
Part I

Integrators Manual

i

V2.2 Integrators Manual

October 13, 2008

i

The EMC Team

This handbook is a work in progress. If you are able to help with writing, editing, or graphic
preparation please contact any member of the writing team or join and send an email to emc-
users@lists.sourceforge.net.

Copyright (c) 2000-7 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and one Back-Cover Text: "This EMC
Handbook is the product of several authors writing for linuxCNC.org. As you find it to be of value in
your work, we invite you to contribute to its revision and growth." A copy of the license is included in
the section entitled "GNU Free Documentation License". If you do not find the license you may order
a copy from Free Software Foundation, Inc. 59 Temple Place, Suite 330 Boston, MA 02111-1307

Part II

Contents

ii

Contents

I Integrators Manual i

II Contents ii

III Introduction 1

1 The Enhanced Machine Control 2

1.1 Introduction . 2

1.2 The Big CNC Picture . 2

1.3 Computer Operating Systems . 3

1.4 History of the Software . 3

1.5 How EMC2 Works . 4

1.5.1 Graphical User Interfaces . 5

1.5.2 Motion Controller EMCMOT . 5

1.5.3 Discrete I/O Controller EMCIO . 6

1.5.4 Task Executor EMCTASK . 7

1.5.5 Modes of Operation . 8

1.5.6 Information Display . 9

1.6 Thinking Like An Integrator . 11

1.6.1 Units . 11

IV Installing EMC 13

2 Installing the EMC2 software 14

2.1 Introduction . 14

2.2 EMC2 Live CD . 14

2.3 Other Methods . 15

2.4 EMC2 install script . 15

2.5 Manual installing using apt commands. 15

iii

CONTENTS iv

3 Compiling from Source 17

3.1 Introduction . 17

3.2 EMC Download Page . 17

3.3 EMC2 Release Description . 17

3.4 Download and source preparation. 18

3.4.1 Downloading the CVS version . 18

3.5 Installed . 18

3.6 Run-in-place . 19

3.7 Simulator . 19

3.8 Editing and Recompiling . 19

V Configuration. 20

4 INI Configuration 21

4.1 Files Used for Configuration . 21

4.2 The INI File Layout . 21

4.2.1 Comments . 22

4.2.2 Sections . 22

4.2.3 Variables . 23

4.2.4 Definitions . 23

4.3 INI Section Variables . 23

4.3.1 [EMC] Section . 23

4.3.2 [DISPLAY] Section . 23

4.3.2.1 AXIS Interface . 24

4.3.3 [FILTER] Section . 24

4.3.4 [RS274NGC] Section . 25

4.3.5 [EMCMOT] Section . 25

4.3.6 [TASK] Section . 26

4.3.7 [HAL] section . 26

4.3.8 [TRAJ] Section . 26

4.3.9 [AXIS_<num>] Section . 27

4.3.9.1 Homing-related items . 28

4.3.9.2 Servo-related items . 28

4.3.9.3 Stepper-related items . 30

4.3.10 [EMCIO] Section . 30

4.4 Homing . 31

4.4.1 Overview . 31

4.4.2 Homing Sequence . 31

4.4.3 Configuration . 31

CONTENTS v

4.4.3.1 HOME_SEARCH_VEL . 31

4.4.3.2 HOME_LATCH_VEL . 31

4.4.3.3 HOME_IGNORE_LIMITS . 33

4.4.3.4 HOME_USE_INDEX . 33

4.4.3.5 HOME_OFFSET . 33

4.4.3.6 HOME . 33

4.4.3.7 HOME_IS_SHARED . 33

4.4.3.8 HOME_SEQUENCE . 33

4.5 Lathe . 34

4.5.1 Default Plane . 34

5 EMC2 and HAL 35

5.1 motion (realtime) . 35

5.1.1 Pins . 35

5.1.2 Parameters . 36

5.1.3 Functions . 36

5.2 axis.N (realtime) . 36

5.2.1 Pins . 36

5.2.2 Parameters . 37

5.3 iocontrol (userspace) . 38

5.3.1 Pins . 38

VI HAL Specifics 39

6 Introduction 40

6.1 What is HAL? . 40

6.1.1 HAL is based on traditional system design techniques 40

6.1.1.1 Part Selection . 40

6.1.1.2 Interconnection Design . 40

6.1.1.3 Implementation . 41

6.1.1.4 Testing . 41

6.1.2 Summary . 41

6.2 HAL Concepts . 42

6.3 HAL components . 43

6.3.1 External Programs with HAL hooks . 43

6.3.2 Internal Components . 43

6.3.3 Hardware Drivers . 44

6.3.4 Tools and Utilities . 44

6.4 Tinkertoys, Erector Sets, Legos and the HAL . 44

CONTENTS vi

6.4.1 Tower . 44

6.4.2 Erector Sets . 44

6.4.3 Tinkertoys . 45

6.4.4 A Lego Example . 46

6.5 Timing Issues In HAL . 46

7 HAL Tutorial 47

7.1 Before we start . 47

7.1.1 Notation . 47

7.1.2 The RTAPI environment . 47

7.2 Tab-completion . 48

7.3 A Simple Example . 48

7.3.1 Loading a realtime component . 48

7.3.2 Examining the HAL . 48

7.3.3 Making realtime code run . 50

7.3.4 Changing parameters . 51

7.3.5 Saving the HAL configuration . 51

7.3.6 Restoring the HAL configuration . 52

7.4 Looking at the HAL with halmeter . 52

7.4.1 Starting halmeter . 52

7.4.2 Using halmeter . 54

7.5 A slightly more complex example. 55

7.5.1 Installing the components . 55

7.5.2 Connecting pins with signals . 56

7.5.3 Setting up realtime execution - threads and functions 57

7.5.4 Setting parameters . 58

7.5.5 Run it! . 59

7.6 Taking a closer look with halscope. 59

7.6.1 Starting Halscope . 59

7.6.2 Hooking up the “scope probes” . 61

7.6.3 Capturing our first waveforms . 62

7.6.4 Vertical Adjustments . 63

7.6.5 Triggering . 63

7.6.6 Horizontal Adjustments . 65

7.6.7 More Channels . 66

7.6.8 More samples . 66

CONTENTS vii

8 General Reference Information 67

8.1 Notation . 67

8.1.1 Typographical Conventions . 67

8.1.2 Names . 67

8.2 General Naming Conventions . 67

8.3 Hardware Driver Naming Conventions . 68

8.3.1 Pin/Parameter names . 68

8.3.1.1 Examples . 69

8.3.2 Function Names . 69

8.3.2.1 Examples . 70

9 Canonical Device Interfaces 71

9.1 Digital Input . 71

9.1.1 Pins . 71

9.1.2 Parameters . 71

9.1.3 Functions . 71

9.2 Digital Output . 71

9.2.1 Pins . 71

9.2.2 Parameters . 72

9.2.3 Functions . 72

9.3 Analog Input . 72

9.3.1 Pins . 72

9.3.2 Parameters . 72

9.3.3 Functions . 72

9.4 Analog Output . 72

9.4.1 Parameters . 73

9.4.2 Functions . 73

9.5 Encoder . 73

9.5.1 Pins . 73

9.5.2 Parameters . 74

9.5.3 Functions . 74

10 Tools and Utilities 75

10.1 Halcmd . 75

10.2 Halmeter . 75

10.3 Halscope . 75

10.4 Halshow . 77

10.4.1 Starting Halshow . 77

10.4.2 Hal Tree Area . 77

10.4.3 Hal Show Area . 78

10.4.4 Hal Watch Area . 81

CONTENTS viii

11 comp: a tool for creating HAL modules 83

11.1 Introduction . 83

11.2 Definitions . 83

11.3 Instance creation . 84

11.4 Syntax . 84

11.5 Per-instance data storage . 86

11.6 Other restrictions on comp files . 87

11.7 Convenience Macros . 87

11.8 Components with one function . 88

11.9 Component “Personality” . 88

11.10 Compiling .comp files in the source tree . 88

11.11 Compiling realtime components outside the source tree 88

11.12 Compiling userspace components outside the source tree 89

11.13 Examples . 89

11.13.1 constant . 89

11.13.2 sincos . 89

11.13.3 out8 . 89

11.13.4 hal_loop . 90

11.13.5 arraydemo . 91

11.13.6 rand . 91

11.13.6.1logic . 91

12 Creating Userspace Python Components with the ’hal’ module 93

12.1 Basic usage . 93

12.2 Userspace components and delays . 94

12.3 Create pins and parameters . 94

12.3.1 Changing the prefix . 94

12.4 Reading and writing pins and parameters . 94

12.4.1 Driving output (HAL_OUT) pins . 95

12.4.2 Driving bidirectional (HAL_IO) pins . 95

12.5 Exiting . 95

12.6 Project ideas . 95

VII EMC related HAL 96

13 Basic configurations for a stepper based system 97

13.1 Introduction . 97

13.2 Maximum step rate . 97

13.3 Pinout . 98

CONTENTS ix

13.3.1 standard_pinout.hal . 98

13.3.2 Overview of the standard_pinout.hal . 99

13.3.3 Changing the standard_pinout.hal . 100

13.3.4 Changing the polarity of a signal . 100

13.3.5 Adding PWM Spindle Speed Control . 100

13.3.6 Adding an enable signal . 101

13.3.7 Adding an external E-STOP button . 101

14 HAL Components 102

14.1 Commands and Userspace Components . 102

14.2 Realtime components and kernel modules . 103

15 Internal Components 106

15.1 Stepgen . 106

15.1.1 Installing . 106

15.1.2 Removing . 109

15.1.3 Pins . 109

15.1.4 Parameters . 109

15.1.5 Step Types . 110

15.1.6 Functions . 110

15.2 PWMgen . 115

15.2.1 Installing . 115

15.2.2 Removing . 115

15.2.3 Pins . 115

15.2.4 Parameters . 116

15.2.5 Output Types . 116

15.2.6 Functions . 116

15.3 Encoder . 117

15.3.1 Installing . 117

15.3.2 Removing . 117

15.3.3 Pins . 118

15.3.4 Parameters . 118

15.3.5 Functions . 118

15.4 PID . 119

15.4.1 Installing . 119

15.4.2 Removing . 119

15.4.3 Pins . 119

15.4.4 Parameters . 121

15.4.5 Functions . 121

CONTENTS x

15.5 Simulated Encoder . 122

15.5.1 Installing . 122

15.5.2 Removing . 122

15.5.3 Pins . 122

15.5.4 Parameters . 122

15.5.5 Functions . 122

15.6 Debounce . 123

15.6.1 Installing . 123

15.6.2 Removing . 123

15.6.3 Pins . 123

15.6.4 Parameters . 123

15.6.5 Functions . 123

15.7 Siggen . 124

15.7.1 Installing . 124

15.7.2 Removing . 124

15.7.3 Pins . 124

15.7.4 Parameters . 124

15.7.5 Functions . 124

16 Hardware Drivers 125

16.1 Parport . 125

16.1.1 Installing . 125

16.1.2 Pins . 126

16.1.3 Parameters . 126

16.1.4 Functions . 128

16.1.5 Common problems . 128

16.2 probe_parport . 128

16.2.1 Installing . 128

16.3 AX5214H . 129

16.3.1 Installing . 129

16.3.2 Pins . 129

16.3.3 Parameters . 129

16.3.4 Functions . 129

16.4 Servo-To-Go . 130

16.4.1 Installing: . 130

16.4.2 Pins . 130

16.4.3 Parameters . 131

16.4.4 Functions . 131

16.5 Mesa Electronics m5i20 “Anything I/O Card” . 131

CONTENTS xi

16.5.1 Pins . 132

16.5.2 Parameters . 132

16.5.3 Functions . 133

16.5.4 Connector pinout . 133

16.5.4.1Connector P2 . 134

16.5.4.2Connector P3 . 134

16.5.4.3Connector P4 . 135

16.5.4.4LEDs . 136

16.6 Vital Systems Motenc-100 and Motenc-LITE . 136

16.6.1 Pins . 137

16.6.2 Parameters . 137

16.6.3 Functions . 138

16.7 Pico Systems PPMC (Parallel Port Motion Control) . 138

16.7.1 Pins . 138

16.7.2 Parameters . 139

16.7.3 Functions . 140

16.8 Pluto-P: generalities . 140

16.8.1 Requirements . 140

16.8.2 Connectors . 140

16.8.3 Physical Pins . 141

16.8.4 LED . 141

16.8.5 Power . 141

16.8.6 PC interface . 141

16.8.7 Rebuilding the FPGA firmware . 141

16.8.8 For more information . 142

16.9 pluto-servo: Hardware PWM and quadrature counting 142

16.9.1 Pinout . 142

16.9.2 Input latching and output updating . 143

16.9.3 HAL Functions, Pins and Parameters . 143

16.9.4 Compatible driver hardware . 143

16.10 Pluto-step: 300kHz Hardware Step Generator . 145

16.10.1 Pinout . 145

16.10.2 Input latching and output updating . 145

16.10.3 Step Waveform Timings . 145

16.10.4 HAL Functions, Pins and Parameters . 147

CONTENTS xii

17 Halui 148

17.1 Introduction . 148

17.2 Halui pin reference . 148

17.2.1 Machine . 148

17.2.2 E-Stop . 148

17.2.3 Mode . 148

17.2.4 Mist, Flood, Lube . 149

17.2.5 Spindle . 149

17.2.6 Joints . 149

17.2.7 Jogging . 150

17.2.8 Selecting a joint . 150

17.2.9 Feed override . 150

17.2.10 Spindle override . 150

17.2.11 Tool . 150

17.2.12 Program . 151

17.2.13 General . 151

17.2.14 MDI . 151

17.3 Case - Studies . 151

18 Virtual Control Panels 152

18.1 Introduction . 152

18.2 pyVCP . 152

18.3 Security of pyVCP . 153

18.4 Using pyVCP with AXIS . 153

18.5 pyVCP Widget reference . 154

18.5.0.1Syntax . 154

18.5.0.2General Notes . 155

18.5.1 LED . 155

18.5.2 Button . 156

18.5.3 Checkbutton . 156

18.5.4 Radiobutton . 156

18.5.5 Number . 156

18.5.6 Bar . 157

18.5.7 Meter . 157

18.5.8 Spinbox . 158

18.5.9 Scale . 158

18.5.10 Jogwheel . 158

18.6 pyVCP Container reference . 159

18.6.1 Hbox . 159

18.6.2 Vbox . 159

18.6.3 Label . 160

18.6.4 Labelframe . 160

18.6.5 Table . 160

CONTENTS xiii

19 VCP 162

19.1 VCP: A small example . 162

19.2 VCP: Another small example with EMC . 163

19.3 VCP Syntax . 164

19.3.1 Block . 164

VIII Advanced topics 165

20 Kinematics in EMC2 166

20.1 Introduction . 166

20.1.1 Joints vs. Axes . 166

20.2 Trivial Kinematics . 166

20.3 Non-trivial kinematics . 167

20.3.1 Forward transformation . 167

20.3.2 Inverse transformation . 169

20.4 Implementation details . 169

IX Tuning 170

21 Stepper Tuning 171

21.1 Getting the most out of Software Stepping . 171

21.1.1 Run a Latency Test . 171

21.1.2 Figure out what your drives expect . 172

21.1.3 Choose your BASE_PERIOD . 173

21.1.4 Use steplen, stepspace, dirsetup, and/or dirhold 174

21.1.5 No Guessing! . 174

22 PID Tuning 176

22.1 PID Controller . 176

22.1.1 Control loop basics . 176

22.1.2 Theory . 177

22.1.3 Loop Tuning . 177

X Ladder Logic 179

23 Ladder programming 180

23.1 Introduction . 180

23.2 Example . 180

CONTENTS xiv

24 ClassicLadder 182

24.1 Introduction . 182

24.2 Languages . 182

24.3 Starting ClassicLadder . 182

24.3.1 Realtime Module . 183

24.3.2 Variables . 183

24.3.3 Loading the ClassicLadder user module . 183

24.4 ClassicLadder GUI . 184

24.4.1 The Variables window . 184

24.4.2 The Section Display window . 185

24.4.3 The Section Manager window . 186

24.4.4 The Editor window . 186

24.5 ClassicLadder Variables . 188

24.6 Using JUMP COILs . 189

24.7 Using CALL COILs . 189

XI Hardware Examples 190

25 Spindle Speed Control 191

25.1 0-10v Spindle Speed . 191

25.2 PWM Spindle Speed . 191

25.3 Spindle Feedback . 191

25.4 Spindle Enable . 192

25.5 Spindle Direction . 192

26 MPG Pendant 193

26.1 Second Parallel Port . 193

26.2 Hook it up in HAL . 194

XII FAQ 195

27 Linux FAQ 196

27.1 Man Pages . 196

27.2 List Modules . 196

27.3 Editing a Root File . 196

27.3.1 The Command Line Way . 197

27.3.2 The GUI Way . 197

27.4 Terminal Commands . 197

27.4.1 Working Directory . 197

CONTENTS xv

27.4.2 Changing Directories . 197

27.4.3 Listing files in a directory . 197

27.4.4 Finding a File . 197

27.4.5 Searching for Text . 198

27.5 Hardware Problems . 198

27.5.1 Monitor Resolution . 198

XIII Glossary 199

XIV Legal Section 203

XV Index 208

Part III

Introduction

1

Chapter 1

The Enhanced Machine Control

1.1 Introduction

For normal stepper based installations see the Getting Started Guide. Once EMC is installed and
configured see the User Manual for information on using EMC.

The Integrator Manual scope is on more complex machines, configurations and installations. As
the system integrator your task is bringing together all the component subsystems into a whole and
ensuring that those subsystems function together. EMC being one of the subsystems.

1.2 The Big CNC Picture

The term CNC has taken on a lot of different meanings over the years. In the early days CNC
replaced the hands of a skilled machinist with motors that followed commands in much the same
way that the machinist turned the hand wheels. From these early machines, a language of machine
tool control has grown. This language is called RS274 and several standard variants of it have been
put forward. It has also been expanded by machine tool and control builders in order to meet the
needs of specific machines. If a machine changed tools during a program it needed to have tool
change commands. If it changed pallets in order to load new castings, it had to have commands
that allowed for these kinds of devices as well. Like any language, RS274 has evolved over time.
Currently there are several dialects. In general each machine tool maker has been consistent within
their product line but different dialects can have commands that cause quite different behavior from
one machine to another.

More recently the language of CNC has been hidden behind or side-stepped by several programming
schemes that are referred to as “Conversational1 programming languages.” One common feature
of these kinds of programming schemes is the selection of a shape or geometry and the addition of
values for the corners, limits, or features of that geometry.

The use of Computer Aided Drafting has also had an effect on the CNC programming languages.
Because CAD drawings are saved as a list or database of geometries and variables associated with
each, they are available to be interpreted into G-Code. These interpreters are called CAM (Computer
Aided Machining) programs.

Like the CAD converters, the rise of drawing programs, like CorelTM and the whole bunch of paint
programs, converters have been written that will take a bitmap or raster or vector image and turn
it into G-Code that can be run with a CNC.

You’re asking yourself, “Why did I want to know this?” The answer is that the EMC2 as it currently
exists does not directly take in CAD or any image and run a machine using it. The EMC2 uses a

1One machine tool manufacturer, Hurco, claims to have a right to the use of these programming schemes and to the use
of the term conversational when used in this context.

2

CHAPTER 1. THE ENHANCED MACHINE CONTROL 3

variant of the earlier CNC language named RS274NGC. (Next Generation Controller). All of the com-
mands given to the EMC2 must be in a form that is recognized and have meaning to the RS274NGC
interpreter. This means that if you want to carve parts that were drawn in some graphical or draft-
ing program you will also have to find a converter that will transform the image or geometry list into
commands that are acceptable to the EMC2 interpreter. Several commercial CAD/CAM programs
are available to do this conversion. At least one converter (Ace) has been written that carries a
copyright that makes it available to the public.

There has been recent talk about writing a “conversational” or geometric interface that would allow
an operator to enter programs is much the same way that several modern proprietary controls enter
programs but it isn’t in there yet.

1.3 Computer Operating Systems

The EMC2 code can be compiled on almost any GNU-Linux Distribution (assuming it has been
patched with a real time extension). In addition to the raw code, some binary distributions are
available. The latest packages have been created around the Ubuntu GNU-Linux Distribution.
Ubuntu is one of the distributions that is aimed at novice Linux users, and has been found to be
very easy to use. Along with that, there are lots of places around the world that offer support for it.
Installing EMC2 on it is trivial, see section 2.2

The EMC2 will not run under a Microsoft (TM) operating system. The reason for this is that the
EMC2 requires a real-time environment for the proper operation of its motion planning and stepper
pulse outputs. Along with that, it also benefits from the much-needed stability and performance of
the Linux OS.

1.4 History of the Software

The EMC code was started by the Intelligent Systems Division at the National Institute of Standards
and Technology in the United States. The quotation below, taken from the NIST web presence
some time back, should lend some understanding of the essential reasons for the existence of this
software and of the NIST involvement in it.

As part of our (NIST) collaboration with the OMAC User’s Group, we have written soft-
ware which implements real-time control of equipment such as machine tools, robots,
and coordinate measuring machines. The goal of this software development is twofold:
first, to provide complete software implementations of all OMAC modules for the purpose
of validating application programming interfaces; and second, to provide a vehicle for the
transfer of control technology to small- and medium-sized manufacturers via the NIST
Manufacturing Extension Partnership. The EMC software is based on the NIST Real-
time Control System (RCS) Methodology, and is programmed using the NIST RCS Library.
The RCS Library eases the porting of controller code to a variety of Unix and Microsoft
platforms, providing a neutral application programming interface (API) to operating sys-
tem resources such as shared memory, semaphores, and timers. The RCS Library also
implements a communication model, the Neutral Manufacturing Language, which allows
control processes to read and write C++ data structures throughout a single homogeneous
environment or a heterogeneous networked environment. The EMC software is written in
C and C++, and has been ported to the PC Linux, Windows NT, and Sun Solaris operating
systems. When running actual equipment, a real-time version of Linux is used to achieve
the deterministic computation rates required (200 microseconds is typical). The software
can also be run entirely in simulation, down to simulations of the machine motors. This
enables entire factories of EMC machines to be set up and run in a computer integrated
manufacturing environment.

CHAPTER 1. THE ENHANCED MACHINE CONTROL 4

EMC has been installed on many machines, both with servo motors and stepper motors. Here is a
sampling of the earliest applications.

• 3-axis Bridgeport knee mill at Shaver Engineering. The machine uses DC brush servo motors
and encoders for motion control, and OPTO-22 compatible I/O interfaced to the PC parallel
port for digital I/O to the spindle, coolant, lube, and e-stop systems.

• 3-axis desktop milling machine used for prototype development. The machine uses DC brush
servo motors and encoders. Spindle control is accomplished using the 4th motion control axis.
The machine cuts wax parts.

• 4-axis Kearney & Trecker horizontal machining center at General Motors Powertrain in Pontiac,
MI. This machine ran a precursor to the full-software EMC which used a hardware motion
control board.

After these early tests, Jon Elson found the Shaver Engineering notes and replaced a refrigera-
tor sized Allen Bradley 7300 control on his Bridgeport with the EMC running on a Red Hat 5.2
distribution of Linux. He was so pleased with the result that he advertised the software on sev-
eral newsgroups. He continues to use that installation and has produced several boards that are
supported by the software.

From these early applications news of the software spread around the world. It is now used to con-
trol many different kinds of machines. More recently the Sherline company http://www.sherline.
com has released their first CNC mill. It uses a standard release of the EMC.

The source code files that make up the controller are kept in a repository on http://cvs.linuxcnc.
org. They are available for anyone to inspect or download. The EMC2 source code (with a few ex-
ceptions2) is released under the GNU General Public License (GPL). The GPL controls the terms
under which EMC2 can be changed and distributed. This is done in order to protect the rights of
people like you to use, study, adapt, improve, and redistribute it freely, now and in the future. To
read about your rights as a user of EMC2, and the terms under which you are allowed to distribute
any modifications you may make, see the full GPL at http://www.gnu.org/copyleft/gpl.html.

1.5 How EMC2 Works

The Enhanced Machine Controller (EMC2) is a lot more than just another CNC mill program. It
can control machine tools, robots, or other automated devices. It can control servo motors, stepper
motors, relays, and other devices related to machine tools. In this handbook we focus on only a
small part of that awesome capability, the mini mill.

Figure 1.1 shows a simple block diagram showing what a typical 3-axis EMC2 system might look
like. This diagram shows a stepper motor system. The PC, running Linux as its operating system,
is actually controlling the stepper motor drives by sending signals through the printer port. These
signals (pulses) make the stepper drives move the stepper motors. The EMC2 can also run servo
motors via servo interface cards or by using an extended parallel port to connect with external
control boards. As we examine each of the components that make up an EMC2 system we will
remind the reader of this typical machine.

There are four main components to the EMC2 software: a motion controller (EMCMOT), a discrete
I/O controller (EMCIO), a task executor which coordinates them (EMCTASK), and a collection of
text-based or graphical user interfaces. An EMC2 capable of running a mini mill must start some
version of all four of these components in order to completely control it. Each component is briefly
described below. In addition there is a layer called HAL (Hardware Abstraction Layer) which allows
simple reconfiguration of EMC2 without the need of recompiling.

2some parts of EMC2 are released under the “Lesser” GPL (LPGL), which allows them to be used with proprietary software
as long as certain restrictions are observed.

http://www.sherline.com
http://www.sherline.com
http://cvs.linuxcnc.org
http://cvs.linuxcnc.org
http://www.gnu.org/copyleft/gpl.html

CHAPTER 1. THE ENHANCED MACHINE CONTROL 5

Figure 1.1: Simple EMC2 Controlled Machine

1.5.1 Graphical User Interfaces

A graphical interface is the part of the EMC2 that the machine tool operator interacts with. The
EMC2 comes with several types of user interfaces:

• a character-based screen graphics program named keystick 1.3

• an X Windows programs named xemc 1.6

• two Tcl/Tk-based GUIs named tkemc 1.5 and mini 1.4.

• an OpenGL-based GUI, with an interactive G-Code previewer, called AXIS 1.2

Tkemc and Mini will run on Linux, Mac, and Microsoft Windows if the Tcl/Tk programming language
has been installed. The Mac and Microsoft Windows version can connect to a real-time EMC2
running on a Linux machine via a network connection, allowing the monitoring of the machine
from a remote location. Instructions for installing and configuring the connection between a Mac or
Microsoft Machine and a PC running the EMC2 can be found in the Integrators Handbook.

1.5.2 Motion Controller EMCMOT

Motion control includes sampling the position of the axes to be controlled, computing the next
point on the trajectory, interpolating between these trajectory points, and computing an output

CHAPTER 1. THE ENHANCED MACHINE CONTROL 6

Figure 1.2: The AXIS Graphical Interface

to the motors. For servo systems, the output is based on a PID compensation algorithm. For
stepper systems, the calculations run open-loop, and pulses are sent to the steppers based on
whether their accumulated position is more than a pulse away from their commanded position.
The motion controller includes programmable software limits, and interfaces to hardware limit and
home switches.

The motion controller is written to be fairly generic. Initialization files (with the same syntax as
Microsoft Windows INI files) are used to configure parameters such as number and type of axes (e.g.,
linear or rotary), scale factors between feedback devices (e.g., encoder counts) and axis units (e.g.,
millimeters), servo gains, servo and trajectory planning cycle times, and other system parameters.
Complex kinematics for robots can be coded in C according to a prescribed interface to replace the
default 3-axis Cartesian machine kinematics routines.

1.5.3 Discrete I/O Controller EMCIO

Discrete I/O controllers are highly machine-specific, and are not customizable in general using
the INI file technique used to configure the more generic motion controller. However, since EMC2

CHAPTER 1. THE ENHANCED MACHINE CONTROL 7

Figure 1.3: The Keystick interface

uses the HAL, reconfiguration of the I/O subsystem has become very powerful and flexible. EMC2
contains a Programmable Logic Controller module (behaves just like a hardware PLC) that can be
used for very complex scenarios (tool changers, etc.).

In EMC2 there is only one big I/O controller, which provides support for all kinds of actions and
hardware control. All its outputs and inputs are HAL pins (more on this later on), so you can use
only the subset that fits your hardware and is necessary for your application.

1.5.4 Task Executor EMCTASK

The Task Executor is responsible for interpreting G and M code programs whose behavior does
not vary appreciably between machines. G-code programming is designed to work like a machinist
might work. The motion or turns of a hand wheel are coded into blocks. If a machinist wanted his
mill to move an inch in the +X direction at some feed rate, he might slowly turn the hand wheel five
turns clockwise in 20 seconds. The same machinist programming that same move for CNC might
write the following block of code.

G1 F3 X1.000

G1 means that the machine is supposed to run at a programmed feed rate rather than at the fastest
speed that it can (G0 is the way to command a rapid move like you would make above the work
when not cutting). The F3 means that it should travel at 3 inches a minute or 3 millimeters a
minute if it is working in metric mode. The X1.000 (assuming that the X axis started at zero) means

CHAPTER 1. THE ENHANCED MACHINE CONTROL 8

Figure 1.4: The Mini Graphical Interface

the machine should move one inch in the positive X direction. You will read quite a bit more about
G-code in the programming chapters .

Figure 1.7 is a block diagram of how a personal computer running the EMC2 is used to control
a machine with G-code. The actual G-code can be sent using the MDI (Machine Device Interface)
mode or it can be sent as a file when the machine is in Auto mode. These choices are made by the
operator and entered using one of the Graphical User Interfaces available with the software.

G-code is sent to the interpreter which compares the new block with what has already been sent
to it. The interpreter then figures out what needs to be done for the motion and input or output
systems and sends blocks of canonical commands to the task and motion planning programs.

1.5.5 Modes of Operation

When an EMC2 is running, there are three different major modes used for inputting commands.
These are Manual, Auto, and MDI. Changing from one mode to another makes a big difference in
the way that the EMC2 behaves. There are specific things that can be done in one mode that can
not be done in another. An operator can home an axis in manual mode but not in auto or MDI
modes. An operator can cause the machine to execute a whole file full of G-codes in the auto mode
but not in manual or MDI.

In manual mode, each command is entered separately. In human terms a manual command might
be “turn on coolant” or “jog X at 25 inches per minute.” These are roughly equivalent to flipping a

CHAPTER 1. THE ENHANCED MACHINE CONTROL 9

Figure 1.5: The TkEmc Graphical Interface

switch or turning the hand wheel for an axis. These commands are normally handled on one of the
graphical interfaces by pressing a button with the mouse or holding down a key on the keyboard.
In auto mode, a similar button or key press might be used to load or start the running of a whole
program of G-code that is stored in a file. In the MDI mode the operator might type in a block of
code and tell the machine to execute it by pressing the <return> or <enter> key on the keyboard.

Some motion control commands are available and will cause the same changes in motion in all
modes. These include ABORT, ESTOP, and FEED RATE OVERRIDE. Commands like these should be
self explanatory.

The AXIS user interface removes some of the distinctions between Auto and the other modes by
making Auto-commands available at most times. It also blurs the distinction between Manual and
MDI because some Manual commands like Touch Off are actually implemented by sending MDI
commands.

1.5.6 Information Display

While an EMC2 is running, each of the modules keeps up a conversation with the others and with
the graphical display. It is up to the display to select from that stream of information what the
operator needs to see, and to arrange it on the screen in a way that makes it easy for the operator
to understand. Perhaps the most important display is the mode the EMC2 is running in. You will
want to keep your eye on the mode display.

Right up there with knowing what mode is active is consistent display of the position of each axis.
Most of the interfaces will allow the operator to read position based upon actual or commanded
position as well as machine or relative position.

Machine This is the position of an axis relative to the place where it started or was homed.

CHAPTER 1. THE ENHANCED MACHINE CONTROL 10

Figure 1.6: The XEMC Graphical Interface

Relative This is the position of an axis after work or tool or other offsets have been applied.

Actual This is the real position of the axis within the machine or relative system.

Commanded This is where the axis is commanded to be.

These may all be exactly the same if no offsets have been applied and there is no deadband set
in the INI file. Deadband is a small distance which is assumed to be close enough – perhaps one
stepper pulse or one encoder count.

It is also important to see any messages or error codes sent by the EMC2. These are used to request
the operator change a tool, to describe problems in G-code programs, or to tell why the machine

CHAPTER 1. THE ENHANCED MACHINE CONTROL 11

Figure 1.7: EMC2 Process Diagram

stopped running.

As you work your way through this text, you will be learning, bit by bit, how to set up and run
a machine with your copy of the EMC2 software. While you are learning about setting up and
running a mini mill here, you will be thinking of other applications and other capabilities. These
are the topics of the other linuxcnc.org handbooks.

1.6 Thinking Like An Integrator

The biggest task of a machine integrator is figuring out how to connect a PC running the EMC2 to
a machine and configuring the software so that it runs the machine correctly.

1.6.1 Units

Units can be confusing. You might ask, “Does it work in inches, feet, centimeters, millimeters, or
what?” There are several possible answers to this question but the best one is that it works in the
units that you set it to work in.

At a machine level, we set each axis’s units to some value using an INI variable that looks like this.

UNITS = inch

or

CHAPTER 1. THE ENHANCED MACHINE CONTROL 12

UNITS = mm

After we have decided upon a value for the units for an axis, we tell the EMC2 how may step pulses
or encoder pulses it should send or read for each unit of distance to be traveled. Once we have done
this, the EMC2 knows how to count units of distance. However it is very important to understand
that this counting of distance is different from the commanding of distance. You can command
distance in millimeters or inches without even thinking about the units that you defined. There are
G-codes that allow you to switch easily between metric and imperial.

Part IV

Installing EMC

13

Chapter 2

Installing the EMC2 software

2.1 Introduction

One of the problems users often complained about EMC was installing the software itself. They
were forced to get sources, and compile themselves, and try to set up a RT-patched Linux, etc. The
developers of EMC2 chose to go with a standard distribution called Ubuntu1.

Ubuntu has been chosen, because it fits perfectly into the Open Source views of EMC2:

• Ubuntu will always be free of charge, and there is no extra fee for the "enterprise edition", we
make our very best work available to everyone on the same Free terms.

• Ubuntu comes with full professional support on commercial terms from hundreds of compa-
nies around the world, if you need those services. Each new version of Ubuntu receives free
security updates for 18 months after release, some versions are supported for even longer.

• Ubuntu uses the very best in translations and accessibility infrastructure that the Free Soft-
ware community has to offer, to make Ubuntu usable for as many people as possible.

• Ubuntu is released regularly and predictably; a new release is made every six months. You
can use the current stable release or help improve the current development release.

• The Ubuntu community is entirely committed to the principles of free software development;
we encourage people to use open source software, improve it and pass it on.

2.2 EMC2 Live CD

The EMC2 team now has a custom Live-CD based on Ubuntu 6.06 and 8.04 that will let you try out
EMC2 before installing, and it’s also the easiest way to install Ubuntu and EMC2 together.

Just download the ISO from www.linuxcnc.org and burn it to a CD.

When you boot the CD on your machine, you can see and experiment with the exact environment
and EMC2 software that you will have if you choose to install it.

If you like what you see, just click the Install icon on the desktop, answer a few questions (your
name, timezone, password) and the install completes in a few minutes.

This install gives you all the benefits of the community-supported Ubuntu distribution as well as
being automatically configured for EMC2. As new Ubuntu updates or EMC2 releases are made, the
Update manager will let you know and allow you to easily upgrade.

1“Ubuntu” is an ancient African word, meaning “humanity to others”. Ubuntu also means “I am what I am because of
who we all are”. The Ubuntu Linux distribution brings the spirit of Ubuntu to the software world. You can read more about
it at http://www.ubuntu.com

14

http://www.ubuntu.com

CHAPTER 2. INSTALLING THE EMC2 SOFTWARE 15

2.3 Other Methods

You will find information about other install methods on the following web sites. These methods are
only needed if you have special needs or you just have to have the bleeding edge version.

http://www.linuxcnc.org (Home of EMC2)

http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl (User maintained Wiki EMC2 site)

2.4 EMC2 install script

We also provide a simple script to install EMC2 on Ubuntu for users with an existing installation of
Ubuntu. It runs the commands explained in 2.5.

To use it you need to :

• Download the script from http://linuxcnc.org/dapper/emc2-install.sh (For Ubuntu 6.06)

• Save it on your Desktop. Right-click the icon, select Properties. Go to the Permissions tab and
check the box for Owner: Execute. Close the Properties window.

• Now double-click the emc2-install.sh icon, and select "Run in Terminal". A terminal will appear
and you will be asked for your password.

• When the installation asks if you are sure you want to install the EMC2 packages, hit Enter to
accept. Now just allow the install to finish.

• When it is done, you must reboot (System > Log Out > Restart the Computer), and when you
log in again you can run EMC2 by selecting it on the Applications > CNC Menu.

• If you aren’t ready to set up a machine configuration, try the sim-AXIS configuration; it runs a
"simulated machine" that requires no attached hardware.

• Now that the initial installation is done, Ubuntu will prompt you when updates of EMC2 or its
supporting files are available. When they are, you can update them easily and automatically
with the Update Manager.

2.5 Manual installing using apt commands.

The following few section will describe how to install EMC2 on Ubuntu 6.06 “Dapper Drake” using
a console and apt-commands. If you know a bit about Linux and Debian-flavored distributions this
might be trivial. If not, you might consider reading 2.4.

First add the repository to /etc/apt/sources.list:

$ sudo sh -c ’echo "deb http://www.linuxcnc.org/emc2/ dapper emc2.2" >>/etc/apt/sources.list;’
$ sudo sh -c ’echo "deb-src http://www.linuxcnc.org/emc2/ dapper emc2.2" >>/etc/apt/sources.list’

Then update & get EMC2.

$ sudo apt-get update
$ sudo apt-get install emc2

This command will install the EMC2 package along with all dependencies2.

You might get warnings that the packages are from an untrusted source (this means your com-
puter doesn’t recognize the GPG signature on the packages). To correct that issue the following
commands:

2The dependencies are one of the nicest thing in Debian based distributions. They assure you have everything installed
that you need. In the case of EMC2 it’s even a RT-patched kernel, and all needed libraries.

http://linuxcnc.org/dapper/emc2-install.sh

CHAPTER 2. INSTALLING THE EMC2 SOFTWARE 16

$ gpg --keyserver pgpkeys.mit.edu --recv-key BC92B87F

$ gpg -a --export BC92B87F | sudo apt-key add -

Chapter 3

Compiling from Source

3.1 Introduction

The third hurdle that you face when you begin to set up the EMC2 manually is getting and installing
the EMC2 software itself. All of EMC2 has been placed on cvs.linuxcnc.org in a concurrent version-
ing (CVS) repository. EMC2 is also available as a precompiled package (for various platforms) for
download from that site. Again the easiest install is the Live-CD.

Installation can be a daunting task to people new to Linux. The hardest part is getting the Real
Time Linux patch up and running. After that, installing EMC is pretty easy. With that said, we
recently provided a completely new experience for users, they only need to install Ubuntu (a very
friendly Linux distribution), then run a single install script, and they already should have the Real
Time part and EMC2 working.

3.2 EMC Download Page

You will find the most recent releases of EMC2 announced on the Download page at:http://www.
linuxcnc.org/index.php

The releases of EMC2 will be done in three ways the Live-CD, sources and binary package. The
sources (described further on) consist of a tarball (emc2-version.tar.gz), which you should download
and unpack into your home directory.

3.3 EMC2 Release Description

EMC2 will be using a release model similar to (but simpler than) the one used by Debian. At any
one time there will be three versions of EMC2. Debian uses "stable", "testing", and "unstable". We
will be using "Released", "Testing", and "Head". For the latest information, click on the version you
are interested in.

Released is exactly that, a released version of EMC2 with a version number. It is tested by both
developers and beta users before being released, and is suitable for the average user. Most de-
velopers and IRC/mailing list regulars are able to help support people running a released version.
"Released" is available in several forms, including .debs for Ubuntu and source tarballs for local
compilation. There will be a Debian repository which will always have the latest released version
(and thus allows for easy upgrades from one stable release to the next).

Testing is a version of EMC2 that is ready for "beta testing" but not for general release. Before
a version is labeled testing it will be known to compile and run on several different platforms,

17

http://www.linuxcnc.org/index.php
http://www.linuxcnc.org/index.php

CHAPTER 3. COMPILING FROM SOURCE 18

but there will probably be various limitations and known problems. The Testing wiki page will
attempt to list known problems and workarounds, but there will probably also be undiscovered
bugs. Since Testing is "beta" software, it should not be used for anything critical. Users of Testing
need to understand that it is beta software, and must be willing to give detailed bug reports if things
go wrong. Testing is available primarily as a tag in CVS, although for convenience of testers, a
"testing" Debian repository and/or tarballs may also be available. The EMC Board of Directors will
decide when "Testing" is worthy of becoming "Released". This is a formal decision, made by motion
and voting on the board mailing list or board IRC channel.

TRUNK is a CVS term for where all the primary development takes place. TRUNK can be broken
at any time. When TRUNK reaches a state that is deemed worthy of testing by a larger number of
people, the "Testing" tag will be moved. This is an informal decision, made by consensus of lead
developers, usually on IRC. Development will immediately continue, and TRUNK will once again
diverge from Testing. TRUNK has no "version number", and on a busy weekend it can literally
change every 10 minutes.

3.4 Download and source preparation.

The following few section will describe how to get EMC2, and compile it.

To download, simply go to www.linuxcnc.org to the Download page, and get the latest release or
testing tarball.

Once you have it, extract it to your home folder:

$ cd ~/
$ tar xzvf emc2-version.tar.gz

Next you’ll need to decide what kind of install you want. There are two ways to try EMC2 out:

Installed Like most other software on Linux, the files are placed in system directories, and is
automatically available to all users of that computer.

Run-in-place All the files for EMC2 are kept inside the emc2 directory. This is useful for trying out
EMC2, especially when there is another version of EMC2 already installed on the system.

The pre-built packages for Ubuntu Linux use the “Installed” method

3.4.1 Downloading the CVS version

If you wish to use the TRUNK version of EMC2 or the latest branch version of EMC2, please follow
the instructions on our wiki site to obtain the source code:

http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?CVS

3.5 Installed

EMC2 follows the standard way of compiling Linux software. To compile it simply go to the sources
folder:

~$ cd ~/emc2/src

and issue these commands:

~/emc2/src$./configure
~/emc2/src$ make && sudo make install

To run it simply type ’emc’.

http://wiki.linuxcnc.org/cgi-bin/emcinfo.pl?CVS

CHAPTER 3. COMPILING FROM SOURCE 19

3.6 Run-in-place

If you want only to test the software before installing it, or if you’re worried about overwriting an
existing installation, there is a Run-In-Place (RIP) mode which you can try out. In this mode, there
is no installation step, and no files are placed outside the top directory , ~/emc2 in this example.

~$ cd ~/emc2/src

and issue these commands:

~/emc2/src$./configure --enable-run-in-place
~/emc2/src$ make && sudo make setuid

In a shell session where you want to use the run-in-place version of EMC, execute

~/emc2/src$. ~/emc2/scripts/emc-environment

By putting this command in a shell start-up script, such as ~/.bash_profile, you do not need to
manually run it in each terminal window.

Until you close that terminal, it will be set up so that the programs and manual pages from the
Run-In-Place directory are available without referring to the path each time. After that you can run
EMC2 by issuing:

~/emc2/src$ emc

3.7 Simulator

To install EMC2 on a system without a real time kernel, add --enable-simulator to the configure
command line. In this mode, EMC2 runs as a purely userspace program. No hardware can be
controlled and real time scheduling is not guaranteed, but the other features of HAL, EMC and
its various user interfaces are available. When using --enable-run-in-place, the sudo make
setuid step is not needed.

3.8 Editing and Recompiling

You may need to recompile the EMC2 code for a number of reasons. You may have modified the
source code, or you may have downloaded just a few new files. To recompile, do the following:

~$ cd ~/emc2/src
~/emc2/src$ make && sudo make install # for run-installed
~/emc2/src$ make && sudo make setuid # for run-in-place
~/emc2/src$ make # for run-in-place, simulator

The build process is smart enough to only rebuild things that are affected by your changes.

Part V

Configuration.

20

Chapter 4

INI Configuration

4.1 Files Used for Configuration

The EMC is configured with human readable text files. All of these files can be read and edited in
any of the common text file editors available with most any Linux distribution.1 You’ll need to be a
bit careful when you edit these files. Some mistakes will cause the start up to fail. These files are
read whenever the software starts up. Some of them are read repeatedly while the CNC is running.

Configuration files include

INI The ini file overrides defaults that are compiled into the EMC code. It also provides sections
that are read directly by the Hardware Abstraction Layer.

HAL The hal files start up process modules and provide linkages between EMC signals and specific
hardware pins.

VAR The var file provide a set of numbered variables (“parameters”) for use by the interpreter. These
values are saved from one run to another. See the Parameters section of the G Code Manual.

TBL The tbl file saves tool information. See Tool File section of the G Code Manual.

NML The nml file configures the communication channels used by the EMC. It is normally setup
to run all of the communication within a single computer but can be modified to communicate
between several computers.

.emcrc This file saves user specific information and is created to save the name of the directory
when the user first selects an EMC configuration.2

Items marked (HAL) are used only by the sample HAL files and are suggested as a good convention.
Other items are used by EMC directly, and must always have the section and item names given.

4.2 The INI File Layout

A typical INI file follows a rather simple layout that includes;

• comments.
1Don’t confuse a text editor with a word processor. A text editor like gedit or kwrite produce files that are plain text.

