

PARAMENIDES:

Web-Based Expert System for

Problem Solving and Diagnosis

by

Karl Cassar

 Supervisor: Dr. John Abela

 Co-Supervisor: Dr. Kevin Vella

A project submitted to the

Faculty of Information and Communications Technology

in partial fulfilment of the requirements for the degree of

Bachelor of Science in Information Technology (Hons.)

Department of Computer Science and Artificial Intelligence

University of Malta

June 2009

i

Contents

Abstract .. vii

Acknowledgements .. xi

List of Tables .. xii

List of Figures .. xiii

List of Equations .. xvi

List of Algorithms ... xvii

1 Introduction .. 1

1.1 Overview .. 1

1.2 Knowledge Systems ... 2

1.3 Expert Systems .. 4

1. 3. 1 Characteristics of an expert system ... 5

1. 3. 2 Components of an expert system ... 6

1. 3. 3 Pros and Cons ... 7

1.4 Aims and Objectives .. 8

1.5 Overview ... 10

2 Fundamentals .. 12

2.1 Logic ... 12

2. 1. 1 Informal Logic ... 12

ii

2. 1. 2 Propositional Logic .. 13

2. 1. 3 Predicate Calculus ... 15

2. 1. 4 Boolean Algebra .. 18

2. 1. 5 Uncertainty in Logic .. 19

2.2 Ontologies ... 19

2. 2. 1 Components of an ontology ... 21

2. 2. 2 Why is an ontology needed? .. 21

2.3 Knowledge Management ... 23

2. 3. 1 Knowledge Acquisition .. 25

2. 3. 2 Knowledge Representation .. 27

2. 3. 3 Knowledge Inference .. 28

2. 3. 4 Explanation ... 30

2.4 State of the art in Expert Systems ... 32

2.5 Summary ... 33

3 Background ... 34

3.1 Internet ... 34

3. 1. 1 Brief History of the Internet .. 34

3. 1. 2 Why the Internet? ... 35

3.2 Philosophical Basis ... 37

3. 2. 1 What is knowledge? .. 37

3. 2. 2 Common Sense .. 41

iii

3. 2. 3 Expertise ... 42

3.3 Artificial Intelligence .. 43

3. 3. 1 Weak AI ... 44

3. 3. 2 Strong AI .. 45

3.4 Knowledge Representation ... 45

3. 4. 1 Rules ... 46

3. 4. 2 Semantic Nets and Associative Networks... 46

3. 4. 3 Conceptual Graphs .. 50

3. 4. 4 Object-Attribute-Value Triples .. 51

3. 4. 5 Frames .. 52

3.5 Inference ... 54

3. 5. 1 Backward Chaining ... 54

3. 5. 2 Forward Chaining ... 56

3. 5. 3 Recognise-Act Cycle .. 57

3. 5. 4 Rete Algorithm ... 58

3.6 Uncertainty Management ... 61

3. 6. 1 Bayesian Probability ... 62

3. 6. 2 Dempster-Shafer Theory .. 64

3. 6. 3 Certainty Factors .. 66

3. 6. 4 Fuzzy Logic ... 68

3.7 Summary ... 70

iv

4 Design.. 72

4.1 Approach .. 72

4. 1. 1 Knowledge Base .. 74

4. 1. 2 Inference Engine .. 75

4. 1. 3 User Interface .. 77

4. 1. 4 Explanation System .. 80

4.2 Similar Projects .. 81

4. 2. 1 MYCIN ... 81

4. 2. 2 PROSPECTOR ... 82

4.3 Class and Function Design ... 82

4. 3. 1 Server-Side Code ... 82

4. 3. 2 ASP.Net User-Interface Code .. 85

4.4 Summary ... 87

5 Implementation ... 88

5.1 Database Schema .. 89

5.2 ExpertSystemFYP Class Library ... 90

5. 2. 1 DB namespace ... 90

5. 2. 2 Rules namespace ... 95

5. 2. 3 Conditions namespace ... 97

5. 2. 4 KnowledgeBase class.. 98

5. 2. 5 ExpertSystem class .. 99

v

5. 2. 6 BackwardChainingSearch class .. 100

5. 2. 7 ForwardChainingSearch class .. 102

5. 2. 8 WorkingMemory namespace .. 103

5. 2. 9 InferenceTree namespace .. 104

5. 2. 10 ExplanationSystem namespace ... 106

5. 2. 11 Utility classes .. 107

5.3 User Interface ... 107

5. 3. 1 Website Frontend .. 109

5. 3. 2 Backward Chaining Search .. 110

5. 3. 3 Forward Chaining Search .. 111

5. 3. 4 Explanation System .. 112

5.4 Summary ... 113

6 Evaluation .. 114

6.1 Corpus (Knowledge Bases) ... 115

6. 1. 1 Diesel Car Engine Starting Diagnostics ... 115

6. 1. 2 Clinical Manifestation Diagnosis .. 117

6. 1. 3 Computer Hardware Diagnostics ... 118

6.2 System Testing ... 118

6. 2. 1 Test Case 1: Basic Forward Chaining .. 118

6. 2. 2 Test Case 2: Multiple Forward Chaining ... 118

6. 2. 3 Test Case 3: Basic Backward Chaining .. 119

vi

6. 2. 4 Test Case 4: Mixed Inference, Automatic sub-goal generation and

Inheritance .. 119

6. 2. 5 Test Case 5: Rule Recursion .. 121

6. 2. 6 Test Case 6: Combining certainty factors .. 121

6. 2. 7 Overview ... 122

6.3 Human Evaluation .. 122

6. 3. 1 Questionnaire .. 123

6. 3. 2 Results .. 126

6.4 Overview ... 133

6.5 Summary ... 136

7 Conclusion & Future Work ... 137

7.1 Future Work ... 137

7.2 Concluding Remarks ... 138

Bibliography .. 140

Appendices ... 146

A. Contents of CD ... 147

B. Installation Notes .. 148

B. 1. Installation Guides ... 148

B. 2. Website Deployment ... 149

C. User Manual .. 151

vii

C. 1. Frontend .. 151

C. 1. 1. Backward Chaining Search .. 152

C. 1. 2. Forward Chaining Search .. 154

C. 2. Member’s Area .. 158

C. 2. 1. Managing objects, attributes and values .. 159

C. 2. 2. Rule Management ... 162

Abstract

Imagine a world where human expertise can be stored in a database and can easily be

accessed by anyone through the Internet. Knowledge has always fascinated humans.

Humans that possess vast knowledge in a domain are extremely valuable and experts in

certain domains are quite scarce. However, human experts have various limitations:-

they are not permanent (they die, retire), they can only service a limited number of

users, they suffer from moods, and cannot always explain their reasoning.

An expert system is a computer program whose main aim is to serve as the role of an

expert. Similar to an expert, it asks questions related to a goal defined by the user, in

order to reach a conclusion. It has various benefits:- It can be reproduced easily, can

service a very large number of users, can clearly explain its reasoning and is permanent.

The knowledge contained by an expert is stored in a knowledge base as a set of rules,

based on an ontology. The expert system’s job is to reason about the stored knowledge

and come up with conclusions as an expert would. It also takes care of uncertainty

elements in the reasoning, and be able to produce results based on their expected belief.

viii

The aim of Paramenides is to bring expert systems to the public and create a globally-

accessible online resource for expert knowledge and problem solving. The main

objective is to create a web-based expert system (www.paramenides.com) that is

accessible publicly via the Internet where both users and experts can meet to share

knowledge. Experts can define knowledge bases which are mapped to their domain of

expertise, while the expert system can help users in solving/diagnosing problems. This

is all done through an easy-to-use interface that does not require the users to be

particularly computer-savvy to use.

Paramenides works by using an inference engine that implements both backward

chaining and forward chaining modules. It works on knowledge bases that are created

by users themselves. A knowledge base consists of a series of IF ... THEN rules, which

are then used for problem solving and diagnosis. Backward chaining involves setting a

goal and working backwards in order to reach a conclusion. Forward chaining involves

processing facts inputted by the user to find out what can be the problem. It also uses

certainty factors to allow elements of uncertainty in its reasoning and thus be able to

provide a list of reasons based on the sorted by their most probable outcome. An

explanation module allows the system to provide a reasonable explanation on how it

came to such a conclusion, in a visual manner. This allows the user to easily follow its

reasoning, thus increasing its credibility.

The knowledge bases defined in the expert system can be created by the users. Thus it

is difficult to achieve test results on all possible knowledge bases. However, if correct

rules are defined in the knowledge base, the system mimics an expert’s reasoning with

100% similarity. The results are quite subjective since even in real-life, reasoning and

conclusion can vary greatly from one expert to another.

ix

x

To my family and friends,

for their help, love and support throughout my life

xi

Acknowledgements

I would like to thank all the people around me who have given me their support during

this project.

First of all, I would like to thank my supervisor, Dr. John Abela for his supervision,

valuable advice and support during all the development stages of the project, from the

initial concept when it was just an idea, up to the final stage.

I would also like to thank my family for their support during the stressful times and

late-night periods, especially during the final stages of the dissertation. I would like to

thank my friends for their support and help in the evaluation stage, through which I

would not have been able to come up with such conclusions and allowed me to get a

different view from a non-developer’s perspective.

I would also like to express my appreciation and gratitude towards all teachers,

lecturers and professors who contributed to my education and have helped me reach

this stage as without them it clearly would not be possible. I would also like to thank

my family for always stressing out the importance of education and helped me make it

a very important aspect of my life.

Most of all, I would like to thank my father, Raymond Cassar for giving me the initial

push into computer programming by handing me a Visual Basic book at the age of 10

which enabled me to develop the passion that I now have for computer programming

and computing in general. For this I would like to thank him dearly.

Finally, I would also like to thank my twin brother, Mark Cassar, who is also a fellow

student in the same course for all the help and support he has given me from as long as

I can remember.

xii

List of Tables

Table 2-1: Truth tables for AND and OR operators ... 14

Table 3-1: An example of an OAV-triplet ... 51

Table 3-2: Comparison of probability theory and DST ... 66

Table 6-1: Diesel Car Engine Starting Diagnostics rule base 116

Table 6-2: Clinical Manifestation Diagnosis rule base ... 117

Table 6-3: Test case 1 - Results .. 118

Table 6-4: Test case 2 - Results .. 119

Table 6-5: Test case 3 – Results ... 119

Table 6-6: Test case 4 – Results ... 120

Table 6-7: Test case 5 - Results .. 121

Table 6-8: Test case 6 - Results .. 122

xiii

List of Figures

Figure 1-1: Main components of an expert system .. 7

Figure 2-1: A diagram showing a wine ontology (Taken from (14)) 22

Figure 2-2: Internet growth during 1995-2008 ... 23

Figure 2-3: Knowledge Acquisition Process ... 26

Figure 3-1: Internet users as of March 31, 2009 .. 36

Figure 3-2: Some different types of knowledge in epistemology 38

Figure 3-3: The case-based reasoning cycle ... 39

Figure 3-4: Pyramid of Knowledge ... 40

Figure 3-5: An example of a semantic network ... 47

Figure 3-6: An associative network showing inheritance and relationships. AKO (A-

Kind Of) relates one class to another, with the node being pointed to by the arrow

being the generic class .. 48

Figure 3-7: Two types of searches on a semantic net .. 49

Figure 3-8: A conceptual graph .. 50

Figure 3-9: A very simple knowledge base on cars .. 54

Figure 3-10: recognise-act-cycle .. 58

Figure 3-11: A sample Rete network, showing Alpha Memories 60

Figure 3-12: Membership function for TALL .. 69

Figure 3-13: Typical knowledge available to an expert system/knowledge base 70

Figure 4-1: Main components of an expert system .. 73

Figure 5-1: Database schema as used by Paramenides .. 89

Figure 5-2: Class diagram for generated classes (continued) 91

Figure 5-3: Class diagram for generated classes .. 92

Figure 5-4: Rules namespace .. 95

xiv

Figure 5-5: Condition namespace .. 97

Figure 5-6: KnowledgeBase class .. 98

Figure 5-7: ExpertSystem class ... 99

Figure 5-8: BackwardChainingSearch class ... 100

Figure 5-9: WorkingMemory namespace ... 103

Figure 5-10: InferenceTree namespace .. 104

Figure 5-11: ExplanationSystem namespace.. 106

Figure 5-12: The homepage of the website .. 109

Figure 5-13: A question asked by the system, during backward search 110

Figure 5-14: A typical forward-chaining search conversation 111

Figure 5-15: A portion of the explanation system ... 112

Figure A-1: Contents of CD ... 147

Figure C-1: Main page .. 151

Figure C-2: A question asked by the system ... 152

Figure C-3: An explanation for the simple example being used 153

Figure C-4: Forward chaining enabled, and 1 knowledge base result 154

Figure C-5: Forward-Chaining screenshot, with several symptoms already entered and

possible problems found.. 155

Figure C-6: Forward chaining module dialog for a value ... 156

Figure C-7: Explanation for one of the conclusions reached 157

Figure C-8: Login screen, showing the top-right panel .. 158

Figure C-9: Knowledge Base Listing ... 159

Figure C-10: Screenshot showing the objects, and object inheritance of the selected

object ... 160

xv

Figure C-11: Screenshot showing the attributes of the selected object, and the values of

the selected attribute. The selected object is fuel tank ... 161

Figure C-12: Screenshot showing the rule management section 163

xvi

List of Equations

Equation 2-1: Set defined by P(x) .. 16

Equation 3-1: Bayes Theorem... 63

Equation 3-2: Dempster's Rule of Combination .. 65

Equation 3-3: Certainty Factor .. 67

Equation 3-4: Combining certainty factors ... 67

Equation 3-5: Merged antecedent certainty factor outcome for antecedents 68

xvii

List of Algorithms

Algorithm 5-1: Backward chaining search algorithm ... 101

Algorithm 5-2: Forward chaining search algorithm ... 102

Algorithm 5-3: Creating/Appending to an inference tree from a rule 105

1

1 Introduction

1.1 Overview

The Internet can be considered one of the most important inventions of the 20th

century. It has brought with it a tremendous change in how humans communicate with

each other, and today we can find a great deal of information online.

However, most of this information is not structured in any manner and one needs to

sift through all relevant and irrelevant information to find what he needs. This is

especially true when a user uses the internet to find solutions to a certain problem.

The main process involves searching on broad keywords, and constantly redefining

keywords to try and close in on your subject.

The idea of this project is to create a wiki1 of expertise where human experts can enter

knowledge in the form of rules that can be understood by a machine. Users can use its

search engine to find conditions (goals, or problems) and the system can guide them to

find solutions to the problem, similar to what a real-life expert would do.

This builds closely on the very successful model introduced by Wikipedia2. Although

the model has its disadvantages3, in general it has proven to be very effective.

However, even though it contains information on almost every imaginable topic, the

articles are unstructured and cannot easily be used by a computer program to interpret

1 A wiki is a “a type of website that allows the visitors themselves to easily add, remove and otherwise

edit and change some available content” (79)
2 http://www.wikipedia.org
3 For example, some people are sceptical to use information from a publicly editable resource,

Knowledge Systems (Introduction)

2

information from them. Paramenides (www.paramenides.com) aims at creating a wiki

of human-expertise through a web-based infrastructure where human knowledge can be

stored in a machine-readable format and can be used by the general public for problem-

solving and troubleshooting.

1.2 Knowledge Systems

From prehistoric times, human beings were always fascinated with knowledge.

Knowledge was always considered a symbol of power and as time went by, man has

always tried to find ways and means to transfer knowledge from one generation to

another. It is one of the main factors that distinguish us from animals, and was always

an integral part of human civilization. In olden times, the only means to pass

knowledge to other generations was through word of mouth. However, knowledge in

human beings can easily be lost4. Several methods have been developed to try and

capture knowledge in a more permanent form. Some such systems include:

• One of the earliest inventions to store knowledge was writing. The earliest

discovered form of writing was found in Mesopotamia, circa 3100 B.C. Farmers

used to record the amounts of different crops on soft clay tablets. This served as

the initial stepping stone for recording knowledge, and was the first step to try

and separate knowledge from humans to a time-less form. (1)

• The different pieces of information created by writing needed to be grouped in

some way, and the concept of a book was created, where related pieces of

information were stuck together to make it easier to store and keep track of.

4 Especially in olden times, when nations were constantly at war with each other, knowledge could easily

be lost due to death, the person being captured as prisoner, or some form of mental illness like dementia.

Apart from these physical notions, knowledge in human beings is also dependent on various other factors

like mood and willingness to cooperate.

Knowledge Systems (Introduction)

3

• Traditional Libraries5 were created as a means to organise books together

according to their title, category, or the information they held. Libraries

contained some form of indexing6 to easily locate the required information.

These places also served as place of learning and power, and nations of olden

times strived to have great libraries. One classical example of this is the Library

of Alexandria.7

• With the invention of the computer, came Computerised Libraries. Also

known as databases, they serve the same core purpose as a traditional library

but in a much faster way.

• The Internet is the current state-of-the-art in information sharing. Through

the use of search engines8, people all over the world have a vast repository of

information at their fingertips, and it has totally redefined the notion of sharing

information.

These different inventions have all been extremely important in transferring knowledge

& information from one generation to another. As the amount of information

increased, and the Internet has contributed greatly to this knowledge explosion,

another problem emerged. Sometimes, having too much information, like having

nothing can also be a problem. Most of the information on the Internet is stored in an

5 In fact, the word library is derived from Latin ‘libri’ for book and the word itself means ‘a collection of

books’
6 Like labeling book shelves, book tags, etc
7 The library of Alexandria was one of the largest libraries of the ancient world. There is no known index

of its contents, but some ancient scripts mention a gift of 200,000 scrolls, giving an indication that the

total is a much larger number. There are various exaggerated stories about it, including some of which

told of having all visitors surrendering any books, scrolls or written media to the library. Unfortunately,

it did not survive the test of time, and is thought to have been destroyed by fire. A new library,

Bibliotheca Alexandrina has been created as a commemoration to the mentioned ancient library. (78)
8 According to 2008 statistics, there are approximately 8 billion searches every month on internet search

engines like Google, Yahoo, MSN and AOL.

Expert Systems (Introduction)

4

unstructured manner. It is left up to the user to search for the correct information.

While search engines do a quite good job at retrieving information, the user is still left

with an enormous amount of information that he must sift through to determine any

relevant information. The user still needs to extract knowledge from the information. A

more efficient means to store structured knowledge was felt, and this led to Expert

Systems.

1.3 Expert Systems

There are various different definitions of how a human can be defined an expert in a

field. One of the most generally accepted definition would be (2):

“A person with a high degree of skill in or knowledge of a certain subject.”

As Peter Jackson states, an expert must be made up of these characteristics: (3)

• Possesses knowledge

• Knowledge must be focused on a specific domain9; having a random collection of

information does not define expertise.

• Problem solving capabilities – The expert must be able to directly solve

problems, and/or can act as technical support to problems that may arise in his

domain of expertise

As computers developed and continued to progress, various scientists began

experimenting in building intelligent machines to try and mimic the human brain.

Expert Systems are computer programs whose purpose is to imitate the real-life

traits of a human expert and problem-solving skills. It may completely or partially

9 By specific domain, one implies one or more areas of knowledge. It is difficult (impossible?) to be an

expert in everything, and as the proverb states “Jack of all trades, master of none”.

Expert Systems (Introduction)

5

fulfil such a requirement, and it can also serve as a medium to aid in the decision-

making process. Although an expert system is still a computer program, it approaches

the problem from a different aspect than a traditional procedural10 computer program.

1. 3. 1 Characteristics of an expert system

• Be able to reason about specific domain(s)

• Must be made up of a knowledge base11, and be able to declaratively12 reason

about it. It must not revolve around a set of step-by-step algorithms, but must

be able to alter its reasoning according to its programmed rules13 in the

knowledge base.

• It must be able to solve problems using an approximation method, and cannot

be guaranteed to succeed, as opposed to traditional computer programming

models which are programmed against an algorithm and have verifiable outputs

(4)

10 Procedural programming (also known as imperative programming) is a programming paradigm, which

involves specifying each step of execution that the program is to take. It is the most traditional form of

computer programming.
11 A knowledge base is a database of rules (see footnote 13) related to one specific domain
12 Declarative programming is a programming paradigm in which the users specifies what he wishes to

accomplish, rather than how.
13 A rule is one logical statement when reasoning about a problem. It contains antecedents, and

consequents; Antecedents are its inputs, while consequents are its outputs. Thus, a rule can be defined as

“If [Antecedents] Then [Consequents]”, and is one of the basic elements that make up an Expert System

Expert Systems (Introduction)

6

1. 3. 2 Components of an expert system

An expert system must be made up of distinct components, in order to serve its

function. These components are:

• A Knowledge Base which contains knowledge about a specific domain, as a set

of rules that define the reasoning of an expert as a series of logical steps

• An Inference Engine which acts like the mind of the expert system. It performs

reasoning on the rules defined in the knowledge bases, and tries to derive

answers to ultimately provide solutions for a given goal. It retrieves facts from

users by asking questions that revolve around the rules in the knowledge base

and the current goal.

• A Working Memory, which acts as the memory of the expert system. It stores

any facts inputted by the user, as well as any derived facts during the reasoning

process.

• An Explanation System that is capable of showing the reasoning process to the

user by keeping track of which rules have fired and why. This can greatly aid in

increasing the user’s credibility of the system.

Figure 1-1 shows a conceptual view of all the components that make up an expert

system, and how they interact with each other.

Expert Systems (Introduction)

7

Figure 1-1: Main components of an expert system

1. 3. 3 Pros and Cons

As in almost everything, expert systems contain both positive and negative aspects.

Outlined below are some of these aspects:

Pros

• More consistent in its results, and never forgets to ask a question; mood is not a

factor in a computer program / expert system

• An expert system is always available. It never retires, dies, or quits

• Can scale to a multitude of users; A real-life expert is limited to the amount of

‘users’ it can concurrently cater for.

• Can contain knowledge of several experts in one repository

• Can provide a consistent explanation of its reasoning; Knowledge tends to be a

very objectionable topic, and most experts are not able to logically provide a

structured flow of their reasoning. This can also depend on their mood.

