 30%

Page 22 of 140

The Main screen will appear when the device parameter update has completed

SoMove Lite 1.5.1.0 - Untitled Project. psx*

Fle View Communication Dewice Jools Help

Jd @D) 8

My Device ‘ Parameters list Error memary. Visualization Scope Tuning Startup messages Operate .
Device Part no, Serial number Fi number Fi version Vendor name
Drive LXM3ZATS0MZ 1524000499 POS11.00 vol.0s Schneider Electric
Motor BMHO701Px7Axzx 15904045906 BMH SinCosz With HiFa
Configuration Voltage 1~ 230
Nominal velocity 5500 pm
Nominal torque 129 Ncm
Maximum velocity 8000 pm
Nominal output power 0.749 kW
Interface CANopen, CANmotion, Modbus =
DTH version ¥1.5.42
>
< | &
Excl. Operating state Power Proceed Contral Global info 3>
Il POWER EMABLED HALT = inactive z
[6] Operation Enablsd _p_act = -1669129952 [1usr_p] g
_pwressinfo = Fieldbus main ch. 48
0h _DE¥cmdinterf = FB Control Made “
u _DZOMopmd_act = Cyelic Synchronous Position x
90 Finished | [Device Ok Project Loaded £ online
2. Set the CANopen Address and Baud rate
i. Select the Parameters list
File Wiew Communication Dewice Tools Help
S d@ @) & AT
-
B Q G 33
a2 aF
Data synchranized
My Device | Parameters lisk Errar mematy Wisualization Scope

ii. From the Parameters list, select Simply start >> Basic Configuration.

My Device Parameters list | Errar memary Yisualizakion Scom
B Lhda2a
[i]--Simplg,r start | |In: "a‘"
- Basic configuration i
- Profile Position Marme | Yalue
- Axis configuration _Imax_system 0.00 Arms
- Operation configuration DEYemdinterf Fieldbus Control Mode
B Motor control CTRL %_fria 13200 ust_v
- 170 functions CTRL_I_rmax 3.00 Arms
M hdmmitmvi i mmedi i emd i mn

Page 23 of 140

iii. Enter the CANopen address 1, and a baud rate of 1000 kBd as shown.

SimAbsolutePos Simulation Off Simulation of ahsolute position at por
Mains_reactar (] Mains reactar

ShitEncWarkRang Off Shifting of the encoder working range
CAMaddress 1 TAMaopen address (hode numhber)
CAMBaud 1 MBaud = |TAMapen baud rate

MO0 _Min 50 kBaud Minimurm position of maodulo range
MO0 _hax ;gg Eg:ﬁg Maximum position of modulo range
MoOD_AbsDirection 500 kBaud Direction of absolute movement with
MOD_AbshultiRng Multiple ranges for absalut maovermen

3. Configure the Input Functions

i From the Parameters list, select I/O Functions >> Digital inputs. The default
settings for digital inputs are:

DIO — Freely Available
DI1 — REF switch
DI2 — LIMP switch
DI3 — LIMN switch

Y V V V

Since there is no hardware input wiring to the drives in the training module, we
will set these inputs all to be “Freely Available”. This will prevent a drive STOP
error due to travel limit switch activation.

My Device Parameters list Error memory wisualization Scope T
3 L3224
[i]--SimpIy start I | A0
- Basic configuration '
o Profile Position Marme Walue Descripti
- Axis configuration I0funct_Di0 Freely Availahle Function Input DIC
- Operation configuration I0funct_DI1 Reference Switch (REF) Function Input DI
- Motor control I0funct_Di2 Fositive Limit Switch (LIMP) [Function Input DI
E- 170 functions . |1ofunct_Diz Megative Limit Switch (LIMMN] [Function Input DI
Digital inputs | |DI_0_Debounce 1.50ms Dehounce time o
- Digital outputs DI_1_Dehounce |1.50 ms Debounce time o
& Monitoring configuration DI_2_Debounce |1.50ms Debounce tirme o
t- Error han_dling DI_3_Dehounce 150 ms Dehounce time o
- Cammunication

ii. Seteach of the input functions to Freely Available as shown.

Mame Yalue Descripti
|Ofunct_DIO [Freely Availablel - |Function Input DIt
1Cfunct_Di1 Freely Availahle Function Input D1
[Cfunct D2 Freely Availahle Function Input D1;
ICfunct D3 Frealy Availahle Function Input DI:
D0 _Debounce |1.50 ms Dehaounce time o

Page 24 of 140

4. Axis Referencing

Referencing by movement requires that the motor shaft move the load to a
known position which may be a REFerence switch, Positive travel limit (LIMP),
negative travel limit (LIMN), or to the motor index pulse. Reference movement
is configured in the “Homing” parameter screen.

From the Parameters list, select Operation configuration >> Homing

LM32A

B Simply start In: | Al

--Axis configuration

£l Operation configuration Mame - Value Det
E----Jug AhsHomeRequest Yes Absolute positioning onh
“ Harming Hidis 90 [Tusr_p] Distance from switching

- botor contral HMoutdis 131072 [1usr_p] Maximurm distance for se

- WO functions Hhip_home 0[1usr_p] Position at reference poi

B Monitaring configuration Hilprefmethod 18 Preferred homing metho

& Error handling Hhsrehdis 131072 [ust_p] Maximurm search distant

B Cammunication it B0 [1usr_y] ‘Targetvelocity for search

&) Identification Hity_out 15 [1usr_v] Target velocity for moving

The three primary configuration parameters for homing are:

» HMprefmethod
» HMv (homing speed)
» HMp_home (reference position)

Select the Homing method 34 [Idx Positive]. This will initiate a motor rotation in
the positive direction to find the encoder index mark. The homing speed of 60
[usr_v] will produce a search speed of 60 RPM, or one motor rev per sec.

Mame - Yalue Description
AhsHomeReguest Yes Ahsolute positioning only atter homing
Hhdis 90 ust_p Distance fram switching paint
Hhautdis 131072 usr_p Maximum distance for search far switching pai
Hhp_home 0usr_p FPosition at reference point
Hmprefmethod 34 ‘freferred horing method
HMsrehdis 0usr_p Maximum search distance after overtravel of s
H oy B0 usr_w Target velocity far searching the switch
Hhdy ot 18 ust_w Target velocity far moving away from switch

Page 25 of 140

A complete description of the available Homing methods and parameters is
available in the Lexium32 User Manual.

Homing method

1: LIMN with index pulse

2: LIMP with index pulse

7: REF+ with index pulse, inv., outside
8: REF+ with index pulse, inv., inside

9: REF+ with index pulse, not inv., inside

10:
11:
12:
13:
14:

REF+ with index pulse, not inv., outside
REF- with index pulse, inv., outside
REF- with index pulse, inv., inside
REF- with index pulse, not inv., inside
REF- with index pulse, not inv., outside

: LIMN

: LIMP

: REF+, inv., outside

: BEF+, inv., inside

: BEF+, not inv., inside

: BREF+, not inv., outside

: REF-, inv., outside

: REF-, inv., inside

: REF-, not inv., inside

: REF-, not inv., outside

: Index pulse neg. direction
: Index pulse pos. direction
: Position setting

5. Save to EEPROM

i Save the

parameters to EEPROM & so that the drive accepts the changes

during the next boot cycle.

File

View Communication Device

Jld @ o

1=

[

A
|
A

i
i

.

0 | 2 |

Diata synchranized

]

6. On your own... Repeat

i Repeat this entire sequence for the second drive to provide a unique address
(address 2) as required for the 2-axis exercises later in the training course.

This concludes the Exercise

Page 26 of 140

Chapter 4: Motion with SoMachine

SoMachine software provides a powerful and convenient user interface for the
mapping of machine hardware and functionality. This chapter provides an overview
of the SoMachine project browser, the native hardware map for the LMCO058, and the
SoftMotion tools provided for single and multi-axis motion programming.

SoMachine Browser

Browser at a
Glance

The SoMachine browser contains all of the necessary components for mapping the
native hardware and functionality for the selected controller. In this section, we will
take a quick look at the main browser objects required for a motion-centric machine
application.

We will examine and perform the steps necessary to configure several axes of
motion on the CANmotion bus.

For mapping purposes, the browser provides a clear grouping of hardware and
functional objects depending upon the controller.

These groups are defined for the LMC058 motion controller as shown.

=] Chnébec w7
= My Controller (LMCOSSLF4250)
=B pLC Lagic
=1L} aApplication
@ cu Functional Group
m Library Manager
= @ Task Configur ation
& masT
= '.!. Expert
12 Powerbistribution (POWER)
Encoder (EMC)
1 omrzra (om7zFo)
14 omrzr1 (om7zF1)
= ™S
= ﬂ]] TMS_Manager (TMS Manager)
-2 Embedded Bus
I+ onizoe (oii1zoe)
I~ co1z2e (po12TE)
Ethernet
Serial Line
ﬂj SoMachine_Metwork_Manager {SoMachine-Metwork_Manager)
CAMD
CAM1
SoftMotion General Drive Pool

Hardware Group

2

)

o

Page 27 of 140

Expert and TM5

Standard 10

CAN ports

Expert IO includes multi-purpose fast 10 that can be implemented as simple discrete
points, or configured as specialized objects such as high-speed counters or motion
encoders. A dedicated D-sub connector is provided for the SSI / RS422 SoftMotion

Master Encoder interface.

= 'a. Expert
12 PawerDistribution (POWER)
ﬂ“-i Encoder (ENC)

TMS

1% omzzFo (DM7zFO)
1% omrzr1 (omzzFL) =
=2 TmE EEEE
= ﬂn TMS_Manager (TMS Manager) - ' : ll
=-"& Embedded Bus H“h“eg:kﬂ:l_
I+ oiizoe 1izoe) sepemaTons
T~ pot2Te (po12TE) B Db bt
gy en oS
yaysnapans
L B
IR, ¥ iy gy
\ Expert
Encoder:
RS422 or SSI

Two CAN hardware ports are provided on the LMCO058 controller. These can be
mapped as CANopen “Performance” or CANmotion ports as indicated.

" CAND
B |4

2 camt
CANO port: T
CANopen

T ': ‘-
CANL1 port:
CANopen or \
CANmotion -

-'
1

?-‘:-..

Mapping both of these ports as CANopen provides 2 independent CANopen
masters. This can increase the number of CANopen devices that can be
managed without excessive “burden” on the network.

Mapping CANO as CANopen, and CAN1 as CANmotion, provides the ability to mix
CANopen devices with synchronous servo axes in the machine application.

Page 28 of 140

Functional
Group Libraries

POUs

Tasks

SoMachine software retains much of the basic interface of a typical “C program”
including the declaration of variables, included libraries, program build and
compilation to create an executable program for download to the target device.

All of the native libraries required to manage Machine StruXure devices or
functionality, are maintained in a Repository. Application-specific libraries are added
to (included in) the application automatically, as devices or ports are configured.
Included libraries are located in the Library Manager.

My Cantroller (LMCOSSLF4230)
=21 pLE Logic
= ":; Application
@ cvL
| m Library Manager |
= @ Task Configuration
% masT

SoftMotion is the library structure for independent and multi-axis motion control
functions. SoftMotion includes the PLCopen libraries as previously discussed, as
well as drive interface (Motion bus) functions, the Cam editor, CNC editors, and error
management.

Program Organization Units (or POUSs) are the program code sections of a
SoMachine application. Program sections are created using IEC 6-1131 compliant
programming languages and tools including Function Block, Structured Text,
Sequential Function Chart, Instruction List, Ladder, and Continuous Function Chart.

POUs are attached to (or called by) Tasks. A POU that has been created but not
assigned to a task will not execute (solve) in RUN mode

A SoMachine application makes use of task-based programming. A task is
configured to run cyclically in accordance with one of the following:

a defined cycle time,

in response to a periodic trigger,
an event input, or

Freewheeling

YV V V V

The task execution is also governed by priority as shown in the configuration options
for the task, “NewTask”.

[3, Softmation ™ || | configuration l
Eﬁ MasterEncod:

+-I) User_Fast
SR_YisU (PRG) Priority { 0..31 % |2
ﬁﬂ Library Manager
" Symbol configuration
= @ Task Configuration

j Interval (e.g. t#200ms); [t#20ms

& masT
@ﬁ IMation
g@ MewTask Freewhesling
@‘q T) CITI0ONE
¢ Trace
VisualizationManager Time (g.0. EA200ms): |

Page 29 of 140

Typically, all tasks are configured as cyclic in order to provide a repeatable time
base. Multiple tasks can be configured in the application, each with its own cycle
time, and execution priority.

SoMachine creates the Mast (master) task as a default setting. A Motion task is

created automatically with the addition of the CANmotion master.

The names or priority of the Mast and Motion task must NOT be changed.

In the following example, an optional HMI_task has been created to process data for
a relatively slow, periodic HMI update.

Task Motion Mast HMI_task
Cvcle time 4 msec (default 20 msec (default 250 msec (user-
y setting) setting) defined)
Program calls:
(POUSs) SR_SoftMotion SR_Main SR_HMI

Page 30 of 140

Exercise — Create a SoMachine Application
1. Launch SoMachine

i. From the Desktop Icon, launch the SoMachine application.

)
o1oad

SoMachine

Alternately, select All Programs >> Schneider Electric >> SoMachine from
the Start Menu

ii. Atthe SoMachine Home screen, Select Create new machine...

Most Recent Projects

Browse for existing project

Files of type
Extract archive Project files
Create new machine V'E_W
] List
Mame

Machine workflow
4 Untited2 project
SoftStruXure V1106 GGA 8_11_2012b project
i SoftStruXure V1106 GGA 8_10_2012b project
Learning Centre 4 SoftStruXure V1105 GGA B_03_2012b project

Pl TR T L e e L s A ke

S I

iii. ...then select Start with empty project.

@) Home
]

< Show existing machine . Create a new Standard

* Project Initialization

Start with standard project
Device:
Start with TVD architecture
e Davice Mame:
Start with application
Start with existing project POL Name:

P Implementation Language:

I = Machine workflow

Page 31 of 140

iv.

At the prompt, browse to the Desktop folder, ACE University Motion with
SoMachine >> MyProjects, and save the project as First Connection.

Save Project As

Save in: Satdachine Projects j &= £ B

My Recent
Diocuments

@

Desktop

ty Documents

@

rdy Computer

&

My Metwork il name: IFilst Connection j Save I
Flaces
- Cancel |

Save as hupe; I Project File [* project]

2. Add the Controller

From the Project Navigator view, select the Program tab.

Properiies Configuration Program Commissioning
- % File Information Project Infor
File Nams First Connection.project [
A
Project Path E:\Schneider Electric NAVACE -
A

From the Project view, right-click on the Project name (First Connection), and
select Add Device...

& First Connection. project - SoMachine

File Edit ‘iew Project Build Online Debug/Watch Toals \indow

IR =N = N RN =N RN

----- .@ |ﬁi’5‘f£ﬂmembn

= Properties,..
i add Object 3
| Add Device. ..

Insert Device. ..

Page 32 of 140

iii. From the device menu, select Motion Controller >> LMC058F42S0

i Add Device

Mame: [MyCaontraller

—fction:

f+ pppend device Insert device (Plug device

—Device:

Vendor: ISchneider Electric

Marne | Wendar Wersion
+ﬂj HMI Controller
+ﬂj Logic Controller
+.[7) Magelis HMI
=[] ™otion Controller

= Lmcoss
' B LmMCosaLF4z Schneider Electric 2.0,31.14
B tmMCosaLF424 Schneider Electric 2.0,31.14
LMCOS8LF42450 Schneider Electric 2.0,31.14
----- LMC0S8LF4250 Schneider Electric

[~ Display all versions (For experts only

iv. Click Add Device to continue.

t {top-level})

ade in the navigator while this window is open,)

| add Device I Close

At this time, SoMachine will create the application browser with the hardware
and base libraries for the LMCO058 controller.

&% Finst Connection. project® - SoMachine

File Edit View Project Build Online Debugiwatch Tools ‘Window Help

B 0 o b B @ o) dh oD) e

‘-@ At Connecthion 7
= " My Controller (LMCOSELF4250)
= B PLC Logic
+a Application
+‘a- Expert
*- & TMS
'!- Ethernst
*‘?!- Setial Line
' camo
o e

v. Close the Add Device menu at any time, and Save the project.

This concludes the Exercise

Page 33 of 140

SoftMotion Axis — Mapping the Hardware

CANL1 Port

Adding a CANmotion device creates both a CANopen object and a subordinate
SoftMotion object. The CANopen object manages basic CANopen communication
properties including the device address and network health. The SoftMotion object
manages the CANmotion-specific properties including axis type and scaling units for
the path planner.
Configuration steps include:

1. Add a CANmotion master to the CAN1 port.

2. Add a CANmotion device to the CANmotion master.

3. Configure the CANopen device object

4. Configure the SoftMotion device object

Devices are created in the hardware map by right-clicking on the browser object, and
selecting Add Device... from the menu.

Delete

: g8 masT Properties. ..,
—‘a. Expert
% PowerDistribu gl #dd Object
ﬂﬂ- Encoder I{ENC| Add Device...
u:“: DM72F0 (DM7] Insert Device. ..
% omrzF1 (oM7
il '!- TS Scan Faor Devices. ..
= ﬂ]] TM5_Manager Ipdate Device Yersion
‘a ifhgidz[&l addFoler...
|]-p Dol Dq' Edit Object
"% Ethernet E ¢
=& Serial Line Rt
o[semachine e Impart...
'3 CANO Device Configuration
AT

% SoftMation General Drive Pool

v

The communication baud rate for all slave devices is set at the CAN1 port. The
configuration screen is accessed by double-clicking on the browser object.

Unless there is an unusually long network length, the baud-rate should always be set
to 1Mb as shown.

[Canmotion (] CANI |

CANbus | Infarmation I

Baudrate (bits/s): 250000 j c n "
—_ OpPen

Metwark: SO000

125000
Sao0a
Qoooao

Iv Block SO, DTM an EEEEEE Btion is running

’70nline Bus Access —g

Page 34 of 140

CANmotion A CANmotion master must be created at the CAN1 port.

Master
= ﬂ]] TM5_Manager (TMS Mana Fm
=" Embedded Bus
I+ or120€ (D1120€) | mame: [CAnmation
1= voizte ipotzTE ,
2 Ethernet Action:
=" Serial Line ¢ Append device (O Insert device (Plug device
m SaMachine_Metwark_Man —
A canD
2 |cant vendor: |Schneider Electric
"2 SoftMation General Drive Pool Mame Vendor P —
| ﬁ CAMmotion nchneider Electric 3.0.0.8
[T CANopen Ferformance Schneider Electric 3.0,0,2
This object manages the CANmotion bus cycle time, RX PDO exchange, and NMT
properties for the master.
2 cann
=& CaNl
[|cammation (Cammotion)
"2 SoftMotion General Drive Pool
CANmMotion The configuration screen is accessed by double-clicking on the browser object.
Cycle Time Typically, the only user interaction required for configuration is to set the CANmotion

cycle time as shown

m CANmotion

l CANmation IO Mapping] InfFormation

tode 10 [127 = CANcoen

Metwork Managerment

" Iv Paling of optional slaves
Check and Fix
~ configuration
-
Svnc
v
COB-ID: 128 —
Cycle Period (us): |4I:|EIEI :l
Wwindow Length (us): |I:| =

-

The default setting of 4000 usec can be used for many applications. However, the
cycle time may have to be reduced, or extended based upon the number of devices

The cycle time should always be configured in multiples of 1000 usec.

Page 35 of 140

CANmMotion Adding a motion axis (Lexium32A) to the CANmotion master creates 2 objects:
Axis - CANopen

Device » CANopen remote device (slave)

> SoftMotion Axis
CANobpen remote device
= cant
= [|cammation fCarmation) V4
=k Lexium_37_A (Lexium 32 &)
ﬁ? SM_Drive_CAR_Schneider_Lexium3za (SM_Drive _CAM_Schneider_Lexium3z24)

The primary user requirement for the CANopen object is to set the device address.

m CAhmotion ﬁj CAML m Lexium_32_A
CAkmokion [MyConkrallers CARNL] |_

T = FOoMapping] Service Data Object] CAMapen 12 Mapping] Status I Infarmation]
General
Mode ID: 1 = cn"Op@ﬂ
[Enable Expert Settings [v Optional Device
Service Data SoMachine provides a useful utility for device parameterization in the form of the
Objects Service Data Object (SDO) list.