They also produce lines of text that are separated from each other. A word processor like Open Office produce files with
paragraphs and word wrapping and lots of embedded codes that control font size and such. A text editor does none of this.

2Usually this file is in the users home directory (e.g. /home/user/)

21

CHAPTER 4. INI CONFIGURATION 22

• sections,

• variables.

Each of these elements is separated on single lines. Each end of line or newline character creates a
new element.

4.2.1 Comments

A comment line is started with a ; or a # mark. When the ini reader sees either of these marks at
the start a line, the rest of the line is ignored by the software. Comments can be used to describe
what some INI element will do.

; This is my little mill configuration file.
; I set it up on January 12, 2006

Comments can also be used to select between several values of a single variable.

DISPLAY = tkemc
DISPLAY = axis
DISPLAY = mini
DISPLAY = keystick

In this list, the DISPLAY variable will be set to axis because all of the others are commented out.
If someone carelessly edits a list like this and leaves two of the lines uncommented, the first one
encountered will be used.

Note that inside a variable, the “#” and “;” characters do not denote comments:

INCORRECT = value # and a comment

4.2.2 Sections

Related parts of an ini file are separated into sections. A section line looks like [THIS_SECTION].
The name of the section is enclosed in brackets. The order of sections is unimportant. The following
sections are used by EMC:

• [EMC] general information (4.3.1)

• [DISPLAY] settings related to the graphical user interface (4.3.2)

• [FILTER] settings input filter programs (4.3.3)

• [RS274NGC] settings used by the g-code interpreter ()

• [EMCMOT] settings used by the real time motion controller (4.3.5)

• [HAL] specifies .hal files (4.3.7)

• [TASK] settings used by the task controller (4.3.6)

• [TRAJ] additional settings used by the real time motion controller (4.3.8)

• [AXIS_0] ... [AXIS_n] individual axis variables (4.3.9)

• [EMCIO] settings used by the I/O Controller (4.3.10)

CHAPTER 4. INI CONFIGURATION 23

4.2.3 Variables

A variable line is made up of a variable name, an equals sign(=), and a value. Everything from the
first non-white space character after the = up to the end of the line is passed as the value, so you
can embed spaces in string symbols if you want to or need to. A variable name is often called a
keyword.

The following sections detail each section of the configuration file, using sample values for the
configuration lines.

Some of the variables are used by EMC, and must always use the section names and variable names
shown. Other variables are used only by HAL, and the section names and variable names shown
are those used in the sample configuration files.

4.2.4 Definitions

Machine Units The units (of length or angle) specified in the ini file for a particular axis

4.3 INI Section Variables

4.3.1 [EMC] Section

VERSION = $Revision: 1.3 $ The version number for the INI file. The value shown here looks odd
because it is automatically updated when using the Revision Control System. It’s a good idea
to change this number each time you revise your file. If you want to edit this manually just
change the number and leave the other tags alone.

MACHINE = My Controller This is the name of the controller, which is printed out at the top of
most graphical interfaces. You can put whatever you want here as long as you make it a single
line long.

4.3.2 [DISPLAY] Section

Different user interface programs use different options, and not every option is supported by every
user interface.

DISPLAY = tkemc The name of the user interface to use. Valid options may include:

• axis

• keystick

• mini

• tkemc

• xemc

POSITION_OFFSET = RELATIVE The coordinate system (RELATIVE or MACHINE) to show when
the user interface starts. The RELATIVE coordinate system reflects the G92 and G5x coordi-
nate offsets currently in effect.

POSITION_FEEDBACK = ACTUAL The coordinate value (COMMANDED or ACTUAL) to show when
the user interface starts. The COMMANDED position is the ideal position requested by EMC.
The ACTUAL position is the feedback position of the motors.

CHAPTER 4. INI CONFIGURATION 24

MAX_FEED_OVERRIDE = 1.2 The maximum feed override the user may select. 1.2 means 120%
of the programmed feed rate

MIN_SPINDLE_OVERRIDE = 0.5 The minimum spindle override the user may select. 0.5 means
50% of the programmed spindle speed. (This is useful as it’s dangerous to run a program with
a too low spindle speed).

MAX_SPINDLE_OVERRIDE = 1.0 The maximum spindle override the user may select. 1.0 means
100% of the programmed spindle speed

PROGRAM_PREFIX = ~/emc2/nc_files The default location for g-code files and the location for
user-defined M-codes

INTRO_GRAPHIC = emc2.gif The image shown on the splash screen

INTRO_TIME = 5 The maximum time to show the splash screen

4.3.2.1 AXIS Interface

If your using the Axis interface the following can be used with it only.

DEFAULT_LINEAR_VELOCITY = .25 The default velocity for linear jogs, in machine units per sec-
ond.

MAX_LINEAR_VELOCITY = 1.0 The maximum velocity for linear jogs, in machine units per sec-
ond.

DEFAULT_ANGULAR_VELOCITY = .25 The default velocity for angular jogs, in machine units per
second.

MAX_ANGULAR_VELOCITY = 1.0 The maximum velocity for angular jogs, in machine units per
second.

INCREMENTS = 1 mm, .5 in, ... Defines the increments available for incremental jogs. The INCRE-
MENTS can be used to override the default. The values can be decimal numbers (e.g., 0.1000)
or fractional numbers (e.g., 1/16), optionally followed by a unit (cm, mm, um, inch, in or mil).
If a unit is not specified the machine unit is assumed. Metric and imperial distances may be
mixed: INCREMENTS = 1 inch, 1 mil, 1 cm, 1 mm, 1 um is a valid entry.

OPEN_FILE = /full/path/to/file.ngc The file to show in the preview plot when AXIS starts

EDITOR = gedit The editor to use when selecting File > Edit or File Edit Tool Table from the AXIS
menu. This must be configured for these menu items to work. Another valid entry is gnome-
terminal -e vim.

4.3.3 [FILTER] Section

AXIS has the ability to send loaded files through a filter program. This filter can do any desired
task: Something as simple as making sure the file ends with M2, or something as complicated as
detecting whether the input is a depth image, and generating g-code to mill the shape it defines.
The [FILTER] section of the ini file controls how filters work. First, for each type of file, write
a PROGRAM_EXTENSION line. Then, specify the program to execute for each type of file. This
program is given the name of the input file as its first argument, and must write rs274ngc code to
standard output. This output is what will be displayed in the text area, previewed in the display
area, and executed by emc when Run. The following lines add support for the image-to-gcode
converter included with emc2:

PROGRAM_EXTENSION = .png,.gif Greyscale Depth Image

CHAPTER 4. INI CONFIGURATION 25

png = image-to-gcode

gif = image-to-gcode

It is also possible to specify an interpreter:

PROGRAM_EXTENSION = .py Python Script

py = python

In this way, any Python script can be opened, and its output is treated as g-code. One such example
script is available at nc_files/holecircle.py. This script creates g-code for drilling a series of holes
along the circumference of a circle.

If the environment variable AXIS_PROGRESS_BAR is set, then lines written to stderr of the form

FILTER_PROGRESS=%d

will set the AXIS progress bar to the given percentage. This feature should be used by any filter that
runs for a long time.

4.3.4 [RS274NGC] Section

PARAMETER_FILE = file.var The file which contains the parameters used by the interpreter (saved
between runs).

RS274NGC_STARTUP_CODE = G21 G90 A string of NC codes that the interpreter is initialized
with. This is not a substitute for specifying modal g-codes at the top of each ngc file, because
the modal codes of machines differ, and may be changed by g-code interpreted earlier in the
session.

4.3.5 [EMCMOT] Section

BASE_PERIOD = 50000 (HAL) “Base” task period, in nanoseconds - this is the fastest thread in the
machine.
On servo-based systems, there is generally no reason for BASE_PERIOD to be smaller than
SERVO_PERIOD.
On machines with software step generation, the BASE_PERIOD determines the maximum
number of steps per second. In the absence of long step length and step space requirements,
the absolute maximum step rate is one step per BASE_PERIOD. Thus, the BASE_PERIOD
shown above gives an absolute maximum step rate of 20000 steps per second. 50000ns is a
fairly conservative value. The smallest usable value is related to the Latency Test result , the
necessary step length, and the processor speed.
Choosing a BASE_PERIOD that is too low can lead to the “Unexpected real time delay” message,
lockups, or spontaneous reboots.

SERVO_PERIOD = 1000000 (HAL) “Servo” task period is also in nanoseconds. This value will be
rounded to an integer multiple of BASE_PERIOD. This value is used even on systems based
on stepper motors.
This is the rate at which new motor positions are computed, following error is checked, PID
output values are updated, and so on.
Most systems will not need to change this value. It is the update rate of the low level motion
planner.

TRAJ_PERIOD = 1000000 (HAL) Trajectory Planner task period in nanoseconds This value will be
rounded to an integer multiple of SERVO_PERIOD.
Except for machines with unusual kinematics (e.g., hexapods) there is no reason to make this
value larger than SERVO_PERIOD.

CHAPTER 4. INI CONFIGURATION 26

4.3.6 [TASK] Section

CYCLE_TIME = 0.001 The period, in seconds, at which EMCTASK will run. This parameter affects
the polling interval when waiting for motion to complete, when executing a pause instruction,
and when accepting a command from a user interface. There is usually no need to change this
number.

4.3.7 [HAL] section

HALFILE = example.hal Execute the file ’example.hal’ at start up. If HALFILE is specified multiple
times, the files are executed in the order they appear in the ini file. Almost all configurations
will have at least one HALFILE, and stepper systems typically have two such files, one which
specifies the generic stepper configuration (core_stepper.hal) and one which specifies the
machine pin out (xxx_pinout.hal)

HAL = command Execute ’command’ as a single hal command. If HAL is specified multiple times,
the commands are executed in the order they appear in the ini file. HAL lines are executed
after all HALFILE lines.

SHUTDOWN = shutdown.hal Execute the file ’shutdown.hal’ when EMC is exiting. Depending on
the hardware drivers used, this may make it possible to set outputs to defined values when
EMC is exited normally. However, because there is no guarantee this file will be executed (for
instance, in the case of a computer crash) it is not a replacement for a proper physical e-stop
chain or other protections against software failure.

POSTGUI_HALFILE = example2.hal (Only with the AXIS GUI) Execute ’example2.hal’ after the GUI
has created its HAL pins. See section 18 for more information.

4.3.8 [TRAJ] Section

The [TRAJ] section contains general parameters for the trajectory planning module in EMCMOT.

COORDINATES = X Y Z The names of the axes being controlled. X, Y, Z, A, B, C, U, V, and W are
all valid. Only axis named in COORDINATES are accepted in g-code. This has no effect on
the mapping from G-code axis names (X- Y- Z-) to joint numbers–for “trivial kinematics”, X is
always joint 0, A is always joint 4, and U is always joint 7, and so on. It is permitted to write
an axis name twice (e.g., X Y Y Z for a gantry machine) but this has no effect.

AXES = 3 One more than the number of the highest joint number in the system. For an XYZ
machine, the joints are numbered 0, 1 and 2; in this case AXES should be 3. For an XYUV
machine using “trivial kinematics”, the V joint is numbered 7 and therefore AXES should be
8. For a machine with nontrivial kinematics (e.g., scarakins) this will generally be the number
of controlled joints.

HOME = 0 0 0 Coordinates of the homed position of each axis. Again for a fourth axis you will need
0 0 0 0. This value is only used for machines with nontrivial kinematics. On machines with
trivial kinematics this value is ignored.

LINEAR_UNITS = <units> Specifies the machine units for linear axes. Possible choices are (in,
inch, imperial, metric, mm).
This does not affect the linear units in NC code (the G20 and G21 words do this).

ANGULAR_UNITS = <units> Specifies the machine units for rotational axes. Possible choices are
’deg’, ’degree’ (360 per circle), ’rad’, ’radian’ (2pi per circle), ’grad’, or ’gon’ (400 per circle).
This does not affect the angular units of NC code. In RS274NGC, A-, B- and C- words are
always expressed in degrees.

CHAPTER 4. INI CONFIGURATION 27

DEFAULT_VELOCITY = 0.0167 The initial rate for jogs of linear axes, in machine units per second.
The value shown equals one unit per minute.

DEFAULT_ACCELERATION = 2.0 In machines with nontrivial kinematics, the acceleration used
for “teleop” (Cartesian space) jogs, in machine units per second per second.

MAX_VELOCITY = 5.0 The maximum velocity for any axis or coordinated move, in machine units
per second. The value shown equals 300 units per minute.

MAX_ACCELERATION = 20.0 The maximum acceleration for any axis or coordinated axis move,
in machine units per second per second.

POSITION_FILE = position.txt If set to a non-empty value, the joint positions are stored between
runs in this file. This allows the machine to start with the same coordinates it had on shut-
down.3 If unset, joint positions are not stored and will begin at 0 each time EMC is started.

4.3.9 [AXIS_<num>] Section

The [AXIS_0], [AXIS_1], etc. sections contains general parameters for the individual components
in the axis control module. The axis section names begin numbering at 0, and run through the
number of axes specified in the [TRAJ] AXES entry minus 1.

TYPE = LINEAR The type of axes, either LINEAR or ANGULAR.

UNITS = inch If specified, this setting overrides the related [TRAJ] UNITS setting. (e.g., [TRAJ]LINEAR_UNITS
if the TYPE of this axis is LINEAR, [TRAJ]ANGULAR_UNITS if the TYPE of this axis is ANGULAR)

MAX_VELOCITY = 1.2 Maximum velocity for this axis in machine units per second.

MAX_ACCELERATION = 20.0 Maximum acceleration for this axis in machine units per second
squared.

BACKLASH = 0.000 Backlash in machine units. Backlash compensation value can be used to
make up for small deficiencies in the hardware used to drive an axis.

COMP_FILE = file.extension A file holding a compensation structure for the specific axis. The
values inside are triplets of nominal, forward and reverse positions which correspond to the
nominal position (where it should be), forward (where the axis is while travelling forward) and
reverse (where the axis is while travelling back). One set of triplets per line. Currently the
limit inside EMC2 is for 256 triplets / axis. If COMP_FILE is specified, BACKLASH is ignored.
COMP_FILE values are in machine units.

COMP_FILE_TYPE = 1 Specifying a non-zero value changes the expected format of the COMP_FILE.
For COMP_FILE_TYPE of zero, the values are triplets for nominal, forward & reverse. Other-
wise, the values in the COMP_FILE are nominal, forward_trim and reverse_trim. These corre-
spond to the nominal, nominal-forward and nominal-reverse defined above.

MIN_LIMIT = -1000 The minimum limit (soft limit) for axis motion, in machine units. When this
limit is exceeded, the controller aborts axis motion.

MAX_LIMIT = 1000 The maximum limit (soft limit) for axis motion, in machine units. When this
limit is exceeded, the controller aborts axis motion.

MIN_FERROR = 0.010 This is the value in machine units by which the axis is permitted to deviate
from commanded position at very low speeds. If MIN_FERROR is smaller than FERROR, the
two produce a ramp of error trip points. You could think of this as a graph where one dimension
is speed and the other is permitted following error. As speed increases the amount of following
error also increases toward the FERROR value.

3This assumes there was no movement of the machine while powered off. It helps on smaller machines without home
switches.

CHAPTER 4. INI CONFIGURATION 28

FERROR = 1.0 FERROR is the maximum allowable following error, in machine units. If the differ-
ence between commanded and sensed position exceeds this amount, the controller disables
servo calculations, sets all the outputs to 0.0, and disables the amplifiers. If MIN_FERROR is
present in the .ini file, velocity-proportional following errors are used. Here, the maximum al-
lowable following error is proportional to the speed, with FERROR applying to the rapid rate set
by [TRAJ]MAX_VELOCITY, and proportionally smaller following errors for slower speeds. The
maximum allowable following error will always be greater than MIN_FERROR. This prevents
small following errors for stationary axes from inadvertently aborting motion. Small following
errors will always be present due to vibration, etc. The following polarity values determine how
inputs are interpreted and how outputs are applied. They can usually be set via trial-and-error
since there are only two possibilities. The EMC2 Servo Axis Calibration utility program (in the
AXIS interface menu Machine/Calibration and in TkEMC it is under Setting/Calibration) can
be used to set these and more interactively and verify their results so that the proper values
can be put in the INI file with a minimum of trouble.

4.3.9.1 Homing-related items

The next few parameters are Homing related, for a better explanation read Section 4.4

HOME_OFFSET = 0.0 The axis position of the home switch or index pulse, in machine units.

HOME_SEARCH_VEL = 0.0 Initial homing velocity in machine units per second. A value of zero
means assume that the current location is the home position for the machine. If your machine
has no home switches you will want to leave this value alone.

HOME_LATCH_VEL = 0.0 Final homing velocity in machine units per second.

HOME_USE_INDEX = NO If the encoder used for this axis has an index pulse, and the motion card
has provision for this signal you may set it to yes. When it is yes, it will affect the kind of home
pattern used.

HOME_IGNORE_LIMITS = NO Some machines use a limit switch as a home switch. This variable
should be set to yes if you machine does this.

4.3.9.2 Servo-related items

The following items are for servo-based systems and servo-like systems. This description assumes
that the units of output from the PID component are volts.

P = 50 (HAL) The proportional gain for the axis servo. This value multiplies the error between
commanded and actual position in machine units, resulting in a contribution to the computed
voltage for the motor amplifier. The units on the P gain are volts per machine unit, e.g., volt

mm if
machine units are millimeters.

I = 0 (HAL) The integral gain for the axis servo. The value multiplies the cumulative error between
commanded and actual position in machine units, resulting in a contribution to the computed
voltage for the motor amplifier. The units on the I gain are volts per machine unit per second,
e.g., volt

mm s if machine units are millimeters.

D = 0 (HAL) The derivative gain for the axis servo. The value multiplies the difference between the
current and previous errors, resulting in a contribution to the computed voltage for the motor
amplifier. The units on the D gain are volts per machine unit per second, e.g., volt

mm/s if machine
units are millimeters.

FF0 = 0 (HAL) The 0th order feed forward gain. This number is multiplied by the commanded
position, resulting in a contribution to the computed voltage for the motor amplifier. The units
on the FF0 gain are volts per machine unit, e.g., volt

mm if machine units are millimeters.

CHAPTER 4. INI CONFIGURATION 29

FF1 = 0 (HAL) The 1st order feed forward gain. This number is multiplied by the change in com-
manded position per second, resulting in a contribution to the computed voltage for the motor
amplifier. The units on the FF1 gain are volts per machine unit per second, e.g., volt

mm s if ma-
chine units are millimeters.

FF2 = 0 (HAL) The 2nd order feed forward gain. This number is multiplied by the change in com-
manded position per second per second, resulting in a contribution to the computed voltage
for the motor amplifier. The units on the FF2 gain are volts per machine unit per second per
second, e.g., volt

mm s2 if machine units are millimeters.

OUTPUT_SCALE = 1.000

OUTPUT_OFFSET = 0.000 (HAL) These two values are the scale and offset factors for the axis
output to the motor amplifiers. The second value (offset) is subtracted from the computed
output (in volts), and divided by the first value (scale factor), before being written to the D/A
converters. The units on the scale value are in true volts per DAC output volts. The units on
the offset value are in volts. These can be used to linearize a DAC.
Specifically, when writing outputs, the EMC first converts the desired output in quasi-SI units
to raw actuator values, e.g., volts for an amplifier DAC. This scaling looks like:

raw =
output− offset

scale

The value for scale can be obtained analytically by doing a unit analysis, i.e., units are [output
SI units]/[actuator units]. For example, on a machine with a velocity mode amplifier such that
1 volt results in 250 mm/sec velocity,

amplifier[volts] = (output[
mm

sec
]− offset[

mm

sec
])/250

mm

sec volt

Note that the units of the offset are in machine units, e.g., mm/sec, and they are pre-
subtracted from the sensor readings. The value for this offset is obtained by finding the value
of your output which yields 0.0 for the actuator output. If the DAC is linearized, this offset is
normally 0.0.
The scale and offset can be used to linearize the DAC as well, resulting in values that reflect
the combined effects of amplifier gain, DAC non-linearity, DAC units, etc. To do this, follow
this procedure:

1. Build a calibration table for the output, driving the DAC with a desired voltage and mea-
suring the result. See table 4.3.9.2 for an example of voltage measurements.

2. Do a least-squares linear fit to get coefficients a, b such that

meas = a ∗ raw + b

3. Note that we want raw output such that our measured result is identical to the com-
manded output. This means

(a)
cmd = a ∗ raw + b

(b)
raw = (cmd− b)/a

4. As a result, the a and b coefficients from the linear fit can be used as the scale and offset
for the controller directly.

MAX_OUTPUT = 10 (HAL) The maximum value for the output of the PID compensation that is
written to the motor amplifier, in volts. The computed output value is clamped to this limit.
The limit is applied before scaling to raw output units. The value is applied symmetrically to
both the plus and the minus side.

CHAPTER 4. INI CONFIGURATION 30

Output Voltage Measurements
Raw Measured
-10 -9.93
-9 -8.83
0 -0.03
1 0.96
9 9.87
10 10.87

INPUT_SCALE = 20000 (HAL) Specifies the number of pulses that corresponds to a move of one
machine unit. A second number, if specified, is ignored.
For example, on a 2000 counts per rev encoder, and 10 revs/inch gearing, and desired units
of mm, we have

input_scale = 2000
counts

rev
∗ 10

rev

inch

= 20000
counts

inch

4.3.9.3 Stepper-related items

SCALE = 4000 (HAL) Specifies the number of pulses that corresponds to a move of one machine
unit. For stepper systems, this is the number of step pulses issued per machine unit. For
servo systems, this is the number of feedback pulses per machine unit. A second number, if
specified, is ignored.
For example, on a 1.8 degree stepper motor with half-stepping, and 10 revs/inch gearing, and
desired units of mm, we have

input_scale =
2 steps

1.8 degree
∗ 360

degree

rev
∗ 10

rev

inch

= 4000
steps

inch

Older stepper configuration .ini and .hal used INPUT_SCALE for this value.

STEPGEN_MAXACCEL = 21.0 (HAL) Acceleration limit for the step generator. This should be 1%
to 10% larger than the axis MAX_ACCELERATION. This value improves the tuning of stepgen’s
“position loop”.

STEPGEN_MAXVEL = 1.4 (HAL) Older configuration files have a velocity limit for the step gener-
ator as well. If specified, it should also be 1% to 10% larger than the axis MAX_VELOCITY.
Subsequent testing has shown that use of STEPGEN_MAXVEL does not improve the tuning of
stepgen’s position loop.

4.3.10 [EMCIO] Section

CYCLE_TIME = 0.100 The period, in seconds, at which EMCIO will run. Making it 0.0 or a negative
number will tell EMCIO not to sleep at all. There is usually no need to change this number.

TOOL_TABLE = tool.tbl The file which contains tool information. For more information see the G
Code Manual.

TOOL_CHANGE_POSITION = 0 0 2 Specifies the XYZ location to move to when performing a tool
change.

CHAPTER 4. INI CONFIGURATION 31

SEARCH_VEL LATCH_VEL USE_INDEX Homing Type
nonzero nonzero NO Switch-only
nonzero nonzero YES Switch + Index

0 nonzero YES Index-only
0 0 NO None

Other combinations Error

Table 4.1: Homing Types

4.4 Homing

4.4.1 Overview

Homing seems simple enough - just move each joint to a known location, and set EMC’s internal
variables accordingly. However, different machines have different requirements, and homing is
actually quite complicated.

4.4.2 Homing Sequence

Figure 4.1 shows four possible homing sequences, along with the associated configuration param-
eters. For a more detailed description of what each configuration parameter does, see the following
section.

4.4.3 Configuration

There are six pieces of information that determine exactly how the home sequence behaves. They
are defined in an [AXIS] section of the ini file.

4.4.3.1 HOME_SEARCH_VEL

The default value is zero. A value of zero causes EMC to assume that there is no home switch; the
search stage of homing is skipped.

If ’HOME_SEARCH_VEL’ is non-zero, then EMC assumes that there is a home switch. It be-
gins by checking whether the home switch is already tripped. If so, it backs off the switch at
HOME_SEARCH_VEL (the direction of the back-off is opposite the sign of HOME_SEARCH_VEL).
Then it searches for the home switch by moving in the direction specified by the sign of ’HOME_SEARCH_VEL’,
at a speed determined by its absolute value. When the home switch is detected, the joint will stop
as fast as possible, but there will always be some overshoot. The amount of overshoot depends on
the speed. If it is too high, the joint might overshoot enough to hit a limit switch or crash into the
end of travel. On the other hand, if ’HOME_SEARCH_VEL’ is too low, homing can take a long time.

4.4.3.2 HOME_LATCH_VEL

Specifies the speed and direction that EMC uses when it makes its final accurate determination of
the home switch (if present) and index pulse location (if present). It will usually be slower than the
search velocity to maximise accuracy. If HOME_SEARCH_VEL and HOME_LATCH_VEL have the
same sign, then the latch phase is done while moving in the same direction as the search phase.
(In that case, EMC first backs off the switch, before moving towards it again at the latch velocity.)
If HOME_SEARCH_VEL and HOME_LATCH_VEL have opposite signs, the latch phase is done while
moving in the opposite direction from the search phase. That means EMC will latch the first pulse
after it moves off the switch. If ’HOME_SEARCH_VEL’ is zero (meaning there is no home switch),

CHAPTER 4. INI CONFIGURATION 32

INDEX PULSES

INDEX PULSES

HOME SWITCH TRIPS

HOME SWITCH TRIPS

HOME SWITCH TRIPS

HOME SWITCH TRIPS

SEARCH FOR HOME SWITCH (SEARCH_VEL)

SEARCH FOR HOME SWITCH (SEARCH_VEL)

SEARCH FOR HOME SWITCH (SEARCH_VEL)

SEARCH FOR HOME SWITCH (SEARCH_VEL)

BACK OFF OF HOME SWITCH (SEARCH_VEL)

BACK OFF OF HOME SWITCH (SEARCH_VEL)

F INAL DETECTION OF SWITCH (LATCH_VEL)

F INAL DETECTION OF SWITCH AND
INDEX PULSE (LATCH_VEL)

F INAL DETECTION OF SWITCH (LATCH_VEL)

F INAL DETECTION OF SWITCH AND
INDEX PULSE (LATCH_VEL)

GO TO HOME POSITION (MAX_VEL)

GO TO HOME POSITION (MAX_VEL)

GO TO HOME POSITION (MAX_VEL)

GO TO HOME POSITION (MAX_VEL)

1.000

1.000

1.000

1.000

3.000

3.000

3.000

3.000

SEARCH_VEL = POSITIVE

SEARCH_VEL = POSITIVE

SEARCH_VEL = POSITIVE

SEARCH_VEL = POSITIVE

LATCH_VEL = NEGATIVE

LATCH_VEL = NEGATIVE

LATCH_VEL = POSITIVE

LATCH_VEL = POSITIVE

USE_INDEX = FALSE

USE_INDEX = TRUE

USE_INDEX = FALSE

USE_INDEX = TRUE

HOME_OFFSET = 3 .000

HOME_OFFSET = 3 .000

HOME_OFFSET = 3 .000

HOME_OFFSET = 3 .000

HOME = 1.000

HOME = 1.000

HOME = 1.000

HOME = 1.000

O V E R S H O O T

HOME SWITCH RELEASES

HOME SWITCH RELEASES

HOME SWITCH RELEASES

HOME SWITCH RELEASES

Figure 4.1: Homing Sequences

CHAPTER 4. INI CONFIGURATION 33

and this parameter is nonzero, EMC goes ahead to the index pulse search. If ’HOME_SEARCH_VEL’
is non-zero and this parameter is zero, it is an error and the homing operation will fail. The default
value is zero.

4.4.3.3 HOME_IGNORE_LIMITS

Can hold the values YES / NO. This flag determines whether EMC will ignore the limit switch inputs.
Some machine configurations do not use a separate home switch, instead they route one of the limit
switch signals to the home switch input as well. In this case, EMC needs to ignore that limit during
homing. The default value for this parameter is NO.

4.4.3.4 HOME_USE_INDEX

Specifies whether or not there is an index pulse. If the flag is true (HOME_USE_INDEX = YES), EMC
will latch on the rising edge of the index pulse. If false, EMC will latch on either the rising or falling
edge of the home switch (depending on the signs of ’HOME_SEARCH_VEL’ and ’HOME_LATCH_VEL’).
The default value is NO.

4.4.3.5 HOME_OFFSET

Contains the location of the home switch or index pulse, in joint coordinates. It can also be treated
as the distance between the point where the switch or index pulse is latched and the zero point
of the joint. After detecting the index pulse, EMC sets the joint coordinate of the current point to
“HOME_OFFSET”. The default value is zero.

4.4.3.6 HOME

The position that the joint will go to upon completion of the homing sequence. After detecting the
index pulse, and setting the coordinate of that point to “HOME_OFFSET”, EMC makes a move to
"HOME" as the final step of the homing process. The default value is zero. Note that even if this
parameter is the same as “HOME_OFFSET”, the axis will slightly overshoot the latched position as
it stops. Therefore there will always be a small move at this time (unless HOME_SEARCH_VEL is
zero, and the entire search/latch stage was skipped). This final move will be made at the joint’s
maximum velocity. Since the axis is now homed, there should be no risk of crashing the machine,
and a rapid move is the quickest way to finish the homing sequence. 4

4.4.3.7 HOME_IS_SHARED

If there is not a separate home switch input for this axis, but a number of momentary switches wired
to the same pin, set this value to 1 to prevent homing from starting if one of the shared switches is
already closed. Set this value to 0 to permit homing even if the switch is already closed.

4.4.3.8 HOME_SEQUENCE

Used to define a multi-axis homing sequence (“HOME ALL”) and enforce homing order (e.g., Z
may not be homed if X is not yet homed). An axis may be homed after all axes with a lower
HOME_SEQUENCE have already been homed and are at the HOME_OFFSET. If two axes have the
same HOME_SEQUENCE, they may be homed at the same time. If HOME_SEQUENCE is -1 or
not specified then this joint will not be homed by the HOME ALL sequence. HOME_SEQUENCE
numbers start with 0 and there may be no unused numbers.

4The distinction between ’home’ and ’home_offset’ is not as clear as I would like. I intend to make a small drawing and
example to help clarify it.

CHAPTER 4. INI CONFIGURATION 34

4.5 Lathe

4.5.1 Default Plane

When EMC’s interperter was first written, it was designed for mills. That is why the default plane
is XY (G17). A normal lathe only uses the XZ plane(G18). To change the default plane place the
following line in the .ini file in the RS274NGC section.

RS274NGC_STARTUP_CODE = G18

Chapter 5

EMC2 and HAL

See also the manual pages motion(9) and iocontrol(1).

5.1 motion (realtime)

These pins, parameters, and functions are created by the real time motmod module.

5.1.1 Pins

motion.adaptive-feed IN float When adaptive feed is enabled with M52 P1 (See the G Code Man-
ual), the commanded velocity is multiplied by this value. This effect is multiplicative with the
NML-level feed override value and motion.feed-hold.

motion.digital-out-NN OUT bit These pins are controlled by the M62 through M65 words.

motion.enable IN bit If this bit is driven FALSE, motion stops, the machine is placed in the “ma-
chine off” state, and a message is displayed for the operator. For normal motion, drive this bit
TRUE.

motion.feed-hold IN bit When Feed Stop Control is enabled with M53 P1 (See the G Code Manual),
and this bit is TRUE, the feed rate is set to 0.

motion.motion-inpos OUT bit TRUE if the machine is in position.

motion.probe-input IN bit G38.2 uses the value on this pin to determine when the probe has
made contact. TRUE for probe contact closed (touching), FALSE for probe contact open.

motion.spindle-brake OUT bit TRUE when the spindle brake should be applied

motion.spindle-forward OUT bit TRUE when the spindle should rotate forward

motion.spindle-reverse OUT bit TRUE when the spindle should rotate backward

motion.spindle-on OUT bit TRUE when spindle should rotate

motion.spindle-speed-out OUT float Desired spindle speed in rotations per minute

motion.spindle-index-enable I/O bit For correct operation of spindle synchronized moves, this
signal must be hooked to the index-enable pin of the spindle encoder.

motion.spindle-revs IN float For correct operation of spindle synchronized moves, this signal must
be hooked to the position pin of the spindle encoder.

35

CHAPTER 5. EMC2 AND HAL 36

5.1.2 Parameters

Many of these parameters serve as debugging aids, and are subject to change or removal at any
time.

motion.coord-error TRUE when motion has encountered an error, such as exceeding a soft limit

motion.coord-mode TRUE when motion is in “coordinated mode”, as opposed to “teleop mode”

motion.in-position Same as the pin motion.motion-inpos

motion.motion-enabled TRUE when motion is enabled

motion.servo.last-period The number of CPU cycles between invocations of the servo thread. Typ-
ically, this number divided by the CPU speed gives the time in seconds, and can be used to
determine whether the real time motion controller is meeting its timing constraints

motion.servo.overruns By noting large differences between successive values of motion.servo.last-
period, the motion controller can determine that there has probably been a failure to meet its
timing constraints. Each time such a failure is detected, this value is incremented.

motion.debug-bit-0

motion.debug-bit-1

motion.debug-float-0

motion.debug-float-1 These values are used for debugging purposes.

5.1.3 Functions

Generally, these functions are both added to the servo-thread in the order shown.

motion-command-handler Processes motion commands coming from user space

motion-controller Runs the EMC motion controller

5.2 axis.N (realtime)

These pins and parameters are created by the real time motmod module. These are actually joint
values, but the pins and parameters are still called “axis.N”.1 They are read and updated by the
motion-controller function.

5.2.1 Pins

axis.N.amp-enable-out OUT bit TRUE if the amplifier for this joint should be enabled

axis.N.amp-fault-in IN bit Should be driven TRUE if an external fault is detected with the amplifier
for this joint

axis.N.home-sw-in IN bit Should be driven TRUE if the home switch for this joint is closed

axis.N.homing OUT bit TRUE if the joint is currently homing

axis.N.pos-lim-sw-in IN bit Should be driven TRUE if the positive limit switch for this joint is closed

1In “trivial kinematics” machines, there is a one-to-one correspondence between joints and axes.

CHAPTER 5. EMC2 AND HAL 37

axis.N.neg-lim-sw-in IN bit Should be driven TRUE if the negative limit switch for this joint is
closed

axis.N.index-enable IO BIT Should be attached to the index-enable pin of the joint’s encoder to
enable homing to index pulse

axis.N.jog-counts IN s32 Connect to the “counts” pin of an external encoder to use a physical jog
wheel.

axis.N.jog-enable IN bit When TRUE (and in manual mode), any change in “jog-counts” will result
in motion. When false, “jog-counts” is ignored.

axis.N.jog-scale IN float Sets the distance moved for each count on “jog-counts”, in machine units.

axis.N.jog-vel-mode IN bit When FALSE (the default), the jog wheel operates in position mode. The
axis will move exactly jog-scale units for each count, regardless of how long that might take.
When TRUE, the wheel operates in velocity mode - motion stops when the wheel stops, even if
that means the commanded motion is not completed.

axis.N.motor-pos-cmd OUT float The commanded position for this joint.

axis.N.motor-pos-fb IN float The actual position for this joint.

axis.N.joint-pos-cmd The joint (as opposed to motor) commanded position. There may be an offset
between the joint and motor positions–for example, the homing process sets this offset.

axis.N.joint-pos-fb The joint (as opposed to motor) feedback position.

5.2.2 Parameters

Many of these parameters serve as debugging aids, and are subject to change or removal at any
time.

axis.N.active TRUE when this joint is active

axis.N.backlash-corr Backlash or screw compensation raw value

axis.N.backlash-filt Backlash or screw compensation filtered value (respecting motion limits)

axis.N.backlash-vel Backlash or screw compensation velocity

axis.N.coarse-pos-cmd

axis.N.error TRUE when this joint has encountered an error, such as a limit switch closing

axis.N.f-error The actual following error

axis.N.f-error-lim The following error limit

axis.N.f-errored TRUE when this joint has exceeded the following error limit

axis.N.free-pos-cmd The “free planner” commanded position for this joint.

axis.N.free-tp-enable TRUE when the “free planner” is enabled for this joint

axis.N.free-vel-lim The velocity limit for the free planner

axis.N.home-state Reflects the step of homing currently taking place

axis.N.homed TRUE if the joint has been homed

axis.N.in-position TRUE if the joint is using the “free planner” and has come to a stop

axis.N.joint-vel-cmd The joint’s commanded velocity

CHAPTER 5. EMC2 AND HAL 38

axis.N.neg-hard-limit The negative hard limit for the joint

axis.N.neg-soft-limit The negative soft limit for the joint

axis.N.pos-hard-limit The positive hard limit for the joint

axis.N.pos-soft-limit The positive soft limit for the joint

5.3 iocontrol (userspace)

These pins are created by the userspace IO controller, usually called io.

5.3.1 Pins

iocontrol.0.coolant-flood TRUE when flood coolant is requested

iocontrol.0.coolant-mist TRUE when mist coolant is requested

iocontrol.0.emc-enable-in Should be driven FALSE when an external e-stop condition exists

iocontrol.0.lube

iocontrol.0.lube_level Should be driven TRUE when

iocontrol.0.tool-change TRUE when a tool change is requested

iocontrol.0.tool-changed Should be driven TRUE when a tool change is completed

iocontrol.0.tool-prep-number The number of the next tool, from the RS274NGC T-word

iocontrol.0.tool-prepare TRUE when a tool prepare is requested

iocontrol.0.tool-prepared Should be driven TRUE when a tool prepare is completed

iocontrol.0.user-enable-out FALSE when an internal e-stop condition exists

iocontrol.0.user-request-enable TRUE when the user has requested that e-stop be cleared

Part VI

HAL Specifics

39

Chapter 6

Introduction

6.1 What is HAL?

HAL stands for Hardware Abstraction Layer. At the highest level, it is simply a way to allow a
number of “building blocks” to be loaded and interconnected to assemble a complex system. The
“Hardware” part is because HAL was originally designed to make it easier to configure EMC for a
wide variety of hardware devices. Many of the building blocks are drivers for hardware devices.
However, HAL can do more than just configure hardware drivers.

6.1.1 HAL is based on traditional system design techniques

HAL is based on the same principles that are used to design hardware circuits and systems, so it is
useful to examine those principles first.

Any system (including a CNC machine), consists of interconnected components. For the CNC ma-
chine, those components might be the main controller, servo amps or stepper drives, motors, en-
coders, limit switches, pushbutton pendants, perhaps a VFD for the spindle drive, a PLC to run a
toolchanger, etc. The machine builder must select, mount and wire these pieces together to make a
complete system.

6.1.1.1 Part Selection

The machine builder does not need to worry about how each individual part works. He treats them
as black boxes. During the design stage, he decides which parts he is going to use - steppers or
servos, which brand of servo amp, what kind of limit switches and how many, etc. The integrator’s
decisions about which specific components to use is based on what that component does and the
specifications supplied by the manufacturer of the device. The size of a motor and the load it must
drive will affect the choice of amplifier needed to run it. The choice of amplifier may affect the kinds
of feedback needed by the amp and the velocity or position signals that must be sent to the amp
from a control.

In the HAL world, the integrator must decide what HAL components are needed. Usually every
interface card will require a driver. Additional components may be needed for software generation
of step pulses, PLC functionality, and a wide variety of other tasks.

6.1.1.2 Interconnection Design

The designer of a hardware system not only selects the parts, he also decides how those parts will
be interconnected. Each black box has terminals, perhaps only two for a simple switch, or dozens

40

CHAPTER 6. INTRODUCTION 41

for a servo drive or PLC. They need to be wired together. The motors connect to the servo amps, the
limit switches connect to the controller, and so on. As the machine builder works on the design, he
creates a large wiring diagram that shows how all the parts should be interconnected.

When using HAL, components are interconnected by signals. The designer must decide which
signals are needed, and what they should connect.

6.1.1.3 Implementation

Once the wiring diagram is complete it is time to build the machine. The pieces need to be acquired
and mounted, and then they are interconnected according to the wiring diagram. In a physical
system, each interconnection is a piece of wire that needs to be cut and connected to the appropriate
terminals.

HAL provides a number of tools to help “build” a HAL system. Some of the tools allow you to
“connect” (or disconnect) a single “wire”. Other tools allow you to save a complete list of all the
parts, wires, and other information about the system, so that it can be “rebuilt” with a single
command.

6.1.1.4 Testing

Very few machines work right the first time. While testing, the builder may use a meter to see
whether a limit switch is working or to measure the DC voltage going to a servo motor. He may
hook up an oscilloscope to check the tuning of a drive, or to look for electrical noise. He may find
a problem that requires the wiring diagram to be changed; perhaps a part needs to be connected
differently or replaced with something completely different.

HAL provides the software equivalents of a voltmeter, oscilloscope, signal generator, and other tools
needed for testing and tuning a system. The same commands used to build the system can be used
to make changes as needed.

6.1.2 Summary

This document is aimed at people who already know how to do this kind of hardware system inte-
gration, but who do not know how to connect the hardware to EMC.

The traditional hardware design as described above ends at the edge of the main control. Outside
the control are a bunch of relatively simple boxes, connected together to do whatever is needed.
Inside, the control is a big mystery – one huge black box that we hope works.

HAL extends this traditional hardware design method to the inside of the big black box. It makes
device drivers and even some internal parts of the controller into smaller black boxes that can be
interconnected and even replaced just like the external hardware. It allows the “system wiring dia-
gram”to show part of the internal controller, rather than just a big black box. And most importantly
it allows the integrator to test and modify the controller using the same methods he would use on
the rest of the hardware.

Terms like motors, amps, and encoders are familiar to most machine integrators. When we talk
about using extra flexible eight conductor shielded cable to connect an encoder to the servo input
board in the computer, the reader immediately understands what it is and is led to the question,
“what kinds of connectors will I need to make up each end.” The same sort of thinking is essential
for the HAL but the specific train of thought may take a bit to get on track. Using HAL words may
seem a bit strange at first, but the concept of working from one connection to the next is the same.

This idea of extending the wiring diagram to the inside of the controller is what HAL is all about. If
you are comfortable with the idea of interconnecting hardware black boxes, you will probably have
little trouble using HAL to interconnect software black boxes.

CHAPTER 6. INTRODUCTION 42

6.2 HAL Concepts

This section is a glossary that defines key HAL terms but it is a bit different than a traditional
glossary because these terms are not arranged in alphabetical order. They are arranged by their
relationship or flow in the HAL way of things.

Component: When we talked about hardware design, we referred to the individual pieces as "parts",
"building blocks", "black boxes", etc. The HAL equivalent is a "component" or "HAL component".
(This document uses "HAL component" when there is likely to be confusion with other kinds
of components, but normally just uses "component".) A HAL component is a piece of software
with well-defined inputs, outputs, and behavior, that can be installed and interconnected as
needed.

Parameter: Many hardware components have adjustments that are not connected to any other
components but still need to be accessed. For example, servo amps often have trim pots
to allow for tuning adjustments, and test points where a meter or scope can be attached to
view the tuning results. HAL components also can have such items, which are referred to
as "parameters". There are two types of parameters: Input parameters are equivalent to trim
pots - they are values that can be adjusted by the user, and remain fixed once they are set.
Output parameters cannot be adjusted by the user - they are equivalent to test points that
allow internal signals to be monitored.

Pin: Hardware components have terminals which are used to interconnect them. The HAL equiva-
lent is a "pin" or "HAL pin". ("HAL pin" is used when needed to avoid confusion.) All HAL pins
are named, and the pin names are used when interconnecting them. HAL pins are software
entities that exist only inside the computer.

Physical_Pin: Many I/O devices have real physical pins or terminals that connect to external hard-
ware, for example the pins of a parallel port connector. To avoid confusion, these are referred
to as "physical pins". These are the things that “stick out” into the real world.

Signal: In a physical machine, the terminals of real hardware components are interconnected by
wires. The HAL equivalent of a wire is a "signal" or "HAL signal". HAL signals connect HAL pins
together as required by the machine builder. HAL signals can be disconnected and reconnected
at will (even while the machine is running).

Type: When using real hardware, you would not connect a 24 volt relay output to the +/-10V
analog input of a servo amp. HAL pins have the same restrictions, which are based upon their
type. Both pins and signals have types, and signals can only be connected to pins of the same
type. Currently there are 4 types, as follows:

• BIT - a single TRUE/FALSE or ON/OFF value

• FLOAT - a 32 bit floating point value, with approximately 24 bits of resolution and over 200 bits
of dynamic range.

• U32 - a 32 bit unsigned integer, legal values are 0 to +4294967295

• S32 - a 32 bit signed integer, legal values are -2147483648 to +2147483647

Function: Real hardware components tend to act immediately on their inputs. For example, if
the input voltage to a servo amp changes, the output also changes automatically. However
software components cannot act "automatically". Each component has specific code that must
be executed to do whatever that component is supposed to do. In some cases, that code simply
runs as part of the component. However in most cases, especially in realtime components, the
code must run in a specific sequence and at specific intervals. For example, inputs should be
read before calculations are performed on the input data, and outputs should not be written
until the calculations are done. In these cases, the code is made available to the system in

CHAPTER 6. INTRODUCTION 43

the form of one or more "functions". Each function is a block of code that performs a specific
action. The system integrator can use "threads" to schedule a series of functions to be executed
in a particular order and at specific time intervals.

