Software Engineering
Final Exam
Review

Note: This review supplements the previous reviews, since the final will be
cumulative

Chapter 9

e Design: A problem solving process whose objective is to find and describe a way:
o Implement the system’s functional requirements
o While respecting the constraints imposed by the non-functional requirements
= Including the budget
o And while adhering to the general principles of good quality
* Design Issues
o Sub-problems of the overall design problem
o Solutions: design options
* To make decisions, the software engineer uses knowledge of:
Requirements
Design so far
Technology
Software design principles
o What has worked well in the past
e Component: Any piece of software or hardware that has a clear role
e Module: A component that is defined at the programming language level
* System: A logical entity, having a set of definable responsibilities or objectives, and consisting of
hardware, software, or both
e Top-down Design
o First design the very high level structure of the system
o Then gradually work down to detailed decisions about low-level constructs
o Finally arrive at detailed decisions such as:
= The format of particular data items
= The individual algorithms that will be used
* Bottom-up Design
o Make decisions about reusable low-level entities
o Then decide how these will be put together to create high-level constructs
* A mix of top-down and bottom-up approaches are normally used
» Different Aspects of Design
o Architecture Design: The division into subsystems and components
o Class Design: The various features of classes
o User Interface Design
o Algorithm Design: The design of computational mechanisms
o Protocol Design: The design of communications protocol
e Principles Leading to Good Design
o Goals
= Increase profit by reducing cost and increasing revenue
= Ensuring that we actually conform with the requirements
= Accelerating development
= Increasing RUMER qualities
* Design Principles
o Divide and Conquer

@)
@)
@)
@)

o

o

Trying to deal with something big all at once is normally much harder than
dealing with a series of smaller things
* Separate people can work on each part
* An individual software engineer can specialize
* Each individual component is smaller, and therefore easier to
understand
» Parts can be replaced or changed without having to replace or
extensively change other parts
Ways of Dividing a Software System
» Distributed system: clients and servers
e System can be divided up into subsystems
* Subsystem can be divided up into one or more packages
* A package is divided up into classes
e A class is divided up into methods

Increase Cohesion Where Possible

A subsystem or module has high cohesion if it keeps together things that are
related to each other, and keeps out other things
Functional Cohesion
e This is achieved when all code that computes a particular result is kept
together — and everything else is kept out
O i.e. When a module only performs a single computation, and
returns a result, without having side-effects
Layer Cohesion
* Al the facilities for providing or accessing a set of related services are
kept together, and everything else is kept out
* The layers should form a hierarchy
* Commonly organized into an API (Application Programmer Interface)
Communicational Cohesion
e All the modules that access or manipulate certain data are kept together
(i.e. in the same class) — and everything else is kept out
e A class would have good communication cohesion if:
o All the system’s facilities for manipulating and storing its data
are contained in this class
o Ifthe class does not do anything other than manage its data
Sequential Cohesion
* Procedures, in which one procedure provides input to the next, are kept
together — and everything else is kept out
* You should achieve sequential cohesion only after achieving the other
types of cohesion
Procedural Cohesion
* Keep together several procedures that are used one after the other
o Even if one does not provide input to the next
o Weaker than sequential cohesion
Temporal Cohesion
* Operations that are performed during the same phase of the program
are kept together, and everything else is kept out
o For example, placing together the code used during system
start-up or initialization
o Weaker than procedural cohesion
Utility Cohesion
* When related utilities which cannot logically be placed in other
cohesive units are kept together

Reduce Coupling Where Possible

= Coupling occurs when there are interdependencies between one module and
another
= Content Coupling
e Occurs when one component surreptitiously modifies data that is
internal to another component
e Solution: Encapsulate all instance variables; declare them as private
= Common Coupling
* Occurs whenever you use a global variable
* Solution: Use the Singleton pattern where applicable, or simply do not
use global variables
= Control Coupling
* Occurs when one procedure calls another using a ‘flag’ or ‘command’
that explicitly controls what the second procedure does
* Solution: Use polymorphic methods or a lookup table
= Stamp Coupling
e Occurs whenever one of your application classes is declared as the type
of a method argument
* Solutions: Use an interface as the argument type or pass simple
variables (atomic types)
= Data Coupling
* Occurs whenever the types of method arguments are either primitive or
else simple library classes
* Solution: Do not give methods unnecessary arguments
* There is a trade-off between data coupling and stamp coupling
o Increasing one often decreases the other
= Routine Call Coupling
* Occurs when one routine (or method in an object-oriented system) calls
another
* Routine call coupling is always present in any system
= Type Use Coupling
* Occurs when a module uses a data type defined in another module
= Inclusion or Import Coupling
e Occurs when one component imports a package
o AsinJava
e Or when one component includes another
o AsinC++
= External Coupling
* When a module has a dependency on such things as the operating
system, shared libraries or the hardware
o Keep the Level of Abstraction as High as Possible
= Ensure that your designs allow you to hide or defer consideration of details, thus
reducing complexity
* A good abstraction is said to provide information hiding
= (Classes are abstractions that contain procedural abstractions
e Increased by defining all variables as private
* The fewer public methods in a class, the better the abstraction
* Superclasses and interfaces increase the level of abstraction
* Attributes and associations are also abstractions
* Methods are procedural abstractions
o Better abstractions are achieved by giving methods fewer
parameters
o Increase Reusability Where Possible
= Design the various aspects of your system so that they can be used again in other
contexts