ﬂj CANmation ﬂj CAN1 ﬂj Lexium_32_#a

CAMmotion [MyController: CAR1]
apping l Service Data Object l Calopen L0 Mapping l Skal

General

Mode I |1 :l cnﬂope

CANopen parameters that are included in this list are automatically written to the

slave device on startup. The SDO list contains a pre-configured set of parameters
that are required to manage the CANmotion axis. Additional parameters, such as
Homing method and search speed, can be included in the list to “commission” the
axis for the application requirements

[l cAanL”] Lexium_32_a -

CAMopen Remake Device] PDO Mapping Service Data Object | Canopen If0 Mapping] Status] Inforrnation]

Line Index:Subindex: | Mame Walue Bitlength | Abortif error | Jump ko ling if er
1 164604016400 Reset Fault 16#80 16 O N
2 16#3006:16#07 Scalingl 16420000 32 I:‘ D
3 164300616408 Scaling2 1 32 O 1
4 le#3012:16#06 CTRL_KFP 1000 16 I:‘ D
5 164300616421 Scalingvel_denom 1 32 F [l
& 16#3006:16#22 Scalingvel_nom 1 3z F 1
7 16#3006:16#30 Compatibility to ¥3 1 16 O O

1543006 1 At Modulodeackivate i} 15 |:| |:|
9 16#6095:16#00 Homing method 34 8 F F
10 16#6099:16#01 Homing speed during search... &0 32 il Fl

Page 36 of 140

SoftMotion
Axis Object

Axis Type

Scaling User

Units

By adding all of the modified axis parameters (loop gains, hardware 10 function, bus
voltage, motor direction, EEPROM save, etc.) to the default list, it is possible to fully
parameterize the drive without any use of commissioning software !!!

The functionality provided by the SDO list is particularly useful for configuring
and demonstrating Fast Device Replacement (FDR).

A SoftMotion axis object is automatically created with any new CANmotion axis.

=% Cant
= [|cammation {Catmation)
= b Lexium_32_a (Lexium 32 &)
ﬁ? aM_Drive_CAak_Schneider_Lexium32a (SM_Drive_CAMN_Schneider_|Lexium3za)

\ SoftMotion Axis

The primary user interaction for the SoftMotion object is to select the Axis type, and
User engineering units for the axis. Double-click the SoftMotion browser object to
access the configuration screen.

The Axis type is configured from the SoftMotion Drive: Basic tab. Here, software
limits can also be activated, and defined if necessary. By selecting virtual mode, the
axis becomes a mathematical model that does not exist on the CANmotion bus,
although the remaining configuration parameters (modulo or finite, software limits,
axis scaling, etc) still apply.

[J] <AmML [SM_Drive_CAN_Schneider_Lexium32a

: SoftMation Drive: Basic l SoftMation Drive: Scaling/Mapping] Infarmation] Skatus]

axis bype and limits welociby ramp bvpe

software limits
[wirtual mode (% trapezoid

 madulo [activated neqative 0.0 O s
@ Finite positive 1000.0 -

lirits Far CHC (SMC_ControltxisBy*)

velocity: acceleration: deceleration:

183 |1es |1es

User units for the axis are configured within the Scaling and Mapping screen.

[J] <AML” [SM_Drive_CAN_Schneider_Lexium32a

i SoftMation Drive: Basi l SoftMation Drive: Scaling/Mapping] Infarmation] Skatus]

axis bype and limits y

softwate limits
[wirtual rmode
“ madulo [achivated negative 0.0
 Eimibn positive 1000.0

Page 37 of 140

Here, base drive units (increments) are converted into engineering units as specified
by the user. Also, note the checkbox to invert the direction of motor rotation.

By standard convention, “positive” rotation is defined as clockwise when looking at
the motor shaft.

A cant S H SM_Drive_CAN_Schneider_|Lexium3za
Replace (ChrlHH)

SoftMotion Drive: Basic | SoftMation Drive: Scaling/Mapping i Information] Skatus]

lime
=hiFg

[invert direckion

1a#z0000 increments <=2 matar turns

makar turns <=> gear autput turns

|
11

gear aukput burns <=3 units in application

To understand the Scaling/Mapping panel shown above, it is convenient to think
about the entry fields as three rows of data... namely, Top, Middle, and Bottom.

The Top row defines the number of drive increments that correspond to a single
motor shaft rotation.

The parameters in this row are entered automatically, and should not be
changed !

[irvert direction

1e#2000a0 increments <=2 makar turns 1

|1 mokor burns <=>= gear output turns |1

1 gear oukput burns <=3 units in application 1

The middle row is designed to accommodate a gear reducer such as planetary
gearbox, or timing pulleys. For example, if the power train makes use of a 5:1
gearbox, the corresponding entry is this row is shown as follows.

[invert direction

16420000 increments <= motar turns 1
S makar turns <=2 gear autput turns 1
It

|1 gear output burns === units in application

Finally, the bottom provides the input for the load mechanism and the conversion to

user (engineering) units. In the example shown, the gearbox output is connected to a
rotary load with user units of degrees.

[irvert direction

16420000 increments <=:> rnokar turns

mokor burns <=3 gear ouktpuk turns

1

I

gear oukpuk turns <=3 units in application 360

Page 38 of 140

Exercise — Mapping an Axis on CANmotion

1. Configure the CAN1 port

i. From the First Connection browser, Double-click the CAN1 port to open the
port configuration panel

= -@ At Connaction
=B pLC Logic

+‘& Expert
+-% THS
‘a. Ethermet
+'L Serial Line
-y CanD

=28 myContraller (LMCDSELF4250)

+‘O Application

% [cant

| ----- % SoftMation General Drive Poal

i. Inthe configuration panel, set the CANbus baud rate to 1Mb (1000000).

CANbus | Infarmation I

[Canmotion (] CANI |

Baudrate (bits/s):

250000

Metwark:

20000
50000
125000
230000
500000

Online Bus Access —|
’]7 Block SDO, DTM an

Z00000

3 CANopen

REion is running

2. Add the CANmotion master

i. Right-click on the CAN1 port and select Add device.

2 TMS

"% CAND

=1} Applical

-'.'5 Expert

- PowerDis
>|]ﬂ- Encader
(I omrzFo
| K

'3 Ethernet
+- "2 Serial Line

e

A Add Object

vl

Add Device. ..

Insert Device, .,

Scan For Devices., .,
IJpdate Device Mersion
Add Folder. ..

Edit Object

Export...

Imnport...

Cevice Configuration k

Page 39 of 140

ii. Selectthe CANmotion master. Double-click, or select Add device as before, to
add the master object.

il Add Device

Marne: |C.ﬁ.Nm|:|ti|:|n

Ackion:

(v Append device ¢ [nsert device Plug device

Dewvice:

Vendor: |Schneider Electric

Mame: Wendor Yersion
[[Canmotion | schneider Electric 3.0.0.5
[caMopen Performance Schreider Eleckric 3.0.0.9

This will create a CANmotion master object within the CAN1 port.

3. Add the Lexium32 Axis

i. Right-click the CANmotion master, and select Add device as before.

ii. From the device list, select Lexium32A,.

Device:

Yendor: |Schneider Electric

Marne ‘“endor Wersion
= ﬂj Lexiun
[I!_ Lexium 05 schneider Electric 3M=3.4.0.0
i Lexium 23 Schneider Electric SM=0.35.1.0
]Jl“ Lexium 32 & Schneider Electric [SM=4.1.1.0 ||

I Lexium3z®M Schreider Electric SM=4.1.1.0

[Display all versions (For experts anly)

A CANopen remote device, and SoftMotion axis are added to the browser as
shown

+ 2 Serial Line
A CAND
=& cant
=[] cammation {CaMmotion)
= kb Lexium_32_A (Lexium 32 &)
ﬁ? SM_Drive_CAN_Schneider_Lexium3za (M _Drive_CAN_Schr
% SoftMotion General Drive Pool

Page 40 of 140

iii. Double-click the CANopen slave object, and select address (Node ID) 1 for the

drive.
[Lewium_32_a
U AR Connection hd .
= 78 mycController (LMCOSELF4250) CANopen Remote Device | PDO Mapping | Ser
= @l] PLC Logic General
+-1¢ Application Mode ID: |1 =
+ ‘a. Expert
+ TMS
:: Ethermet | Enable Expert Settings Iv Cptic
erne
+-" Serial Line
3 cann -
=& camt
= [caMmation (CAaNmotion)
=k |Lexiom_32_a (Lexium 32 &)
i? SM_Drive_CAN_Schneider_Lexiu
% SoftMation General Crive Poal

4. Configure the CANopen SDO list
We will use the SDO list to pre-configure the axis with a specific homing type

and 10 hardware configuration.

i. From the CANopen device configuration menu, select the Service Data Object
tab.

ﬂ‘j Lexium_32_A

CANopen Remate Device IPDO Mapping] Service Daka Object] CANopen 10 Mapping] SkakL

CANCe

General

Maode ID: | 1

=

[Enable Expert Settings [v Cptional Device

ii. From the SDO menu, select New...

CAMopen Remote Device] PL Mapping : CAMapen I/0 Mapping] Skatus] Infarr

Lire Index:Subindex | Mame Walue Bitlength | Abart if error | Jump b
1 16#6040; 16400 Reset Fault 16450 16 D
2 1e#3006;16#07 Scalingl le#z0000 32 D
3 1e#3006;16#028 Scalingz 1 32 |:|
4 16#3012:16806 CTRL_KFP 1000 16 |:|
5 16#3006:16%21 Scalingvel_demom 1 3z Fl
6 16#3006;16#22 Scalingvel_nom 1 3z F
7 16#3006;16#30 Compatibility bov3 1 16 |:|
g 16#3006:16#353 Modulo deactivate 0 15 FI
<
Mowve up Move down Mew, .. Delete

Page 41 of 140

iii. From the picklist, add the following parameters:

igﬁeﬁo[ﬁzg] Su[tr)]i;?]ex Parameter Value [dec]
6098 00 Homing method 34
6099 00 Homing speed 60
3077 01 IOfunction_DIO 1
3077 02 IOfunction_DI1 1
3077 03 [Ofunction_DI2 1
3077 04 [Ofunction_DI3 1

These parameters will set the :

» homing method to “positive search for index”
» homing search speed 60 RPM
» 10 function “freely available” for all inputs

5. Configure Axis SoftMotion Parameters

i. Right-click on the SoftMotion object, select Properties...

=2 cani
=[] cammation {CAMNMation)
=k Lewium_32_8 (Lexiam 32 &)
3 [5M_Drive_CAN_Schneidsr_Lexium324 (SM Drive CAN_ Schneji
", SoftMotion General Drive Pool '},D cut

Copy

. Delete
Properties. ..

i. ...andrename the axis DRV_AXxisl. Select OK to continue.

Properties - 34 _Drive_ CAN_Schneider_Lexium324 [MyContro... [z|

Commaon l.ﬂ.ccess cantrol] Build]

i@ IDRY_pods 1

Full name: SM_Drive_CAMN_Schneider_Lexium32n [MyContraller: CAMNL:

Page 42 of 140

iii. Double-click the SoftMotion Axis to open the SoftMotion Drive : Basic screen.
Accept the default settings for the Axis type as shown.

[Lexium_32_A 7] DR¥_Axisl
SoftMation Drive: Basic l SoftMation Drive: Scaling/Mapping] Infarmation] Status]
axis bype and limits

software limits
[wirtual mode

 modulo [activated negative 0.0
& Finite positive 1000.0

lirits For CHIC {SMC_ControldxisBy*)

velocity: acceleration: deceleration:

|1e3 1e5 |1es

iv. Select the Scaling/Mapping tab.

m Lexium_32_A m DRY_Axis1

SoftMation Drive: Basic lSu:uFtMu:utiu:un Drive: Sealing/Mapping | [Information | Status |

axis bype and limiks

software limits
[wirtual mode

{ modulo I_ activated I'IEI;lal:l'-.-'e Imf

v. Modify the Scaling fields to create an axis with 3:1 gearbox using degrees as
the user units.
SoftMation Drive: Basic SoftMation Drive: Scalingftapping]Infnrmatinn | status |

scaling
[invert direction

16420000 increments <=2 matar tarns

i

mokor turns === gear output turns

|

gear output turns <=2 units in application 360

6. Copy and Paste an additional Axis

i. Create an identical axis by copying the CANopen drive object from the
application browser.

- camt
= [cammation {CaNmotion)
= b |Lexium 3z AL
P DRV_Axisl ¥ o

"% SoftMation General Drive=,
By Copy

Page 43 of 140

iv

Paste onto the CANmotion master to create a copy.

=% cami

=[] |carmation {CANmation”

= b Lexium_32_ALexi

EEP DRY_Auxis] (3

2 SoftMation General Drive P

Cuk

Copy

Paske

Delete

Change the name of the new axis to DRV_AXxis2.

=" cant

= cammotion (CANmation)
= b Lexium_32_a iLexium 32 A)
ﬁ? DRY_Axisl (5M_Drive_Cak_Schneider _Lexie
= b Lewiom_32_&_1 (Lexium 32 &)

L |DF1'-.-'_P.:<i52|

% SoftMation General Drive Fool

Finally, Double-click the CANopen object “Lexium_32_A 1", and change the
device address (Node ID) to 2.

7. Build and Save

Build the Application using the top level menu

& First Connection. project” - SoMachine

= MyCantraller (LMCOS
=-E PLC Lagic
+ ":,? Applicatio

Messages
Biuild

Generate code

Generate Post Configuration.. .

Make sure there are no build errors....

File Edit “iew Project | Build | Online Debug/Watch Toaols Window Help
H & o 4 Bo Build &l [| 08
Dievices |Iﬂ| Build F11 ‘.exium_32_.ﬁ.
=G At Cannection Rebuild -

=n Remote Devic

=ral

>

de ID:

Description

bypify code ...

------ Build started; application: MyZontroller, Application

i Mo POU defined For task ™MAST'
Mo PO defined For task Maotion'

Compile complete -- O errors, 2 warnings

Page 44 of 140

iii. And Save the project as First Hardware Map.

8. On your own ...

Copy and Paste to create a Virtual Master axis.

ii. Assign the node address 9

iii. Rename the SoftMotion axis DRV_Master.

iv. Scale the axis for 360 degrees to correspond to a single motor rotation.

v. Set the Axis type to Modulo.

vi. Build and Save as before.

This concludes the exercise

Page 45 of 140

Motion Control — Mapping the Functionality

Task Calls

CANmotion provides an efficient means of managing independent and synchronized
axis functionality in conformance with the PLCopen standard. SoMachine software
implements the standard using an extensive library running on the CoDeSys
SoftMotion engine. In this chapter, we will review the basic requirements of the

SofMotion and the PLCopen standard.

The SoftMotion library and Motion task are automatically created with the addition of
a CAN motion master. A requirement of SoftMotion is that the associated PLCopen
Function blocks are instantiated within a Program Organizational Unit (POU) called

from the Motion task.

=gl At Connachion
= FreController (LMCOS3LF4230)
=-El] PLC Logic
= "', Application
@ G
m Library Manager
= @ Task Configurakion
B MasT

@ |M|:-I:i-:|n

* '.!. Expert
+- % TMs

Once created, a POU can be associated with (added to) a task call from the
configuration screen for the specific task, as shown below for the Motion task.

[Lexium_32_A

it

[l DRw_fxist | Lesiumn_32_a_1

@ Task Configuration @ Motion

Priarity { 0..31 1 |1

Tvpe

|E><terna| ﬂ

‘atchdog
[Enable

External event: |CAMN1_SYNC

Time {e.g. t#200ms): |

Sensitivity: |

POUs

add POL PO

Hernones Pl

Cpen PO

Conment

Page 46 of 140

SoftMotion

SoftMotion is the run-time engine for motion control in the SoMachine environment.
Located within the SM3_Basic library as shown, SoftMotion provides an extensive
collection of administrative and movement control function blocks that confirm to the
international PLCopen standard.

[Lexiom =z _a | [f] CRY_Axist | [f] Lewium_ 3z &1 [TaskConfiguration | g¥: Mot

[arme Mamespace

+ 33 CAhopenStack, 3.4.1.70 (35 - Smart Sofbware Solutions GmbH) 3505

+ FOT_CAMNOpenDriver, 3.4.1,30 {35 - Smart Software Solutions GmbH) FOT_CAMN

= SM3_Basic, 3.4.1.90 (33 - Smart Software Solutions GmbH) |SM3_Basic
+- +f@ Iostandard = IosStandard, 3.4, 1.0 {Syskem) IoStandard
. +@ [Baze, * (Syskem) IBase
+- @ IIoDrv, * (Swskem) ol

ﬂ SH_PLCOpen_tGlobalvariables bl

) DakaTypes

) Drivelnterface

) POUs

+) DriveBasic

+-12) Errar

+-12) File

+-12) Managers

=) PLCopen

+-2) additional

+-) internal

+-2) master/slave function blocks

+-I2) single-axis function blocks
+-{J) SimpleTest

+-0 Visu_Templates

+

.

A few of the function blocks required for nearly any motion application include:

Function Block

Description

MC_Power

Enables the Axis position control loop

MC_Reset

Resets an active asynchronous or synchronous alarm

MC_ReadAxisError

Retrieves an active asynchronous drive alarm

MC_SetPosition

Performs a machine reference by moving the machine
origin

MC_Home

Performs a reference by moving the axis

MC_MoveVelocity

Initiates a continuous movement at command velocity

MC_MoveAbsolute

Initiates an absolute PTP movement

MC_MoveRelative

Initiate a relative PTP movement

MC_Jog

Performs an axis Jog (forward or reverse)

MC_Stop

Stops all active movement with a predefined deceleration
rate

Page 47 of 140

The PLCopen
State Diagram

Effective and efficient use of these functions requires strict adherence to the
PLCopen state diagram. In accordance with the PLCopen standard, a servo axis
always exists on one of 8 possible states. The State Diagram provides a graphical
map of the Axis states and the possible transitions between them.

MC_Gearln{Slave)
MC_Camin(Slave)
MC_Phasing(Slave)
MC_MoveSuperimposed(Slave)

MC_Gearin(Slave)

Synchronized C_camin(Slave)
Motion

MC_MoveVelocity

MC_GearOut

MC_Stop MC_CamOut

MC_VelocityProfile
C_AccelerationProfile

MC_Gearin{Slave)
MC_Camin{Slave

MC_MoveAbsolute
MC_Move Relative

e MC_Gearin(Sla\e)
MC_PositionProfile MC_Camin(Slavk

MC_MoveAbsolute
MC_MoveRelative
MC_MoveSuperimposed
MC_MoveAdditive

MC_PositionProfile

MC_MoveSuperimposed
MC_MoveVelocity
MC_VelocityProfile
MC_AccelerationProfile

MC_MoveAbsolute; MC Move Relative;
MC_MoveAdditive; MC_PosifionProfile

MC Move Ve_locit\f MC Velocit\fpmﬂe — C ti
MC_AccelerationProfile > on Ir'!UOUS
Motion

Discrete Motion

MC_Stop

MC_Move
-Absolute
-Relative
-Additive
-Superimposed
MC_PositionProfile

MC_Stop

Note1

Ermor

Error

Stopping

/ Ermor
Note1

Y

MC_Move Velocity
MC_VelocityProfile
MC_AccelerationProfile

MC_Siop

ErrorStop

T Note 4
MC_Reset
Error Note 2
MC_Stop
i

\
StandStill Disabled)
MNote 3
MC_Home

A basic rule of thumb in the development of any motion-centric program is to
“Confirm... then Command”

» Confirm that the axis is in the appropriate PLCopen state.

» Command the axis to initiate the required motion function.

Page 48 of 140

MC_
ReadAxisStatus

PLCopen -
General
Characteristics

A SoftMotion function, MC_ReadAxisState, to retrieve the current PLCopen state of
an axis. MC_ReadAxisState should ALWAYS be instantiated as the primary
SoftMotion function block for any configured axis in the application.

The PLCopen state outputs for MC_ReadStatus are indicated below. The FB also
provides additional movement information as obtained from the Device statusword.

MC BEARDSTATUS
Havis B Valid b—
—Enable Busy —
Error [—
ErrorID —
Dizabled —
Errorstop —

Stopping —
Gtand3itill —
DiscreteMotion —
ContinuousMotion —
SynchronizedMotion [—
Homing —

ConstantVelocity [—
Accelerating —
Decelerating —

FEErrorOccured —

Two of the most important axis states are :
» Standstill, and
» ErrorStop

Standstill is generally the starting point state for any movement control. It indicates
that the Axis has an applied DC bus, STO inputs are active, and the drive is enabled
and ready for movement.

Errorstop indicates either an asynchronous drive alarm, or a synchronous FB alarm.
In the event of a synchronous FB alarm, there may be no indication on the drive itself
that there is an alarm condition.

The PLCopen standard defines the behavior of the function as well as the required
administrative inputs and outputs. Every PLCopen function block includes some form
of synchronous message status as an output. This error is related only to the FB
message, not the axis itself.

MC BFEADSTATUS
Hnvis B valid b—
—Enahle Busy [~
Error [~
ErrorID [—
Di=abled —

Errorstop

Page 49 of 140

Input Execution Most, if not all, PLCopen FBs will have either an Enable or Execute input to “trigger”
Types the functionality. An Enable input is “level-based”, which continues the FB action as
long as the Input is applied.