Thread: A "thread" is a list of functions that runs at specific intervals as part of a realtime task.
When a thread is first created, it has a specific time interval (period), but no functions. Func-
tions can be added to the thread, and will be executed in order every time the thread runs.

As an example, suppose we have a parport component named hal_parport. That component defines
one or more HAL pins for each physical pin. The pins are described in that component’s doc section:
their names, how each pin relates to the physical pin, are they inverted, can you change polarity,
etc. But that alone doesn’t get the data from the HAL pins to the physical pins. It takes code to
do that, and that is where functions come into the picture. The parport component needs at least
two functions: one to read the physical input pins and update the HAL pins, the other to take data
from the HAL pins and write it to the physical output pins. Both of these functions are part of the
parport driver.

6.3 HAL components

Each HAL component is a piece of software with well-defined inputs, outputs, and behavior, that
can be installed and interconnected as needed. This section lists some of the available components
and a brief description of what each does. Complete details for each component are available later
in this document.

6.3.1 External Programs with HAL hooks

motion A realtime module that accepts NML motion commands and interacts with HAL

iocontrol A user space module that accepts NML I/O commands and interacts with HAL

classicladder A PLC using HAL for all I/O

halui A user space program that interacts with HAL and sends NML commands, it is intended to
work as a full User Interface using external knobs & switches

6.3.2 Internal Components

stepgen Software step pulse generator with position loop. See section 15.1

encoder Software based encoder counter. See section 15.3

pid Proportional/Integral/Derivative control loops. See section 15.4

siggen A sine/cosine/triangle/square wave generator for testing. See section 15.7

supply a simple source for testing

blocks assorted useful components (mux, demux, or, and, integ, ddt, limit, wcomp, etc.)

CHAPTER 6. INTRODUCTION 44

6.3.3 Hardware Drivers

hal_ax5214h A driver for the Axiom Measurement & Control AX5241H digital I/O board

hal_m5i20 Mesa Electronics 5i20 board

hal_motenc Vital Systems MOTENC-100 board

hal_parport PC parallel port. See section 16.1

hal_ppmc Pico Systems family of controllers (PPMC, USC and UPC)

hal_stg Servo To Go card (version 1 & 2)

hal_vti Vigilant Technologies PCI ENCDAC-4 controller

6.3.4 Tools and Utilities

halcmd Command line tool for configuration and tuning. See section 10.1

halgui GUI tool for configuration and tuning (not implemented yet).

halmeter A handy multimeter for HAL signals. See section 10.2

halscope A full featured digital storage oscilloscope for HAL signals. See section 10.3

Each of these building blocks is described in detail in later chapters.

6.4 Tinkertoys, Erector Sets, Legos and the HAL

A first introduction to HAL concepts can be mind boggling. Building anything with blocks can be a
challenge but some of the toys that we played with as kids can be an aid to building things with the
HAL.

6.4.1 Tower

I’m watching as my son and his six year old daughter build a tower from a box full of
random sized blocks, rods, jar lids and such. The aim is to see how tall they can make
the tower. The narrower the base the more blocks left to stack on top. But the narrower
the base, the less stable the tower. I see them studying both the next block and the shelf
where they want to place it to see how it will balance out with the rest of the tower.

The notion of stacking cards to see how tall you can make a tower is a very old and honored way
of spending spare time. At first read, the integrator may have gotten the impression that building a
HAL was a bit like that. It can be but with proper planning an integrator can build a stable system
as complex as the machine at hand requires.

6.4.2 Erector Sets1

What was great about the sets was the building blocks, metal struts and angles and plates, all with
regularly spaced holes. You could design things and hold them together with the little screws and
nuts.

1The Erector Set was an invention of AC Gilbert

CHAPTER 6. INTRODUCTION 45

I got my first erector set for my fourth birthday. I know the box suggested a much older
age than I was. Perhaps my father was really giving himself a present. I had a hard time
with the little screws and nuts. I really needed four arms, one each for the screwdriver,
screw, parts to be bolted together, and nut. Perseverence, along with father’s eventual
boredom, got me to where I had built every project in the booklet. Soon I was lusting
after the bigger sets that were also printed on that paper. Working with those regular
sized pieces opened up a world of construction for me and soon I moved well beyond the
illustrated projects.

Hal components are not all the same size and shape but they allow for grouping into larger units
that will do useful work.In this sense they are like the parts of an Erector set. Some components
are long and thin. They essentially connect high level commands to specific physical pins. Other
components are more like the rectangular platforms upon which whole machines could be built. An
integrator will quickly get beyond the brief examples and begin to bolt together components in ways
that are unique to them.

6.4.3 Tinkertoys2

Wooden Tinker toys had a more humane feel that the cold steel of Erector Sets. The heart
of construction with Tinker Toys was a round connector with eight holes equally spaced
around the circumference. It also had a hole in the center that was perpendicular to all
the holes around the hub.

Hubs were connected with rods of several different lengths. Builders would make large
wheels by using these rods as spokes sticking out from the center hub.

My favorite project was a rotating space station. Short spokes radiated from all the holes
in the center hub and connected with hubs on the ends of each spoke. These outer hubs
were connected to each other with longer spokes. I’d spend hours dreaming of living in
such a device, walking from hub to hub around the outside as it slowly rotated producing
near gravity in weightless space. Supplies traveled through the spokes in elevators that
transfered them to an from rockets docked at the center hub while they transfered their
precious cargos.

The idea of one pin or component being the hub for many connections is also an easy concept
within the HAL. Examples two and four (see section 7) connect the meter and scope to signals that
are intended to go elsewhere. Less easy is the notion of a hub for several incoming signals but that
is also possible with proper use of functions within that hub component that handle those signals
as they arrive from other components.

Another thought that comes forward from this toy is a mechanical representation of HAL threads.
A thread might look a bit like a centipede, caterpillar, or earwig. A backbone of hubs, HAL com-
ponents, strung together with rods, HAL signals. Each component takes in it own parameters and
input pins and passes on output pins and parameters to the next component. Signals travel along
the backbone from end to end and are added to or modified by each component in turn.

Threads are all about timing and doing a set of tasks from end to end. A mechanical representation
is available with Tinkertoys also when we think of the length of the toy as a measure of the time
taken to get from one end to the other. A very different thread or backbone is created by connecting
the same set of hubs with different length rods. The total length of the backbone can be changed
by the length of rods used to connect the hubs. The order of operations is the same but the time to
get from beginning to end is very diferent.

2Tinkertoy is now a registered trademark of the Hasbro company.

CHAPTER 6. INTRODUCTION 46

6.4.4 A Lego Example3

When Lego blocks first arrived in our stores they were pretty much all the same size and shape.
Sure there were half sized one and a few quarter sized as well but that rectangular one did most of
the work. Lego blocks interconnected by snapping the holes in the underside of one onto the pins
that stuck up on another. By overlapping layers, the joints between could be made very strong,
even around corners or tees.

I watched my children and grandchildren build with legos – the same legos. There are a
few thousand of them in an old ratty but heavy duty cardboard box that sits in a corner
of the recreation room. It stays there in the open because it was too much trouble to put
the box away and then get it back out for every visit and it is always used during a visit.
There must be Lego parts in there from a couple dozen different sets. The little booklets
that came with them are long gone but the magic of building with interlocking pieces all
the same size is something to watch.

6.5 Timing Issues In HAL

Unlike the physical wiring models between black boxes that we have said that HAL is based upon,
simply connecting two pins with a hal-signal falls far short of the action of the physical case.

True relay logic consists of relays connected together, and when a contact opens or closes, current
flows (or stops) immediately. Other coils may change state, etc, and it all just "happens". But in
PLC style ladder logic, it doesn’t work that way. Usually in a single pass through the ladder, each
rung is evaluated in the order in which it appears, and only once per pass. A perfect example is a
single rung ladder, with a NC contact in series with a coil. The contact and coil belong to the same
relay.

If this were a conventional relay, as soon as the coil is energized, the contacts begin to open and
de-energize it. That means the contacts close again, etc, etc. The relay becomes a buzzer.

With a PLC, if the coil is OFF and the contact is closed when the PLC begins to evaluate the rung,
then when it finishes that pass, the coil is ON. The fact that turning on the coil opens the contact
feeding it is ignored until the next pass. On the next pass, the PLC sees that the contact is open, and
de-energizes the coil. So the relay still switches rapidly between on and off, but at a rate determined
by how often the PLC evaluates the rung.

In HAL, the function is the code that evaluates the rung(s). In fact, the HAL-aware realtime version
of ClassicLadder exports a function to do exactly that. Meanwhile, a thread is the thing that runs
the function at specific time intervals. Just like you can choose to have a PLC evaluate all its rungs
every 10mS, or every second, you can define HAL threads with different periods.

What distinguishes one thread from another is not what the thread does - that is determined by
which functions are connected to it. The real distinction is simply how often a thread runs.

In EMC you might have a 50µs thread and a 1ms thread. These would be created baseds on
BASE_PERIOD and SERVO_PERIOD–the actual times depend on the ini.

The next step is to decide what each thread needs to do. Some of those decisions are the same in
(nearly) any emc system–For instance, motion-command-handler is always added to servo-thread.

Other connections would be made by the integrator. These might include hooking the STG driver’s
encoder read and DAC write functions to the servo thread, or hooking stepgen’s function to the
base-thread, along with the parport function(s) to write the steps to the port.

3The Lego name is a trademark of the Lego company.

Chapter 7

HAL Tutorial

7.1 Before we start

Configuration moves from theory to device – HAL device that is. For those who have had just a bit of
computer programming, this section is the “Hello World” of the HAL. As noted above halrun can be
used to create a working system. It is a command line or text file tool for configuration and tuning.
The following examples illustrate its setup and operation.

7.1.1 Notation

Command line examples are presented in bold typewriter font. Responses from the computer
will be in typewriter font. Text inside square brackets [like-this] is optional. Text inside
angle brackets <like-this> represents a field that can take on different values, and the adjacent
paragraph will explain the appropriate values. Text items separated by a vertical bar means that
one or the other, but not both, should be present. All command line examples assume that you are
in the emc2/ directory, and paths will be shown accordingly when needed.

7.1.2 The RTAPI environment

RTAPI stands for Real Time Application Programming Interface. Many HAL components work in
realtime, and all HAL components store data in shared memory so realtime components can ac-
cess it. Normal Linux does not support realtime programming or the type of shared memory that
HAL needs. Fortunately there are realtime operating systems (RTOS’s) that provide the neccessary
extensions to Linux. Unfortunately, each RTOS does things a little differently.

To address these differences, the EMC team came up with RTAPI, which provides a consistent way
for programs to talk to the RTOS. If you are a programmer who wants to work on the internals of
EMC, you may want to study emc2/src/rtapi/rtapi.h to understand the API. But if you are a
normal person all you need to know about RTAPI is that it (and the RTOS) needs to be loaded into
the memory of your computer before you do anything with HAL.

For this tutorial, we are going to assume that you have successfully compiled the emc2/ source
tree and, if necessary, invoked the emc-environment script to prepare your shell. In that case, all
you need to do is load the required RTOS and RTAPI modules into memory. Just run the following
command:

emc2$ halrun
halcmd:

47

CHAPTER 7. HAL TUTORIAL 48

With the realtime OS and RTAPI loaded, we can move into the first example. Notice that the prompt
has changed from the shell’s “$” to “halcmd”. This is because subsequent commands will be inter-
preted as HAL commands, not shell commands. halrun is a simple shell script, and it is more or
less equivalent to running

emc2$ realtime start
emc2$ halcmd -kf

When halcmd exits, halrun stops the realtime system, just like

emc2$ realtime stop

You can also supply arguments to halrun that are passed on to halcmd, or give the name of a
.hal file. Because halrun stops the realtime system when it exits, the hal file run in this way will
typically end with a command that waits for completion, like loadrt -w halscope.

7.2 Tab-completion

Your version of halcmd may include tab-completion. Instead of completing filenames as a shell
does, it completes commands with HAL identifiers. Try pressing tab after starting a HAL command:

halcmd: lo<TAB>
loadrt loadusr lock
halcmd: loadrt d<TAB>
ddt debounce

7.3 A Simple Example

7.3.1 Loading a realtime component

For the first example, we will use a HAL component called siggen, which is a simple signal genera-
tor. A complete description of the siggen component can be found in section 15.7 of this document.
It is a realtime component, implemented as a Linux kernel module. To load siggen use the halcmd
loadrt command:

halcmd: loadrt siggen

7.3.2 Examining the HAL

Now that the module is loaded, it is time to introduce halcmd, the command line tool used to config-
ure the HAL. This tutorial will introduce some halcmd features, for a more complete description try
man halcmd, or see the halcmd reference in section 10.1 of this document. The first halcmd feature
is the show command. This command displays information about the current state of the HAL. To
show all installed components:

halcmd: show comp
Loaded HAL Components:
ID Type Name PID State
32769 RT siggen ready
9775 User halcmd9775 9775 initializing

CHAPTER 7. HAL TUTORIAL 49

Since halcmd itself is a HAL component, it will always show up in the list1. The list also shows
the siggen component that we installed in the previous step. The “RT” under “Type” indicates that
siggen is a realtime component.

Next, let’s see what pins siggen makes available:

halcmd: show pin
Component Pins:
Owner Type Dir Value Name 02 float -W 0.00000e+00 siggen.0.cosine
32769 float OUT 0.00000e+00 siggen.0.sawtooth
32769 float OUT 0.00000e+00 siggen.0.sine
32769 float OUT 0.00000e+00 siggen.0.square
32769 float OUT 0.00000e+00 siggen.0.triangle

This command displays all of the pins in the HAL - a complex system could have dozens or hundreds
of pins. But right now there are only five pins. All five of these pins are floating point, and all five
carry data out of the siggen component. Since we have not yet executed the code contained within
the component, all the pins have a value of zero.

The next step is to look at parameters:

halcmd: show param
Parameters:
Owner Type Dir Value Name
32769 float RW 1.00000e+00 siggen.0.amplitude
32769 float RW 1.00000e+00 siggen.0.frequency
32769 float RW 0.00000e+00 siggen.0.offset
32769 s32 RO 0 siggen.0.update.time
32769 s32 RW 0 siggen.0.update.tmax

The show param command shows all the parameters in the HAL. Right now each parameter has
the default value it was given when the component was loaded. Note the column labeled Dir. The
parameters labeled -W are writeable ones that are never changed by the component itself, instead
they are meant to be changed by the user to control the component. We will see how to do this later.
Parameters labeled R- are read only parameters. They can be changed only by the component.
Finally, parameter labeled RW are read-write parameters. That means that thay are changed by the
component, but can also be changed by the user. Note: the parameters siggen.0.update.time
and siggen.0.update.tmax are for debugging purposes, and won’t be covered in this section.

Most realtime components export one or more functions to actually run the realtime code they
contain. Let’s see what function(s) siggen exported:

halcmd: show funct
Exported Functions:
Owner CodeAddr Arg FP Users Name
32769 b7f74ac5 b7d0c0b4 YES 0 siggen.0.update

The siggen component exported a single function. It requires floating point. It is not currently linked
to any threads, so “users” is zero2.

1The number after halcmd in the component list is the process ID. It is possible to run more than one copy of halcmd at
the same time (in different windows for example), so the PID is added to the end of the name to make it unique.

2The codeaddr and arg fields were used in development, and should probably be removed from the halcmd listing.

CHAPTER 7. HAL TUTORIAL 50

7.3.3 Making realtime code run

To actually run the code contained in the function siggen.0.update, we need a realtime thread.
The component called threads that is used to create a new thread. Lets create a thread called
test-thread with a period of 1mS (1000000nS):

halcmd: loadrt threads name1=test-thread period1=1000000

Let’s see if that worked:

halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
999849 YES test-thread (0, 0)

It did. The period is not exactly 1000000nS because of hardware limitations, but we have a thread
that runs at approximately the correct rate, and which can handle floating point functions. The
next step is to connect the function to the thread:

halcmd: addf siggen.0.update test-thread

Up till now, we’ve been using halcmd only to look at the HAL. However, this time we used the
addf (add function) command to actually change something in the HAL. We told halcmd to add the
function siggen.0.update to the thread test-thread, and if we look at the thread list again, we
see that it succeeded:

halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
999849 YES test-thread (0, 0)

1 siggen.0.update

There is one more step needed before the siggen component starts generating signals. When the
HAL is first started, the thread(s) are not actually running. This is to allow you to completely
configure the system before the realtime code starts. Once you are happy with the configuration,
you can start the realtime code like this:

halcmd: start

Now the signal generator is running. Let’s look at its output pins:

halcmd: show pin
Component Pins:
Owner Type Dir Value Name
32769 float OUT 2.12177e-01 siggen.0.cosine
32769 float OUT -5.64055e-01 siggen.0.sawtooth
32769 float OUT 9.79820e-01 siggen.0.sine
32769 float OUT -1.00000e+00 siggen.0.square
32769 float OUT 1.28110e-01 siggen.0.triangle

halcmd: show pin
Component Pins:
Owner Type Dir Value Name
32769 float OUT 5.19530e-01 siggen.0.cosine
32769 float OUT 6.73893e-01 siggen.0.sawtooth
32769 float OUT -8.54452e-01 siggen.0.sine
32769 float OUT 1.00000e+00 siggen.0.square
32769 float OUT 3.47785e-01 siggen.0.triangle

CHAPTER 7. HAL TUTORIAL 51

We did two show pin commands in quick succession, and you can see that the outputs are no
longer zero. The sine, cosine, sawtooth, and triangle outputs are changing constantly. The square
output is also working, however it simply switches from +1.0 to -1.0 every cycle.

7.3.4 Changing parameters

The real power of HAL is that you can change things. For example, we can use the setp command
to set the value of a parameter. Let’s change the amplitude of the signal generator from 1.0 to 5.0:

halcmd: setp siggen.0.amplitude 5
emc2$

Check the parameters and pins again:

halcmd: setp siggen.0.amplitude 5
halcmd: show param
Parameters:
Owner Type Dir Value Name
32769 float RW 5.00000e+00 siggen.0.amplitude
32769 float RW 1.00000e+00 siggen.0.frequency
32769 float RW 0.00000e+00 siggen.0.offset
32769 s32 RO 397 siggen.0.update.time
32769 s32 RW 109100 siggen.0.update.tmax

halcmd: show pin
Component Pins:
Owner Type Dir Value Name
32769 float OUT 4.78453e+00 siggen.0.cosine
32769 float OUT -4.53106e+00 siggen.0.sawtooth
32769 float OUT 1.45198e+00 siggen.0.sine
32769 float OUT -5.00000e+00 siggen.0.square
32769 float OUT 4.02213e+00 siggen.0.triangle

Note that the value of parameter siggen.0.amplitude has changed to 5.000, and that the pins
now have larger values.

7.3.5 Saving the HAL configuration

Most of what we have done with halcmd so far has simply been viewing things with the show
command. However two of the commands actually changed things. As we design more complex
systems with HAL, we will use many commands to configure things just the way we want them.
HAL has the memory of an elephant, and will retain that configuration until we shut it down. But
what about next time? We don’t want to manually enter a bunch of commands every time we want
to use the system. We can save the configuration of the entire HAL with a single command:

halcmd: save
components
loadrt threads name1=test-thread period1=1000000
loadrt siggen
signals
links
parameter values
setp siggen.0.amplitude 5.00000e+00
setp siggen.0.frequency 1.00000e+00

CHAPTER 7. HAL TUTORIAL 52

setp siggen.0.offset 0.00000e+00
realtime thread/function links
addf siggen.0.update test-thread

The output of the save command is a sequence of HAL commands. If you start with an “empty” HAL
and run all these commands, you will get the configuration that existed when the save command
was issued. To save these commands for later use, we simply redirect the output to a file:

halcmd: save all saved.hal

7.3.6 Restoring the HAL configuration

To restore the HAL configuration stored in saved.hal, we need to execute all of those HAL com-
mands. To do that, we use -f <filename> which reads commands from a file, and -I which shows
the halcmd prompt after execiting the commands:

emc2$ halrun -I -f saved.hal

Notice that there is not a ’start’ command in saved.hal. It’s necessary to issue it again (or edit
saved.hal to add it there):

halcmd: start

7.4 Looking at the HAL with halmeter

You can build very complex HAL systems without ever using a graphical interface. However there
is something satisfying about seeing the result of your work. The first and simplest GUI tool for
the HAL is halmeter. It is a very simple program that is the HAL equivalent of the handy Fluke
multimeter (or Simpson analog meter for the old timers).

We will use the siggen component again to check out halmeter. If you just finished the previous
example, then siggen is already loaded. If not, we can load it just like we did before:

emc2$ halrun
halcmd: loadrt siggen
halcmd: loadrt threads name1=test-thread period1=1000000
halcmd: addf siggen.0.update test-thread
halcmd: start
halcmd: setp siggen.0.amplitude 5

7.4.1 Starting halmeter

At this point we have the siggen component loaded and running. It’s time to start halmeter. Since
halmeter is a GUI app, X must be running.

halcmd: loadusr halmeter

At the same time, a halmeter window opens on your screen, looking something like figure 7.1.

CHAPTER 7. HAL TUTORIAL 53

Figure 7.1: Halmeter at startup, nothing selected

Figure 7.2: Halmeter source selection dialog

CHAPTER 7. HAL TUTORIAL 54

7.4.2 Using halmeter

The meter in figure 7.1 isn’t very useful, because it isn’t displaying anything. To change that, click
on the ’Select’ button, which will open the probe selection dialog (figure 7.2).

This dialog has three tabs. The first tab displays all of the HAL pins in the system. The second one
displays all the signals, and the third displays all the parameters. We would like to look at the pin
siggen.0.triangle first, so click on it then click the ’OK’ button. The probe selection dialog will
close, and the meter looks something like figure 7.3.

Figure 7.3: Halmeter displaying the value of a pin

You should see the value changing as siggen generates its triangle wave. Halmeter refreshes its
display about 5 times per second.

If you want to quickly look at a number of pins, you can use the ’Accept’ button in the source
selection dialog. Click on ’Select’ to open the dialog again. This time, click on another pin, like
siggen.0.cosine, and then click ’Accept’. When you click ’Accept’, the meter immediately begins to
display the newly selected item, but the dialog does not close. Try displaying a parameter instead of
a pin. Click on the ’Parameters’ tab, then select a parameter and click ’Accept’ again. You can very
quickly move the “meter probes” from one item to the next with a couple of clicks.

To shut down halmeter, just click the exit button.

If you want to look at more than one pin, signal, or parameter at a time, you can just start more
halmeters. The halmeter window was intentionally made very small so you could have a lot of them
on the screen at once. 3

3Halmeter is due for a rewrite. The rewrite will do a number of things to make it nicer. Scientific notation will go away - it
is a pain to read. Some form of ranging (including autoranging) will be added to allow it to display a wide range of numbers
without using scientific notation. An “analog bar graph” display will also be added to give a quick indication of trends. When
the rewrite is done, these screenshots and the accompanying text will be revised to match the new version.

CHAPTER 7. HAL TUTORIAL 55

7.5 A slightly more complex example.

Up till now we have only loaded one HAL component. But the whole idea behind the HAL is to allow
you to load and connect a number of simple components to make up a complex system. The next
example will use two components.

Before we can begin building this new example, we want to start with a clean slate. If you just
finished one of the previous examples, we need to remove the all components and reload the RTAPI
and HAL libraries:

halcmd: exit
emc2$ halrun

7.5.1 Installing the components

Now we are going to load the step pulse generator component. For a detailed description of this
component refer to section 15.1. For now, we can skip the details, and just run the following
commands:4

halrun: loadrt freqgen step_type=0,0
halcmd: loadrt siggen
halcmd: loadrt threads name1=fast fp1=0 period1=50000 name2=slow period2=1000000

The first command loads two step generators, both configured to generate stepping type 0. The
second command loads our old friend siggen, and the third one creates two threads, a fast one with
a period of 50 micro-seconds and a slow one with a period of 1mS. The fast thread doesn’t support
floating point functions.

As before, we can use halcmd show to take a look at the HAL. This time we have a lot more pins
and parameters than before:

halcmd: show pin
Component Pins:
Owner Type Dir Value Name
03 float -W 0.00000e+00 siggen.0.cosine
03 float -W 0.00000e+00 siggen.0.sawtooth
03 float -W 0.00000e+00 siggen.0.sine
03 float -W 0.00000e+00 siggen.0.square
03 float -W 0.00000e+00 siggen.0.triangle
02 s32 -W 0 freqgen.0.counts
02 bit -W FALSE freqgen.0.dir
02 float -W 0.00000e+00 freqgen.0.position
02 bit -W FALSE freqgen.0.step
02 float R- 0.00000e+00 freqgen.0.velocity
02 s32 -W 0 freqgen.1.counts
02 bit -W FALSE freqgen.1.dir
02 float -W 0.00000e+00 freqgen.1.position
02 bit -W FALSE freqgen.1.step
02 float R- 0.00000e+00 freqgen.1.velocity

halcmd: show param
Parameters:
Owner Type Dir Value Name
03 float -W 1.00000e+00 siggen.0.amplitude

4The “\” at the end of a long line indicates line wrapping (needed for formatting this document). When entering the
commands at the command line, simply skip the “\” (do not hit enter) and keep typing from the following line.

CHAPTER 7. HAL TUTORIAL 56

03 float -W 1.00000e+00 siggen.0.frequency
03 float -W 0.00000e+00 siggen.0.offset
02 u32 -W 000000001 freqgen.0.dirhold
02 u32 -W 000000001 freqgen.0.dirsetup
02 float R- 0.00000e+00 freqgen.0.frequency
02 float -W 0.00000e+00 freqgen.0.maxaccel
02 float -W 1.00000e+15 freqgen.0.maxfreq
02 float -W 1.00000e+00 freqgen.0.position-scale
02 s32 R- 0 freqgen.0.rawcounts
02 u32 -W 000000001 freqgen.0.steplen
02 u32 -W 000000001 freqgen.0.stepspace
02 float -W 1.00000e+00 freqgen.0.velocity-scale
02 u32 -W 000000001 freqgen.1.dirhold
02 u32 -W 000000001 freqgen.1.dirsetup
02 float R- 0.00000e+00 freqgen.1.frequency
02 float -W 0.00000e+00 freqgen.1.maxaccel
02 float -W 1.00000e+15 freqgen.1.maxfreq
02 float -W 1.00000e+00 freqgen.1.position-scale
02 s32 R- 0 freqgen.1.rawcounts
02 u32 -W 000000001 freqgen.1.steplen
02 u32 -W 000000001 freqgen.1.stepspace
02 float -W 1.00000e+00 freqgen.1.velocity-scale

7.5.2 Connecting pins with signals

What we have is two step pulse generators, and a signal generator. Now it is time to create some HAL
signals to connect the two components. We are going to pretend that the two step pulse generators
are driving the X and Y axis of a machine. We want to move the table in circles. To do this, we will
send a cosine signal to the X axis, and a sine signal to the Y axis. The siggen module creates the
sine and cosine, but we need “wires” to connect the modules together. In the HAL, “wires” are called
signals. We need to create two of them. We can call them anything we want, for this example they
will be X_vel and Y_vel. The signal X_vel is intended to run from the cosine output of the signal
generator to the velocity input of the first step pulse generator. The first step is to connect the signal
to the signal generator output. To connect a signal to a pin we use the net command.

halcmd: net X_vel <= siggen.0.cosine

To see the effect of the net command, we show the signals again:

halcmd: show sig
ignals:
Type Value Name
float 0.00000e+00 X_vel

<== siggen.0.cosine

When a signal is connected to one or more pins, the show command lists the pins immediately
following the signal name. The “arrow” shows the direction of data flow - in this case, data flows
from pin siggen.0.cosine to signal X_vel. Now let’s connect the X_vel to the velocity input of a
step pulse generator:

halcmd: net X_vel => freqgen.0.velocity

We can also connect up the Y axis signal Y_vel. It is intended to run from the sine output of the sig-
nal generator to the input of the second step pulse generator. The following command accomplishes
in one line what two net commands accomplished for X_vel:

CHAPTER 7. HAL TUTORIAL 57

halcmd: net Y_vel siggen.0.sine => freqgen.1.velocity

Now let’s take a final look at the signals and the pins connected to them:

halcmd: show sig
Signals:
Type Value Name
float 0.00000e+00 X_vel

<== siggen.0.cosine
==> freqgen.0.velocity

float 0.00000e+00 Y_vel
<== siggen.0.sine
==> freqgen.1.velocity

The show sig command makes it clear exactly how data flows through the HAL. For example, the
X_vel signal comes from pin siggen.0.cosine, and goes to pin freqgen.0.velocity.

7.5.3 Setting up realtime execution - threads and functions

Thinking about data flowing through “wires” makes pins and signals fairly easy to understand.
Threads and functions are a little more difficult. Functions contain the computer instructions that
actually get things done. Thread are the method used to make those instructions run when they
are needed. First let’s look at the functions available to us:

halcmd: show funct
Exported Functions:
Owner CodeAddr Arg FP Users Name
03 D89051C4 D88F10FC YES 0 siggen.0.update
02 D8902868 D88F1054 YES 0 freqgen.capture_position
02 D8902498 D88F1054 NO 0 freqgen.make_pulses
02 D89026F0 D88F1054 YES 0 freqgen.update_freq

In general, you will have to refer to the documentation for each component to see what its functions
do. In this case, the function siggen.0.update is used to update the outputs of the signal gen-
erator. Every time it is executed, it calculates the values of the sine, cosine, triangle, and square
outputs. To make smooth signals, it needs to run at specific intervals.

The other three functions are related to the step pulse generators:

The first one, freqgen.capture_position, is used for position feedback. It captures the value of
an internal counter that counts the step pulses as they are generated. Assuming no missed steps,
this counter indicates the position of the motor.

The main function for the step pulse generator is freqgen.make_pulses. Every time make_pulses
runs it decides if it is time to take a step, and if so sets the outputs accordingly. For smooth step
pulses, it should run as frequently as possible. Because it needs to run so fast, make_pulses is
highly optimized and performs only a few calculations. Unlike the others, it does not need floating
point math.

The last function, freqgen.update_freq, is responsible for doing scaling and some other calcula-
tions that need to be performed only when the frequency command changes.

What this means for our example is that we want to run siggen.0.update at a moderate rate to
calculate the sine and cosine values. Immediately after we run siggen.0.update, we want to run
freqgen.update_freq to load the new values into the step pulse generator. Finally we need to
run freqgen.make_pulses as fast as possible for smooth pulses. Because we don’t use position
feedback, we don’t need to run freqgen.capture_position at all.

We run functions by adding them to threads. Each thread runs at a specific rate. Let’s see what
threads we have available:

CHAPTER 7. HAL TUTORIAL 58

halcmd: show thread
Realtime Threads:

Period FP Name
1005720 YES slow (0, 0)

50286 NO fast (0, 0)

The two threads were created when we loaded threads. The first one, slow, runs every millisec-
ond, and is capable of running floating point functions. We will use it for siggen.0.update and
freqgen.update_freq. The second thread is fast, which runs every 50 microseconds, and does
not support floating point. We will use it for freqgen.make_pulses. To connect the functions to
the proper thread, we use the addf command. We specify the function first, followed by the thread:

halcmd: addf siggen.0.update slow
halcmd: addf freqgen.update_freq slow
halcmd: addf freqgen.make_pulses fast

After we give these commands, we can run the show thread command again to see what happened:

halcmd: show thread
Realtime Threads:

Period FP Name (Time, Max-Time)
1005720 YES slow (0, 0)

1 siggen.0.update
2 freqgen.update-freq

50286 NO fast (0, 0)
1 freqgen.make-pulses

Now each thread is followed by the names of the functions, in the order in which the functions will
run.

7.5.4 Setting parameters

We are almost ready to start our HAL system. However we still need to adjust a few parameters. By
default, the siggen component generates signals that swing from +1 to -1. For our example that is
fine, we want the table speed to vary from +1 to -1 inches per second. However the scaling of the step
pulse generator isn’t quite right. By default, it generates an output frequency of 1 step per second
with an input of 1.000. It is unlikely that one step per second will give us one inch per second of
table movement. Let’s assume instead that we have a 5 turn per inch leadscrew, connected to a 200
step per rev stepper with 10x microstepping. So it takes 2000 steps for one revolution of the screw,
and 5 revolutions to travel one inch. that means the overall scaling is 10000 steps per inch. We
need to multiply the velocity input to the step pulse generator by 10000 to get the proper output.
That is exactly what the parameter freqgen.n.velocity-scale is for. In this case, both the X and
Y axis have the same scaling, so we set the scaling parameters for both to 10000:

halcmd: setp freqgen.0.velocity-scale 10000
halcmd: setp freqgen.1.velocity-scale 10000

This velocity scaling means that when the pin freqgen.0.velocity is 1.000, the step generator
will generate 10000 pulses per second (10KHz). With the motor and leadscrew described above, that
will result in the axis moving at exactly 1.000 inches per second. This illustrates a key HAL concept
- things like scaling are done at the lowest possible level, in this case in the step pulse generator.
The internal signal X_vel is the velocity of the table in inches per second, and other components
such as siggen don’t know (or care) about the scaling at all. If we changed the leadscrew, or motor,
we would change only the scaling parameter of the step pulse generator.

CHAPTER 7. HAL TUTORIAL 59

7.5.5 Run it!

We now have everything configured and are ready to start it up. Just like in the first example, we
use the start command:

halcmd: start

Although nothing appears to happen, inside the computer the step pulse generator is cranking out
step pulses, varying from 10KHz forward to 10KHz reverse and back again every second. Later in
this tutorial we’ll see how to bring those internal signals out to run motors in the real world, but
first we want to look at them and see what is happening.

7.6 Taking a closer look with halscope.

The previous example generates some very interesting signals. But much of what happens is far
too fast to see with halmeter. To take a closer look at what is going on inside the HAL, we want an
oscilloscope. Fortunately HAL has one, called halscope.

7.6.1 Starting Halscope

Halscope has two parts - a realtime part that is loaded as a kernel module, and a user part that
supplies the GUI and display. However, you don’t need to worry about this, because the userspace
portion will automatically request that the realtime part be loaded.

halcmd: loadusr halscope

The scope GUI window will open, immediately followed by a “Realtime function not linked” dialog
that looks like figure 7.45.

This dialog is where you set the sampling rate for the oscilloscope. For now we want to sample once
per millisecond, so click on the 1.03mS thread “slow” (formerly “siggen.thread”, see footnote), and
leave the multiplier at 1. We will also leave the record length at 4047 samples, so that we can use up
to four channels at one time. When you select a thread and then click “OK”, the dialog disappears,
and the scope window looks something like figure 7.5.

5Several of these screen captures refer to threads named “siggen.thread” and “stepgen.thread” instead of “slow” and
“fast”. When the screenshots were captured, the “threads” component didn’t exist, and a different method was used to create
threads, giving them different names. Also, the screenshots show pins, etc, as “stepgen.xxx” rather than “freqgen.xxx”. The
original name of the freqgen module was stepgen, and I haven’t gotten around to re-doing all the screen shots since it was
renamed. The name “stepgen” now refers to a different step pulse generator, one that accepts position instead of velocity
commands. Both are described in detail later in this document.

CHAPTER 7. HAL TUTORIAL 60

Figure 7.4: “Realtime function not linked” dialog

Figure 7.5: Initial scope window

CHAPTER 7. HAL TUTORIAL 61

7.6.2 Hooking up the “scope probes”

At this point, Halscope is ready to use. We have already selected a sample rate and record length,
so the next step is to decide what to look at. This is equivalent to hooking “virtual scope probes” to
the HAL. Halscope has 16 channels, but the number you can use at any one time depends on the
record length - more channels means shorter records, since the memory available for the record is
fixed at approximately 16,000 samples.

The channel buttons run across the bottom of the halscope screen. Click button “1”, and you will
see the “Select Channel Source” dialog, figure 7.6. This dialog is very similar to the one used by
Halmeter. We would like to look at the signals we defined earlier, so we click on the “Signals” tab,
and the dialog displays all of the signals in the HAL (only two for this example).

Figure 7.6: Select Channel Source dialog

To choose a signal, just click on it. In this case, we want to use channel 1 to display the signal
“X_vel”. When we click on “X_vel”, the dialog closes and the channel is now selected. The channel 1
button is pressed in, and channel number 1 and the name “X_vel” appear below the row of buttons.
That display always indicates the selected channel - you can have many channels on the screen,
but the selected one is highlighted, and the various controls like vertical position and scale always
work on the selected one. To add a signal to channel 2, click the “2” button. When the dialog pops
up, click the “Signals” tab, then click on “Y_vel”.

We also want to look at the square and triangle wave outputs. There are no signals connected
to those pins, so we use the “Pins” tab instead. For channel 3, select “siggen.0.triangle” and for
channel 4, select “siggen.0.square”.

CHAPTER 7. HAL TUTORIAL 62

7.6.3 Capturing our first waveforms

Now that we have several probes hooked to the HAL, it’s time to capture some waveforms. To start
the scope, click the “Normal” button in the “Run Mode” section of the screen (upper right). Since we
have a 4000 sample record length, and are acquiring 1000 samples per second, it will take halscope
about 2 seconds to fill half of its buffer. During that time a progress bar just above the main screen
will show the buffer filling. Once the buffer is half full, the scope waits for a trigger. Since we
haven’t configured one yet, it will wait forever. To manually trigger it, click the “Force” button in the
“Trigger” section at the top right. You should see the remainder of the buffer fill, then the screen
will display the captured waveforms. The result will look something like figure 7.7.

Figure 7.7: Captured Waveforms

The “Selected Channel” box at the bottom tells you that the green trace is the currently selected one,
channel 4, which is displaying the value of the pin “siggen.1.square”. Try clicking channel buttons
1 through 3 to highlight the other three traces.

CHAPTER 7. HAL TUTORIAL 63

7.6.4 Vertical Adjustments

The traces are rather hard to distinguish since all four are on top of each other. To fix this, we
use the “Vertical” controls in the box to the right of the screen. These controls act on the currently
selected channel. When adjusting the gain, notice that it covers a huge range - unlike a real scope,
this one can display signals ranging from very tiny (pico-units) to very large (Tera-units). The
position control moves the displayed trace up and down over the height of the screen only. For
larger adjustments the offset button should be used (see the halscope reference in section 10.3 for
details).

7.6.5 Triggering

Using the “Force” button is a rather unsatisfying way to trigger the scope. To set up real triggering,
click on the “Source” button at the bottom right. It will pop up the “Trigger Source” dialog, which
is simply a list of all the probes that are currently connected (Figure 7.8). Select a probe to use for
triggering by clicking on it. For this example we will use channel 3, the triangle wave.

Figure 7.8: Trigger Source Dialog

After setting the trigger source, you can adjust the trigger level and trigger position using the sliders
in the “Trigger” box along the right edge. The level can be adjusted from the top to the bottom of the
screen, and is displayed below the sliders. The position is the location of the trigger point within the
overall record. With the slider all the way down, the trigger point is at the end of the record, and
halscope displays what happened before the trigger point. When the slider is all the way up, the
trigger point is at the beginning of the record, displaying what happened after it was triggered. The
trigger point is visible as a vertical line in the progress box above the screen. The trigger polarity
can be changed by clicking the button just below the trigger level display. Note that changing the
trigger position stops the scope, once the position is adjusted you restart the scope by clicking the
“Normal” button in the “Run Mode” box.

Now that we have adjusted the vertical controls and triggering, the scope display looks something
like figure 7.9.

CHAPTER 7. HAL TUTORIAL 64

Figure 7.9: Waveforms with Triggering

CHAPTER 7. HAL TUTORIAL 65

7.6.6 Horizontal Adjustments

To look closely at part of a waveform, you can use the zoom slider at the top of the screen to
expand the waveforms horizontally, and the position slider to determine which part of the zoomed
waveform is visible. However, sometimes simply expanding the waveforms isn’t enough and you
need to increase the sampling rate. For example, we would like to look at the actual step pulses
that are being generated in our example. Since the step pulses may be only 50uS long, sampling
at 1KHz isn’t fast enough. To change the sample rate, click on the button that displays the record
length and sample rate to bring up the “Select Sample Rate” dialog, figure . For this example, we
will click on the 50uS thread, “fast”, which gives us a sample rate of about 20KHz. Now instead
of displaying about 4 seconds worth of data, one record is 4000 samples at 20KHz, or about 0.20
seconds.

Figure 7.10: Sample Rate Dialog

CHAPTER 7. HAL TUTORIAL 66

7.6.7 More Channels

Now let’s look at the step pulses. Halscope has 16 channels, but for this example we are using only
4 at a time. Before we select any more channels, we need to turn off a couple. Click on the channel 2
button, then click the “Off” button at the bottom of the “Vertical” box. Then click on channel 3, turn
if off, and do the same for channel 4. Even though the channels are turned off, they still remember
what they are connected to, and in fact we will continue to use channel 3 as the trigger source.
To add new channels, select channel 5, and choose pin “stepgen.1.dir”, then channel 6, and select
“stepgen.1.step”. Then click run mode “Normal” to start the scope, and adjust the horizontal zoom
to 5mS per division. You should see the step pulses slow down as the velocity command (channel
1) approaches zero, then the direction pin changes state and the step pulses speed up again. You
might want to increase the gain on channel 1 to about 20m per division to better see the change in
the velocity command. The result should look like figure 7.11.

Figure 7.11: Looking at Step Pulses

7.6.8 More samples

If you want to record more samples at once, restart realtime and load halscope with a numeric
argument which indicates the number of samples you want to capture, such as

halcmd: loadusr halscope 80000

if the scope_rt component was not already loaded, halscope will load it and request 80000 total
samples, so that when sampling 4 channels at a time there will be 20000 samples per channel. (If
scope_rt was already loaded, the numeric argument to halscope will have no effect)

Chapter 8

General Reference Information

8.1 Notation

8.1.1 Typographical Conventions

Command line examples are presented in bold typewriter font. Responses from the computer
will be in typewriter font. As of early 2006, there are no longer commands that require root
privileges, so all examples will be preceded by the normal user prompt, $. Text inside square
brackets [like-this] is optional. Text inside angle brackets <like-this> represents a field that
can take on different values, and the adjacent paragraph will explain the appropriate values. Text
items separated by a vertical bar means that one or the other, but not both, should be present. All
command line examples assume that you are in the emc2/ directory, and you configured/compiled
emc2 for the run-in-place scenario. Paths will be shown accordingly when needed.

8.1.2 Names

All HAL entities are accessed and manipulated by their names, so documenting the names of pins,
signals, parameters, etc, is very important. HAL names are a maximum of 41 characters long (as
defined by HAL_NAME_LEN in hal.h). Many names will be presented in a general form, with text
inside angle brackets <like-this> representing fields that can take on different values.

When pins, signals, or parameters are described for the first time, their names will be preceeded
by their type in (SMALL CAPS) and followed by a brief description. A typical pin definition will look
something like these examples:

• (BIT) parport.<portnum>.pin-<pinnum>-in – The HAL pin associated with the physical
input pin <pinnum> on the 25 pin D-shell connector.

• (FLOAT) pid.<loopnum>.output – The output of the PID loop.

At times, a shortened version of a name may be used - for example the second pin above might be
referred to simply as .output when it can be done without causing confusion.

8.2 General Naming Conventions

Consistent naming conventions would make HAL much easier to use. For example, if every encoder
driver provided the same set of pins and named them the same way it would be easy to change
from one type of encoder driver to another. Unfortunately, like many open-source projects, HAL is

67

CHAPTER 8. GENERAL REFERENCE INFORMATION 68

a combination of things that were designed, and things that simply evolved. As a result, there are
many inconsistencies. This section attempts to address that problem by defining some conventions,
but it will probably be a while before all the modules are converted to follow them.

Halcmd and other low-level HAL utilities treat HAL names as single entities, with no internal struc-
ture. However, most modules do have some implicit structure. For example, a board provides
several functional blocks, each block might have several channels, and each channel has one or
more pins. This results in a structure that resembles a directory tree. Even though halcmd doesn’t
recognize the tree structure, proper choice of naming conventions will let it group related items
together (since it sorts the names). In addition, higher level tools can be designed to recognize such
structure, if the names provide the neccessary information. To do that, all HAL modules should
follow these rules:

• Dots (“.”) separate levels of the heirarchy. This is analogous to the slash (“/”) in a filename.

• Hypens (“-”) separate words or fields in the same level of the heirarchy.

• HAL modules should not use underscores or “MixedCase”. 1

• Use only lowercase letters and numbers in names.

8.3 Hardware Driver Naming Conventions2

8.3.1 Pin/Parameter names

Hardware drivers should use five fields (on three levels) to make up a pin or parameter name, as
follows:

<device-name>.<device-num>.<io-type>.<chan-num>.<specific-name>

The individual fields are:

<device-name> The device that the driver is intended to work with. This is most often an interface
board of some type, but there are other possibilities.

<device-num> It is possible to install more than one servo board, parallel port, or other hardware
device in a computer. The device number identifies a specific device. Device numbers start at
0 and increment.3

<io-type> Most devices provide more than one type of I/O. Even the simple parallel port has both
digital inputs and digital outputs. More complex boards can have digital inputs and outputs,
encoder counters, pwm or step pulse generators, analog-to-digital converters, digital-to-analog
converters, or other unique capabilities. The I/O type is used to identify the kind of I/O that a
pin or parameter is associated with. Ideally, drivers that implement the same I/O type, even if
for very different devices, should provide a consistent set of pins and parameters and identical
behavior. For example, all digital inputs should behave the same when seen from inside the
HAL, regardless of the device.