Aims and Objectives (Introduction)

8

Cons

• An expert system is not creative; It cannot solve problems or provide

assumptions for new problems, or for problems that it has no related rules in its

knowledge base

• A human expert can adapt faster and more easily to change

1.4 Aims and Objectives

Expert systems have been a constant AI research topic from mid-20th century. Expert

knowledge has always been considered extremely valuable and useful, and an expert

system tries to perform the function of an expert, without the expert. However,

although various expert systems have been created, most of the expert systems are off-

limits to the general public. Most expert systems in production today are used by

large corporations, and even though there are various open-source14 expert systems and

inference engines, they have their own limitations. Most of them have a limited set of

documentations, are relatively difficult to integrate/use, or may not serve exactly the

requirements. In short, although people might have heard of expert system, most users

have never used an expert system or dreamed of ever using one.

The main aim of this project is to design and implement an expert system that:

• Is accessible easily to a large user-base through the use of the Internet.

• Has an easy-to-use user interface that does not require users to be particularly

computer-savvy to use it.

14 To name a few: CLIPS (http://clipsrules.sourceforge.net), JBoss Drools (a.k.a Drools,

http://www.jboss.org/drools), NxBRE (http://www.agilepartner.net/oss/nxbre), Drools.Net 3.0

(http://droolsdotnet.codehaus.org)

Aims and Objectives (Introduction)

9

• Is not limited to one particular domain, but serves as a generic expert system

that can include various distinct knowledge bases to cater for large amount of

domains.

• Able to perform both backward and forward chaining

• Can easily explain its reasoning by a graphical representation to make it easier

for users to understand the conclusions

The expert system will be able to reason about different types of problems. It should

be able to solve problems of the type:

• Troubleshooting: A user has a known problem, and wants to find the cause

of the problem. The system will ask a series of questions to try and find out the

possible cause of the problem. E.g. His car is not starting, and the user wants to

diagnose what might be the problem.

• Diagnosis: A user has some certain symptoms occurring, and wants to find out

what might be the consequences. The user will feed the symptoms to the expert

system, and it will output a list of possible conditions that he may have. The

user can even select a certain condition, and have the system focus on that

specific problem, by asking him more questions related to the problem (as in

troubleshooting). E.g. He is feeling lower-back pain, sometimes feels dizzy, and

has stomach problems. The system outputs the possibility of conditions he

might have.

• Selection: A user needs to find the most suitable object for his needs. The user

will input his ‘needs’, and the system will output a ranking of objects that might

suit him best. For example, a user wants to choose a restaurant. He will input

his ‘wants’, like that it must be by the sea, and specialises in Mexican food. The

system will then output the list of restaurants it thinks would best suit him.

Overview (Introduction)

10

1.5 Overview

In this chapter, we have given a brief overview of the need for knowledge that is felt by

the human community. We have given a brief summary about the history of

knowledge and how it started being represented, and described the roles of a human

expert. Direct parallels were made between a human and a computer expert and given

a high-level overview of what the project is about. The rest of the dissertation is

organised as follows:

Chapter 2: This chapter is a short chapter that briefly goes through topics that can

help the reader understand the main problem of the project, but are not directly

related to the inner workings of an expert system. It can serve as a brief introduction

to the topics further explained in the following chapter.

Chapter 3: In this chapter we go over the theoretical aspect of an expert system and

topics of direct concert to the project. We analyse research material gathered

throughout the years and provide various insights on methodologies used and

arguments both in favour and against. These should allow the reader to understand in

more detail the intricate workings of an expert system and its components.

Chapter 4: This chapter is aimed to give a brief outline of how we intend to develop

the system, and how it is intended to function. It lays out the plan and which

methodologies we will be embracing throughout its development. It will compare

various approaches and provide information on why we chose such an approach.

Chapter 5: In this chapter we will explain in great detail how the system was

developed. We delve into detail about its inner workings for each of its components,

and provide step-by-step representation of its main algorithms.

Overview (Introduction)

11

Chapter 6: This chapter provides a thorough evaluation of the system by perform

both system testing and human evaluation, and builds arguments on the results

obtained. From these results we could them analyse the various strengths and

weaknesses of the system and any possible improvements that could be implemented in

the future.

Chapter 7: In this chapter we will provide a brief summary of the outcome of the

project, and also provide a series of possible improvements that could come in the

future and any current known limitations of the system.

12

2 Fundamentals

This chapter shall cover material that is directly or indirectly related to Expert

Systems. Most of this knowledge will be assumed in later chapters. Mostly this chapter

shall cover information related to logic systems, expert systems, ontologies, and the

various stages of knowledge management.

2.1 Logic

The basic fundamental aspect of every expert system is logic. Logic is a broad term

that encapsulates various methods and structures, whose aim is to represent human

thoughts and reasoning15. It serves as the basis for inference and arguments, and there

are many different forms of logic systems.

2. 1. 1 Informal Logic

This is the most basic form of logic and involves dealing with logic on a non-

standard/non-formal basis. It is the study of natural language arguments, and can be

considered a form of logic that is very subjective. Informal Logic also involves the

study of fallacies16, and was the logic system used by ancient Greek Philosophers like

Plato, in their dialogues.

15 The word logic in itself is derived from the Greek logike, which means “possessed of reason,

intellectual, dialectical, argumentative” and logos¸ which is the Greek word for “thought, idea,

argument, reason”, among other representations. (http://en.wikipedia.org/wiki/Logic)
16 Fallacy: “A misconception resulting from incorrect reasoning” (60)

Logic (Fundamentals)

13

Informal logic, as its name implies does not follow any form of formal or rigorous

method of proofing statements. There is no means to prove the invalidity of an

argument, and can pose very difficult problems to work with in an algorithmic manner.

2. 1. 2 Propositional Logic

Propositional logic is a formal logic system. It is the study of the conjunction of various

axioms17, propositions, statements or sentences in order to derive more complicated

sentences, as well as define logical relationships and properties.

A statement in propositional logic can be defined as a fact that can have a truth

value:- either true or false. For example, the following are all valid statements:

“Plato was a Greek Philosopher”

“Everyone who can walk is not dead”

Statements portray information on the world in the current context, and are the

premise for more complicated logical calculations. A statement can be made up of

more than just one statement, by using the conjunction operators AND (∧) and OR

(∨). These two operators are the most basic logical operator, and are used in almost

every logical system. A ‘proposition’ is most of the time used interchangeably with the

term ‘statement’, and is used to express two different statements that portray the same

meaning, for example: “The moon orbits the Earth” and “The Earth is orbited by the

moon” are considered to be the same proposition. Apart from the basic operators

AND and OR, propositional logic also uses various other operators like negation

(NOT, ￢), implication (⇒) and bi-implication (⇔). The not is different from the

17 Many of such words in logic systems derive from Greek words. This is because Greek philosophers

were the first known documented records of formal logic. The word axiom comes from the Greek word

axioma, which means, “to require”. Considering

Logic (Fundamentals)

14

other operators because it works on one single argument, and is thus considered a

unary operator. (5)

These operators are used to reason about the statements, and one can use them to

obtain information from statements, based on their truth values:

“If it is raining or there are black clouds in the sky, then take an umbrella”

One can use propositional logic to deduce that if one of the two statements “It is

raining” or “there are black clouds in the sky” is true, then the consequent is true, i.e.:

“Take an umbrella”. Truth tables are used to define the inputs and outputs of each of

the mentioned operators. The figure below shows the truth tables for AND and OR

operators.

A B A ∧ B

T T T

T F F

F T F

F F F

A B A ∨ B

T T T

T F F

F T F

F F F

Table 2-1: Truth tables for AND and OR operators

Propositional logic deals with statements as a whole, and considers a simple statement

to be indivisible. It does not involve the study of logical relationships between parts of

a sentence that are smaller than a ‘simple statement’. An example:

“John is the son of Mary”

“Mary is the president of America”

“Therefore, John is the son of the president of America”

Logic (Fundamentals)

15

To deduce the third statement in the above arguments, one needs to be able to perform

some identification on the subjects and actions as defined in the premises.

Propositional logic considers statements to be indivisible, and such the statement ‘John

is the son of Mary’ is not divided into smaller parts, and no further information can be

concluded about it.

However, formal proofing of statements is not the aim of this chapter, and for further

reading on propositional calculus one is referred to (5) and (6).

2. 1. 3 Predicate Calculus

Predicate logic is an extension to propositional logic. Propositional logic deals with

simple statements/propositions, while predicate logic (also known as first-order logic)

also deals with predicates and quantification.

Unlike natural languages, predicate calculus is a non-ambiguous language used to

define relationships and logical properties of statements, propositions and predicates.

One of the main limitations of propositional logic was that one had to enumerate all

elements in a set, and in many cases this can be very inconvenient and tedious. It

provided no means to group elements based on their characteristics.

A predicate, denoted by P(x)18, is a statement, which works upon an element (or a

group of elements) and is used to group elements that contain certain properties. A

predicate is similar to a function in a computer program that returns a true/false

value, and is also called a propositional function.

18 A predicate can act on more than just one element, and a predicate acting on say 3 elements would be

written as P(x,y,z)

Logic (Fundamentals)

16

Some examples of predicates would be:

 Red(x) – x is red

Son(x,y) – x is the son of y

The set of elements that is defined when acted upon by a predicate is defined as:

�� |	(�)}
Equation 2-1: Set defined by P(x)

Another important notion introduced in predicate calculus is that of quantifiers.

There are two types of quantifiers – Existential quantifiers (∃) and Universal

quantifiers (∀). Each quantifier acts on a universe of discourse19, which serves as the

set of all elements on which predicates work upon. (7)

Universal Quantifier

The universal quantifier is the operator that denotes all elements in a given set. In the

English language, this quantifier could be expressed as “For all x that contain a certain

property, P(x)”. An example of a universal quantifier could be:

∀� ∶ �ℎ����(�) –All object x that have wheels

19 The universe of discourse can be a set of real numbers, all human beings, all living creatures on earth,

the set of students in a university, etc. Although the elements in the universe are normally not included

with logic statements, it should be obvious from the context, or else defined.

Logic (Fundamentals)

17

Existential Quantifier

Whereas the universal quantifier acts on all elements in the universe of discourse, the

existential quantifier acts on select group of elements based on a certain criteria. In

English, an existential quantifier could be expressed as “There exists at least one

element such that P(x)”. One example of existential quantifiers in a statement could

be:

∃� ∃� ���(�, �) - There exists persons x and y, such that x is the son of y

The use of quantifiers enabled predicate calculus to address some limitations of

propositional logic. Consider the classical example:

“All men are mortal”

“Socrates is a man”

“Therefore, Socrates is mortal”

While this is entirely valid, as already explained previously, propositional logic provides

no means to arrive to the conclusion that “Socrates is mortal”. There is no means to

represent this form of logic using just the operators defined in propositional logic.

On the other hand, this can be easily translated into predicate calculus statements.

The same argument could be defined as:

∀�(���(�) → ������(�) - For all x, an x of type Man is also of type Mortal

There is no need to go in further detail on the formality of such logic systems. For

further reading, one can refer to (8) which contains further information on predicate

calculus, and also its usage in the Jess expert system.

Logic (Fundamentals)

18

Predicate Logic in Expert Systems

This type of logic is very important in implementing an expert system. It would be

very difficult to create an expert system which has no notion of predicates and types,

and also would make it very inefficient. Predicates enable the expert system to ‘know’

facts about the objects in the universe of discourse, and can allow rules to be defined

more specifically to only apply to certain types of objects.

Predicates can allow the expert system to operate in an object-oriented manner, by

defining classes20, and sub-classes. It could allow for example defining relationships

like: “A mammal is an animal” and “A Human is a mammal”. From these facts, one

can easily deduce that a human is also an animal. Thus, properties that apply to an

animal also apply to a human. This can prove very useful especially when defining

rules because it greatly reduces the amount of rules needed to express the same

concepts or relationships. A rule that applies to an animal need only be defined for an

animal, and it will automatically be taken to apply for any mammals, or humans in

question. There is no need to define 3 separate rules, one for each object-type (animal,

mammal, human).

2. 1. 4 Boolean Algebra

Boolean algebra is logical system invented by George Boole (9) in mid-19th century. It

expands on propositional logic, and provides an algebraic-like system for dealing with

logical statements. It was the first such system, and has proven to be extremely

popular in digital electronics. It allowed electronic computers to count using only two

possible values, true or false, or 0s and 1s.

20 A class is considered to be a specific type of objects with certain similar traits

Ontologies (Fundamentals)

19

All operators defined in propositional logic were defined in Boolean logic, and various

properties applicable to Boolean logic were defined. Some of these include:

• Associativity: � ∨ (� ∨) = (� ∨ �) ∨

• Commutativity: � ∧ � = � ∧ �

• Distributivity: � ∧ (� ∨) = (� ∧ �) ∨ (� ∧)
• De Morgan’s Laws: ¬(a ∨ �) = ¬a ∧ ¬b

For further reading on the topic and other properties, the reader is referred to (10).

2. 1. 5 Uncertainty in Logic

All the previously mentioned logic systems deal with discrete values for logic variables.

However, as one can easily see from real-life example, this is often not the case. Most

of real-life problems that experts need to solve deal with a certain element of

uncertainty. There are various extensions to the mentioned logic systems to enable

them include probabilistic factors in the reasoning. Each different methodology has its

own pros and cons, but these will be explained in more detail in page 82. (Chapter 3,

Uncertainty Management)

2.2 Ontologies

Now that we have described the different logical systems that exist, we can move on to

explain what an ontology is21. There are various different definitions of what is an

ontology, and it can have different meanings, based on the context.

21 Ontology, unlike most of the other terms is not directly derived from Greek. The oldest known similar

word is the Latin ontologia. However, the context of an ontology was used by ancient Greek

philosophers, and we have records of philosophers like Parmenides, Plato and Aristotle defining ontology

as a conceptual schema describing objects and relationships between them

Ontologies (Fundamentals)

20

Nicola Guarino, (11), defines an ontology as:

• A philosophical discipline

• An informal conceptual system

• A formal semantic account

• A specification of a “conceptualization”

• A representation of a conceptual system via a logical theory

• Vocabulary used by a logical theory

• Specification of a logical theory

As one can see, although most of the interpretations are very similar, interpretation 1

is very different from all others. So one may ask, what exactly is an ontology with

regards to knowledge bases and expert systems?

An ontology can be seen as a formal specification of all the objects and properties

related to a domain, and relationships between them. Ontologies are used in various

computer-related fields, which include:

• Artificial Intelligence

• The Semantic Web

• Knowledge Representation

To make up all the properties of a domain, an ontology is made up of various different

components.

Ontologies (Fundamentals)

21

2. 2. 1 Components of an ontology

• Individuals are the most basic element in an ontology

• Classes encapsulate a related set of objects, and define what an object is made

up of

• Attributes define characteristics about objects (or classes)

• Relations are ways in which objects are related to one another

By no means should the above list22 be considered to be an exhaustive one. However,

it mentions the elements that are of interest when considering expert systems.

To define such ontologies, one normally uses several standard ontology languages like

OWL23, DAML+OIL24 and RDF25. The reader is referred to (12) and (13) for further

reading on these ontology languages.

2. 2. 2 Why is an ontology needed?

An ontology makes it much easier for systems to know exactly what they are reasoning

about, and to avoid ambiguity. There are many real-life examples that can lead to

ambiguity, and words can have totally different meanings based on the context. For

example, the word flip-flop might mean entirely different if you are talking to a person

on the beach or whether in an electronics laboratory. If an ontology is about beach or

22 Adapted from (61)
23 Web Ontology Language: Although the acronym should essentially be WOL and not OWL, the

acronym OWL was proposed as a more easily pronounceable acronym and would be better suited for

designing logos. An owl is normally associated with wisdom and honor, and quoting Guus Schreiber,

“Why not be inconsistent in at least one aspect of a language which is all about consistency?” (62)
24 A language combines features from DAML, and OIL, hence the name. The acronyms stand for

DARPA Agent Markup Language and Ontology Inference Layer/Ontology Interchange Language

respectively
25 Resource Description Framework

Ontologies (Fundamentals)

22

leisure, flip-flop26 would imply a type of footwear, whereas in an electronics laboratory

it would be referring to a type of electronic circuit. Figure 2-1 shows an ontology

describing wine, as defined in RDF.

Figure 2-1: A diagram showing a wine ontology (Taken from (14))

26 The mentioned electrical circuit was not always called a flip-flop. Initially it was called the Eccles-

Jordan trigger circuit. The name was later derived from the sound produced by a speaker connected to

such a circuit. (Adapted from (63))

Knowledge Management (Fundamentals)

23

2.3 Knowledge Management

As time goes by, knowledge management is gaining more and more importance.

Companies are realizing how important it is to know as much as possible about the

information that they already have. Knowledge management allows enterprises to

make the maximum use of such knowledge.

In this age of information, knowledge is an extremely important asset. However, having

enormous amounts of unstructured knowledge can pose several problems. Sometimes,

work is repeated simply because it is impossible to make ‘sense’ out of the available

knowledge, even though such knowledge exists and could have been used in the first

place to reduce costs & time.

Figure 2-2: Internet growth during 1995-200827

27 Taken from http://www.labnol.org/wp/images/2008/02/total-number-websites.gif

Knowledge Management (Fundamentals)

24

This problem is greatly affecting the Internet – As more and more users turned on the

Internet as a global means of communication, sharing knowledge, and researching for

information, the amount of information available has exploded. Figure 2-2 shows the

exponential growth of the internet. It is estimated that the size of the internet doubles

every 5 years28, and will continue to expand. One cannot imagine the vast amount of

information available. Although search engines facilitate the work of parsing through

the enormous amount of data, it can still be considerably difficult to find what you

need. A major drawback for search engines is that web pages are created in a mark-up

language aimed for human consumption. This makes it difficult for search engine to

parse the content of the web pages. The Semantic Web is an extension to the World

Wide Web whose aim is to make the internet more computer-friendly. Tim Berners-

Lee29 describes in (15) the need for having such semantics about the services and

information exposed on the internet. The Semantic Web it is still in its infancy, and

there is a long way to go before we will start using it on a daily basis.

Knowledge management is an integral part of any expert system. The process can be

divided into various sections, as explained in the following.

28 Research from a group of Chinese students has shown that the Internet can also be considered to

follow Moore’s Law, but doubling every 5.32 years over the 18 months stated for CPU transistors by

Moore’s Law. (http://www.physorg.com/news151162452.html)
29 Tim Berners-Lee is also considered the founder of the World Wide Web

Knowledge Management (Fundamentals)

25

2. 3. 1 Knowledge Acquisition

Knowledge acquisition is an integral part of the knowledge management process. Its

main aim is to retrieve information from different data sources, and convert it into a

form that is more useable by the system. This is normally done directly via a user

interface used directly by the expert, or by a knowledge engineer, who converts the

knowledge of the expert into a more suitable format for the system.

Huge amount of information is very easily accessible around us and due to this same

reason, it is difficult to use this information. This problem is called infosmog.

Infosmog is when the actual information that you are looking for is hidden underneath

a wealth of information that you don’t actually need.

Expert systems rely greatly on tacit knowledge30. Tacit knowledge is that knowledge

which is available only to an individual and only that individual holds that particular

knowledge. Tacit knowledge is highly personal and is built upon experiences, ideas,

values and emotions. This could be stored in one’s own mind, available subconsciously

through cultural knowledge, habits, learnt knowledge etc. Knowledge acquisition aims

at exposing this type of tacit knowledge and converts it into explicit knowledge.

Explicit knowledge is knowledge that is available to everyone. The aim of an expert

system is to convert tacit knowledge from experts into explicit knowledge in the forms

of rules, which can then be used by a much larger user base.

30 Tacit knowledge can be considered knowledge that people are not aware of, or knowledge that cannot

be easily explained (transferred) to other people. It is knowledge that cannot be easily explained in

writing. A classical example of such knowledge is that of knowing how to ride a bike. Although for

most people that can ride a bike, it comes naturally, it is not easy to explain to a person how to balance

yourself on a bike but can be learnt more through personal experimentation.

Knowledge Management (Fundamentals)

26

There are various methods to obtain information from experts, such as:

• Interviews

• Questionnaires

• Learning by observation

• Learning by being told / explained to

Figure 2-3: Knowledge Acquisition Process31

31 Adapted from (65)

Explicit

Knowledge

Human

Expert

Knowledge

Engineer

Knowledge Base of

Expert System

Dialog

Knowledge Management (Fundamentals)

27

2. 3. 2 Knowledge Representation

It is important that the knowledge acquired is stored in a form that enables the expert

system to work efficiently on. R. Davis et al. (16) define knowledge representation as

having five different roles, one of them being “a medium of human expression”.

Knowledge representation is a crucial aspect in artificial intelligence. In expert systems,

knowledge is stored in a knowledge base, which in turn is stored as a set of rules. Each

rule implies one logical statement, and all the rules together can be considered the

mind-map of one or more experts.

One main advantage of an expert system is that it can store the combined knowledge

of several experts. These rules, together with an ontology, define the long-term

memory of the expert system.

What needs to be represented?

There are several notions that need to be expressed in a Knowledge Base. The main

ones are objects, facts, and relationships. The objects in a knowledge base define the

types in the ontology, and the domain of the expert system. Facts are knowledge

about the objects, like ‘The car is red’. Relationships on the other hand define the

links between objects, such as ‘A car is a machine’, which defines a relationship

between car and machine, such that the car inherits any properties of a machine.

Knowledge Management (Fundamentals)

28

2. 3. 3 Knowledge Inference

Acquiring and representing knowledge is a very important part of any expert system.

However, the expert system needs to reason about this knowledge. Knowledge alone

does not constitute an expert system. A classical expression defined by Nicholas

Wirth32 with regards to computer programming is:

Algorithms + Data Structures = Programs

Joseph C. Giarratano et al. apply this same expression for expert systems, converting it

to: (17)

Knowledge + Inference = Expert Systems

Inference is the process of deducing information from known facts to arrive at other

premises. Reasoning in an expert system is entirely dependent on the rules found in

the knowledge base. The purpose of an inference engine is to mimic the reasoning

process of an expert, and thus can automatically expand the knowledge base through

known facts inputted by the user and production rules stored in the KB. An inference

engine can produce both valid and invalid inferences. An expert system cannot easily

distinguish between what is a valid inference or not (apart from a contradiction).