MC READSTATUS
Hixis a Valid —
—Enable Busvy —
Error [—
ErrorID

Care must be taken to avoid a continuous active Enable input on certain
functions, such as MC_ReadAxisError. In this case, the input will continuously
perform an SDO read parameter message, and significantly burden the CAN
network.

Movement-based functions are generally “rising edge-triggered” and are identified by
an Execute input.

MC MOVEAESOLUTE
Hiwvis B Done F—
—Execute Busy |-
—Position Commanddhorted —
—Velocity Error [~
—4cceleration ErrorID [—
—Deceleration

A rising edge input is required to update parameters on-the-fly, or to trigger a
secondary movement upon completion of the first.

For a detailed listing of available PLCopen standard function blocks and
behavior, please reference documentation from the PLCopen organization.

Axis_Ref The Input Output object “Axis” establishes the communication path to the correct Axis,
and must be assigned an Axis_Ref_SM3 data type. The Axis_Ref SM3 assignment
can either be the Softmotion axis created during the CANmotion axis configuration, or
a pointer to the SoftMotion Axis.

MC BEADSTATUS
DRV Axisl —Sixis a Valid b——
Enable Busy —
Error [—
ErrorID —

In the next Exercise, we will :

Create a POU for Motion control

Instantiate PLCopen FBs for Axis Control

Associate the POU with the Motion task

Monitor and Control the axis using online system variables

YV V V V

Page 50 of 140

Exercise — Create an Axis Control POU

1. Create a Motion POU called SR_SoftMotion

Open the existing project (First Hardware Map), and Save the project in the
training folder as “First POU".

Save Project

Save it

_ -2 First Conneckion, project
My Recent
o
by Computer
by Metwark File name: First POLI =~ :
Places I J
Save as type: IF'ru:uiect files ;I L

From the SoMachine browser, right-click on the Application object, and select
Add Object >> POU...

My Contraller (LMCOSELF4250)
E PLC Logic
_O Application % cu
>m Library Mana Copy
= @ Task Configuy

T B Paste
gk masT
@ Makion 74y Delete
2 Expert [} Properties... O Application. ..
A TMS [CAM table..,.,
% Ethernet & Add Function From Template &
- CMC program...
"% Serial Line |h Add Object » | @
. CNC settings...
® CANO Add Device, .. @ d
3 Caml) % Data Log Manager. ..
% SoftMation General Dr L1 LB . OI; BUT
Scan For Devices...
5 ﬂ Global Metwark Variable List,
Add Folder. ..
A “ Global variable List. ..
(7" Edit Object [
Image Poal, ..
E [Booc
s =0 Interface...
I [Booc
s T Persistent Yariables. ..
q Logir |@ PO,

Restore data From C3Y file, .. Pl For implicit checks...

Page 51 of 140

iii.
SR_SoftMotion as shown.

Add POU

Configure the POU type as Program, using the language FBD. Name the POU

@ Create a new POU (Program Organization Unit)

Marne:

ISR _SoftMation

Type:

* Program

" Function Block

r |

I~ |

Methad implementation language:

" Function

Return bype:

ol

Implementation langquage:

Cancel

Open |

iv.
editor

FROLS hal
My Conkroller (LMCOSSLF4250)
EM PLC Logic
= n' Application
@ av
m Library Manager
4] [sR_ScftMation (PRE) |
= @ Task Configuration
& masT
@ Mation

Expert

TMS

Ethernet

Serial Line

CAND

CAN1

SoftMotion General Drive Pool

oo o e

Click Open to accept the configuration, and display the Function Block Diagram

7] SR_softMotion |

1 PROGRAM 3R_SoftMotion
z VAR
3 EHD VAR
4
4
1

Page 52 of 140

2. Instantiate SoftMotion FBs

Right-click within the first FBD network rung, and select Insert Box.

7] SR_softMotion

1 FROGRAM

VAR

oL)

EHD VAR

¥ Delete
FFE Finder...

[i7F Insert Metwork
[{E Insert Metwork (below)

da - Toggle network comment skake

|E[F Insert Box

IF Insert Empty Box
=vak Insert Assignment
= Insert Jump
Em | Insert label

4reT Imserk Rekurn

From the Input Assistant menu, make sure that the Function blocks category
is selected. Also, uncheck Structured view.

Available Function blocks are listed in alphabetical order.

Input Assistant

i

Documentation:

[Structured view

v Show documentation

Cateqgaries: Ikems:
Function blocks & Mame | Type | Origin
e ADDM FLNETRON 5100k plecom
keywords AXIS_REF_CAN_Schneide... LN O & GGF =m7
Conversion Operakors AXIS_REF_CAN_Schneide... /7000 sm3
AXIS_REF_CAN_Schneide... /7000 NI
AXIS_REF_CAN_Schneide... ME0900 £m3
AXIS_REF_CAN_Schneide... ME700 £m3
AXIS_REF_CAN_Schneide... ME700 EL
AXIS_REF_CAN_Schneide... M908 EL G
AXIS_REF_CAN_Schneide... M908 EL G
AXIS_REF_CAN_Schneide... M08 EL G
AXIS_REF_CAN_Schneide... ME7900 M3
AXIS_REF_CAN_Schneide... AE70900 M3
AXIS_REF_CAN_Schneide... ME7000 M3
AXIS_REF_CAN_Schneide... /7000 NI
AXIS_REF_CAN_Schneide... /7000 NI
AXTS RFF AN Schneide .. M550 m3

Page 53 of 140

The PLCopen standard motion function blocks are indicated by the “MC_"
prefix, Click anywhere on the right-hand panel, and type “MC” to navigate
quickly to the PLCopen Function blocks.

Input Assistant

Cateqories:

Items:

Function blocks

Module Calls
Keywards

-

Documentation:

Conversion Operators

I structured view

[v Show documentation

| A Mame | Tvpe | Crrigin
|_5J ADD™ T T T Thcom
|£] axIS_REF_CAN_Schneide... AACTon srocr sh3
AXIS_REF_CAN_Schneide,., ME7H00 Cli =h7
AXIS_REF_CAN_Schneide.., ME7H00 ick here and 3
AXIS_REF_CAN_Schneide... METH00 type “MC” .1+,
AXIS_REF_CAN_Schneide... METH0D ha
AXIS_REF_CAN_Schneide... META00 £ el
AXIS_REF_CAN_Schneide... ME7HOD h3
AXIS_REF_CAN_Schneide... ME7HOD h3
AXIS_REF_CAN_Schneide... ME7HOD h3
AXIS_REF_CAN_Schneide... ME7H0D h7
AXIS_REF_CAN_Schneide,., ME7H00 =h7
AXIS_REF_CAN_Schneide,., ME7H00 h7
AXIS_REF_CAN_Schneide,., ME7H00 =h7
AXIS_REF_CAN_Schneide.., ME7H00 =h7
—AXTS WFF TAN Srhneide. FETA00 A

This will bring up the list of PLCopen motion control FBs starting with “MC_".

Scroll to MC_ReadStatus, and double-click (or select OK) to instantiate the FB

into the editor.

Ikems:

5 & [ame | Type
=] MC_ReadActual¥elocity LA 700 500K
=] MC_ReadAxisError FLNCTION 5L Ok

ierators % MC_ReadBoolParameter LN SLOCE
=] MC_ReadParameter FLNCTION 5L 0K
=] MC_Readstatus FLNETION 8O
=] MC_Reset FLNCTION BLOCK
=] MC_SetPosition FLNCTION 8L OCK
=] MC_Stop FLNETION 5L OCK
=] MC_TouchProbe FLNCTION BLOCK
=] MC_velocityProfile FLNCTION BLOCK
=] MC_WriteBoolParameter AL TION 8 OCK
=] MC_WriteParameter FLNCTION 5L Ok
E] NMT FLNE IO BLOCK
=] PD FLNE IO BLOCK
£] PID FLNCTION 8L OCK
=1 P FIXCYOF FLE RO BLOCK

[Skructured view v

Show documentation

Page 54 of 140

4] SR_SoftMotion
1 PROGEAM 35F_SoftMotion
z VR
3 END VAR

ez

MC BEADSTATUS
727 =iz - Valid
72 —Enable Busy |~ 722
Error [~ #7¢
ErrorID =77
Dizabled [— 727
Etrrorstop — 227

Stopping [~ &7
Gtandicill — 722
DiscreteMotion [— #72
ContinuousMotion — 227
SwnchronizedMotion [— 2 7#
Homing [— 2272
ConstantVelocity — 7722
Accelerating [— 727
Decelerating — 2272

FEErrorOccured — 277

In order to complete the instantiation, the function block instance must be given
a unigue name, and any Input Output variables, indicated by a ** connector,
must be assigned.

A standard Input Output object for all SoftMotion function blocks is the
Axis_Ref SM3 object as indicated by the “Axis” pin description.

Click on the ??? symbol at the top of the function block, and assign the
instance name IFB_Axis1l ReadStatus.

IFE_Awxisl Feaditat ooo

HC_RE]iDST]lTI.IS
227 —Hixis Yalid
7?22 —Enahle Busy |~ 2772

Error [~ 727
ErrorID — zz2
Disabled |- 727
Errorstop [— 727

The notation “IFB_" indicates that this is an “Instance of a Function
Block”, and is consistent with PLCopen variable naming convention.

Page 55 of 140

vi. Make sure that the Auto Declaration screen showns the correct data type. Click
OK to accept the declaration as shown.

Auto Declare §|

Scope: [dame: Tvpe:
~| | |axis1_Readstatos MC_READSTATUS | J
Ohiject: Initialization: Address:

|5R_SDFtMotion[MndntroIIer:ﬂ | J |

Flags: Comment:

[COMSTAMT
[RETAIN
[~ PERSISTEMT

K | Cancel

Note the new variable declaration in the Declaration window of the FBD editor

] sR_softmotion |
1 FROGRAM SE_SoftMotion
E VAR

3 | IFE_Ixisl Readfitatus: MC READSTATUS;
4 EHD ViR
&

IFE &xiszl Readitatus

MC BEADSTATUS
rre Avis Walid ——

vii. Click on the “axis” input pin and Type “DRV_Axis1” to assign the
Axis_Ref SM3 object. The variable should appear in the “smart code” pick list
as shown.

IFB_Axis1_ ReadStatus

| MC_READSTATUS

DRy ... s Talid
ZFIDFCL_TED ﬂ
2 discrete_motion
P DM72F_IMMEDIATE_ERR _TYPE
ZB0MF2F_IMMEDIATE MO _ERROR
ERDMTZF_IMMEDTATE _LIMERCWN
2R DMFZF_IMMEDIATE _UMEMOWMN_PARAMETER,
HDriveBasic_GIn:nI:-al'u'ariaI:nles

gDriverF‘rapertyFlags

L

Driverstate

DRV _pvis1 |~

S IICIIE UL 2 & 00 CI Ol T o
T

Homi rug

Page 56 of 140

viii. Finally, delete all of the remaining ??7? input and output symbols by double-
clicking the symbol (cursor mode) followed by the <delete> key.

IFE_Awiszsl_ Readftatus
MC FEADSTATUS

DRV Axisl —“axis Valid ——
—Enable Busvy —
Error [~
ErrorID —

Dizabled — 222 ... |

Errorstop [— #7¢
Jtopping — 772

3. Add the remaining PLCopen FBs to the POU.

i. Following the steps as before, instantiate each of the following FBs and
instance names.

Hint... Copy and Paste the MC_ReadStatus network rung, and edit the
function block and instance name!

MC_Reset IFB_Axisl Reset
MC_Power IFB_Axisl Power
MC_Stop IFB_Axisl Stop
MC_SetPaosition IFB_Axisl SetPosition
MC_Home IFB_Axisl Home
MC_MoveVelocity IFB_Axisl MoveVelocity
MC_MoveAbsolute IFB_Axisl MoveAbsolute

ii. Confirm the completed variable declaration pane as shown when finished.

[#] SR_SoftMotion
1 PROGRAM SE_SoftMotion

= 2 VAR
2 IFE_&xisl_Readitatus NC_REALDITATUS;
4 IFE_&xisl_Power HNC_FOWEER.:
5 IFE_Axisl_Reset MC_REZET:
& IFE_Axisl ftop MC_STOE:
7 IFE_Axisl SetPosition MC_SETPOSITION:
g IFE_&xisl_ Home MC_HOME ;
E IFE_ixisl MoweWVelocity MC_MOVEVELOCITY;

o
(=

3

IFE_ixisl Mowedh=zolute
EHD ViR

MC_HMOVEAESOLUTE ;

Page 57 of 140

4. Call the POU from the Motion Task

i. Double-click the Motion task to open the task configuration editor.

=2 PLE Logic
= ";,} Application

@ s

m Library Manager

4] SR_SoftMation (PRI

= @ Task Configuration

g masT
Q"@ |r~'1n:|tin:|n |

+- 2 Expert
+- % TMS

ii. Select Add POU in the task editor...

4] SR_SoftMation gk Motion |

Priority { 0..31 3 |1

Type

|E><terna| j External event: [CANL_SYNC

Wakchdog
[Enable

Time {&,q, tF200ms; |

Sensitiviky: |

Fols

add POl P Cornrmenkt

Remowve POL

Open POL

iii. ...andselect SR_SoftMotion from the available Application choices.

Input Assistant

Cateqories; Ikems:
Prograrms & Mame | Type
=4 ‘j Application Anolication
] [sR_SoftMotion | mrocran
+-{} 5M3_Basic Liwary

Page 58 of 140

5. Build and Save

i. Build the project as before, and confirm that there are no build errors.

i. Save the project

This completes the exercise.

Page 59 of 140

Controlling an Axis Using System Variables

At this point, all of the necessary functional mapping is in place to control Axis1.
When the application is downloaded to the controller, and the controller is started,
the function blocks within SR_SoftMotion will be scanned on every cycle of the
motion task.

To control the axis, we simply have to confirm the axis state, and manage the state
of the FB parameters and execution inputs. SoMachine provides a convenient
method for manipulating these system variables online.

Online While online, the SoMachine declaration editor provides a Prepared Value column.
Declaration Here, the user can modify the selected variable state or value, and impose the
Variables change with the <CTRL><F7> keys. Click in the Prepared Value field as shown to

edit the value.

|T] SR_SoftMotion | g Motion

MyLController.A ion.5R_SoftMotion

Expression Type Value Prepared walue {
Fé FBErrorOccured BOOL
& OldEnable BOOL

= @ IFB_Axisl_Power MiZ_PoWWER

+ "™ Axis &%15_REF_SM3

4% Enable BOOL
% bReqgulatoron BOOL m
4% bDrivestark BOOL
P Status BOOL
P& bRegulakorRealState BOOL
T bDriveStartRealState BOOL FALSE

. P Busw BOOL [TELIF |

IFE_Awisl_ Fower

MC POWER
DRV Axizl —Sixis B Status m
=Enahle bRegulatorReal 3tate p=
| FAY =—bRegulatorlin bhriveitartFealtate p=
=bDrivesitart Buszy =
Error p=
ErrorlID —

It is also possible to click directly on the FB input to "prepare” a new value or state.
However, a progression of clicks is required to move from TRUE to FALSE to
CANCEL, and the pointer text is the only way to verify the selected state.

IFE_Axi=zl_ Power

MC POVER
DRV Axisl —Sixis B Status
Enahle bRequlatorReal State
| hREn*ulatuan bDriwveitartRealitate
=hDriveitart Eusy

SR_5oftMaotion. IFE_Axisl _Power BRegulatorOn: BOOL fq p
Prepared: TRUE

| LLLT II

Page 60 of 140

Exercise — Control an Axis

1. Configure the Ethernet communication settings.

i. From the browser, double-click the Ethernet port object

2 MasT
@ Iation
ke ‘a. Expert
-2 Mg
) |Ethernet
+-% Serial Line
B CAND
=2 Canl

ii. Enter the Controller IP address and subnet in the Ethernet editor as indicated

below.
"~ IP Address by BOOTP

{* fixed IP Address

IP Address | 192 . 163 . 100 . 100
Subnet Mask |255 L, 255 . 255 . 0
Gateway Address i i T 0—=0

Transfer Rate |

Ethernet Protocol |Ethernet z

=

iii. Make sure that the laptop is configured with a fixed IP address on the same

subnet as the controller.

Internet Protocol {TCP/IP) Properties

General |

the appropriate 1P zettingz.

(#1lze the following |P address:

You can get [P zettings azzigned automatically if your network, supports
thiz capability. Othensize, yau need ta azk wour netwark, administratar far

) Dbtain an 1P address automatically

P address:

Subnet mask:

192168100, 1 |
| 255255255 . O |

Default gatewsay:

Preferred DNS server:

Alternate DMS server:

iii. Save the project.

(%) Use the following DMS server addresses:

Page 61 of 140

2. Connect to the Controller

i. Connect a USB serial cable between the laptop and mini USB port on the
controller.

i. From SoMachine, connect to the controller using the Login icon at the top level
menu.

Tools Window Help

3 WP (]| R -
Aol A5 asl o S | agin (alk+HFE) |

iftMotion | ¥ Motion

If this is the first connection, SoMachine will attempt to establish a Gateway
connection to the controller.

ifﬁu SoMachine

Active path not zet for login.
Scanning far matching controllers..

IJzing gateway:

G atewway-1

Page 62 of 140

iv.

Press the <ALT> <F> keys to complete the connection.

o] Warning

WARNING
! UNINTENDED EQUIPMENT OPERATION

on the intended device. Confim vou have entered the comrect
device designation or device address.

Enzure guards are in place o that unintended equipment
aperation will not cause injun to perzannel or damage ta
equipment,

operate the equipment.

Failure to follow theze inztructions can result in death, senous
injury or equipment damage.

If wou agree to follow these instructions, press “Al+F

The active path of the following device will be zet :
MyContraller

The active path will be zet to the following controller :

Mame: LMCO58LF4250 &0020F4400F1E
Type: LMCOR3LF4250

Address . 00004064

G ateway : [ateway-1

Enzure that the zoftware application being downloaded iz instaled

Fead and understand the software Uzer Manual, and know how to

X)

Select Yes if prompted to download the application.

SoMachine

l}' Warning: An unknown version of the application ‘Application’ is currently in RN
- mode an the PLC, However, da yau want to download the latest code and

replace the existing application?

Mo

Details. ..

Page 63 of 140

When the download has completed, the browser will indicate correct
configuration status for each the hardware objects by the green symbol.

2% Finst POU. project - SoMachine

A
0] Home Properties Configuration

File Edt ‘“iew Project Build ©Cnline DebugfWatch Tools ‘Window Help

My Controller [connected] (LMCOSSLF425070
= &1 PLC Logic
-‘u' Application [stop]
- an

>m Library Manager

- [4r] [sR_SoftMation (PRG)
+@ Task Configuration

+ 'a. Expert
+00 8 TMS

& Ethernet
+-75 "% Serial Line
Ry W
=% cam

=3[caMmation {CANmation)
= b Lewium_32_a fLexium 32 &)
i ﬂ? DRY_Axis1 {3M_Drive_CAN_Schneider_|
> “& SoftMotion General Drive Pool

e

<] | ¥
B Messages] [@ Watch 1]

Program loaded

As indicated above, the mapped CANmotion bus and axis objects match the
hardware configuration of the physical drive, and communication has been
established.

At this time, the Ethernet settings have been applied to the controller.
Once the controller settings are known, it is possible to use Ethernet
instead of the serial connection for all subsequent downloads.

Page 64 of 140

3. Activate the Axis using System Variables

i. Place the Controller into Run mode using the Start icon at the top level menu.

Window Help

B[]

Skart (F5)

i. Double-click on the SR_SoftMotion POU to open the online declaration control

panel.

s i SR_SoftMotion

MyController.Application.SR_SoftMotion

Expression Tvpe Yalue F
+ @ IFB_hxisl_ReadStatus MC_READSTATIS
+ @ IFB_Axisl_Power MC_POWER
+ @ IFB_Axisl_Reset MC_RESET
+ @ IFB_hxisl_Stop MZ_S5TOP
+ @ IFB_Axisl_SetPosition MC_SETPOSITION
+ é@ IFB_hxisl_Home MZ_HOME
+ @ IFB_Axisl_Movevelociky MC_MOVEVELOCITY
+ @ IFB_Axisl_Movesbsolute MC_MOYVEABSOLUTE
[1
IFE_Axisl_EReaditatus
HMC BEWDSTATUS
DRY Axisl —Slixis B Yalid
Erahle Busy
Error
ErrorID
Tii cahl ad KT

iii. Accessthe MC_ReadStatus structure variables by clicking on the + sign, and
prepare the value TRUE for the Enable input.