1Underscores have all been removed, but there are still a few instances of mixed case, for example “pid.0.Pgain” instead
of “pid.0.p-gain”.

2Most drivers do not follow these conventions as of version 2.0. This chapter is really a guide for future development.
3Some devices use jumpers or other hardware to attach a specific ID to each board. Ideally, the driver provides a way for

the user to specifically say “device-num 0 is the board with ID XXX”, and the device numbers always start at 0. However at
present some drivers use the board ID directly as the device number. That means it is possible to have a device number 2,
without a device 0. This is a bug and will be fixed in version 2.1.

CHAPTER 8. GENERAL REFERENCE INFORMATION 69

<chan-num> Virtually every I/O device has multiple channels, and the channel number identifies
one of them. Like device numbers, channel numbers start at zero and increment.4 If more than
one device is installed, the channel numbers on additional devices start over at zero. If it is
possible to have a channel number greater than 9, then channel numbers should be two digits,
with a leading zero on numbers less than 10 to preserve sort ordering. Some modules have pins
and/or parameters that affect more than one channel. For example a PWM generator might
have four channels with four independent “duty-cycle” inputs, but one “frequency” parameter
that controls all four channels (due to hardware limitations). The frequency parameter should
use “0-3” as the channel number.

<specific-name> An individual I/O channel might have just a single HAL pin associated with it,
but most have more than one. For example, a digital input has two pins, one is the state of
the physical pin, the other is the same thing inverted. That allows the configurator to choose
between active high and active low inputs. For most io-types, there is a standard set of pins
and parameters, (referred to as the “canonical interface”) that the driver should implement.
The canonical interfaces are described in chapter 9.

8.3.1.1 Examples

motenc.0.encoder.2.position – the position output of the third encoder channel on the first
Motenc board.

stg.0.din.03.in – the state of the fourth digital input on the first Servo-to-Go board.

ppmc.0.pwm.00-03.frequency – the carrier frequency used for PWM channels 0 through 3.

8.3.2 Function Names

Hardware drivers usually only have two kinds of HAL functions, ones that read the hardware and
update HAL pins, and ones that write to the hardware using data from HAL pins. They should be
named as follows:

<device-name>-<device-num>[.<io-type>[-<chan-num-range>]].read|write

<device-name> The same as used for pins and parameters.

<device-num> The specific device that the function will access.

<io-type> Optional. A function may access all of the I/O on a board, or it may access only a
certain type. For example, there may be independent functions for reading encoder counters
and reading digital I/O. If such independent functions exist, the <io-type> field identifies the
type of I/O they access. If a single function reads all I/O provided by the board, <io-type> is
not used.5

<chan-num-range> Optional. Used only if the <io-type> I/O is broken into groups and accessed by
different functions.

read|write Indicates whether the function reads the hardware or writes to it.

4One glaring exception to the “channel numbers start at zero” rule is the parallel port. Its HAL pins are numbered with
the corresponding pin number on the DB-25 connector. This is convenient for wiring, but inconsistent with other drivers.
There is some debate over whether this is a bug or a feature.

5Note to driver programmers: do NOT implement separate functions for different I/O types unless they are interruptable
and can work in independent threads. If interrupting an encoder read, reading digital inputs, and then resuming the encoder
read will cause problems, then implement a single function that does everything.

CHAPTER 8. GENERAL REFERENCE INFORMATION 70

8.3.2.1 Examples

motenc.0.encoder.read – reads all encoders on the first motenc board

generic8255.0.din.09-15.read – reads the second 8 bit port on the first generic 8255 based
digital I/O board

ppmc.0.write – writes all outputs (step generators, pwm, DACs, and digital) on the first ppmc
board

Chapter 9

Canonical Device Interfaces1

The following sections show the pins, parameters, and functions that are supplied by “canonical
devices”. All HAL device drivers should supply the same pins and parameters, and implement the
same behavior.

Note that the only the <io-type> and <specific-name> fields are defined for a canonical device.
The <device-name>, <device-num>, and <chan-num> fields are set based on the characteristics of
the real device.

9.1 Digital Input

The canonical digital input (I/O type field: digin) is quite simple.

9.1.1 Pins

• (BIT) in – State of the hardware input.

• (BIT) in-not – Inverted state of the input.

9.1.2 Parameters

• None

9.1.3 Functions

• (FUNCT) read – Read hardware and set in and in-not HAL pins.

9.2 Digital Output

The canonical digital output (I/O type field: digout) is also very simple.

9.2.1 Pins

• (BIT) out – Value to be written (possibly inverted) to the hardware output.
1As of version 2.0, most of the HAL drivers don’t quite match up to the canonical interfaces defined here. In version 2.1,

the drivers will be changed to match these specs.

71

CHAPTER 9. CANONICAL DEVICE INTERFACES 72

9.2.2 Parameters

• (BIT) invert – If TRUE, out is inverted before writing to the hardware.

9.2.3 Functions

• (FUNCT) write – Read out and invert, and set hardware output accordingly.

9.3 Analog Input

The canonical analog input (I/O type: adcin). This is expected to be used for analog to digital
converters, which convert e.g. voltage to a continuous range of values.

9.3.1 Pins

• (FLOAT) value – The hardware reading, scaled according to the scale and offset parameters.
Value = ((input reading, in hardware-dependent units) * scale) - offset

9.3.2 Parameters

• (FLOAT) scale – The input voltage (or current) will be multiplied by scale before being output to
value.

• (FLOAT) offset – This will be subtracted from the hardware input voltage (or current) after the
scale multiplier has been applied.

• (FLOAT) bit_weight – The value of one least significant bit (LSB). This is effectively the granu-
larity of the input reading.

• (FLOAT) hw_offset – The value present on the input when 0 volts is applied to the input pin(s).

9.3.3 Functions

• (FUNCT) read – Read the values of this analog input channel. This may be used for individual
channel reads, or it may cause all channels to be read

9.4 Analog Output

The canonical analog output (I/O Type: adcout). This is intended for any kind of hardware that
can output a more-or-less continuous range of values. Examples are digital to analog converters or
PWM generators.

Pins

• (FLOAT) value – The value to be written. The actual value output to the hardware will depend
on the scale and offset parameters.

• (BIT) enable – If false, then output 0 to the hardware, regardless of the value pin.

CHAPTER 9. CANONICAL DEVICE INTERFACES 73

9.4.1 Parameters

• (FLOAT) offset – This will be added to the value before the hardware is updated

• (FLOAT) scale – This should be set so that an input of 1 on the value pin will cause 1V

• (FLOAT) high_limit (optional) – When calculating the value to output to the hardware, if value
+ offset is greater than high_limit, then high_limit will be used instead.

• (FLOAT) low_limit (optional) – When calculating the value to output to the hardware, if value +
offset is less than low_limit, then low_limit will be used instead.

• (FLOAT) bit_weight (optional) – The value of one least significant bit (LSB), in volts (or mA, for
current outputs)

• (FLOAT) hw_offset (optional) – The actual voltage (or current) that will be output if 0 is written
to the hardware.

9.4.2 Functions

(FUNCT) write – This causes the calculated value to be output to the hardware. If enable is false,
then the output will be 0, regardles of value, scale, and offset. The meaning of “0” is dependent on
the hardware. For example, a bipolar 12-bit A/D may need to write 0x1FF (mid scale) to the D/A
get 0 volts from the hardware pin. If enable is true, read scale, offset and value and output to the
adc (scale * value) + offset. If enable is false, then output 0.

9.5 Encoder

The canonical encoder interface (I/O type field: encoder) provides the functionality needed for
homing to an index pulse and doing spindle synchronization, as well as basic position and/or ve-
locity control. This interface should be implementable regardless of the actual underlying hardware,
although some hardware will provide “better” results. (For example, capture the index position to
+/- 1 count while moving faster, or have less jitter on the velocity pin.)

9.5.1 Pins

• (S32) count – Encoder value in counts.

• (FLOAT) position – Encoder value in position units (see parameter “scale”).

• (FLOAT) velocity – Velocity in position units per second.

• (BIT) reset – When True, force counter to zero.

• (BIT) index-enable – (bidirectional) When True, reset to zero on next index pulse, and set pin
False.

The “index-enable” pin is bi-directional, and might require a little more explanation. If “index-
enable” is False, the index channel of the encoder will be ignored, and the counter will count
normally. The encoder driver will never set “index-enable” True. However, some other component
may do so. If “index-enable” is True, then when the next index pulse arrives, the encoder counter
will be reset to zero, and the driver will set “index-enable” False. That will let the other component
know that an index pulse arrived. This is a form of handshaking - the other component sets “index-
enable” True to request a index pulse reset, and the driver sets it False when the request has been
satisfied.

CHAPTER 9. CANONICAL DEVICE INTERFACES 74

9.5.2 Parameters

• (FLOAT) scale – The scale factor used to convert counts to position units. It is in “counts per
position unit”. For example, if you have a 512 count per turn encoder on a 5 turn per inch
screw, the scale should be 512*5 = 2560 counts per inch, which will result in “position” in
inches and “velocity” in inches per second.

• (FLOAT) max-index-vel – (optional) The maximum velocity (in position units per second) at
which the encoder can reset on an index pulse with +/- 1 count accuracy. This is an output
from the encoder driver, and is intended to tell the user something about the hardware capa-
bilities. Some hardware can reset the counter at the exact moment the index pulse arrives.
Other hardware can only tell that an index pulse arrived sometime since the last time the read
function was called. For the latter, +/- 1 count accuracy can only be achieved if the encoder
advances by 1 count or less between calls to the read function.

• (FLOAT) velocity-resolution – (optional) The resolution of the velocity output, in position
units per second. This is an output from the encoder driver, and is intended to tell the user
something about the hardware capabilities. The simplest implementation of the velocity output
is the change in postion from one call of the read function to the next, divided by the time
between calls. This yields a rather coarse velocity signal that jitters back and forth between
widely spaced possible values (quantization error). However, some hardware captures both the
counts and the exact time when a count occurres (possibly with a very high resolution clock).
That data allows the driver to calculate velocity with finer resolution and less jitter.

9.5.3 Functions

There is only one function, to read the encoder(s).

• (FUNCT) read – Capture counts, update position and velocity.

Chapter 10

Tools and Utilities

10.1 Halcmd

Halcmd is a command line tool for manipulating the HAL. There is a rather complete man page for
halcmd, which will be installed if you have installed EMC2 from either source or a package. If you
have compiled EMC2 for “run-in-place”, the man page is not installed, but it is accessible. From the
main EMC2 directory, do:

$ man -M docs/man halcmd

Chapter 7 has a number of examples of halcmd usage, and is a good tutorial for halcmd.

10.2 Halmeter

Halmeter is a “voltmeter” for the HAL. It lets you look at a pin, signal, or parameter, and displays the
current value of that item. It is pretty simple to use. Start it by typing “halmeter” in a X windows
shell. Halmeter is a GUI application. It will pop up a small window, with two buttons labeled “Select”
and “Exit”. Exit is easy - it shuts down the program. Select pops up a larger window, with three
tabs. One tab lists all the pins currently defined in the HAL. The next lists all the signals, and the
last tab lists all the parameters. Click on a tab, then click on a pin/signal/parameter. Then click on
“OK”. The lists will disappear, and the small window will display the name and value of the selected
item. The display is updated approximately 10 times per second. If you click “Accept” instead of
“OK”, the small window will display the name and value of the selected item, but the large window
will remain on the screen. This is convenient if you want to look at a number of different items
quickly.

You can have many halmeters running at the same time, if you want to monitor several items. If
you want to launch a halmeter without tying up a shell window, type “halmeter &” to run it in the
background. You can also make halmeter start displaying a specific item immediately, by adding
“pin|sig|par[am] <name>” to the command line. It will display the pin, signal, or parameter
<name> as soon as it starts. (If there is no such item, it will simply start normally.) And finally, if
you specify an item to display, you can add “-s” before the pin|sig|param to tell halmeter to use a
small window. The item name will be displayed in the title bar instead of under the value, and there
will be no buttons. Usefull when you want a lot of meters in a small amount of screen space.

10.3 Halscope

Halscope is an “oscilloscope” for the HAL. It lets you capture the value of pins, signals, and param-
eters as a function of time. Complete operating instructions should be located here eventually. For

75

CHAPTER 10. TOOLS AND UTILITIES 76

now, refer to section 7.6 in the tutorial chapter, which explains the basics.

CHAPTER 10. TOOLS AND UTILITIES 77

10.4 Halshow

The script halshow can help you find your away around a running HAL. This is a very specialized
system and it must connect to a working HAL. It can not run stand alone because it relies on the
ability of HAL to report what it knows of itself through the halcmd interface library. It is discovery
based. Each time halshow runs with a different EMC configuration it will be different.

As we will soon see, this ability of HAL to document itself is one key to making an effective CNC
system.

10.4.1 Starting Halshow

Halshow is in the AXIS menu under Machine/Show Hal Configuration.

Halshow is in the TkEMC menu under Scripts/Hal Show.

10.4.2 Hal Tree Area

At the left of its display as shown in figure 10.1 is a tree view, somewhat like you might see with
some file browsers. At the right is a tabbed notebook with tabs for show and watch.

Figure 10.1: Halshow Layout

CHAPTER 10. TOOLS AND UTILITIES 78

Figure 10.2: Show Menu

The tree shows all of the major parts of a HAL. In front of each is a small plus (+) or minus (-) sign
in a box. Clicking the plus will expand that tree node to display what is under it. If that box shows
a minus sign clicking it will close that section of the tree.

You can also expand or collapse the tree display using the Tree View menu at the upper left edge of
the display. This menu is shown in figure xx

10.4.3 Hal Show Area

Clicking on the node name rather than its plus or minus sign, the word “Components” for example,
will show you all that hal knows about the contents of it. Figure 10.1 shows a list exactly like you
will see if you click the “Components” name while you are running a standard m5i20 servo card.
The information display is exactly like those shown in traditional text based HAL analysis tools. The
advantage here is that we have mouse click access. Access that can be as broad or as focused as
you need.

If we take a closer look at the tree display we can see that the six major parts of a HAL can all
be expanded at least one level. As these levels are expanded you can get more focused with the
reply when you click on the rightmost tree node. You will find that there are some hal pins and
parameters that show more than one reply. This is do to the nature of the search routines in
halcmd itself. If you search one pin you may get two like this.

Component Pins:
Owner Type Dir Value Name
06 bit -W TRUE parport.0.pin-10-in
06 bit -W FALSE parport.0.pin-10-in-not

The second pins name contains the complete name of the first.

Below the show area on the right is a set of widgets that will allow you to play with the running
HAL. The commands you enter here and the effect that they have on the running HAL are not saved.
They will persist as long as the emc remains up but are gone as soon as it is.

The entry box labeled Test Hal Command : will accept any of the commands listed for halcmd.
These include;

• loadrt, unloadrt

• addf, delf

CHAPTER 10. TOOLS AND UTILITIES 79

• newsig, delsig

• linkpp, linksp, linkps, unlinkp

• setp, sets

This little editor will enter a command any time you press <enter> or push the execute button.
An error message from halcmd will show below this entry widget when these commands are not
properly formed. If you are not certain how to set up a proper command you’ll need to read again
the documentation on halcmd and the specific modules that you are working with.

Let’s use this editor to add a differential module to a hal and connect it to axis position so that we
could see the rate of change in position, ie acceleration. We first need to load a hal module named
blocks, add it to the servo thread, then connect it to the position pin of an axis. Once that is done
we can find the output of the differentiator in halscope. So let’s go. (yes I looked this one up.)

loadrt blocks ddt=1

Now look at the components node and you should see blocks in there someplace.

Loaded HAL Components:
ID Type Name
10 User halcmd29800
09 User halcmd29374
08 RT blocks
06 RT hal_parport
05 RT scope_rt
04 RT stepgen
03 RT motmod
02 User iocontrol

Sure enough there it is. Notice that its id is 08. Next we need to find out what functions are available
with it so we look at functions.

Exported Functions:
Owner CodeAddr Arg FP Users Name
08 E0B97630 E0DC7674 YES 0 ddt.0
03 E0DEF83C 00000000 YES 1 motion-command-handler
03 E0DF0BF3 00000000 YES 1 motion-controller
06 E0B541FE E0DC75B8 NO 1 parport.0.read
06 E0B54270 E0DC75B8 NO 1 parport.0.write
06 E0B54309 E0DC75B8 NO 0 parport.read-all
06 E0B5433A E0DC75B8 NO 0 parport.write-all
05 E0AD712D 00000000 NO 0 scope.sample
04 E0B618C1 E0DC7448 YES 1 stepgen.capture-position
04 E0B612F5 E0DC7448 NO 1 stepgen.make-pulses
04 E0B614AD E0DC7448 YES 1 stepgen.update-freq

Here we look for owner #08 and see that blocks has exported a function named ddt.0. We should be
able to add ddt.0 to the servo thread and it will do its math each time the servo thread is updated.
Once again I look up the addf command and find that it uses three arguments like this.

addf <functname> <threadname> [<position>]

We already know the functname=ddt.0 so let’s get the thread name right by expanding the thread
node in the tree. Here we see two threads servo-thread and base-thread. The position of ddt.0 in
the thread is not critical.

CHAPTER 10. TOOLS AND UTILITIES 80

Figure 10.3: Addf Command

addf ddt.0 servo-thread

This is just for viewing so we leave position blank and get the last position in the thread. Figure 10.3
shows the state of halshow after this command has been issued.

Next we need to connect this block to something. But how do we know what pins are available. The
answer is look under pins. There we find ddt and see this.

Component Pins:
Owner Type Dir Value Name
08 float R- 0.00000e+00 ddt.0.in
08 float -W 0.00000e+00 ddt.0.out

That looks easy enough to understand but what signal or pin do we want to connect to it. It could
be an axis pin, a stepgen pin, or a signal. I see this when I look at axis.0.

Component Pins:
Owner Type Dir Value Name
03 float -W 0.00000e+00 axis.0.motor-pos-cmd ==> Xpos-cmd

So it looks like Xpos-cmd should be a good signal to use. Back to the editor where I enter the
following command.

CHAPTER 10. TOOLS AND UTILITIES 81

linksp Xpos-cmd ddt.0.in

Now if I look at the Xpos-cmd signal using the tree node I’ll see what I’ve done.

Signals:
Type Value Name
float 0.00000e+00 Xpos-cmd
<== axis.0.motor-pos-cmd
==> ddt.0.in
==> stepgen.0.position-cmd

We see that this signal comes from axis.o.motor-pos-cmd and goes to both ddt.0.in and stepgen.0.position-
cmd. By connecting our block to the signal we have avoided any complications with the normal flow
of this motion command.

The Hal Show Area uses halcmd to discover what is happening in a running HAL. It gives you
complete information about what it has discovered. It also updates as you issue commands from
the little editor panel to modify that HAL. There are times when you want a different set of things
displayed without all of the information available in this area. That is where the Hal Watch Area is
of value.

10.4.4 Hal Watch Area

Clicking the watch tab produces a blank canvas. You can add signals and pins to this canvas and
watch their values.1 You can add signals or pins when the watch tab is displayed by clicking on
the name of it. Figure 10.4 shows this canvas with several “bit” type signals. These signals include
enable-out for the first three axes and two of the three iocontrol “estop” signals. Notice that the
axes are not enabled even though the estop signals say that the EMC is not in estop. A quick look
at themc shows that the condition of the EMC is ESTOP RESET. The amp enables do not turn true
until the machine has been turned on.

The two colors of circles, aka leds, always show dark brown when a bit signal or pin is false. They
show the light yellow whenever that signal is true. If you select a pin or signal that is not a bit typed
signal, watch will show the numerical value.

Watch will quickly allow you to test switches or see the effect of changes that you make to EMC
while using the graphical interface. Watch’s refresh rate is a bit slow to see stepper pulses but you
can use it for these if you move an axis very slowly or in very small increments of distance. If you’ve
used IO_Show in EMC, the watch page in halshow can be setup to watch a parport much as it did.

1The refresh rate of the watch display is much lower than Halmeter or Halscope. If you need good resolution of the timing
of signals these tools are much more effective.

CHAPTER 10. TOOLS AND UTILITIES 82

Figure 10.4: Watch Display

Chapter 11

comp: a tool for creating HAL
modules

11.1 Introduction

Writing a HAL component can be a tedious process, most of it in setup calls to rtapi_ and hal_
functions and associated error checking. comp will write all this code for you, automatically.

Compiling a HAL component is also much easier when using comp, whether the component is part
of the emc2 source tree, or outside it.

For instance, the “ddt” portion of blocks is around 80 lines of code. The equivalent component is
very short when written using the comp preprocessor:

component ddt "Compute the derivative of the input function";
pin in float in;
pin out float out;
variable float old;
function _;
license "GPL";
;;
float tmp = in;
out = (tmp - old) / fperiod;
old = tmp;

and it can be compiled and installed very easily: by simply placing ddt.comp in src/hal/components
and running ’make’, or by placing it anywhere on the system and running comp --install ddt.comp

11.2 Definitions

component A component is a single real-time module, which is loaded with halcmd loadrt. One
.comp file specifies one component.

instance A component can have zero or more instances. Each instance of a component is created
equal (they all have the same pins, parameters, functions, and data) but behave independently
when their pins, parameters, and data have different values.

singleton It is possible for a component to be a ’singleton’, in which case exactly one instance is
created. It seldom makes sense to write a singleton component, unless there can literally
only be a single object of that kind in the system (for instance, a component whose purpose is
to provide a pin with the current UNIX time, or a hardware driver for the internal PC speaker)

83

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 84

11.3 Instance creation

For a singleton, the one instance is created when the component is loaded.

For a non-singleton, the ’count’ module parameter determines how many numbered instances are
created.

11.4 Syntax

A .comp file consists of a number of declarations, followed by ;; on a line of its own, followed by C
code implementing the module’s functions.

Declarations include:

• component HALNAME (DOC);

• pin PINDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE : CONDSIZE]) (if CONDITION) (=
STARTVALUE) (DOC);

• param PARAMDIRECTION TYPE HALNAME ([SIZE]|[MAXSIZE : CONDSIZE]) (if CONDITION)
(= STARTVALUE) (DOC) ;

• function HALNAME (fp | nofp) (DOC);

• option OPT (VALUE);

• variable CTYPE NAME ([SIZE]);

• description DOC;

• see_also DOC;

• license LICENSE;

Parentheses indicate optional items. A vertical bar indicates alternatives. Words in CAPITALS
indicate variable text, as follows:

HALNAME An identifier.

When used to create a HAL identifier, any underscores are replaced with dashes, and any
trailing dash or period is removed, so that “this_name_” will be turned into “this-name”, and
if the name is “_”, then a trailing period is removed as well, so that “function _” gives a HAL
function name like component.<num> instead of component.<num>.

If present, the prefix hal_ is removed from the beginning of the component name when creating
pins, parameters and functions.

In the HAL identifier for a pin or parameter, # denotes an array item, and must be used in
conjunction with a [SIZE] declaration. The hash marks are replaced with a 0-padded number
with the same length as the number of # characters.

When used to create a C identifier, the following changes are applied to the HALNAME:

1. Any # characters, and any “.”, “_” or “-” characters immediately before them, are removed.

2. Any remaining “.” and “-” characters are replaced with “_”

3. Repeated “_” characters are changed to a single “_” character.

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 85

A trailing _ is retained, so that HAL identifiers which would otherwise collide with reserved
names or keywords (e.g., ’min’) can be used.

HALNAME C Identifier HAL Identifier
x_y_z x_y_z x-y-z
x-y.z x_y_z x-y.z

x_y_z_ x_y_z_ x-y-z
x.##.y x_y(MM) x.MM.z
x.## x(MM) x.MM

if CONDITION An expression involving the variable personality which is nonzero when the pin or
parameter should be created

SIZE A number that gives the size of an array. The array items are numbered from 0 to SIZE-1.

MAXSIZE : CONDSIZE A number that gives the maximum size of the array followed by an expres-
sion involving the variable personality and which always evaluates to less than MAXSIZE. When
the array is created its size will be CONDSIZE.

DOC A string that documents the item. String can be a C-style “double quoted” string, like
"Selects the desired edge: TRUE means falling, FALSE means rising" or a Python-
style “triple quoted” string, which may include embedded newlines and quote characters, such
as:

param rw bit zot=TRUE
"""The effect of this parameter, also known as "the orb of zot",
will require at least two paragraphs to explain.

Hopefully these paragraphs have allowed you to understand "zot"
better.""";

The documentation string is in “groff -man” format. For more information on this markup
format, see groff_man(7). Remember that comp interprets backslash escapes in strings, so
for instance to set the italic font for the word example, write "\\fIexample\\fB".

TYPE One of the HAL types: bit, signed, unsigned, or float. The old names s32 and u32 may
also be used, but signed and unsigned are preferred.

PINDIRECTION One of the following: in, out, or io. A component sets a value for an out pin, it
reads a value from an in pin, and it may read or set the value of an io pin.

PARAMDIRECTION One of the following: r or rw. A component sets a value for a r parameter, and
it may read or set the value of a rw parameter.

STARTVALUE Specifies the initial value of a pin or parameter. If it is not specified, then the default
is 0 or FALSE, depending on the type of the item.

fp Indicates that the function performs floating-point calculations.

nofp Indicates that it only performs integer calculations. If neither is specified, fp is assumed.
Neither comp nor gcc can detect the use of floating-point calculations in functions that are
tagged nofp.

OPT, VALUE Depending on the option name OPT, the valid VALUEs vary. The currently defined
options are:

option singleton yes (default: no)
Do not create a count module parameter, and always create a single instance. With
singleton, items are named component-name.item-name and without singleton, items
for numbered instances are named component-name.<num>.item-name.

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 86

option default_count number (default: 1)
Normally, the module parameter count defaults to 0. If specified, the count will default
to this value instead.

option count_function yes (default: no)
Normally, the number of instances to create is specified in the module parameter count; if
count_function is specified, the value returned by the function int get_count(void)
is used instead, and the count module parameter is not defined.

option rtapi_app no (default: yes)
Normally, the functions rtapi_app_main and rtapi_app_exit are automatically defined.
With option rtapi_app no, they are not, and must be provided in the C code.
When implementing your own rtapi_app_main, call the function int export(char *prefix,
long extra_arg) to register the pins, parameters, and functions for prefix.

option data type (default: none) DEPRECATED

If specified, each instance of the component will have an associated data block of type
(which can be a simple type like float or the name of a type created with typedef).
In new components, variable should be used instead.

option extra_setup yes (default: no)

If specified, call the function defined by EXTRA_SETUP for each instance. If using the automat-
ically defined rtapi_app_main, extra_arg is the number of this instance.

option extra_cleanup yes (default: no)
If specified, call the function defined by EXTRA_CLEANUP from the automatically defined
rtapi_app_exit, or if an error is detected in the automatically defined rtapi_app_main.

option userspace yes (default: no)
If specified, this file describes a userspace component, rather than a real one. A userspace
component may not have functions defined by the function directive. Instead, after all the
instances are constructed, the C function user_mainloop() is called. When this function
returns, the component exits. Typically, user_mainloop() will use FOR_ALL_INSTS() to
perform the update action for each instance, then sleep for a short time. Another common
action in user_mainloop() may be to call the event handler loop of a GUI toolkit.

option userinit yes (default: no)
If specified, the function userinit(argc,argv) is called before rtapi_app_main() (and
thus before the call to hal_init()). This function may process the commandline argu-
ments or take other actions. Its return type is void; it may call exit() if it wishes to
terminate rather than create a hal component (for instance, because the commandline
arguments were invalid).

If an option’s VALUE is not specified, then it is equivalent to specifying option ... yes. The
result of assigning an inappropriate value to an option is undefined. The result of using any
other option is undefined.

LICENSE Specify the license of the module, for the documentation and for the MODULE_LICENSE()
module declaration.

11.5 Per-instance data storage

variable CTYPE NAME;

variable CTYPE NAME[SIZE];

variable CTYPE NAME = DEFAULT;

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 87

variable CTYPE NAME[SIZE] = DEFAULT;

Declare a per-instance variable NAME of type CTYPE, optionally as an array of SIZE items, and
optionally with a default value DEFAULT. Items with no DEFAULT are initialized to all-bits-
zero. CTYPE is a simple one-word C type, such as float, u32, s32, etc.
Access to array variables uses square brackets.

C++-style one-line comments (// ...) and C-style multi-line comments (/* ... */) are both
supported in the declaration section.

11.6 Other restrictions on comp files

Though HAL permits a pin, a parameter, and a function to have the same name, comp does not.

11.7 Convenience Macros

Based on the items in the declaration section, comp creates a C structure called struct state.
However, instead of referring to the members of this structure (e.g., *(inst->name)), they will
generally be referred to using the macros below. The details of struct state and these macros
may change from one version of comp to the next.

FUNCTION(name) Use this macro to begin the definition of a realtime function which was previ-
ously declared with ’function NAME’. The function includes a parameter ’period’ which is the
integer number of nanoseconds between calls to the function.

EXTRA_SETUP() Use this macro to begin the definition of the function called to perform extra setup
of this instance. Return a negative Unix errno value to indicate failure (e.g., return -EBUSY
on failure to reserve an I/O port), or 0 to indicate success.

EXTRA_CLEANUP() Use this macro to begin the definition of the function called to perform extra
cleanup of the component. Note that this function must clean up all instances of the com-
ponent, not just one. The ’pin_name’, ’parameter_name’, and ’data’ macros may not be used
here.

pin_name

parameter_name For each pin pin_name or param parameter_name there is a macro which allows
the name to be used on its own to refer to the pin or parameter.

When pin_name or parameter_name is an array, the macro is of the form pin_name(idx) or
param_name(idx) where idx is the index into the pin array. When the array is a variable-sized
array, it is only legal to refer to items up to its condsize.

When the item is a conditional item, it is only legal to refer to it when its condition evalued to
a nonzero value.

variable_name For each variable variable_name there is a macro which allows the name to be
used on its own to refer to the variable. When variable_name is an array, the normal C-style
subscript is used: variable_name[idx]

data If ’option data’ is specified, this macro allows access to the instance data.

fperiod The floating-point number of seconds between calls to this realtime function.

FOR_ALL_INSTS() {...} For userspace components. This macro uses the variable struct state

*inst to iterate over all the defined instances. Inside the body of the loop, the pin_name,
parameter_name, and data macros work as they do in realtime functions.

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 88

11.8 Components with one function

If a component has only one function and the string “FUNCTION” does not appear anywhere after
;;, then the portion after ;; is all taken to be the body of the component’s single function.

11.9 Component “Personality”

If a component has any pins or parameters with an “if condition” or “[maxsize : condsize]”, it is called
a component with “personality”. The “personality” of each instance is specified when the module
is loaded. “Personality” can be used to create pins only when needed. For instance, personality is
used in the logic component, to allow for a variable number of input pins to each logic gate and to
allow for a selection of any of the basic boolean logic functions and, or, and xor.

11.10 Compiling .comp files in the source tree

Place the .comp file in the source directory emc2/src/hal/components and re-run make. Comp files
are automatically detected by the build system.

If a .comp file is a driver for hardware, it may be placed in emc2/src/hal/components and will be
built except if emc2 is configured as a userspace simulator.

11.11 Compiling realtime components outside the source tree

comp can process, compile, and install a realtime component in a single step, placing rtexample.ko
in the emc2 realtime module directory:

comp --install rtexample.comp

Or, it can process and compile in one step, leaving example.ko (or example.so for the simulator)
in the current directory:

comp --compile rtexample.comp

Or it can simply process, leaving example.c in the current directory:

comp rtexample.comp

comp can also compile and install a component written in C, using the --install and --compile
options shown above:

comp --install rtexample2.c

man-format documentation can also be created from the information in the declaration section:

comp --document rtexample.comp

The resulting manpage, example.9 can be viewed with

man ./example.9

or copied to a standard location for manual pages.

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 89

11.12 Compiling userspace components outside the source tree

comp can process, compile, install, and document userspace components:

comp usrexample.comp
comp --compile usrexample.comp
comp --install usrexample.comp
comp --document usrexample.comp

This only works for .comp files, not for .c files.

11.13 Examples

11.13.1 constant

This component functions like the one in ’blocks’, including the default value of 1.0. The declaration
“function _” creates functions named ’constant.0’, etc.

component constant;
pin out float out;
param r float value = 1.0;
function _;
;;
FUNCTION(_) { out = value; }

11.13.2 sincos

This component computes the sine and cosine of an input angle in radians. It has different ca-
pabilities than the ’sine’ and ’cosine’ outputs of siggen, because the input is an angle, rather than
running freely based on a ’frequency’ parameter.

The pins are declared with the names sin_ and cos_ in the source code so that they do not interfere
with the functions sin() and cos(). The HAL pins are still called sincos.<num>.sin.

component sincos;
pin out float sin_;
pin out float cos_;
pin in float theta;
function _;
;;
#include <rtapi_math.h>
FUNCTION(_) { sin_ = sin(theta); cos_ = cos(theta); }

11.13.3 out8

This component is a driver for a fictional card called “out8”, which has 8 pins of digital output
which are treated as a single 8-bit value. There can be a varying number of such cards in the
system, and they can be at various addresses. The pin is called out_ because out is an identifier
used in <asm/io.h>. It illustrates the use of EXTRA_SETUP and EXTRA_CLEANUP to request an I/O
region and then free it in case of error or when the module is unloaded.

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 90

component out8;
pin out unsigned out_ "Output value; only low 8 bits are used";
param r unsigned ioaddr;

function _;

option count_function;
option extra_setup;
option extra_cleanup;
option constructable no;

;;
#include <asm/io.h>

#define MAX 8
int io[MAX] = {0,};
RTAPI_MP_ARRAY_INT(io, MAX, "I/O addresses of out8 boards");

int get_count(void) {
int i = 0;
for(i=0; i<MAX && io[i]; i++) { /* Nothing */ }
return i;

}

EXTRA_SETUP() {
if(!rtapi_request_region(io[extra_arg], 1, "out8")) {

// set this I/O port to 0 so that EXTRA_CLEANUP does not release the IO
// ports that were never requested.

io[extra_arg] = 0;
return -EBUSY;

}
ioaddr = io[extra_arg];
return 0;

}

EXTRA_CLEANUP() {
int i;
for(i=0; i < MAX && io[i]; i++) {

rtapi_release_region(io[i], 1);
}

}

FUNCTION(_) { outb(out_, ioaddr); }

11.13.4 hal_loop

component hal_loop;
pin out float example;

This fragment of a component illustrates the use of the hal_ prefix in a component name. loop is
the name of a standard Linux kernel module, so a loop component might not successfully load if
the Linux loop module was also present on the system.

When loaded, halcmd show comp will show a component called hal_loop. However, the pin shown
by halcmd show pin will be loop.0.example, not hal-loop.0.example.

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 91

11.13.5 arraydemo

This realtime component illustrates use of fixed-size arrays:

component arraydemo "4-bit Shift register";
pin in bit in;
pin out bit out-# [4];
function _ nofp;
;;
int i;
for(i=3; i>0; i--) out(i) = out(i-1);
out(0) = in;

11.13.6 rand

This userspace component changes the value on its output pin to a new random value in the range
[0, 1) about once every 1ms.

component rand;
option userspace;

pin out float out;
;;
#include <unistd.h>

void user_mainloop(void) {
while(1) {

usleep(1000);
FOR_ALL_INSTS() out = drand48();

}
}

11.13.6.1 logic

This realtime component shows how to use “personality” to create variable-size arrays and optional
pins.

component logic;
pin in bit in-##[16 : personality & 0xff];
pin out bit and if personality & 0x100;
pin out bit or if personality & 0x200;
pin out bit xor if personality & 0x400;
function _ nofp;
description """
Experimental general ‘logic function’ component. Can perform ‘and’, ‘or’
and ‘xor’ of up to 16 inputs. Determine the proper value for ‘personality’
by adding:
.IP \\(bu 4
The number of input pins, usually from 2 to 16
.IP \\(bu
256 (0x100) if the ‘and’ output is desired
.IP \\(bu
512 (0x200) if the ‘or’ output is desired

CHAPTER 11. COMP: A TOOL FOR CREATING HAL MODULES 92

.IP \\(bu
1024 (0x400) if the ‘xor’ (exclusive or) output is desired""";
license "GPL";
;;
FUNCTION(_) {

int i, a=1, o=0, x=0;
for(i=0; i < (personality & 0xff); i++) {

if(in(i)) { o = 1; x = !x; }
else { a = 0; }

}
if(personality & 0x100) and = a;
if(personality & 0x200) or = o;
if(personality & 0x400) xor = x;

}

A typical load line for this component might be

loadrt logic count=3 personality=0x102,0x305,0x503

which creates the following pins:

• A 2-input AND gate: logic.0.and, logic.0.in-00, logic.0.in-01

• 5-input AND and OR gates: logic.1.and, logic.1.or, logic.1.in-00, logic.1.in-01, logic.1.in-02,
logic.1.in-03, logic.1.in-04,

• 3-input AND and XOR gates: logic.2.and, logic.2.xor, logic.2.in-00, logic.2.in-01, logic.2.in-02

Chapter 12

Creating Userspace Python
Components with the ’hal’ module

12.1 Basic usage

A userspace component begins by creating its pins and parameters, then enters a loop which will
periodically drive all the outputs from the inputs. The following component copies the value seen
on its input pin (passthrough.in) to its output pin (passthrough.out) approximately once per
second.

#!/usr/bin/python
import hal, time
h = hal.component("passthrough")
h.newpin("in", hal.HAL_FLOAT, hal.HAL_IN)
h.newpin("out", hal.HAL_FLOAT, hal.HAL_OUT)
h.ready()
try:

while 1:
time.sleep(1)
h[’out’] = h[’in’]

except KeyboardInterrupt:
raise SystemExit

Copy the above listing into a file named “passthrough”, make it executable (chmod +x), and place
it on your $PATH. Then try it out:

$ halrun
halcmd: loadusr passthrough
halcmd: show pin
Component Pins:
Owner Type Dir Value Name
03 float IN 0 passthrough.in
03 float OUT 0 passthrough.out

halcmd: setp passthrough.in 3.14
halcmd: show pin
Component Pins:
Owner Type Dir Value Name
03 float IN 3.14 passthrough.in
03 float OUT 3.14 passthrough.out

93

CHAPTER 12. CREATING USERSPACE PYTHON COMPONENTS WITH THE ’HAL’ MODULE 94

12.2 Userspace components and delays

If you typed “show pin” quickly, you may see that passthrough.out still had its old value of 0. This
is because of the call to ’time.sleep(1)’, which makes the assignment to the output pin occur at most
once per second. Because this is a userspace component, the actual delay between assignments
can be much longer–for instance, if the memory used by the passthrough component is swapped to
disk, the assignment could be delayed until that memory is swapped back in.

Thus, userspace components are suitable for user-interactive elements such as control panels (de-
lays in the range of milliseconds are not noticed, and longer delays are acceptable), but not for
sending step pulses to a stepper driver board (delays must always be in the range of microseconds,
no matter what).

12.3 Create pins and parameters

h = hal.component("passthrough")

The component itself is created by a call to the constructor ’hal.component’. The arguments are
the HAL component name and (optionally) the prefix used for pin and parameter names. If the prefix
is not specified, the component name is used.

h.newpin("in", hal.HAL_FLOAT, hal.HAL_IN)

Then pins are created by calls to methods on the component object. The arguments are: pin name
suffix, pin type, and pin direction. For parameters, the arguments are: parameter name suffix,
parameter type, and parameter direction.

Table 12.1: HAL Option Names
Pin and Parameter Types: HAL_BIT HAL_FLOAT HAL_S32 HAL_U32

Pin Directions: HAL_IN HAL_OUT HAL_IO
Parameter Directions: HAL_RO HAL_RW

The full pin or parameter name is formed by joining the prefix and the suffix with a “.”, so in the
example the pin created is called passthrough.in.

h.ready()

Once all the pins and parameters have been created, call the .ready() method.

12.3.1 Changing the prefix

The prefix can be changed by calling the .setprefix() method. The current prefix can be retrieved
by calling the .getprefix() method.

12.4 Reading and writing pins and parameters

For pins and parameters which are also proper Python identifiers, the value may be accessed or set
using the attribute syntax:

h.out = h.in

For all pins, whether or not they are also proper Python identifiers, the value may be accessed or
set using the subscript syntax:

h[’out’] = h[’in’]

CHAPTER 12. CREATING USERSPACE PYTHON COMPONENTS WITH THE ’HAL’ MODULE 95

12.4.1 Driving output (HAL_OUT) pins

Periodically, usually in response to a timer, all HAL_OUT pins should be “driven” by assigning them
a new value. This should be done whether or not the value is different than the last one assigned.
When a pin is connected to a signal, its old output value is not copied into the signal, so the proper
value will only appear on the signal once the component assigns a new value.

12.4.2 Driving bidirectional (HAL_IO) pins

The above rule does not apply to bidirectional pins. Instead, a bidirectional pin should only be driven
by the component when the component wishes to change the value. For instance, in the canonical
encoder interface, the encoder component only sets the index-enable pin to FALSE (when an index
pulse is seen and the old value is TRUE), but never sets it to TRUE. Repeatedly driving the pin
FALSE might cause the other connected component to act as though another index pulse had been
seen.

12.5 Exiting

A “halcmd unload” request for the component is delivered as a KeyboardInterrupt exception.
When an unload request arrives, the process should either exit in a short time, or call the .exit()
method on the component if substantial work (such as reading or writing files) must be done to
complete the shutdown process.

12.6 Project ideas

• Create an external control panel with buttons, switches, and indicators. Connect everything
to a microcontroller, and connect the microcontroller to the PC using a serial interface. Python
has a very capable serial interface module called pyserial http://pyserial.sourceforge.
net/ (Ubuntu package name “python-serial”, in the universe repository)

• Attach a LCDProc http://lcdproc.omnipotent.net/-compatible LCD module and use it to
display a digital readout with information of your choice (Ubuntu package name “lcdproc”, in
the universe repository)

• Create a virtual control panel using any GUI library supported by Python (gtk, qt, wxwindows,
etc)

http://pyserial.sourceforge.net/
http://pyserial.sourceforge.net/
http://lcdproc.omnipotent.net/

Part VII

EMC related HAL

96

Chapter 13

Basic configurations for a stepper
based system

13.1 Introduction

The preferred way to set up a standard stepper machine is with the Step Configuration Wizard. See
the Getting Started Guide for more information on the Step Configuration Wizard.

This chapter describes some of the more common settings for manually setting up a stepper based
system. Because of the various possibilities of configuring EMC2, it is very hard to document them
all, and keep this document relatively short.

The most common EMC2 usage is for stepper based systems. These systems are using stepper
motors with drives that accept step & direction signals.

It is one of the simpler setups, because the motors run open-loop (no feedback comes back from the
motors), yet the system needs to be configured properly so the motors don’t stall or lose steps.

Most of this chapter is based on the sample config released along with EMC2. The config is called
stepper, and usually it is found in /etc/emc2/sample-configs/stepper.

13.2 Maximum step rate

With software step generation, the maximum step rate is one step per two BASE_PERIODs for step-
and-direction output. The maximum requested step rate is the product of an axis’s MAX_VELOCITY
and its INPUT_SCALE. If the requested step rate is not attainable, following errors will occur, par-
ticularly during fast jogs and G0 moves.

If your stepper driver can accept quadrature input, use this mode. With a quadrature signal, one
step is possible for each BASE_PERIOD, doubling the maximum step rate.

The other remedies are to decrease one or more of: the BASE_PERIOD (setting this too low will cause
the machine to become unresponsive or even lock up), the INPUT_SCALE (if you can select different
step sizes on your stepper driver, change pulley ratios, or leadscrew pitch), or the MAX_VELOCITY
and STEPGEN_MAXVEL.

If no valid combination of BASE_PERIOD, INPUT_SCALE, and MAX_VELOCITY is acceptable, then
hardware step generation (such as with the EMC2-supported Universal Stepper Controller)

97

CHAPTER 13. BASIC CONFIGURATIONS FOR A STEPPER BASED SYSTEM 98

13.3 Pinout

One of the major flaws in EMC was that you couldn’t specify the pinout without recompiling the
source code. EMC2 is far more flexible, and now (thanks to the Hardware Abstraction Layer) you
can easily specify which signal goes where. (read the 6.1 section for more information about the
HAL).

As it is described in the HAL Introduction and tutorial, we have signals, pins and parameters inside
the HAL.

The ones relevant for our pinout are1:

signals: Xstep, Xdir & Xen
pins: parport.0.pin-XX-out & parport.0.pin-XX-in 2

Depending on what you have chosen in your ini file you are using either standard_pinout.hal or
xylotex_pinout.hal. These are two files that instruct the HAL how to link the various signals & pins.
Further on we’ll investigate the standard_pinout.hal.