o Reuse Existing Designs and Code Where Possible
= Design with reuse is complementary to design for reusability
o Design for Flexibility
= Actively anticipate changes that a design may have to undergo in the future, and
prepare for them
* Reduce coupling, increase cohesion
* Create abstractions
* Do not hard-code anything
* Leave all options open
o Do not restrict the options of people who have to modify the
system later
* Use reusable code and make code reusable
o Anticipate Obsolescence
= Plan for changes in technology or environment so the software will continue to
run or can be easily changed
o Design for Portability
= Have the software run on as many platforms as possible
o Design for Testability
= Take steps to make testing easier
o Design Defensively
= Never trust how others will try to use a component you are designing
= Design by Contract
* A technique that allows you to design defensively in a systematic way
* Keyidea
o Each method has an explicit contract with its callers
o Each contract has
= Preconditions
= Postconditions
= Invariants
Techniques for Making Good Design Decisions
o Using priorities and objectives to decide among alternatives
= List and describe the alternatives for the design decision
= List the advantages and disadvantages of each alternative with respect to
objectives and priorities
= Determine whether any of the alternatives prevents you from meeting one or
more of the objectives
= Choose the alternative that helps you to best meet your objectives
= Adjust priorities for subsequent decision making
Software Architecture
o Software architecture is the process of designing the global organization of a software
system, including:
= Dividing software into subsystems
= Deciding how these will interact
= Determining their interfaces
o Why you need to develop an architectural model:
= To enable everyone to better understand the system
= To allow people to work on individual pieces of the system in isolation
= To prepare for extension of the system
= To facilitate reuse and reusability
o Contents of a good architectural model
= A system’s architecture will often be expressed in terms of several different
views
» The logical breakdown into subsystems
e The interfaces among the subsystems

The dynamics of the interaction among components at runtime

The data that will be shared among the subsystems

The components that will exist at runtime, and the machines or devices
on which they will be located

o Design stable architecture
= To ensure the maintainability and reliability of a system, an architectural model
must be designed to be stable
o Developing an architectural model
= Start by sketching an outline of the architecture

Architecture Patterns

Based on the principle requirements and use cases

Determine the main components that will be needed

Choose among the various architectural patterns

Refine the architecture

Consider each use case and adjust the architecture to make it realizable
Mature the architecture

o The notion of patterns can be applied to software architecture
o The Multi-Layer Architectural Pattern
= In alayered system, each layer communicates only with the layer immediately

below it

= Example

Each layer has a well defined interface used by the layer immediately
above

o Lower layers: Services
A complex system can be built by superimposing layers at increasing
levels of abstraction

[
{ Application programs }

1
s B
! | Screen display 1
i facilities Dealing with
T T . 3 -
[application protocols
Dol ‘
. i || Useraccount v
User i i | management Dealing with
interface o i connections
w A O
i \ i | = ;
— Y Pl File — v
s i
Application b | System Dealing with
) i . 5
logic P ! packets
‘ : : Y v v ¥ ;
Yy 1 v [v Kernel Vv
Operating ||Database|| Network (handling processes Transmitting
system access || access |/communication and swapping) and receiving
(a) Typical layers in an (b) Typical layers in an (c) Simplified view of layers
application program operating system in a communication system

= Design Principles

Divide and Conquer — layers can be independently designed

Increase Cohesion — uses layer cohesion

Reduce Coupling — Lower level layers do not know about higher level
ones; higher level layers access lower level ones through well-defined
API’s

Increase abstraction — You do not need to know how the lower level
layers are implemented