MyController.Application.SR_SoftMotion

Value

Expression
= @ IFE_Axisl_ReadStatus
B '5@ Axis

“% Enable
P valid
P& Busy
B Error
P& ErrorID
P Disabled
B Errorstop
P4 Stopping

Type Prepared value
MZ_READSTATUS
A%15_REF_SM3
BCOL

BCOOL

BCOL

BOOL
SMC_ERROR
BOOL

BCOL

BOOL

1

IFB_axisl_Feaditatus

DEV_Axisl Axis Walid
Enahle Busy
Error

ErrorID

MC_FEADSTATUS

Page 65 of 140

iv. Apply the Enable >> TRUE by pressing <CRTL> <F7>.
Note that the initial PLCopen state of the axis is “Disabled”

IFE_A&xisl Feaditatus
MC BEADSTATUS

DRV Axisl —awis Valid =
—Enable Busy -

Error p=
ErrorID [— [SMC NO ERR

Dizabled p=

Errorstop p=

Stopping M=
Standsicil] e
DiscreteMotion p=

v. Scroll down to the MC_Power FB, and open the structure as before.

|f] SR_SoftMotion

MyController.Application.sR_SoftMotion

Expression Tvpe Yalue Prer

@ OldEnable BCOL TRLUE
= g IFE_Axisl_Power MC_POWER

+ " pyis A¥IS_REF_SM3

% Enable BOCL

% bRequlatoron BOCL

% bDriveStart BinCL

P Status BOOL

P# bRegulatorRealsState BOOL

B bDriveStartRealstate BOOL

" Busy BOOL

B Error BOOL

K@ ErrorID SMC_ERROR SMC_MO_ERRICR,
+ @ TFR Axisl Reset M- RFSFT

MC_Power accommodates functionality that is not supported by the
Lexium32 servo drives. Therefore, the Enable and bDriveStart inputs
are generally hard-coded as TRUE, and the power stage of the drive is
activated using the bRegulatorOn input.

vi. Prepare the Enable and bDriveStart inputs TRUE, and apply using
<CTRL><F7> as bhefore.

Expression Twpe Yalue Prepared wal.
@ OldEnable BOOL
= @ IFB_Axisl_Power [Z_POWWER
+ ™ pAxis AXIS_REF_SM3
“% Enable BOOL
% bRequlatoron B0l
45 bDriveStart BOOL [TrRuE [
P Status BOOL FALSE
P& bRegulatorRealstate BOOL
F#é bDrivestartRealState BOOL
Fé Fiiaw Rcal N

Page 66 of 140

vii. Activate the power stage by setting the bRegulatorON input TRUE.
Expression Tvpe Yalue Prepared value Cormr
@ CldEnable B2l TRUE
= & IFB_pxis1_Power MC_POMYER
+ M A AHIS_REF_SM3
Enl! Bk
% bRequlatoron BOOL Fal Ii@g
S BOFEStart BOC [HUE
F@ Status BOGL FaLSE
"# bReqgulatorRealstate BOCL FALSE
" bDriveStartRealstate BOioL FALSE
T Busy BOCL TRUE
" Error EOOL FALSE
K@ ErrarID SMC_ERROR SMC_MNO_ERROR
+ @ IFB_Axisl_Reset MZ_RESET
i . TED Aesimd Tk LY. U =
z
IFE_&xisl Fower
MC POWER
DRV Axisl —Sixis - Status
=Enahle bRegulatorReal3tate
jFAgsy = bFegqulatorin blriveitartReal3tate
=bDriwve3tart Busy
Error
ErrorID
viii. Confirm that the bRegulatorRealState output turns ON, and the motor shaft

locks into position.

= i IFB_Axisl_Power MZ_POWER,

+ ™ Avis Ax1S_REF_SM3
% Enable Bl TRLE
4% bRegulatoron Bl TRLE
4% bDriveStart BOOL
P Skatus BOOL TRUE

| P4 bRegulatorRealstate Bl TRLE
" bDriveStartRealstate Bl TRLE
Fd Busy BOOL TRILE
B Error BOOL FALSE
Fé ErrorlD SMC_ERROR, SMC_MO_ERROR

Page 67 of 140

ix. Finally, confirm from the ReadStatus FB, that the PLCopen state has changed
from Disabled to Standstill.

MyController.Application.SR_SoftMotion

Expression Twpe Walue Prepat
= @ IFB_Axisl_Readstatus MC_READSTATUS
+ ™ s £%I5_REF_SM3
*% Enable BioioL TRLE
P valid EOOL TRIE
F# Busy BOOL TRUE
P Errar BOOL FaLSE
“# ErrorlD SMC_ERROR. SMC_MO_ERROR,
P4 Disabled BOOL FaLs
"% Errarstop BOOLC W—
" Shopping ECOL W
Fa Standshil EOOL
'@ DiscreteMotion e Ta] FALSE [
K@ ConkinuousMotion BOL FALSE
P4 SynchronizedMokion BOCL
P4 Homing BOOL FaLSE
P Constantvelocity BOOL FaLsE
P4 Accelerating BOOL FaLSE

The axis is now active and ready for movement commands.

4. Create a Watch List

A watch list can be used to monitor or manually control the application using
system and user variables.

i. Create a Watch list for axis control from the SoMachine top level menu by
selecting View >>Watch >> Watch 1.

Wiewy | Project FBDJLDJIL Buld Online Debugftatch Tools Wi
Bl Messages alk+2 k % % i - [
) FoOUs Alt+0

-"*:: Devices Ale+1 L % w
B Cross Reference List -
Element properties ExpreT
2% ToolBox + " e

| wateh) m B watch 1

] Breakpoints [WatchZ

ﬁ Zall Stack, @ wWakch 3

Bl Full Screen Chrl+shift+F1z | Bl wakch 4

] S T B W&l watrh all Frrees

Page 68 of 140

The watch list is created at the bottom of the SoMachine workspace.

+ @ IFB_Axis1_Movedbsolute

Watch 1

Expression Tvpe

i. Double-click in the first entry row, and type DRV_Axis1. as shown. DRV_Axis1

is a global structure, and its components are accessed using the dot “.
convention.

4 |aCaptDesc ||
44 adatAcyclic -l
= AfterReadInputs
;—l.u.lﬁfterWriteOutputs
4% baccelerating
@ bacyclicReadWriteSwitch
E % bBrakeClosedRealState

% bComrunication

4% bConstantYelocity
A 4% bDecelerating ﬂ

i
[

¢
¢
{

Watch 1

Expression
+ ﬂ DRY_Axis1,

i. Scroll down the list to the fActPosition component, and <Enter> the selection.

B SRAlP) s
(4 Facthcceleration
% FackCurrent —
4 Factderk
'y © 4 FActPosition |
3% FActTorgus
4 Factyelocity

< 4% FaimPosition =L

Watch 1

Expression
+ @ DRV _Axist]

iii. The actual position of DRV_AXxis1 is displayed in the watch list.

Watch 1
Expression Tvpe Walue
4% MyController, Application. DRY_Axis1.FActPosition LREAL 1903, 24768066406

Page 69 of 140

4. On your own...

i. Using the Watch list to monitor the axis position, and Online Declaration
panel for control, manipulate the parameters and execution inputs for the
remaining FBs to:

Set the axis position

Perform an Absolute and Relative Move
Perform a Velocity Move

Stop the Axis

YV V V V

5. Save the Project

i. Save the Project as “First Control”

This completes the Exercise

Page 70 of 140

Chapter 5: Interface Structures

In the previous lesson, a single axis was configured and operated using system
variables. In a machine, it is important to have a well-defined structure to manage the
flow of commands from the top level operator panel down to the individual axes and
synchronized axis sets. Status variables provide annunciation for operator
intervention, as well as permissives for control. Control variables dictate the start of
processes. These command variables must ultimately be “tied” to the SoftMotion
function block inputs (for control) and outputs (for status).

Consider a motion application with 4 physical axes, and a virtual master. If each of
these axes make use of 10 SoftMotion function blocks, and each of these function
blocks make use of an average of 10 inputs and output variables, then the
application requires the instantiation of :

» atleast 50 SoftMotion function blocks, and
» over 500 variable and function block declarations

just to accommodate all of the possible control interface requirements!

This is a significant “book-keeping” effort that diverts a substantial amount of time
and energy before a single piece of “functional” code is written!

Function block and variable declarations are among the most common
sources of program errors !

In this chapter we will configure and implement a user-defined, structured variable
interface. This interface will allow us to create re-useable variables, and apply those
variables over and over again to as many instances as necessary.... most
importantly, without error.

A Note about Standardization

Standardization can be critical to the success of a project, or series of projects. Five
different programmers will have five different methods of tackling the same task, and
they can all accomplish the same goal. What makes the particular method useful is
consistency, and adaptability. When the machine design changes, or is made more
flexible, a consistent standard can significantly speed up the modification process.
Multiple programmers or technical support staff can view code produced by any
other member and understand what's been done, and move forward quickly and
efficiently.

International standardization has already been adopted in the form of PLCopen
function blocks, and object-oriented programming methods. We have seen examples
of this standardization in the instantiation of the SoftMotion function blocks from the
previous chapter.

From this point on, we will make use of a PLCopen variable naming convention that
applies to all user variables created within the program environment.

Page 71 of 140

Variable A “PLCopen-compliant” variable naming convention is applied throughout the
Naming SoftStruXure Motion template and advanced libraries. The convention carries the
Convention benefits of standardization and recognition, both of which can assist in development,

readability, and troubleshooting.

For consistency, variables are created using capitalized, concatenated words (no
underscore except as required for a prefix). Function block instances, POU, and SFC
Step names make use of an underscore to separate parts of the name.

Example:
» Local variable: rActPosition
» POU name: Calc_Position_Deviation

The naming convention describes the variable format, as well as prefixes which
indicate the variable and data type. Examples are illustrated in the following table.

Datatype Prefix 1| Example

BOOL X xStart

REAL r rProductLength
LREAL Ir IrTargetPosition
INT i iProductCount
DINT di diState

UINT ui uiCounter

TIME ti tiPresetTime
WORD w wAlarm

DWORD dw dwAxisAlarm
String s sExtStateMsg
Enumeration n nAxisState
Structure st stJogParameters
Pointer p pAxisRef

Array a arRecipePosition[3] (Array of REAL)

apAxis_ID[0] (Array of PONTER)

astAxisControl[1] (Array of structure)

alFB_CANMotion_AxisModule[1]
(Array of AxisModule instances)

Variable type Prefix O Example

Local none diMachineState

Global o_ g_XActiveAlarm
Physical Input i i_xInputStart

Physical output a_ gq_xFBAlarm

Constant c_ c_rValueOfPi

Global constant gc gc_iNumberOfAxes
Global input i g_i_xEmergencyStopSw
Global_output g.q_ g_g_xWarningLampOn

Page 72 of 140

AXxis Interface

As we determined from the PLCopen state diagram, A motion axis requires a basic
set of instructions as well as parameters for control and status. Instructions can be
Administrative or Movement including:
Administrative Instructions:

» Power ON OFF (Enable/Disable)

> Reset

» Synchronize

Movement Instructions:

» Homing
» Positioning
» Jogging

Additional parameters are required for the basic instructions, and to monitor the
status of the axis. Typical movement parameters include...

» Target position / velocity
> Acceleration / Deceleration rates
» Homing Speed

... with status parameters such as:
» Power state

Actual position /velocity

Alarm state

Synchronization state

Reference_ OK

vV V V V

We can exploit this common requirement to create a re-usable, custom data type
that can be declared once, and then easily applied to every axis in the machine
regardless of the number of axes used.

This new data type will be used to create a single variable “structure” that will serve
as the control interface to each axis in the machine.

Start

Move
Enable Reset

Position .
Deceleration

Start
Home

Velocity Actual

position

Acceleration

) (i

Actual Active

Speed Alarm
Jog

Ref_OK Forward

Page 73 of 140

Structures —
Compound
Data types

AXis Interface
Structure

Every industrial programmer has used some of the most fundamental data types,
such as BOOL, REAL, WORD, STRING, etc. IEC 61131-compliant languages and
object-oriented techniques can improve programming efficiency by using “layered”
variables, or structures, that contains a collection of related data types as

components.

Access to individual components is provided in the form of a “dot” notation. You may
recall this notation from the previous section when we controlled the axes using the

system variables.

Witakch 1

i
[

4

" M4 |aCaptDesc

{ 4 adatAcyclic
£ =1 AfterR eadInputs
[%AFterWriteOutputs

% baccelerating

& bacyclicReadWriteSwitch
3 % bBrakeClosedRealState
*% bCommunication

*%& bConstantyelocity
% bDecelerating

|-
—

Expression

+ (@ DRY_Axisl.

As an example, consider a new structured data type called AxisControl_Interface
with the following components.

AxisControl_Interface
> 1 _XReset

i_xStartMoveAbs
i_xStartMoveVel

>

>

» i_xSetPosition
» i_rPosition

» i_rVelocity

» i_rAcceleration
> i_rDeceleration
» g_xInRun

» g_xAlarm

» (_nAxisState
» (_ActPosition

We can declare a new program variable in SoMachine...

.. and apply this new variable to the SoftMotion FBs.

AxisControl : AxisControl_Interface;

By declaring this variable structure as an Array, a single declaration will
accommodate the new command interface for an “umlimited” number of servo

axes.

Page 74 of 140

Exercise — Create an Axis Interface Structure

1. Add an Object - DUT

i. From the browser, right-click on the Application object, and select Add Object

>> DUT.
AN S | [sR_softMotion
7 Condro b 1 PROGRAM 5F_SoftMotion
MyConkroller (LMCDSBLF4250) = VIR
@EI PLC Logic 2 IFE_Axizl Fead3tatus
- I |Application ol cu IFE_Axisl_Power
@ c . IFE_Axisl Reset
m Libraty Manager Copy IFE_Axiszl 5top
[F] sR_saftMation (PRG) IFB Axisl SetPosition
£ @ Task Configuration % application. .
'!. Expert ¥ Delete i
. L &AM table..,
M3 fe Properties...
% Ethernet _ @& CNC program...
ol # Add Function From Template
@ Serial Line - P &4 NG settings...
3 CAND i Add Object 3 =1 botaLog
% canl ata Log Manager...
= [cammation (Cabmation) |4‘lg oUT. ..
- ‘ Lexium_32_#A (Lexium “ Global Metwark Yariable List. ..
EEP DRY_Axis1 (50) .
& SoftMation General Drive Poal “ Global Yariable List...
) Add Folder... =31 Trnana DAl
ii. Name the DUT “stAxisControl_Interface”...
Add DUT X
OI; Create a new data unit type
MName:
|5I:.ﬁ.::<i5Cn:|ntru:nI_InI:erFan:el
Tvpe:
f» Structure
= - I
iii. ... and click Open to continue
CpeEn | Cancel

Page 75 of 140

2. Configure an input (stl) and output (stQ) structure

Repeat the process above again to create a DUT Input structure

“stAxisInterface_Inputs” as shown.
Add DUT

OI; Create a new data unit bype

[ame:

3

|st.ﬁ.xisInterFan:e_Inputs

Twpe:

{* Structure

| Extends:

" Enumeration

Create the output structure “AxisInterface_Outputs”.

Add DUT

alg Create a new data unit bype

Marne:

x]

|st.ﬁ.xisInterFace_Outputs|

Type:

{* Structure

[Extends:

i Enumeration

[

The browser should now contain all 3 new data-types as shown

=&l PLE Lagic

= -{C% |Application
stixisControl_Interface (STRUCT)

al; skfxisInkerface_Inputs (STRUCT)
&I; skfxisInkerface_COutpuks (STRUCT)

@ Gl

m Libraty Manager
] SR_SoftMation (PRI
= @ Task Configuration

Page 76 of 140

3. Configure the input structure components

Double-click the stAxisInterface_Inputs DUT to open the editor, and create
the following declaration list.

1

e

o

TYPE staxisInterface_Inputs :

STRUCT
¥Reset
xEnable
rPosition
rtVelocity
rhcceleration
rDeceleration
xatartietPos
¥atartHome
x¥StartMoveVel
xitartloveAbs
x3top

EMD STRUCT

END TYPE

BOOL :
BODOL ;
EEAL ;
BEAL ;
BERL ;
BERL ;
EBOOL ;
EOOL ;
BOOL ;
EBODOL ;
BODOL ;

4. Configure the output structure components

Double-click the stAxisInterface_Outputs DUT to open the editor, and create
the following declaration list.

L e T T e O O I o

T
I R R =

[
Ty

TYPE stiaxisInterface Outputs :

STRUCT
¥ InFun
xReflK
*Errori3top
xDizabled
xStandstill
xHoming

xDiscreteMotion
xContinuousHotion

xhccelerating
xDecelerating
ractPosition
rhactVelocity
EHD STRUCT
EHD TYFPE

EOOL ;
BOOL ;
EOOL ;
BOOL :
BOOL :
BOOL :
BOOL ;
EOOL ;
BOOL ;
EOOL ;
RERL ;
REAL ;

Page 77 of 140

5. Configure the Axis Interface structure

i. Open the stAxisControl_Interface DUT editor to create the input (stl) and
output (stQ) structure component declarations as shown.

Note that the “Smart Code” list will automatically present the appropriate
structure variables created previously.

1 TYPE stixisControl_Interface :

g STRUCT

3 sl : stixisInterface Inputs;

4 =il A stﬂxisInterface_EI;

= SMIZ3_MrikeDriveParameter
£ EHD STRUCT =] SMC3_WrikeParameter

7 EHD TYPE & SCRT

8 SR

{} Standard

E STATISTICS_INT

E STATISTICS_REAL

P stdisCantrol_Interface
o b islnterface_Inputs

wstﬁxisInterFace_ﬂutputs

6. Build and save

i. Build the project to confirm that there are no errors.

i. Save the project as “Interface Structures”

This completes the Exercise

Page 78 of 140

Interface Application

We now have a new structured variable data-type that can be used to control and
monitor the behavior of an axis of motion. The new data-type is subdivided with an
Input component (.stl), and an Output component (.stQ). Each of these two
components contains individual variable data-types that can be used to control or
monitor the axis.

There are some distinct advantages to this application of a structure:

» A single “variable” contains all of the elements required for the interface.
This improves portability.

» Significant reduction and simplification of variable declarations.

» There is no chance for typing errors, as each of the individual control
variables is pre-defined.

» New variable components can easily be added to existing structure, and are
immediately available for use throughout the program.

In the next Exercise, we will:

» Create a new AxisControl structured variable using the new data-type
» Apply the new structure to the existing SoftMotion FBs in the POU.
» Create a single-variable watch list to completely control and monitor the axis.

Page 79 of 140

Exercise — Apply the Interface Structure to your program
1. Create a new AxisControl variable

i. In the SR_SoftMotion variable declaration pane, create a new variable
“stAxisControl” of type AxisControl_Interface.

1 PROGRAM 3F_SoftMotion

z VAR

2 IFE_ixizl Readitatus : MC_READSTATUS:

4 IFE_Axi=zl_ Power : MC_POWER:

5 IFE_A&xi=zl Rezet : MC_RESET:

= IFE_&4xi=l_Gtop : HC_3TOF:

7 IFE_&4xisl 3FetPosition : MC_3ETPOSITION:

g IFE_&xisl Home : MC_HOHME :

a IFE_ixizl MowveVelocity : MC_MOVEVELOCITY:
10 IFBE_Axi=]l_ Maowedhsolute MC_MOVEABIOLUTE:
11
1z stixisControl A stﬂxianntrDl_Interface;l
12| EHD VAR

2. Apply the Interface variable components to MC_ReadStatus

i. Begin by editing the ReadStatus FB. Hardcode the MC_ReadStatus FB Enable

input TRUE.
IFE_Axisl Fead3tatus
| MC READSTATUS |
DRV Axisl —ixis - validf—
TRUE —{Enab le Busyi—
Erru:uré—
Erro rIDg —

i. Apply the new Structure variable to the Disabled output. Click on the Disabled
output pin and begin typing the name “stAxisControl”. As you type, look for the
stAxisControl structure in the smart code dropdown, and select it.

ErrorID —
Disabled - staxi ... |
Errorstop [— @ RelocTable ﬂ

Stopping — {} 3EC
Standstill — @ SERIAL_R

DiscreteMotion [~ @ SERIAL_W
{@ SM_PLCOpen_Globalvariables

{1} 3M3_Basic
] SMC_CheckPositionPeriod

ContinuousMotion —
SynchronizedMotion —

Homing —

E] SMC_FileResourceChecker |

ConstantWelocity E 2 aECA AR C 2l L

Accelerating [g[stAxisControl |~
Decelerating

Page 80 of 140

iii. Type a"“.” (dot) immediately after the stAxisControl variable. This will bring up
the structure components. Scroll to the stQ (outputs) component, and select it.

ErrorID —
Disabled |~ stAxisEnntru:ul.I J
Errorstop — i stl
Stopping — @
tand3cill —
DiscreteMotion [—

iv. Once again type a “dot” to open the stQ components, and scroll to Disabled.

ErrorID [~
Disabled [~ stﬂxisCDntrDl.stD.Ig
Errorstop [~ i xAccelerating ﬂ [
Stopping — & xhlarm
Standstill — @@ wiZontinuousiotion
DiscreteMotion — # xDecelerating
ContinuousMotion — @|xDisabled
nchronizedMotion — @ xDiSEt’.EtEMDtiDn
Homing b @@ xHoming
@@ »InRun
ConstantWVelocity — @ xRefOK
dccelerating — i xStandskil Z

Decelerating [—

The completed assignment is illustrated below.