An example of an invalid inference would be:

A bird has two legs

A cat is a bird

∴ A cat has two legs

32 Swiss computer scientist, best known for designing several programming languages including Pascal.

He holds a Turing Award for developing a sequence of innovative computer languages.

Knowledge Management (Fundamentals)

29

We can easily know that this is not true, because we have a good idea of what the

notion of a cat is, and that a cat is surely not a bird. However, it is a perfectly legal

argument for an expert system33.

There are mainly two types of inference in an expert system – Backward chaining

and Forward chaining. Backward chaining is a method of reasoning that starts with

a goal (hypothesis) and works from it backwards (hence the name) until a solution is

found. It will only fire the least amount of rules possible, and is an ideal method of

reasoning for troubleshooting problems when one knows the problem, and wants to find

out what is the cause.

On the other hand, Forward Chaining is a method of reasoning which considers any

known facts and tries to obtain as much information as possible by firing rules.

Forward chaining is a form of greedy solution, which will use all rules available. This

method is useful when one wants to diagnose a problem, for example in medical

diagnosis. One would not know the condition that he has before hand, but knows only

of the symptoms that he is experiencing.

Forward chaining can give an indication of what might be the condition based on the

information the user inputs the system. Explaining these types of inference is not the

scope of this chapter, and they will be dealt in more detail in page 54 (Chapter 3,

Inference), including methods of reasoning employed under uncertain circumstances.

33 An invalid/incorrect inference is also known as a fallacy, and can be defined as “a misconception

resulting from incorrect reasoning” (http://wordnetweb.princeton.edu/perl/webwn?s=fallacy)

Knowledge Management (Fundamentals)

30

2. 3. 4 Explanation

One very important aspect of any expert system is the ability to clearly explain its

reasoning process. The user must be able to easily follow up why certain questions

were asked, and how the expert system came to that conclusion. This greatly increases

the credibility of the system, as it will not be considered a system that produces a

magical answer without any reason.

This same explanation capability is the same way that human experts can explain their

reasoning34. Various factors make this feature extremely important:

• The system can be critical (as in a medical-diagnosis expert system) and human

life or property can depend on it. Thus, the system has a great deal of

responsibility to come up with reasonable answers just like an expert would.

Having an explanation system enables the user to justify its answers, and serves

as a sanity check of the reasoning for humans.

• An explanation system can aid a lot the knowledge engineer in debugging the

system, and can be extremely useful in the development stage.

Misunderstandings or human mistakes can be detected more easily if a good

explanation clearly explains its reasoning of why it came to such conclusions. It

allows the knowledge engineer to verify its accuracy. It is next to impossible to

understand the reasoning of such a system just by looking through the rule base,

especially as rule bases tend to get quite large and contain many chained35 rules.

Also, rules are not fired sequentially as they were entered, and an expert system

34 Not every human expert can clearly explain their reasoning for coming to such a conclusion, and that

is one of the most important aspects to consider in knowledge acquisition
35 By chained rules, one implies rules whose consequents refer to other rules.

Knowledge Management (Fundamentals)

31

acts like a parallel program by firing rules according to the circumstance, and in

some cases even simultaneously.

Therefore, an explanation system is very important both for the end-user, and for the

developer (knowledge engineer) (18). An explanation system must be able to answer

two types of questions for its users. These are:

• Why did the expert system ask that particular question?

• How did the expert system reach that conclusion

An inference engine must keep track of any rules fired and the sequence in which they

were fired. In the case of backward-chaining inference, it must also keep track of any

goals and sub-goals generated during the progress. Answering the above two questions

can be considered a tree-search on the rules fired and goals.

The explanation facility of an expert system depends on the intended function of the

expert system. Some different methods of explanation could include:

• Listing all rules in chronological order of execution, so that the user can follow

up the reasoning process step-by-step of the expert system

• A tree-like structure of the goals and generated sub-goals, so that the user can

easily follow up how did the expert system reach a certain conclusion, and why

certain questions were asked

State of the art in Expert Systems (Fundamentals)

32

2.4 State of the art in Expert Systems

Considering the vast amount of information available at this day and age, artificial

intelligence and expert systems are a continuous research process in the hope that they

can help us make more sense of the enormous amount of knowledge around us.

The thought of being able to build intelligent machines came about around the middle

of the 20th century. Initially, progress was moving at a very fast rate and computers

could be able to solve “astonishing” problems like solving algebra and speaking English.

This even led some notable scientists like H. A. Simon to say that “Machines will be

capable, within twenty years, of doing any work a man can do” (19).

As one can clearly see, these predictions did not come true, as researches failed to

recognise the difficulty in solving certain set of problems. After the boost of AI in

around the 1960s, came the first AI Winter36

The potential of Expert Systems was first seen in around the 1980s and it gave another

great boost to AI. Artificial Intelligence has yet to be able to create a computer that is

really ‘intelligent’. One can easily debate on how you can define a machine as

intelligent, but that clearly is not the scope of this dissertation. Expert Systems are

one of the most successful areas in the field of Artificial Intelligence.

Enterprises and companies are investing money in creating such expert systems, to be

able to store tacit knowledge contained by their experts in a more useful form. This

also enables the experts to focus on new research, and on more productive work than

problem solving. Lately, more interest is being taken once again in this topic, and we

36 AI Winter is considered to be a period of slowness in research, and lack of interest in Artificial

Intelligence. This came mainly due to various disappointments and lack of funds.

Summary (Fundamentals)

33

have seen the emergence of ontology definition languages like OWL, DAML+OIL and

RDF, research into the Semantic Web, data mining, clustering, behavioural analysis

and much more. A drawback to existing expert systems is that most such systems

encapsulate business logic, and many companies generally do not publish such

information because competitors can take advantage from it. The aim of this project is

to try and bring expert systems more into the usage of the general public, and also aim

to remove the scepticism around them. (20)

2.5 Summary

In this chapter, we have introduced some fundamental concepts behind the theory of

expert systems that are the basis for topics that are to be covered in the next chapter.

We have identified the various forms of logic that are used for representing knowledge

and conditions, giving slightly more prominence to Boolean Algebra which is the basis

for any expert system. We have also given a brief outline of uncertainty in logic;

defined the concept of an ontology, what it consists of and its importance in an expert

system. Also a brief outline of the steps involved in the knowledge management

process was given, splitting the process into three main steps: Knowledge Acquisition,

Knowledge Representation, and Explanation. Finally, we have also given some

background information on knowledge inference, which is one of the main aspects of an

expert system that is expanded in much more detail in the following chapters.

Internet (Background)

34

3 Background

This chapter shall provide an overview of how expert systems evolved, the theory

behind such systems, how they work in practice, their limitations and their strength.

3.1 Internet

Before we start to explain in more detail how an expert system, we will explain why

the Internet was the medium of choice for such a project.

3. 1. 1 Brief History of the Internet

Computers have been around now for around a century, however when computers first

started appearing they were nowhere similar to what we expect them to be/do today.

Computers were lonely machines that worked solely on their own without any form of

communication. However, communication is an essential process for computing in

general, and this sparked lots of research in networking.

There are various networks that led to the global network we nowadays know as the

Internet. These include ARPANET, NSFNet, X.25 and UUCP. With the invention

of TCP/IP, much of these networks were merged and the network became worldwide.

The internet is nowadays an integral part of almost everyone’s life, and internet usage

has grown exponentially in the past few years, and will continue to do so in the near

future.

Internet (Background)

35

Initially, the internet served more as a large repository of information, where users used

search engines to search for information, and find what they need. The 21st century

saw the emergence of so called dynamic web pages and web-applications, and this has

continued to give a great boost to internet usage in general. (21)

3. 1. 2 Why the Internet?

Applications developed over the internet have many advantages over traditional

applications. A major advantage of web applications is that they require no

installation. The user simply has to log on to the website, and he can start using the

application instantly. Also, there are no hardware incompatibilities, OS settings, etc.37.

Having no installation also makes the application available anywhere, and you users

can use the same application anywhere they like (assuming they have an internet

connection)

Traditional desktop applications also have a problem of synchronizing versions when

deployed over a network. If an upgrade is performed on the software, the patch needs

to be done on each and every computer where the application is installed. This is not

the case for web applications. The update is done to the web server and the application

is automatically updated when the user logs on.

The application is also able to cater for a vast population of internet users. This is

one of the main points of why this project is being deployed over the internet. Having

access to all these human resources allows users to contribute much more easily to the

system, and the ultimate aim would be to create a global repository of knowledge bases

37 Although a classical problem when developing applications on the internet is having browser-

incompatibility instead of operating system incompatibility. This is especially a problem with users who

are using old, non-standards compliant browsers like Internet Explorer 6 and Netscape 4. Still one can

argue that it is much easier to change a browser, than to change your operating system.

Internet (Background)

36

that are freely accessible by anyone who has access to the Internet. Figure 3-1 shows

the latest information available on internet users worldwide. Current population

stands at approximately 1.6 billion users. (22)

Figure 3-1: Internet users as of March 31, 200938

38 Taken from http://www.internetworldstats.com/stats.htm, which contains various statistics on

internet population, broadband penetration, and world internet usage

Philosophical Basis (Background)

37

3.2 Philosophical Basis

3. 2. 1 What is knowledge?

There are various definitions of what is knowledge. However, it is not that easy to

define exactly what knowledge is, and it may mean differently from one person to

another.39 Oxford English Dictionary (23) defines knowledge as:

i. Expertise, and skills acquired by a person through experience or education; the

theoretical or practical understanding of a subject

ii. What is known in a particular field or in total; facts and information

iii. Awareness or familiarity gained by experience of a fact or situation

Knowledge has always fascinated human beings. Epistemology40 is the study of

knowledge, and is mainly concerned with the nature, structure and origins of

knowledge. It can be classified into mainly two types of knowledge:- a priori and a

posterioiri. Figure 3-2 shows a brief outline of how epistemology can be classified41

A priori knowledge is knowledge that is known independently of any experience. It is

the considered to be universally true, and is not subjective (assuming there is no

contradiction). Mathematical laws are an example of such knowledge. A posteriori on

the other hand is knowledge that requires a certain kind of experience to be known,

and can also be verified. For example, if one sees a black sheep he can conclude that

sheep are black. However, if later he sees a white sheep, he has to revise his

knowledge. Most ‘a posteriori’ knowledge can be verified using the sensory experience

of human beings.

39 Joseph C. Giarattano in (66) points out that “Knowledge, like love, is one of those words that

everyone knows the meaning of, yet finds hard to define or even feel the same way about”
40 Epistemology like most other words is derived from Greek episteme and means ‘theory of knowledge’
41 Adapted from (67)

Philosophical Basis (Background)

38

Most knowledge that is used in problem-solving uses a heuristic approach, and the

expert cannot say with certainty what the problem is. However, based on experience,

an expert can give an indication of the likelihood of the cause of the problem, and how

accurate he is in his calculations is what makes the difference between how ‘expert’ an

expert is considered. Most problem-solving can be converted into a form of check-list,

where the expert mentally cross-checks this list to come up with a conclusion. This

type of reasoning is called case-based reasoning, and is a very important type of

reasoning used in expert-system. A. Aamodt et al. (24) define case-based reasoning as

“the ability to solve new problems by remembering a previous similar situation and by

reusing information and knowledge of that situation”. This type of reasoning involves a

cyclical process. Experts solve new cases from which they learn knowledge and

information. These solved cases are used and can be ‘retrieved’ from memory when

need arises.

Epistemology

Philosophic

theories

a priori

knowledge

a posteriori

knowledge

Figure 3-2: Some different types of knowledge in epistemology

Philosophical Basis (Background)

39

Figure 3-3: The case-based reasoning cycle42

42 Reproduced from (68)

Philosophical Basis (Background)

40

Information around us can be split in various hierarchies. Figure 3-4 depicts the so-

called ‘Pyramid of Knowledge’.

Figure 3-4: Pyramid of Knowledge43

• Noise: Data that has no apparent meaning

• Data: Information that could potentially be useful

• Information: Could potentially be useful for knowledge

• Knowledge: Rules about using information

• Metaknowledge: Knowledge about Knowledge, contains information about

the rules

• Wisdom: Using knowledge in a beneficial way

43 Adapted from (69)

Wisdom

Metaknowled

ge

Knowledge

Information

Data

Noise

Philosophical Basis (Background)

41

3. 2. 2 Common Sense

Common sense is a very debatable subject in epistemology. One cannot easily define

what common sense is, and it is very difficult for computers to work with such

knowledge. Common sense is defined as a method of reasoning that uses the beliefs of

a person as opposed to rigorous scientific methods. For example, if a person near you

drops a glass of water from a table, and you are 6 meters away, you will not jump

away to try and avoid it. This is because you know that the glass shards and water

will not travel that distance. You do not use any formulas to find out exactly how

much the glass shards will travel, or how much will the water spread - Most people

don’t even know them, and if they do, it is not possible to calculate the results

instantly as required before you can take action.

Users of expert systems need to understand the limitations of such systems. Although

most expert systems have not been able to yet employ common sense, they still are

able to perform quite well in their domains. The problem with common sense is that it

has proved very difficult to express it in formal terms. One of the best known expert

systems, MYCIN worked by assuming that the user was aware of its limitations, and

that the user himself used his common sense to reason about the conclusions that

MYCIN reached. This enabled such a system to perform reasonably well without

common sense. (25)

Philosophical Basis (Background)

42

3. 2. 3 Expertise

What makes an expert? There are various arguments on what are the factors that

make a person an expert. Being intelligent or having a degree does not imply that you

are an expert, and vice-versa. Even if you have a PhD or a degree in a topic does not

essentially make you an expert in that field.

Experts normally have very broad knowledge about one (or more) particular domains,

and have managed to acquire troubleshooting experience through training and/or

practical experience in the field. Typical examples of every day experts are:

• Mechanic: An expert on cars

• Doctor; An expert on human anatomy and diseases

• Computer Technician: An expert on computer hardware and software

troubleshooting

An expert is able to adapt to the situation, and can use his expertise to try and solve

new problems. Case-based reasoning is used to recall past problems and come up with

solutions. (26)

Artificial Intelligence (Background)

43

How can one become an expert?

One cannot become an expert by reading a degree, or simply by some form of training.

Experts are considered ‘experts’ because of their experience in the field, their

achievements, and their trouble shooting skills. Some key factors in becoming an

expert in a domain could be:

• Practice: An expert needs to have practical experience in the field

• Diagnosing & fixing problems: Ability to solve problems

• Recall Memory: Be able to store solved cases, and use them to expand his

knowledge on the subject and solve new cases (Case-Based reasoning)

3.3 Artificial Intelligence

Artificial Intelligence (AI) is the branch of computer science that aims to make

machines perform intelligibly.

Barr and Feigenbaum define artificial intelligence as (27):

“Artificial Intelligence is the part of computer science concerned with designing

intelligent computer systems, that is, systems that exhibit the characteristics we

associate with intelligence in human behaviour – understanding language, learning,

reasoning, solving problems, and so on”.

In more layman terms, AI can be considered as programming computers to do tasks

that humans are currently more suited for, like picture recognition, translation, etc.

Programming a computer to perform long and complicated mathematical formulas is

not artificial intelligence, even though a human might find it difficult to perform. This

is because computers are more suited for such type of problems, while abstract

reasoning is not performed ‘naturally’ by a computer. The mentioned mathematical

task would involve following an algorithm in a step-by-step manner, which can easily

be done by a computer.

Artificial Intelligence (Background)

44

3. 3. 1 Weak AI

Also known as narrow intelligence, this type of artificial intelligence is when a machine

tries to act as if it was intelligent; it is intelligence that does not try to surpass human

intelligence, but performs a task with a limited set of abilities (normally limited to one

human cognitive ability). Most of the current research in AI revolves around this area.

Expert systems are considered to be a relatively successful example of weak artificial

intelligence systems. A classical example of a weak AI system is the Deep Blue44

machine. It used its enormous computational capabilities (over 200 million chess

positions per second), to analyse possible moves to a great depth. It performed a tree-

search on the possible states, and one argues whether that can really be considered

intelligent. However, there is no clear definition of what is intelligence, and quoting

Drew McDermott “Saying Deep Blue doesn’t really think about chess is like saying an

airplane doesn’t really fly because it doesn’t flap its wings”. (28)

However, the type of intelligence possessed by the machine, opposed to what was

employed by the human player is clearly different. We can assume that it is next to

impossible for a human player to perform anything near 200 million comparisons per

second. Considering that the machine still lost some games, there is more and more

research to be done into this topic before we can see machines acting intelligently, like

what we nowadays only see in fiction.

44 Deep Blue was a computer developed by IBM specifically for playing chess. It was the first machine

to win a chess game against a world champion, Garry Kasparov.

Knowledge Representation (Background)

45

3. 3. 2 Strong AI

Strong artificial intelligence, also known as general artificial intelligence is considered

intelligence that closely mimics human intelligence. Its main aim is to replicate human

intelligence and is an extremely complex task. Progress in strong AI has been quite

limited. A machine is considered to have general intelligence if it manages to pass the

Turing test45. This test involves having a human judge engage in a natural language

conversation with two entities, a human and a machine (chatbot). If the judge cannot

reliably tell which one of them is the machine, then the machine is said to be

intelligent. No machine has yet passed the Turing test for any given length of time.

(29)

3.4 Knowledge Representation

Before an expert system can perform any type of reasoning/inference, it must store

rules in a formal manner. As explained previously, expert systems are a form of weak

AI, and depend entirely on the rules in their knowledge base to be able to reach

conclusions. There are various different methods for knowledge representation, and we

will discuss several of them, including their advantages and disadvantages.

45 A competition is held yearly, called the Loebner Prize that involves contestants submitting

implementations of chatbots, and the chatbot that manages to convince the most judges that it is not a

machine wins the competition. The latest competition was won by Elbot, which can be accessed online

on www.elbot.com

Knowledge Representation (Background)

46

3. 4. 1 Rules

A collection of facts in the knowledge base is not able to provide any further

information. A rule is a formal representation of one logical statement, and creates a

relationship between facts in the knowledge base.

A rule is made up of two parts; antecedents and consequents, and defines an

English-like statement based on a minimum of 1 antecedent and 1 consequent. An

antecedent is a requirement for the rule to fire. When a rule fires, it is implied that all

its conditions have been met and thus one can assume that its consequents are true.

From this we can derive that a consequent is the output of a rule. A rule is defined in

this format:

 Rule = IF {Antecedents} THEN {Consequents}

The inference engine of an expert system would then use these rules to perform either

backward chaining or forward chaining inference (30). These two types of inference are

explained in more detail in page 54. (Chapter 3, Inference).

3. 4. 2 Semantic Nets and Associative Networks

A semantic network is a labelled, directed graph that represents information about

facts and the relationships between facts. It is also called a propositional network46.

Initially, semantic nets were invented for use in machine translation of natural

language. These semantic nets were used to represent words in the language, and the

relationship between them. Later on, they found various other users for such networks.

A semantic network can easily be visualised.

46 As previously discussed, a proposition is a fact / statement.

Knowledge Representation (Background)

47

The nodes represent the objects and facts of a knowledge base, while the edges

represent relationships between them. The semantic web is a project that aims to

create a semantic network out of the Internet, so that machines can make more sense

out of it much more easily and efficiently. (31)

Figure 3-5: An example of a semantic network47

Associative networks are similar structures to a semantic network, but can contain

further information about objects. Nodes in an associative network can be connected

to other nodes to share information between them. For example, if we know that an

animal can move, and we also know that a human is an animal, we can easily deduce

that a human can also move. This feature is known as cognitive economy, and can

greatly reduce the storage requirements while still getting the same amount of

information. There is no need to attach the information (that it can move), to both

animal and human, if we can consider human to be a sub-class of animal. Today, this

is now known more conventionally as inheritance48. (32)

47 Reproduced from http://en.wikipedia.org/wiki/Semantic_net
48 Inheritance is a very important feature of the OOP (Object-Oriented Programming) paradigm, and is

based on the same concept, that of defining a hierarchy of classes and sub-classes.

Knowledge Representation (Background)

48

Figure 3-6: An associative network showing inheritance and relationships. AKO (A-Kind Of) relates one

class to another, with the node being pointed to by the arrow being the generic class

Knowledge Representation (Background)

49

Problems of semantic nets

• Semantic nets cannot define certain subsets of a class. For example if a node

defines a ‘table’, is it referring to all tables or just some tables? It has no

concept of an ontology

• A search on a semantic network can be very inefficient, especially if the result of

the query is negative. If there is no result, all nodes and links of the net need to

be searched and this as proven in the traditional Travelling Salesman Problem49

is of factorial time complexity.

Figure 3-7: Two types of searches on a semantic net50

For further reading on the topic, the reader is referred to (33) which contain more

detailed information on their usage, their concepts and a brief history.

49 Travelling Salesman Problem is a classical NP-problem, which involves finding a solution for a sales

man who wants to travel to all N-cities exactly once, and ending at the same place where he started.
50 Adapted from (75)

Knowledge Representation (Background)

50

3. 4. 3 Conceptual Graphs

Conceptual Graphs are graphs representing logic, based on the existential graphs

developed by Charles Sanders Peirce (34), and semantic networks.

These types of graphs contain a formal specification of objects (nodes) and

relationships, and build upon the limitations of semantic networks. Objects (also called

concepts) can be either generic or individual. As their name implies, generic objects are

objects that refer to any object of a certain type, for example a concept could define a

chair. An individual concept would specify in more detail what the object is, for

example a wooden chair. (35)

Conceptual graphs can also be represented using predicate logic. However, it is much

better to understand the problem using a visual diagram.

Figure 3-8: A conceptual graph

The conceptual graph in Figure 3-8 shows the logic involved in defining the statement

“John is going to Boston by bus”. In these types of graphs, concepts are defined as

rectangular boxes, and the diagram includes both generic and individual concepts. The

individual concepts are the concepts that have names (John, and Boston). The

circular nodes define relations between the concepts.