Increase reusability — Lower level layers can often be designed
generically

o

o

* Increase reuse — Reuse layers in other applications that provide needed
services

* Increase flexibility — You can add new facilities to lower level layers,
or replace higher level ones

* Anticipate Obsolescence — Isolating components makes the system
obsolescent resistant

* Design for portability — All dependent facilities can be isolated into
lower layers

* Design for testability — Layers can be tested independently

* Design defensively — API’s are natural places to build in rigorous
assertion-checking

Client Server and other Distributed Architectural Patterns

At least one component has the role of server, waiting for and then handling
connections
There is at least one component that has the role of client, initiating connections
in order to obtain some service
Extension: Peer-to-Peer pattern
* A system composed of various software components that are
distributed over several hosts

Example:
Client]: =]
exchange
messages look up
@ addresses
(®}
exchange
messages

Design Principles
e Divide and Conquer — Client and Server systems
* Increase Cohesion — The server can provide a cohesive service to

clients

* Reduce Coupling — One communication channel exchanging simple
messages

* Increase Abstraction — Separate distributed components are often good
abstractions

* Increase Reuse — Possible to find suitable frameworks to build good
distributed systems

* Design for Flexibility — Easily reconfigured

* Design for Portability — Write clients for new platforms without having
to port the server

* Design for Testability — Test clients and servers independently

* Design Defensively — You can put rigorous checks into the message
handling code

Broker Architectural Pattern

Transparently distribute aspects of the software system to different nodes
Example:
Client & £l

«object request»
Broker €] | Remote Object

Design Principles
* Divide and Conquer — Remote objects can be independently designed

* Increase Reusability — Possible to design remote objects so that other
systems can use them too
* Increase Reuse — You may be able to reuse remote objects that others
have created
* Design for Flexibility — Brokers can be updated as required, or the
proxy can communicate with a different remote object
* Design for Portability — Can write clients for new platforms while still
accessing brokers and remote objects on other platforms
* Design Defensively — You can provide careful assertion checking in the
remote objects
Transaction-Processing Architectural Pattern
= A process reads a series of inputs one by one
* Each input describes a transaction
e There is a transaction dispatcher component that decides what to do
with each transaction
* This dispatches a procedure call or message to one of a series of
components that will handle the transaction
= Example:

Handler for &l
_.--7 flight reservation
g _ gl .--" transaction
Transaction | __ _"Ansactions __J Trapsaction
input dispatcher |~-__ Handler for &
e o flight cancellation
transaction

= Design Principles
* Divide and Conquer — Transaction handlers are suitable system
divisions
e Increase Cohesion — Transaction handlers are naturally cohesive units
* Reduce Coupling — Separating the dispatcher from the handler tends to
reduce coupling
* Design for Flexibility — You can readily add new transaction handlers
* Design Defensively — You can add assertion checking in each
transaction handler and/or in the dispatcher
The Pipe-and-Filter Architectural Pattern
= A stream of data, in a relatively simple format, is passed through a series of
processes
» Each process transforms the data in some way
* The data is constantly fed into the pipeline
* The processes work concurrently
* The architecture is very flexible

= Example:

input

microphone |<----
C\ sound

encoders for Q microphones

near

source
]
]
l
' g lize @
remove
cancel & --3 cancel & > NON-Voice |---> 33321;1215 --->{ com Jres%g ---->{ fansmit
echo noise o . m ress
frequencies range :
[) i
! I
1 |
: TCP/IP Transmission!
Q encoder forgl /’}m |
distant ----> ambient decoders g s
mictophone naise <---| forspeaker |e----- decompress” |<----| receive
output

= Design Principles

Divide and Conquer — Separate processes can be independently
designed

Increase Cohesion — The processes have functional cohesion

Reduce Coupling — The processes have only one input and one output
Increase Abstraction — Pipeline components are often good abstractions
Increase Reusability — The processes can be used in many different
contexts

Increase Reuse — It is often possible to find reusable components to
insert into a pipeline

Design for Flexibility — There are several ways in which the system is
flexible

Design for Testability — It is normally easy to test the individual
processes

Design Defensively — You rigorously check the inputs of each
component, or you can use design by contract

The Model-View-Controller (MVC) Architectural Pattern
= An architectural pattern used to help separate the user interface layer from other
parts of the system

Model — Underlying classes whose instances are to be viewed and
manipulated

View — Contains objects used to render the appearance of the data from
the model in the user interface

Controller — Contains the objects that control and handle the user’s
interaction with the view and the model

The Observable design pattern is normally used to separate the model
from the view

= Example:

viewed —= receives
by actor V;\e\\- <~~~ _ create and update actor events

- =
. -
1 -~ -
- -
- -

“‘ notify about Controller &/
\changes .