IFE_A&xisl FReaditatus
MC READSTATUS

axiz Falid
—Ensahle Bus=y —
Error —
ErrorID —

Disabled [~ stixisControl.stl.xDisabled
Error=ztop —
Stopping —
Grandicill —

v. Repeat the is process for each of the PLCopen output state variables
» ErrorStop

Standstill

DiscreteMotion

ContinuousMotion

Homing

YV V V V

Hint: copy and paste “AxisControl.stQ” from the previous output, and
paste it into each of the PLCopen outputs on MC_ReadStatus. Then
simply type a “dot” to select the component!

Page 81 of 140

The completed MC_Readstatus output structure assignment is shown below.

IFE_&xisl Read3itatus
MC READSTATUS

DRV Axizl —SHaxis Valid
TRUE —Enable Busy [—
Error [~
ErrorID [—

Disabled [~ staxisControl.stl.xDisabled
Errorstop - staxisControl.stl.xErroritop
S3topping —

Standitill [~ staxisControl.stl.x3tandstill
DiscreteMotion [~ staxisControl.stl.xIiscreteMotion
ContinuousMotion [~ staxisControl.stl. xContinuousMotion

SynchronizedMotion [—
Homing [~ staxisControl.stl. xHoning
ConstantVelocity —
Locelerating —
Decelerating f—
FEErrorlccured —

3. Apply the Input control Interface to the FBs

Scroll to the MC_Power FB. Hardcode the Enable and bDriveStart inputs
TRUE.

IFE &wisl Power
MC POWER
DRV Axisl —Saxis a Status —
m—Ena}Jle bRegulatorReal 3tate —

—bRegulatorln bhrivedtartFEealdtate [—

TEUE bhriwveldtart Busy —
Error [~
ErrorID —

The bRegulatorOn input is used to enable the power stage of the drive. We will
apply the control variable to this input.

Once again, begin typing “stAxisControl” at the input pin bRegulatorOn. As you
type, look for the stAxisControl variable lookup, and select it.

IFBE_Axizl_ Fower
MC POWER
DRV Axisl —Slaxis B St
TEUE —Enable bEegulatorFeall
stA;-cis | J bhrive3tartReal’

TRUE Z@5MC3_PCM_DRIVE_PARAM
=F' standstill
' START_REMOTE_MODE
R STARTHEEE

i [stAdsContral
,—‘;‘EI!:THD_DFMHTF_MF‘:I":F

Page 82 of 140

Immediately after the stAxisControl variable, type a “dot” as before, to open

and select the stl (input) components.

IFB_&xisl_Power

MC POWER
DRV Awizsl —Sixia a
TRUE —Enahle bRegqul ator]
staxisControl.stl —bEegqulatorln bhriwvei3tart]
TRUE —bDriweitart

iv. Finally, type the “dot” once again the select the xEnable input component.
IFB_Axisl_Fower
MC_POWER
DEV_Awisl Awis
TRUE Enable bRegulatorl
staxisControl.stl. ...hgulaturﬂn bhriwve3tartl
TRUE 4 rDeceleration ﬂ
@ rPosition
@ rielocity
o
i@ xReset
The completed MC_Power input should like the following.
IFE_&xiszl_ FPower
MC_POWER
DRV_Axisl —Shxis Status
TRUE —Enahle bRequl atorReal 3tate
sthxisControl.stl.=xEnable —bEegulatorln bhrivelitartRealitate
TRUE —bDriweltart Bu=y
Error
ErrorID
V. Move to the bRegulatorRealState output, and assign the stQ. component

xInRun as shown.

IFE_Awisl_ Power

MC POWER
B Gtatus
bRegulatorRealitate
rin bDriveitartRealitate
kL Busvy
Error
ErrorID

— stAxisControl.stl.xInFun

Page 83 of 140

Vi.

Vii.

viii.

Repeat this process for the remaining FBs making the following assignments

Input (.stl) FB assignment
XReset MC_Reset.Execute
xStop MC_Stop.Execute

rDeceleration

MC_Stop.Deceleration

xStartSetPos MC_SetPosition.Execute
xStartHome MC_Home.Execute
xStartMoveVel MC_MoveVelocity.Execute
rVelocity MC_MoveVelocity.Velocity

rAcceleration

MC_MoveVelocity.Acceleration

rDeceleration

MC_MoveVelocity.Deceleration

xStartMoveAbsolute

MC_MoveAbsolute.Execute

rPosition

MC_MoveAbsolute.Position

rVelocity

MC_MoveAbsolute.Velocity

rAcceleration

MC_MoveAbsolute.Acceleration

rDeceleration

MC_MoveAbsolute.Deceleration

Next we will make use of the Axis_Ref object DRV_Axis1 to assign the actual
position and actual velocity outputs.

In the SR_SoftMotion FBD rick-click on the last network and select Insert

Assignment.

e ey =

st
st

=lIRE

Insert Assignment

n Fifals:
Dec

-IRET

Insert Jump
Insert label

Insert Return

Dir

In the “assign to” field (right hand side) enter the variable component

.rActPosition.

E

ez

stixisControl.stl.rActPosition

Page 84 of 140

ix. Inthe “assign from” field, enter the DRV_Axis1 component .fActPosition.

]

DBV dwizl, fhctPozitiond

stixizControl.scl. ractcPosicion

X. Copy and paste the previous network to create the actual Velocity assignment.

10

DEV_Awizl. factVelocity

stixisControl.stl.rahctWVelocity

4. Build and Download

i. Build the project to confirm there are no errors

Save the project

iii. Login as before, and download according to the prompt.

iv. Start the controller at the completion of the download.

5. Operate DRV_AXxisl using the interface structure variable

i. Create new watch list, and add the variable “stAxisControl” from the Input

Assistant screen.

Ikems:
& Nlame Type
+- L} I0STANDARD Libeary
= M';.-'Cu:untrculler
= ":; Application Anndication
= [4] sr_softMatian PROGRAM
+ @ IFB_Axis1_Home PR HOE

+- 4} sEC

R S S

+

IFB_Axis1_Moveabsolute
IFB_Axis1 Move¥elocity
& IFB_Axis1 Power

& IFB_Axis1_ReadStatus
& IFB_Axis1l Reset

% IFB_AxXis1_ SetPosition

& IFB_Axis1_Stop

M MOVEABSOLLTE
ME_MOVEVELOCTTY
ME_POWER
ME_READSTATLS
ME_RESET
ME_SETPOSTTION
ME_STOP

[staxisControl

| st xsConfrol Mfasface

Lirary

Page 85 of 140

i. Open the + signs to reveal the structure components.

Wakch 1
Expressian Tvpe Walue Prepared value
= & MyCaontroller. Applicakion. SR _SoftMation ... stAxisConkrol_Interfa .
= @@ stl stAxisInkerface_Inputs
@ xResek BOOL
@ xEnable BiOCL
@@ rPosition REAL
@ rvelocity REAL
@ racceleration REAL
@ rDeceleration REAL
@ xStartSetPos BOOL
@ xStartHome BOOL
@ wSkartMovevel BOoOL
@ xatartMovedbs BOOL
@ x3ktop BOOL
= @ stQ stAxisInkerface_Cutp...
@ xInRun BOOL
@ xRefOK ECOL
@ xErrarskop BOoOL
@ xDisabled BOoOL
@@ watandstil BOOL
@ xHoming BO0L
@ xDiscreteMotion BOOL
@ xContinuousMokion BOOL
@ xhccelerating BOOL
@@ xDecelerating BOoOL
@@ ractPosition REAL
@ ractvelocty REAL a0

iii. Operate and Monitor the axis exclusively from the AxisControl structure in the
Watch list using Prepared values.

This completes the Exercise.

End of Day1l

Page 86 of 140

Chapter 6: Machine Control with SoftStruXure

In this Chapter, we take the idea of re-usable code and object-oriented methods a
step further. Now, the entire machine is a preconfigured object, with built-in hardware
and functional mapping. Furthermore, the SoftMotion FBs are replaced by a single
AxisModule, and the interface structures become a bit larger, more complete, and
more informative!

Every machine has unique characteristics and requirements. However, every
machine has many similarities in form and function that can be exploited in the
development of machine operational code.

Functionality that is likely to be found in all machines includes:
» Initialization / Preparation / Homing
» Managing hardware Inputs / Operator commands
» Managing hardware Outputs
» Mode Control / Axis control
» Alarm Detection and Reaction Handling

Unique functionality of a machine includes:
» The specific sequence of machine processes
» Exception handling (product present / product absent)
» User-specific Alarms

SoftStruXure is a project template that has been designed to promote each of these
characterisitics. An overview of the template and interactive exercises, are offered in
the following sections.

For a complete description of the template functionality and use, please refer
to the SoftStruXure Machine Template User Guide V1.0.0.1.

SoftStruXure Overview

The development of machine code can be summarized as the “mapping” of
hardware and functionality. Hardware mapping includes predominately configuration-
based activities such as hardware I/O assignments, motion bus and axis
configuration, drives, encoders and communication network configuration.

“Mapping the functionality” can be thought of as the development of the substantive
code that performs the unique machine process and exception handling. This
programming effort includes essential administrative functions required of nearly all
machines independent of the specific task for which the machine was created.

The SoftStruXure Machine template provides a unique programming foundation for a
machine solution using multi-axis motion control with the LMCO058 controllers and
Lexium32 (LXM32) servo drives. Based largely upon a similar architecture
implemented by Elau for the EPAS software, machine 1/0, a master encoder,
CANopen and CANmotion bus are all pre-mapped. Four CANmotion servo axes and
a variety of CANopen devices are configured with an extensive SDO startup list to
support Fast Device Replacement (FDR). AxisModules and interface structures
replace individual SoftMotion FB instances, and basic machine functionality is
provided including mode selection, I/O management, and alarm handling at the axis
and at the operator level.

A quick look at the SoftStruXure browser will help illustrate some of the features

Page 87 of 140

Browser at a As indicated in the SoftStruXure browser, the machine process is driven by two task

Glance calls. SR_SoftMotion is associated with the motion task, and contains the
instantiations for all CANmotion AxisModules for each of the virtual and physical
axes. SR_Main is the main machine POU, and is called from the MAST task.

=42 |5ﬂff5ffu)(we Marhine fempiafe 17 f0s 09 2 2017

= MyCankroller (LMCOSSLF42500
=&l PLE Lagic
= ":; Application

+-12) Additional Visualization Screens
+-I) Cam Tables
+-I2) clobal variable Lists
+-IZ) Project Datatypes
+-Z) ReadMe
=) Task Calls (Machine Operakion)

+ (2] sR_Main (PRE)
+-[E] sR_SoftMation (PRIG)

+

E] SR_Visu (PRE)
m Library Manager

- Symbol configuration
@ Task Configuration
Etﬁ Trace
YisualizationManager
@I Yisu_Main

k- '& Expert
+% VS

The SR_Visu task call is used primarily to manage display functionality for the
included SoMachine Visualization screens.

A Read-Me folder contains text-based documentation on the basic features and use.

= [E}Y PLC Logic
=407 Application

+

+o+*

) Additional Yisualization Screens
) Camn Tables

) Glabal Yariable Lisks

) Project Datatypes

__LI F.eadi¥le
ReadMel_Crwerview
ReadMez_Library_Management
ReadMe3_axisConfiguration
ReadMe4_Using_the_demo_project
FeadMeS_User_Entry

—"'—_'l—'l'-:rslre-:rﬂrﬁﬁﬂl:h'rn-: et ek |}
m Library Manager
. Symbol configuration

= @ Task Configuration

i masT
@ Matian
Ei,ﬁ Trace

Page 88 of 140

The template includes generic visualization screens that can be used to demonstrate
the basic operator commands, independent and synchronized axis control, and a
pre-configured auto mode pick-n-place application. The initial operator interface is
“Visu_Main”. Supplemental screens, referenced by the main screen at run time, are
located in the Additional Visualization Screens folder as shown.

=] |Sofestrudure Machine template V1105 95 05 2012 |
= MyController (LMCOS3LF4250)
=B PLC Logic
= ":; Application
=) Additional Yisualization Screens
ImagePool
Wisu_Alarm
Visu_Auko
Visu_CaMmokion
Visu_CAaMmokion_Cam
Visu_CANmokion_Gear
Visu_CAMNopen
Visu_SetRamps
) Zam Tables
) alobal Yariable Lists
) Project Datatyvpes
) ReadMe
) Task Calls {(Machine Operation)
m Library Manager
- Symbol configuration
= @ Task Configuration
& MasT
@ Makion
Ei,ﬁ Trace
WisualizationManager
Visu_Main

[[)) R

o

* ‘E. EXpert
+a M5

Hardware Map The SoftStruXure template is pre-mapped with 5 CANmotion servo axes including a
virtual master (DRV_Master). Two of the axes are excluded from build, but available
if required.

+-'% Canp
=% camt
= camMmation {Catmation)

=k motion_00_LXM32 (Lexium 32 A)

ﬁ? DRY _Masker (SM_Drive_CAN_Schneider_|exium3za)
= ‘ raakian_01_L¥M32 (Lexium 32 A)

ﬁ? CRY_Axis1 (SM_Drive_CAR_Schneider_Lexium3z24A)
= ‘ motion_02_LXM32 (Lexium 32 A)

ﬁ? CRY_AxisZ (3M_Drive_CAk_Schneider_Lexium3za)
= t motion_03_LxM3Z (Lexium 32 M)

ﬂ? DRY _fxis3 (5M_Drive_CAN_Schneider_Lexium3z2m)
= t okion_04_LxM32r (Lexium 32 M)

ﬁ? DRY _fxisd (5M_Drive_CAN_Schneider_Lexium3z2m)

Page 89 of 140

The hardware map includes a SoftMotion encoder mapped to the high density D-sub
connector. The Softmotion encoder is required as an optional master axis Input/
Output interface for the AxisModules.
=
= 'a. Expert
|]:= PowerDistribution_1 (POWER)
= ﬂﬂi Encoder (EMC)
= ﬂj Mation_Encoder (Makion Encoder)
ﬁ Master_Encoder {(SoftMotion Encoder)
1% ow7zro (oM7zF0)
1% omrzr1 (om7zF1)

Two CANopen drives including 1 LXM32 axis, and 1 ATV axis, are also pre-mapped
and excluded from build.

= "% CAND
= ﬂj CaMopen_Performance (iZAMopen Performance)
b can 0z 1#m3z iLexiom 32 M)
[can_ot_atvaz (Alkivar 32)
=% Cant

Functional Map The task calls, SR_Main and SR_SoftMotion, are the principle elements of the
Functional Map. SR_Main supports the basic machine functionality, and
SR_SoftMotion manages the SoftMotion instantiations and fast User functions. A
folder structure is used to organize the action calls beneath each of these Programs.

SR_Visu is a separate program that manages custom visualization screens for
demo purposes, as well as machine commissioning.

=1 Task Calls (Machine Operation)
=-[2] sr_Main (PRG)
) aAlarm Handling
) CANopen Devices
) Init Devices
) Init Machine
) Inputs
) Mode Control
) Cutputs
) Stop Control
+ 1) User Alarms
+ 1) User Logic
=-£] sr_SoftMation (PRG)
+ 10 Init SoftMotion
+-12) Inputs_Fast
+) Cutputs_Fast
+ 1) SoftMotion FBs
) User_Fast
SR_Wisu (PREG)
m Library Manager

o

Page 90 of 140

SR_SoftMotion

SR_Softmotion is organized into SFC steps (“containers”) which hold the
Softmotion FB instantiation, and manage any fast logic requirements of the machine.
As seen by the final FALSE transition in the SFC chart, all SFC steps remain active
for the duration of operation once the Initialization has completed.

Init SoftMotion

E |

IJ:IxInit_Snf tHotionlone

Inputs Fast Softmotion FB= User Fast Outputs Fast

EEFALSE
Init_idoftMotion

A description of the SR_SoftMotion SFC containers is summarized in the following
table.

SFC “Container” | Description

Init_SoftMotion Initialize SoftMotion axis pointers and assignments

Inputs_Fast Manage anq buffer the_global and hardware mapped inputs
(FDI_xx) to internal variables

SoftMotion_FBs Instantiation of all CANmotion AxisModules

User_Fast Fast user logic as required (initially empty)

Outputs Buffer and apply internal variables to global and hardware

outputs (FDQ_xx)

For a complete description of the functionality contained within
SR_SoftMotion, please refer to the SoftStruXure Machine Template User
Guide V1.0.0.1.

Page 91 of 140

SoftMotion_FBs

AxisModules

The SoftMotion_FBs step manages the instantiation of the required independent and
synchronized (Master Slave) motion control functions for each of the configured axes
on CANmotion.

The step contains action calls in FBD as shown, and these can be activated or
deactivated as needed by “toggling the network comment state”.

1 Fun AxisModules

5B _SOFTMOTION. RXTSMODULES

z Alternate AxisModules with Cyolic controller mode., .

SR_SOFTMOTION, AXTSMODULES COM

3 Run Cam SlaveModules

5R_SO0FTHMOTION. CAMSLAVEMODULES

4 Run Gear SlaveModules

S5R_S0FTHMOTTON. GERRSLAVEMODULE 5

g Run Master Encoder FEs

SR_S0FTHMOTION. EHCODER SOFTHMOTION

In the template, unique SoftMotion FB instances are replaced by AxisModules.
These AxisModules internally manage 13 SoftMotion function blocks including those
required for synchronous and asynchronous alarm handling.

alFB_AxizModule[c_udiMaster]
CAHMOTION AT SHODULE

i zAxisNane
i_xRezet

q nbevicetype
i xConmdkE

i xEnable g xInFun
i_stitart o xHoming
i_x3top q xRef 0K

i rPozition
i _rVelocity
i_rhcceleration

g Xitopped
q xiynchronized
g xDone

i _rDeceleration g xBusy
i_stParameters g nbactivelode
i_xTogPozs f ¥hxizhlarm
i xdJogheqg q dyixizdlarmID
i_xJogFast o nbxisitate
Bavis g sAxizitateExtC
g rhactPozition

o rhdctWelocity

Page 92 of 140

SR _Main

Init Machine

+xHach1neIn1mone

Init Devices

lexD evicelnitlone

Using the concept and programming methods of the EPAS template, SR_Main is
organized into SFC steps (“containers”) each of which manages the corresponding
property of the machine. As seen by the final FALSE transition in the SFC chart, all
SFC steps remain active for the duration of operation once the Initialization has

completed.

Inputs

User_#larms

Alarm Handling

CiHopen Devices

Mode Control Stop Control User Logic Outputs

ItFALSE
Init_Machine

A brief description of the SR_Main “containers” and the corresponding function is
summarized in the following table.

SFC “Container” | Description
Init_Machine Initialize machine and axis profile parameters
Init_Devices Initialize CANmotion and CANopen Axis parameters
Manage and buffer the global and hardware mapped inputs
Inputs . .
(Dl_xx) to internal variables
Create user—specified alarms and reactions. The Alarm
User_Alarms Handler FBs are included in the library

SoftStruXure_AlarmHandler_SoMV3.

Alarm_Handling

Manage the display and acknowledgement of active alarms

CANopen_Devices

CANopen Device instantiation and CAN device status
(including CANmotion devices)

Mode_Control

Mode selector for Prepare, Auto, and Manual operating
modes

Stop_Control

Manages the Stop reactions based on the User alarms

User_Logic

User logic as dependent upon the operating mode

Outputs

Buffer and apply internal variables to global and hardware
outputs (DQ_xx)

For a complete description of the functionality contained within SR_Main,
please refer to the SoftStruXure Machine Template User Guide V1.0.0.1.

Page 93 of 140

Mode Control

User Logic

Often machines require the implement of multiple operating modes. The template
provides Mode Control functionality in the form of a basic Mode handler. Logic within
the init step evaluates machine conditions, including inputs, to determine whether or
not to move to one of several possible machine operating modes. Within the
operating mode, logic within that mode determines the appropriate conditions
(including an active alarm) to exit the mode and return to the Init step.

Init ModeControl

|:|:|xAct.PreparE éﬁxﬁctﬂanual

E]

Prepare Manual Mode

%] %]

%NDT xActPrepare +NDT xAhctManual

J—E xhcotduto

futo Mode

o %]

+NDT xhotduto

L} Init_ModeControl

These modes can be edited as needed by the user.

Within the SR_Main >> User_Logic step, a simple CASE statement is used to
manage the specific logic that solved within each operating mode.

?ﬂ User_Logic_active

L T T < T o I I

MMM MNMMEEREREERERERER R R B
L I I o =T S S N T o NS I R =

]
)]

r
A5 Fun UMser Logic depending upon the active mode

CamTakble Selection():

CRASE nictiveMode OF

NULLMODE: A no dctiol...

3

PREFAREMODE: v [ser Prepare logic here. ..