Knowledge Representation (Background)

51

The graph also depicts relations (Agnt-Agent, Dest-Destination, Inst-Instrument) 51

between the concepts. The conceptual graph indicates that the person named John is

an agent of some instance of going, the city Boston is the destination, and a bus is the

instrument. (35)

3. 4. 4 Object-Attribute-Value Triples

Object-Attribute-Values52 (OAVs) are a form of general-purpose data structure used for

knowledge representation. It is more suitable for defining properties (attributes) about

objects, and their possible values. Such properties are similar to the ones defined by a

HAS_A relationship in a semantic net.

Sometimes, most of the objects in a knowledge base have many of such relationships,

that it is more efficient to store them directly as a triplet of Objects, Values and

Attributes. OAV information is similar to an extension of a traditional relational53

table in a database.

Object Attribute Value

dog colour brown

dog species fox terrier

dog size medium

cat colour white

cat species persian

cat size small

Table 3-1: An example of an OAV-triplet

This type of data structure is very useful for representing facts corresponding to

antecedents of a rule. They organise facts as a collection of objects and attributes.

Defining attributes for objects allows objects to inherit from other objects (inherit the

51 Agent and Instrument are different kinds of effectors in Natural Language semantics
52 Also known as Entity-Attribute-Values (EAVs)
53 A relational table is a table stored in a database that is made up of fields (columns), and data (rows).

Knowledge Representation (Background)

52

properties of the other object). Frames are another data structure used for knowledge

representation and inheritance.

Sometimes, simpler objects can be difficult to classify them into an OAV triple, as it

would be difficult to separate attributes from an object. In that case, sometimes the

object is omitted and the data is stored as an Attribute-Value tuple. This is normally

used when one is only representing a small number of objects, and inheritance is not

required. (36)

3. 4. 5 Frames

Another form of knowledge representation are Frames. Frames are used to define

typical stereotypes, and contain a skeleton54 to describe an object. They are an

extension to rules and semantic nets. Semantic networks can be considered a 2-

dimensional structure, which is more adept at defining broad knowledge. Frames add a

third dimension by allowing objects to also have structure.

These are used to represent a narrow subject in detail, and are especially useful for

describing real-world objects that contain various properties, like mechanical devices. A

frame is made up of both member links and subclass links. Member links define

relationships between the properties of an object, while subclass links define inheritance

between objects. Member links can be thought of representing a ‘has-a’ relationship,

while subclass links represent an ‘is-a’ relationship. Frames also incorporate slots,

which can be further subdivided into own slots and member slots. ‘Own slots’ are

information about the class the frame is representing as a whole, while member slots

are information about the specific instance of the class. (37)

54 By skeleton one is referring to the properties that make up an object, without any values

Knowledge Representation (Background)

53

Considering a frame representing the ELEPHANT class. An elephant can have ‘own

slots’ describing it as ‘Heavy’ and ‘Large’. Member slots for such a class could be

‘colour’, and ‘weight’. This means that an object of type ELEPHANT is considered to

be large and heavy, while colour and weight are attributes that vary based on the

instance. Each member can have their colour and weight specified.

Inheritance

A very important feature of frames is inheritance. A concept we are used to nowadays

that is very similar to frame-based inheritance is inheritance in an object-oriented

programming language55.

A class frame can have subclass links to other class frames, and this implies that the

members defined in the superclass56 re ‘copied’ also to the inheriting frame. For

example, the ANIMAL frame might have the member slots ‘Weight’ and ‘Number of

Legs’. Consider the HUMAN frame which has a subclass link to the ANIMAL frame.

The human is considered to also have the ‘weight’ and ‘number of legs’ members, as

well as say an ‘IQ’ member.

A frame-based representation structure has various benefits to an expert system and its

inference engine. The frame-structure allows a more powerful language to describe

objects, and can perform useful inferences based on the member links and subclass

links. (38)

55 In fact, and object-oriented language is considered to be a frame-based language, and implements most

of the features found in frame-based reasoning
56 By superclass, we are implying the more ‘generic’ class in a relationship, for example: A ‘human’ can

be considered to inherit from the ‘mammal’ class, and thus the mammal class is the superclass while

‘human’ is a subclass of ‘mammal’.

Inference (Background)

54

3.5 Inference

Inference is the process of taking the representation of knowledge inside the knowledge

base, and performing ‘reasoning’ to reach conclusions and/or other facts and

information. The inference engine performs a series of operations commonly known as

the recognise-act cycle or inference cycle. There are mainly two forms of inference:

backward chaining and forward chaining. Expert systems can also include a mixture of

these two, in order to get as much information as possible out of the available facts.

3. 5. 1 Backward Chaining

Backward chaining on the other hand works by setting a consequent as a goal, and

asks question to the user based on the antecedents. If a user does not know the answer

to a question, the system will automatically generate a sub-goal based on the

antecedent that was not fulfilled.

Consider an example of a very simple knowledge base about cars:

Car is not starting

Starter motor is

not working
Fuel tank is empty

Car battery is flat

Figure 3-9: A very simple knowledge base on cars

Inference (Background)

55

If the user wants to know why his car is not starting, the expert system will look for

any rules which have the condition as their antecedent. Lets imagine it picks “Starter

motor is not working” first. It will ask the user whether it is true. If the user answers

that he doesn’t know, then that is set as a sub-goal, and it will ask whether the car

battery is flat. The system will continue chaining rules, until a solution is found, or no

possible solution is valid with the existing rules. (39)

Automatic Goal Generation

An important feature of backward chaining is the ability to automatically generate

subgoals, based on the inputs of the user. Initially, a backward chaining inference

starts with one goal condition:- trying to find an answer to the asked problem.

However, most of the time it is not possible to find the solution by looking only at

rules that have that goal directly in the rule’s RHS as the user might not know the

values for the LHS variables.

If the answer to a question posed by the user interface is answered as ‘I don’t know’ by

the user, the inference engine can still consider that value as unknown. The inference

engine will keep a stack of goals and each time such an event arises, a new subgoal is

created and added automatically on top of the stack (the initial goal should always

remain the goal at the bottom of the stack). These subgoals can then be used to infer

variables, through which it would be possible to find a solution to the initial goal.

Inference (Background)

56

3. 5. 2 Forward Chaining

Forward chaining inference is when the inference engine acts upon the known facts,

and from the known facts reaches conclusions. This is done by firing rules, based on

which rules have their antecedents fulfilled. Consider the following rule base:

IfIfIfIf it barks thenthenthenthen it is a dog

IfIfIfIf it sings thenthenthenthen it is a bird

IfIfIfIf it is a bird thenthenthenthen it has 2 legs

IfIfIfIf it is a dog thenthenthenthen it has 4 legs

Imagine one wants to find out how many legs a certain animal has, and he knows that

it barks. The user will tell the system that it barks. The forward chaining module will

check which rules have the known fact as its antecedent, and reach the conclusion in

its consequent. Thus, it can deduce it is a dog. From the rule base, it also knows that

if it is a dog, it has 4 legs. Thus, it will output to the user that the animal is a dog

and has 4 legs.

The inference engine can choose to iterate through all the rules each time a new fact is

either inputted by the user or deduced from rules. This brute-force approach can be

extremely slow in larger knowledge bases, and faster methods needs to be defined in

order to make it much more efficient. A classic algorithm for forward-chaining

inference is the Rete algorithm.

Another method is to perform some form of indexing on the rules, so that the required

rules can be found much faster without the need to iterate through the entire

Inference (Background)

57

knowledge base every time. With the emergence of various DBMSs57, one can create a

database schema that can easily accommodate a rule-base. Indexing is a key feature of

any database, and carefully selected indexes can render the searching very efficient, and

removes the need of having the entire knowledge base in memory. (40)

3. 5. 3 Recognise-Act Cycle

The inference process is as a continuous cycle and stops execution to wait for input

from the user or when it has come up with a conclusion. The steps involved in the

cycle are: (41)

• Matching: This will check which rules can be activated. For forward chaining,

the LHS is evaluated and keeps track which rules are satisfied. For backward

chaining, the inverse is done and it keeps track of rules whose RHS satisfies the

current goal. This is most intensive process of the cycle, and is the step where

the Rete algorithm can be used.

• Conflict Resolution: If more than one rule is satisfied during the matching

cycle, the inference engine must decide on which order will the rules be

processed. The conflicting rules are stored in a conflict set. If on the other

hand, no rule is satisfied, the inference will either ask for some form of input

from the user, or halt execution and output the contents of the Working

Memory.

• Rule Firing: A rule is fired based on the choice in the conflict resolution

stage, and its consequents are added to the working memory.

• The process repeats itself

57 DBMS stands for Database Management Systems, like MySQL, MS SQL, Oracle, amongst various

others.

Inference (Background)

58

Figure 3-10: recognise-act-cycle58

3. 5. 4 Rete Algorithm

For even a medium-sized knowledge base with a moderate amount of rules, sequentially

going through every rule is very inefficient. This renders large knowledge bases

impractical and the Rete59 [(42), (43), (44)] algorithm is an algorithm that greatly

enhances the speed and efficiency of forward-chaining inference systems.

A typical working memory of a knowledge base changes comparatively slowly to the

number of pattern-match cycles and rules in the KB. The Rete algorithm creates a

network based on the rules that will greatly help improve the matching performance of

the system. It performs a trade-off by increasing memory usage for performance gains.

The Rete can be quite memory intensive with large knowledge bases, and this was

especially a problem when it was first invented mainly due to the low memory

available at those times. Nowadays even normal desktop computers are equipped with

a relatively large amount of RAM, and it is not such an issue as it was before.

However, various other implementations (both new and based on Rete) have been

58 PM represents Production Memory, and is an alias for Knowledge Base. CS is the conflict set.

Reproduced from (72)
59 The word Rete is taken from the Latin word for ‘net’ and the same word is also used in modern Italian

to mean ‘network’. (Wikipedia: http://en.wikipedia.org/wiki/Rete_algorithm)

Inference (Background)

59

designed since the Rete algorithm was invented that require less memory. It is not the

scope of this dissertation to discuss more memory-efficient implementations of Rete,

and the reader can refer to (45), (46) for some of these implementations

A Rete is a directed acyclic graph whose nodes correspond to the current state of the

objects in the working memory. The network is made up of two distinct parts:

• Alpha Network (left side): Performs constant tests on working memory

elements (such as equality tests). The output of this network is stored in alpha

memories, each of which holds information on the current set of WMEs passing

the tests for a single condition.

• Beta Network (right side): Performs join conditions between different nodes

(Working Memory) of the system. The memory of this network stores partial

rules also known as tokens which match some but not all of the conditions in a

rule.

The Rete network has one single point of entry, and all Working Memory (facts) are

fed from this point. The updates are represented either by a positive token, or by a

negative token. The positive token implies facts that are to be inserted in the memory,

while a negative token implies facts that are to be removed from the memory.

Each node has a memory that stores related facts. Nodes with one-input, also called

Anodes, contain working memory elements (WMEs) that contain one condition

(pattern). If the condition succeeds (it is fulfilled), the token is passed on to all its

successors.

Nodes with two-inputs, also called Bnodes, are used to test working memory elements

that contain more than one condition. If a positive token arrives at this node, it will be

stored in its local memory, while if a negative token arrives, any similar fact is removed

Inference (Background)

60

from its memory. Once again, similar to ‘anodes’, if the condition is fulfilled, the

generated token is also passed to its successor. (47)

By passing tokens to it successors, it reduces the total iterations required to check the

effected rules, because the rules for which the tokens do not apply are not used. This

can render the search much more efficient, to the detriment of memory space. For a

more detailed explanation about the Rete algorithm and its inner workings, one can

refer to the works cited in (42), (43), (44) and (47).

Figure 3-11: A sample Rete network, showing Alpha Memories60

60 Reproduced from (73)

Uncertainty Management (Background)

61

3.6 Uncertainty Management

Any form of intelligence system based on artificial intelligence has to operate with some

form of uncertain information. The previously mentioned methods of inference all

worked on one assumption: Discrete information. Conditions of rules had only two

possible values61 - True or False (or Yes & No). However, this is very different from

real-world problems, and most of the time these two answers are not enough to

represent practical problems. Most of the sources of uncertainty in problem solving

come due to imperfect knowledge about the domain. (48)

Sometimes uncertainty allows a system to be more feasible. Uncertainty allows an

expert system to come up with conclusions, without the need for all the possible

evidence. This is sometimes extremely useful. For example, consider an expert system

for medical diagnosis: Medical tests cost money and time. An expert system might

come up with a diagnosis which is highly likely, but not certain. Although it would

have been possible to perform more tests in order to increase the likelihood, it would

cost money and time, and the patient might even die until the results are available.

Thus, answers should be able to reflect levels of uncertainty, and we will discuss

various different methods of uncertainty methods, and their pros and cons.

61 Three values, if you count the ‘I don’t know’ value as supplied by the user but that is not used for

inference but just for backward chaining for automatic goal generation.

Uncertainty Management (Background)

62

3. 6. 1 Bayesian Probability

Bayesian probability extends on classical probability62. Classical probability deals with

a priori probability. As already discussed in Chapter 3.2, ‘a priori’ knowledge is

knowledge that one knows beforehand, without any need for experience. This type of

knowledge includes game odds, playing dice, flipping a coin63 etc. The opposite of ‘a

priori’ is a posteriori, and is knowledge about an event based on certain experience.

Outcomes of an event can be either deterministic or nondeterministic.

Deterministic are results that given the same inputs, give the same always the same

results. Non-deterministic are the vice-versa, although non-deterministic does not

essentially mean the same as random.

Let us consider the example of a dice. A dice has 6 possible outcomes, one of either 1,

2, 3, 4, 5 or 6. Assuming a fair dice, one can say that:

P(x) = 1/6, where x is a number from 1 to 6

This means that the probability that the outcome is a number X is one in every six

times. This is a generalization, and it does not mean that if you throw the dice twelve

times, it will strictly appear exactly two times. (49)

Conditional Probability

Conditional probability is the probability of an event A happening, given that another

event B has already happened. It is written as P(A | B) and is read as “Probability of

A given B”.

62 Classical probability is the oldest tool for problem solving in uncertainty, and has been around for a

very long time. It can be considered a quantitative way of dealing with uncertainty
63 Considering the dice has not been worn out, the coin is fair, so on and so forth

Uncertainty Management (Background)

63

Bayes Theorem

Bayes Theorem64 is used to find the posterior probabilities for an outcome. This is

defined as:

	(&|') = 	('|&). 	(&)	(')

Equation 3-1: Bayes Theorem

• P(A) is the prior probability (a priori)

• P(A|B) is the probability of A given B

• P(B|A) is the probability of B given A (posterior probability)

• P(B) is the prior probability of B

PROSPECTOR is an expert system that used Bayesian Probability for its decision

making process65. As an example, let us take into consideration the prospect of finding

oil by a mineral-exploration expert system which uses Bayesian decision making.

Initially, the probability of finding oil is split 50-5066. The decisions the system takes

and the final outcome affects the profit or loss of the venture, thus one must try to

maximise the profits based on the uncertain information at the current stage.

Let us assume that initially, one can choose to make a seismic test or not, which costs

money to do. The results of the test can affect the probability that oil exists or not,

and can give a better indication (albeit never with certainty). The outcome of the test

affects the posterior probability of whether there is oil or not. However to obtain the

64 Bayes theorem is named after the 18th century British clergyman and mathematician, Thomas Bayes.
65 It achieved a great deal of fame as the first expert system to discover a valuable molybdenum deposit

worth $100,000,000l.
66 The prospector might believe that there is a better chance of finding oil, and splits the probability by

say 60/40. However, in our case we will stick to 50-50.

Uncertainty Management (Background)

64

results of the test, it first needs to be done. This finally all boils down to risk and

probability, and one needs to decide given the current circumstances. (50)

To be able to use Bayesian probability in an expert system, one needs to define the

prior probability for rules. However, most of the time this cannot be determined.

Another problem is that in some domains, one cannot go for a decision simply because

it has the highest probability or best posterior probability. For example, consider an

expert system on medical diagnosis. If a person goes to a doctor because he is sick, the

doctor does not assume that the person has a cold, because that is one of the most

common diseases.

3. 6. 2 Dempster-Shafer Theory

Dempster-Shafer theory is another uncertainty management method that builds upon

the limitations of Bayesian theory. While Bayesian theory is made up of probabilities

for each condition or outcome, Dempster-Shafer Theory requires degrees of beliefs.

These beliefs allow the expert system (or person) to show, as their name implies, how

much he believes that the outcome is true. (51)

In Dempster-Shafer theory, one assumes that there is a constant set of events that are

mutually-exclusive67. All the events are called the environment, and are expressed by

the Greek letter Θ. An environment is called a frame of discernment when its

elements contain possible answers, and only one of them can be considered the correct

answer.

Although belief values can be considered similar to probability theory, they contain

important difference. In probability theory, if one has a 0.7 probability that a certain

67 Mutually exclusive means that if one event happens, the other cannot happen. Cold and hot are said

to be mutually exclusive because it cannot be both at the same time.

Uncertainty Management (Background)

65

horse will win the race, it also means that you have a 0.3 probability that it will not

win the race. In Dempster-Shafer theory, having a 0.7 degree of belief does not mean

that you have a 0.3 degree of unbelief in the outcome. Also, in probability theory, if

you have no knowledge at all on the subject, it means that there is an outcome of:

	 =)
* , N being the total number of possible outcomes

In most real-life problems, this is not true and cannot be assumed. This is one of the

major limitations of probability theory. DST68 uses mass functions69 that represent

the total mass of evidence that support the belief, and is written as:

+(,) = ' , where X is the outcome and B is the degree of belief {0 <= B <= 1}

Dempster’s Rule of Combination

A very important feature of DST is that of combining evidence together to come up

with a better estimate of the belief in the evidence. The new evidence should be

independent of the other outcomes, and this issue of independence is a very important

aspect when combining evidence. The combined evidence is calculated using:

+(&) = ∑ +)(')+.(/)0∩2 1 − 5 , �ℎ��� & ≠ Ø

K = ∑ +)(')+.(/)0∩2

Equation 3-2: Dempster's Rule of Combination

m(a) is considered to be the combined mass function, and is a consensus between the

old evidence and the new evidence. (52)

68 Dempster-Shafer Theory
69 Sometimes also called basic probability assignment (bpa)

Uncertainty Management (Background)

66

Comparing Dempster-Shafer theory with probability theory

While DST can be considered similar to probability theory, there are various important

differences between them. Table 3-2 below compares the two theories together:

Dempster-Shafer Theory Probability Theory

m(Θ) does not have to be 1 8 	9 = 1
:

If , ⊆ <, it does not imply that +(�) ≤ +(�) 	(,) ≤ 	(<)
No required relationship between m(x) and m(X`) 	(,) + 	(,`) = 1

Table 3-2: Comparison of probability theory and DST70

3. 6. 3 Certainty Factors

Another method for dealing with uncertainty uses so called certainty factors which

were developed by Shortliffe and Buchanan for the MYCIN71 expert system.

This type of uncertainty management also addresses the same problem addressed by

Dempster-Shafer theory – Allowing users to input their belief in the outcome of a

condition. Initially, MYCIN was developed to treat uncertainty using probability

theory; however it was found out that many experts refused to commit to a

probabilistic outcome.

Certainty factor is a method for combining both belief and disbelief in a single value.

This is very useful because it can rank hypotheses (outcomes) in their order of

certainty.

70 Adapted from (74)
71 MYCIN was an early expert system developed in the 1970s that was used to diagnose blood infections

and meningitis. Although it was very successful, it was never used in practice. This was mainly due to

legal and ethical issues as well as computation power, as this was developed in the era preceding the

modern personal computer. However, it had a great influence in the expert systems that were later to be

developed.

Uncertainty Management (Background)

67

A certainty factor is defined as:

/@(A, B) = �'(A, B) − �C(A, B)
, CF is the certainty factor of outcome H due to evidence E

MB is the measure of increased belief in H due to E

MD is the measure of increased disbelief in H due to E

Equation 3-3: Certainty Factor72

A CF of 1 means certainty of outcome, while a CF of -1 represents total disbelief in the

outcome. Therefore, a positive CF means that the expert system is in favour of the

hypothesis, while a negative CF represents the opposite. A value of 0 implies

neutrality in the outcome.

When new evidence emerges in the form of belief/disbelief, certainty factors can be

combined to come up with one single value. (53)

Combining certainty factors

The output of several rules can contribute the belief in a certain outcome. Thus, there

is the need to be able to combine certainty factors together. Below are three equations

used, based on the value of the old certainty factor and the new certainty factor:

��� /@(/@), /@.) =
DE
F
EG /@) + (H/@. . (1 − /@))I, /@), /@. ≥ 0/@) + /@.1 − min (|/@)|, |/@.|) , /@) < 0 �� /@. < 0

/@) + H/@.. (1 + /@))I, /@), /@. < 0
P

Equation 3-4: Combining certainty factors

A positive aspect of certainty factors is that they require simple computations, while

still clearly separating belief from disbelief. (54)

72 Adapted from (76)

Uncertainty Management (Background)

68

Apart from being used to determine the certainty of the outcome, certainty factors are

also used to conclude outcome with an amount of certainty, based on the certainty of

the antecedents of a rule. This is done by the equation:

���� �Q��� /@ = min (|���� �Q���)/@|, |���� �Q���./@|, | … |)
Equation 3-5: Merged antecedent certainty factor outcome for antecedents

This certainty factor is then multiplied with the certainty factor for the consequent, so

for example if the antecedent CF is 0.8, and the consequent CF is 0.7, then the final

certainty factor for the consequent would be 0.8 x 0.7 = 0.56.

3. 6. 4 Fuzzy Logic

The last method of uncertainty that we will discuss is called fuzzy logic. This theory

deals with uncertainty based on natural language, where many words can have

ambiguous meanings. We use fuzzy logic all the time in our conversations. For

example, “If temperature is very hot then switch on AC”, uses fuzzy logic. Although we

have an idea of what is “very hot”, it is not defined precisely, and can be ambiguous.

What is very hot for a person might be normal for another. We call the term very a

fuzzy quantifier.

This type of logic allows a concept to be contained in a set by a certain degree. For

example, a glass that is half-full of water can be said to have a 0.5 degree of fullness,

and a 0.5 degree of not fullness. This is the opposite of Boolean logic, where only

discrete values of 1 and 0 are allowed.