13.3.1 standard_pinout.hal

This file contains several HAL commands, and usually looks like this:

standard pinout config file for 3-axis steppers
using a parport for I/O
#
first load the parport driver
loadrt hal_parport cfg="0x0378"
#
next connect the parport functions to threads
read inputs first
addf parport.0.read base-thread 1
write outputs last
addf parport.0.write base-thread -1
#
finally connect physical pins to the signals
net Xstep => parport.0.pin-03-out
net Xdir => parport.0.pin-02-out
net Ystep => parport.0.pin-05-out
net Ydir => parport.0.pin-04-out
net Zstep => parport.0.pin-07-out
net Zdir => parport.0.pin-06-out

create a signal for the estop loopback
net estop-loop iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

create signals for tool loading loopback
net tool-prep-loop iocontrol.0.tool-prepare iocontrol.0.tool-prepared
net tool-change-loop iocontrol.0.tool-change iocontrol.0.tool-changed

connect "spindle on" motion controller pin to a physical pin
net spindle-on motion.spindle-on => parport.0.pin-09-out

1Note: we are only presenting one axis to keep it short, all others are similar.
2Refer to section 16.1 for additional information

CHAPTER 13. BASIC CONFIGURATIONS FOR A STEPPER BASED SYSTEM 99

###
You might use something like this to enable chopper drives when machine ON
the Xen signal is defined in core_stepper.hal
###

net Xen => parport.0.pin-01-out

###
If you want active low for this pin, invert it like this:
###

setp parport.0.pin-01-out-invert 1

###
A sample home switch on the X axis (axis 0). make a signal,
link the incoming parport pin to the signal, then link the signal
to EMC’s axis 0 home switch input pin
###

net Xhome parport.0.pin-10-in => axis.0.home-sw-in

###
Shared home switches all on one parallel port pin?
that’s ok, hook the same signal to all the axes, but be sure to
set HOME_IS_SHARED and HOME_SEQUENCE in the ini file. See the
user manual!
###

net homeswitches <= parport.0.pin-10-in
net homeswitches => axis.0.home-sw-in
net homeswitches => axis.1.home-sw-in
net homeswitches => axis.2.home-sw-in

###
Sample separate limit switches on the X axis (axis 0)
###

net X-neg-limit parport.0.pin-11-in => axis.0.neg-lim-sw-in
net X-pos-limit parport.0.pin-12-in => axis.0.pos-lim-sw-in

###
Just like the shared home switches example, you can wire together
limit switches. Beware if you hit one, EMC will stop but can’t tell
you which switch/axis has faulted. Use caution when recovering from this.
###

net Xlimits parport.0.pin-13-in => axis.0.neg-lim-sw-in axis.0.pos-lim-sw-in

The files starting with ’#’ are comments, and their only purpose is to guide the reader through the
file.

13.3.2 Overview of the standard_pinout.hal

There are a couple of operations that get executed when the standard_pinout.hal gets executed /
interpreted:

CHAPTER 13. BASIC CONFIGURATIONS FOR A STEPPER BASED SYSTEM 100

1. The Parport driver gets loaded (see 16.1 for details)

2. The read & write functions of the parport driver get assigned to the Base thread 3

3. The step & direction signals for axes X,Y,Z get linked to pins on the parport

4. Further IO signals get connected (e-stop loopback, toolchanger loopback)

5. A spindle On signal gets defined and linked to a parport pin

13.3.3 Changing the standard_pinout.hal

If you want to change the standard_pinout.hal file, all you need is a text editor. Open the file and
locate the parts you want to change.

If you want for example to change the pin for the X-axis Step & Directions signals, all you need to
do is to change the number in the ’parport.0.pin-XX-out’ name:

linksp Xstep parport.0.pin-03-out
linksp Xdir parport.0.pin-02-out

can be changed to:

linksp Xstep parport.0.pin-02-out
linksp Xdir parport.0.pin-03-out

or basically any other numbers you like.

Hint: make sure you don’t have more than one signal connected to the same pin.

13.3.4 Changing the polarity of a signal

If external hardware expects an “active low” signal, set the corresponding -invert parameter. For
instance, to invert the spindle control signal:

setp parport.0.pin-09-invert TRUE

13.3.5 Adding PWM Spindle Speed Control

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:

loadrt pwmgen output_type=0
addf pwmgen.update servo-thread
addf pwmgen.make-pulses base-thread
net spindle-speed-cmd motion.spindle-speed-out => pwmgen.0.value
net spindle-on motion.spindle-on => pwmgen.0.enable
net spindle-pwm pwmgen.0.pwm => parport.0.pin-09-out
setp pwmgen.0.scale 1800 # Change to your spindle’s top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

3the fastest thread in the EMC2 setup, usually the code gets executed every few microseconds

CHAPTER 13. BASIC CONFIGURATIONS FOR A STEPPER BASED SYSTEM 101

13.3.6 Adding an enable signal

Some amplifiers (drives) require an enable signal before they accept and command movement of the
motors. For this reason there are already defined signals called ’Xen’, ’Yen’, ’Zen’.

To connect them use the following example:

linksp Xen parport.0.pin-08-out

You can either have one single pin that enables all drives, or several, depending on the setup you
have. Note however that usually when one axis faults, all the other ones will be disabled as well, so
having only one signal / pin is perfectly safe.

13.3.7 Adding an external E-STOP button

As you can see in 13.3.1 by default the stepper configuration assumes no external E-STOP button.
4

To add a simple external button you need to replace the line:

linkpp iocontrol.0.user-enable-out iocontrol.0.emc-enable-in

with

linkpp parport.0.pin-01-in iocontrol.0.emc-enable-in

This assumes an E-STOP switch connected to pin 01 on the parport. As long as the switch will
stay pushed5, EMC2 will be in the E-STOP state. When the external button gets released EMC2 will
immediately switch to the E-STOP-RESET state, and all you need to do is switch to Machine On and
you’ll be able to continue your work with EMC2.

4An extensive explanation of hooking up E-STOP circuitry is explained in the wiki.linuxcnc.org and in the Integrator
Manual

5make sure you use a maintained switch for E-STOP.

Chapter 14

HAL Components

14.1 Commands and Userspace Components

Some of these will have expanded descriptions from the man pages. Some will have limited descrip-
tions. All of the components have man pages. From this list you know what components exist and
can use man n name to get additional information. For example in a terminal window type man 1
axis to view the information in the man page.

axis-remote.1 = AXIS Remote Interface

axis.1 = AXIS EMC (The Enhanced Machine Controller) Graphical User Interface

bfload.1 = A program for loading a Xilinx Bitfile program into the FPGA of an Anything I/O board
from Mesa

comp.1 = Build, compile and install EMC HAL components

emc.1 = EMC (The Enhanced Machine Controller)

hal_input.1 = control HAL pins with any Linux input device, including USB HID devices

hal_joystick.1 = control HAL pins with a joystick

halcmd.1 = manipulate the Enhanced Machine Controller HAL from the command line

halmeter.1 = observe HAL pins, signals, and parameters

halrun.1 = manipulate the Enhanced Machine Controller HAL from the command line

halsampler.1 = sample data from HAL in realtime

halstreamer.1 = stream file data into HAL in real time

halui.1 = observe HAL pins and command EMC through NML

io.1 = accepts NML I/O commands, interacts with HAL in userspace

iocontrol.1 = accepts NML I/O commands, interacts with HAL in userspace

pyvcp.1 = Virtual Control Panel for EMC2

102

CHAPTER 14. HAL COMPONENTS 103

14.2 Realtime components and kernel modules

Some of these will have expanded descriptions from the man pages. Some will have limited descrip-
tions. All of the components have man pages. From this list you know what components exist and
can use man n name to get additional information.

abs.9 = Compute the absolute value and sign of the input signal

and2.9 = Two-input AND gate

at_pid.9 = proportional/integral/derivative controller with auto tuning

axis.9 = accepts NML motion commands, interacts with HAL in realtime

biquad.9 = Biquad IIR filter

blend.9 = Perform linear interpolation between two values

blocks.9 = Old style HAL blocks (deprecated)

charge_pump.9 = Create a square-wave for the âcharge pumpâ input of some controller boards

clarke2.9 = Two input version of Clarke transform

clarke3.9 = Clarke (3 phase to cartesian) transform

clarkeinv.9 = Inverse Clarke transform

classicladder.9 = Realtime software plc based on ladder logic

comp.9 = Two input comparator with hysteresis

constant.9 = Use a parameter to set the value of a pin

conv_bit_s32.9 = Convert a value from bit to s32

conv_bit_u32.9 = Convert a value from bit to u32

conv_float_s32.9 = Convert a value from float to s32

conv_float_u32.9 = Convert a value from float to u32

conv_s32_bit.9 = Convert a value from s32 to bit

conv_s32_float.9 = Convert a value from u32 to bit

conv_s32_u32.9 = Convert a value from s32 to u32

conv_u32_bit.9 = Convert a value from u32 to bit

conv_u32_float.9 = Convert a value from u32 to float

conv_u32_s32.9 = Convert a value from u32 to s32

counter.9 = counts input pulses (deprecated)

ddt.9 = Compute the derivative of the input function

deadzone.9 = Return the center if within the threshold

debounce.9 = filter noisy digital inputs, for more information see 15.6

edge.9 = Edge detector

encoder.9 = software counting of quadrature encoder signals, for more information see 15.3

CHAPTER 14. HAL COMPONENTS 104

encoder_ratio.9 = an electronic gear to synchronize two axes

estop_latch.9 = ESTOP latch

flipflop.9 = D type flip-flop

freqgen.9 = software step pulse generation

genhexkins.9 = kinematics definitions for emc2

hypot.9 = Three-input hypotenuse (Euclidean distance) calculator

integ.9 = Integrator

kins.9 = kinematics definitions for emc2

knob2float.9 = Convert counts (probably from an encoder) to a float value

limit1.9 = Limit the output signal to fall between min and max

limit2.9 = Limit the output signal to fall between min and max

limit3.9 = Limit the output signal to fall between min and max

logic.9 =

lowpass.9 = Low-pass filter

lut5.9 = Arbitrary 5-input logic function based on a look-up table

m7i43_hm2.9 = RTAI driver for the Mesa 7i43 EPP Anything IO board with HostMot2 firmware

maj3.9 = Compute the majority of 3 inputs

match8.9 = 8-bit binary match detector

minmax.9 = Track the minimum and maximum values of the input to the outputs

motion.9 = accepts NML motion commands, interacts with HAL in realtime

mult2.9 = Product of two inputs

mux2.9 = Select from one of two input values

mux4.9 = Select from one of four input values

not.9 = Inverter

offset.9 = Adds an offset to an input, and subtracts it from the feedback value

oneshot.9 = one-shot pulse generator

or2.9 = Two-input OR gate

pid.9 = proportional/integral/derivative controller, for more information see 15.4

pluto_servo.9 = Hardware driver and firmware for the Pluto-P parallel-port FPGA, for use with ser-
vos

pluto_step.9 = Hardware driver and firmware for the Pluto-P parallel-port FPGA, for use with step-
pers

pwmgen.9 = software PWM/PDM generation, for more information see 15.2

rotatekins.9 = kinematics definitions for emc2

sample_hold.9 = Sample and Hold

CHAPTER 14. HAL COMPONENTS 105

sampler.9 = sample data from HAL in real time

scale.9 =

select8.9 = 8-bit binary match detector

serport.9 = Hardware driver for the digital I/O bits of the 8250 and 16550 serial port

siggen.9 = signal generator, for more information see 15.7

sim_encoder.9 = simulated quadrature encoder, for more information see 15.5

stepgen.9 = software step pulse generation, for more information see 15.1

steptest.9 = Used by Stepconf to allow testing of acceleration and velocity values for an axis

streamer.9 = stream file data into HAL in real time

sum2.9 = Sum of two inputs (each with a gain) and an offset

supply.9 = set output pins with values from parameters (deprecated)

threads.9 = creates hard realtime HAL threads

threadtest.9 =

timedelta.9 =

toggle.9 = push-on, push-off from momentary pushbuttons

tripodkins.9 = kinematics definitions for emc2

tristate_bit.9 = Place a signal on an I/O pin only when enabled, similar to a tristate buffer in
electronics

tristate_float.9 = Place a signal on an I/O pin only when enabled, similar to a tristate buffer in
electronics

trivkins.9 = kinematics definitions for emc2

updown.9 = Counts up or down, with optional limits and wraparound behavior

wcomp.9 = Window comparator

weighted_sum.9 = convert a group of bits to an integer

xor2.9 = Two-input XOR (exclusive OR) gate

Chapter 15

Internal Components

Most components have unix-style manual pages. To view manual pages for real-time components,
type “man 9 componentname” at the terminal prompt.

This document focuses on more complicated components which have figures which are hard to
reproduce in the manual page format.

15.1 Stepgen

This component provides software based generation of step pulses in response to position or velocity
commands. In position mode, it has a built in pre-tuned position loop, so PID tuning is not required.
In velocity mode, it drives a motor at the commanded speed, while obeying velocity and acceleration
limits. It is a realtime component only, and depending on CPU speed, etc, is capable of maximum
step rates of 10kHz to perhaps 50kHz. Figure 15.1 shows three block diagrams, each is a single step
pulse generator. The first diagram is for step type ’0’, (step and direction). The second is for step
type ’1’ (up/down, or pseudo-PWM), and the third is for step types 2 through 14 (various stepping
patterns). The first two diagrams show position mode control, and the third one shows velocity
mode. Control mode and step type are set independently, and any combination can be selected.

15.1.1 Installing

emc2$ halcmd loadrt stepgen step_type=<type-array> [ctrl_type=<ctrl_array>]

<type-array> is a series of comma separated decimal integers. Each number causes a single step
pulse generator to be loaded, the value of the number determines the stepping type. <ctrl_array>
is a comma separated series of “p” or “v” characters, to specify position or velocity mode. ctrl_type
is optional, if ommitted, all of the step generators will be position mode. For example:

emc2# halcmd loadrt stepgen.o step_type=0,0,2 ctrl_type=p,p,v

will install three step generators. The first two use step type ’0’ (step and direction) and run in
position mode. The last one uses step type ’2’ (quadrature) and runs in velocity mode. The default
value for <config-array> is “0,0,0” which will install three type ’0’ (step/dir) generators. The
maximum number of step generators is 8 (as defined by MAX_CHAN in stepgen.c). Each generator
is independent, but all are updated by the same function(s) at the same time. In the following
descriptions, <chan> is the number of a specific generator. The first generator is number 0.

106

CHAPTER 15. INTERNAL COMPONENTS 107

velocity-cmd

position-cmd

position-cmd

phase-B

phase-E

phase-D

down

step

phase-A

phase-C

up

dir

pos err

pos err

vel err

vel err

counts

counts

counts

position-fb

position-fb

position-fb

maxaccel

maxaccel

maxaccel

maxfreq

maxfreq

maxfreq

position

position

position

accumulator

accumulator

accumulator

lookup
table

ramp ramp

ramp

ramp

latch

latch

latch

state

up/down

step/dir

counter

logic

logic

and

and

and

timing

timing

timing

frequency

frequency

frequency

stepspace

stepspace

dirsetup

dirdelay

dirdelay

dirhold

steplen

steplen

steplen

rawcounts

rawcounts

rawcounts

position-scale

position-scale

position-scale

d

d

dT

dT

state

hold

hold

hold

make_pulses()

make_pulses()

make_pulses()

STEP TYPE = 1

STEP TYPE = 2 - 14

CTRL TYPE = VELOCITY

CTRL TYPE = POSITION

CTRL TYPE = POSITION

STEP TYPE = 0

update_freq()

update_freq()

update_freq()

capture_position()

capture_position()

capture_position()

stepgen.0

stepgen.0

stepgen.0

1/x

1/x

1/x

control

control

equation

equation

Figure 15.1: Step Pulse Generator Block Diagram (position mode)

CHAPTER 15. INTERNAL COMPONENTS 108

velocity

velocity

velocity

phase-B

phase-E

phase-D

down

step

phase-A

phase-C

up

dir

counts

counts

counts

position

position

position

maxfreq

maxfreq

maxfreq

frequency
generator

frequency
generator

frequency
generator

state
counter

lookup
table

ramp

ramp

ramp

latch

latch

latch

counter

counter

counter

step/dir
logic
and

timing

maxaccel

maxaccel

maxaccel

frequency

frequency

frequency

stepspace

dirsetup

dirhold

steplen

rawcounts

rawcounts

rawcounts

velocity-scale

velocity-scale

velocity-scale

position-scale

position-scale

position-scale

up/dn

up/dn

up/dn

up/dn

up/dn

up/dn

count

count

count

count

count

count

make_pulses()

make_pulses()

STEP TYPE = 1

STEP TYPE = 2 - 14

STEP TYPE = 0

make_pulses()

update_freq()

update_freq()

update_freq()

capture_position()

capture_position()

capture_position()

freqgen.0

freqgen.0

freqgen.0

Figure 15.2: Step Pulse Generator Block Diagram (velocity mode)

CHAPTER 15. INTERNAL COMPONENTS 109

15.1.2 Removing

emc2$ halcmd unloadrt stepgen

15.1.3 Pins

Each step pulse generator will have only some of these pins, depending on the step type and control
type selected.

• (FLOAT) stepgen.<chan>.position-cmd – Desired motor position, in position units (position
mode only).

• (FLOAT) stepgen.<chan>.velocity-cmd – Desired motor velocity, in position units per sec-
ond (velocity mode only).

• (S32) stepgen.<chan>.counts – Feedback position in counts, updated by capture_position().

• (FLOAT) stepgen.<chan>.position-fb – Feedback position in position units, updated by
capture_position().

• (BIT) stepgen.<chan>.step – Step pulse output (step type 0 only).

• (BIT) stepgen.<chan>.dir – Direction output (step type 0 only).

• (BIT) stepgen.<chan>.up – UP pseudo-PWM output (step type 1 only).

• (BIT) stepgen.<chan>.down – DOWN pseudo-PWM output (step type 1 only).

• (BIT) stepgen.<chan>.phase-A – Phase A output (step types 2-14 only).

• (BIT) stepgen.<chan>.phase-B – Phase B output (step types 2-14 only).

• (BIT) stepgen.<chan>.phase-C – Phase C output (step types 3-14 only).

• (BIT) stepgen.<chan>.phase-D – Phase D output (step types 5-14 only).

• (BIT) stepgen.<chan>.phase-E – Phase E output (step types 11-14 only).

15.1.4 Parameters

• (FLOAT) stepgen.<chan>.position-scale – Steps per position unit. This parameter is used
for both output and feedback.

• (FLOAT) stepgen.<chan>.maxvel – Maximum velocity, in position units per second. If 0.0,
has no effect.

• (FLOAT) stepgen.<chan>.maxaccel – Maximum accel/decel rate, in positions units per sec-
ond squared. If 0.0, has no effect.

• (FLOAT) stepgen.<chan>.frequency – The current step rate, in steps per second.

• (FLOAT) stepgen.<chan>.steplen – Length of a step pulse (step type 0 and 1) or minimum
time in a given state (step types 2-14), in nano-seconds.

• (FLOAT) stepgen.<chan>.stepspace – Minimum spacing between two step pulses (step types
0 and 1 only), in nano-seconds.

• (FLOAT) stepgen.<chan>.dirsetup – Minimum time from a direction change to the begin-
ning of the next step pulse (step type 0 only), in nanoseconds.

• (FLOAT) stepgen.<chan>.dirhold – Minmum time from the end of a step pulse to a direction
change (step type 0 only), in nanoseconds.

CHAPTER 15. INTERNAL COMPONENTS 110

• (FLOAT) stepgen.<chan>.dirdelay – Minmum time any step to a step in the opposite direc-
tion (step types 1-14 only), in nano-seconds.

• (S32) stepgen.<chan>.rawcounts – The raw feedback count, updated by make_pulses().

In position mode, the values of maxvel and maxaccel are used by the internal position loop to avoid
generating step pulse trains that the motor cannot follow. When set to values that are appropriate
for the motor, even a large instantaneous change in commanded position will result in a smooth
trapezoidal move to the new location. The algorithm works by measuring both position error and
velocity error, and calculating an acceleration that attempts to reduce both to zero at the same time.
For more details, including the contents of the “control equation” box, consult the code.

In velocity mode, maxvel is a simple limit that is applied to the commanded velocity, and maxaccel
is used to ramp the actual frequency if the commanded velocity changes abruptly. As in position
mode, proper values for these parameters ensure that the motor can follow the generated pulse
train.

15.1.5 Step Types

The step generator supports 15 different “step types”. Step type 0 is the most familiar, standard step
and direction. When configured for step type 0, there are four extra parameters that determine the
exact timing of the step and direction signals. See figure 15.3 for the meaning of these parameters.
The parameters are in nanoseconds, but will be rounded up to an integer multiple of the thread
period for the threaed that calls make_pulses(). For example, if make_pulses() is called every
16uS, and steplen is 20000, then the step pulses will be 2 x 16 = 32uS long. The default value for
all four of the parameters is 1nS, but the automatic rounding takes effect the first time the code
runs. Since one step requires steplen nS high and stepspace nS low, the maximum frequency is
1,000,000,000 divided by (steplen+stepspace). If maxfreq is set higher than that limit, it will be
lowered automatically. If maxfreq is zero, it will remain zero, but the output frequency will still be
limited.

Step type 1 has two outputs, up and down. Pulses appear on one or the other, depending on
the direction of travel. Each pulse is steplen nS long, and the pulses are separated by at least
stepspace nS. The maximum frequency is the same as for step type 0. If maxfreq is set higher
than the limit it will be lowered. If maxfreq is zero, it will remain zero but the output frequency will
still be limited.

Step types 2 through 14 are state based, and have from two to five outputs. On each step, a state
counter is incremented or decremented. Figures 15.4, 15.5, and 15.6 show the output patterns as
a function of the state counter. The maximum frequency is 1,000,000,000 divided by steplen, and
as in the other modes, maxfreq will be lowered if it is above the limit.

15.1.6 Functions

The component exports three functions. Each function acts on all of the step pulse generators -
running different generators in different threads is not supported.

• (FUNCT) stepgen.make-pulses – High speed function to generate and count pulses (no float-
ing point).

• (FUNCT) stepgen.update-freq – Low speed function does position to velocity conversion,
scaling and limiting.

• (FUNCT) stepgen.capture-position – Low speed function for feedback, updates latches and
scales position.

CHAPTER 15. INTERNAL COMPONENTS 111

step lenstep len s tepspace
(min)

s tepspace
(min)

di rsetup
(min)

di rsetup
(min)

dirhold
(min)

s tep len

step

direct ion

Figure 15.3: Step and Direction Timing

The high speed function stepgen.make-pulses should be run in a very fast thread, from 10 to
50uS depending on the capabilities of the computer. That thread’s period determines the maximum
step frequency, since steplen, stepspace, dirsetup, dirhold, and dirdelay are all rounded up
to a integer multiple of the thread periond in nanoseconds. The other two functions can be called
at a much lower rate.

CHAPTER 15. INTERNAL COMPONENTS 112

0 00

1 11

2 22

1 40

0 33

2 51

0 02

1 13

2 20

0 3
4

ST
EP

 T
YP

E
3

ST
EP

 T
YP

E
4

ST
EP

 T
YP

E
2

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
C

ph
as

e-
C

Figure 15.4: Three-Phase step types

CHAPTER 15. INTERNAL COMPONENTS 113

0 0

0
0

0 0

1 1

1
1

1 1

2 2

2
2

2 2

0 0

0
0

4 4

3 3

3
3

3 3

1 1

1
1

5 5

2 2

2
2

6 6

3 3

3
3

7 7

0 0

0
0

0 0

ST
EP

 T
YP

E
5

ST
EP

 T
YP

E
6

ST
EP

 T
YP

E
7

ST
EP

 T
YP

E
8

ST
EP

 T
YP

E
9

ST
EP

 T
YP

E
10

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
A

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
B

ph
as

e-
C

ph
as

e-
C

ph
as

e-
C

ph
as

e-
C

ph
as

e-
C

ph
as

e-
C

ph
as

e-
D

ph
as

e-
D

ph
as

e-
D

ph
as

e-
D

ph
as

e-
D

ph
as

e-
D

Figure 15.5: Four-Phase Step Types

CHAPTER 15. INTERNAL COMPONENTS 114

0

0

0

0

0

0

1

1

1

1

1

1

2

2

2

2

2

2

4

4

4

4

4

4

3

3

3

3

3

3

5

5

6

6

7

7

8

8

9

9

0

0

0

0

STEP TYPE 11

STEP TYPE 12

STEP TYPE 14

STEP TYPE 13

phase-A

phase-A

phase-A

phase-A

phase-B

phase-B

phase-B

phase-B

phase-C

phase-C

phase-C

phase-C

phase-D

phase-D

phase-D

phase-D

phase-E

phase-E

phase-E

phase-E

Figure 15.6: Five-Phase Step Types

CHAPTER 15. INTERNAL COMPONENTS 115

15.2 PWMgen

This component provides software based generation of PWM (Pulse Width Modulation) and PDM
(Pulse Density Modulation) waveforms. It is a realtime component only, and depending on CPU
speed, etc, is capable of PWM frequencies from a few hundred Hertz at pretty good resolution, to
perhaps 10KHz with limited resolution.

15.2.1 Installing

emc2$ halcmd loadrt pwmgen output_type=<config-array>

<config-array> is a series of comma separated decimal integers. Each number causes a single
PWM generator to be loaded, the value of the number determines the output type. For example:

emc2$ halcmd loadrt pwmgen step_type=0,1,2

will install three PWM generators. The first one will use output type ’0’ (PWM only), the next uses
output type 1 (PWM and direction) and the last one uses output type 2 (UP and DOWN). There
is no default value, if <config-array> is not specified, no PWM generators will be installed. The
maximum number of frequency generators is 8 (as defined by MAX_CHAN in pwmgen.c). Each
generator is independent, but all are updated by the same function(s) at the same time. In the
following descriptions, <chan> is the number of a specific generator. The first generator is number
0.

15.2.2 Removing

emc2$ halcmd unloadrt pwmgen

15.2.3 Pins

Each PWM generator will have the following pins:

• (FLOAT) pwmgen.<chan>.value – Command value, in arbitrary units. Will be scaled by the
scale parameter (see below).

• (BIT) pwmgen.<chan>.enable – Enables or disables the PWM generator outputs.

Each PWM generator will also have some of these pins, depending on the output type selected:

• (BIT) pwmgen.<chan>.pwm – PWM (or PDM) output, (output types 0 and 1 only).

• (BIT) pwmgen.<chan>.dir – Direction output (output type 1 only).

• (BIT) pwmgen.<chan>.up – PWM/PDM output for positive input value (output type 2 only).

• (BIT) pwmgen.<chan>.down – PWM/PDM output for negative input value (output type 2 only).

CHAPTER 15. INTERNAL COMPONENTS 116

15.2.4 Parameters

• (FLOAT) pwmgen.<chan>.scale – Scaling factor to convert value from arbitrary units to duty
cycle.

• (FLOAT) pwmgen.<chan>.pwm-freq – Desired PWM frequency, in Hz. If 0.0, generates PDM
instead of PWM. If set higher than internal limits, next call of update_freq() will set it to the
internal limit. If non-zero, and dither is false, next call of update_freq() will set it to the
nearest integer multiple of the make_pulses() function period.

• (BIT) pwmgen.<chan>.dither-pwm – If true, enables dithering to achieve average PWM fre-
quencies or duty cycles that are unobtainable with pure PWM. If false, both the PWM frequency
and the duty cycle will be rounded to values that can be achieved exactly.

• (FLOAT) pwmgen.<chan>.min-dc – Minimum duty cycle, between 0.0 and 1.0 (duty cycle will
go to zero when disabled, regardless of this setting).

• (FLOAT) pwmgen.<chan>.max-dc – Maximum duty cycle, between 0.0 and 1.0.

• (FLOAT) pwmgen.<chan>.curr-dc – Current duty cycle - after all limiting and rounding (read
only).

15.2.5 Output Types

The PWM generator supports three different “output types”. Type 0 has a single output pin. Only
positive commands are accepted, negative values are treated as zero (and will be affected by min-dc
if it is non-zero). Type 1 has two output pins, one for the PWM/PDM signal and one to indicate
direction. The duty cycle on the PWM pin is based on the absolute value of the command, so negative
values are acceptable. The direction pin is false for positive commands, and true for negative
commands. Finally, type 2 also has two outputs, called up and down. For positive commands, the
PWM signal appears on the up output, and the down output remains false. For negative commands,
the PWM signal appears on the down output, and the up output remains false. Output type 2 is
suitable for driving most H-bridges.

15.2.6 Functions

The component exports two functions. Each function acts on all of the PWM generators - running
different generators in different threads is not supported.

• (FUNCT) pwmgen.make-pulses – High speed function to generate PWM waveforms (no floating
point).

• (FUNCT) pwmgen.update – Low speed function to scale and limit value and handle other
paremeters.

The high speed function pwmgen.make-pulses should be run in a very fast thread, from 10 to 50uS
depending on the capabilities of the computer. That thread’s period determines the maximum PWM
carrier frequency, as well as the resolution of the PWM or PDM signals. The other function can be
called at a much lower rate.

CHAPTER 15. INTERNAL COMPONENTS 117

15.3 Encoder

This component provides software based counting of signals from quadrature encoders. It is a
realtime component only, and depending on CPU speed, etc, is capable of maximum count rates of
10kHz to perhaps 50kHz. Figure 15.7 is a block diagram of one channel of encoder counter.

reset

index-enable phase-Z

phase-B

phase-A

counts

position

latch

counter

edge
detect

quad
decode

rawcounts

position-scale

up/dn
count

clear

update-counters()capture-position()

encoder.0

Figure 15.7: Encoder Counter Block Diagram

15.3.1 Installing

emc2$ halcmd loadrt encoder [num_chan=<counters>]

<counters> is the number of encoder counters that you want to install. If numchan is not specified,
three counters will be installed. The maximum number of counters is 8 (as defined by MAX_CHAN
in encoder.c). Each counter is independent, but all are updated by the same function(s) at the same
time. In the following descriptions, <chan> is the number of a specific counter. The first counter is
number 0.

15.3.2 Removing

emc2$ halcmd unloadrt encoder

CHAPTER 15. INTERNAL COMPONENTS 118

15.3.3 Pins

• (BIT) encoder.<chan>.phase-A – Phase A of the quadrature encoder signal.

• (BIT) encoder.<chan>.phase-B – Phase B of the quadrature encoder signal.

• (BIT) encoder.<chan>.phase-Z – Phase Z (index pulse) of the quadrature encoder signal.

• (BIT) encoder.<chan>.reset – See canonical encoder interface, section 9.5.

• (BIT) encoder.<chan>.velocity – Estimated speed of the quadrature signal.

• (BIT) encoder.<chan>.index-enable – See canonical encoder interface.

• (S32) encoder.<chan>.count – See canonical encoder interface.

• (FLOAT) encoder.<chan>.position – See canonical encoder interface.

15.3.4 Parameters

• (S32) encoder.<chan>.raw-count – The raw count value, updated by update-counters().

• (BIT) encoder.<chan>.x4-mode – Sets encoder to 4x or 1x mode. The 1x mode is usefull for
some jogwheels.

• (FLOAT) encoder.<chan>.position-scale – See canonical encoder interface, section 9.5.

15.3.5 Functions

The component exports two functions. Each function acts on all of the encoder counters - running
different counters in different threads is not supported.

• (FUNCT) encoder.update-counters – High speed function to count pulses (no floating point).

• (FUNCT) encoder.capture-position – Low speed function to update latches and scale posi-
tion.

CHAPTER 15. INTERNAL COMPONENTS 119

15.4 PID

This component provides Proportional/Integeral/Derivative control loops. It is a realtime compo-
nent only. For simplicity, this discussion assumes that we are talking about position loops, however
this component can be used to implement other feedback loops such as speed, torch height, tem-
perature, etc. Figure 15.8 is a block diagram of a single PID loop.

15.4.1 Installing

emc2$ halcmd loadrt pid [num_chan=<loops>] [debug=1]

<loops> is the number of PID loops that you want to install. If numchan is not specified, one loop
will be installed. The maximum number of loops is 16 (as defined by MAX_CHAN in pid.c). Each
loop is completely independent. In the following descriptions, <loopnum> is the loop number of a
specific loop. The first loop is number 0.

If debug=1 is specified, the component will export a few extra parameters that may be useful during
debugging and tuning. By default, the extra parameters are not exported, to save shared memory
space and avoid cluttering the parameter list.

15.4.2 Removing

emc2$ halcmd unloadrt pid

15.4.3 Pins

The three most important pins are

• (FLOAT) pid.<loopnum>.command – The desired position, as commanded by another system
component.

• (FLOAT) pid.<loopnum>.feedback – The present position, as measured by a feedback device
such as an encoder.

• (FLOAT) pid.<loopnum>.output – A velocity command that attempts to move from the present
position to the desired position.

For a position loop, ’command’ and ’feedback’ are in position units. For a linear axis, this could
be inches, mm, meters, or whatever is relevant. Likewise, for an angular axis, it could be degrees,
radians, etc. The units of the ’output’ pin represent the change needed to make the feedback
match the command. As such, for a position loop ’Output’ is a velocity, in inches/sec, mm/sec,
degrees/sec, etc. Time units are always seconds, and the velocity units match the position units. If
command and feedback are in meters, then output is in meters per second.

Each loop has two other pins which are used to monitor or control the general operation of the
component.

• (FLOAT) pid.<loopnum>.error – Equals .command minus .feedback.

• (BIT) pid.<loopnum>.enable – A bit that enables the loop. If .enable is false, all integrators
are reset, and the output is forced to zero. If .enable is true, the loop operates normally.

CHAPTER 15. INTERNAL COMPONENTS 120

ou
tp

ut

en
ab

le

co
mm

an
d

fe
ed

ba
ck

er
ro

r

ma
x-

cm
dD

D

ma
x-

cm
dD

ma
x-

er
ro

rD

Pg
ain

FF
2

bia
s

FF
0

FF
1

Dg
ain

Ig
ain

ma
x-

er
ro

rI

ma
x-

ou
tp

ut

ma
x-

er
ro

r

de
ad

ba
nd

pid
.0

d

d

d

dT

dT

dT

Figure 15.8: PID Loop Block Diagram

CHAPTER 15. INTERNAL COMPONENTS 121

15.4.4 Parameters

The PID gains, limits, and other ’tunable’ features of the loop are implemented as parameters.

• (FLOAT) pid.<loopnum>.Pgain – Proportional gain

• (FLOAT) pid.<loopnum>.Igain – Integral gain

• (FLOAT) pid.<loopnum>.Dgain – Derivative gain

• (FLOAT) pid.<loopnum>.bias – Constant offset on output

• (FLOAT) pid.<loopnum>.FF0 – Zeroth order feedforward - output proportional to command
(position).

• (FLOAT) pid.<loopnum>.FF1 – First order feedforward - output proportional to derivative of
command (velocity).

• (FLOAT) pid.<loopnum>.FF2 – Second order feedforward - output proportional to 2nd deriva-
tive of command (acceleration)1.

• (FLOAT) pid.<loopnum>.deadband – Amount of error that will be ignored

• (FLOAT) pid.<loopnum>.maxerror – Limit on error

• (FLOAT) pid.<loopnum>.maxerrorI – Limit on error integrator

• (FLOAT) pid.<loopnum>.maxerrorD – Limit on error derivative

• (FLOAT) pid.<loopnum>.maxcmdD – Limit on command derivative

• (FLOAT) pid.<loopnum>.maxcmdDD – Limit on command 2nd derivative

• (FLOAT) pid.<loopnum>.maxoutput – Limit on output value

All of the max ??? limits are implemented such that if the parameter value is zero, there is no limit.

If debug=1 was specified when the component was installed, four additional parameters will be
exported:

• (FLOAT) pid.<loopnum>.errorI – Integral of error.

• (FLOAT) pid.<loopnum>.errorD – Derivative of error.

• (FLOAT) pid.<loopnum>.commandD – Derivative of the command.

• (FLOAT) pid.<loopnum>.commandDD – 2nd derivative of the command.

15.4.5 Functions

The component exports one function for each PID loop. This function performs all the calculations
needed for the loop. Since each loop has its own function, individual loops can be included in
different threads and execute at different rates.

• (FUNCT) pid.<loopnum>.do_pid_calcs – Performs all calculations for a single PID loop.

If you want to understand the exact algorithm used to compute the output of the PID loop, refer to
figure 15.8, the comments at the beginning of emc2/src/hal/components/pid.c, and of course to
the code itself. The loop calculations are in the C function calc_pid().

1FF2 is not currently implemented, but it will be added. Consider this note a “FIXME” for the code

CHAPTER 15. INTERNAL COMPONENTS 122

15.5 Simulated Encoder

The simulated encoder is exactly that. It produces quadrature pulses with an index pulse, at a
speed controlled by a HAL pin. Mostly useful for testing.

15.5.1 Installing

emc2$ halcmd loadrt sim-encoder num_chan=<number>

<number> is the number of encoders that you want to simulate. If not specified, one encoder will be
installed. The maximum number is 8 (as defined by MAX_CHAN in sim_encoder.c).

15.5.2 Removing

emc2$ halcmd unloadrt sim-encoder

15.5.3 Pins

• (FLOAT) sim-encoder.<chan-num>.speed – The speed command for the simulated shaft.

• (BIT) sim-encoder.<chan-num>.phase-A – Quadrature output.

• (BIT) sim-encoder.<chan-num>.phase-B – Quadrature output.

• (BIT) sim-encoder.<chan-num>.phase-Z – Index pulse output.

When .speed is positive, .phase-A leads .phase-B.

15.5.4 Parameters

• (U32) sim-encoder.<chan-num>.ppr – Pulses Per Revolution.

• (FLOAT) sim-encoder.<chan-num>.scale – Scale Factor for speed. The default is 1.0, which
means that speed is in revolutions per second. Change to 60 for RPM, to 360 for degrees per
second, 6.283185 for radians per seconed, etc.

Note that pulses per revolution is not the same as counts per revolution. A pulse is a complete
quadrature cycle. Most encoder counters will count four times during one complete cycle.

15.5.5 Functions

The component exports two functions. Each function affects all simulated encoders.

• (FUNCT) sim-encoder.make-pulses – High speed function to generate quadrature pulses (no
floating point).

• (FUNCT) sim-encoder.update-speed – Low speed function to read speed, do scaling, and set
up make-pulses.

CHAPTER 15. INTERNAL COMPONENTS 123

15.6 Debounce

Debounce is a realtime component that can filter the glitches created by mechanical switch contacts.
It may also be useful in other applications where short pulses are to be rejected.

15.6.1 Installing

emc2$ halcmd loadrt debounce cfg=”<config-string>”

<config-string> is a series of space separated decimal integers. Each number installs a group of
identical debounce filters, the number determines how many filters are in the group. For example:

emc2$ halcmd loadrt debounce cfg=”1 4 2”

will install three groups of filters. Group 0 contains one filter, group 1 contains four, and group
2 contains two filters. The default value for <config-string> is “1” which will install a single
group containing a single filter. The maximum number of groups 8 (as defined by MAX_GROUPS in
debounce.c). The maximum number of filters in a group is limited only by shared memory space.
Each group is completely independent. All filters in a single group are identical, and they are all
updated by the same function at the same time. In the following descriptions, <G> is the group
number and <F> is the filter number within the group. The first filter is group 0, filter 0.

15.6.2 Removing

emc2$ halcmd unloadrt debounce

15.6.3 Pins

Each individual filter has two pins.

• (BIT) debounce.<G>.<F>.in – Input of filter <F> in group <G>.

• (BIT) debounce.<G>.<F>.out – Output of filter <F> in group <G>.

15.6.4 Parameters

Each group of filters has one parameter2.

• (S32) debounce.<G>.delay – Filter delay for all filters in group <G>.

The filter delay is in units of thread periods. The minimum delay is zero. The output of a zero delay
filter exactly follows its input - it doesn’t filter anything. As delay increases, longer and longer
glitches are rejected. If delay is 4, all glitches less than or equal to four thread periods will be
rejected.

15.6.5 Functions

Each group of filters has one function, which updates all the filters in that group “simultaneously”.
Different groups of filters can be updated from different threads at different periods.

• (FUNCT) debounce.<G> – Updates all filters in group <G>.
2Each individual filter also has an internal state variable. There is a compile time switch that can export that variable as

a parameter. This is intended for testing, and simply wastes shared memory under normal circumstances.

CHAPTER 15. INTERNAL COMPONENTS 124

15.7 Siggen

Siggen is a realtime component that generates square, triangle, and sine waves. It is primarily used
for testing.

15.7.1 Installing

emc2$ halcmd loadrt siggen [num_chan=<chans>]

<chans> is the number of signal generators that you want to install. If numchan is not specified,
one signal generator will be installed. The maximum number of generators is 16 (as defined by
MAX_CHAN in siggen.c). Each generator is completely independent. In the following descriptions,
<chan> is the number of a specific signal generator (the numbers start at 0).

15.7.2 Removing

emc2$ halcmd unloadrt siggen

15.7.3 Pins

Each generator has five output pins.

• (FLOAT) siggen.<chan>.sine – Sine wave output.

• (FLOAT) siggen.<chan>.cosine – Cosine output.

• (FLOAT) siggen.<chan>.sawtooth – Sawtooth output.

• (FLOAT) siggen.<chan>.triangle – Triangle wave output.

• (FLOAT) siggen.<chan>.square – Square wave output.

All five outputs have the same frequency, amplitude, and offset.

In addition to the output pins, there are three control pins:

• (FLOAT) siggen.<chan>.frequency – Sets the frequency in Hertz, default value is 1 Hz.

• (FLOAT) siggen.<chan>.amplitude – Sets the peak amplitude of the output waveforms, de-
fault is 1.

• (FLOAT) siggen.<chan>.offset – Sets DC offset of the output waveforms, default is 0.

For example, if siggen.0.amplitude is 1.0 and siggen.0.offset is 0.0, the outputs will swing
from -1.0 to +1.0. If siggen.0.amplitude is 2.5 and siggen.0.offset is 10.0, then the outputs
will swing from 7.5 to 12.5.

15.7.4 Parameters

None. 3

15.7.5 Functions

• (FUNCT) siggen.<chan>.update – Calculates new values for all five outputs.

3Prior to version 2.1, frequency, amplitude, and offset were parameters. They were changed to pins to allow control by
other components.

Chapter 16

Hardware Drivers

16.1 Parport

Parport is a driver for the traditional PC parallel port. The port has a total of 17 physical pins. The
original parallel port divided those pins into three groups: data, control, and status. The data group
consists of 8 output pins, the control group consists of 4 pins, and the status group consists of 5
input pins.

In the early 1990’s, the bidirectional parallel port was introduced, which allows the data group to
be used for output or input. The HAL driver supports the bidirectional port, and allows the user to
set the data group as either input or output. If configured as output, a port provides a total of 12
outputs and 5 inputs. If configured as input, it provides 4 outputs and 13 inputs.

In some parallel ports, the control group pins are open collectors, which may also be driven low by
an external gate. On a board with open collector control pins, the “x” mode allows a more flexible
mode with 8 dedicated outputs, 5 dedicated inputs, and 4 open collector pins. In other parallel
ports, the control group has push-pull drivers and cannot be used as an input.1

No other combinations are supported, and a port cannot be changed from input to output once the
driver is installed. Figure 16.1 shows two block diagrams, one showing the driver when the data
group is configured for output, and one showing it configured for input.

The parport driver can control up to 8 ports (defined by MAX_PORTS in hal_parport.c). The ports
are numbered starting at zero.

16.1.1 Installing

loadrt hal_parport cfg="<config-string>"

The config string consists of a hex port address, followed by an optional direction, repeated for
each port. The direction is “in”, “out”, or “x” and determines the direction of the physical pins 2
through 9, and whether to create input HAL pins for the physical control pins. If the direction is
not specified, the data group defaults to output. For example:

1HAL cannot automatically determine if the “x” mode bidirectional pins are actually open collectors (OC). If they are not,
they cannot be used as inputs, and attempting to drive them LOW from an external source can damage the hardware.

To determine whether your port has “open collector” pins, load hal_parport in “x” mode, output a HIGH value on the pin.
HAL should read the pin as TRUE. Next, insert a 470Ω resistor from one of the control pins to GND. If the resulting voltage
on the control pin is close to 0V, and HAL now reads the pin as FALSE, then you have an OC port. If the resulting voltage is
far from 0V, or HAL does not read the pin as FALSE, then your port cannot be used in “x” mode.

The external hardware that drives the control pins should also use open collector gates (e.g., 74LS05). Generally, the -out
HAL pins should be set to TRUE when the physical pin is being used as an input.

On some machines, BIOS settings may affect whether “x” mode can be used. “SPP” mode is most most likely to work.

125

CHAPTER 16. HARDWARE DRIVERS 126

loadrt hal_parport cfg="0x278 0x378 in 0x20A0 out"

This example installs drivers for one port at 0x0278, with pins 2-9 as outputs (by default, since
neither “in” nor “out” was specified), one at 0x0378, with pins 2-9 as inputs, and one at 0x20A0,
with pins 2-9 explicitly specified as outputs. Note that you must know the base address of the
parallel port to properly configure the driver. For ISA bus ports, this is usually not a problem, since
the port is almost always at a “well known” address, like 0278 or 0378 which is typically configured
in the system BIOS. The address for a PCI card is usally shown in “lspci -v” in an “I/O ports” line,
or in the kernel message log after executing “sudo modprobe -a parport_pc”. There is no default
address; if <config-string> does not contain at least one address, it is an error.

16.1.2 Pins

• (BIT) parport.<portnum>.pin-<pinnum>-out – Drives a physical output pin.

• (BIT) parport.<portnum>.pin-<pinnum>-in – Tracks a physical input pin.

• (BIT) parport.<portnum>.pin-<pinnum>-in-not – Tracks a physical input pin, but in-
verted.

For each pin, <portnum> is the port number, and <pinnum> is the physical pin number in the 25
pin D-shell connector.

For each physical output pin, the driver creates a single HAL pin, for example parport.0.pin-14-out.
Pins 2 through 9 are part of the data group and are output pins if the port is defined as an output
port. (Output is the default.) Pins 1, 14, 16, and 17 are outputs in all modes. These HAL pins
control the state of the corresponding physical pins.