Prepare awes():

MANUALMODE: /. User Manusl Mode logic here..

DEV_Master.iMowvenentType HE NI EFaN
SR Wisul(): /2 Manual axis control from v

F Modulo, 1 = Finite
tauglization or HMI

Machine Reference Logici): /7 Logic to apply one-time machine re

ATTTOMODE : A4 TMaer Auto Mode logic here. ..

Pick n Place():

ERD_CASE

Page 94 of 140

Exercise — Operate the SoftStruXure template

1. Open the project archive

i From the SoMachine Home screen, select Extract archive.

@) Home
F

Browse for existing project

Bxtract archive
B Create new machine P
= Machine workflow .

i. Browse to the desktop training folder ACE University Motion with SoMachine
>> SoftStruXUre Template, and select the project archive “SoftStruXure
Machine Template V1107 ACE.projectarchive”

Extract Archive

Loak jh: IE} SoftStru=ure Template j e l:jg -.-
2 . Softskrugure Machine kemplate W1107 ACE, projectarchive
fp Recent
Documents

@

Desktop

Iy Documents

&

ky Computer

&

My Network File name: ISu:uftStrLMure t achine template 41107 ACE.proj Open I
Flaces
Filez of tpe: IF'n:niect archive files ;I Cancel |
A

iii. Click OK to extract.

Page 95 of 140

iii. Select Extract at the Prompt.

Project Archive

General;
Extract archive content relatively to:

Archive contents:

%)

+ Referenced libraries

Additional files. .. | Showve comment. .. |

Exkract | Cancel |

iv. When the extraction has completed, select the Program tab at the main

screen.

project - SoMachine

Configuration Program Commissioning
% File Information
File Mame SoftStruxure Machine template V1107 ACE.profect
Project Path C:\Documeants and Setiings\f400c2\My Documents

v. Select “Save Project As..." from the top level menu.

Home

Properties

File | Edit Miew Project Build Online Debugftatch

E save Project Chrl4-5

TN

| Save Projeck As, ..

| v 3 x

Project Archive

Import Yijeo-Desigrer Project. ..

b ITALE -

Page 96 of 140

vi. Save the project to the folder, ACE University Motion with SoMachine >>
MyProjects

Save Project

Savein: | 1 MyProjects j &= EF v
_ My Recent Documents
[b Desktop

My Documents

My Recent -
D ocuments '_’i by Computer
— e WINKP (]
[2, DVD-RAM Drive (D]
e Data [E:)
Desktop) % Photosmart 0110 series [192.168.2.253) [2:)

\ﬂ by Metwork. Places

|2 Application Synchronization

|C2) Quate to Cash

My Documents [ACE University Motion with 5ok achine
ﬁ tpProjects

[Phata Editing

|3 Pre-5ales Support Guidelines

by Computer | Registry fix For Authar 1t

_ [Registry fis for Juniper YPN

&

My Metwork. File name: SoftStiure Machine termplate Y¥1107 ACE ~ Save
Places I J
Save as type: IF'n:uiec:t files j Canc:

Make sure that the file type “Project files” is chosen.

2. Connect to the Controller and Download

i. Connect to the controller using Ethernet. If necessary, delete and replace the
existing Gateway.

i. Login to the controller, and download the project at the prompt.

Tools Window

Login (Alt+FE)

iii. Select Start at the completion of the download.

Window Help

Skark (F5)

Page 97 of 140

3. Access Manual Mode Control

i. Expand the browser, and double-click Visu_Main to open the main
visualization control screen.

= -@ SoftStruXure Machine template WITO7 ACE i
= My Cantroller [connected] (LMCOSELF4250)
=& PLE Logic
= o Application [run]
+-12) Additional visualization Screens
[cam Tables
I3 Glabal variable Lists
E.'l Project Datatypes
) Readve
L) Task calls (Machine Operation)
ﬁi] Library Manager
= Symbal confiquration
@ Task Configuration

I S S S S

+

B.,ﬁ Trace
_
= WsuahzatonManager
@ |'u'isu_Main
% Expert
028 TMS

ii. From the main control screen, press the Manual button to select Manual Mode.

SoftStruXure Machine Template
Wain Controi Panel

Az communication Q)
Ais alarm @)

Alarm Status

Operating Modes
Prepare | Manual | Auto | Stop |
Prepare Active @) Manual Active) Auto Active @ Stap Active @

Prepare Gomplete @

The Manual Active light will turn ON in Manual mode.

Manual

Manual Active ()

Page 98 of 140

In addition, the Manual control screen selection button (CANmotion/CANopen)
will appear at the bottom menu bar.

Frepare Manual Auta

Prepare Active @ Manual Active () suto Active @
Prepare Complete @

iv. Select CANmotion to open the CANmotion device control screen.

CANmotion Controf Panel

{ FPrevious Axis | Wastar MNext Axis | J

— CANMOTION AXTSMODULE
—i_skxisName q_nDevicetype f—
% [—i_xReset g xConudE O
StartRel | B —i_xEnable q_xInkun - [l INDEP
——M i_stStart gq_xHoming |
LiErvel | ————— —i_x&top q_xRef(OK [~ [CAM
StartHm | 0000 =——~——i rPosition gq_xStopped - [GEAR
100000 =———————i_rVelocity q_xdynchronized [~ [
StartSet | [Goooong = {i_rhcceleration iq_xDone -~ [
| S i_rDeceleration xBusy — [
soon.onn — —i_stParameters q_n.n.ctf;eﬂcde — INACTIVE
p —i_xJogPos q_whxishlarm — [
Jog - | Jog +]J—i_xJoquq q_dwAxisilarmID — 0
y I —ji_xJogFast q_nhxisState — Disabled
Haxis q_shxisStateExt — Waitfor STO or Enable
g_rActPosition - 0.000
q_rActVelocity 0.000

hA AN ALARM Enable Wis

The CANmotion control screen displays the AxisModule for the Virtual Master
axis, as well as representative inputs to control basic functionality.

From this screen the axis can be operated manually with PLCopen output
status updated along with the axis position and velocity in real-time.

v. Use the Axis navigation buttons to select additional axes.

[Frevious Axis Hastar Mext Axis |]

Page 99 of 140

The 3 buttons on the right-hand side of the screen access the CAMming and
GEARIng synchronization controls. The current screen is INDEPendent control.

ol Panel
Mext Axis | J
CANMOTION AXISHMODULE
Name q_nbhevicetype —
t i xConulK - O
le o xInkun |- INDEP
EL o_xHoming [~ [

q xRef0K - [l CAN
tion g _xivopped [~ - GEAR
citcy g_x3ynchronized - .
leration i xDone |- [
leration gq_xBuay [~ .

ANETEL3 q_nhctiveMode = INACTIVE

3. Operate the Axes as a Synchronous Set

i. From the Independent control panel, Enable the Master, Axis1, and Axis2
drives by clicking on the i_xEnable input box as shown.

Axist

Mext Axis |]

CANMOTION RAXTSHODULE

i_sixisHame

o

2 ™ =
4 ARTSEL

i xEnable

I_STSTEET
i_xStop
i_rPosition
i_rVelocity
i_rhcceleration
i_rDeceleration
i_stParameters
i_xJogPos
i_xJogley
i_xJogFast

Axis

q_nbevicetype
q xConmlE

q_xInRun

gq_xHoming
q_xRef0OK

g xitopped

¢ ximmchronized
g _xDone

q_xBusy
q_nhctivelode

g _®AxisAlarm

g duAxishAlarmID

I
-0z EEEDE

CTIVE

q_nixisitate
¢ shxisStateExt

— Standstill
— WWait for Start

gq_rActPosition
q rActVelocity

— 10.269
— 1.373

Note the change in the output status g_xInRun. In addition, the PLCopen
Status (nAxisState) changes from Disabled to Standstill.

Also note the extended message indicating that the axis is “waiting for a start

input”.

Page 100 of 140

i. Selectthe GEAR button to open Gearing control.

e

k-

e | INDEP
g -

- H s
d - [GEAR
d .

18 |~ -

wwi- Il

le |- INACTIVE

Navigate to Axis1 using the Previous Axis / Next Axis buttons.

CANmotion Control Panel - Gearing

[Previous Axis |

Axist

Mext Axis |

|

CANMOTION GEARSLAVEMODULE
.ﬁi_xResetF‘B g nactiveMaster = AXIS
.—i_xl.ink g_xInGear [~ .
| 1.000 =———————i_r5laveRatio _xBusy —.
Update i_xUpdateParam q_xFBAlarm — [
| n.oon i_rPosTolerance gq_nFB3tate — Standstill
no Update requirec —i_stGearParameters g sFBStateExt B Waitfor Link
for pos tolerance —i_nMasterMode q_rMasterPos [— 0.000
HEncHaster g_r3lawvePos [~ 10267
Master
Hslave
iv. Synchronize the axis to the Virtual Master by selecting the i_xLink input.
CAHMOTION GEARSLAVEMODULE INE
i xResetFE - g nActiveMaster — AHIS
.—i_xl.ink g xInGear ;— . &
=———|i_tr5laveRatio q_xBusy [~ [GE
=——i_xUpdateFaran g xFBAlaru | [T
=————1i rPosTolerance g nFBState = Synchronized_Maotion
—i stGearParameters g sFEStateExt = Stopped
—i_nMasterMode q_rMasterPos |- 0.0a0
ZEncMaster g rSlavePos [~ 10.264
SMaster
Hilave

Note the response in the q_xInGear output, as well as the change in PLCopen
state from Standstill to Synchronized_motion.

Page 101 of 140

V. Navigate to Axis 2 and change the operating screen to CAM.
s Axis 2 Mext Axis | J
CANMOTION CAMSLAVEMODULE
-—i_xResetFB - q_nhctiveMaster [~ AXIS
-—i_xLinlr. q_xInSync - .
| 0.000 i_rDffset g xEndofProfile — [l
i_xUpdateParam o _stTappets [~
11i_stCamParameters if ®xCPsetlK [
—_/-—i_hﬂe.stetﬂude ¢ xBusy - [l
-—i_xﬁelectl:an i *FBAlarm [~ |:|
-—i_xl:a.u'rahle?eriadic o nFBStacte — Standstill
| 1 ——CanTable i sFBStateExt — Mo Cam Table
SEncMaster gq_rMasterPos |~ 0.000
SMaster g _r5lavePos |- 217.406
Hslave
vi. Select CAM Profile “1” (entry field) by clicking on the i_xSelectCam input. The
input is momentary.
CANMOTION CAMSLAVEMODULE
.—i_xResetFB - q_nhctiveMaster [~ ARIS
[—i_xLink q_xIniync [~ .
—i_rOffset g xEnd0ffrofile - [
—1_xUpdateParam g _stTappets [~
=—i_stCamParameters if ®xCPsetlK O
—i nMasterMode g _xBuzy - [
.—i_ SeleccCam g _%FBAlarm - [
—i_xCamTablePeriodic q nFBState — Standstill
—HCanTable q_sFBStateExt [— Waitfor Link
SEncMaster q_trMasterPos |- 0.000
SMaster g_r3lavePos 217.400
Hslave
Note that the axis now “Waiting for Link”.
vii. Link the Axis to the Virtual Master as before, and make sure that the PLCopen

state changes to Synchronized_motion.

i—
i_

|om || |mk

IE_1T

CAHMOTION CAMSLAVEMODULE

ResetFB

kLink

1i_rOffset
11_xUpdateParam

i _stCamParameters
i_nMasterMode
i_xSelectCam
i_xCamTablePeriodic
CamTable

EncMaster

e orar

g_nhctiveMaster —~ AXS
IME
g _xIniync — .
g XEndDfProfile [~ . ci
g stTappets |~
¢ xCPsetok — [GE
q_xBusy - [
i *FBAlarm |:|
q_nFEState — Synchronized_Moation
if_sFBStateExt — Stopped
q rMasterPos | 0.000
o w2 larraDas k= nna4d

Page 102 of 140

viii.

Now select the INDEP screen button, and navigate to the Master axis as

shown.

CANmotion Control Panel

Previous Axis |

Master

Mext Axis | J

Startabs

StartRel

Startvel

StartHm

StartSet

[eLss s

0.000

360.000
EO00.000

———

CANMOTION AXISHODULE

i_=AxisName

i xReset
i_xEnable
i_stcStart
i_x3top
i_rFosition
i_rVelocity
i_ricceleration

-

Jog - |

Jog +

iX.

5000000 ——

hx

i_rDeceleration
i_stParameters
i_xJogPos
i_xJogHeg
i_xJogFast

Axis

g _nbhevicetype
g xConulE
q_xInRun

g _xHoming f~
q_xRefOK |~

g _x3itopped [~
g_x3ynchronized [~
g _xDone [~

g _xBuay [~
q_nictiveMode
g _XAxisdlarm [~

g dwAxisAlarmID
q_niAxisitate
g_sAxisStateExc
gq_rActPosition
gq_rActVelocity

=
=

CTIVE

=0

Standstill

Wiait for Start
0.000
0.00o

Select StartVel to initiate a continuous velocity movement of the Master axis.
The slave axes will respond according to the Gearing parameters and Cam

profile

S
Startabs

StartRel

Startvel

StartHm

StartSet

|

L

n.oaa
360.000

e a e lata)

G000.000

Note the transition of the PLCopen state to Continuous_Motion.

MOVEVEL

=[O

Continuous_otion
Constant Yelocity

—i_x3top q_xRef 0K
i_rPosition o _xitopped
=] rVelocity q_x3ynchronized
—i_rhcceleration gq_xDone
=——i_rDeceleration q_xBusy
—i_stParamneters g _mictiveMode
___ _T|i_xJogPos _XAxishlarm
—i_xJogHey g dvAxisdlarmID

B —i_xJogFasc q_nhxisState
Hixis q_shxisStateExt
q_rActPosition

q_rActVelocity

2T4.320
360.000

Page 103 of 140

4. On your own
i. Experiment with a variety of independent and synchronous movement types
using the Manual interface screens

ii. Be creative... you can’t hurt anything!

This completes the Exercise

Page 104 of 140

Chapter 7: Applying SoftStruXure — Robot

In this chapter, we will apply the SoftStruXure template to a machine application. A
pick-n-place robot will be used to illustrate the techniques of a state machine in
governing a defined sequence of events. The application will also highlight the
management of exceptions.

Machine Overview

Basic
Requirements

Inputs

A Cartesian robot is required to pick a product from one location, and place it in
another. The Y axis moves the gripper vertically into position to perform a product
pick or place. The X axis performs a horizontal transit between the pick and place
locations. Y Axis

X AXis

——

\
|
|
]
1
v

Each axis is coupled to timing belt actuator with a 5:1 gearbox. The pitch diameter of
the pulleys is 2.5 inches. The nominal transit speed of the robot is 10 inches/sec.

The machine requirements include:

Automatic Axis Enable on Power up
Prepare Mode for Homing the axes
Manual Mode for Jogging the axes
Automatic Mode for normal operation

» Start and Stop buttons for Automatic mode

YV V V VY

The machine will incorporate 2 sensors that indicate an available product for pick
and an available location for placing the product.

Hardware Inputs include:

Input 1: Momentary Start button
Input 2: Momentary Stop button
Input 3: Pick position OK

Input 4: Place position OK

YV V V V

Page 105 of 140

User entry into the SoftStruXure template is often limited to the following:

Establish the correct number and type of axes
Initialize machine and axis parameters
Assign hardware inputs and outputs

Create the Operational state machine
Manage User Alarms and Exceptions

YV V V V VY

In the next sections, we will navigate the template browser to determine how to
perform these steps as required for the Robot application.

Axis Configuration

For the robot example, 2 servo axes are required. These are already pre-mapped in
the template, so the only requirement is to scale the axes according to the
mechanical system.

The number of axes instantiated in the template is determined by a global constant
located in the Global Variable List, GVL_Constants.

=2 Global Variable Lists
+-10 @WL Template
=2 @vL User
i‘ |G'-.-'L_Cu:unstants
@ GVL_ExT
@ GVl User
+-I2) Project Dakabypes

The Declaration sets the number of axis objects (including a virtual master), and an
enumeration constant for each axis.

1 Iy

g VAR GLOBAL COHSTAHT

3 o c [

4 go iNunber0fCANmotiondxes H IHT 1= G; A5 Numbe
= c_udilMaster : UDINT = 0; S @lwa]
= c_ndidxisl : UDIHT = 1:

7 c_ndidxisz : UDIHT = iZ:

g c_ndidxiz3 : UDIHT HE S

2 c_ndidxisd : UDIHT = 4

- e
=

The enumeration constant is used to identify the appropriate axis as an array
element.

Page 106 of 140

Initialization parameters for these axes are found in the Init_Devices step of

SR_Main.

Init Machine

E%:xﬂachinelnitDone

Init Devices

I
= xDeviceInitDone

Inputs

User Rlarms

EE FALSE
Init_HMachine

Page 107 of 140

Exercise — Configure the Robot Axes

1. Set the number of axes

From the browser, open the GVL_Constants declaration list.

=12 Global Yariable Lists
+-12) vl Template
=12 L User

ﬂ: |G'-.-'L_C|:|nsl:ant5

5‘_ ayL_EXT
@ cvL_User

Make sure that the number of CANmotion axes equals 3, and the number of

CANopen axes equals 0.

1 s

z VAR _GLOBAL COHSTAHT

3 S CANmotion Axis Tdentifiers

4 go iNumber0fCANMOtIondxes H INT HolET A Muambe
& c_udiMazter : UDTHT = 0O; S alway
3 c_udidxisl UDTHT = 1:

7 c_udidxisz UDIHT = 2

1z

13 A4 CANopen Axis Tdentifiers

14 go_ilumber0fCANopenixes INT = 0; ks Numbe.z1 C
15 c_udiCalawisl UDIHT = 1;

1& c_nudiCalaxiss UDTHT = I:

17 c_udiCalAxis3 UDTIHT = 3

2. Map the Axis hardware

From the CANL1 port, double-click the axis DRV_Axis1 SoftMotion object.

Select the Axis type “finite”.

| Yisu_fain | - _ _
Expert SoftMation Drive: Basic | SoftMation Drive: ScalinggMz
™3 axis bype and limits
Ethernet m software limits
Serial Line virtual mode _
CAMD madulo [activated
cAnl f* finite
(3 caNmation {CaMmation)

= | mation_00_L¥M32 (Lexium |
©@P DRY_Master (SM_Driv
= b mation_01_L¥M32 (Lexium |
L7 |DRY_Axis1 (SM_Drive
= b mation_0Z_L¥M32 (Lexium |
C@P DRV_AxisZ (SM_Drive

= b mation_03_L¥M32 (Lexium |

lirnits For CRC {SMC_ControlfsxisBy™*)

velociby: acceleration: deceleration:

1e3 |1es |1es

Page 108 of 140

ii. Selectthe Scaling/Mapping tab, and set the axis scaling according to the
machine specifications...

Hint: remember, each of the motors drives a 2.5 pitch diameter pulley
through a 5:1 gearbox.

SoftMotion Drive: Basic| SoftMation Drive: Scaling/Mapping | Information] Skatus]

scaling

[invert direckion

16420000 0 increments <=2 motar turns

0 makor burns <=>= gear outpuk turns
1 gear oukpuk turns <=3 units in application

1

mapping

iii. Repeat stepsiand ii for the second axis, DRV_AXis2.

3. Map the Axis functionality

i. In Task_Calls >> SR_SoftMotion, Open the step SoftMotion FBs and
comment all but the AxisModules call.

hE Fun AxisModules

S5R_SO0FTHOTION. AXTSMODULES

z Alternate AxisModules with Cyclic controller mode...

SR_SOFTMOTION. ANTSMODULES CCM

3 Run Cam SlaveModules

SR_SOFTMOTION, CAMSL AVEMODULE &

4 Fun Gear SlaveModules

SR_SOFTMOTION. GEARSLAVEMODULE 5

£ Run Master Encoder Fhs

SR_SOFTMOTION. ENCODER SOFTMOTION

Page 109 of 140

i. Browseto SR_Main >> Init_Devices

line comment to activate auto enable.

F5AXTE ==x Virtual or physical axis Master
A4 ENCODER === Encoder Master

>> |nit_Axis1, and remove the Enable

aET MasterType[c_udidxisl] i= AWTE;

A4 AxiaModule parameters
asthxisControl[c udidwisl].stl. shxislane t="'hwisl ':
astaxisControl[c_udiidxisl].stl.xEnable 1= TRUE:
astanizslontrol[c_udidxisl].stl.stParaneters.nControllerfode 1=mc_position;
astdxizControl[c_udidxisl].stl.stParameters.MCDirection 1=POSITIVE;

Recall that the axis user units are set to:

» Position [inches]
» Velocity [in/sec]
» Acc/Declin/sec/sec]

Also, the nominal linear speed of the transit is 10 in/sec.

iii. Setthe remaining Axis 1 movement parameters according to the user units.