Uncertainty Management (Background)

69

The degree of membership in a set is calculated using a membership function. This

is normally a function based on an equation, which translates units into a fuzzy value.

Figure 3-12: Membership function for TALL73

Based on Figure 3-12, one can say that a person who is 6.5 feet tall is considered 0.9

tall. This is different from discrete systems based on Boolean logic. Consider a crisp

rule saying that a tall person is a person who is taller than 7 feet. A person of 6.9 feet

in height is considered medium, and there is a sharp distinction for a very small change

in the height value. By allowing membership in the two sets ‘medium’ and ‘tall’, one

can vastly reduce this problem. (55)

In an expert system, such membership functions will be constructed based on human

the expert’s opinion of the fuzzy logic value that is being modelled. This can vary from

expert to expert.

73 Adapted from (77)

Summary (Background)

70

3.7 Summary

The way knowledge is represented in an expert system is very important. One must

take into considerations the various implications of each knowledge representation

structure, and consider which ones would be the most suitable for the type of expert

system that is to be developed.

 Figure 3-13 shows the various different types of information and knowledge available

to expert system.

The data structures used to represent knowledge are the main input of the inference

engine, and play a very important role in the efficiency of the reasoning process.

Figure 3-13: Typical knowledge available to an expert system/knowledge base74

74 Adapted from (71)

Summary (Background)

71

Our implementation of the expert system will mainly implement three different types

of knowledge representation techniques:

• Rule-based

• Object-Attribute-Value triples

• Frames

The main decision for such KR-techniques is due to the general nature of the

knowledge bases that are to be implemented. The aim of this project is to create a

general-purpose expert system that is not confined to just one specific domain.

Knowledge will still be segmented in related knowledge bases, but one has to make

certain assumptions because the type of information available can be quite vast and

distinct.

We have also discussed various uncertainty management methods and theories which

all have their pros and cons. In our implementation, we will be using certainty factors

to model uncertainty, as they are computationally simple, users can easily to

understand them, and allow easy combination of evidence.

However, the design of the expert system is not the scope of this chapter, and will be

explained in further detail in the next chapter - Chapter 4, Design.

Approach (Design)

72

4 Design

4.1 Approach

Building an expert system requires various decisions to be made with regards to its

various components. An expert system is mainly made up of four components:

• Knowledge Base

• Inference Engine

• User Interface

• Explanation System

Figure 4-1 shows a block diagram of the proposed implementation of the expert system,

showing all the main components and how they interact with each other.

Approach (Design)

73

Figure 4-1: Main components of an expert system

User Interface (Website)

Frontend Member’s Area

Inference

Engine

Knowledge

Base

Explanation

System

Approach (Design)

74

4. 1. 1 Knowledge Base

A knowledge base serves as a repository of rules for the inference engine, and expert

system in general. One must take into consideration the amount of rules intended to

be stored in a knowledge base. Rules can be stored in various possible formats, some of

which are:

• Flat Files

• XML Files

• DBMS

We have chosen to use a DBMS to store our rules. This decision was based on the

facts that:

• A database can help abstract the details of storing information onto the hard

disk

• Indexing can make searching very fast

• SQL queries can enable efficient retrieval of rules

The database that we chose to use was MySQL. The main reasons why we chose

MySQL over various others mainly because it is open-source, relatively light-weight,

and very fast.

Approach (Design)

75

4. 1. 2 Inference Engine

The reasoning process is extremely important in any expert system. Implementing an

inference engine involves a considerable amount of work to ensure that it is efficient,

useable and can integrate easily with the knowledge base. One can choose to either

implement an inference engine from scratch, or choose an existing system.

Choosing an existing system can save you a considerable amount of time, but there are

various limitations. It must be well documented and explained, ideally by having a

manual on its usage clearly explaining its modules, their inputs/outputs, and any

required information to integrate with the inference engine. Code comments would also

be extremely useful, as would community support to be able to help you should you

find difficulties in integrating with the system. Also, its feature set must complement

your needs for the expert system, and one must make sure that rules can be easily

consumed by the inference engine, and if needed, feasible uncertainty management

methods are implemented that can easily represent the type of problems you intend to

solve with the expert system. The programming language (C#, Java, LISP etc.) used

to develop the inference engine is also an issue. Some existing open-source inference

engines are:

• CLIPS: A software tool for building expert systems developed in C, using a

forward-chaining inference engine

• Jess: Started as a Java implementation of CLIPS, later on evolved to include

various other features. Includes mainly a forward-chaining inference engine, but

also has a backward-chaining module.

• NxBRE: A forward-chaining inference engine developed in C#

Approach (Design)

76

• Drools: Another Java implementation of a forward-chaining inference engine

On the other hand, developing your own inference engine would be a much more time

consuming approach. However, you would have direct control on its feature set. The

inference engine can be tailor made for your knowledge base, and uncertainty

management methods required. It can be developed in your language of choice, and

you can make it as efficient as possible for your needs.

In our case, we have chosen to implement our own inference engine. The main reason

being that most of the existing inference engines available are programmed in Java.

Most of the available implementations are mainly focused on forward-chaining

inference, and are not very straightforward to use. Also most of them do not cater for

uncertainty management, or there are separate offshoots of the project to cater for

uncertainty. (Like FuzzyCLIPS, which includes a fuzzy-logic uncertainty management

module extension to the CLIPS expert system building tool)

The objective of Paramenides requires an inference engine that is able to do both

backward and forward chaining, including mixed inference that allows it to use the best

of both worlds when trying to solve a problem. It must also cater for uncertainty, and

after analyzing the various different uncertainty methods already explained in Chapter

3, Uncertainty Management, we have opted for Certainty Factors. The reason we went

for such a decision is because the aim of this project is to cater for as many non-

computer savvy users as possible. Certainty Factors are relatively simple to

understand, and were thus considered the best solution.

Approach (Design)

77

4. 1. 3 User Interface

The user interface of an expert system is extremely important because it is the only

way that users can interact with the expert system. Paramenides is aimed at the

general public, and thus the UI needs to be extremely user friendly, minimalistic in

design, and easy to use. It must also be able to reach a large number of users.

For this reason, we have opted to expose Paramenides as a website, based on ASP.Net

v3.5 and AJAX. A website is accessible on any computer that has access to the

Internet, and thus makes it very accessible and can potentially include a very large

user-base. Expert Systems are always considered to include a tedious installation /

configuration process. There is no installation to be done by its users to user

Paramenides, and all that one needs is an internet browser like Mozilla Firefox,

Internet Explorer, Apple Safari, Opera, etc.

Through the website, the users can perform two main functions:

• Create / Manage Knowledge Bases

• Search for knowledge bases and problem solving, which can be split in:

o Backward Chaining: Users select a goal (problem), and the system will

try and find its possible causes

o Forward Chaining: Users select a knowledge base, and they input their

current symptoms and the system will output the most likely problem.

The user can choose to select hypothesis from the list of possible

outcomes and the system will ask more specific questions.

Approach (Design)

78

The UI will try to make the process as fast as possible. For this reason, we have opted

to use AJAX75. This makes the user experience much more smooth, fast and

responsive. Traditional web pages can be considered relatively slow, as every action

requires a round-trip to the server. This is not the case with AJAX, and the

performance of such a website can be closely related to that of a desktop application,

with all the benefits of an online web application.

AJAX is programmed using JavaScript, which is the language used to program client-

side code in modern web-browsers. JavaScript is a weakly-typed76, dynamic language

and these features have their own advantages and disadvantages. It has no built-in

implementation of inheritance and interfaces. However, there are various existing

frameworks to make mimic object-oriented like functionality, due to the fact that

JavaScript is a dynamic language and allows you to add methods and properties on the

fly, at runtime. The fact that it is a weakly-typed language can make it very

problematic to maintain when the codebase starts getting quite large. Considering that

the website’s main user interface will be accessed through JavaScript, we have opted to

use a different way to program in such a language, so as to make it more maintainable.

We will be using ScriptSharp77 to greatly aid in JavaScript development. ScriptSharp

is a tool developed for C# that will translate C# code into human-readable JavaScript

code. It will only let you use a small subset of the C# framework, and several HTML

75 AJAX (Asynchronous JavaScript and XML), is technique used in web development for retrieving data

asynchronously from the server without the need to refresh the current page. This technique was made

popular through Google’s Gmail, which was launched in April 2004. The UI closely mimics that of a

desktop application, and has opened up the web to various possibilities previously not thought as

feasible.
76 A weakly typed language means a language where variable data types are not defined and a variable

can be used interchangeably.
77 Available online at http://projects.nikhilk.net/ScriptSharp/

Approach (Design)

79

DOM are implemented into a C#-equivalent. It uses the C# compiler to validate the

code, and once it has verified that the code passes the C# checks, it will translate it

into valid JavaScript, including inheritance.

While ScriptSharp can aid a lot in development, another issue when programming

JavaScript is browser incompatibility. Most of the browsers in use today are not fully-

standards compliant. Sometimes, doing a simple thing like getting the width of an

element in a document can be quite time consuming because what works in one

browser does not work in others. We have chosen to use the Dojo78 framework to help

in this aspect. The Dojo framework is a JavaScript framework that contains various

utility functions and classes to help standardise development and cross-browser

compatibility.

Apart from these functions, it also extends the default components for user interface

found in standard browsers like text boxes, check boxes, etc. to include custom

components built entirely through JavaScript and HTML. These include slider

controls, splitter controls, scrollable panels, accordion controls, and tabbed panels,

amongst others.

In order to be able to provide a clear explanation of how the expert system came up

with that certain conclusion, we will be implementing a component in Adobe Flash.

Adobe Flash is a web-technology that allows rich user interfaces that are directly

deployable in a web-browser. This will allow us to create components that are very

user-interactive and easy to use, and allow features like zooming in/out (so as to be

able to view the entire tree), animate nodes, and mouse effects like tooltips on rollover,

amongst various others.

78 Dojo toolkit is available online at http://www.dojotoolkit.org/

Approach (Design)

80

4. 1. 4 Explanation System

The main role of the explanation system is to explain to the user how the expert

system came up with such a conclusion. Paramenides keeps track of all the rules used

during the inference process. Also during a backward-chaining search, it will keep

track of the goals generated in chronological order. Any questions asked by the system

are also stored.

These are then used to create a tree-like chart which shows a hierarchical-graph based

on the rules used. Each condition is also linked with its certainty factor, and the user

can visually see how the system came up with such a conclusion. At each node of the

tree, the user can see any possible solutions to overcome the condition. The user can

also see the list of asked questions and the system can point out due to which

conditions it asked the questions.

This explanation-chart will be created as an Adobe Flash component, and the main

reason that this was chosen was because it can be easily embedded in a webpage and

can make much easier for the system to use. The chart will enable the user to visually

see something similar to a mind-map of how the system came up with such a

conclusion. To aid the user in getting a better idea of the explanation, it will support

zooming in/out and panning, as well as visual cues like highlighting the path taken

from a certain condition to the goal, tooltips, and others.

Similar Projects (Design)

81

4.2 Similar Projects

The concept of having an expert system that is very easy to use and available to the

general public through a website is a new concept. However, the fundamental aspect of

Paramenides is not new. Expert systems have been around from the mid-20th century,

and we have lent various approaches and designs from existing implementations of

expert systems. Two notable expert systems described hereunder are MYCIN and

PROSPECTOR.

4. 2. 1 MYCIN

MYCIN was an expert system developed in the start of the 1970s at Stanford

University. It was written by Edward Shortliffe for his PhD dissertation under the

direction of various others including Bruce G. Buchanan. It had most of its roots based

in the Dendral expert system, which was developed at the same university. An

important feature first introduced in this expert system was certainty factors. These

allowed the system to closely mimic a doctor’s reasoning by catering for elements of

uncertainty. Its main role was to identify bacteria causing severe infections as well as

for the diagnosis of meningitis. (56)

It used around 500 – 600 production rules, and achieved a great level of success and

accuracy compared to human experts and general practitioners. However, it was never

used in practice even though its performance was a success. Some of the main reasons

were due to ethical and legal issues, since no one could be held responsible if the system

gave a wrong diagnosis. It was still a very great influence on future expert systems to

come. (57)

Class and Function Design (Design)

82

4. 2. 2 PROSPECTOR

PROSPECTOR is an expert system developed in the 1980s to aid geologists while

looking for minerals. Some of its key features are the various uncertainty management

methods that it incorporates, including Bayesian Theory and Fuzzy logic amongst

others. It achieved a great deal of fame when it managed to find a molybdenum

deposit worth $100,000,000. (58)

4.3 Class and Function Design

The following will briefly discuss the classes / namespaces to be implemented in the

expert system. It should give a brief outline of the inner workings of the system, which

will then be expanded in more detail in the next chapter, Chapter 5: Implementation.

There will be three aspects to the system – Server-Side code implemented as a C#

class library, classes for the ASP.Net user interface code, and Client-Side code

implemented in JavaScript, through ScriptSharp.

4. 3. 1 Server-Side Code

DB namespace

This namespace will contain classes that perform database storage and retrieval. It

will contain classes that are mapped to the database schema. Since all database access

code will be done through the classes in this namespace, this will make the code more

maintainable since it will serve as a layer before accessing the database. Search

facilities will also be implemented to search for conditions / knowledge bases by

keywords.

Class and Function Design (Design)

83

WorkingMemory namespace

This will serve as the working memory of the inference engine. It will contain a

collection of facts currently known by the reasoning process, and several properties on

each fact like whether it was inferred by rules or obtained directly from the user. Each

fact will also be linked with a list of certainty factors, which can be combined to result

in one single certainty factor;

KnowledgeBase namespace

As its name implies, this will contain the implementation of the knowledge base. This

will allow retrieval of knowledge bases by keywords, and contains the list of rules that

are linked with the knowledge base. A KB is also made up of lists of objects,

attributes and values, which are then used to create rules.

ExplanationSystem namespace

This class will keep track of information that is to be used for explaining the system’s

reasoning to the user. It will keep a list of all the subgoals as generated, the rules used,

and the questions asked. It will also keep values as entered by the user for every

question asked. Once the backward/forward chaining search is ready, it will create an

inference tree which is based on the stored information, which will contain a

hierarchical structure displaying the order of rules used and why they were used.

BackwardChaining namespace

This will perform a backward-chaining search on a knowledge base, starting with an

initial goal. It will trigger an event whenever a question needs to be asked to the user,

and will also automatically generate goals based on the user’s response. Any new facts

inferenced are also fed to the forward chaining module to see if any new rules have

Class and Function Design (Design)

84

been satisfied based on the current information. It will also keep track of rules used and

questions asked through the ExplanationSystem class.

ForwardChaining namespace

Performs a forward chaining search on the knowledge base. It will take a given fact and

perform a search on the rule base to see if there are any specific rules that have now

been satisfied due to the new fact, and fire them.

ReasoningChain namespace

Creates a reasoning chain that keeps track of goals generated in chronological order. It

also keeps track of the rules used when processing each goal/sub-goal. The values at

that point in time are kept for each processed rule, and any values entered by the user

to questions posed by the system are also stored. This is later used for the explanation

system.

InferenceTree namespace

The InferenceTree is used for explanation purposes. It creates a hierarchical structure

based on the rules. The top level will contain the initial goal, and it will progress

downwards based on the sub-goals generated. For each node in the tree, various

information will be stored like the condition values, their certainty factors, and any

questions asked. This should enable the user to visually follow how the expert system

came up with such conclusions.

ExpertSystem namespace

This class will contain the implementation of the expert system. It will contain

instances of the BackwardChaining, ForwardChaining, WorkingMemory and

ExplanationSystem classes, which will be integrated together in order to achieve the

functionality of an expert system. An instance of this class is also linked to a

Class and Function Design (Design)

85

knowledge base. The backward chaining search, forward chaining etc will work upon

the information contained in that knowledge base.

Member namespace

This will be used to keep track of the logged in user for this session, store and retrieve

member information, and perform authentication. Logged in members can have access

to the member’s area, where they can manage knowledge bases and enter new rules in

the KB.

4. 3. 2 ASP.Net User-Interface Code

The ASP.Net user-interface will be split into two main parts:

• Frontend

• Member’s Area

The frontend will be available to all users. From the frontend, the users can choose

from two distinct types of problem-solving methods:

• Solve a problem (Backward Chaining)

• Find what is the problem (Forward Chaining)

Backward Chaining

When one will choose the first option, he can then search for conditions that match the

problem that he currently has. Conditions could be like ‘Car is not starting’,

‘Computer is not working’, etc. The user can then select a condition from the given

list, and the system will then start asking questions to try and find the cause to the

problem.

Class and Function Design (Design)

86

For each question, the user can choose from either a YES or a NO, or a value based on

how certain he is of the outcome (from almost uncertain to almost certain). The user

can also choose to reply as I don’t know, in which case the system will mark it as

unknown and generate a sub-goal from the rule. Not all questions can be answered with

certainty, and some attributes can only be answered by a YES or NO, due to the

intrinsic value of the property. Once the system has exhausted all possible rules, or the

conclusion has been reached with certainty, the backward chaining search will stop and

the user is shown the outcome together with an explanation (through an inference

tree).

Forward Chaining

The user will first enter keywords to search for a knowledge base. A knowledge base

contains information related to one specific domain, and needs to be specified because

the entered symptoms must be related to one specific domain and not scattered from

various knowledge bases. After the user has selected a knowledge base, he can then

search for symptoms and enter their values. Symptoms can include: I am feeling dizzy;

car battery is flat, etc. Similar to backward chaining, each fact selected can be

answered by either a YES, NO, and a value to represent his certainty. The I don’t

Know option is not available because this time, the user has opted to enter the value

and not the system has asked the question.

Based on the given symptoms, the expert system will show the possible outcomes. The

user can also choose to select an outcome, and the system will perform a backward

chaining search with the selected outcome as the goal. This will enable the user to

check for a certain hypothesis, and try to increase its likelihood by having the expert

system ask related questions.

Summary (Design)

87

Explanation sub-system

Once the expert system has come up with a conclusion, it is very important that the

user is explained how the expert system came up with such an answer.

This is to be done via a tree-like structure that will display the rules used in

chronological order, any questions asked at which nodes, and the certainty of the

facts/conditions. The user can click on a node and more information on the node will

be displayed, like the goals generated through that node, any questions asked and their

values, as well as zoom in/out to be able to view the tree more comfortably if it is

quite large.

4.4 Summary

In this chapter we have described the approach that we will be taking in creating the

proposed system. We have outlined what each component of the expert system is

expected to do, and provided a detailed comparison on the different methodologies

available for each component and reasons for our decision in designing it this way. We

have also given a brief summary of other expert systems that are based on the same

fundamental aspect as Paramenides. Finally, we have given a brief outline of how we

intend to split the project into various modules and namespaces, in order to make it

easier to maintain and test.

88

5 Implementation

In this chapter, we will go through the implementation details of Paramenides. The

project was built mainly using C# 3.5, ASP.Net, JavaScript (using ScriptSharp) and

AJAX. The explanation system was developed using Adobe Flash.

We shall give primary importance to the logic and functionality of the inference engine

and expert system in general. The backward chaining / forward chaining inference

modules will be explained in detail, and we will also go through the explanation sub-

system and the user interface used for inputting rules in a knowledge base. We will also

describe the database schema, and the database access code and classes used for user

interface (both in ASP.Net and JavaScript).

Database Schema (Implementation)

89

5.1 Database Schema

Figure 5-1: Database schema as used by Paramenides

The diagram above shows the tables in the relational database that are used by the

expert system. The arrows show the relationships between the tables, with the table

being pointed to being the parent table while the other being the child table that

contains the foreign key.

ExpertSystemFYP Class Library (Implementation)

90

These tables are mapped to C# classes for database access, in order to create a data-

access layer and make code more maintainable. These classes are explained in the next

section.

5.2 ExpertSystemFYP Class Library

In this section we will describe the class library that contains the implementations of

the expert system and all its various sub-systems, including the backward-chaining

module, the forward chaining module and the explanation module.

5. 2. 1 DB namespace

This namespace contains classes that map one-to-one with the tables in the database.

The base code for these classes is generated using a tool that I have created myself.

The tool takes a database schema, and it will generate code for each table, and for a

collection of rows from the table. It will also create links between the classes for foreign

keys. We will describe the typical generated classes by the tool. There is no need to

explain every class in this namespace because most of them contain the exact code but

replicated for the different column names. For each table, 7 classes are created, named:

• Base{TableName}:

• Base{TableName}Factory

• {TableName}

• {TableName}List

• {TableName}Factory

• I{TableName}

• I{TableName}Factory

ExpertSystemFYP Class Library (Implementation)

91

We will use the Conditions table to explain these generated classes.

Figure 5-2: Class diagram for generated classes (continued)

ExpertSystemFYP Class Library (Implementation)

92

Figure 5-3: Class diagram for generated classes

ExpertSystemFYP Class Library (Implementation)

93

The IConditionIConditionIConditionICondition interface defines all the properties that map to the column names in

the table. It also contains Save() and Remove() methods to perform inserts, update

and deletes on the database.

BaseConditionBaseConditionBaseConditionBaseCondition implements ICondition and maps to a row in the Conditions table.

Apart from defining properties based on the interface that it implements, it also serves

as a singleton factory for retrieving rows from the database, based on ID. The class

does not include a public constructor, and the only way to get a record from the

database is to use BaseCondition.GetInstance(id). This is done because it can enable

caching to be used, and if a row has already been retrieved from database, it can be

loaded from memory instead of from the database to save on access time. This is

controlled from the factory class. It also includes a static method GetList() which

retrieves a list of BaseConditions, based on a criteriacriteriacriteriacriteria variable. The criteria class

contains properties used for searching on the database. By filling these properties, they

are then converted into an SQL query and it is used to retrieve a list of rows from the

database.

Since the code in ICondition and BaseCondition is automatically generated, it is not

suggested to amend any portions of it because it would be overwritten when the code is

re-generated. While this can be easily overcome by using partial classes79, it does not

allow you to attach to existing methods like Save() and Remove(). ConditionConditionConditionCondition

extends from BaseCondition, and can allow you override all the methods in the

BaseConditionBaseConditionBaseConditionBaseCondition since all of them are marked as virtual. Partial classes are used so as

not to be overwritten if code is re-generated.