For each physical input pin, the driver creates two HAL pins, for example parport.0.pin-12-in
and parport.0.pin-12-in-not. Pins 10, 11, 12, 13, and 15 are always input pins. Pins 2 through
9 are input pins only if the port is defined as an input port. The -in HAL pin is TRUE if the physical
pin is high, and FALSE if the physical pin is low. The -in-not HAL pin is inverted – it is FALSE
if the physical pin is high. By connecting a signal to one or the other, the user can determine the
state of the input. In “x” mode, pins 1, 14, 16, and 17 are also input pins.

16.1.3 Parameters

• (BIT) parport.<portnum>.pin-<pinnum>-out-invert – Inverts an output pin.

• (BIT) parport.<portnum>.pin-<pinnum>-out-reset (only for pins 2..9) – TRUE if this pin
should be reset when the -reset function is executed.

• (U32) parport.<portnum>.reset-time – The time (in nanoseconds) between a pin is set by
write and reset by reset HAL functions.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL -out pin TRUE drives the physical pin high, and FALSE drives it low. If
-invert is TRUE, then setting the HAL -out pin TRUE will drive the physical pin low.

If -reset is TRUE, then the reset function will set the pin to the value of -out-invert. This can
be used in conjunction with stepgen’s doublefreq to produce one step per period.

CHAPTER 16. HARDWARE DRIVERS 127

pin
-8

-in
-n

ot
pin

-8
-in

pin
-7

-in
-n

ot
pin

-7
-in

pin
-6

-in
-n

ot
pin

-6
-in

pin
-5

-in
-n

ot
pin

-5
-in

pin
-4

-in
-n

ot
pin

-4
-in

pin
-3

-in
-n

ot
pin

-3
-in

pin
-2

-in
-n

ot
pin

-2
-in

pin
-9

-in
-n

ot
pin

-9
-in

pin
-1

5-
in-

no
t

pin
-1

5-
in

pin
-1

3-
in-

no
t

pin
-1

3-
in

pin
-1

2-
in-

no
t

pin
-1

2-
in

pin
-1

1-
in-

no
t

pin
-1

1-
in

pin
-1

0-
in-

no
t

pin
-1

0-
in

pin
-1

7-
ou

t-i
nv

er
t

pin
-1

7-
ou

t

pin
-1

6-
ou

t-i
nv

er
t

pin
-1

6-
ou

t

pin
-1

4-
ou

t-i
nv

er
t

pin
-1

4-
ou

t

pin
-1

-o
ut

-in
ve

rt
pin

-1
-o

ut

pin
-1

0-
in-

no
t

pin
-1

0-
in

pin
-1

1-
in-

no
t

pin
-1

1-
in

pin
-1

2-
in-

no
t

pin
-1

2-
in

pin
-1

3-
in-

no
t

pin
-1

3-
in

pin
-1

5-
in-

no
t

pin
-1

5-
in

pin
-8

-o
ut

-in
ve

rt
pin

-8
-o

ut

pin
-7

-o
ut

-in
ve

rt
pin

-7
-o

ut

pin
-6

-o
ut

-in
ve

rt
pin

-6
-o

ut

pin
-5

-o
ut

-in
ve

rt
pin

-5
-o

ut

pin
-4

-o
ut

-in
ve

rt
pin

-4
-o

ut

pin
-3

-o
ut

-in
ve

rt
pin

-3
-o

ut

pin
-2

-o
ut

-in
ve

rt
pin

-2
-o

ut

pin
-9

-o
ut

-in
ve

rt
pin

-9
-o

ut

pin
-1

7-
ou

t-i
nv

er
t

pin
-1

7-
ou

t

pin
-1

6-
ou

t-i
nv

er
t

pin
-1

6-
ou

t

pin
-1

4-
ou

t-i
nv

er
t

pin
-1

4-
ou

t

pin
-1

-o
ut

-in
ve

rt
pin

-1
-o

ut

25
25

13
13

24
24

12
12

11
11

10
10

9
9

8
8

7
7

6
6

5
5

4
4

3
3

2
2

1
1

23
23

22
22

21
21

20
20

19
19

18
18

17
17

16
16

15
15

14
14

pa
rp

or
t.0

pa
rp

or
t.0

co
nf

igu
re

d
as

 in
pu

t
co

nf
igu

re
d

as
 o

ut
pu

t

Figure 16.1: Parport Block Diagram

CHAPTER 16. HARDWARE DRIVERS 128

16.1.4 Functions

• (FUNCT) parport.<portnum>.read– Reads physical input pins of port <portnum> and up-
dates HAL -in and -in-not pins.

• (FUNCT) parport.read-all – Reads physical input pins of all ports and updates HAL -in
and -in-not pins.

• (FUNCT) parport.<portnum>.write – Reads HAL -out pins of port <portnum> and updates
that port’s physical output pins.

• (FUNCT) parport.write-all – Reads HAL -out pins of all ports and updates all physical
output pins.

• (FUNCT) parport.<portnum>.reset – Waits until reset-time has elapsed since the associ-
ated write, then resets pins to values indicated by -out-invert and -out-invert settings.
reset must be later in the same thread as write

The individual functions are provided for situations where one port needs to be updated in a very
fast thread, but other ports can be updated in a slower thread to save CPU time. It is probably not
a good idea to use both an -all function and an individual function at the same time.

16.1.5 Common problems

If loading the module reports

insmod: error inserting ’/home/jepler/emc2/rtlib/hal_parport.ko’:
-1 Device or resource busy

then ensure that the standard kernel module parport_pc is not loaded2 and that no other device
in the system has claimed the I/O ports.

If the module loads but does not appear to function, then the port address is incorrect or the
probe_parport module is required.

16.2 probe_parport

In modern PCs, the parallel port may require plug and play (PNP) configuration before it can be
used. The probe_parport module performs configuration of any PNP ports present, and should be
loaded before hal_parport. On machines without PNP ports, it may be loaded but has no effect.

16.2.1 Installing

loadrt probe_parport
loadrt hal_parport ...

If the Linux kernel prints a message similar to

parport: PnPBIOS parport detected.

when the parport_pc module is loaded (sudo modprobe -a parport_pc; sudo rmmod parport_pc)
then use of this module is probably required.

2In the emc packages for Ubuntu, the file /etc/modprobe.d/emc2 generally prevents parport_pc from being automatically
loaded.

CHAPTER 16. HARDWARE DRIVERS 129

16.3 AX5214H

The Axiom Measurement & Control AX5214H is a 48 channel digital I/O board. It plugs into an ISA
bus, and resembles a pair of 8255 chips.3

16.3.1 Installing

loadrt hal_ax5214h cfg="<config-string>"

The config string consists of a hex port address, followed by an 8 character string of “I” and “O”
which sets groups of pins as inputs and outputs. The first two character set the direction of the
first two 8 bit blocks of pins (0-7 and 8-15). The next two set blocks of 4 pins (16-19 and 20-23). The
pattern then repeats, two more blocks of 8 bits (24-31 and 32-39) and two blocks of 4 bits (40-43
and 44-47). If more than one board is installed, the data for the second board follows the first. As
an example, the string "0x220 IIIOIIOO 0x300 OIOOIOIO" installs drivers for two boards. The
first board is at address 0x220, and has 36 inputs (0-19 and 24-39) and 12 outputs (20-23 and
40-47). The second board is at address 0x300, and has 20 inputs (8-15, 24-31, and 40-43) and 28
outputs (0-7. 16-23, 32-39, and 44-47). Up to 8 boards may be used in one system.

16.3.2 Pins

• (BIT) ax5214.<boardnum>.out-<pinnum> – Drives a physical output pin.

• (BIT) ax5214.<boardnum>.in-<pinnum> – Tracks a physical input pin.

• (BIT) ax5214.<boardnum>.in-<pinnum>-not – Tracks a physical input pin, inverted.

For each pin, <boardnum> is the board number (starts at zero), and <pinnum> is the I/O channel
number (0 to 47).

Note that the driver assumes active LOW signals. This is so that modules such as OPTO-22 will
work correctly (TRUE means output ON, or input energized). If the signals are being used directly
without buffering or isolation the inversion needs to be accounted for. The in- HAL pin is TRUE if
the physical pin is low (OPTO-22 module energized), and FALSE if the physical pin is high (OPTO-
22 module off). The in-<pinnum>-not HAL pin is inverted – it is FALSE if the physical pin is low
(OPTO-22 module energized). By connecting a signal to one or the other, the user can determine
the state of the input.

16.3.3 Parameters

• (BIT) ax5214.<boardnum>.out-<pinnum>-invert – Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert is
FALSE, setting the HAL out- pin TRUE drives the physical pin low, turning ON an attached OPTO-
22 module, and FALSE drives it high, turning OFF the OPTO-22 module. If -invert is TRUE, then
setting the HAL out- pin TRUE will drive the physical pin high and turn the module OFF.

16.3.4 Functions

• (FUNCT) ax5214.<boardnum>.read – Reads all digital inputs on one board.

• (FUNCT) ax5214.<boardnum>.write – Writes all digital outputs on one board.

3In fact it may be a pair of 8255 chips, but I’m not sure. If/when someone starts a driver for an 8255 they should look at
the ax5214 code, much of the work is already done.

CHAPTER 16. HARDWARE DRIVERS 130

16.4 Servo-To-Go

The Servo-To-Go is one of the first PC motion control cards4 supported by EMC. It is an ISA card
and it exists in different flavours (all supported by this driver). The board includes up to 8 channels
of quadrature encoder input, 8 channels of analog input and output, 32 bits digital I/O, an interval
timer with interrupt and a watchdog.

16.4.1 Installing:

loadrt hal_stg [base=<address>] [num_chan=<nr>] [dio="<dio-string>"] [model=<model>]

The base address field is optional; if it’s not provided the driver attempts to autodetect the board.
The num_chan field is used to specify the number of channels available on the card, if not used the
8 axis version is assumed. The digital inputs/outputs configuration is determined by a config string
passed to insmod when loading the module. The format consists of a four character string that sets
the direction of each group of pins. Each character of the direction string is either "I" or "O". The
first character sets the direction of port A (Port A - DIO.0-7), the next sets port B (Port B - DIO.8-15),
the next sets port C (Port C - DIO.16-23), and the fourth sets port D (Port D - DIO.24-31). The model
field can be used in case the driver doesn’t autodetect the right card version5. For example:

loadrt hal_stg base=0x300 num_chan=4 dio="IOIO"

This example installs the stg driver for a card found at the base address of 0x300, 4 channels of
encoder feedback, DAC’s and ADC’s, along with 32 bits of I/O configured like this: the first 8 (Port
A) configured as Input, the next 8 (Port B) configured as Output, the next 8 (Port C) configured as
Input, and the last 8 (Port D) configured as Output

loadrt hal_stg

This example installs the driver and attempts to autodetect the board address and board model, it
installs 8 axes by default along with a standard I/O setup: Port A & B configured as Input, Port C
& D configured as Output.

16.4.2 Pins

• (S32) stg.<channel>.counts – Tracks the counted encoder ticks.

• (FLOAT) stg.<channel>.position – Outputs a converted position.

• (FLOAT) stg.<channel>.dac-value – Drives the voltage for the corresponding DAC.

• (FLOAT) stg.<channel>.adc-value – Tracks the measured voltage from the corresponding
ADC.

• (BIT) stg.in-<pinnum> – Tracks a physical input pin.

• (BIT) stg.in-<pinnum>-not – Tracks a physical input pin, but inverted.

• (BIT) stg.out-<pinnum> – Drives a physical output pin

4a motion control card usually is a board containing devices to control one or more axes (the control devices are usually
DAC’s to set an analog voltage, encoder counting chips for feedback, etc.)

5hint: after starting up the driver, ’dmesg’ can be consulted for messages relevant to the driver (e.g. autodetected version
number and base address)

CHAPTER 16. HARDWARE DRIVERS 131

For each pin, <channel> is the axis number, and <pinnum> is the logic pin number of the STG6.

The in- HAL pin is TRUE if the physical pin is high, and FALSE if the physical pin is low. The
in-<pinnum>-not HAL pin is inverted – it is FALSE if the physical pin is high. By connecting a
signal to one or the other, the user can determine the state of the input.

16.4.3 Parameters

• (FLOAT) stg.<channel>.position-scale – The number of counts / user unit (to convert
from counts to units).

• (FLOAT) stg.<channel>.dac-offset – Sets the offset for the corresponding DAC.

• (FLOAT) stg.<channel>.dac-gain – Sets the gain of the corresponding DAC.

• (FLOAT) stg.<channel>.adc-offset – Sets the offset of the corresponding ADC.

• (FLOAT) stg.<channel>.adc-gain – Sets the gain of the corresponding ADC.

• (BIT) stg.out-<pinnum>-invert – Inverts an output pin.

The -invert parameter determines whether an output pin is active high or active low. If -invert
is FALSE, setting the HAL out- pin TRUE drives the physical pin high, and FALSE drives it low. If
-invert is TRUE, then setting the HAL out- pin TRUE will drive the physical pin low.

16.4.4 Functions

• (FUNCT) stg.capture-position – Reads the encoder counters from the axis <channel>.

• (FUNCT) stg.write-dacs – Writes the voltages to the DACs.

• (FUNCT) stg.read-adcs – Reads the voltages from the ADCs.

• (FUNCT) stg.di-read – Reads physical in- pins of all ports and updates all HAL in- and
in-<pinnum>-not pins.

• (FUNCT) stg.do-write – Reads all HAL out- pins and updates all physical output pins.

16.5 Mesa Electronics m5i20 “Anything I/O Card”

The Mesa Electronics m5i20 card consists of an FPGA that can be loaded with a wide variety of
configurations, and has 72 pins that leave the PC. The assignment of the pins depends on the
FPGA configuration. Currently there is a HAL driver for the “4 axis host based motion control”
configuration, and this FPGA configurations is also provided with EMC2. It provides 8 encoder
counters, 4 PWM outputs (normally used as DACs) and up to 48 digital I/O channels, 32 inputs
and 16 outputs.7

Installing:

loadrt hal_m5i20 [loadFpga=1|0] [dacRate=<rate>]

If loadFpga is 1 (the default) the driver will load the FPGA configuration on startup. If it is 0, the
driver assumes the configuration is already loaded. dacRate sets the carrier frequency for the PWM
outputs, in Hz. The default is 32000, for 32KHz PWM. Valid values are from 1 to 32226. The driver
prints some useful debugging message to the kernel log, which can be viewed with dmesg.

Up to 4 boards may be used in one system.
6if IIOO is defined, there are 16 input pins (in-00 .. in-15) and 16 output pins (out-00 .. out-15), and they correspond to

PORTs ABCD (in-00 is PORTA.0, out-15 is PORTD.7)
7Ideally the encoders, “DACs”, and digital I/O would comply with the canonical interfaces defined earlier, but they don’t.

Fixing that is on the things-to-do list.

CHAPTER 16. HARDWARE DRIVERS 132

16.5.1 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero, however this driver uses the PCI board
ID, so it may be non-zero even if there is only one board.

• (S32) m5i20.<board>.enc-<channel>-count – Encoder position, in counts.

• (FLOAT) m5i20.<board>.enc-<channel>-position – Encoder position, in user units.

• (BIT) m5i20.<board>.enc-<channel>-index – Current status of index pulse input?

• (BIT) m5i20.<board>.enc-<channel>-index-enable – when TRUE, and an index pulse ap-
pears on the encoder input, reset counter to zero and clear index-enable.

• (BIT) m5i20.<board>.enc-<channel>-reset – When true, counter is forced to zero.

• (BIT) m5i20.<board>.dac-<channel>-enable – Enables DAC if true. DAC outputs zero
volts if false?

• (FLOAT) m5i20.<board>.dac-<channel>-value – Analog output value for PWM “DAC” (in
user units, see -scale and -offset)

• (BIT) m5i20.<board>.in-<channel> – State of digital input pin, see canonical digital input.

• (BIT) m5i20.<board>.in-<channel>-not – Inverted state of digital input pin, see canonical
digital input.

• (BIT) m5i20.<board>.out-<channel> – Value to be written to digital output, see canonical
digital output.

• (BIT) m5i20.<board>.estop-in – Dedicated estop input, more details needed.

• (BIT) m5i20.<board>.estop-in-not – Inverted state of dedicated estop input.

• (BIT) m5i20.<board>.watchdog-reset – Bidirectional, - Set TRUE to reset watchdog once,
is automatically cleared. If bit value 16 is set in watchdog-control then this value is not
used, and the hardware watchdog is cleared every time the dac-write function is executed.

16.5.2 Parameters

• (FLOAT) m5i20.<board>.enc-<channel>-scale – The number of counts / user unit (to con-
vert from counts to units).

• (FLOAT) m5i20.<board>.dac-<channel>-offset – Sets the DAC offset.

• (FLOAT) m5i20.<board>.dac-<channel>-gain – Sets the DAC gain (scaling).

• (BIT) m5i20.<board>.dac-<channel>-interlaced – Sets the DAC to interlaced mode. Use
this mode if you are filtering the PWM to generate an anaolg voltage.8

• (BIT) m5i20.<board>.out-<channel>-invert – Inverts a digital output, see canonical dig-
ital output.

8With normal 10 bit PWM, 50% duty cycle would be 512 cycles on and 512 cycles off = ca 30 kHz with 33 MHz reference
counter. With fully interleaved PWM this would be 1 cycle on, 1 cycle off for 1024 cycles (16.66 MHz if the PWM reference
counter runs at 33 MHz) = much easier to filter. The 5I20 configuration interlace is somewhat between non and fully
interlaced (to make it easy to filter but not have as many transistions as fully interleaved).

CHAPTER 16. HARDWARE DRIVERS 133

• (U32) m5i20.<board>.watchdog-control – Configures the watchdog. The value may be a
bitwise OR of the following values:
Bit # Value Meaning

0 1 Watchdog is enabled
1 2 Watchdog is automatically reset by DAC writes (the HAL dac-write function)

Typically, the useful values are 0 (watchdog disabled) or 3 (watchdog enabled, cleared by
dac-write).

• (U32) m5i20.<board>.led-view – Maps some of the I/O to onboard LEDs. See table below.

16.5.3 Functions

• (FUNCT) m5i20.<board>.encoder-read – Reads all encoder counters.

• (FUNCT) m5i20.<board>.digital-in-read – Reads digital inputs.

• (FUNCT) m5i20.<board>.dac-write – Writes the voltages (PWM duty cycles) to the “DACs”.

• (FUNCT) m5i20.<board>.digital-out-write – Writes digital outputs.

• (FUNCT) m5i20.<board>.misc-update – Writes watchdog timer configuration to hardware.
Resets watchdog timer. Updates E-stop pin (more info needed). Updates onboard LEDs.

16.5.4 Connector pinout

The Hostmot-4 FPGA configuration has the following pinout. There are three 50-pin ribbon cable
connectors on the card: P2, P3, and P4. There are also 8 status LEDs.

CHAPTER 16. HARDWARE DRIVERS 134

16.5.4.1 Connector P2

m5i20 card connector P2 Function/HAL-pin
1 enc-01 A input
3 enc-01 B input
5 enc-00 A input
7 enc-00 B input
9 enc-01 index input
11 enc-00 index input
13 dac-01 output
15 dac-00 output
17 DIR output for dac-01
19 DIR output for dac-00
21 dac-01-enable output
23 dac-00-enable output
25 enc-03 B input
27 enc-03 A input
29 enc-02 B input
31 enc-02 A input
33 enc-03 index input
35 enc-02 index input
37 dac-03 output
39 dac-02 output
41 DIR output for dac-03
43 DIR output for dac-02
45 dac-03-enable output
47 dac-02-enable output
49 Power +5 V (or +3.3V ?)

all even pins Ground

16.5.4.2 Connector P3

Encoder counters 4 - 7 work simultaneously with in-00 to in-11.

If you are using in-00 to in-11 as general purpose IO then reading enc-<4-7> will produce some
random junk number.

CHAPTER 16. HARDWARE DRIVERS 135

m5i20 card connector P3 Function/HAL-pin Secondary Function/HAL-pin
1 in-00 enc-04 A input
3 in-01 enc-04 B input
5 in-02 enc-04 index input
7 in-03 enc-05 A input
9 in-04 enc-05 B input
11 in-05 enc-05 index input
13 in-06 enc-06 A input
15 in-07 enc-06 B input
17 in-08 enc-06 index input
19 in-09 enc-07 A input
21 in-10 enc-07 B input
23 in-11 enc-07 index input
25 in-12
27 in-13
29 in-14
31 in-15
33 out-00
35 out-01
37 out-02
39 out-03
41 out-04
43 out-05
45 out-06
47 out-07
49 Power +5 V (or +3.3V ?)

all even pins Ground

16.5.4.3 Connector P4

The index mask masks the index input of the encoder so that the encoder index can be combined
with a mechanical switch or opto detector to clear or latch the encoder counter only when the
mask input bit is in proper state (selected by mask polarity bit) and encoder index occurs. This
is useful for homing. The behaviour of these pins is controlled by the Counter Control Register
(CCR), however there is currently no function in the driver to change the CCR. See REGMAP49 for a
description of the CCR.

9emc2/src/hal/drivers/m5i20/REGMAP4E

CHAPTER 16. HARDWARE DRIVERS 136

m5i20 card connector P4 Function/HAL-pin Secondary Function/HAL-pin
1 in-16 enc-00 index mask
3 in-17 enc-01 index mask
5 in-18 enc-02 index mask
7 in-19 enc-03 index mask
9 in-20
11 in-21
13 in-22
15 in-23
17 in-24 enc-04 index mask
19 in-25 enc-05 index mask
21 in-26 enc-06 index mask
23 in-27 enc-07 index mask
25 in-28
27 in-29
29 in-30
31 in-31
33 out-08
35 out-09
37 out-10
39 out-11
41 out-12
43 out-13
45 out-14
47 out-15
49 Power +5 V (or +3.3V ?)

all even pins Ground

16.5.4.4 LEDs

The status LEDs will monitor one motion channel set by the m5i20.<board>.led-view parameter.
A call to m5i20.<board>.misc-update is required to update the viewed channel.

LED name Output
LED0 IRQLatch ?
LED1 enc-<channel> A
LED2 enc-<channel> B
LED3 enc-<channel> index
LED4 dac-<channel> DIR
LED5 dac-<channel>
LED6 dac-<channel>-enable
LED7 watchdog timeout ?

16.6 Vital Systems Motenc-100 and Motenc-LITE

The Vital Systems Motenc-100 and Motenc-LITE are 8- and 4-channel servo control boards. The
Motenc-100 provides 8 quadrature encoder counters, 8 analog inputs, 8 analog outputs, 64 (68?)
digital inputs, and 32 digital outputs. The Motenc-LITE has only 4 encoder counters, 32 digital
inputs and 16 digital outputs, but it still has 8 analog inputs and 8 analog outputs. The driver
automatically identifies the installed board and exports the appropriate HAL objects.10

Installing:
10Ideally the encoders, DACs, ADCs, and digital I/O would comply with the canonical interfaces defined earlier, but they

don’t. Fixing that is on the things-to-do list.

CHAPTER 16. HARDWARE DRIVERS 137

loadrt hal_motenc

During loading (or attempted loading) the driver prints some usefull debugging message to the
kernel log, which can be viewed with dmesg.

Up to 4 boards may be used in one system.

16.6.1 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero. However this driver sets the ID based
on a pair of jumpers on the baord, so it may be non-zero even if there is only one board.

• (S32) motenc.<board>.enc-<channel>-count – Encoder position, in counts.

• (FLOAT) motenc.<board>.enc-<channel>-position – Encoder position, in user units.

• (BIT) motenc.<board>.enc-<channel>-index – Current status of index pulse input.

• (BIT) motenc.<board>.enc-<channel>-idx-latch – Driver sets this pin true when it latches
an index pulse (enabled by latch-index). Cleared by clearing latch-index.

• (BIT) motenc.<board>.enc-<channel>-latch-index – If this pin is true, the driver will
reset the counter on the next index pulse.

• (BIT) motenc.<board>.enc-<channel>-reset-count – If this pin is true, the counter will
immediately be reset to zero, and the pin will be cleared.

• (FLOAT) motenc.<board>.dac-<channel>-value – Analog output value for DAC (in user
units, see -gain and -offset)

• (FLOAT) motenc.<board>.adc-<channel>-value – Analog input value read by ADC (in user
units, see -gain and -offset)

• (BIT) motenc.<board>.in-<channel> – State of digital input pin, see canonical digital input.

• (BIT) motenc.<board>.in-<channel>-not – Inverted state of digital input pin, see canonical
digital input.

• (BIT) motenc.<board>.out-<channel> – Value to be written to digital output, seen canonical
digital output.

• (BIT) motenc.<board>.estop-in – Dedicated estop input, more details needed.

• (BIT) motenc.<board>.estop-in-not – Inverted state of dedicated estop input.

• (BIT) motenc.<board>.watchdog-reset – Bidirectional, - Set TRUE to reset watchdog once,
is automatically cleared.

16.6.2 Parameters

• (FLOAT) motenc.<board>.enc-<channel>-scale – The number of counts / user unit (to
convert from counts to units).

• (FLOAT) motenc.<board>.dac-<channel>-offset – Sets the DAC offset.

• (FLOAT) motenc.<board>.dac-<channel>-gain – Sets the DAC gain (scaling).

• (FLOAT) motenc.<board>.adc-<channel>-offset – Sets the ADC offset.

• (FLOAT) motenc.<board>.adc-<channel>-gain – Sets the ADC gain (scaling).

CHAPTER 16. HARDWARE DRIVERS 138

• (BIT) motenc.<board>.out-<channel>-invert – Inverts a digital output, see canonical dig-
ital output.

• (U32) motenc.<board>.watchdog-control – Configures the watchdog. The value may be a
bitwise OR of the following values:
Bit # Value Meaning

0 1 Timeout is 16ms if set, 8ms if unset
2 4 Watchdog is enabled
4 16 Watchdog is automatically reset by DAC writes (the HAL dac-write function)

Typically, the useful values are 0 (watchdog disabled) or 20 (8ms watchdog enabled, cleared
by dac-write).

• (U32) motenc.<board>.led-view – Maps some of the I/O to onboard LEDs?

16.6.3 Functions

• (FUNCT) motenc.<board>.encoder-read – Reads all encoder counters.

• (FUNCT) motenc.<board>.adc-read – Reads the analog-to-digital converters.

• (FUNCT) motenc.<board>.digital-in-read – Reads digital inputs.

• (FUNCT) motenc.<board>.dac-write – Writes the voltages to the DACs.

• (FUNCT) motenc.<board>.digital-out-write – Writes digital outputs.

• (FUNCT) motenc.<board>.misc-update – Updates misc stuff.

16.7 Pico Systems PPMC (Parallel Port Motion Control)

Pico Systems has a family of boards for doing servo, stepper, and pwm control. The boards connect
to the PC through a parallel port working in EPP mode. Although most users connect one board
to a parallel port, in theory any mix of up to 8 or 16 boards can be used on a single parport. One
driver serves all types of boards. The final mix of I/O depends on the connected board(s). The driver
doesn’t distinguish between boards, it simply numbers I/O channels (encoders, etc) starting from 0
on the first card.

Installing:

loadrt hal_ppmc port_addr=<addr1>[,<addr2>[,<addr3>...]]

The port_addr parameter tells the driver what parallel port(s) to check. By default, <addr1> is
0x0378, and <addr2> and following are not used. The driver searches the entire address space of
the enhanced parallel port(s) at port_addr, looking for any board(s) in the PPMC family. It then
exports HAL pins for whatever it finds. During loading (or attempted loading) the driver prints some
usefull debugging message to the kernel log, which can be viewed with dmesg.

Up to 3 parport busses may be used, and each bus may have up to 8 devices on it.

16.7.1 Pins

In the following pins, parameters, and functions, <board> is the board ID. According to the naming
conventions the first board should always have an ID of zero. However this driver sets the ID based
on a pair of jumpers on the baord, so it may be non-zero even if there is only one board.

• (S32) ppmc.<port>.encoder.<channel>.count – Encoder position, in counts.

CHAPTER 16. HARDWARE DRIVERS 139

• (S32) ppmc.<port>.encoder.<channel>.delta – Change in counts since last read.

• (FLOAT) ppmc.<port>.encoder.<channel>.position – Encoder position, in user units.

• (BIT) ppmc.<port>.encoder.<channel>.index – Something to do with index pulse.11

• (BIT) ppmc.<port>.pwm.<channel>.enable – Enables a PWM generator.

• (FLOAT) ppmc.<port>.pwm.<channel>.value – Value which determines the duty cycle of the
PWM waveforms. The value is divided by pwm.<channel>.scale, and if the result is 0.6 the
duty cycle will be 60%, and so on. Negative values result in the duty cycle being based on the
absolute value, and the direction pin is set to indicate negative.

• (BIT) ppmc.<port>.stepgen.<channel>.enable – Enables a step pulse generator.

• (FLOAT) ppmc.<port>.stepgen.<channel>.velocity – Value which determines the step fre-
quency. The value is multiplied by stepgen.<channel>.scale, and the result is the frequency
in steps per second. Negative values result in the frequency being based on the absolute value,
and the direction pin is set to indicate negative.

• (BIT) ppmc.<port>.in-<channel> – State of digital input pin, see canonical digital input.

• (BIT) ppmc.<port>.in.<channel>-not – Inverted state of digital input pin, see canonical
digital input.

• (BIT) ppmc.<port>.out-<channel> – Value to be written to digital output, seen canonical
digital output.

16.7.2 Parameters

• (FLOAT) ppmc.<port>.enc.<channel>.scale – The number of counts / user unit (to convert
from counts to units).

• (FLOAT) ppmc.<port>.pwm.<channel-range>.freq – The PWM carrier frequency, in Hz. Ap-
plies to a group of four consecutive PWM generators, as indicated by <channel-range>. Min-
imum is 153Hz, maximum is 500KHz.

• (FLOAT) ppmc.<port>.pwm.<channel>.scale – Scaling for PWM generator. If scale is X,
then the duty cycle will be 100% when the value pin is X (or -X).

• (FLOAT) ppmc.<port>.pwm.<channel>.max-dc – Maximum duty cycle, from 0.0 to 1.0.

• (FLOAT) ppmc.<port>.pwm.<channel>.min-dc – Minimum duty cycle, from 0.0 to 1.0.

• (FLOAT) ppmc.<port>.pwm.<channel>.duty-cycle – Actual duty cycle (used mostly for trou-
bleshooting.)

• (BIT) ppmc.<port>.pwm.<channel>.bootstrap – If true, the PWM generator will generate a
short sequence of pulses of both polarities when it is enabled, to charge the bootstrap capaca-
tors used on some MOSFET gate drivers.

• (U32) ppmc.<port>.stepgen.<channel-range>.setup-time – Sets minimum time between
direction change and step pulse, in units of 100nS. Applies to a group fof four consecutive PWM
generators, as indicated by <channel-range>.

• (U32) ppmc.<port>.stepgen.<channel-range>.pulse-width – Sets width of step pulses,
in units of 100nS. Applies to a group fof four consecutive PWM generators, as indicated by
<channel-range>.

11Index handling does _not_ comply with the canonical encoder interface, and should be changed.

CHAPTER 16. HARDWARE DRIVERS 140

• (U32) ppmc.<port>.stepgen.<channel-range>.pulse-space-min – Sets minimum time
between pulses, in units of 100nS. The maximum step rate is 1/(100nS * (pulse-width
+ pulse-space-min)). Applies to a group fof four consecutive PWM generators, as indicated
by <channel-range>.

• (FLOAT) ppmc.<port>.stepgen.<channel>.scale – Scaling for step pulse generator. The
step frequency in Hz is the absolute value of velocity * scale.

• (FLOAT) ppmc.<port>.stepgen.<channel>.max-vel – The maximum value for velocity.
Commands greater than max-vel will be clamped. Also applies to negative values. (The abso-
lute value is clamped.)

• (FLOAT) ppmc.<port>.stepgen.<channel>.frequency – Actual step pulse frequency in Hz
(used mostly for troubleshooting.)

• (BIT) ppmc.<port>.out.<channel>.invert – Inverts a digital output, see canonical digital
output.12

16.7.3 Functions

• (FUNCT) ppmc.<port>.read – Reads all inputs (digital inputs and encoder counters) on one
port.

• (FUNCT) ppmc.<port>.write – Writes all outputs (digital outputs, stepgens, PWMs) on one
port.

16.8 Pluto-P: generalities

The Pluto-P is an inexpensive ($60) FPGA board featuring the ACEX1K chip from Altera.

16.8.1 Requirements

1. A Pluto-P board

2. An EPP-compatible parallel port, configured for EPP mode in the system BIOS

16.8.2 Connectors

• The Pluto-P board is shipped with the left connector presoldered, with the key in the indicated
position. The other connectors are unpopulated. There does not seem to be a standard 12-
pin IDC connector, but some of the pins of a 16P connector can hang off the board next to
QA3/QZ3.

• The bottom and right connectors are on the same .1" grid, but the left connector is not. If
OUT2. . . OUT9 are not required, a single IDC connector can span the bottom connector and
the bottom two rows of the right connector.

12In a future version this will be changed from .invert to -invert to better match the HAL canonical bit interface

CHAPTER 16. HARDWARE DRIVERS 141

16.8.3 Physical Pins

• Read the ACEX1K datasheet for information about input and output voltage thresholds. The
pins are all configured in "LVTTL/LVCMOS" mode and are generally compatible with 5V TTL
logic.

• Before configuration and after properly exiting emc2, all Pluto-P pins are tristated with weak
pull-ups (20kΩ min, 50kΩ max). If the watchdog timer is enabled (the default), these pins are
also tristated after an interruption of communication between emc2 and the board. The watch-
dog timer takes approximately 6.5ms to activate. However, software bugs in the pluto_servo
firmware or emc2 can leave the Pluto-P pins in an undefined state.

• In pwm+dir mode, by default dir is HIGH for negative values and LOW for positive values. To
select HIGH for positive values and LOW for negative values, set the corresponding dout-NN-
invert parameter TRUE to invert the signal.

• The index input is triggered on the rising edge. Initial testing has shown that the QZx inputs
are particularly noise sensitive, due to being polled every 25ns. Digital filtering has been
added to filter pulses shorter than 175ns (seven polling times). Additional external filtering
on all input pins, such as a Schmitt buffer or inverter, RC filter, or differential receiver (if
applicable) is recommended.

• The IN1. . . IN7 pins have 22-ohm series resistors to their associated FPGA pins. No other pins
have any sort of protection for out-of-spec voltages or currents. It is up to the integrator to add
appropriate isolation and protection. Traditional parallel port optoisolator boards do not work
with pluto_servo due to the bidirectional nature of the EPP protocol.

16.8.4 LED

• When the device is unprogrammed, the LED glows faintly. When the device is programmed,
the LED glows according to the duty cycle of PWM0 (LED = UP0 xor DOWN0) or STEPGEN0
(LED = STEP0 xor DIR0).

16.8.5 Power

• A small amount of current may be drawn from VCC. The available current depends on the
unregulated DC input to the board. Alternately, regulated +3.3VDC may be supplied to the
FPGA through these VCC pins. The required current is not yet known, but is probably around
50mA plus I/O current.

• The regulator on the Pluto-P board is a low-dropout type. Supplying 5V at the power jack will
allow the regulator to work properly.

16.8.6 PC interface

• At present, only a single pluto_servo or pluto_step board is supported. At present there is no
provision for multiple boards on one parallel port (because all boards reside at the same EPP
address) but supporting one board per parallel port should be possible.

16.8.7 Rebuilding the FPGA firmware

The src/hal/drivers/pluto_servo_firmware/ and src/hal/drivers/pluto_step_firmware/
subdirectories contain the Verilog source code plus additional files used by Quartus for the FPGA
firmwares. Altera’s Quartus II software is required to rebuild the FPGA firmware. To rebuild the

CHAPTER 16. HARDWARE DRIVERS 142

firmware from the .hdl and other source files, open the .qpf file and press CTRL-L. Then, recompile
emc2.

Like the HAL hardware driver, the FPGA firmware is licensed under the terms of the GNU General
Public License.

The gratis version of Quartus II runs only on Microsoft Windows, although there is apparently a
paid version that runs on Linux.

16.8.8 For more information

The Pluto-P board may be ordered from http://www.knjn.com/ShopBoards_Parallel.html (US
based, international shipping is available). Some additional information about it is available from
http://www.fpga4fun.com/board_pluto-P.html and from the developer’s blog http://emergent.
unpy.net/01165081407.

16.9 pluto-servo: Hardware PWM and quadrature counting

The pluto_servo system is suitable for control of a 4-axis CNC mill with servo motors, a 3-axis mill
with PWM spindle control, a lathe with spindle encoder, etc. The large number of inputs allows a
full set of limit switches.

This driver features:

• 4 quadrature channels with 40MHz sample rate. The counters operate in "4x" mode. The
maximum useful quadrature rate is 8191 counts per emc2 servo cycle, or about 8MHz for
EMC2’s default 1ms servo rate.

• 4 PWM channels, "up/down" or "pwm+dir" style. 4095 duty cycles from -100% to +100%,
including 0%. The PWM period is approximately 19.5kHz (40MHz / 2047). A PDM-like mode
is also available.

• 18 digital outputs: 10 dedicated, 8 shared with PWM functions. (Example: A lathe with
unidirectional PWM spindle control may use 13 total digital outputs)

• 20 digital inputs: 8 dedicated, 12 shared with Quadrature functions. (Example: A lathe with
index pulse only on the spindle may use 13 total digital inputs)

• EPP communication with the PC. The EPP communication typically takes around 100uS on
machines tested so far, enabling servo rates above 1kHz.

16.9.1 Pinout

UPx The "up" (up/down mode) or “pwm” (pwm+direction mode) signal from PWM generator X. May
be used as a digital output if the corresponding PWM channel is unused, or the output on the
channel is always negative. The corresponding digital output invert may be set to TRUE to
make UPx active low rather than active high.

DNx The "down" (up/down mode) or “direction” (pwm+direction mode) signal from PWM generator
X. May be used as a digital output if the corresponding PWM channel is unused, or the output
on the channel is never negative. The corresponding digital ouput invert may be set to TRUE
to make DNx active low rather than active high.

QAx, QBx The A and B signals for Quadrature counter X. May be used as a digital input if the
corresponding quadrature channel is unused.

http://www.knjn.com/ShopBoards_Parallel.html
http://www.fpga4fun.com/board_pluto-P.html
http://emergent.unpy.net/01165081407
http://emergent.unpy.net/01165081407

CHAPTER 16. HARDWARE DRIVERS 143

QZx The Z (index) signal for quadrature counter X. May be used as a digital input if the index
feature of the corresponding quadrature channel is unused.

INx Dedicated digital input #x

OUTx Dedicated digital output #x

GND Ground

VCC +3.3V regulated DC

Figure 16.2: Pluto-Servo Pinout

16.9.2 Input latching and output updating

• PWM duty cycles for each channel are updated at different times.

• Digital outputs OUT0 through OUT9 are all updated at the same time. Digital outputs OUT10
through OUT17 are updated at the same time as the pwm function they are shared with.

• Digital inputs IN0 through IN19 are all latched at the same time.

• Quadrature positions for each channel are latched at different times.

16.9.3 HAL Functions, Pins and Parameters

A list of all ’loadrt’ arguments, HAL function names, pin names and parameter names is in the
manual page, pluto_servo.9.

16.9.4 Compatible driver hardware

A schematic for a 2A, 2-axis PWM servo amplifier board is available (http://emergent.unpy.net/
projects/01148303608). The L298 H-Bridge (L298 H-bridge http://www.st.com/stonline/books/
pdf/docs/1773.pdf) is inexpensive and can easily be used for motors up to 4A (one motor per

http://emergent.unpy.net/projects/01148303608
http://emergent.unpy.net/projects/01148303608
http://www.st.com/stonline/books/pdf/docs/1773.pdf
http://www.st.com/stonline/books/pdf/docs/1773.pdf

CHAPTER 16. HARDWARE DRIVERS 144

Table 16.1: Pluto-Servo Alternate Pin Functions
Primary function Alternate Function Behavior if both functions used

UP0 PWM0 When pwm-0-pwmdir is TRUE, this pin is the PWM output
OUT10 XOR’d with UP0 or PWM0

UP1 PWM1 When pwm-1-pwmdir is TRUE, this pin is the PWM output
OUT12 XOR’d with UP1 or PWM1

UP2 PWM2 When pwm-2-pwmdir is TRUE, this pin is the PWM output
OUT14 XOR’d with UP2 or PWM2

UP3 PWM3 When pwm-3-pwmdir is TRUE, this pin is the PWM output
OUT16 XOR’d with UP3 or PWM3

DN0 DIR0 When pwm-0-pwmdir is TRUE, this pin is the DIR output
OUT11 XOR’d with DN0 or DIR0

DN1 DIR1 When pwm-1-pwmdir is TRUE, this pin is the DIR output
OUT13 XOR’d with DN1 or DIR1

DN2 DIR2 When pwm-2-pwmdir is TRUE, this pin is the DIR output
OUT15 XOR’d with DN2 or DIR2

DN3 DIR3 When pwm-3-pwmdir is TRUE, this pin is the DIR output
OUT17 XOR’d with DN3 or DIR3

QZ0 IN8 Read same value
QZ1 IN9 Read same value
QZ2 IN10 Read same value
QZ3 IN11 Read same value
QA0 IN12 Read same value
QA1 IN13 Read same value
QA2 IN14 Read same value
QA3 IN15 Read same value
QB0 IN16 Read same value
QB1 IN17 Read same value
QB2 IN18 Read same value
QB3 IN19 Read same value

CHAPTER 16. HARDWARE DRIVERS 145

L298) or up to 2A (two motors per L298) with the supply voltage up to 46V. However, the L298
does not have built-in current limiting, a problem for motors with high stall currents. For higher
currents and voltages, some users have reported success with International Rectifier’s integrated
high-side/low-side drivers. (http://www.cnczone.com/forums/showthread.php?t=25929)

16.10 Pluto-step: 300kHz Hardware Step Generator

Pluto-step is suitable for control of a 3- or 4-axis CNC mill with stepper motors. The large number
of inputs allows for a full set of limit switches.

The board features:

• 4 “step+direction” channels with 312.5kHz maximum step rate, programmable step length,
space, and direction change times

• 14 dedicated digital outputs

• 16 dedicated digital inputs

• EPP communuication with the PC

16.10.1 Pinout

STEPx The “step” (clock) output of stepgen channel x

DIRx The “direction” output of stepgen channel x

INx Dedicated digital input #x

OUTx Dedicated digital output #x

GND Ground

VCC +3.3V regulated DC

While the “extended main connector” has a superset of signals usually found on a Step & Direction
DB25 connector–4 step generators, 9 inputs, and 6 general-purpose outputs–the layout on this
header is different than the layout of a standard 26-pin ribbon cable to DB25 connector.

16.10.2 Input latching and output updating

• Step frequencies for each channel are updated at different times.

• Digital outputs are all updated at the same time.

• Digital inputs are all latched at the same time.

• Feedback positions for each channel are latched at different times.

16.10.3 Step Waveform Timings

The firmware and driver enforce step length, space, and direction change times. Timings are
rounded up to the next multiple of 1.6µs, with a maximum of 49.6µs. The timings are the same
as for the software stepgen component, except that “dirhold” and “dirsetup” have been merged into
a single parameter “dirtime” which should be the maximum of the two, and that the same step
timings are always applied to all channels.

http://www.cnczone.com/forums/showthread.php?t=25929

CHAPTER 16. HARDWARE DRIVERS 146

Figure 16.3: Pluto-Step Pinout

Figure 16.4: Pluto-Step Timings

CHAPTER 16. HARDWARE DRIVERS 147

16.10.4 HAL Functions, Pins and Parameters

A list of all ’loadrt’ arguments, HAL function names, pin names and parameter names is in the
manual page, pluto_step.9.

Chapter 17

Halui

17.1 Introduction

Halui is a HAL based user interface for EMC, it connects HAL pins to NML commands. Most of
the functionality (buttons, indicators etc.) that is provided by a traditional GUI (mini, Axis, etc.), is
provided by HAL pins in Halui.

The easiest way to use halui is to modify your ini file to include

HALUI = halui

in the [HAL] section.

17.2 Halui pin reference

17.2.1 Machine

• (BIT) halui.machine.on - pin for requestiong machine on

• (BIT) halui.machine.off - pin for requesting machine off

• (BIT) halui.machine.is-on - indicates machine on

17.2.2 E-Stop

• (BIT) halui.estop.activate - pin for requesting E-Stop

• (BIT) halui.estop.reset - pin for requesting E-Stop reset

• (BIT) halui.estop.is-activated - indicates E-stop reset

17.2.3 Mode

• (BIT) halui.mode.manual - pin for requesting manual mode

• (BIT) halui.mode.is_manual - indicates manual mode is on

• (BIT) halui.mode.auto - pin for requesting auto mode

• (BIT) halui.mode.is_auto - indicates auto mode is on

• (BIT) halui.mode.mdi - pin for requesting mdi mode

• (BIT) halui.mode.is_mdi - indicates mdi mode is on

148

CHAPTER 17. HALUI 149

17.2.4 Mist, Flood, Lube

• (BIT) halui.mist.on - pin for requesting mist on

• (BIT) halui.mist.is-on - indicates mist is on

• (BIT) halui.flood.on - pin for requesting flood on

• (BIT) halui.flood.is-on - indicates flood is on

• (BIT) halui.lube.on - pin for requesting lube on

• (BIT) halui.lube.is-on - indicates lube is on

17.2.5 Spindle

• (BIT) halui.spindle.start

• (BIT) halui.spindle.stop

• (BIT) halui.spindle.forward

• (BIT) halui.spindle.reverse

• (BIT) halui.spindle.increase

• (BIT) halui.spindle.decrease

• (BIT) halui.spindle.brake-on - pin for activating spindle-brake

• (BIT) halui.spindle.brake-off - pin for deactivating spindle/brake

• (BIT) halui.spindle.brake-is-on - indicates brake is on

17.2.6 Joints

<channel> is a number between 0 and 7 and ’selected’.