A4 AxisModule parameters

I

astixisControl[c_udidwisl].
astdwisControl[c ndidxisl].
astdwisControl[c_ndidxisl].
aathwizControl[c_udidxisl].
aztdxisControl[c_udidxisl].
astdwisControl[c_ndidxisl].
asthdwisControl[c_udidxisl].
astixisControl[c_udidwisl].
astiwizsControl[c ndidxisl].
astdwisControl[c_ndidxisl].
asthdwisControl[c_udidxisl].
astixisControl[c_udildxisl].
astdwisControl[c_ndidxisl].
astdxisControl[c_undidxisl].

DRV Axisl.iMovementIype

ztl.
stl.
stl.
atT.
ztl.
stl.
stT.
ztl.
stl.
stl.
stT.
ztl.
stl.
stl.

sdxislane ='iwizl ';
®Enable = TRUE;
stParameters.nControllerMode =gmc_position:
stParameters.MCDirection t=POSITIVE:;
stParameters.rHomeFozition t=0.0;
stParameters. ritopRanp :=100;
stParameters. stdog. e3lowlpeed t=0.5;
stParameters. stJod. tFastipeed =1;
stParameters.stJog. rTiphist :=0.10;
stParameters.stlog. tillaitTine s=T#500M5;
rPosicion =0;
r¥elocity t=100;
ricceleration :=100;
rDeceleration 1=100;

=0 SO0 =

iv. Repeat the initialization for Axis 2.

v. Save the project

This completes the Exercise

Page 110 of 140

Hardware Inputs

TM5 standard and fast inputs are pre-mapped to symbolic names DI_xx and
FDI_xx. Assignments to global user variables are made in the Inputs step and
Inputs_Fast step of SR_Main and SR_SoftMotion respectively..

:I:xD eviceInitDone

Input= Uszer Alarme

EE FALSE
Init_Machine

’:

Inputs Fast

In SR_Main >> Input_Hardware_Map, TM5 hardware inputs are pre-mapped to
generic global user input variables as shown.

g
DI 08 —— ¢ 1 xProcesslensorz
a
DI g —— g i xlzar
1a
DI a7 —— g 1 xFolick
11
DI 08— ¢g 1 xGollace
1z

It is up to the User to uncomment and edit these assignments, or create the global
variables assignments as needed for the application.

Page 111 of 140

In SR_SoftMotion >> Inputs_Fast, a similar mapping is provided for the Fast
Expert inputs.

z Faat Expert Inputs

FDI_00 ——g_i xUserFast
;]

FDI_ 0l ——g_i xUserFast
4

FDI_0Z ——g_i _xUzerFast
5

FOI_03 ——g_i xUserFast
&

For this application, we will assign the following inputs:

YV V V V

DI_00: Momentary Start button
DI_01: Momentary Stop button
FDI_00: Pick position OK
FDI_01: Place position OK

FDI_00: OK to pick

FDI_01: OK to Place

DI_00: Start

DI_01: Stop

Page 112 of 140

Exercise — Configure the Hardware Inputs

1. Assign the Start and Stop buttons

The template provides a pre-defined Start and Stop inputs identified within the
input logic SR_Main >> Inputs >> Inputs_active. The variables
g_i_xStart_EXT and g_i_xStop_EXT can be used as an entry point for Start
and Stop commands from an HMI screen or hardwired push button.

[- 2 x|
@ vl _User | A
| Project Databypes
| ReadMe
| Task Calls {Machine Operation)
SR_Main (PRIE)
) Alarm Handling
) CAMNopen Devices
) Init Devices
) Init Machine
=2 Inputs
ETR Hardware_Input_p.
@ Inputs_ackive
) Maode Contral
) Outputs
) Stop Contral
) User Alarms
) User Logic
SR_SoftMation (PRIE)
SR_Visu [PRG)

i
i
+
i

e A

| Library Manager

E}a Hardware_Input_Map E}a Inputs_active | g GYL_User

3 Glakal inputs are intended to be momentary pushbuttons
0R AHD
g i xitart EXT — xInputitart
g_i_®Start SolM— 21 ®Input3top —f &
HActduto —
L1133
g_i_x3top_EXT — —— x InputStop
g_1_xdtop S0l — 21
XxCyclel3tcop —
xhlarnTnmed3top —
xAlarmEmer gitop —

i. Select the Hardware_Input_Map logic to open the input assignment editor.

(1 L I []

) Init Machine E Non Safety Compliant configui
) Inputs

E}R |Hardware_Input_Map

&3, Inputs_active DI 98 —— g i xESTOPZ

) Mode Contral

+-12) Outputs & Non Safety Complidnt configil

+

) Skop Conkral

i. Uncomment the rung, and assign the input DI_00 to g_i_xStart EXT.

3 Non Safety Compliant configurat.

DI 00 —yg_i_=x3tart EXT

Page 113 of 140

iii. Editthe comment field...

ki Start inpu t|

DI 00 —g_i_xitart ExXT

iv. Repeat for the corresponding Stop input

4 Stop Input

DI 0l ——g_i_®3top EXT

v. Make these input “momentary” (one-shot) by inserting a rising edge trigger.
Open the Toolbox on the right-hand side of the editor screen, and select
Function blocks.

freaely.

Boolean Operators

o that they can be actirake Math operatars

Cibbar Cieey SEes
L= ey S a=

Function blocks
T r_TRIG
| F_TRIG
B RS

& R

& ToN

& ToF

7 CTU

If the Toolbox is not visible, select it from the top level menu

File Edit | Wigw | Projeck FEDJLCYIL Build Online

H & El Messages Alt+2

POLs A0

Bevias Devices Alk+1

=) Fofts

=

Cross Reference List

Element properties

[
B

ToalBox

B N

T ¥

&l

Breakpoints

Page 114 of 140

vi. Click on the R_TRIG function...

ToolBosx

General
Boolean Operatars
»e dctivate Math operators
Other Operators
_ Function blocks

HF r_TRIG

i F_TRIG

... and drag it to the insertion point as shown.

DI_00 g i xStart EXT

vii. Create the instance name “RTRIG_Startinput* as shown

Start imput
RTRIG_3tartInput

R_TRIG

s

DI 00 —{CLE f £ Qg i xStart EXT

viii. Click OK to accept the auto declaration.

Auto Declare

Scope: Marne: Tvpe:

AR ~| |RTRIG StartInput R_TRIG | =
Ohiject: Initialization: Address:

|5R_Main [MyContrallers PLC Ltﬂ | |

Flags: Comment:

[COMSTANT

[~ RETAIN

[~ PERSISTEMT

o]

Zancel

ix. Repeat this process for the Stop input.

Page 115 of 140

The completed Start and Stop input assignments are shown below.

3 Start input
RTREIG_StartInput
R TRIG
DI_00 —CLE f*g QF—g_i_x%tart_EXT
4 Stop Lnput
RTRIG StopInput
R_TRIG
LI 0l —CLKE f‘g 0F——g_i_x5top EXT

2. Assign the Pick and Place sensor inputs

The template includes predefined variables for the sensor inputs as shown.
Alternatively, you could create your own.

S Global wvariables for pick anrd place demo

g i rPickHeight : BENL:
g i rLeftTop : BENL:
g_i_rRightTop : RERL ;
g 1 xRestoreProfileDefaulc BOOL ;
g_i xGoPick : BOOL:; / machine semsor input
g_i xGoPlace : BOOL:; / machine semsor input

i. Open the Inputs_Fast_active logic in SR_SoftMotion.

=-[%] sr_softMation (PRE)
+-1) Init SoftMation
=) Inputs_Fask
E}R |Inputs_Fa5t_au:tive
+-IJ) Cutputs_Fask

i. Assigng_ i xGoPick to FDI_00, and g_i_xGoPlace to FDI_01.

z Fast Expert Inputs
FDI_00 ——g_3i xGoPick
3
FDI 0l ——g_i_xGoPlace

iii. Save the project.

This competes the Exercise

Page 116 of 140

User_Logic

A User_Logic step is provided for User-specific (or Machine specific) code. The
state machine for robot operation will be located here.

Stop Comtrol User Logic Outputs

A corresponding User_Fast step is provided within SR_SoftMotion for logic
that must be solved on the fast Motionbus cycle time.

Within User_logic, a decision-based CASE statement applies calls depending upon
the current operating mode. The pre-defined operating modes are :

L= e I T < SO o I i T

R T T T R R R R S S e S T S o o =
N T I e = TR R R T T S O =]

YV V V V

NULLMODE
PREPAREMODE
MANUALMODE
AUTOMMODE

£
£F Fun User Logic depending upon the active mode

CamTable Felection();
CRSE nhctiveMode[AUTOMODE] OF

NULLMODE[@ | // no action...

-

PREPAFEMODE[1 |: /¥ User Prepare logic here...
Prepare_axes():
MANUALMODEL 2 |1 /¢ User Manual Mode logic here...
DREV_Master, iMovenentType[1 | = 0: /¢ 0 = Modulo, 1 = Finite

SR_Wisul): /7 Manual axis control from visuglizationm or HMI
o Machine Reference Logic(); /¢ Logic to apply one-time machine referec

AUTOMODE[& | // User Auto Mode logic here.. |

-

Pick_n Place_cami);

EHD_CASE

The existing Prepare_Axes call is designed to enable and home all of the axes. The
logic can be edited for a specific homing process or functionality as needed. For this
application, it can be used as-is.

Page 117 of 140

For the new robot application, the existing Pick-n-Place routine will be replaced by a
new program created in the next exercise.

Robot The following path points will used to identify the robot target positions and
Movement Path exceptions.

Rest position

o)

@)

Pick position Place position
Robot In order to build the state machine to control the robot, we have to know the
Operation operational sequence... provided by the machine builder. For our purposes, the

operational sequence will be outlined as follows:

© N MDD PE

e
A WN RFP O

15.

Machine is powered up

Axes are homed on command from Operator Screen (Prepare button)
Machine is placed into Auto Mode from the operator screen

Axes automatically go to the “rest” position 2.

Operator presses the start button

If “OK-to-pick”, then robot moves to position 1

Robot returns to position 2

Robot moves to position 3

If “OK_to_place” then robot moves to position 4

. Robot returns to position 3

. Robot moves to rest position 2

. If “OK-to-pick”, robot continues to position 1

. Repeat until Stop.

. If a Stop command is given, the robot completes the current path back to the

rest position 2.
Return to state 5.

Exception handling is indicated in red text above. The state machine to drive the
operations wil include each of these process, as well as confirmation steps using
output status from the axis modules.

In the next section, we will explore the basic concept and syntax of a state machine,
and create a sequence-based state machine to drive these actions and exceptions.

Page 118 of 140

What is a State Machine?

CASE
statement

In the previous chapter, we controlled and monitored an axis using the
stAxisControl variable structure. We could operate the robot manually by
manipulating the interface variables and observing the result. We load parameters
for speed, position, acceleration and deceleration for each axis. Then at each step of
the operation, we make a conscious decision to execute an absolute movement of
the appropriate axis in the correct sequence to move the gripper.

Problems...?
» We're not very fast or efficient
» We're not very reliable
» We're too expensive
In this chapter, we will automate the functionality that we performed manually. The

sequencing logic used to automate these functions is a “State Machine”, and all
communication to the Axes will take place using the stAxisControl Interface.

Similar to IF THEN ELSE, a CASE statement is a form of multi-branch logic that
provides an unlimited number of branch options.

The syntax is shown below.

diDayOfWeek is the test variable, and Sunday...Saturday are the test conditions.
Each of the test condition is followed by a logic statement(s) to be performed if the
test variable matches the particular expression.

CASE diDayOfWeek OF

Sunday:
RegularMenu(); BRANCH

CloseShop(); CHOICES

Monday:

ClosedMonday() ;
Tuesday:

OpenShop() ;

TuesdaySpecials() ;
Wednesday:

RegularMenu();
Thursday:

RegularMenu();
Friday:

WeekendSpecial();
Saturday

WeekendSpecials();

END_CASE

Page 119 of 140

Alternatively, these branch options can be driven chronologically to form an
operational sequence of events.

CASE diSetupState OF

0: // Wait
10: // Load part BRANCH
IF xPartSensor THEN SEQUENCE
diSetupState:= 20;
END_IF
20: // Jog to position
JogControl() ;
IF xPartinPlace THEN
dSetupState :=30;
END_IF
30: // Reference:
xStartHome = TRUE;;

diSetupState :=40;
40: /I Confirm Reference completed
If xHomingDone THEN
xStartHome = FALSE;
diSetupState = 50;
END_IF;
50: /I Setup completed - Wait for Start button

END CASE

Page 120 of 140

Exercise — Build the Robot State Machine
1. Add an “action” Object to the User Logic folder

i. From the project browser, right-click on the User Logic folder under SR_Main,
Select Add Object >> Action.

+-12) Stop Contral
+-2) User Alarms

= [User Logic
&g, Machine_R ‘:"#:' el
|28 adjustzca Copy
Sp CamTable
Eﬂ Pick_n_Pla
@; Prepare_f X Delete
Za User_Logic Properties...
SR_SaftMation (PR :
SR_Visu (PRIG) i) Add Object M ||[E8 Action...
! Library Manager Q Property...
1 3vmbol configuration : .
§ Task Configuration @ Transiion. .
| Trace
| wisualizationManager =) Add Folder...

i. Create the action “Pick_n_place_PTP” using the Structured Text (ST) editor
as shown.

Add Action 3

@R Create a new ackion

Marne:
Pick_n_Place_PTF|

Implementation language:
|Structured Texk (3T) j

Cpen | Cancel

Page 121 of 140

iii. Addacomment line at the top of the ST editor.

53 Pick_n_Place_PTP
1 FF Btate machine to control a IPIP pick and place robok,

Comments can be created using the double slash //, or by surrounding
the text by the comment delimiters (* ... *).

2. Configure a CASE logic statement

i. Create the CASE statement below the comment lines by typing the CASE
syntax as shown.

‘|54 Pick_n_Place_PTP |
1 A4 Btate machine to control a IMTP pick and

Z

] CASE diFobotitate OF
ER MO _ALARM
ZFMNO_FRROR

i. Type <Enter>to complete the instance.

iii. Select (or type) DINT as the Auto Declaration data type for the CASE variable.

Auto Declare E|
Scope: Mame: Twpe:
AR »| |dRobotstate SINT - =
Ohject: Initialization: Address:
|5R_Main [MyController: PLC L:ﬂ | |
Flags: Comment:
[~ COMSTANT
[~ RETAIN
I~ PERSISTEMT
[o]'8 | Cancel

The completed CASE statement instance should look like the following.

|5 Pick_n_Place_PTP | [§] SR_Main
1 £ Btate machine to comtrol a PTP g

z
3 CASE diRobotitate OF
4
1=
&

END CASE

Page 122 of 140

3. Fill in the operating sequence for the robot.

In general it is useful to apply the sequence branches in multiples of 10. This
makes it easier to insert lines later if needed. State “0” will be a “wait” state.

i Create state 0 with a “wait” comment as shown. The semicolon is used as a
“null” instruction.

A4 Btate machine to control a2 ITP p

CASE diFobotState OF
0: < wait

r

e I T O T I S

EHD CASE

Use the PLCopen axis status confirmation, as well as the previous “operational
sequence”, as guides to complete the state sequence objectives.

ii. Create the starting point (State 10) as a confirmation of the “ready” status of
each of the axes.

3 CRSE diRobotitate OF

4 n: /" wait

= H

=

7 10: ¢ Confirm that the axes dre ready for @ oconmdnd

iii. Create state 20, to move the axes to the starting point “overpick” position 2.

2 CRSE diFobotitate OF

4 0: A wait

5 ;

&

7 10: ¢ Confirm that the axes are ready for @ commdand
=

a

10 200 4F Mowe the gxes to Position 2

11

iv. Confirm that the movement has completed in state 30.

10 20: 4 Move the axes to Positionm 2
11
1&
13 30 S Comfirm movement completed
14

Page 123 of 140

v. Edit the remaining sequence states as indicated:

40:

50:

60:

70:

80:

90:

100:

110:

120:

130:

140:

150:

160:

170:

/I Wait for Start Input

/I lF OK to pick, Move to Pick Position 1

/I Confirm move completed

/I Move back to Position 2

/I Confirm move completed

/I Move to Overplace Position 3

/I Confirm move completed

/I IlF OK to Place, Move to Place Position 4

/I Confirm move completed

/I Move back to Position 3

/I Confirm move completed

/I Return to Rest Position 2

/I Confirm move completed

/I Return to check Start status, and repeat cycle

4. Assign the state machine sequence logic.

Control of the axes is managed through the components of the interface
structure array variable, astAxisControl [].

For example, an axis is ready to accept a movement command if it is PLCopen
state “Standstill”.

astAxisControl[c_udi_Axis1].stQ.nAxisState = Standstill.

Page 124 of 140

i. In step 10, apply logic to test that each of the axes are ready to accept a
command. If so, jump to the next sequence step.

10: /4 Confirm that the axes are ready for a commpand
IF astiaxisControl[c udiidxizl].stl.niéxisitate = standstill
AHD aztidxisControl[c_udidwisZ].stl.néxisitate = standstill THEH
diRobotitate 1= 20;
EHD _IF

The target positions are defined as follows:

(2): 10

@) (&)

Position Axisl (X) AXxis2 (Y)
1 0.0 0.0
2 0.0 10.0
3 24.0 10.0
4 24.0 0.0

ii. Instep 20, apply the initial movement parameters, and trigger an absolute
move.

Z0: 47 Move the axes to Position 2
astixisControl[c_udidxizl].atl.rPozition HE S
astixisControl[c_udidxisZ].atl.rPosition t=

1

astaxisControl[c udidxisl].atIl.r¥elocity = 2.0;
astixisControl[c_udidxisZ].atl.rVelocity t= 2.0;
astaxisControl[c udidxisl].stl.stitartMode. xitartovedbs := TRUE;
astixisControl[c udidxisZ].stl.stitartMode. x3tartfoveldbs := TRUE;

diFobotitate 1= 30;

ii. In step 30, confirm that the movement has completed, and reset the
xStartMoveAbs commands.

L = P

IF astAxisControl[c_udiAxisl].st(.nhxisState = standstill
AMD astAxisControl[ec_udiAxisZ].stl.nixisitate = standstill THEN
astAxisControl[c_udiAxisl].stl.st3tartMode. x3tartMovedbs i
astAxisControl[c_udiAxisz].stl. stitartlode. xStartMovedbs
diRobotState = 40;
END_IF

Hint: Copy and paste to simplify !!!

Page 125 of 140

For the Start input, we will make use of the predefined variable xInputStart,

which is SET to TRUE within the Inputs_active logic.

g_i_x3tart EXT —
g i x3tart SolM—

=1

OR

*xInput3top —O

Hactduto —

xInputStart

iv. Wait for the xInputStart condition in Step 40.

e an: S Wait Ffor Start Input

Z9 IF xInputitart THEH

20 diFobhotitate 1= 50
21 EHMD TF

3z h

v. Complete the remaining state logic steps.

vi. Save and Rebuild the application to check for any syntax errors.

5. Create “position” values to be used in the visualization.

The Auto mode visualization screen displays the axis positions as a small blue
box in the XY plane. The range of movement for the visualization screen is
about 360 by 360 pixels. In this part of the exercise, we will copy the existing
visualization position component from the old pick-n-place logic and modify it
for use with the new robot.

i. Open the old pick_n_place_cam logic, and copy the highlighted “dot” position

text as shown.
1

o_iDotxpos_3ol: =
g_iDot¥pos_3ol: =

LT s S < I)

SF variables For visualizationm display
Sy iDotXpos SoMr= REAL TO INT(1 # astAxisControl[c udidxisi].g ract

BEAL TO THT(1 * DEV_Axisl.fietcPosition):
BEAL TO THT (O - (0.5 * DRV _AxisZ.f3etPosition])]);

ii. Paste this into the new state machine logic below the END_CASE statement.

117 170:

115 diRohotitate 1= 40;
11=

1Z0 EHD CRSE

121 a

12z g_iDotXpos_Sol:
123 g_iDot¥pos_SoM:

S Return bo check Start status, and repeat cycle

REAL_TO INT(l * DRV_Axisl.f3etPosition);
REAL_TO INWT(0 - (0.5 * DRV_Axis2.fSetPosition))]

Page 126 of 140

Since the robot moves through a position range of about 24 inches. We need to
multiply the visualization scaling by approximately 360 / 24, or 15 in order to be
able to see comparable movement.

iii. Edit the logic to “amplify” the on-screen movement of the axes as shown.

g _iDotkxpos_ 3olM:
g _iDotY¥pos_ FolM:

FEAL TO IWT|15|* DEW Axiszl.fietPosition);
BFEAL TO TWT (0 - [(15|* DRV _AxisZ.fietPositio

6. Assign the state machine call to the User Logic action.

i. From the browser, select User_logic_action, and add the new state machine
logic outside of the CASE statement.

i User_Logic_active

1 e

z S Bun User Logic independant upon the active mode
= CanTable Jelection():

4 Pick_n_Place PTP() ;|

=

=

7

g A5 Bun User Logic depending upon the dctive mode
2 CRSE nictiwveMode OF

1a

11 NULLMODE: S5 mo action...

1z H

i. “Comment”the existing state machine call within the AUTOMODE branch to
prevent the old logic from solving.