79 Partial classes are a feature of C# 2.0 onwards that allows classes to have multiple definitions in

separate files. This is aimed specifically for code generation. C# 3.0 also introduced partial methods

and allows you to define ‘method placeholders’ for partial classes that can be optionally defined in

another partial class.

ExpertSystemFYP Class Library (Implementation)

94

ConditionListConditionListConditionListConditionList extends from List<Condition>80, and defines methods to act on the

entire collection. Some of these include loading in bulk any related classes linked by a

foreign key, saving in bulk, amongst others.

IConditionFactoryIConditionFactoryIConditionFactoryIConditionFactory contains properties and methods defined in the Factory. The

Factory is used as the entry point to the database, and contains methods to convert a

list of database rows into BaseConditions, retrieving conditions by their primary key,

amongst others.

BaseConditionFactoryBaseConditionFactoryBaseConditionFactoryBaseConditionFactory implements IConditionFactory, It also can be used to enable

caching. Caching allows any rows loaded by primary key to be loaded from memory

instead of from the database. This can result in much faster data loading, but if a row

is updated without going through the factory, the row will not reflect the latest

database changes.

ConditionFactory extends on BaseConditionFactory, for the same purpose that

Condition extends from BaseCondition – To allow overridden virtual methods defined

in BaseConditionFactory by the auto-generated code.

These classes explained above are defined also for the other tables. These are:

• Alias

• Attribute

• AttributeValue

• Condition

• KnowledgeBase

• Member

• ObjectInheritsFrom

• Object

• Rule

Also, please note that not all methods/properties shown in Figure 5-2 and Figure 5-3

are auto-generated.

80 List<TYPE> is called a generic class, and represents a list of TYPE.

ExpertSystemFYP Class Library (Implementation)

95

5. 2. 2 Rules namespace

Figure 5-4: Rules namespace

ExpertSystemFYP Class Library (Implementation)

96

There are two classes named RuleRuleRuleRule in the project. One is found in the DB namespace,

while the other in the Rules namespace. The difference is that the one found in the

DB namespace maps one-to-one with the table in the database, while the one found in

the Rules namespace contains ‘higher-level’ properties and methods related to the

functionality of a rule within a knowledge base. The Rule class contains the LHSLHSLHSLHS and

RHSRHSRHSRHS of the rule. It also stores information related to the node it is found on in the

inference tree. Apart from these mentioned properties, it contains methods to check

whether it is satisfied based on a given WorkingMemory, whether it is satisfied with

certainty, whether it can NOT be satisfied, and others. These methods are used during

backward/forward chain searches. A rule also contains a priority value. The priority

value is used to sort the rules by, so that when the expert system needs to find a

certain set of rules pertaining to some conditions and more than one match, they are

sorted by this value and the one with the lowest priority value is used first.

A satisfied rule implies that all of its antecedents are contained in the current working

memory. Apart from facts, the working memory also stores the certainty factor

associated with each condition. A condition’s value must either be TRUE or FALSE.

A TRUE condition is represented by a certainty factor that is greater than 0, while a

FALSE condition is represented by a certainty factor that is smaller than 0.

ExpertSystemFYP Class Library (Implementation)

97

5. 2. 3 Conditions namespace

Figure 5-5: Condition namespace

ExpertSystemFYP Class Library (Implementation)

98

Apart from the auto-generated code already explained in the DB namespace, the

ConditionConditionConditionCondition class also contains various other methods. Some of these methods are:

• Check if the condition is satisfied with certainty, from a given WorkingMemory

• Check if the condition cannot be satisfied

• Find conditions by keywords

• Replicate condition to create a condition for each object inheriting from its

object.

5. 2. 4 KnowledgeBase class

Figure 5-6: KnowledgeBase class

The KnowledgeBaseKnowledgeBaseKnowledgeBaseKnowledgeBase class is a wrapper on the KnowledgeBase class that is mapped

to the database. It contains a list of rules that are based on the Rule class that maps

to the higher-level Rule structure as used by the inference engine.

ExpertSystemFYP Class Library (Implementation)

99

5. 2. 5 ExpertSystem class

Figure 5-7: ExpertSystem class

The ExpertSystemExpertSystemExpertSystemExpertSystem class contains the main functionality of the project. It contains

instances of the BackwardChaining, ForwardChaining, ExplanationSystem and

KnowledgeBase classes. It also exposes two events AskForAttribute and Finished.

AskForAttribute is triggered whenever a new attribute is to be asked by the user

interface. The user interface will then attach to this event and ask for the value from

the user. This is mainly used during a backward-chaining search. Once the UI is ready,

it will call AskForAttributeResponse(). The ExpertSystem class also keeps track of

the thread for the user interface, in UIThread. Since the UI thread will be waiting for

an event to occur (ask for a variable), this reference is used to notify the thread when

such an event occurs.

ExpertSystemFYP Class Library (Implementation)

100

5. 2. 6 BackwardChainingSearch class

Figure 5-8: BackwardChainingSearch class

The BackwardChainingSearchBackwardChainingSearchBackwardChainingSearchBackwardChainingSearch class does the backward-chaining searches of the

expert system. The class takes the goal as its input parameters. It will check any rules

in the knowledge base that have the goal as one of their consequents, and see if they

can be satisfied so that the rule can fire. During the process, it will ask questions to the

users (by triggering event AskForAttribute that is captured by the UI), and

generating sub-goals for questions that the user does not know the answer for.

Algorithm 5-1 describes the algorithm in more detail. During the backward search,

ExpertSystemFYP Class Library (Implementation)

101

information is also stored in the ExplanationSystem class that is then used for

providing explanations to the user. The information stored will be explained in more

detail when explaining the related class.

Backward Chaining Algorithm

Set mainGoal as {Input_Goal}

Initialise GoalStack

Add mainGoal to top of GoalStack

Set LastGoalSolved = false

Initialise WorkingMemory

While GoalStack is not empty

 Pop GoalStack in currentGoal

 Set lastGoalSolved = false

 If currentGoal is NOT already in WorkingMemory with certainty then

 Set RuleList = Get Rules that have the currentGoal as one of their consequents

 Sort RuleList by the rules that have the least unknown variables and priority

 Foreach rule in RuleList

 If Rule can be satisfied then

 ForEach unknown condition in Rule

 If condition is not already asked then

 Ask Question to user

 If response is NOT ‘I Don’t Know’ then

 Add response to working memory

 Else

 Add condition as new sub-goal

 Mark condition as unknown and already asked

 If rule is satisfied then

 Add rule’s consequents to working memory

 If rule is satisfied

 Set lastGoalSolved = true;

 Break;

If lastGoalSolved then

 ‘Goal has been found’

Else

 ‘There is no solution’

Algorithm 5-1: Backward chaining search algorithm

ExpertSystemFYP Class Library (Implementation)

102

5. 2. 7 ForwardChainingSearch class

The ForwardChainingSearch class performs forward chaining inference on the

knowledge base. Whenever a new fact is entered into the working memory, the

forward chaining module is triggered and it will to fire any rules whose antecedents

have now been satisfied. This is done either when new information is discovered either

through facts inserted by the user, or through the consequents of rules fired during a

backward-chaining search. Algorithm 5-2 describes the process involved, which is fairly

simple.

Forward-Chaining Search algorithm

Inputs: Fact

Get all rules that contain fact as one of their antecedents

ForEach rule in Rules

 If rule is satisfied then

 ForEach consequent in rule

 Add consequent to working memory

 Do another forward chaining search on consequent [Recursion]

Algorithm 5-2: Forward chaining search algorithm

ExpertSystemFYP Class Library (Implementation)

103

5. 2. 8 WorkingMemory namespace

Figure 5-9: WorkingMemory namespace

The WorkingMemoryWorkingMemoryWorkingMemoryWorkingMemory namespace contains classes that are related to the working

memory of the knowledge base. It allows adding and removing facts to the working

memory. When a new fact is added to the working memory, the forward chaining

module is invoked to try and extract as much information from the new fact as

possible. It is made up of a list of WorkingMemoryFacts.

WorkingMemoryFactWorkingMemoryFactWorkingMemoryFactWorkingMemoryFact contains the current certainty factor for the fact and the list of

certainty factors in order to re-calculate the certainty factor if a fact is added/removed.

ExpertSystemFYP Class Library (Implementation)

104

5. 2. 9 InferenceTree namespace

Figure 5-10: InferenceTree namespace

The TreeTreeTreeTree class is built from the list of rules used by the backward chaining / forward

chaining modules in the expert systems. Each rule used by one of these modules is

stored in a list. These rules are then used to create an inference tree, which is made up

ExpertSystemFYP Class Library (Implementation)

105

of a hierarchy of nodes. The nodes contain information about the rules and conditions.

The top most nodes represent the initial goals to be solved, while the children show the

various sub-goals generated during the backward chaining process. The AndNode is

used to AND antecedents together, and serves as an intermediary node between the

AND-ed antecedents and the consequents.

The tree keeps track of all its nodes and the facts represented by each node in a hash

table. This is used when generating the tree so as not to generate duplicate nodes. To

generate the tree, all the rules used are iterated and their antecedents and consequents

are extracted and used to create the nodes, starting from the root. Algorithm 5-3

describes the process involved in creating and adding nodes to a tree, given an input

rule.

Creating/Appending to an inference tree from a rule

Input: Rule

Set node = null;

If total antecedents in rule = 1 then

 Set node = get node from tree based on antecedent

 If node is null then

 set node = create new node based on antecedent

 add node to tree

else

 set node = new AND-node

 ForEach antecedent in rule

 Set currNode = get node from tree based on antecedent

 If currNode is null then

 Set currNode = create new node based on antecedent

 Add currNode to children of node

ForEach consequent in rule

 Set currNode = get node from tree based on consequent

 If currNode is null then

 Set currNode = create new node based on consequent

 Link currNode as parent of node

Algorithm 5-3: Creating/Appending to an inference tree from a rule

ExpertSystemFYP Class Library (Implementation)

106

While the algorithm may not seem as if it is building a correct tree, one needs to give

special attention to the loop going over the rule’s consequents. Each node in the tree

represents a fact, and each fact is unique. The tree stores a hash table of each node

added to the tree, and if it already exists it is returned when requested. Any nodes

that have no parent nodes are attached to the root nodes. These would become the

initial goals. The tree can contain multiple initial-goals. This could especially be the

case if the inference tree is built after a forward-chaining search, as opposed to a

backward-chaining one.

5. 2. 10 ExplanationSystem namespace

Figure 5-11: ExplanationSystem namespace

The ExplanationSystemExplanationSystemExplanationSystemExplanationSystem class is the module that performs the explanation of the

system to the end user. It is constantly updated during the backward-

chaining/forward-chaining process with the rules used and questions asked to the user.

The responses of the user are also logged. This information is then used to generate

the InferenceTree.

User Interface (Implementation)

107

5. 2. 11 Utility classes

Apart from the mentioned namespaces and classes, there are various utility classes

whose aim is to perform repetitive functionality that is not directly related to the

expert systems. These include:

• Database access

• Sorting

• Searching on Lists

• Conversions from data type to another

They are relatively simple in nature, and there is no scope in detailing each of them in

this dissertation, and explaining their functionality.

5.3 User Interface

As already explained, the user interface for the expert system will consist of a website

that is publicly accessible at www.paramenides.com. The website will consist of two

main sections:

• Searching/Solving for problems (Backward/Forward chaining)

• Member’s Area for managing knowledge bases

Once the user enters the website, he can either choose to search for knowledge base or

solutions to his problem, or log in to the member’s area. If the user does not already

have an account, he can choose to create one.

To make the website much faster and responsive, AJAX is used. This does not require

every action on the website to require a round-trip to the server. This can be seen for

example, by typing some keywords in the search box and clicking on GO. Using

User Interface (Implementation)

108

JavaScript, an asynchronous call is made using the JavaScript object

XMLHttpRequest, which will retrieve data from the server. As soon as the data

returns, this is updated in the listing. This type of asynchronous programming is used

for:

• Managing knowledge bases (objects, attributes & values)

• Managing rules in a knowledge base

• Searching

• Asking questions to the user / submitting response

• Entering facts (for forward chaining)

Script# is used to translate C#-equivalent code into human-readable JavaScript code,

as this makes it much more maintainable. Also, the JavaScript Dojo toolkit is used to

extend JavaScript functionality and browser-compatibility.

User Interface (Implementation)

109

5. 3. 1 Website Frontend

The frontend of the website serves as a search engine to let the user find the problems

that he wishes to solve, or knowledge bases to work upon. The user has the choice to

either perform a backward chaining search, or a forward chaining search.

Figure 5-12: The homepage of the website

User Interface (Implementation)

110

5. 3. 2 Backward Chaining Search

Figure 5-13: A question asked by the system, during backward search

The backward chaining module of the system will ask the user a series of question

similar to Figure 5-13, through which the user can answer either as a simile YES or NO

if he knows the exact answer. If he is uncertain but has a certain belief in the

statement, the slider allows the user to portray his belief. I don’t know can be used if

the user has no idea of the answer. In that case, the system will automatically

generate this condition as a sub-goal, when all the possible rules for the existing goal

have been exhausted.

User Interface (Implementation)

111

5. 3. 3 Forward Chaining Search

The forward-chaining search interface allows the user to search for symptoms, enter

their values and the system will list the possible problems based on the given inputs.

The user can even select a possible problem and the system will perform a backward-

chaining search on the problem, and try to come up with better conclusions on the

problem by asking further questions related to the chosen problem.

The user can also see the symptoms he has entered into the system, and can choose to

view an explanation which display a tree like structure with the goals being all the

possible problems.

Figure 5-14: A typical forward-chaining search conversation

User Interface (Implementation)

112

5. 3. 4 Explanation System

The explanation system provides a visual representation of the conclusions reached by

the expert system. The use of Adobe Flash has enabled us to allow the user to zoom

in/out to get a better idea of the graph, tracing the line to easily follow the conclusion

reached, tooltips and panning to view the other portions of the graph.

Figure 5-15: A portion of the explanation system

Summary (Implementation)

113

5.4 Summary

This chapter has provided a detailed explanation of the inner workings of each

component of the system. We have explained the schema of the database we are using,

the main technologies used to implement the expert system and reasons for using the

technologies. An overview of each module of the expert system is given, and also

provided more detailed explanation of the algorithms for the backward chaining and

forward chaining modules, through pseudo code.

114

6 Evaluation

In this chapter we shall provide an evaluation of the expert system developed to give

us an indication of its performance

The system will be tested in its three main aspects:

• Backward Chaining

• Forward Chaining

• Rule Management

In order to be able to test better the functionality of the system, a total of three

knowledge bases have been inserted. The test plan is split into two different stages,

which are:

• System Testing

• Human Evaluation

We will later explain these two different types of testing, and how the test cases used.

Corpus (Knowledge Bases) (Evaluation)

115

6.1 Corpus (Knowledge Bases)

Paramenides was created with the goal in mind to cater for a large number of

knowledge bases. However it is impossible to enter knowledge bases on many distinct

domains and for the evaluation of the system we will be using three knowledge bases.

The questionnaires provided the users will act upon two different knowledge bases,

which will be explained briefly.

6. 1. 1 Diesel Car Engine Starting Diagnostics

This knowledge bases includes various rules about the problems that may arise if a car

does not start. This tests conditions like whether the starter motor is working well or

not, the kind of weather, the car battery state, amongst various others. It includes

around 35 rules, which are listed in Table 6-1: Diesel Car Engine Starting Diagnostics

rule base

Corpus (Knowledge Bases) (Evaluation)

116

Antecedents Consequents
engine turns and engine does not start cold start advance mechanism is faulty (0.3)

engine turns and engine does not start preheating system is faulty (30%)

engine turns and engine does not start cranking speed is low

engine turns and engine does not start engine’s compression is poor

engine turns and engine does not start Fuel tank is empty

fuel tank empty engine does not start

cranking speed is low and weather is cold engine does not start (50%)

preheating system is faulty then Engine does not start (30%)

cold start advance mechanism is faulty then Engine does not start (30%)

fuel system contains air engine does not start

engine turns and engine does not start air in fuel system (30%)

engine turns and engine does not start fuel is contaminated (20%)

engine turns and engine does not start stop solenoid defective (30%)

engine turns and engine does not start injection pump internal fault (30%)

low cranking speed battery capacity is inadequate (40%)

low cranking speed oil grade is incorrect (30%)

low cranking speed Start motor circuitry high resistance (30%)

low cranking speed Starter motor is faulty (30%)

starter motor is faulty cranking speed is low

starter motor circuitry high resistance cranking speed is low

oil grade is incorrect cranking speed is low (80%)

injection pump internal fault engine does not start

battery capacity is flat electrical component is not working

starter motor is not working engine does not turn (100%)

fuel system contains air then Engine does not start (70%)

fuel is contaminated then Engine does not start (50%)

stop-solenoid is defective then Engine does not start (40%)

engine compression is poor then Engine does not start (70%)

stop-solenoid is defective and engine is started

and engine switched off then

Engine does not stop (80%)

headlights are on and engine is switched off

then

Car battery is flat (80%)

alternator is not working then Car battery is flat (60%)

Starter motor is an electrical component

Cold Start Advance Mechanism is an electrical component

Fuel Pump is an electrical component

Preheating System is an electrical component

Headlights are an electrical component

Table 6-1: Diesel Car Engine Starting Diagnostics rule base81

81 cf is short for ‘certainty factor’ and represents the amount of certainty the system has in that

conclusion

Corpus (Knowledge Bases) (Evaluation)

117

6. 1. 2 Clinical Manifestation Diagnosis

This knowledge base includes rules to diagnose clinical manifestations like sepsis,

asthma, septic shock, etc by comparing symptoms of the patient.

Mental status Change Sepsis (cf 0.3)

Hyperventilation Sepsis (cf 0.2), Asthma Attach (cf 0.5)

Hyperthermia Sepsis (cf 0.5)

Hypothermia Sepsis (cf 0.5)

Short of breath Asthma Attack (cf 0.5)

Sweating Asthma Attack (cf 0.3)

Chest Pain Asthma Attack (cf 0.3)

Cool Pale Extremities Septic Shock (cf 0.3)

Low Blood Pressure Septic Shock (cf 0.3)

Increased heart Rate Septic Shock (cf 0.3)

Low Urine Output Septic Shock (cf 0.1)

Increased Thirst Hyperglycaemic Attack (cf 0.4)

Increased Urination Hyperglycaemic Attack (cf 0.2)

Fruity Smelling Urine Hyperglycaemic Attack (cf 0.2)

Dizziness Hyperglycaemic Attack (cf 0.3)

Loss of Consciousness Hyperglycaemic Attack (cf 0.3)

Sweating Hyperglycaemic Attack (cf 0.1)

Loss of coordinated movements Stroke (cf 0.3)

Face drooping Stroke (cf 0.35)

Fully coordinated movements Stroke (cf -0.5)

Localised Headache Raptured Brain Aneurysm (cf 0.4)

Nausea and Vomiting Raptured Brain Aneurysm (cf 0,3)

Blurred Vision Raptured Brain Aneurysm (cf 0.1)

Double Vision Raptured Brain Aneurysm (cf 0.1)

Photophobia Raptured Brain Aneurysm (cf 0.1)

Pain at wound Wound Infection (cf 0.2)

Redness around wound Wound Infection (cf 0.2)

Swelling at wound site Wound Infection (0.2)

Puss from wound Wound Infection (0.2)

Fever Wound Infection (0.2)

Low Urine Output Acute Renal Failure (cf 0.4)

Increased Urination Acute Renal Failure (cf -1)

Nausea and Vomiting Acute Renal Failure (cf 0.2)

Nausea and Vomiting Myocardial Infarction (cf 0.3)

Sweating Myocardial Infarction (cf 0.3)

Chest Pain Myocardial Infarction (cf 0.3)

Dizziness Low Blood Pressure (cf 0.5)

Chest Pain Low Blood Pressure (cf 0.2)

Dizziness High Blood Pressure (cf -1)

Table 6-2: Clinical Manifestation Diagnosis rule base

System Testing (Evaluation)

118

6. 1. 3 Computer Hardware Diagnostics

This knowledge base contains rules about computer diagnostics, and what might be the

possible causes if the computer is not working (from the hardware aspect).

6.2 System Testing

System testing involves testing the core functionality of the backward chaining and

forward chaining modules of the inference engine. Each test case is performed on a set

of rules and the result is then compared to the expected result.

6. 2. 1 Test Case 1: Basic Forward Chaining

In this test case we will check the system’s functionality for basic forward chaining, for

rules of the form:

& ⇒ '

Test Rule: If Fuel System contains air then Engine does not start (cf 0.8)

SymptomsSymptomsSymptomsSymptoms Working MemoryWorking MemoryWorking MemoryWorking Memory Possible ConditionsPossible ConditionsPossible ConditionsPossible Conditions

Fuel system contains air (cf 1) Fuel system contains air (cf 1) Engine does not start

 Engine does not start (cf 0.8)

Table 6-3: Test case 1 - Results

6. 2. 2 Test Case 2: Multiple Forward Chaining

This test case will check the system functionality for multiple forward chaining, for

rules of these form:

& ⇒ '
' ⇒ /
/ ⇒ C

Test Rules: If car battery is flat then starter motor is not working

System Testing (Evaluation)

119

 If starter motor is not working then engine does not start

 If engine does not start then car is not working

SymptomsSymptomsSymptomsSymptoms Working MemoryWorking MemoryWorking MemoryWorking Memory Possible ConditionsPossible ConditionsPossible ConditionsPossible Conditions

Car battery is flat (cf 1) Car Battery is flat (cf 1) Engine does not start

 Starter motor is not working (cf 1) Starter motor is not working

 Engine does not start (cf 1) Car is not working

 Car is not working (cf 1)

Table 6-4: Test case 2 - Results

6. 2. 3 Test Case 3: Basic Backward Chaining

This test case will check the system functionality for basic backward chaining:

Test Rule: If Fuel System contains air then Engine does not start (cf 0.8)

Initial Goal: Engine does not start

GoalGoalGoalGoal Question(s) Asked / RespQuestion(s) Asked / RespQuestion(s) Asked / RespQuestion(s) Asked / Responseonseonseonse ResultResultResultResult

Engine does not start Fuel System contains air? Yes (cf 1) Engine does not start (cf 0.8)

Table 6-5: Test case 3 – Results

6. 2. 4 Test Case 4: Mixed Inference, Automatic sub-goal generation and

Inheritance

This test case will check how the system handles situations that contain mixed

inference, require sub-goal generation and object inheritance. Mixed inference is a

combination of both backward chaining and forward chaining. Sub-goal generation is

when the system creates new temporary goals in order to be able to reach the initial

goal

System Testing (Evaluation)

120

Test Rules: If car battery is flat then electrical component is not working

 If starter motor is not working then engine does not start

 If fuel tank is empty then engine does not start

 If engine does not start then car is not working

 Headlights are an electrical component

 Starter motor is an electrical component

Initial Goal: Car is not working

GoalGoalGoalGoal ProcessProcessProcessProcess ResultResultResultResult

Car is not working Fuel tank empty? No

Engine does not start? Unknown

Generated subgoal: engine does

not start

Engine does not start Starter motor not working?