• (BIT) halui.joint.<channel>.home - pin for homing the specific joint

• (BIT) halui.joint.<channel>.on-min-limit-soft - status pin telling joint is at the negative software
limit

• (BIT) halui.joint.<channel>.on-max-limit-soft - status pin telling joint is at the positive software
limit

• (BIT) halui.joint.<channel>.on-min-limit-hard - status pin telling joint is on the negative hard-
ware limit switch

• (BIT) halui.joint.<channel>.on-max-limit-hard - status pin telling joint is on the positive hard-
ware limit switch

• (BIT) halui.joint.<channel>.fault - status pin telling the joint has a fault

• (BIT) halui.joint.<channel>.homed - status pin telling that the joint is homed

CHAPTER 17. HALUI 150

17.2.7 Jogging

<channel> is a number between 0 and 7 and ’selected’.

• (FLOAT) halui.jog.speed - set jog speed

• (BIT) halui.jog.<channel>.minus - jog in negative direction

• (BIT) halui.jog.<channel>.plus - jog in positive direction

17.2.8 Selecting a joint

• (U32) halui.joint.select - select joint (0..7) - internal halui

• (U32) halui.joint.selected - selected joint (0..7) - internal halui

• (BIT) halui.joint.x.select bit - pins for selecting a joint - internal halui

• (BIT) halui.joint.x.is-selected bit - status pin a joint is selected - internal halui

17.2.9 Feed override

• (FLOAT) halui.feed-override.value - current FO value

• (FLOAT) halui.feed-override.scale - pin for setting the scale on changing the FO

• (S32) halui.feed-override.counts - counts from an encoder for example to change FO

• (BIT) halui.feed-override.increase - pin for increasing the FO (+=scale)

• (BIT) halui.feed-override.decrease - pin for decreasing the FO (-=scale)

17.2.10 Spindle override

• (FLOAT) halui.spindle-override.value - current SO value

• (FLOAT) halui.spindle-override.scale - pin for setting the scale on changing the SO

• (S32) halui.spindle-override.counts - counts from an encoder for example to change SO

• (BIT) halui.spindle-override.increase - pin for increasing the SO (+=scale)

• (BIT) halui.spindle-override.decrease - pin for decreasing the SO (-=scale)

17.2.11 Tool

• (U32) halui.tool.number - indicates current selected tool

• (FLOAT) halui.tool.length-offset - indicates current applied tool-length-offset

CHAPTER 17. HALUI 151

17.2.12 Program

• (BIT) halui.program.is-idle

• (BIT) halui.program.is-running

• (BIT) halui.program.is-paused

• (BIT) halui.program.run

• (BIT) halui.program.pause

• (BIT) halui.program.resume

• (BIT) halui.program.step

17.2.13 General

• (BIT) halui.abort - pin to send an abort message (clears out most errors)

17.2.14 MDI

Sometimes the user wants to add more complicated tasks to be performed by the activation of a
HAL pin. This is possible using the following MDI commands scheme:

• a MDI_COMMAND is added to the ini (in the section [HALUI]) (e.g. [HALUI] MDI_COMMAND =
G0 X0

• when halui starts it will read/detect the MDI_COMMAND fields in the ini, and export pins of
type (BIT) halui.mdi-command-<nr> (<nr> is a number from 00 to the number of MDI_COMMAND’s
found in the ini)

• when the pin halui.mdi-command-<nr> is activated halui will try to send the MDI command
defined in the ini. This will not always succeed, depending on the operating mode emc2 is in
(e.g. while in AUTO halui can’t successfully send MDI commands).

17.3 Case - Studies

User descriptions of working halui and hardware EMC control panels here.

Chapter 18

Virtual Control Panels

18.1 Introduction

Traditional machine control panels are large sheets of steel with push buttons, knobs, lights and
sometimes meters mounted on them. They have many advantages - the buttons are far more rugged
than a computer keyboard, and large enough that you can usually operate the correct one by feel
while looking elsewhere, for example at the tool. However, they also have disadvantages. The occupy
a lot of panel space, they are expensive, and wiring them into the PC can use up a lot of I/O pins.
That is where Virtual Control Panels come in.

A Virtual Control Panel (VCP) is a window on the computer screen with buttons, meters, switches,
etc. When you click on a VCP button, it changes the state of a HAL pin, exactly as if you had pressed
a physical button wired to an input pin on an I/O card. Likewise, a VCP LED lights up when a HAL
pin goes true, just like a physical indicator lamp wired to an output pin on an I/O card. Virtual
control panels are not intended to replace physical panels - sometimes there is just no substitute
for a big rugged oil-tight push button. But virtual panels can be used for testing or monitoring
things that don’t require physical buttons and lights, to temporarily replace real I/O devices while
debugging ladder logic, or perhaps to simulate a physical panel before you build it and wire it to an
I/O board.

18.2 pyVCP

The layout of a pyVCP panel is specified with an XML file that contains widget tags between <pyvcp>
and </pyvcp>. For example:

<pyvcp>
<label text="This is a LED indicator"/>
<led/>

</pyvcp>

If you place this text in a file called tiny.xml, and run

152

CHAPTER 18. VIRTUAL CONTROL PANELS 153

halrun -I loadusr pyvcp -c mypanel tiny.xml

pyVCP will create the panel for you, which includes two widgets, a Label with the text “This is a
LED indicator”, and a LED, used for displaying the state of a HAL BIT signal. It will also create a
HAL component named “mypanel” (all widgets in this panel are connected to pins that start with
“mypanel.”). Since no <halpin> tag was present inside the <led> tag, pyVCP will automatically name
the HAL pin for the LED widget mypanel.led.0

For a list of widgets and their tags and options, see the widget reference below.

Once you have created your panel, connecting HAL signals to and from the pyVCP pins is done with
’halcmd linksp’ as usual. If you are new to HAL, the HAL Tutorial7 is recommended.

18.3 Security of pyVCP

Parts of pyVCP files are evaluated as Python code, and can take any action available to Python
programs. Only use pyVCP .xml files from a source that you trust.

18.4 Using pyVCP with AXIS

Since AXIS uses the same GUI toolkit (Tkinter) as pyVCP, it is possible to include a pyVCP panel on
the right side of the normal AXIS user interface. A typical example is explained below.

Place your pyVCP XML file describing the panel in the same directory where your .ini file is. Say we
we want to display the current spindle speed using a Bar widget. Place the following in a file called
spindle.xml:

<pyvcp>
<label>

<text>"Spindle speed:"</text>
</label>
<bar>

<halpin>"spindle-speed"</halpin>
<max_>5000</max_>

</bar>
</pyvcp>

Here we’ve made a panel with a Label and a Bar widget, specified that the HAL pin connected to the
Bar should be named “spindle-speed”, and set the maximum value of the bar to 5000 (see widget
reference below for all options). To make AXIS aware of this file, and call it at start up, we need to
specify the following in the [DISPLAY] section of the .ini file:

PYVCP = spindle.xml

To make our widget actually display the spindle-speed it needs to be hooked up to the appropriate
HAL signal. A .hal file that will be run once AXIS and pyVCP have started can be specified in the
[HAL] section of the .ini file:

POSTGUI_HALFILE = spindle_to_pyvcp.hal

This change will run the HAL commands specified in “spindle_to_pyvcp.hal”. In our example the
contents could look like this:

CHAPTER 18. VIRTUAL CONTROL PANELS 154

linksp spindle-rpm-filtered pyvcp.spindle-speed

assuming that a signal called “spindle-rpm-filtered” already exists. Note that when running together
with AXIS, all pyVCP widget HAL pins have names that start with “pyvcp.”.

This is what the newly created pyVCP panel should look like in AXIS. The sim/lathe configuration
is already configured this way.

18.5 pyVCP Widget reference

HAL signals come in two variants, BIT and FLOAT. pyVCP can either display the value of the signal
with an indicator widget, or modify the signal value with a control widget. Thus there are four
classes of pyVCP widgets that you can connect to a HAL signal. A fifth class of helper widgets allow
you to organize and label your panel.

1. Widgets for indicating BIT signals: LED

2. Widgets for controlling BIT signals: Button, Checkbutton, Radiobutton

3. Widgets for indicating FLOAT signals: Number, Bar, Meter

4. Widgets for controlling FLOAT signals: Spinbox, Scale, Jogwheel

5. Helper widgets: Hbox, Vbox, Tabel, Label, Labelframe

18.5.0.1 Syntax

Each widget is described briefly, followed by the markup used, and a screen shot. All tags inside
the main widget tag are optional.

CHAPTER 18. VIRTUAL CONTROL PANELS 155

18.5.0.2 General Notes

At the present time, both a tag-based and an attribute-based syntax are supported. For instance,
the following XML fragments are treated identically:

<led halpin="my-led"/>

and

<led><halpin>"my-led"</halpin></led>

When the attribute-based syntax is used, the following rules are used to turn the attributes value
into a Python value:

1. If the first character of the attribute is one of the following, it is evaluated as a Python expres-
sion: {(["’

2. If the string is accepted by int(), the value is treated as an integer

3. If the string is accepted by float(), the value is treated as floating-point

4. Otherwise, the string is accepted as a string.

When the tag-based syntax is used, the text within the tag is always evaluated as a Python expres-
sion.

The examples below show a mix of formats.

18.5.1 LED

A LED is used to indicate the status of a BIT signal. The LED color will be on_color when the BIT
signal is true, and off_color otherwise.

<led>
<halpin>"my-led"</halpin>
<size>50</size>
<on_color>"blue"</on_color>
<off_color>"black"</off_color>

</led>

<halpin> sets the name of the pin, default is “led.n”, where n is an integer
<size> sets the size of the led, default is 20
<on_color> sets the color of the LED when the pin is true. default is “green”
<off_color> sets the color of the LED when the pin is false. default is “ref”

CHAPTER 18. VIRTUAL CONTROL PANELS 156

18.5.2 Button

A button is used to control a BIT pin. The pin will be set True when the button is pressed and held
down, and will be set False when the button is released.

<button>
<halpin>"my-button"</halpin>
<text>"ON"</text>

</button>

18.5.3 Checkbutton

A checkbutton controls a BIT pin. The pin will be set True when the button is checked, and false
when the button is unchecked.

<checkbutton>
<halpin>"my-checkbutton"</halpin>

</checkbutton>

An unchecked checkbutton: , and a checked one:

18.5.4 Radiobutton

A radiobutton will set one of a number of BIT pins true. The other pins are set false.

<radiobutton>
<choices>["one","two","three"]</choices>
<halpin>"my-radio"</halpin>

</radiobutton>

Note that the HAL pins in the example above will me named my-radio.one, my-radio.two, and my-
radio.three. In the image above, “three” is the selected value.

18.5.5 Number

The number widget displays the value of a FLOAT signal.

<number>
<halpin>"my-number"</halpin>
(’Helvetica’,50)
<format>"+4.3f"</format>

</number>

CHAPTER 18. VIRTUAL CONTROL PANELS 157

 is a Tkinter font type and size specification. Note that on Ubuntu 6.06 ’Helvetica’ is not
available in sizes above ca 40 or 50. One font that will show up to at least size 200 is ’courier 10
pitch’, so for a really big Number widget you could specify:

(’courier 10 pitch’,100)

<format> is a ’C-style’ format specified that determines how the number is displayed.

18.5.6 Bar

A bar widget displays the value of a FLOAT signal both graphically using a bar display and numeri-
cally.

<bar>
<halpin>"my-bar"</halpin>
<min_>0</min_>
<max_>123</max_>
<bgcolor>"grey"</bgcolor>
<fillcolor>"red"</fillcolor>

</bar>

18.5.7 Meter

Meter displays the value of a FLOAT signal using a traditional dial indicator.

<meter>
<halpin>"my-meter"</halpin>
<text>"Voltage"</text>
<size>300</size>
<min_>-12</min_>
<max_>33</max_>

</meter>

CHAPTER 18. VIRTUAL CONTROL PANELS 158

18.5.8 Spinbox

Spinbox controls a FLOAT pin. You increase or decrease the value of the pin by ’resolution’ by either
pressing on the arrows, or pointing at the spinbox and rolling your mouse-wheel.

<spinbox>
<halpin>"my-spinbox"</halpin>
<min_>-12</min_>
<max_>33</max_>
<resolution>0.1</resolution>
<format>"2.3f"</format>
(’Arial’,30)

</spinbox>

18.5.9 Scale

Scale controls a FLOAT pin. You increase or decrease the value of the pin be either dragging the
slider, or pointing at the scale and rolling your mouse-wheel.

<scale>
<halpin>"my-scale"</halpin>
<resolution>0.1</resolution>
<orient>HORIZONTAL</orient>
<min_>-33</min_>
<max_>26</max_>

</scale>

18.5.10 Jogwheel

Jogwheel mimics a real jogwheel by outputting a FLOAT pin which counts up or down as the wheel
is turned, either by dragging in a circular motion, or by rolling the mouse-wheel.

<jogwheel>
<halpin>"my-wheel"</halpin>
<cpr>45</cpr>
<size>250</size>

</jogwheel>

CHAPTER 18. VIRTUAL CONTROL PANELS 159

18.6 pyVCP Container reference

Containers are widgets that contain other widgets.

18.6.1 Hbox

Use a Hbox when you want to stack widgets horizontally next to each other.

<hbox>
<label><text>"a vbox:"</text></label>
<led></led>
<number></number>
<bar></bar>

</hbox>

Inside a Hbox, you can use the <boxfill fill=""/>, <boxanchor anchor=""/>, and <boxexpand
expand=""/> tags to choose how items in the box behave when the window is re-sized. For details
of how fill, anchor, and expand behave, refer to the Tk pack manual page, pack(3tk). By default,
fill=’y’, anchor=’center’, expand=’yes’.

18.6.2 Vbox

Use a Vbox when you want to stack widgets vertically on top of each other.

<vbox>
<label><text>"a vbox:"</text></label>
<led></led>
<number></number>
<bar></bar>

</vbox>

CHAPTER 18. VIRTUAL CONTROL PANELS 160

Inside a Hbox, you can use the <boxfill fill=""/>, <boxanchor anchor=""/>, and <boxexpand
expand=""/> tags to choose how items in the box behave when the window is re-sized. For details
of how fill, anchor, and expand behave, refer to the Tk pack manual page, pack(3tk). By default,
fill=’x’, anchor=’center’, expand=’yes’.

18.6.3 Label

A label is a piece of text on your panel.

<label>
<text>"This is a Label:"</text>
(’Helvetica’,20)

</label>

18.6.4 Labelframe

A labelframe is a frame with a groove and a label at the upper-left corner.

<labelframe text="Group Title">
<hbox>

<led/> <led/>
</hbox>

</labelframe>

18.6.5 Table

A table is a container that allows layout in a grid of rows and columns. Each row is started by a
<tablerow/> tag. A contained widget may span rows or columns through the use of the <tablespan
rows= cols=/> tag. The sides of the cells to which the contained widgets “stick” may be set through
the use of the <tablesticky sticky=/> tag. A table expands on its flexible rows and columns.

Example:

<table flexible_rows="[2]" flexible_columns="[1,4]">
<tablesticky sticky="new"/>
<tablerow/>
<label text="A (cell 1,1)"/>
<label text="B (cell 1,2)"/>

CHAPTER 18. VIRTUAL CONTROL PANELS 161

<tablespan columns="2"/><label text="C, D (cells 1,3 and 1,4)">
<tablerow/>
<label text="E (cell 2,1)"/>
<tablesticky sticky="nsew"/><tablespan rows="2"/>

<label text="’spans\n2 rows’"/>
<tablesticky sticky="new"/><label text="G (cell 2,3)"/>
<label text="H (cell 2,4)"/>

<tablerow/>
<label text="J (cell 3,1)"/>
<label text="K (cell 3,2)"/>
<label text="M (cell 3,4)"/>

</table>

Chapter 19

VCP

19.1 VCP: A small example

NOTE: VCP is deprecated, and will most likely not be getting any new development or additional
widgets. We strongly recommend using pyVCP. However, pyVCP won’t be released until version 2.2
comes out, and VCP is in version 2.1. That means some people will wind up using VCP, so we can’t
simply drop it.1

Place the following in the file tiny.vcp:

vcp {
main-window {

box {
button {

halpin = vcp.pushbutton
label { text = "Push Me" }

}
LED {

halpin = vcp.light
}

}
}

}

The above file describes a tiny Virtual Control Panel, with one push button, and one light. To see
what it looks like, we need to start HAL:

$ halrun

Next we load halvcp, and give it the name of our .vcp file:

halcmd: loadusr halvcp tiny.vcp
halcmd:

There may be some text printed as halvcp parses the tiny.vcp file, but when it finishes, there should
be a small window on your screen, with a button and an LED. It will look something like figure 19.1.

So, we have a button and an LED, but they aren’t connected to anything, so nothing happens when
you push the button. However, the LED and the button both have HAL pins associated with them:

1A .vcp to .xml translator that takes a vcp file and turns it into one that pyVCP can use is on my to-do list. That would
enable VCP users to easily switch over to pyVCP. If such a translator is written, VCP may be removed from the version 2.2
release.

162

CHAPTER 19. VCP 163

Figure 19.1: tiny.vcp on the screen

halcmd: show pin
Component Pins:
Owner Type Dir Value Name
03 bit IN FALSE vcp.light
03 bit OUT FALSE vcp.pushbutton

halcmd:

To make something happen, we can connect a HAL signal between the button and the light:

halcmd: newsig jumper bit
halcmd: linksp jumper vcp.pushbutton
halcmd: linksp jumper vcp.light
halcmd: show sig
Signals:
Type Value Name
bit FALSE jumper

==> vcp.light
<== vcp.pushbutton

halcmd:

Now push the button, and the the LED should light up!

19.2 VCP: Another small example with EMC

Place the following in the file estop.vcp:

vcp {
main-window {

toggle { halpin = vcp.estop }
}

}

In your .hal file, remove any existing signal linked to iocontrol.0.emc-enable-in and add the
following lines:

loadusr -W halvcp estop.vcp
newsig estop bit
linkps vcp.estop => estop
linkps estop => iocontrol.0.emc-enable-in

Now, when running your machine, the ESTOP button in the GUI is disabled, and the ESTOP button
in the VCP window is used instead.

CHAPTER 19. VCP 164

19.3 VCP Syntax

19.3.1 Block

A block’s format is:

tag { contents }

The contents can consist of attributes that describe the block, or other blocks that nest inside it.

A attributes format is

name = value

The attribute names that are acceptable for each block depend on the block tag, and will be listed
later.

Part VIII

Advanced topics

165

Chapter 20

Kinematics in EMC2

20.1 Introduction

When we talk about CNC machines, we usually think about machines that are commanded to move
to certain locations and perform various tasks. In order to have an unified view of the machine
space, and to make it fit the human point of view over 3D space, most of the machines (if not all)
use a common coordinate system called the Cartesian Coordinate System.

The Cartesian Coordinate system is composed of 3 axes (X, Y, Z) each perpendicular to the other 2.
1

When we talk about a G-code program (RS274NGC) we talk about a number of commands (G0,
G1, etc.) which have positions as parameters (X- Y- Z-). These positions refer exactly to Cartesian
positions. Part of the EMC2 motion controller is responsible for translating those positions into
positions which correspond to the machine kinematics2.

20.1.1 Joints vs. Axes

A joint of a CNC machine is a one of the physical degrees of freedom of the machine. This might be
linear (leadscrews) or rotary (rotary tables, robot arm joints). There can be any number of joints on
a certain machine. For example a typical robot has 6 joints, and a typical simple milling machine
has only 3.

There are certain machines where the joints are layed out to match kinematics axes (joint 0 along
axis X, joint 1 along axis Y, joint 2 along axis Z), and these machines are called Cartesian machines
(or machines with Trivial Kinematics). These are the most common machines used in milling, but
are not very common in other domains of machine control (e.g. welding: puma-typed robots).

20.2 Trivial Kinematics

As we said there is a group of machines in which each joint is placed along one of the Cartesian
axes. On these machines the mapping from Cartesian space (the G-code program) to the joint space
(the actual actuators of the machine) is trivial. It is a simple 1:1 mapping:

pos->tran.x = joints[0];
pos->tran.y = joints[1];

1The word “axes” is also commonly (and wrongly) used when talking about CNC machines, and referring to the moving
directions of the machine.

2Kinematics: a two way function to transform from Cartesian space to joint space

166

CHAPTER 20. KINEMATICS IN EMC2 167

pos->tran.z = joints[2];
pos->a = joints[3];
pos->b = joints[4];
pos->c = joints[5];

In the above code snippet one can see how the mapping is done: the X position is identical with
the joint 0, Y with joint 1 etc. The above refers to the direct kinematics (one way of the trans-
formation) whereas the next code part refers to the inverse kinematics (or the inverse way of the
transformation):

joints[0] = pos->tran.x;
joints[1] = pos->tran.y;
joints[2] = pos->tran.z;
joints[3] = pos->a;
joints[4] = pos->b;
joints[5] = pos->c;

As one can see, it’s pretty straightforward to do the transformation for a trivial kins (or Cartesian)
machine. It gets a bit more complicated if the machine is missing one of the axes.34

20.3 Non-trivial kinematics

There can be quite a few types of machine setups (robots: puma, scara; hexapods etc.). Each of
them is set up using linear and rotary joints. These joints don’t usually match with the Cartesian
coordinates, therefor there needs to be a kinematics function which does the conversion (actually 2
functions: forward and inverse kinematics function).

To illustrate the above, we will analyze a simple kinematics called bipod (a simplified version of the
tripod, which is a simplified version of the hexapod).

The Bipod we are talking about is a device that consists of 2 motors placed on a wall, from which a
device is hanged using some wire. The joints in this case are the distances from the motors to the
device (named AD and BD in figure 20.1).

The position of the motors is fixed by convention. Motor A is in (0,0), which means that its X
coordinate is 0, and its Y coordinate is also 0. Motor B is placed in (Bx, 0), which means that its X
coordinate is Bx.

Our tooltip will be in point D which gets defined by the distances AD and BD, and by the Cartesian
coordinates Dx, Dy.

The job of the kinematics is to transform from joint lengths (AD, BD) to Cartesian coordinates (Dx,
Dy) and vice-versa.

20.3.1 Forward transformation

To transform from joint space into Cartesian space we will use some trigonometry rules (the right
triangles determined by the points (0,0), (Dx,0), (Dx,Dy) and the triangle (Dx,0), (Bx,0) and (Dx,Dy).

we can easily see that AD2 = x2 + y2, likewise BD2 = (Bx− x)2 + y2.

If we subtract one from the other we will get:

3If a machine (e.g. a lathe) is set up with only the axes X,Z & A, and the EMC2 inifile holds only these 3 joints defined,
then the above matching will be faulty. That is because we actually have (joint0=x, joint1=Z, joint2=A) whereas the above
assumes joint1=Y. To make it easily work in EMC2 one needs to define all axes (XYZA), then use a simple loopback in HAL
for the unused Y axis.

4One other way of making it work, is by changing the matching code and recompiling the software.

CHAPTER 20. KINEMATICS IN EMC2 168

Figure 20.1: Bipod setup

AD2 −BD2 = x2 + y2 − x2 + 2 ∗ x ∗Bx−Bx2 − y2

and therefore:

x =
AD2 −BD2 + Bx2

2 ∗Bx

From there we calculate:

y =
√

AD2 − x2

Note that the calculation for y involves the square root of a difference, which may not result in a
real number. If there is no single Cartesian coordinate for this joint position, then the position is
said to be a singularity. In this case, the forward kinematics return -1.

Translated to actual code:

double AD2 = joints[0] * joints[0];
double BD2 = joints[1] * joints[1];
double x = (AD2 - BD2 + Bx * Bx) / (2 * Bx);
double y2 = AD2 - x * x;
if(y2 < 0) return -1;
pos->tran.x = x;
pos->tran.y = sqrt(y2);
return 0;

CHAPTER 20. KINEMATICS IN EMC2 169

20.3.2 Inverse transformation

The inverse kinematics is lots easier in our example, as we can write it directly:

AD =
√

x2 + y2

BD =
√

(Bx− x)2 + y2

or translated to actual code:

double x2 = pos->tran.x * pos->tran.x;
double y2 = pos->tran.y * pos->tran.y;
joints[0] = sqrt(x2 + y2);
joints[1] = sqrt((Bx - pos->tran.x)*(Bx - pos->tran.x) + y2);
return 0;

20.4 Implementation details

A kinematics module is implemented as a HAL component, and is permitted to export pins and
parameters. It consists of several functions:

• int kinematicsForward(const double *joint, EmcPose *world, const KINEMATICS_FORWARD_FLAGS

*fflags, KINEMATICS_INVERSE_FLAGS *iflags)

Implements the forward kinematics function as described in section 20.3.1.

• extern int kinematicsInverse(const EmcPose * world, double *joints, const KINEMATICS_INVERSE_FLAGS

*iflags, KINEMATICS_FORWARD_FLAGS *fflags)

Implements the inverse kinematics function as described in section 20.3.2.

• extern KINEMATICS_TYPE kinematicsType(void)

Returns the kinematics type identifier.

• int kinematicsHome(EmcPose *world, double *joint, KINEMATICS_FORWARD_FLAGS *fflags,
KINEMATICS_INVERSE_FLAGS *iflags)

The home kinematics function sets all its arguments to their proper values at the known home
position. When called, these should be set, when known, to initial values, e.g., from an INI
file. If the home kinematics can accept arbitrary starting points, these initial values should be
used.

• int rtapi_app_main(void)

• void rtapi_app_exit(void)

These are the standard setup and tear-down functions of RTAPI modules.

Part IX

Tuning

170

Chapter 21

Stepper Tuning

21.1 Getting the most out of Software Stepping

Generating step pulses in software has one very big advantage - it’s free. Just about every PC has a
parallel port that is capable of outputting step pulses that are generated by the software. However,
software step pulses also have some disadvantages:

• limited maximum step rate

• jitter in the generated pulses

• loads the CPU

This chapter has some steps that can help you get the best results from software generated steps.

21.1.1 Run a Latency Test

The new easy way to do a latency test is described in the Getting Started Guide.

Latency is how long it takes the PC to stop what it is doing and respond to an external request.
In our case, the request is the periodic "heartbeat" that serves as a timing reference for the step
pulses. The lower the latency, the faster you can run the heartbeat, and the faster and smoother
the step pulses will be.

Latency is far more important than CPU speed. A lowly Pentium II that responds to interrupts
within 10 microseconds each and every time can give better results than the latest and fastest P4
Hyperthreading beast.

The CPU isn’t the only factor in determining latency. Motherboards, video cards, USB ports, and a
number of other things can hurt the latency. The best way to find out what you are dealing with is
to run the RTAI latency test.

DO NOT TRY TO RUN EMC2 WHILE THE TEST IS RUNNING

On Ubuntu Dapper, you can run the test by opening a shell and doing:

sudo mkdir /dev/rtf;
sudo mknod /dev/rtf/3 c 150 3;
sudo mknod /dev/rtf3 c 150 3;
cd /usr/realtime*/testsuite/kern/latency; ./run

171

CHAPTER 21. STEPPER TUNING 172

and then you should see something like this:

ubuntu:/usr/realtime-2.6.12-magma/testsuite/kern/latency$./run

*
*
* Type ^C to stop this application.

*
*
RTAI latency calibration tool
period = 100000 (ns)
avrgtime = 1 (s)
do not use the FPU
start the timer
timer_mode is oneshot
RTAI Testsuite - KERNEL latency (all data in nanoseconds)
RTH| lat min| ovl min| lat avg| lat max| ovl max| overruns
RTD| -1571| -1571| 1622| 8446| 8446| 0
RTD| -1558| -1571| 1607| 7704| 8446| 0
RTD| -1568| -1571| 1640| 7359| 8446| 0
RTD| -1568| -1571| 1653| 7594| 8446| 0
RTD| -1568| -1571| 1640| 10636| 10636| 0
RTD| -1568| -1571| 1640| 10636| 10636| 0

While the test is running, you should "abuse" the computer. Move windows around on the screen.
Surf the web. Copy some large files around on the disk. Play some music. Run an OpenGL program
such as glxgears. The idea is to put the PC through its paces while the latency test checks to see
what the worst case numbers are.

The last number in the column labeled "ovl max" is the most important. Write it down - you will
need it later. It contains the worst latency measurement during the entire run of the test. In the
example above, that is 10636 nano-seconds, or 10.6 micro-seconds, which is excellent. However
the example only ran for a few seconds (it prints one line every second). You should run the test
for at least several minutes; sometimes the worst case latency doesn’t happen very often, or only
happens when you do some particular action. I had one Intel motherboard that worked pretty well
most of the time, but every 64 seconds it had a very bad 300uS latency. Fortunately that is fixable,
see FixingDapperSMIIssues in the wiki found at wiki.linuxcnc.org.

So, what do the results mean? If your "ovl max" number is less than about 15-20 microseconds
(15000-20000 nanoseconds), the computer should give very nice results with software stepping. If
the max latency is more like 30-50 microseconds, you can still get good results, but your maximum
step rate might be a little dissapointing, especially if you use microstepping or have very fine pitch
leadscrews. If the numbers are 100uS or more (100,000 nanoseconds), then the PC is not a good
candidate for software stepping. Numbers over 1 millisecond (1,000,000 nanoseconds) mean the PC
is not a good candidate for EMC, regardless of whether you use software stepping or not.

Note that if you get high numbers, there may be ways to improve them. For example, one PC had
very bad latency (several milliseconds) when using the onboard video. But a $5 used Matrox video
card solved the problem - EMC does not require bleeding edge hardware.

21.1.2 Figure out what your drives expect

Different brands of stepper drives have different timing requirements on their step and direction
inputs. So you need to dig out (or Google for) the data sheet that has your drive’s specs.

For example, the Gecko G202 manual says this:
Step Frequency: 0 to 200 kHz

CHAPTER 21. STEPPER TUNING 173

Step Pulse “0” Time: 0.5 uS min (Step on falling edge)
Step Pulse “1” Time: 4.5 uS min
Direction Setup: 1 uS min (20 uS min hold time after Step edge)

The Gecko G203V specifications are:
Step Frequency: 0 to 333 kHz
Step Pulse “0” Time: 2.0 uS min (Step on rising edge)
Step Pulse “1” Time: 1.0 uS min
Direction Setup:

200 nS (0.2uS) before step pulse rising edge
200 nS (0.2uS) hold after step pulse rising edge

A Xylotex drive datasheet has a nice drawing of the timing requirements, which are:

Minimum DIR setup time before rising edge of STEP Pulse 200nS Minimum
DIR hold time after rising edge of STEP pulse 200nS
Minimum STEP pulse high time 2.0uS
Minimum STEP pulse low time 1.0uS
Step happens on rising edge

Once you find the numbers, write them down too - you need them in the next step.

21.1.3 Choose your BASE_PERIOD

BASE_PERIOD is the "heartbeat" of your EMC computer. Every period, the software step generator
decides if it is time for another step pulse. A shorter period will allow you to generate more pulses
per second, within limits. But if you go too short, your computer will spend so much time generating
step pulses that everything else will slow to a crawl, or maybe even lock up. Latency and stepper
drive requirements affect the shortest period you can use, as we will see in a minute.

Let’s look at the Gecko example first. The G202 can handle step pulses that go low for 0.5uS and
high for 4.5uS, it needs the direction pin to be stable 1uS before the falling edge, and remain stable
for 20uS after the falling edge. The longest timing requirement is the 20uS hold time. A simple
approach would be to set the period at 20uS. That means that all changes on the STEP and DIR
lines are separated by 20uS. All is good, right?

Wrong! If there was ZERO latency, then all edges would be separated by 20uS, and everything
would be fine. But all computers have some latency. Latency means lateness. If the computer
has 11uS of latency, that means sometimes the software runs as much as 11uS later than it was
supposed to. If one run of the software is 11uS late, and the next one is on time, the delay from the
first to the second is only 9uS. If the first one generated a step pulse, and the second one changed
the direction bit, you just violated the 20uS G202 hold time requirement. That means your drive
might have taken a step in the wrong direction, and your part will be the wrong size.

The really nasty part about this problem is that it can be very very rare. Worst case latencies might
only happen a few times a minute, and the odds of bad latency happening just as the motor is
changing direction are low. So you get very rare errors that ruin a part every once in a while and
are impossible to troubleshoot.

The simplest way to avoid this problem is to choose a BASE_PERIOD that is the sum of the longest
timing requirement of your drive, and the worst case latency of your computer. If you are running a
Gecko with a 20uS hold time requirement, and your latency test said you have a maximum latency
of 11uS, then if you set the BASE_PERIOD to 20+11 = 31uS (31000 nano-seconds in the ini file),
you are guaranteed to meet the drive’s timing requirements.

But there is a tradeoff. Making a step pulse requires at least two periods. One to start the pulse,
and one to end it. Since the period is 31uS, it takes 2x31 = 62uS to create a step pulse. That means

CHAPTER 21. STEPPER TUNING 174

the maximum step rate is only 16,129 steps per second. Not so good. (But don’t give up yet, we still
have some tweaking to do in the next section.)

For the Xylotex, the setup and hold times are very short, 200nS each (0.2uS). The longest time is the
2uS high time. If you have 11uS latency, then you can set the BASE_PERIOD as low as 11+2=13uS.
Getting rid of the long 20uS hold time really helps! With a period of 13uS, a complete step takes
2x13 = 26uS, and the maximum step rate is 38,461 steps per second!

But you can’t start celebrating yet. Note that 13uS is a very short period. If you try to run the step
generator every 13uS, there might not be enough time left to run anything else, and your computer
will lock up. If you are aiming for periods of less than 25uS, you should start at 25uS or more, run
EMC, and see how things respond. If all is well, you can gradually decrease the period. If the mouse
pointer starts getting sluggish, and everything else on the PC slows down, your period is a little too
short. Go back to the previous value that let the computer run smoothly.

In this case, sppose you started at 25uS, trying to get to 13uS, but you find that around 16uS is the
limit - any less and the computer doesn’t respond very well. So you use 16uS. With a 16uS period
and 11uS latency, the shortest output time will be 16-11 = 5uS. The drive only needs 2uS, so you
have some margin. Margin is good - you don’t want to lose steps because you cut the timing too
close.

What is the maximum step rate? Remember, two periods to make a step. You settled on 16uS for
the period, so a step takes 32uS. That works out to a not bad 31,250 steps per second.

21.1.4 Use steplen, stepspace, dirsetup, and/or dirhold

In the last section, we got the Xylotex drive to a 16uS period and a 31,250 step per second maximum
speed. But the Gecko was stuck at 31uS and a not-so-nice 16,129 steps per second. The Xylotex
example is as good as we can make it. But the Gecko can be improved.

The problem with the G202 is the 20uS hold time requirement. That plus the 11uS latency is what
forces us to use a slow 31uS period. But the EMC2 software step generator has some parameters
that let you increase the various time from one period to several. For example, if steplen is changed
from 1 to 2, then it there will be two periods between the beginning and end of the step pulse.
Likewise, if dirhold is changed from 1 to 3, there will be at least three periods between the step
pulse and a change of the direction pin.

If we can use dirhold to meet the 20uS hold time requirement, then the next longest time is the
4.5uS high time. Add the 11uS latency to the 4.5uS high time, and you get a minimum period of
15.5uS. When you try 15.5uS, you find that the computer is sluggish, so you settle on 16uS. If
we leave dirhold at 1 (the default), then the minimum time between step and direction is the 16uS
period minus the 11uS latency = 5uS, which is not enough. We need another 15uS. Since the period
is 16uS, we need one more period. So we change dirhold from 1 to 2. Now the minimum time from
the end of the step pulse to the changing direction pin is 5+16=21uS, and we don’t have to worry
about the Gecko stepping the wrong direction because of latency.

If the computer has a latency of 11uS, then a combination of a 16uS base period, and a dirhold value
of 2 ensures that we will always meet the timing requirements of the Gecko. For normal stepping
(no direction change), the increased dirhold value has no effect. It takes two periods totalling 32uS
to make each step, and we have the same 31,250 step per second rate that we got with the Xylotex.

The 11uS latency number used in this example is very good. If you work through these examples
with larger latency, like 20 or 25uS, the top step rate for both the Xylotex and the Gecko will be
lower. But the same formulas apply for calculating the optimum BASE_PERIOD, and for tweaking
dirhold or other step generator parameters.

21.1.5 No Guessing!

For a fast AND reliable software based stepper system, you cannot just guess at periods and other
configuration paremeters. You need to make measurements on your computer, and do the math to

CHAPTER 21. STEPPER TUNING 175

ensure that your drives get the signals they need.

To make the math easier, I’ve created an Open Office spreadsheet (http://wiki.linuxcnc.org/uploads/StepTimingCalculator.ods).
You enter your latency test result and your stepper drive timing requirements and the spreadsheet
calculates the optimum BASE_PERIOD. Next, you test the period to make sure it won’t slow down or
lock up your PC. Finally, you enter the actual period, and the spreadsheet will tell you the stepgen
parameter settings that are needed to meet your drive’s timing requirements. It also calculates the
maximum step rate that you will be able to generate.

I’ve added a few things to the spreadsheet to calculate max speed and stepper electrical calculations.

Chapter 22

PID Tuning

22.1 PID Controller

A proportional-integral-derivative controller (PID controller) is a common feedback loop component
in industrial control systems.1

The Controller compares a measured value from a process (typically an industrial process) with a
reference setpoint value. The difference (or "error" signal) is then used to calculate a new value for
a manipulatable input to the process that brings the process’ measured value back to its desired
setpoint.

Unlike simpler control algorithms, the PID controller can adjust process outputs based on the
history and rate of change of the error signal, which gives more accurate and stable control. (It
can be shown mathematically that a PID loop will produce accurate, stable control in cases where
a simple proportional control would either have a steady-state error or would cause the process to
oscillate).

22.1.1 Control loop basics

Intuitively, the PID loop tries to automate what an intelligent operator with a gauge and a control
knob would do. The operator would read a gauge showing the output measurement of a process, and
use the knob to adjust the input of the process (the "action") until the process’s output measurement
stabilizes at the desired value on the gauge.

In older control literature this adjustment process is called a "reset" action. The position of the
needle on the gauge is a "measurement", "process value" or "process variable". The desired value on
the gauge is called a "setpoint" (also called "set value"). The difference between the gauge’s needle
and the setpoint is the "error".

A control loop consists of three parts:

1. Measurement by a sensor connected to the process (e.g. encoder),

2. Decision in a controller element,

3. Action through an output device such as an motor.

As the controller reads a sensor, it subtracts this measurement from the "setpoint" to determine the
"error". It then uses the error to calculate a correction to the process’s input variable (the "action")
so that this correction will remove the error from the process’s output measurement.

In a PID loop, correction is calculated from the error in three ways: cancel out the current er-
ror directly (Proportional), the amount of time the error has continued uncorrected (Integral), and
anticipate the future error from the rate of change of the error over time (Derivative).

1This Subsection is taken from an much more extensive article found at http://en.wikipedia.org/wiki/PID_controller

176

CHAPTER 22. PID TUNING 177

A PID controller can be used to control any measurable variable which can be affected by manipu-
lating some other process variable. For example, it can be used to control temperature, pressure,
flow rate, chemical composition, speed, or other variables. Automobile cruise control is an example
of a process outside of industry which utilizes crude PID control.

Some control systems arrange PID controllers in cascades or networks. That is, a "master" control
produces signals used by "slave" controllers. One common situation is motor controls: one often
wants the motor to have a controlled speed, with the "slave" controller (often built into a variable
frequency drive) directly managing the speed based on a proportional input. This "slave" input is
fed by the "master" controllers’ output, which is controlling based upon a related variable.

22.1.2 Theory

"PID" is named after its three correcting calculations, which all add to and adjust the controlled
quantity. These additions are actually "subtractions" of error, because the proportions are usually
negative:

22.1.2.0.0.1 Proportional To handle the present, the error is multiplied by a (negative) constant
P (for "proportional"), and added to (subtracting error from) the controlled quantity. P is only valid
in the band over which a controller’s output is proportional to the error of the system. Note that
when the error is zero, a proportional controller’s output is zero.

22.1.2.0.0.2 Integral To learn from the past, the error is integrated (added up) over a period of
time, and then multiplied by a (negative) constant I (making an average), and added to (subtracting
error from) the controlled quantity. I averages the measured error to find the process output’s aver-
age error from the setpoint. A simple proportional system either oscillates, moving back and forth
around the setpoint because there’s nothing to remove the error when it overshoots, or oscillates
and/or stabilizes at a too low or too high value. By adding a negative proportion of (i.e. subtracting
part of) the average error from the process input, the average difference between the process output
and the setpoint is always being reduced. Therefore, eventually, a well-tuned PID loop’s process
output will settle down at the setpoint.

22.1.2.0.0.3 Derivative To handle the future, the first derivative (the slope of the error) over
time is calculated, and multiplied by another (negative) constant D, and also added to (subtracting
error from) the controlled quantity. The derivative term controls the response to a change in the
system. The larger the derivative term, the more rapidly the controller responds to changes in the
process’s output.

More technically, a PID loop can be characterized as a filter applied to a complex frequency-domain
system. This is useful in order to calculate whether it will actually reach a stable value. If the values
are chosen incorrectly, the controlled process input can oscillate, and the process output may never
stay at the setpoint.

22.1.3 Loop Tuning

"Tuning" a control loop is the adjustment of its control parameters (gain/proportional band, integral
gain/reset, derivative gain/rate) to the optimum values for the desired control response. The opti-
mum behavior on a process change or setpoint change varies depending on the application. Some
processes must not allow an overshoot of the process variable from the setpoint. Other processes
must minimize the energy expended in reaching a new setpoint. Generally stability of response is
required and the process must not oscillate for any combination of process conditions and setpoints.

CHAPTER 22. PID TUNING 178

Tuning of loops is made more complicated by the response time of the process; it may take minutes
or hours for a setpoint change to produce a stable effect. Some processes have a degree of non-
linearity and so parameters that work well at full-load conditions don’t work when the process is
starting up from no-load. This section describes some traditional manual methods for loop tuning.

There are several methods for tuning a PID loop. The choice of method will depend largely on
whether or not the loop can be taken "offline" for tuning, and the response speed of the system.
If the system can be taken offline, the best tuning method often involves subjecting the system to
a step change in input, measuring the output as a function of time, and using this response to
determine the control parameters.

22.1.3.0.0.4 Simple method If the system must remain online, one tuning method is to first set
the I and D values to zero. Increase the P until the output of the loop oscillates. Then increase I
until oscillation stops. Finally, increase D until the loop is acceptably quick to reach its reference. A
fast PID loop tuning usually overshoots slightly to reach the setpoint more quickly; however, some
systems cannot accept overshoot.

Parameter Rise Time Overshoot Settling Time S.S. Error
P Decrease Increase Small Change Decrease
I Decrease Increase Increase Eliminate
D Small Change Decrease Decrease Small Change

Effects of increasing parameters

22.1.3.0.0.5 Ziegler-Nichols method Another tuning method is formally known as the "Ziegler-
Nichols method", introduced by John G. Ziegler and Nathaniel B. Nichols. It starts in the same way
as the method described before: first set the I and D gains to zero and then increase the P gain until
the output of the loop starts to oscillate. Write down the critical gain (Kc) and the oscillation period
of the output (Pc). Then adjust the P, I and D controls as the table shows:

Control type P I D
P .5Kc

PI .45Kc 1.2/Pc

PID .6Kc 2/Pc P × Pc/8

Part X

Ladder Logic

179

Chapter 23

Ladder programming

23.1 Introduction

Ladder logic or the Ladder programming language is a method of drawing electrical logic schematics.
It is now a graphical language very popular for programming Programmable Logic Controllers (PLCs).
It was originally invented to describe logic made from relays. The name is based on the observation
that programs in this language resemble ladders, with two vertical "rails" and a series of "rungs"
between them. In Germany and elsewhere in Europe, the style is to draw the rails horizontal along
the top and bottom of the page while the rungs are drawn sequentially from left to right.

A program in ladder logic, also called a ladder diagram, is similar to a schematic for a set of relay
circuits. Ladder logic is useful because a wide variety of engineers and technicians can understand
and use it without much additional training because of the resemblance.

Ladder logic is widely used to program PLCs, where sequential control of a process or manufacturing
operation is required. Ladder logic is useful for simple but critical control systems, or for reworking
old hardwired relay circuits. As programmable logic controllers became more sophisticated it has
also been used in very complex automation systems.

Ladder logic can be thought of as a rule-based language, rather than a procedural language. A
"rung" in the ladder represents a rule. When implemented with relays and other electromechani-
cal devices, the various rules "execute" simultaneously and immediately. When implemented in a
programmable logic controller, the rules are typically executed sequentially by software, in a loop.
By executing the loop fast enough, typically many times per second, the effect of simultaneous and
immediate execution is obtained.