ZZ rrd Machine Refereance Logic(); /7 Logic to apply one—tii
za
24 ATTOMODE : A Uaer Auto Mode logic here...
zE :

bt 3 L Pick n Place camy()/

27 o a
28 EHD_CHSE

r

7. Save the project

i. Build the project to check syntax.

i. Save the project.

Page 127 of 140

8. Download to the controller

i. Using an Ethernet connection, Select Login from the top level menu.

Window Help

B o i OS]

t =1 Pick_n_Place_PTI" |
=, PR N _FACE_ TN ogin ral+FE) [——
5 1 A Stage oftrol & DTD
Z
- = MSE AiRnkhntState NRP

i. Acknowledge any download or connection prompt.

SoMachine [z|

P Unknown version of Application 'Application’ on target: Do you want to perform a
- download and replace the application?

Mo Details.. .

iii. When the download has completed, select RUN from the top level menu.

Window Help
=

g Pick_n_Place_pTP Start (FS)
MyController.Application.SR_Main.Pick_n_Place_P

—‘ 1 S State machine to control @ PTD

This completes the exercise

Page 128 of 140

Exercise — Operate the Machine

1. Run the Project from

VISU_Main

i. From the top level menu, select Window >> Close All Editors.

Tools | Window | Help

Mext Editar
Previous Editor

Close Editor

oo |-" Clase All Editars

Reset Window Layouk

ii. From the Project browser, double-click to open the main visualization screen

Visu_Main.

" Symbol configuration

+ @ Task Configuration

Eiﬁ Trace
YisualizationiManager
@ |'u'isu_Main

'E!. Expert
2 TMS

2. Prepare the machin

e

ain Screen, Press the Prepare button to initiate the axis Homing

i. From the M
process.
Alarm Status
Operating Wodes
FPrepare | Manual | Alto |
Prepare Active @ Manual Active @ Auto Active @
Prepare Complete @

fl Al

Page 129 of 140

i. Observe the Prepare Active light turn ON. The axes will begin homing, in
order, to the encoder Index mark.

Prepare |

Prepare Active ()
Prepare Complete @

At the completion of the homing process, the Prepare Active light will turn
OFF, and the Prepare Complete light will turn ON.

Prepare |

Prepare Active @
Prepare Complete ()

3. Select Auto Mode

i. Press the AUTO button on the main screen to select the Automatic operating

mode.
Operating Modes
Prepare | Manual | Auto |
Prepare Active @ Manual Active) suto Active)

Prepare Complete ()

ii. Ifall permissives are met, and the machine transitions to Auto Mode, the Auto
Active light will turn ON and the Auto screen button will appear at the bottom
menu bar. Confirm the Auto Active light...

Auto

Auto Active (O

iii. ... and selectthe AUTO operating screen from the bottom menu bar.

AUTO ALARM

Page 130 of 140

4, Start the machine and apply the exceptions

This will open the AUTO mode operating screen. Here you can Start and Stop
the machine, and observe the physical movement of the robot axes.

Make sure that the OK to Pick and OK to Place inputs are ON as shown.
Select the Start button, or Toggle the hardware Start input to start the

machine.

FDI_00: OK to pick

FDI_01: OK to Place

DI_00: Start

DI_01: Stop

Normally this would initiate the pick and place robot movement. However, in

this case... there is no motion.

Open the state machine to see which step is currently active,

CASE diRebot3tate 0 | OF
0: /7 wait

.

10: 4 Confirm that the axes are reddy for @ command
IF astixisControl[c_udilxizl].stl.nbdisState Standstll | = standstil.
WD astixizControl[c udilwisZ].stl.nhxisState] Standsill | = ;

diRchotState o0 |

END_IF

Z0: 44 Move the axes to Position 2

astidxisControl[c_udidxisl].
astdxisControl[c udidxizz].
agtidxisControl[c_udidxisl].
astdxisControl[c_udidxisz].
astidxisControl[c_udidxisl].
astdxisControl[c_udidxisi].

diRobotState o | =

=tI.
ztI.
stl.
stl.
stl.
stT.

30;

20;

rPositien] o |
rPosition] 0 |
rtVelacity |
rtVelacity 1w |

= 0;

HER AT
= 2007
= 2007

sritartMode. xitartMovedhsFALSE
stitartMode. x3tar tMovelbsFalsE

The state machine is “stuck” at diRobotState = 0. There is no logic
mechanism to move the state variable to 10. We will do this manually at
first, then add logic to automate the transition.

Page 131 of 140

iv.

V.

Vi.

Click on any of the available diRobotState fields, and enter the value 10 at the
Prepare Value prompt.

oo &

Expression: |5R_Main.u:|iRu:uI:u:utState

Tyvpe: DINT

Current value: |D

what do wou wank to do?

{* Prepare a new value for the next write or force operation:

10|

~

Click OK to prepare the new value...

o4 | Cancel

... then type <CTRL><F7> to apply the prepared value.

diRohotstate| 010= |

The robot should begin running. Observe the online changes in the state
machine.

i diRobotState 120 | OF
o: " wait

"

10: /4 Confirm that the axes are ready for 3 command

IF astixisControl[c_udidxisl].stl.nixisState] Standstll | = standstill[3
WD astixisControl[c_udilxis2].stl.nixisStatebiscete M | = stand:
diRobotitate 120 1= 20;
EHD_IF

20: S Move the axes to Position 2

astdvisControl[c_udidxisl].scI.rPositio 1= 0;
astiwisControl[c udidwisz].stl.rPosition] o | := 10:

asthwisControl[c_udikxizl].stl.rVelocity 2 | := Z.0;
asthwizControl[c_udidxisZ].stl.rVelocity] & | = Z.0;

asthwizControl[c_udidwisl].stl.stStartMode. xStartMoveibaFaLsE 1= TRU
astiwisControl[c udikxizz].stl.stitartMode.xStartMoveihaTRUE| = TRIJ
diRobotitate 120 1= 30:

30r 47 Comfirm movement completad
IF astixisControl[c udidxizl].stl.nixisState] Standstll | = standstill] 3
WD astixizControl[c_udilwisZ].std.ndxisdtatebiscete b | = stand:
astiwisControl[c_udidxisl].stl.st3tartMode. x5 tar tMovelhsFALEE| 1=
astiwizControl[c_udidxisz]. stl.stitartMode. xStartioveihsTRUE| 1=
diRobotitate 120 = 40;
EHD IF

Page 132 of 140

vii. Speed up the robot by selecting the velocity parameters for Axis 1 and 2 as
shown...

20 4 Move the dxes to Position 2

aatiawisControl[c udidwisl].scI.rPosition] o | := 0O

astiwisControl[c udiiwisZ].scl.rPosition 10 | := 10
gatiwisControl[c udidwisl].scl.rWelogivy] 2 | |:= Z.0:
astixisControl[c_udidxisz].stl.xVelaogity] 2 | |:= 2.0

aathxisControl[c udidxisl].stI.stStartMode.xStartMoveldhs[TRUE]
aathxisControl[c udidxisZ].stl.stitartMode. xStartMoveldhsFALSE

diFobotdtate] 180 | = 30;

viii. Change each of these to the prepared value 10 as before, then apply the
change using <CTRL><F7>.

Z20: & Move the axes to Position 2

asthxisControl[c udibxisl].stI.rPosition] o | = 0O;
asthwisControl[c udidxisZ].stI.rPosition] W0 | := 10;:
astiwisControl[c_udidxisl].stl.rVelocity| 210z |
astiwisControl[c_udidxis2].stl.rVelocity| 2410z |

asthxisControl[c_udifdxisl].stl.stStartMode. xStartMoveihsFaLsE
asthxisControl[c udidxisz].stl.stStartMode.xStar tMovelhs[TRUE]

diRohotitate] 80 | := 30;

ix. Apply exceptions using the OK to Pick and OK to place inputs.

X. Stop and restart the robot using the hardware inputs.

This completes the exercise

Page 133 of 140

Managing the State Machine

Run Conditions

In the previous exercise, we had to manually transition the state machine from the
“walit” state into a “running” state. In this section we will apply branching conditions to
automate this process.

Typically, we use the logic of an IF THEN branch to manage a state machine.

IF <run conditions> AND NOT One_Shot_Variable THEN
Set the One_Shot_Variable
Move the state machine into a specific run state (10)
ELSIF <reset conditions> THEN
Move the state machine into the wait state (0)
Reset the One_Shot_Variable
Reset any control variables
END_IF

The logic must be applied “outside” of the CASE structure.

For the Robot application, we will apply the Run conditions as follows:

» Machine in Auto mode
> No active alarms
» Prepare completed (optional)

The template provides global variables that indicate the current machine status in the
Global Variable list GVL_Template >> GVL_Controller.

£ Global Machine status

g_xbdxisConmunicationlE : BOOL ;
g _xPrepareidctive : BOOL ;
g_xPrepare_Completed : BOOL ;
q_xbhutoldctive : BOOL ;
g_xMarmmalbdctive : BOOL ;
g _HAtophctive : BOOL ;

Similarly, active Alarms are indicated by the BOOLEAN g_xAlarmActive.

A4 Glabal Alarm status

g _xhlarmdctive : BOOL; 2 An active alarm eXis
g _xactCycleltop : BOOL ; A An active oycle stop
g_xactImmedstop : BOOL ; SO An aotive immedidte

g _ashlarmText : ARBRY [0..5] OF STRING(cd); 7.
g _astdlarmlList : ARRRY [0..:20] OF 3T _AlarmInform
IFE_Tzer_Alarm Handler : FBE_T3ER_ALARM HANDLER:

alFE Zwstem Alarm : ABRRAY T0..oc iMumber0f3wvstemila

Page 134 of 140

Reset Typical reset conditions could be:

Conditions
» Active Alarms (requiring a IMMEDIATE stop)
» Transition out of Auto Mode

As an example, the following state machine manager could be used for the robot
application.

IF g xidutodctive AHD HOT xdutoFunFlag THEH
xantoFunFlag = TRIE;
diRobotitate 1= 10;

EL5TF HOT g _xdutobctive OR g xdctImmeditop OR g xidctEmergitop THEH
azthwisControl[c_udidxisl].stl. stitartMode. x3tartMowedha: =FALSE;
aztdwisControl[c_udildxisa].stl. stitartMode. xitartMowvedhs: =FALSE;

q_1 xStart EXT = FALZE:
q_1 xStart 3ol = FALZE:
whintoBunFlag = FALSE:
diFobot3tate 1= 0;

EHD IF

Page 135 of 140

Exercise — State Machine Manager
1. Apply the state manager code.

i. Copy and paste the state manager logic as indicated in the previous section
into the state machine before the CASE statement.

IF g _xdutobctive AHD HOT =dutoRunFlag THEH
xhutoFunFlag := TRIE;
diRohotitate 1= 10;

ELSTF HOT g _xdutobctive DR g xbhctImmeditop OR g xictEmergitop THEH
astiiszControl[c udidwisl].stl.stitartMode. x3tartMovedbs: =FALIE;
astiizControl[c udidwisa].stl.stitartMode. x3tartMovedbs: =FALIE;

g 1 xitart EXT = FALZE:

g 1 x3tart_3oM = FALZE:

xhutoFunFlag = FALZE:

diRohotitate HEH
EHD TF

CASE diRobotitate OF
0 A7 wait

-

10: /7 Confirm that the axes dre reddy for a4 command
IF astaxisControl[c_udidxizl].stl.ndxis3tate = standstill
AHD astdwisControl[c_udidxiszzZ].stl.nixiszitate = stand
diRohotitate 1= 20;
EHD IF

i. Build and Save the project as before. Login and download the change

iii. While In Run, apply a warm start to reset the controller and control variables

Projeck Build | Online | Debugwatch Tools ‘Window Help
[y E
."_g Logout Chrl+FS Ea. Pick_n_Place_PT
) Task Calls (Ma Create boot application
=-[&] SR_Main :

J_Alarr: Remote connection, ., Bte machine to oo
-0 Moy Multiple Download. . whutohotiveTRUE | A
#.0) Trnit D LutoRunFlagTRUE

niit D
+ 3 ik M iRchotitate 100
3.~ Inl " HOT g xdutobctive
npuks
_.I F) staxisControl[c
+-2 Mode Source download to connected device] -
#.23) outpu rdxisControl[c_uc
S0 = ':'C b Start FS | i xStart EXTFALSE
0
0 DF |1 witart SoMFALSE
ser
H ey User U butoRunFlagTRUE
= E}ierm| Reset warm iRchot3tate 100
A o
= Reset cold F
EX
=1 - -
E‘“ Reset origin HiRohotStatel 100

Page 136 of 140

iv. Select Start once again to Run the program.

Window Help

g4 pick_n_Place_PTP Skart (FS5)

MyController.Application.SR_Main Piclk n_Place_P
£5 Btate mackine to coxtrol 2 PTP

v. Prepare the machine as before, and select Auto Mode.

This time, the robot will move to the rest position awaiting the Start button input.

Go Pick

Go Place

®

O,

)

O,

Fick

Place

vi. Operate the robot as before testing the behavior with exception inputs.

This completes the exercise

Page 137 of 140

User Alarms

The template provides a convenient means of managing user alarms. Dedicated
function blocks are located in the User_Alarms step, and can be copied and pasted
as necessary to add, delete, or modify existing alarms.

l:lznxD evicelnitDone

[nput=

Uszer Rlarme

I

FALZE

Init_Machine

The template automatically manages and displays axis alarms. Custom User alarms
can be created using the FB_User_Alarm function block as shown.

Four input are required to create an alarm:

» An alarm trigger event (BOOL)
» An arbitrary (unique) ID number
» Text to display when the alarm occurs
» The required reaction to the alarm
10
alFE_Uzer_Alarm[5]
FE USER ALARM
g i xProceszsiensorl —i_xAlarmTrigger g xhctivellarm —
5 —i_ndidlarmID
' No product available' —i_zhlarmText
WARNING —i_ndlarmBReaction
11
alFE_Tzer_ Alarm[6]
FE_USER ALARM
g i xProcessiensors —i_xdlarmTrigger g xbctivedlarm [~
6 —i_udidlarmID
' Accumulator Overflow' —i_zhlarmText
CYCLE3TOF —i_ndlarmBeaction
1z
1z AxisModule Alarms begin here.. . .Mindged by the system... Do Not modif
SR MATH. XIS ALARME

Page 138 of 140

Alarm Reactions include:
Reaction Description
WARNING No system response other than display
CYCLESTOP User —defined machine stop at end of cycle
IMMEDSTOP Axes are stopped immediately, and Slave axes
remain synchronized
EMERGSTOP Axes are immediately and individually

The EMERGStop reaction would typically be managed by a Safety PLC or
Enhanced Safety card for the LXM32 axis. An Emergency stop generates a
category 1 controlled stop followed by removal of the STO (safe torque Off)
inputs. Itis included in the template for demonstration purposes only.

The predefined user alarms in the template can be used to illustrate a variety of
Alarm conditions and reaction. In particular, User Alarms [4] through [7] illustrate
each of the alarm reactions.

10

g_i_xLightfurtain i xbdlarmTri UEE r o xbhcotiveblarm
4 i ndidlarmID
' Light Curtain Actiwvated' i_zbdlarmText

EMERGITOF i_nélarmReactiaon

alFBE_User_dlarm[5]
FB_USER ALARM

g _1_MProcessiensorl —i_xAlarmTrigger o xhdctivellarm —
5 —i_ udidlarmID
' No product upstrean' —i_sAlarmText

WARNING —i_nhlarmReaction

aIFE User &Llarm[&]
FE USER ALARM

g _i_®Processiensors —i_xadlarmTrigger o xActivedlarm [—
6 —ji_udidlarmID
' Acoumulator Owverflow' —i_shlarmText

CYCLESTOF —i_nblarmReaction

alFE_User_Alarm[7]
FE_USER ALARM

g 1 xProcess3ensor3 i xbdlarnTrigger q xbdctivebdlarm
7 i_udidlarwID
' Downstream Jam detected!' i zbdlarmText

IMMEDSTOP i_ndlarmBeaction

In the final Exercise, we will demonstrate how the template manages these Alarm
types.

Page 139 of 140

Exercise — Managing Alarms

1. Apply the pre-defined User alarms

iv.

While operating the robot, navigate to the Global variable list GVL User >>

GVL_User

) Cam Tables
[tGlobal Yariable Lists
+-Z) @YL Template
=) GWL User
i‘ GWL_Constants
@ Gl ExT

i |Gul_Lser

) Project Datatypes

) ReadMe

) Task Calls (Machine Cperation)
= SR_Main (PRI

) Alarm Handling

) CaMopen Devices

) Init Devices

) Init Machine

) Inputs

) Maode Caonkral

o

CAHrELLI0N
i‘ g_i_xUser
ﬂ' g_i_xUserFast
@ 9_i_+ESTOPL
@ a_i_xESTOPZ
@ a_i_+ESTOP3
ﬂ' a_i_xLightCurtain
ﬂ' g_i_xPracessaensarl
ﬂ g_i_xProcessSensor?
i‘ g_i_xProcessSensor3
ﬂ' g_i_xModeselect
ﬂ' g_i_rPickHeight
ﬂ q_i_rLeftTop
i‘ a_i_rRightTop
ﬂ' g_i_xRestoreProfileDefault
ﬂ' q_i_xG@oPick
ﬂ g_i_xGoPlace

1 e vdl
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOOL
BOCL Fal
REAL 30C
REAL g0
REAL 2a€
BOOL
BOOL
BOCL

Select any of the 4 user alarms as indicated, and prepare the value TRUE to

trigger an alarm reaction.

@ 0 _=ESTOPL EOOL
@ o_i_«ESTOPZ EOOL
} i xESTOP3 EOOL
@ o__xLightCurtain EOOL
;‘ g_i_xProcessSensarl Bl Iiﬂi
;‘ g_i_xProcessSensars BOOL
;‘ g_i_xProcessSensara BOOL
@ 1 _ModeSelect ECOL
@ o_i_rPickHeight REAL
W o_irLeftTop REAL

Clear and acknowledge the alarm to restore operation.

Repeat for the remaining user alarms.

This completes the exercise

This completes the Training Event !

Page 140 of 140

	Contents
	Revision History
	Course Overview
	Course Objectives
	Course Organization
	Training Materials
	Related Documentation

	SoMachine Training module
	Training Module
	LMC058 Controller
	LXM32A Servo axes

	Axis Types
	Finite
	Modulo
	Virtual
	Master Encoder

	Movement Paths
	Point-to-Point Movement
	Synchronized Movement

	Referencing
	Referencing Move
	Set Position
	Multi-turn Absolute Encoders
	Additional information
	Next up

	CANmotion / CANopen parameters
	Axis Commissioning
	Electrical Power Wiring
	 Encoder Feedback
	Commutation
	Application Settings

	Exercise – Lexium32 Commissioning
	SoMachine Browser
	Browser at a Glance
	Expert and TM5 Standard IO
	CAN ports
	Functional Group Libraries
	POUs
	Tasks

	Exercise – Create a SoMachine Application
	SoftMotion Axis – Mapping the Hardware
	CAN1 Port
	CANmotion Master
	CANmotion Cycle TIme
	CANmotion Axis - CANopen Device
	Service Data Objects
	SoftMotion Axis Object
	Axis Type
	Scaling User Units

	Exercise – Mapping an Axis on CANmotion
	Motion Control – Mapping the Functionality
	Task Calls
	SoftMotion
	The PLCopen State Diagram
	MC_ ReadAxisStatus
	PLCopen - General Characteristics
	Input Execution Types
	Axis_Ref

	Exercise – Create an Axis Control POU
	Controlling an Axis Using System Variables
	Online Declaration Variables

	Exercise – Control an Axis
	A Note about Standardization
	Variable Naming Convention

	Axis Interface
	Structures – Compound Data types
	Axis Interface Structure

	Exercise – Create an Axis Interface Structure
	Interface Application
	Exercise – Apply the Interface Structure to your program
	SoftStruXure Overview
	Browser at a Glance
	Hardware Map
	Functional Map

	SR_SoftMotion
	SoftMotion_FBs
	AxisModules

	SR_Main
	Mode Control
	User Logic

	Exercise – Operate the SoftStruXure template
	Machine Overview
	Basic Requirements
	Inputs

	Axis Configuration
	Exercise – Configure the Robot Axes
	Hardware Inputs
	Exercise – Configure the Hardware Inputs
	User_Logic
	Robot Movement Path
	Robot Operation

	What is a State Machine?
	CASE statement

	Exercise – Build the Robot State Machine
	Exercise – Operate the Machine
	Managing the State Machine
	Run Conditions
	Reset Conditions

	Exercise – State Machine Manager
	User Alarms
	Exercise – Managing Alarms