Unknown

Generated subgoals: starter

motor not working, electrical

component not working

Starter motor not

working

[no rules]

Electrical component

not working

Car battery flat? Yes Starter motor not working (cf 1)

Electrical component not

working (cf 1)

Forward Chaining:

 engine does not start (cf 1)

car is not working (cf 1)

Engine does not start Exists in working memory

Car is not working Exists in working memory Initial Goal found

Table 6-6: Test case 4 – Results

System Testing (Evaluation)

121

6. 2. 5 Test Case 5: Rule Recursion

This test case will check the system on how it handles rule recursion. Rule recursion

happens when there is a bi-implication. The system must detect a recursion and skip

the rule, and it must make sure that it does not end in an infinite recursive loop.

Test Rules: If engine is not starting then starter motor is not working (cf 0.2)

 If starter motor is not working then engine is not starting (cf 1)

GoalGoalGoalGoal ProcessProcessProcessProcess ResultResultResultResult

Engine is not starting Starter motor not working? Yes Engine is not starting (cf 1)

Table 6-7: Test case 5 - Results

The system successfully detects the recursion, and does not try to deduce that starter

motor is not working, from the new fact engine is not working because it would create

an infinite loop.

6. 2. 6 Test Case 6: Combining certainty factors

This test case will check the system functionality when the rule’s antecedents contain

different certainty factors, and the consequents already exist in working memory and

have a certainty factor that needs to be combined with the output certainty factor of

the rule being processed.

Please refer to Equation 3-4 and Equation 3-5 for equations on combining certainty

factors.

Human Evaluation (Evaluation)

122

Rule: If Nausea and Vomiting then Myocardial Infarction (cf 0.3)

Working MemoryWorking MemoryWorking MemoryWorking Memory ProcessProcessProcessProcess

Nausea – cf 0.8

Vomiting – cf 1

Myocardial Infarction – cf 0.5

Myocardial Infarction (cf 0.62)

Table 6-8: Test case 6 - Results

 Expected Result:

�S�TS� U = min(0.8, 1) � 0.3 = 0.24
���S�� U = 0.24 + 0.5 − (0.24 ∗ 0.5) = 0.62

6. 2. 7 Overview

The various test cases explained above test different functionality of the system. These

are the basis for any expert system. Paramenides passed all test cases successfully.

The test cases used have been created in such a way that although they test the basic

functionality of the system, the same functionality can be extended to work on much

larger rule bases since all rule bases are made up of a similar format.

6.3 Human Evaluation

To better evaluate the system and its functionality, we have opted to create a

questionnaire and hand it out to human testers in order to get a much better overview

of the system. The aim of these questionnaires is to gather information by letting

people use the system and then providing feedback on their experience. The

questionnaire is split into three different cases, each case aimed at one of the three

main aspects of the system: backward chaining, forward chaining, and rule

management. The results obtained are quite interesting.

Human Evaluation (Evaluation)

123

6. 3. 1 Questionnaire

Listed below is the questionnaire that has been handed to the human testers. We will

be using a total of three human testers with each user giving feedback on each test

case. The results are then based on the feedback received.

Test Case 1: Backward Chaining

One morning, you went to start your car but it refused to start. You need to know

what are the most probable causes. You are to consult Paramenides to help you

diagnose the problem.

You are to imagine that you know of the below symptoms, and you are unsure of

anything else about the car:

• Headlights were left on.

• Engine compression is likely to be poor.

• There is fuel in the tank.

• Oil grade is correct.

• Weather is not cold.

• Engine is switched off.

Part 1: Use Paramenides to perform a backward chaining search on your problem, by

selecting the problem engine does not start.

Part 2: Log the main causes of the problem, through the help of the system.

Part 3: Describe how you found the process.

Human Evaluation (Evaluation)

124

Test Case 2: Forward Chaining

A patient is not feeling well and would like to consult a doctor. You are to consult

Paramenides to help you give an indication what conditions the patient may have.

You are to imagine that you know of the below symptoms, and you are unsure of

anything else about the car:

• Nausea

• Vomiting

• Dizziness

Part 1: Use Paramenides to perform a forward chaining search on your problem, on

the Clinical Manifestation Diagnosis knowledge base.

Part 2: Log the conclusions (possible diseases) reached, through the help of the system

Part 3: Describe how you found the process

Test Case 3: Rule Management

You are an expert in computer hardware diagnostics and want to contribute to

Paramenides.

You are to imagine that you use these rules in your mind when troubleshooting

computer-related problems:

• If computer is switched on and computer fans not turning then power supply is

most probably not working

• If power supply is not working then computer is not working

• If ram is not working then computer is not working

• If nothing visible on screen then it may be either the RAM not working or

graphics card not working

Human Evaluation (Evaluation)

125

• If nothing visible on screen and computer beeps continuously during post then

most probably RAM is not working

• If nothing visible on screen and computer does not beep during post then most

probably graphics card is not working

• If graphics card is working and nothing visible on screen then monitor is not

working

Part 1: Use Paramenides to enter a new knowledge base, Computer Diagnostics

Part 2: Describe how you found the process and any difficulties encountered.

Part 3: Mention any possible improvements that you think can make the system

easier to use.

General Questions

• Do you think it would be more helpful to diagnose problems, as opposed to

finding information by searching through the Internet?

• Do you think it can replace an expert, if sufficient information is inputted in the

system?

Human Evaluation (Evaluation)

126

6. 3. 2 Results

User 1 - Test Case 1 (Backward Chaining)

Q: Log the main causes of the problem, through the help of the system

From the explanation diagram I could conclude that there were various problems with

the system. I could notice that the main problem were that the headlights were

switched on and engine was switched off. This resulted in the car battery being flat.

The system also pointed out that several items were not working as a direct result of

the car battery. These included the preheating system, cold start advance mechanism,

starter motor, injection pump and stop solenoid. Another likelihood condition was that

the engine compression is poor, although this provided a much smaller contribution to

the result.

Q: Describe how you found the process

Searching for the initial goal was relatively easy. The system started asking questions

related to the problem, and although one might think that some questions are useless,

the system provides an explanation to its reasoning when it is finished. The colouring

scheme has helped me better identify which of the conditions were met, and thus can

provide a visual cue for better understanding how it came to the conclusion.

User 1 - Test Case 2 (Forward Chaining)

Q: Log the conclusions (possible diseases) reached, through the help of the system

• Patient has low blood pressure (cf 0.5)

• Patient has ruptured brain aneurysm (cf 0.49)

• Patient has hyperglycaemic attack (cf 0.2)

• Patient has acute renal failure (cf 0.2)

• Patient has myocardial infarction (cf 0.2)

Human Evaluation (Evaluation)

127

• Patient has septic shock (0.1)

Q: Describe how you found the process

The process was relatively easy to use, and fast. The search for knowledge bases

worked nicely, allowing me to even enter keywords not directly found in the title, like

for example nausea. The possible problems the patient might be experiencing were

outputted as soon as the symptoms were inputted in the system. The results were

sorted by the belief the system has in the conditions making it easy to deduce what is

most likely to be the problem. I also liked a lot the explanation, which clearly shows

the reasoning the system performed to come up with such a conclusion.

User 1 - Test Case 3 (Rule Management)

Q: Describe how you found the process and any difficulties found

The process is quite straightforward to use, and I don’t think that one needs more than

basic computer usage skills to be able to enter rules. However, one needs to have a

brief understanding on how the system works and what it is expecting as inputs before

he is able to convert rules into the format required by the system. It is a very

repetitive job, and can be quite tedious for a long list of rules.

Q: Mention any possible improvements to make the system easier to use

It would be much easier if the user can enter rules in plain English, and the system

somehow analyses the text and converts it automatically into rules. This would

eliminate the need for the user to split the expert system into a list of objects,

attributes and values, before he can start working on the rules.

Human Evaluation (Evaluation)

128

User 1 – General Questions

Q: Do you think it would be more helpful to diagnose problems, as opposed to finding

information by searching through the Internet?

Yes I think it would be extremely more helpful in diagnosing problems. The internet

contains huge amount of information and sometimes you can get mixed up in all the

information. It would be an interesting system if the number of knowledge bases is

expanded to cater for various different topics and on a larger scale. It can also help

because sometimes you do not know exactly the keywords to look for. Especially in the

given topic of medical diagnosis, many users do not know the technical word initially

and are able to describe what they are feeling in layman’s terms like I am feeling dizzy.

It would greatly reduce the time needed for troubleshooting problems, and it could

even have other uses that I might not anticipate right now.

Q: Do you think it can replace an expert, if sufficient information is inputted in the

system?

I’m not sure if I would be ready to trust a computer program with my health, but it

could give a very good indication before you can consult a real-life doctor. It might

even allow the doctor (or expert) to diagnose the problem more easily, and could

maybe lead to less expenses.

I think the system would be especially useful for less-critical topics, like car diagnostics

and electronics, and can be very useful for the DIY enthusiast. It might help him

troubleshoot problems without the need of having a great deal of experience, since most

DIY hobbyists do not have the advantage of working on various examples to expand

their knowledge

Human Evaluation (Evaluation)

129

User 2 – Test Case 1 (Backward Chaining)

Q: Log the main causes of the problem, through the help of the system

The main cause seems to be the headlights being left on when the car was switched off,

resulting in a high chance that the car battery is flat. Due to this, the system pointed

out that several components are not working, which ultimately leads to the engine not

starting. Apart from these components, another problems seems to be that the engine

compression is poor, but one is given the idea that it is more likely that it is due to the

car battery being flat than due to the compression, but it must not be eliminated. I

think the system worked quite well as the conclusion reached is quite logical.

Q: Describe how you found the process

The process was very intuitive. I found it easy to use and could easily follow up the

reasoning behind the system thanks to the explanation system.

User 2 – Test Case 2 (Forward Chaining)

Q: Log the conclusions (possible diseases) reached, through the help of the system

Through the system, one can conclude that the most probable causes are low blood

pressure and raptured brain aneurysm. There might also be a slight likelihood that the

patient has hyperglycaemic attack, myocardial infarction, and a even decreased

likelihood of septic shock.

Q: Describe how you found the process

The process was easy and I could easily follow what are the possible outcomes. The

explanation facility helped me understand more how the system came to such a

conclusion. The reasoning also seemed very logical to me.

Human Evaluation (Evaluation)

130

User 2 – Test Case 3 (Rule Management)

Q: Describe how you found the process and any difficulties found.

The process was easy to understand although it was a little bit time consuming.

Q: Mention any possible improvements to make the system easier to use

I think the system performs quite well, although if the process for entering rules could

be made faster the system would be slightly better.

User 2 – General Questions

Q: Do you think it would be more helpful to diagnose problems, as opposed to finding

information by searching through the Internet?

Yes for sure. I think the idea of having knowledge in this manner can help a lot in

finding solutions to the problems one can face. If it includes knowledge on various

topics, I think it would be extremely useful and could save a lot of time.

Q: Do you think it can replace an expert, if sufficient information is inputted in the

system?

Yes I think it can be used similar to a personal expert. Although I think it needs quite

a lot of information to be able to replace experts. Also, I think people will still rely on

experts to solve their problems but it can help the user have a much idea before

visiting an expert.

Human Evaluation (Evaluation)

131

User 3 – Test Case 1 (Backward Chaining)

Q: Log the main causes of the problem, through the help of the system

One morning, you went to start your car but it refused to start. You need to know

what are the most probable causes. You are to consult Paramenides to help you

diagnose the problem.

You are to imagine that you know of the below symptoms, and you are unsure of

anything else about the car:

• Headlight were left on

• Engine compression poor is likely

• There is fuel in the tank

• Oil grade is correct

• Starter motor is not defective (you replaced it last month)

• Weather is not cold

• Engine is switched off

Q: Describe how you found the process

The process is very simple and intuitive to follow. After defining your problem, all you

need to do is answer the simple questions asked by the system and in any case you’re

not familiar with such a question, the system gives you also the option to omit the

question. After going through these set of steps, the system will provide you with a

very well structured outlining all your possible problems and their causes.

User 3 – Test Case 2 (Forward Chaining)

Q: Log the conclusions (possible diseases) reached, through the help of the system

Human Evaluation (Evaluation)

132

The system has outlined that by having the above symptoms, the most probable

problem the patient could have is low blood pressure followed by raptured brain

aneurysm. Other possible problems which are less likely are:

• Hyperglycaemic attack

• Acute renal failure

• Myocardial Infarction

The least likely problem contributing towards the above symptoms is the possession of

septic shock.

Q: Describe how you found the process

The system is very easy to use. All you need to do is provide your symptoms using

English like words and the system will outline the stored possible symptoms. By

simply choosing your symptoms, the system will update the possible problems which

are contributing towards the listed symptoms accordingly .

User 3 – Test Case 3 (Rule Management)

Q: Describe how you found the process and any difficulties found.

The process was easy to follow, but it is a very boring task and can take quite some

time.

Q: Mention any possible improvements to make the system easier to use

Making the section for entering rules more easier, and possibly eliminating the need to

have to split the objects into different objects, attributes and values

Overview (Evaluation)

133

User 3 – General Questions

Q: Do you think it would be more helpful to diagnose problems, as opposed to finding

information by searching through the Internet?

Yes it can be very useful to diagnose problems because it can eliminate a lot of

searching for information via traditional search engines. It can help you find the

solution to a problem more easily.

Q: Do you think it can replace an expert, if sufficient information is inputted in the

system?

I think it can be used to replace an expert in certain areas. For example, I like to

repair my car myself whenever a fault occurs. When it occurs, I normally try to find

information on the internet to find the cause and fix the problem, as I do not have the

expertise a mechanic would have to locate the problem by intuition. If the system

could include a thorough knowledge base on car diagnostics, it would help me a lot and

I would be happy to rely on it since it can explain the reasoning and I can draw my

own conclusions on what seems right or not. I think in areas more critical like the

medical test case, people would be more skeptical

6.4 Overview

In the system testing the aim was to ensure that the basics of the inference engine are

working successfully. We have performed various test cases and the inference engine

managed to reason correctly on all the provided cases. Recursion and Mixed inference

have also been included because those are a more complicated form of reasoning. The

main reason behind the system testing was to ensure that it works on small cases to

bring out any weaknesses in the system. Since a large knowledge base is made up of a

Overview (Evaluation)

134

larger list of rules, the reasoning will stay the same and thus if one can prove that it is

working for smaller knowledge bases, it will also work for larger knowledge bases.

The human testing results have proved quite interesting. The three test cases provided

to each user tested the system on its three main aspects. Initially, the users were given

a brief explanation what the system is about and an overview of how to use it. The

certainty factors were also explained to give the users a better idea of how the

uncertainty management works, so that they can answer questions more effectively.

The overview of the system was relatively short, in order to let them experiment with

the system and get feedback on its general feel and ease-of-use. They were then handed

the questionnaire, which they were expected to fill in (which were listed previously).

There was consensus by all users that the backward chaining and forward chaining

modules were relatively easy to use and worked as expected. All users managed to

reach the same conclusions in both forward chaining and backward chaining. Forward

chaining required no interpretation of rules as the possible conditions were clearly

outlined to the user. Every user managed to understand what were the possible

conditions given the symptoms.

The backward chaining system provided a flowchart-like structure and highlighted

which nodes contributed to the end result. The users could then follow the tree and be

able to see the conclusions that the system has reached. All users managed to conclude

that the main problems were the same.

The main weakness of the system seems to be the rule management. Most of the users

have agreed that it is a time-consuming job inputting rules, and is the most part that

can be improved from the system. The main problem in rule management is to make

Overview (Evaluation)

135

it easy to use for the users, while being able to parse the rules as need by the

knowledge base in order to be able to parse them effectively.

Since the conditions of the rules need to be split into an object-attribute-value triple,

users sometimes find it difficult to categorise the problem in that way. We could have

enabled the user to enter conditions as free text, however the system is not able to do

any real processing on the condition, and to be able to perform forward chaining and

backward chaining on the condition, the user must ensure that it written almost the

same. Also, no type of inheritance can be done because the system performs

inheritance based on the objects and attributes that are being linked together.

This can be seen as a kind of trade-off between ease-of-use and functionality. The ideal

seems to be letting the user enter the rule in natural language (plain English), and the

system is able to parse it and split into tokens as needed. This would involve

analyzing the phrase and retrieving the subject and action amongst others. This is an

entirely distinct subject called Natural Language Processing and is not the scope of this

dissertation.

In general, the users all agreed that the system could be quite effective and can save a

lot of time from searching all over the internet, if it contains a good amount of

knowledge bases. Another conclusion that most users reached were that the system

would not replace real-life experts, but it would be able to give a much better

indication of the problem. This conclusion might have been reached because one of the

test cases involved medical diagnosis, and most people would not be confident in

letting a computer program decide for their well-being. They would be more

comfortable in using the expert system on less-critical subjects like car diagnosis.

Summary (Evaluation)

136

One user described the system as a personal expert; that would be a very ideal word to

describe the general system functionality.

Given the nature of the project, it is not easy to test it on various domains. However,

correct functioning of the system depends a lot on the rules in the knowledge bases.

The system has no means to detect incorrect rules, and such rules could lead to

incorrect diagnosis. The test cases have proved that given correct rules, the system

manages to reach a reasonable conclusion. The evaluation of the system was very

satisfactory. We got various positive feedback through the questionnaire, and if the

number of knowledge bases are increased it can prove extremely useful

6.5 Summary

In this chapter we have provided means to evaluate the functionality of the system.

This was split into two sections: System Testing and Human Evaluation.

System testing involved creating a list of test cases covering the basic functionality of

the system. The system was then tested on these cases to confirm its functionality.

Human Testing involved creating a questionnaire that covers its main functional

aspects: Backward Chaining, Forward Chaining, and Rule Management. The

questionnaire provided three test cases to the users, who were asked to fill it in based

on their experience and results obtained through the system. In general all users

reported positive feedback on the backward chaining and forward chaining modules,

but said that more could be done to make the rule management faster. The main

problems in this are due to the trade-off between ease-of-use and functionality for the

inference, and we have to try to balance it out and came up with the implemented

methodology.

Future Work (Conclusion & Future Work)

137

7 Conclusion & Future Work

7.1 Future Work

The project managed to address various aspects related to expert system. However,

mainly due to lack of time, some features had to be left out which would have made

the system more functional and complete.

The system could have been tested on a larger population and more knowledge bases.

This could give us more insight on any problems that we may not yet have catered for.

The system could implement a Natural Language Processing engine that is able to

analyse phrases and be able to deduce the object, attribute and value it is acting upon.

Natural Language Processing is a vast topic on its own and commands extensive

research on its various subjects. This is one of the main reasons why this was not

implemented in our project, as it is not directly related to expert systems and would

add a considerable amount of work to the system. NLP would be extremely useful

when the user is entering phrases to search for goals and knowledge bases, and

especially for rule management. Human evaluation concluded that enabling users the

enter rules in plain English would make it much easier and faster. Enter a rule as “If

weather is cold and starter motor is not working then car is not working”, then having

to split into objects, attributes and values and entering those as the antecedents and

consequents is a more logical process for the non-computer savvy user.

Another feature the system could improve upon is rule diagnostics. These would cater

for logical errors in the rule base, which cannot be detected by the testing

methodologies mentioned in the evaluation. Although the current explanation can

Concluding Remarks (Conclusion & Future Work)

138

visually show the rule base and be used for such diagnostics, such specific tools would

help in pointing out rules that do not make sense.

Another feature that would prove beneficial if Paramenides is to be used by the general

public is moderation of the knowledge bases and versioning control. However these

features involve no research to be done but add considerably to the work involved in

the system. This was not the point of this dissertation, and has thus been left out.

7.2 Concluding Remarks

The project has served as a great tool for learning about expert systems to the author.

We have made an extensive literature review on various aspects related to expert

systems, encompassing a good number of topics in such a broad subject. Understanding

the inner workings of an expert system requires intricate knowledge about logic,

fundamentals of expertise and knowledge representation. Expert systems can nowadays

be considered a buzz word and sometimes it is abused and used out of context.

We have created an expert system that is available to the general public through a

web-based interface, which requires no installation and configuration from the user’s

end. The expert system is able to perform both backward and forward chaining

inference. It also provides a visual explanation system for its reasoning. We have also

seen that the concept of uncertainty is required in such an expert system, and we have

analysed the various uncertainty management methodologies and implemented the

most methodology deemed appropriate.

Concluding Remarks (Conclusion & Future Work)

139

The system also mimics the very successful idea on which Wikipedia82 is based, by

allowing its users can to manage knowledge bases and insert their expertise.

Expert systems have always been considered out-of-reach, and have only been used by

large companies who could afford their development and maintenance. The aim was to

make expert systems more available to the general public and through Paramenides, we

hope to create a global learning resource for anyone, which is created from humans to

humans. The final aim is to create an online manifestation of human expertise that is

permanent and freely available.

The project has managed to reach most of the aims mentioned earlier in the first

chapter. It is easily accessible through the internet, is able to cater for generic

knowledge bases, able to perform both backward and forward chaining inference and

can explain its reasoning quite well. Another aim of the system was to create an easy-

to-use interface to be able to cater for a large number of users. While the frontend

interface that performs the backward and forward chaining is quite easy to use, the

rule management interface can be slightly confusing and time consuming.