23.2 Example

The most common components of ladder are contacts (inputs), these usually are either NC (normally
closed) or NO (normally open), and coils (outputs).

• the NO contact

• the NC contact

• the coil (output)

180

CHAPTER 23. LADDER PROGRAMMING 181

Of course there are way more components to a full ladder language, but understanding these will
help grasp the overall concept.

The ladder consists of one or more rungs. These rungs are horizontal traces, with components on
them (inputs, outputs and other), which get evaluated left to right.

This example is the simplest rung:

The input on the left, a normal open contact is connected to the output on the right Q0. Now imagine
a voltage gets applied to the leftmost end, as soon as the B0 turns true (e.g. the input is activated,
or the user pushed the NO contact), the voltage reaches the right part Q0. As a consequence, the
Q0 output will turn from 0 to 1.

Chapter 24

ClassicLadder

24.1 Introduction

ClassicLadder is a free implementation of a ladder interpreter, released under the LGPL. It has been
written by Marc Le Douarain.

He describes the beginning of the project on his website:

“I decided to program a ladder language only for test purposes at the start, in february
2001. It was planned, that I would have to participate to a new product after leaving the
enterprise in which I was working at that time. And I was thinking that to have a ladder
language in thoses products could be a nice option to considerate. And so I started to code
the first lines for calculating a rung with minimal elements and displaying dynamically it
under Gtk, to see if my first idea to realise all this works.

And as quickly I’ve found that it advanced quite well, I’ve continued with more complex
elements : timer, multiples rungs, etc...

Voila, here is this work... and more : I’ve continued to add features since then.”

ClassicLadder has been adapted to work with emc2’s HAL, and is currently beeing distributed
along with emc2. If there are issues/problems/bugs please report them to the Enhanced Machine
Controller project.

24.2 Languages

The most common language used when working with ClassicLadder is ’ladder’. ClassicLadder allows
one to use other variants (like sequential function chart - Grafcet) too, however those aren’t covered
by the current documentation.

In the next chapters the main components of ClassicLadder will be described.

24.3 Starting ClassicLadder

There are 2 components belonging to ClassicLadder:

• The realtime module = classicladder_rt

• The userspace module (along with a GUI) = classicladder

182

CHAPTER 24. CLASSICLADDER 183

24.3.1 Realtime Module

Loading the ClassicLadder realtime module (classicladder_rt) is possible from a halfile, or directly
using a halcmd instruction. You must add two lines to your .hal file for ClassicLadder to func-
tion. The first line loads real time the ClassicLadder module. The second line adds the function
classicladder.0.refresh to the servo thread. This makes ClassicLadder update at the servo thread
rate.

loadrt classicladder_rt addf
classicladder.0.refresh servo-thread

24.3.2 Variables

It is possible to configure the number of each type of ladder object while loading the classicladder
realtime module. If you do not configure the number of ladder objects ClassicLadder will use the
default values.

Table 24.1: ClassicLadder realtime component options
Object name: variable name: Default value:
Number of rungs (numRungs) 100
Number of bits (numBits) 500
Number of word variables (numWords) 100
Number of timers (numTimers) 10
Number of monostables (numMonostables) 10
Number of counters (numCounters) 10
Number of hal inputs bit pins (numPhysInputs) 15
Number of hal output bit pins (numPhysOuputs) 15
Number of arithmetic expressions (numArithmExpr) 50
Number of sections (numSections) 10
Number of symbols (numSymbols) 100
Number of S32 inputs (numS32in) 0
Number of S32 outputs (numS32out) 0

If you do not configure the number of ladder objects classicladder will use the default values. Objects
of most interest are numPhysInputs and numPhysOutputs.

Changing these numbers will change the number of HAL bit pins available.

For example:

loadrt classicladder_rt numRungs=12 numBits=100 numWords=10 numTimers=10
numMonostables=10 numCounters=10 numPhysInputs=10 numPhysOutputs=10
numArithmExpr=100 numSections=4 numSymbols=200

24.3.3 Loading the ClassicLadder user module

There are options while loading the user module:

• –help displays basically this list then exits

• –version displays the... version ...surprise!! then exits

• –nogui starts classicladder (while loading a ladder program if specified) with no GUI.

CHAPTER 24. CLASSICLADDER 184

• –modbus_port=port sets up the modbus port number (EMC doesn’t use it)

• –config=file Sets up the number of the each ladder object (only if there is no realtime support.In
EMC you load this with the realtime module-I’ll get to this in a minute)

• -w Used when ClassicLadder is used with a HAL file and not loaded with EMC. It tells HAL not
to close down the HAL environment until ClassicLadder is finished.

Use the GUI when setting up your system then change it to –nogui when running. The only other
thing you can do while loading the user module is specify a ladder program to load. ladder programs
are specified by the .clp ending.

• loadusr classicladder –nogui myladder.clp

loads the classicladder user module, ladder program myladder and displays nothing.

• loadusr classicladder myladder.clp

loads the classicladder user module, ladder program myladder and starts the classicladder
GUI.

• loadusr classicladder

loads the classicladder user module, starts the GUI but loads no laddder program.

24.4 ClassicLadder GUI

If you load classicladder with the GUI it will display three windows: vars, section display, and
section manager.

24.4.1 The Variables window

It displays some of the variable data and variable names. Notice all variable start with the % sign.

The three edit areas at the top allow you to select what 15 variable will be displayed in each column.
For instance if there were 30 %I variable and you entered 10 at the top of the column, variable %I10
to %I25 would be displayed.

The check boxes allow you to set and un set variables but when classicladder is running hal will
update the pins and change them.

Near the bottom are the %W variables. These are called word variable and represent positive and
negative (signed) numbers and are used with compare and operate. By clicking on the variable, you
can edit the number to display which ever you want.The edit box beside it is the number stored in
the variable -you can change it- and the drop-down box beside that allow you to choose whether the
number to be displayed is in hex, decimal or binary.

The %I variable represents HAL input bit pins. The %Q represents the relay coil and HAL output bit
pins. The %B represents an internal relay coil or internal contact.

CHAPTER 24. CLASSICLADDER 185

Figure 24.1: ClassicLadder Var window

24.4.2 The Section Display window

Most of the buttons are self explanitory:

The config button is not used in EMC.

The symbols button will display an editable list of symbols for the variables (eg you can name the
inputs, outputs, coils etc).

The symbols window will display the HAL signal names if present for %I, %Q and %W variables.

The quit button will only shut down the display-the ladder program will still run in the back ground.

The check box at the top right allows you to select whether variable names or symbol names are
displayed

CHAPTER 24. CLASSICLADDER 186

Figure 24.2: ClassicLadder Section Display window

24.4.3 The Section Manager window

This window allows you to name, create or delete sections. This is also how you name a subroutine
for call coils.

Figure 24.3: ClassicLadder Section Manager window

24.4.4 The Editor window

Starting from the top left image:

1. SELECTOR ARROW, ERASER

2. N.O., N.C. , RISING-EDGE ,FALLING-EDGE CONTACTS.

3. HORIZONTAL, VERTICAL , HORIZONTAL RUNNING-CONNECTIONS

4. TIMER, MONOSTABLE, COUNTER, COMPARE

5. N.O. COIL, N.C. COIL, SET COIL, RESET COIL

6. JUMP COIL, CALL COIL, OPERATE

CHAPTER 24. CLASSICLADDER 187

Figure 24.4: ClassicLadder Editor window

A short description of each of the buttons:

• The SELECTOR ARROW button allows you to select existing objects and modify the informa-
tion.

• The ERASER erases an object.

• The N.O. CONTACT is a normally open contact. It can be an extenal HAL-pin (%I) input contact,
an internal-bit coil (%B) contact or a external coil (%Q) contact. The Hal-pin input contact is
closed when the HAL-pin is true. The coil contacts are closed when the coresponding coil is
active (%Q2 contact closes when %Q2 coil is active).

• The N.C. CONTACT is a normally closed contact. It is the same as the n.o. contact except that
the contact is open when the hal-pin is true or the coil is active.

• The RISING-EDGE CONTACT is a contact that is closed when the HAL-pin goes from False to
true, or the coil from not-active to active.

• The FALLING-EDGE CONTACT is a contact that is closed when the HAL-pin goes from true to
false or the coil from active to not.

• The HORIZONTAL CONNECTION connects the ’signal’ to objects horizontally.

• The VERTICAL CONNECTION connects the ’signal’ to objects vertically.

• The HORIZONTAL-RUNNING CONNECTION is a quick way to connect a long run of ’signal
wire’ horizontally.

• The TIMER is a Timer Module.

• The MONOSTABLE is monostable module (one-shot)

• The COUNTER is a counter module.

CHAPTER 24. CLASSICLADDER 188

• The COMPARE button allows you to compare variable to values or other variables. (eg %W1<=5
or %W1=%W2)
The variable you can use are: W-words,T-timers,M-monostables,C-counters,X-sequential and
their attributes D-done, E-empty, F-full, P-preset, R-running, and V-value (not all atributes
are available to all variables) eg %T2.D.
The math symbols are +,-,*,/,=,<,>,<=,>=,(,),^ (exponent),% (modulas),& (and),| (or),! (not).
Math function are ABS (absolute), MOY (average). eg ABS(%W2)=1, MOY(%W1,%W2)<3 .
Compare cannot be placed in the right most side of the section display.

• The OPERATE button allows you to assign values to variables. (eg %W2=7 or %W1=%W2) there
are two math funtions MINI and MAXI that check a variable for maximum (0x80000000) and
minimum values (0x05FFFFFFF) (think signed values) and keeps them from going beyond.
You may use all the math symbols and functions from above. OPERATE funtions can only be
placed at the right most side of the section display.

24.5 ClassicLadder Variables

List of known variables :

Bxxx : Bit memory xxx (boolean)

Wxxx : Word memory xxx (32 bits integer)

Txx,R : Timer xx running (boolean, user read only)

Txx,D : Timer xx done (boolean, user read only)

Txx,V : Timer xx current value (integer, user read only)

Txx,P : Timer xx preset (integer)

Mxx,R : Monostable xx running (boolean)

Mxx,V : Monostable xx current value (integer, user read only)

Mxx,P : Monostable xx preset (integer)

Cxx,D : Counter xx done (boolean, user read only)

Cxx,E : Counter xx empty overflow (boolean, user read only)

Cxx,F : Counter xx full overflow (boolean, user read only)

Cxx,V : Counter xx current value (integer, user read only)

Cxx,P : Counter xx preset (integer)

Ixxx : Physical input xxx (boolean) - HAL input bit -

Qxxx : Physical output xxx (boolean) - HAL output bit -

Xxxx : Activity of step xxx (sequential language)

Xxxx,V : Time of activity in seconds of step xxx (sequential language)

CHAPTER 24. CLASSICLADDER 189

24.6 Using JUMP COILs

JUMP COILs are used to ’JUMP’ to another section-like a goto in BASIC programming language.

If you look at the top left of the sections display window you will see a small lable box and a longer
comment box beside it. Now go to Editor->Modify then go back to the little box, type in a name.

Go ahead and add a comment in the comment section. This lable name is the name of this rung
only and is used by the JUMP COIL to identify where to go.

When placing a JUMP COIL add it in the right most position and change the lable to the rung you
want to JUMP to.

JUMP COILs should be placed as the last coil of a rung because of a bug. If there are coils after the
JUMP COIL (in the same rung) they will be updated even if the JUMP COIL is true.1

24.7 Using CALL COILs

CALL COILs are used to go to a subroutine section then return-like a gosub in BASIC programming
language.

If you go to the sections manager window hit the add section button. You can name this section,
select what language it will use (ladder or sequential), and select what type (main or subroutine).

Select a subroutine number (SR0 for exampe). An empty section will be displayed and you can build
your subroutine.

When your done that, go back to the section manager and click on the your ’main’ section (default
name prog1).

Now you can add a CALL COIL to your program. CALL COILs are to be placed at the right most
position in the rung.

Remember to change the lable to the subroutine number you choose before.

There can only be one CALL COIL per rung-the rest wil not be called.

1If the JUMP COIL is true it should JUMP to the new rung right away and not update the rest of the coils of the current
rung

Part XI

Hardware Examples

190

Chapter 25

Spindle Speed Control

25.1 0-10v Spindle Speed

If your spindle is controlled by a VFD with a 0 to 10 volt signal and your using a DAC card like the
m5i20 to output the control signal.

First you need to figure the scale of spindle speed to control signal. For this example the spindle
top speed of 5000 RPM is equal to 10 volts. 10/5000 = 0.002 so our scale factor is 0.002

We have to add a scale componet to the hal file to scale the motion.spindle-speed-out to the 0 to 10
needed by the VFD if your DAC card does not do scaling.

loadrt scale count=1

addf scale.0 servo-thread

setp scale.0.gain 0.002

net spindle-speed-scale motion.spindle-speed-out => scale.0.in

net spindle-speed-DAC scale.0.out => <your DAC pin name>

25.2 PWM Spindle Speed

If your spindle can be controlled by a PWM signal, use the pwmgen component to create the signal:

loadrt pwmgen output_type=0

addf pwmgen.update servo-thread

addf pwmgen.make-pulses base-thread

net spindle-speed-cmd motion.spindle-speed-out => pwmgen.0.value

net spindle-on motion.spindle-on => pwmgen.0.enable

net spindle-pwm pwmgen.0.pwm => parport.0.pin-09-out

setp pwmgen.0.scale 1800 # Change to your spindle’s top speed in RPM

This assumes that the spindle controller’s response to PWM is simple: 0% PWM gives 0RPM, 10%
PWM gives 180 RPM, etc. If there is a minimum PWM required to get the spindle to turn, follow the
example in the nist-lathe sample configuration to use a scale component.

25.3 Spindle Feedback

Add this section

191

CHAPTER 25. SPINDLE SPEED CONTROL 192

25.4 Spindle Enable

If you need a spindle enable signal link your output pin to motion.spindle-on. To link these pins to
a parallel port pin put something like the following in your .hal file making sure you pick the pin
that is connected to your control device.

net spindle-enable motion.spindle-on => parport.0.pin-14-out

25.5 Spindle Direction

If you have direction control of your spindle the hal pins motion.spindle-forward and motion.spindle-
reverse are controlled by M3 and M4. S must be set to a positive non zero value for M3/4 to turn
on spindle motion.

To link these pins to a parallel port pin put something like the following in your .hal file making
sure you pick the pin that is connected to your control device.

net spindle-fwd motion.spindle-forward -> parport.0.pin-16-out

net spindle-rev motion.spindle-reverse => parport.0.pin-17-out

Chapter 26

MPG Pendant

This example is to explain how to hook up the common MPG pendants found on the market place
today. This example uses a MPG3 pendant and a C22 pendant interface card from CNC4PC and a
second parallel port plugged into the PCI slot. This example gives you 3 axis with 3 step increments
of 0.1, 0.01, 0.001.

26.1 Second Parallel Port

In this example we are using a second parallel port connected to the MPG Pendant that is plugged
into a PCI slot. To find the address of your parallel port card open a terminal window and type

lspci -v

You will see something similar to this

0000:00:10.0 Communication controller: NetMos Technology PCI 1 port parallel adapter (rev 01)

Subsystem: LSI Logic / Symbios Logic: Unknown device 0010

Flags: medium devsel, IRQ 11

I/O ports at a800 [size=8]

I/O ports at ac00 [size=8]

I/O ports at b000 [size=8]

I/O ports at b400 [size=8]

I/O ports at b800 [size=8]

I/O ports at bc00 [size=16]

In my case the address was the first one so I changed my .hal file from

loadrt hal_parport cfg=0x378

to

loadrt hal_parport cfg="0x378 0xa800 in"

note the double quotes surrounding the addresses.

and added

addf parport.1.read base-thread addf parport.1.write base-thread

so the parport will get read and written to.

193

CHAPTER 26. MPG PENDANT 194

26.2 Hook it up in HAL

In your custom.hal file or other .hal file add the following making sure you don’t have mux4 or an
encoder already in use. If you do just increase the counts and change the reference number.

Jog Pendant

loadrt encoder num_chan=1

loadrt mux4 count=1

addf encoder.capture-position servo-thread

addf encoder.update-counters base-thread

addf mux4.0 servo-thread

setp encoder.0.x4-mode 0

setp mux4.0.in0 0.1

setp mux4.0.in1 0.01

setp mux4.0.in2 0.001

net scale1 mux4.0.sel0 <= parport.1.pin-09-in

net scale2 mux4.0.sel1 <= parport.1.pin-10-in

net pend-scale axis.0.jog-scale <= mux4.0.out

net pend-scale axis.1.jog-scale

net pend-scale axis.2.jog-scale

net mpg-a encoder.0.phase-A <= parport.1.pin-02-in

net mpg-b encoder.0.phase-B <= parport.1.pin-03-in

net mpg-x axis.0.jog-enable <= parport.1.pin-04-in

net mpg-y axis.1.jog-enable <= parport.1.pin-05-in

net mpg-z axis.2.jog-enable <= parport.1.pin-06-in

net pend-counts axis.0.jog-counts <= encoder.0.counts

net pend-counts axis.1.jog-counts

net pend-counts axis.2.jog-counts

Part XII

FAQ

195

Chapter 27

Linux FAQ

These are some basic Linux commands and techniques for new to Linux users. More complete
information can be found on the web or by using the man pages.

27.1 Man Pages

Man pages are automatically generated manual pages in most cases. Man pages are usually avail-
able for most programs and commands in Linux.

To view a man page open up a terminal window by going to Applications, Accessories, Terminal. For
example if you wanted to find out something about the find command in the terminal window type:

man find

Use the Page Up and Page Down keys to view the man page and the Q key to quit viewing.

27.2 List Modules

Sometimes when troubleshooting you need to get a list of modules that are loaded. In a terminal
window type:

lsmod

If you want to send the output from lsmod to a text file in a terminal window type:

lsmod > mymod.txt

The resulting text file will be located in the home directory if you did not change directories when
you opened up the terminal window and it will be named mymod.txt or what ever you named it.

27.3 Editing a Root File

Editing some root files can have bad results. Be careful when editing root files. You can open and
view most root files normally but they will open in “read only” mode.

196

CHAPTER 27. LINUX FAQ 197

27.3.1 The Command Line Way

Open up Applications, Accessories, Terminal.

In the terminal window type

sudo gedit

Open the file with File, Open then edit

27.3.2 The GUI Way

1. Right click on the desktop and select Create Launcher

2. Type a name in like sudo edit

3. Type gksudo “gnome-open %u” as the command and save the launcher to your desktop

4. Drag a file onto your launcher to open and edit

27.4 Terminal Commands

27.4.1 Working Directory

To find out the path to the present working directory in the terminal window type:

~$ pwd

27.4.2 Changing Directories

To move up one level in the terminal window type:

~$ cd ..

To move down to the emc2/configs subdirectory in the terminal window type:

~$ cd emc2/configs

27.4.3 Listing files in a directory

To view a list of all the files and subdirectories in the terminal window type:

~$ dir

or

~$ ls

27.4.4 Finding a File

The find command can be a bit confusing to a new Linux user. The basic syntax is:

~$ find starting-directory parameters actions

For example to find all the .ini files in your EMC2 directory you first need to use the pwd command
to find out the directory. Open a new terminal window and type:

~$ pwd

CHAPTER 27. LINUX FAQ 198

might return the following result

~$ /home/joe

With this information put the command together like this:

~$ find /home/joe/emc2 -name *.ini -print

The -name is the name of the file your looking for and the -print tells it to print out the result to the
terminal window. The *.ini tells find to return all files that have the .ini extension.

To find all the files in the directory named and all the subdirectories under that add the -L option
to the find command like this:

~$ find -L /home/joe/emc2 -name *.ini -print

27.4.5 Searching for Text

~$ grep -i -r ’text to search for’ *

To find all the files that contain the ’text to search for’ in the current directory and all the subdirec-
tories below the current while ignoring the case. The -i is for ignore case and the -r is for recursive
(include all subdirectories in the search). The * is a wild card for search all files.

27.5 Hardware Problems

27.5.1 Monitor Resolution

During installation Ubuntu attempts to detect the monitor settings. If this fails you are left with a
generic monitor with a maximum resolution of 800x600.

Instructions for fixing this are located here:

https://help.ubuntu.com/community/FixVideoResolutionHowto

https://help.ubuntu.com/community/FixVideoResolutionHowto

Part XIII

Glossary

199

200

A listing of terms and what they mean. Some terms have a general meaning and several additional
meanings for users, installers, and developers.

Acme Screw A type of lead-screw that uses an acme thread form. Acme threads have somewhat
lower friction and wear than simple triangular threads, but ball-screws are lower yet. Most
manual machine tools use acme lead-screws.

Axis One of the computer control movable parts of the machine. For a typical vertical mill, the table
is the X axis, the saddle is the Y axis, and the quill or knee is the Z axis. Additional linear axes
parallel to X, Y, and Z are called U, V, and W respectively. Angular axes like rotary tables are
referred to as A, B, and C.

Backlash The amount of "play" or lost motion that occurs when direction is reversed in a lead
screw. or other mechanical motion driving system. It can result from nuts that are loose
on leadscrews, slippage in belts, cable slack, "wind-up" in rotary couplings, and other places
where the mechanical system is not "tight". Backlash will result in inaccurate motion, or in
the case of motion caused by external forces (think cutting tool pulling on the work piece) the
result can be broken cutting tools. This can happen because of the sudden increase in chip
load on the cutter as the work piece is pulled across the backlash distance by the cutting tool.

Backlash Compensation - Any technique that attempts to reduce the effect of backlash without
actually removing it from the mechanical system. This is typically done in software in the
controller. This can correct the final resting place of the part in motion but fails to solve
problems related to direction changes while in motion (think circular interpolation) and motion
that is caused when external forces (think cutting tool pulling on the work piece) are the source
of the motion.

Ball Screw A type of lead-screw that uses small hardened steel balls between the nut and screw
to reduce friction. Ball-screws have very low friction and backlash, but are usually quite
expensive.

Ball Nut A special nut designed for use with a ball-screw. It contains an internal passage to re-
circulate the balls from one end of the screw to the other.

CNC Computer Numerical Control. The general term used to refer to computer control of machin-
ery. Instead of a human operator turning cranks to move a cutting tool, CNC uses a computer
and motors to move the tool, based on a part program.

Coordinate Measuring Machine A Coordinate Measuring Machine is used to make many accurate
measurements on parts. These machines can be used to create CAD data for parts where no
drawings can be found, when a hand-made prototype needs to be digitized for mold making,
or to check the accuracy of machined or molded parts.

Display units The linear and angular units used for onscreen display.

DRO A Digital Read Out is a device attached to the slides of a machine tool or other device which
has parts that move in a precise manner to indicate the current location of the tool with respect
to some reference position. Nearly all DRO’s use linear quadrature encoders to pick up position
information from the machine.

EDM EDM is a method of removing metal in hard or difficult to machine or tough metals, or where
rotating tools would not be able to produce the desired shape in a cost-effective manner. An
excellent example is rectangular punch dies, where sharp internal corners are desired. Milling
operations can not give sharp internal corners with finite diameter tools. A wire EDM machine
can make internal corners with a radius only slightly larger than the wire’s radius. A ’sinker’
EDM cam make corners with a radius only slightly larger than the radius on the corner of the
convex EDM electrode.

EMC The Enhanced Machine Controller. Initially a NIST project. EMC is able to run a wide range
of motion devices.

201

EMCIO The module within EMC that handles general purpose I/O, unrelated to the actual motion
of the axes.

EMCMOT The module within EMC that handles the actual motion of the cutting tool. It runs as a
real-time program and directly controls the motors.

Encoder A device to measure position. Usually a mechanical-optical device, which outputs a
quadrature signal. The signal can be counted by special hardware, or directly by the par-
port with EMC2.

Feed Relatively slow, controlled motion of the tool used when making a cut.

Feed rate The speed at which a motion occurs. In manual mode, jog speed can be set from the
graphical interface. In auto or mdi mode feed rate is commanded using a (f) word. F10 would
mean ten units per minute.

Feedback A method (e.g., quadrature encoder signals) by which EMC receives information about
the position of motors

Feed rate Override A manual, operator controlled change in the rate at which the tool moves while
cutting. Often used to allow the operator to adjust for tools that are a little dull, or anything
else that requires the feed rate to be “tweaked”.

G-Code The generic term used to refer to the most common part programming language. There are
several dialects of G-code, EMC uses RS274/NGC.

GUI Graphical User Interface.

General A type of interface that allows communications between a computer and human (in
most cases) via the manipulation of icons and other elements (widgets) on a computer
screen.

EMC An application that presents a graphical screen to the machine operator allowing manip-
ulation of machine and the corresponding controlling program.

Home A specific location in the machine’s work envelope that is used to make sure the computer
and the actual machine both agree on the tool position.

ini file A text file that contains most of the information that configures EMC for a particular ma-
chine

Joint Coordinates These specify the angles between the individual joints of the machine. See also
Kinematics

Jog Manually moving an axis of a machine. Jogging either moves the axis a fixed amount for each
key-press, or moves the axis at a constant speed as long as you hold down the key.

kernel-space See real-time.

Kinematics The position relationship between world coordinates and joint coordinates of a ma-
chine. There are two types of kinematics. Forward kinematics is used to calculate world co-
ordinates from joint coordinates. Inverse kinematics is used for exactly opposite purpose.Note
that kinematics does not take into account, the forces, moments etc. on the machine. It is for
positioning only.

Lead-screw An screw that is rotated by a motor to move a table or other part of a machine.
Lead-screws are usually either ball-screws or acme screws, although conventional triangu-
lar threaded screws may be used where accuracy and long life are not as important as low
cost.

Machine units The linear and angular units used for machine configuration. These units are used
in the ini file. HAL pins and parameters are also generally in machine units.

202

MDI Manual Data Input. This is a mode of operation where the controller executes single lines of
G-code as they are typed by the operator.

NIST National Institute of Standards and Technology. An agency of the Department of Commerce
in the United States.

Offsets

Part Program A description of a part, in a language that the controller can understand. For EMC,
that language is RS-274/NGC, commonly known as G-code.

Program Units The linear and angular units used for part programs.

Rapid Fast, possibly less precise motion of the tool, commonly used to move between cuts. If the
tool meets the material during a rapid, it is probably a bad thing!

Real-time Software that is intended to meet very strict timing deadlines. Under Linux, in order to
meet these requirements it is necessary to install RTAI or RTLINUX and build the software to
run in those special environments. For this reason real-time software runs in kernel-space.

RTAI Real Time Application Interface, see https://www.rtai.org/, one of two real-time exten-
sions for Linux that EMC can use to achieve real-time performance.

RTLINUX See http://www.rtlinux.org, one of two real-time extensions for Linux that EMC can
use to achieve real-time performance.

RTAPI A portable interface to real-time operating systems including RTAI and RTLINUX

RS-274/NGC The formal name for the language used by EMC part programs.

Servo Motor

Servo Loop

Spindle On a mill or drill, the spindle holds the cutting tool. On a lathe, the spindle holds the
workpiece.

Stepper Motor A type of motor that turns in fixed steps. By counting steps, it is possible to deter-
mine how far the motor has turned. If the load exceeds the torque capability of the motor, it
will skip one or more steps, causing position errors.

TASK The module within EMC that coordinates the overall execution and interprets the part pro-
gram.

Tcl/Tk A scripting language and graphical widget toolkit with which EMC’s most popular GUI’s
were written.

Units See “Machine Units”, “Display Units”, or “Program Units”, above.

World Coordinates This is the absolute frame of reference. It gives coordinates in terms of a fixed
reference frame that is attached to some point (generally the base) of the machine tool.

https://www.rtai.org/
http://www.rtlinux.org

Part XIV

Legal Section

203

Legal Section

Copyright Terms

Copyright (c) 2000 LinuxCNC.org

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.1 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and one Back-Cover Text: "This EMC
Handbook is the product of several authors writing for linuxCNC.org. As you find it to be of value in
your work, we invite you to contribute to its revision and growth." A copy of the license is included in
the section entitled "GNU Free Documentation License". If you do not find the license you may order
a copy from Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307

GNU Free Documentation License

GNU Free Documentation License Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not
allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of
freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a
way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be
free in the same sense. It complements the GNU General Public License, which is a copyleft license designed
for free software.

We have designed this License in order to use it for manuals for free software, because free software needs
free documentation: a free program should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used for any textual work, regardless of
subject matter or whether it is published as a printed book. We recommend this License principally for works
whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying
it can be distributed under the terms of this License. The "Document", below, refers to any such manual or
work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively
with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to
related matters) and contains nothing that could fall directly within that overall subject. (For example, if the

204

205

Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts,
in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specifi-
cation is available to the general public, whose contents can be viewed and edited directly and straightforwardly
with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely
available drawing editor, and that is suitable for input to text formatters or for automatic translation to a vari-
ety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose
markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A
copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format,
LATEX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML
designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be
read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools
are not generally available, and the machine-generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have
any title page as such, "Title Page" means the text near the most prominent appearance of the work’s title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided
that this License, the copyright notices, and the license notice saying this License applies to the Document
are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the reading or further copying of the copies you make
or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also
clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as
many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include
a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete Transparent copy of the Document, free
of added material, which the general network-using public has access to download anonymously at no charge
using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps,
when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain
thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any
large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

206

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3
above, provided that you release the Modified Version under precisely this License, with the Modified Version
filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever
possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those
of previous versions (which should, if there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of that version gives permission. B. List
on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications
in the Modified Version, together with at least five of the principal authors of the Document (all of its principal
authors, if it has less than five). C. State on the Title page the name of the publisher of the Modified Version, as
the publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice for
your modifications adjacent to the other copyright notices. F. Include, immediately after the copyright notices,
a license notice giving the public permission to use the Modified Version under the terms of this License, in
the form shown in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice. H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous sentence. J. Preserve
the network location, if any, given in the Document for public access to a Transparent copy of the Document,
and likewise the network locations given in the Document for previous versions it was based on. These may
be placed in the "History" section. You may omit a network location for a work that was published at least
four years before the Document itself, or if the original publisher of the version it refers to gives permission.
K. In any section entitled "Acknowledgements" or "Dedications", preserve the section’s title, and preserve in
the section all the substance and tone of each of the contributor acknowledgements and/or dedications given
therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles.
Section numbers or the equivalent are not considered part of the section titles. M. Delete any section entitled
"Endorsements". Such a section may not be included in the Modified Version. N. Do not retitle any existing
section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections
and contain no material copied from the Document, you may at your option designate some or all of these
sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Mod-
ified Version by various parties–for example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a
Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover
Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the
Document already includes a cover text for the same cover, previously added by you or by arrangement made
by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on
explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in
section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in
its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may
be replaced with a single copy. If there are multiple Invariant Sections with the same name but different
contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of
the original author or publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents,
forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any
sections entitled "Dedications". You must delete all sections entitled "Endorsements."

207

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and
replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in
all other respects.

You may extract a single document from such a collection, and distribute it individually under this License,
provided you insert a copy of this License into the extracted document, and follow this License in all other
respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works,
in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is
called an "aggregate", and this License does not apply to the other self-contained works thus compiled with
the Document, on account of their being thus compiled, if they are not themselves derivative works of the
Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one quarter of the entire aggregate, the Document’s Cover Texts may be placed on covers that
surround only the Document within the aggregate. Otherwise they must appear on covers around the whole
aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under
the terms of section 4. Replacing Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a translation of this License provided that you also
include the original English version of this License. In case of a disagreement between the translation and the
original English version of this License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under
this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or rights,
from you under this License will not have their licenses terminated so long as such parties remain in full
compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http:///www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that has been published (not as a draft)
by the Free Software Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put
the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the
Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts
being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled
"GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant.
If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST";
likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in
parallel under your choice of free software license, such as the GNU General Public License, to permit their
use in free software.

Part XV

Index

208

Index

.emcrc, 21

ABORT, 9
ACEX1K, 140
acme screw, 200
ANGULAR UNITS, 26
Auto, 8
AXIS, 5, 22
axis, 200
axis (hal pins), 36

backlash, 200
backlash compensation, 200
ball nut, 200
ball screw, 200
BASE PERIOD, 25
blocks, 43
Bridgeport, 4

Cartesian machines, 166
cd, 197
Changing Directories, 197
ClassicLadder, 43, 182
CNC, 4, 40, 200
CNC machines, 166
comments, 22
coordinate measuring machine, 200
CVS, 4

debounce, 123
dir, 197
DISPLAY, 22
display units, 200
DRO, 200

Editing a Root File, 196
EDM, 200
EMC, 200
EMCIO, 6, 201
EMCMOT, 201
EMCTASK, 7
enable signal, 101
encoder, 30, 43, 117, 201
ESTOP, 9, 101

feed, 201
feed override, 9, 201
feed rate, 201
feedback, 201

FERROR, 28
find, 197
Finding a File, 197

G-Code, 201
G-code, 8
gksudo, 197
GNU-Linux, 3
GPL, 4
grep, 198
GUI, 201

HAL, 4, 21, 40, 98
HAL (inifile section), 26
HAL Component, 42
HAL Function, 42
HAL Parameter, 42
HAL Physical-Pin, 42
HAL Pin, 42
HAL Signal, 42
HAL Thread, 43
HAL Type, 42
hal-ax5214h, 44
hal-m5i20, 44
hal-motenc, 44
hal-parport, 44
hal-ppmc, 44
hal-stg, 44
hal-vti, 44
halcmd, 44
halmeter, 44
halscope, 44
halui, 43
HOME, 33
home, 201
HOME IGNORE LIMITS, 33
HOME IS SHARED, 33
HOME LATCH VEL, 31
HOME OFFSET, 33
HOME SEARCH VEL, 28, 31
HOME SEQUENCE, 33
HOME USE INDEX, 33

INI, 6, 21, 201
ini [AXIS] Section, 27
ini [DISPLAY] Section, 23
ini [EMC] Section, 23
ini [EMCIO] Section, 30

209

INDEX 210

ini [EMCMOT] Section, 25
ini [FILTER] Section, 24
INI [RS274NGC] Section, 25
ini [TASK] Section, 26
INPUT SCALE, 30
Installing: LiveCD, 14
Installing: manual, 15
Installing: script, 15
iocontrol, 43
iocontrol (HAL pins), 38

jog, 201
joint coordinates, 201

keystick, 5, 22
kinematics, 166, 201

lead screw, 201
LINEAR UNITS, 26
Linux, 4
Linux FAQ, 196
Listing files in a directory, 197
loop, 202
ls, 197

machine on, 101
machine units, 201
Man Pages, 196
Manual, 8
MAX ACCELERATION, 27
MAX LIMIT, 27
MAX VELOCITY, 27
MDI, 8, 202
MIN FERROR, 27
MIN LIMIT, 27
mini, 5, 22
motion, 43
motion (hal pins), 35

NIST, 3, 202
NML, 21

offsets, 202
OMAC, 3
Open Source, 14

parallel port, 125
part Program, 202
pid, 43, 119
pinout, 98
PLC, 7
Pluto-P, 140
pluto-servo, 142
pluto-servo alternate pin functions, 144
pluto-servo pinout, 143
pluto-step, 145
pluto-step pinout, 146
pluto-step timings, 146

Position: Actual, 10
Position: Commanded, 10
Position: Machine, 9
Position: Relative, 10
program units, 202
pwd, 197
pwmgen, 115

rapid, 202
RCS, 3
real-time, 202
RS274NGC, 202
RS274NGC STARTUP CODE, 25
RTAI, 202
RTAPI, 202
RTLINUX, 202

Searching for Text, 198
servo motor, 202
SERVO PERIOD, 25
Sherline, 4
siggen, 43, 124
signal polarity, 100
sim-encoder, 122
spindle, 202
spindle speed control, 100
standard pinout, 98
step rate, 97
stepgen, 43, 106
stepper, 97
stepper motor, 202
sudo gedit, 197
supply, 43

TASK, 202
TBL, 21
Terminal Commands, 197
Tk, 202
tkemc, 5, 22
TRAJ (inifile section), 26
TRAJ PERIOD, 25
Trivial Kinematics, 166

Ubuntu, 3, 14
UNITS, 27
units, 6, 11, 202

VAR, 21

Working Directory, 197
world coordinates, 202

xemc, 5

	I Integrators Manual
	II Contents
	III Introduction
	The Enhanced Machine Control
	Introduction
	The Big CNC Picture
	Computer Operating Systems
	History of the Software
	How EMC2 Works
	Graphical User Interfaces
	Motion Controller EMCMOT
	Discrete I/O Controller EMCIO
	Task Executor EMCTASK
	Modes of Operation
	Information Display

	Thinking Like An Integrator
	Units

	IV Installing EMC
	Installing the EMC2 software
	Introduction
	EMC2 Live CD
	Other Methods
	EMC2 install script
	Manual installing using apt commands.

	Compiling from Source
	Introduction
	EMC Download Page
	EMC2 Release Description
	Download and source preparation.
	Downloading the CVS version

	Installed
	Run-in-place
	Simulator
	Editing and Recompiling

	V Configuration.
	INI Configuration
	Files Used for Configuration
	The INI File Layout
	Comments
	Sections
	Variables
	Definitions

	INI Section Variables
	[EMC] Section
	[DISPLAY] Section
	AXIS Interface

	[FILTER] Section
	[RS274NGC] Section
	[EMCMOT] Section
	[TASK] Section
	[HAL] section
	[TRAJ] Section
	[AXIS_<num>] Section
	Homing-related items
	Servo-related items
	Stepper-related items

	[EMCIO] Section

	Homing
	Overview
	Homing Sequence
	Configuration
	HOME_SEARCH_VEL
	HOME_LATCH_VEL
	HOME_IGNORE_LIMITS
	HOME_USE_INDEX
	HOME_OFFSET
	HOME
	HOME_IS_SHARED
	HOME_SEQUENCE

	Lathe
	Default Plane

	EMC2 and HAL
	motion (realtime)
	Pins
	Parameters
	Functions

	axis.N (realtime)
	Pins
	Parameters

	iocontrol (userspace)
	Pins

	VI HAL Specifics
	Introduction
	What is HAL?
	HAL is based on traditional system design techniques
	Part Selection
	Interconnection Design
	Implementation
	Testing

	Summary

	HAL Concepts
	HAL components
	External Programs with HAL hooks
	Internal Components
	Hardware Drivers
	Tools and Utilities

	Tinkertoys, Erector Sets, Legos and the HAL
	Tower
	Erector SetsThe Erector Set was an invention of AC Gilbert
	TinkertoysTinkertoy is now a registered trademark of the Hasbro company.
	A Lego ExampleThe Lego name is a trademark of the Lego company.

	Timing Issues In HAL

	HAL Tutorial
	Before we start
	Notation
	The RTAPI environment

	Tab-completion
	A Simple Example
	Loading a realtime component
	Examining the HAL
	Making realtime code run
	Changing parameters
	Saving the HAL configuration
	Restoring the HAL configuration

	Looking at the HAL with halmeter
	Starting halmeter
	Using halmeter

	A slightly more complex example.
	Installing the components
	Connecting pins with signals
	Setting up realtime execution - threads and functions
	Setting parameters
	Run it!

	Taking a closer look with halscope.
	Starting Halscope
	Hooking up the ``scope probes''
	Capturing our first waveforms
	Vertical Adjustments
	Triggering
	Horizontal Adjustments
	More Channels
	More samples

	General Reference Information
	Notation
	Typographical Conventions
	Names

	General Naming Conventions
	Hardware Driver Naming ConventionsMost drivers do not follow these conventions as of version 2.0. This chapter is really a guide for future development.
	Pin/Parameter names
	Examples

	Function Names
	Examples

	Canonical Device InterfacesAs of version 2.0, most of the HAL drivers don't quite match up to the canonical interfaces defined here. In version 2.1, the drivers will be changed to match these specs.
	Digital Input
	Pins
	Parameters
	Functions

	Digital Output
	Pins
	Parameters
	Functions

	Analog Input
	Pins
	Parameters
	Functions

	Analog Output
	Parameters
	Functions

	Encoder
	Pins
	Parameters
	Functions

	Tools and Utilities
	Halcmd
	Halmeter
	Halscope
	Halshow
	Starting Halshow
	Hal Tree Area
	Hal Show Area
	Hal Watch Area

	comp: a tool for creating HAL modules
	Introduction
	Definitions
	Instance creation
	Syntax
	Per-instance data storage
	Other restrictions on comp files
	Convenience Macros
	Components with one function
	Component ``Personality''
	Compiling .comp files in the source tree
	Compiling realtime components outside the source tree
	Compiling userspace components outside the source tree
	Examples
	constant
	sincos
	out8
	hal_loop
	arraydemo
	rand
	logic

	Creating Userspace Python Components with the 'hal' module
	Basic usage
	Userspace components and delays
	Create pins and parameters
	Changing the prefix

	Reading and writing pins and parameters
	Driving output (HAL_OUT) pins
	Driving bidirectional (HAL_IO) pins

	Exiting
	Project ideas

	VII EMC related HAL
	Basic configurations for a stepper based system
	Introduction
	Maximum step rate
	Pinout
	standard_pinout.hal
	Overview of the standard_pinout.hal
	Changing the standard_pinout.hal
	Changing the polarity of a signal
	Adding PWM Spindle Speed Control
	Adding an enable signal
	Adding an external E-STOP button

	HAL Components
	Commands and Userspace Components
	Realtime components and kernel modules

	Internal Components
	Stepgen
	Installing
	Removing
	Pins
	Parameters
	Step Types
	Functions

	PWMgen
	Installing
	Removing
	Pins
	Parameters
	Output Types
	Functions

	Encoder
	Installing
	Removing
	Pins
	Parameters
	Functions

	PID
	Installing
	Removing
	Pins
	Parameters
	Functions

	Simulated Encoder
	Installing
	Removing
	Pins
	Parameters
	Functions

	Debounce
	Installing
	Removing
	Pins
	Parameters
	Functions

	Siggen
	Installing
	Removing
	Pins
	Parameters
	Functions

	Hardware Drivers
	Parport
	Installing
	Pins
	Parameters
	Functions
	Common problems

	probe_parport
	Installing

	AX5214H
	Installing
	Pins
	Parameters
	Functions

	Servo-To-Go
	Installing:
	Pins
	Parameters
	Functions

	Mesa Electronics m5i20 ``Anything I/O Card''
	Pins
	Parameters
	Functions
	Connector pinout
	Connector P2
	Connector P3
	Connector P4
	LEDs

	Vital Systems Motenc-100 and Motenc-LITE
	Pins
	Parameters
	Functions

	Pico Systems PPMC (Parallel Port Motion Control)
	Pins
	Parameters
	Functions

	Pluto-P: generalities
	Requirements
	Connectors
	Physical Pins
	LED
	Power
	PC interface
	Rebuilding the FPGA firmware
	For more information

	pluto-servo: Hardware PWM and quadrature counting
	Pinout
	Input latching and output updating
	HAL Functions, Pins and Parameters
	Compatible driver hardware

	Pluto-step: 300kHz Hardware Step Generator
	Pinout
	Input latching and output updating
	Step Waveform Timings
	HAL Functions, Pins and Parameters

	Halui
	Introduction
	Halui pin reference
	Machine
	E-Stop
	Mode
	Mist, Flood, Lube
	Spindle
	Joints
	Jogging
	Selecting a joint
	Feed override
	Spindle override
	Tool
	Program
	General
	MDI

	Case - Studies

	Virtual Control Panels
	Introduction
	pyVCP
	Security of pyVCP
	Using pyVCP with AXIS
	pyVCP Widget reference
	Syntax
	General Notes

	LED
	Button
	Checkbutton
	Radiobutton
	Number
	Bar
	Meter
	Spinbox
	Scale
	Jogwheel

	pyVCP Container reference
	Hbox
	Vbox
	Label
	Labelframe
	Table

	VCP
	VCP: A small example
	VCP: Another small example with EMC
	VCP Syntax
	Block

	VIII Advanced topics
	Kinematics in EMC2
	Introduction
	Joints vs. Axes

	Trivial Kinematics
	Non-trivial kinematics
	Forward transformation
	Inverse transformation

	Implementation details

	IX Tuning
	Stepper Tuning
	Getting the most out of Software Stepping
	Run a Latency Test
	Figure out what your drives expect
	Choose your BASE_PERIOD
	Use steplen, stepspace, dirsetup, and/or dirhold
	No Guessing!

	PID Tuning
	PID Controller
	Control loop basics
	Theory
	Loop Tuning

	X Ladder Logic
	Ladder programming
	Introduction
	Example

	ClassicLadder
	Introduction
	Languages
	Starting ClassicLadder
	Realtime Module
	Variables
	Loading the ClassicLadder user module

	ClassicLadder GUI
	The Variables window
	The Section Display window
	The Section Manager window
	The Editor window

	ClassicLadder Variables
	Using JUMP COILs
	Using CALL COILs

	XI Hardware Examples
	Spindle Speed Control
	0-10v Spindle Speed
	PWM Spindle Speed
	Spindle Feedback
	Spindle Enable
	Spindle Direction

	MPG Pendant
	Second Parallel Port
	Hook it up in HAL

	XII FAQ
	Linux FAQ
	Man Pages
	List Modules
	Editing a Root File
	The Command Line Way
	The GUI Way

	Terminal Commands
	Working Directory
	Changing Directories
	Listing files in a directory
	Finding a File
	Searching for Text

	Hardware Problems
	Monitor Resolution

	XIII Glossary
	XIV Legal Section
	XV Index