Improvements to this interface have been mentioned in the future work.

Finally, we will conclude this dissertation with a quote from John Naisbitt, an

American author and public speaker (59), which is extremely relevant to the topic in

question and the age we live in:

“We are drowning in information but starved for knowledge.”

82 Wikipedia (http://www.wikipedia.org) is an online encyclopedia where its users can anonymously

contribute to its articles.

Concluding Remarks (Bibliography)

140

Bibliography

1. Story. Writing. [Online] [Cited: April 5, 2009.]

http://www.mesopotamia.co.uk/writing/story/sto_set.html.

2. Definition of 'Expert'. The Free Online Dictionary. [Online] [Cited: April 10, 2008.]

3. Jackson, Peter. Introduction to Expert Systems. 3rd Edition. s.l. : Addison-Wesley,

1998. pp. 1-2. 0-201-87686-8.

4. —. Introduction to Expert Systems. 3rd Edition. s.l. : Addison-Wesley, 1999. 0-201-

87686-8.

5. Simpson, Stephen G. Mathematical Logic. Department of Mathematics, The

Pennsylvania State University. 2008. pp. 3-22.

6. Franklin, J. and Daoud, A. Proof in Mathematics: An Introduction. s.l. :

Quakers Hill Press. 1-876192-00-3.

7. Jackson, Peter. Introduction to Expert Systems. 3rd Edition. s.l. : Addison Wesley,

1999. pp. 145-148. 0-201-87686-8.

8. Laun, Wolfgang. Predicate Calculus and Jess. Vienna, Austria : Thales Rail

Signalling GesmbH, 2009.

9. The Calculus of Logic. Boole, George. 1848, Cambridge and Dublin Mathematical

Journal, Vol. 3.

10. Ahmadi, Mahnaz. Boolean Algebra. McMaster University. 2004.

11. Guarino, Nicola and Giaretta, Perdaniele. Ontologies and Knowledge Bases.

National Research Council, University of Padova. Padova, Italy : s.n.

12. P. Patel-Schneider, P. Hayes, I. Horrocks. OWL Web Ontology Langauge

Semantics and Abstract Syntax.

13. D. Fensel, F. van Harmelen, I. Horrocks, D.L. McGuinness, P.F. Patel-

Schneider. OIL: An Ontology Infrastructure for the Semantic Web. s.l. : IEEE

Intelligent Systems, 2001.

14. SWCLOS: A Semantic Web Processor on Common Lisp Object System. Semantic

Web. [Online] [Cited: April 10, 2009.] http://iswc2004.semanticweb.org/demos/32/.

Concluding Remarks (Bibliography)

141

15. Tim Berners-Lee, Nigel Shadbolt, Wendy Hall. The Semantic Web

Revisited. s.l. : IEEE Intelligent Systems, 2006.

16. Randall Davis, Howard Shrobe, Peter Szolovits. What is a Knowledge

Representation? MIT AI Lab, MIT AI Lab and Symbolics, Inc., MIT Lab for

Computer Science. 1993.

17. Joseph C. Giarratano, Gary D. Riley. Expert Systems: Principles and

Programming. 4th Edition. s.l. : Course Technology, 2005. p. 71. 0-534-38447-1.

18. Jackson, Peter. Introduction to Expert Systems. 3rd Edition. s.l. : Addison-

Wesley, 1998. pp. 294-314. 0-201-87686-8.

19. Boden, Margaret A. Mind as Machine: A history of cognitive science. s.l. :

Oxford University Press, 2006. p. 840. 0199241449.

20. Jackson, Peter. Introduction to Expert Systems. 3rd Edition. s.l. : Addison

Wesley, 1999. p. 11. 0-201-87686-8.

21. Segaller, Stephen. Nerds 2.0.1: A Brief History of the Internet. s.l. : TV Books,

1998. 1575001063.

22. World Internet Usage Statistics News and World Popoulation Stats. Interent World

Stats. [Online] [Cited: May 1, 2009.] http://www.internetworldstats.com/stats.htm.

23. Dictionaries, Oxford. Concise Oxford English Dictionary. 11th Edition. s.l. :

Oxford University Press, USA, 2008. 978-0199548415.

24. A. Aamodt, E. Plaza. Case-Based Reasoning: Foundational Issues,

Methodological Variations, and System Approaches. University of Trondheim, Institut

d'Investigacio en Intelligencia Artificia, CSIC. 1994.

25. McCarthy, John. Some expert systems need common sense. Computer Science

Department, Stanford University. 1984.

26. Jackson, Peter. Introduction to Expert Systems. 3rd Edition. 1999. pp. 1-2. 0-201-

87686-8.

27. Barr Avron, Edward A. Feigenbaum. The Handbook of Artificial Intelligence.

s.l. : Heuris Press, 1981. 08657600547.

28. How Intelligent is Deep Blue? New York University. [Online] 1997. [Cited: April 11,

2009.]

Concluding Remarks (Bibliography)

142

http://www.nyu.edu/gsas/dept/philo/courses/mindsandmachines/Papers/mcdermott.h

tml.

29. Ayse Pinar Saygin, Ilyas Cicekli, Varol Akman. Turing Test: 50 Years

Later. Department of Cognitive Science, Department of Computer Engineeing,,

University of California, Bilkent University.

30. Cawsey, Alison. Rule-Based Systems. Department of Computing and Electrical

Engineering, Heriot-Watt University. Edinburgh : s.n.

31. Joseph C. Giarratano, Gary D. Riley. Expert Systems: Principles and

Programming. s.l. : Course Technology, 2005. pp. 78-81. 0-534-38447-1.

32. Jackson, Peter. Introduction to Expert Systems. 3rd Edition. s.l. : Addison

Wesley, 1998. pp. 102-105. 0-201-87686-8.

33. Sowa, John F. Semantic Networks. 1987.

34. Peirce, Charles Sanders. The Collected Papers of C. S. Peirce. 1931-35. pp.

293-341. Vol. 4, Available online at

http://www.existentialgraphs.com/peirceoneg/existentialgraphs4.372-417.htm and

http://www.existentialgraphs.com/peirceoneg/existentialgraphs4.418-529.htm.

35. Sowa, John F. Conceptual Graphs. 1999.

36. Sasu, Lucian. Entity-Attribute-Value Modelling. Faculty of Mathematics and

Informatics, University of Brasov. 2008.

37. Waterman, Donald Arthur. A Guide to Expert Systems. s.l. : Addison-Wesley,

1987. pp. 73-79. 0201083132.

38. Richard Fikes, Tom Kehler. The Role of Frame-Based Representation in

Reasoning. s.l. : Communications of the ACM, 1987.

39. Jackson, Peter. Introduction to Expert Systems. s.l. : Addison-Wesley, 1999. pp.

87-93. 0-201-87686-8.

40. Richard Forsyth, Chris Naylor. The hitch-hiker's guide to artificial

intelligence. s.l. : Taylor & Francis, 1986. pp. 22-28. 0412281309.

41. Horatiu Cirstea, Claude Kirchner, Michael Moossen, Pierre-Etienne

Moreau. Production Systems and Rete Algorithm Formalisation. Reseau National des

Technologies Logicielles. 2004.

Concluding Remarks (Bibliography)

143

42. Forgy, Charles. A network match routine for production systems. 1984.

43. —. On the efficient implementation of production systems. Carnegie-Mellon

University. 1979. Ph.D. Thesis.

44. Rete: A Fast Algorithm for the ManyPattern/Many Object Patern Match Problem.

Forgy, Charles. 19, 1982, Artificial Intelligence, pp. 17-37.

45. The Execution Kenrel of RC++: Rete*, A Faster Rete with treat as a special case.

Ian Wright, James Marshall. 1, 2003, International Journal of Intelligent Games

and Simulation, Vol. 2, pp. 36-48.

46. Doorenbos, Robert B. Production Matching for Large Learning Systems.

Computer Science Department, Carnegie Mellon University. 1995.

47. —. Production Matching for Large Learning Systems. Computer Science

Department, Carnegie Mellon University. 1995. pp. 7-33.

48. Jackson, Peter. Introduction to Expert Systems. s.l. : Addison-Wesley, 1998. p.

166. 0-201-87686-8.

49. Colin Howson, Peter Urbach. Scientific Reasoning. s.l. : Open Court, 2005.

081269578X.

50. Joseph C. Giarratano, Gary D. Riley. Expert Systems: Principles and

Programming. s.l. : Course Technology, 2005. pp. 207-234. 0-534-38447-1.

51. Shafer, Glenn. Dempster-Shafer Theory. 2002. (Available online at:

http://www.glennshafer.com/assets/downloads/articles/article48.pdf).

52. Kari Sentz, Scott Ferson. Combination of Evidence in Dempster-Shafer Theory.

Sandia National Laboratories. 2002. SAND 2002-0835.

53. Bruce G. Buchanan, Edward H. Shortliffe. Rule-Based Expert Systems: The

MYCIN Experiments of the Stanford Heuristic Programming Project. [ed.] Edward H.

Shortliffe. s.l. : Addison-Wesley, 1987. pp. 263-271. 978-0201101720.

54. Joseph C. Giarratano, Gary D. Riley. Expert Systems: Principles and

Programming. s.l. : Course Technology, 2005. pp. 268-279. 0-534-38447-1.

55. Hellmann, Martin. Fuzzy Logic Introduction. Computer Science, University of

California. Berkely : s.n., 2001.

Concluding Remarks (Bibliography)

144

56. MYCIN (Artificial Intelligence Program). Britannica Online Encyclopedia. [Online]

[Cited: April 12, 2009.] http://www.britannica.com/EBchecked/topic/400270/MYCIN.

57. MYCIN. University of Surrey. [Online] [Cited: April 12, 2009.]

http://www.computing.surrey.ac.uk/ai/PROFILE/mycin.html.

58. Joseph C. Giarratano, Gary D. Riley. Expert Systems: Principles and

Programming. s.l. : Course Technology, 2005. pp. 192,212-217,227,240,242,245. 0-534-

38447-1.

59. John Naisbitt Quotes. BrainyQuote. [Online] [Cited: April 18, 2009.]

http://www.brainyquote.com/quotes/quotes/j/johnnaisbi382513.html.

60. Encyclopedia Britannica. s.l. : Encyclopedia Britannica, 2004. 978-0852299616.

61. Ontology Components. Wikipedia. [Online] [Cited: April 9, 2009.]

http://en.wikipedia.org/wiki/Ontology_components.

62. Web Ontology Language. StateMaster. [Online] [Cited: April 9, 2009.]

http://www.statemaster.com/encyclopedia/Web-Ontology-Language.

63. Flip-flop (electronics). Wapedia. [Online] [Cited: April 10, 2009.]

http://wapedia.mobi/en/Flip-flop_(electronics)#1..

64. Joseph C. Giarratano, Gary D. Riley. Expert Systems: Principles and

Programming. s.l. : Course Technology, 2005. pp. 12-14. 0-534-38447-1.

65. —. Expert Systems: Principles and Programming. s.l. : Course Technology, 2005. p.

10. 0-534-38447-1.

66. —. Expert Systems: Principles and Programming. s.l. : Course Technology, 2005. p.

69. 0-534-38447-1.

67. —. Expert Systems: Principles and Programming. s.l. : Course Technology, 2005. p.

70. 0-534-38447-1.

68. Agnar Aamodt, Enric Plaza. Case-Based Reasoning: Foundational issues,

Methodological Variations, and System Approaches. University of Trondheim, Institut

d'Investigacio en Intelligencia Artificial. 1994.

69. Joseph C. Giarratano, Gary D. Riley. Expert Systems: Principles and

Programming. s.l. : Course Technology, 2005. p. 72. 0-534-38447-1.

Concluding Remarks (Bibliography)

145

70. Sowa, John F. Conceptual Graphs. 1999.

71. Richard Fikes, Tom Kehler. The Role of Frame-based Representation in

Reasoning. s.l. : Communications of the ACM, 1985.

72. Horatiu Cirstea, Claude Kirchner, Michael Moossen, Pierre-Etienne

Moreau. Production Systems and Rete Algorithm Formalisation. Reseau National des

Technologies Logicielles. 2004.

73. Doorenbos, Robert B. Production Matching for Large Learning Systems.

Computer Science Department, Carnegie Mellon University. 1995. p. 14.

74. Joseph C. Giarratano, Gary D. Riley. Expert Systems: Principles and

Programming. s.l. : Course Technology, 2005. 0-534-38447-1.

75. —. Expert Systems: Principles and Programming. s.l. : Course Technology, 2005. p.

285. 0-534-38447-1.

76. —. Expert Systems: Principles and Programming. s.l. : Course Technology, 2005. p.

272. 0-534-38447-1.

77. —. Expert Systems: Principles and Programming. s.l. : Course Technology, 2005. p.

299. 0-534-38447-1.

78. The Burning of the Library of Alexandria. eHistory. [Online] [Cited: April 11,

2009.] http://ehistory.osu.edu/world/articles/ArticleView.cfm?AID=9.

79. Glossary. Net Pedagogy Portal. [Online] [Cited: Aprl 29, 2009.]

http://www.thewebworks.bc.ca/netpedagogy/glossary.html.

146

Appendices

147

A. Contents of CD

The CD contains the project files as well as the website deployment files if one would

wish to install the website on his own web server. It also contains copies of the filled in

questionnaires, and knowledge bases obtained for testing.

Figure A-1: Contents of CD

The above figure shows the contents of the CD. Below is a brief overview:

• Database: Contains SQL Script files that can be used to create the database. It

contains two files: Structure_data.sql contains the database structure and some

sample data, while structure_only.sql contains just the database structure.

• Source Code: Contains the source code of the project

• Website: Contains the deploy files for the website, should the reader wish to

install the website on his own web server

• Documentation: A soft-copy of this dissertation in Word 97-03, Word 07 and

PDF format.

148

B. Installation Notes

Since the project distributable is a website, it is not a simple installation procedure to

use the website. We recommend that one uses the online website which is publicly

accessible at http://www.paramenides.com.

However, if one needs to install it on his own web server, listed below are the

requirements:

• Microsoft .Net Framework v3.5

• Microsoft IIS6/7

• ASP.Net

• MySQL v5.1.33 or greater

It is quite lengthy to describe the process involved in installing each of the required

software components. The user will be referred to online resources that can serve as a

guide to installation.

B. 1. Installation Guides

Microsoft .Net Framework v3.5:

 http://www.microsoft.com/downloads/details.aspx?FamilyId=333325FD-AE52-4E35-

B531-508D977D32A6&displaylang=en

IIS 6 (Windows Server 2003 / XP)

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/750d

3137-462c-491d-b6c7-5f370d7f26cd.mspx?mfr=true

Website Deployment (Installation Notes)

149

IIS 7 (Windows Server 2008 / Vista)

http://www.windowsnetworking.com/articles_tutorials/Installing-IIS-70.html

Microsoft ASP.Net (IIS6 – Windows Server 2003 / XP)

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/library/IIS/7ecaa

5f3-5499-4887-8c9d-00aba71125df.mspx

Microsoft ASP.Net (IIS 7 – Windows Server 2008 / Vista)

http://learn.iis.net/page.aspx/472/how-to-install-aspnet-11-with-iis7-on-vista-and-

windows-2008/

MySQL:

http://dev.mysql.com/doc/refman/5.1/en/installing.html

B. 2. Website Deployment

Once all required components have been installed, one needs to deploy the website in

the web server. This involves copying the website files found in [CD\Website] to a

folder on the web server, and creating a new website in IIS.

For more information on this process the reader is referred to

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/33e0

a51a-5f8a-40f2-9923-cdd604e1a812.mspx?mfr=true

Website Deployment (Installation Notes)

150

The user needs to import the database into MySQL. The database scripts can be

found in [CD\Database\]:

• strucutre_only.sql: Contains only the database structure, void of data

• structure_data.sql: Contains both database structure and some sample data,

including the test user.

The following link refers to a guide on importing databases in MySQL:

http://www.clockwatchers.com/mysql_dump.html

Finally, a new username and password must be created in MySQL, giving FULLL

access to the expertsystem_fyp database. Following are the credentials required:

 Username: expertsystems

 Password: expertsystems

The following guide contains information on how to add a new user in MySQL:

http://dev.mysql.com/doc/refman/5.1/en/adding-users.html

Preferably, you should use a GUI tool like MySQL Administrator

(http://dev.mysql.com/downloads/gui-tools/5.0.html) to make the process easier.

151

C. User Manual

The user guide will be split into several different sections, each explaining the main

components of the system. The website is mainly split into two main parts: Frontend

and Member’s Area and each part is then sub-divided further.

C. 1. Frontend

Figure C-1: Main page

From the front page, the user can choose to solve two different types of problem

solving: Backward Chaining and Forward Chaining. The currently selected method in

Frontend (User Manual)

152

Figure C-1 has the backward chaining selected. The user can then enter keywords

based on his problem in the search field, and the system will display the conditions

stored in the knowledge base in the results.

C. 1. 1. Backward Chaining Search

The user selects a problem, like for example Battery > is > flat (The result in Figure

C-1). The system will then ask questions based on the selected goal.

Figure C-2: A question asked by the system

The user is then presented with various answers that he may reply to, to the question

being asked. The top three buttons – I don’t know, No and Yes are answers based on

discreet values, and should be used when the user is either certain of the answer, or he

has no idea. The bottom part contains a slider that allows the user to enter his belief

in the outcome. Please note that this section is not always visible because not every

Frontend (User Manual)

153

answer can contain with uncertainty. Some answers only commend a Yes, No, or I

don’t know response.

Once the process is ready, the system will provide an explanation to its reasoning.

Figure C-3: An explanation for the simple example being used

The user can see the different conditions tested by the system, and they are marked

green for positive nodes, and red for negative nodes. The green nodes are contributing

towards their parent node’s conditions while the red nodes are not contributing at all.

From the above graph, we can conclude that the main reason that the capacity is flat

is because that the alternation is highly likely that it is not working. The numbers in

the brackets () show the certainty factor, which is a numerical number from -1 to 1

which shows the degree of belief in the condition, with -1 representing absolute

negativity (‘No’ answer) and +1 representing absolute positive (‘Yes’ answer).

Frontend (User Manual)

154

C. 1. 2. Forward Chaining Search

Figure C-4: Forward chaining enabled, and 1 knowledge base result

A forward chaining search can also be performed from the frontend. Figure C-4 shows

the user searching for a knowledge base containing information on the problem nausea.

The system has found one related knowledge base. The user can then click on the

knowledge base to start entering his symptoms

Frontend (User Manual)

155

Figure C-5: Forward-Chaining screenshot, with several symptoms already entered and possible problems

found

The user can enter symptoms by first entering keywords related to his symptoms in the

search field. The system will then look for related conditions, and present them to the

Frontend (User Manual)

156

user in the results box. The user can then select a result and enter its value through a

dialog that is now visible on the screen (Figure C-6). The entered value can be similar

to the questions asked by the backward chaining system, and can include one of Yes

and No (I don’t know is disabled since the user has selected the condition). The user

can also enter the value based on his certainty.

Figure C-6: Forward chaining module dialog for a value

Frontend (User Manual)

157

The user can also choose a possible problem from the list shown, and the system will

perform a backwards chaining search with the selected problem as the goal. This can

prove useful to check with more certainty about a problem, since the system is then

able to guide you with related questions/symptoms that you may not have thought

about.

Apart from entering symptoms, the user can also choose to view the explanation for

the current conclusions. This can be done by clicking on the View Explanation

button.

Figure C-7: Explanation for one of the conclusions reached

As one can see, the explanation is similar to the one given by the backward chaining

module. However, in forward chaining the goals are the possible problems as opposed

to the goal selected by the user in backward chaining.

From the explanation, the user can also choose to go back to the forward chaining

system to continue entering facts.

Member’s Area (User Manual)

158

C. 2. Member’s Area

Figure C-8: Login screen, showing the top-right panel

From the top right panel (in green), the users can choose to log in or create an account

with the system. For testing purposes, the users can use the already created account

with:

 Username: test

 Password: test

Since the system currently offers no moderation system for its knowledge bases, all

users have access to all knowledge bases. The project’s aim is a proof of concept, and if

the website is to be deployed on a larger scale it must include such a feature that is

also explained in more detail in the Future Work section in the final chapter.

Member’s Area (User Manual)

159

Figure C-9: Knowledge Base Listing

From this screen, the user can choose to create new knowledge bases and manage

existing ones. The middle icon, consisting of a set of shapes allows you edit the

objects, attributes and values of the knowledge base, while the rightmost icon (the blue

listing) allows you to manage the rules.

C. 2. 1. Managing objects, attributes and values

From the next screen, one can enter the objects, attributes and values. Each object

can have a list of attributes, while each attribute can have a list of values. These can

then be used form a condition in the form of Object > Attribute > Value, such as Car

> Is > Not Working.

Apart from entering these values, users can also define inheritance between objects.

An object A that inherits from object B means that it will take all of Object B’s

attributes and values also as its own. The following screenshots show the various

sections for managing these object-attribute-value triples.

Member’s Area (User Manual)

160

Figure C-10: Screenshot showing the objects, and object inheritance of the selected object

Member’s Area (User Manual)

161

Figure C-11: Screenshot showing the attributes of the selected object, and the values of the selected

attribute. The selected object is fuel tank

Member’s Area (User Manual)

162

C. 2. 2. Rule Management

From this section of the system, the user can manage the rules of the knowledge base.

The rules have to be defined on the objects, attributes and values defined in the earlier

mentioned section, and so it makes sense that first one has to split the domain of the

knowledge base as a list of objects, attributes and values.

This sections shows all existing rules, and the user can select exiting rules to edit them.

The user also has the option to add new rules, and a rule can be made up of any

number of antecedents, followed by any number of consequents.

All antecedents are ANDed together. The rule is in the form of:

 IF {Antecedents} THEN {Consequents}

Each antecedent/consequent is selected by selecting the object, attribute and value

related to the condition being modelled. For consequents, one must also enter the

certainty factor if available, which can range from Yes to No, and possibly even

allowing uncertain values like ‘Almost certain’, ‘Unlikely’, etc. Figure C-12 shows this

section.

Member’s Area (User Manual)

163

Figure C-12: Screenshot showing the rule management section