' e

‘,1 . ’1ﬁodify

' e

Model &

= Design Principles

Divide and Conquer — The three components can be somewhat
independently designed

Increase Cohesion — The components have stronger layer cohesion than
if the view and controller were together in a single UI layer

Reduce Coupling — The communication channels between the three
components are minimal

Increase Reuse — The view and the controller normally make extensive
use of reusable components for various kinds of UI controls

Design for Flexibility — It is usually quite easy to change the Ul by
changing the view, the controller, or both

Design for Testability — You can test the application separate from the
Ul

Chapter 10

* Basic Definitions
o Failure: Unacceptable behavior exhibited by a system
= Frequency of failures measures the reliability
= Design goal: achieve low failure rate, thus ensuring high reliability
A failure can result from a violation of an explicit or implicit requirement
o Defect: A flaw in any aspect of the system that contributes, or may potentially contribute,
to the occurrence of one or more failures
o Error: A slip-up or inappropriate decision by a software developer that leads to the
introduction of a defect
» Effective and Efficient Testing

o To test effectively, you must use a strategy that uncovers as many defects as possible

o To test efficiently, you must find the largest possible number of defects using the fewest
possible tests

* Black-box Testing
o Testers provide the system with inputs and observe the outputs
= They can see none of
* The source code
* The internal data

* Any of the design documentation describing the system’s internals

* Glass-box Testing
o Also called ‘white-box’ or ‘structural’ testing
o Testers have access to the system design
= They can
* Examine the design documents

* View the code
* Observe at run time the steps taken by algorithms and their internal
data
= Individual programmers often informally employ glass-box testing to verify
their own code
* Equivalence Classes
o Inappropriate to test by brute force, using every possible input value
o You should divide the possible inputs into groups which you believe will be treated
similarly by all algorithms
= Such groups are called equivalence classes
o Examples
= Valid input number: (1 — 12)
e Equivalence Classes are: [-inf..0], [1..12], [13..inf]
= Valid input is one of ten strings representing a type of fuel
e Equivalence Classes are
o 10 classes, one for each string
o A class representing all other strings
e Detecting Specific Categories of Defects
o A tester must try to uncover any defects the other software engineers might have
introduced
= This means designing tests that explicitly try to catch a range of specific types of
defects that commonly occur
e Defects in Ordinary Algorithms
o Incorrect Logical Conditions
= Defect:
* The logical conditions that govern looping and if-then-else statements
are wrongfully formatted
" Testing Strategy:
* Use equivalence class and boundary testing
* Consider as an input each variable used in a rule or logical condition
o Performing a Calculation in the Wrong Part of a Control Construct
= Defect:
* The program performs an action when it should not, or does not
perform an action when it should
» Typically caused by inappropriately excluding or including the action
from a loop or an if construct
= Testing Strategy:
* Design tests that execute each loop zero times, exactly once, and more
than once
* Anything that could happen while looping is made to occur on the first,
an intermediate, and the last iteration
o Not Terminating a Loop or Recursion
= Defect:
* A loop or recursion does not always terminate, i.e. it is ‘infinite’
= Testing Strategies:
* Analyze what causes a repetitive action to be stopped
* Run test cases that you anticipate might not be handled correctly
o Not Setting Up the Correct Preconditions for an Algorithm
= Defect:
* Preconditions state what must be true before the algorithm should be
executed
* A defect would exist if the program proceeds to do its work, even when
the preconditions are not satisfied
= Testing Strategy:

(@)

O

* Run test cases in which each precondition is not satisfied
Not Handling Null Conditions
= Defect:

* A null condition is a situation where there are normally one or more
data items to process, but sometimes there are none

* Itis a defect when a program behaves abnormally when a null
condition is encountered

= Testing Strategy:
e Brainstorm to determine unusual conditions and run appropriate tests
Not Handling Singleton or Non-singleton Conditions
= Defect:

* A singleton condition occurs when there is normally more than one of
something, but sometimes there is only one

* A non-singleton is the inverse

* Defects occur when the unusual case is not properly handled

= Testing Strategy:
e Brainstorm to determine unusual conditions and run appropriate tests
Off-by-one Errors
= Defect:

* A program inappropriately adds or subtracts one

* Or loops one too many times or one too few times

* This is a particularly common type of defect

= Testing Strategy:
* Develop tests in which you verify that the program:
o Computes the correct numerical answer
o Performs the correct number of iterations
Operator Precedence Errors
= Defect:

* An operator precedence error occurs when a programmer omits needed
parentheses, or puts parentheses in the wrong place

* Operator precedence errors are often extremely obvious

o But can occasionally lie hidden until special conditions arise

* E.g. Ifx * y + z should be x * (y + z) this would be hidden if z was
normally zero

= Testing Strategy:

* In software that computes formulae, run tests that anticipate such
defects

Use of Inappropriate Standard Algorithms
= Defect:

* Aninappropriate standard algorithm is one that is unnecessarily
inefficient or has some other property that is widely recognized as
being bad

= Testing Strategies:

* The tester has to know properties of algorithms and design tests that
will determine whether any undesirable algorithms have been
implemented

= Examples:
* Aninefficient sort algorithm
o The most classical choice ‘bad’ choice of algorithm is sorting
using a so-called ‘bubble sort’

* An inefficient search algorithm

o Ensure that the search time does not increase unacceptably as
the list gets longer

o Check that the position of the searched item does not have a
noticeable impact on search time
* A non-stable sort
e A search or sot that is case sensitive when it should not be, or vice
versa
Defects in Numerical Algorithms
o Not using enough bits or digits
= Defect:
* A system does not use variables capable of representing the largest
values that could be stored
* When the capacity is exceeded, an unexpected exception is thrown, or
the data stored is incorrect
= Testing Strategies:
* Test using very large numbers to ensure the system has a wide enough
margin of error
o Not using enough places after the decimal point or significant figures
= Defects:
* A floating point value might not have the capacity to store enough
significant figures
* A fixed point value might not store enough places after the decimal
point
* A typical manifestation is excessive rounding
= Testing Strategies:
* Perform calculations that involve many significant figures, and large
differences in magnitude
e Verify that the calculated results are correct
o Ordering operations poorly so errors build up
= Defect:
* A large number does not store enough significant figures to be able to
accurately represent the result
= Testing Strategies:
* Make sure the program works with inputs that have large positive and
negative exponents
* Have the program work with numbers that vary a lot in magnitude
o Make sure computations are still accurately performed
o Assuming a floating point value will be exactly equal to some other value
= Defect:
» Ifyou perform an arithmetic calculation on a floating point value, then
the result will very rarely be computed exactly
* To test quality, you should always test if it is within a small range
around that value
= Testing Strategies:
» Standard boundary testing should detect this type of defect
Defects in Timing and Co-ordination
o Deadlock and livelock
= Defects:
* A deadlock is a situation where two or more threads are stopped,
waiting for each other to do something
o The system is hung
* Livelock is similar, but now the system can do some computations, but
can never get out of some states
= Testing Strategies:
* Deadlocks and livelocks occur due to unusual combinations of
conditions that are hard to anticipate or reproduce

e Itis often most effectual to use inspection to detect such defects, rather
than testing alone
* However, when testing
o Vary the time consumption of different threads
o Run a large number of threads concurrently
o Deliberately deny resources to one or more threads
o Critical races
= Defects:
* One thread experiences a failure because another thread interferes with
the ‘normal’ sequence of events
= Testing Strategies:
» Itis particularly hard to test for critical races using black box testing
alone
* One possible, although invasive, strategy is to deliberately slow down
one of the threads
» Use inspection
o Semaphore and synchronization
= (Critical races can be prevented by locking data so that they cannot be accessed
by other threads when they are not ready
e One widely used locking mechanism is called a semaphore
* InJava, the synchronized keyword can be used
o It ensures that no other thread can access an object until the
synchronized method terminates
Defects in Handling Stress and Unusual Situations
o Insufficient throughput or response time on minimal configurations
= Defect:
* On a minimal configuration, the system’s throughput or response time
fails to meet requirements
= Testing Strategy:
* Perform testing using minimally configured platforms
o Incompatible with specific configurations of hardware or software
= Defect:
* The system fails if it is run using particular configurations of hardware,
operating systems, and external libraries
= Testing Strategy:
* Extensively execute the system with all possible configurations that
might be encountered by users
o Defects in handling peak loads or missing resources
= Defects:
* The system does not gracefully handle resource shortage
* Resources that might be in short supply include:
o Memory, disk space or network bandwidth, permission
* The program being tested should report the problem in a way the user
will understand
= Testing Strategies:
* Devise a method of denying resources
* Run a very large number of copies of the program being tested, all at
the same time
o Inappropriate management of resources
= Defect:
* A program uses certain resources but does not make them available
when it no longer needs them
= Testing Strategy:

* Run the program intensively in such a way that it uses many resources,
relinquishes them and then uses them again repeatedly
o Defects in the process of recovering from a crash
= Defects:
* Any system will undergo a sudden failure if its hardware fails, or if its
power is turned off
» Itis adefect if the system is left in an unstable state and hence is unable
to fully recover
* Itisalso a defect if a system does not correctly deal with the crashes of
related systems
= Testing Strategies:
» Kill a program at various times during execution
* Try turning the power off, however operating systems themselves are
often intolerant of doing that
Documentation Defects
o Defect:
= The software has a defect if the user manual, reference manual, or on-line help:
* Gives incorrect information
* Fails to give information relevant to a problem
o Testing Strategy:
= Examine all the end-user documentation, making sure it is correct
= Work through the use cases, making sure that each of them is adequately
explained to the user
Writing Formal Test Cases and Test Plans
o A testcase is an explicit set of instructions designed to detect a particular class of defect
in a software system
o A test plan is a document that contains a complete set of test cases for a system
* Along with other information about the testing process
= The test plan is one of the standard forms of documentation
= The test plan should be written long before testing starts
Strategies for Testing Large Systems
o Big bang testing versus integration testing
= In big bang testing, you take the entire system and test it as a unit
= A better strategy in most cases is incremental testing
* You test each individual subsystem in isolation
e Continue testing as you add more and more subsystems to the final
product
o Top-down Testing
= Start by testing just the user interface
= The underlying functionality are simulated by stubs
= Then you work downwards, integrating lower and lower layers
= The big drawback to top-down testing is the cost of writing the stubs
o Bottom-up Testing
= Start by testing the very lowest levels of the software
= You need drivers to test the lower layers of software
= Drivers in bottom-up testing have a similar role to stubs in top-down testing, and
are time-consuming to write
o Sandwich Testing
= A hybrid between bottom-up and top-down testing
= Test the user interface in isolation, using stubs
= Test the very lowest level functions, using drivers
= When the complete system is integrated, only the middle layer remains on which
to perform the final set of tests
The Test-Fix-Test Cycle

o When a failure occurs during testing:
= Failure is reported into a failure tracking system
= Screened, assigned a priority
= Low-level priorities are often put in a known-bugs list and released with the
software to be fixed later
= Someone is assigned to investigate the failure
= That person tracks down the defect and fixes it
= Finally a new version of the system is created, ready to be tested again
* The Ripple Effect
o There is a high probability that the efforts to remove the defects may have actually added
new defects
* Regression Testing
o Ittends to be far too expensive to re-run every single test case every time a change is
made to the software
o Hence only a subset of the previously-successful test cases is actually re-run
o This is called regression testing
o The “law of the conservation of bugs”
= The number of bugs remaining in a large system is proportional to the number of
bugs already fixed
» Inspections
o An inspection is an activity in which one or more people systematically
= Examine source code or documentation, looking for defects
= Normally, inspection involves a meeting...
* Although participants can also inspect alone at their desks

Chapter 11

e What is project management?
o Project management encompasses all the activities needed to plan and execute a project:

= Deciding what needs to be done
= Estimating costs
= Ensuring there are suitable people to undertake the project
= Defining responsibilities
= Scheduling
= Making arrangements for work
= Directing
= Being a technical leader
= Reviewing and approving decisions made by others
= Building morale and supporting staff
= Monitoring and controlling
= Coordinating the work with managers of other projects
= Reporting
= Continually striving to improve the process

* Software Process Models

o Software process models are general approaches for organizing a project into activities
= The models should be seen as aids to thinking, not rigid prescriptions of the way
to do things

= Each project ends up with its own unique plan

The Opportunistic Approach

Requirements |V
gathering and | &
definition v

Specification

< o <

¥
Implementation | &
v

First '\{lJodt!}‘y Think of Idea
—> nt —P>
Prototype Satisfied for
atsne Improvement
o ... 1s what occurs when an organization does not follow good engineering practices
= [t does not stress the importance of working out requirements and a design first
= The design of software deteriorates if it is not well designed
= No plans =no aim
= No recognition of a need for systematic testing
The Waterfall Model

Integration and
deployment

= o =

v

Mainfenance &

v

o The classic way of looking at S.E. that accounts for the importance of requirements,
design and quality assurance
= The model suggests that software engineers should work in a series of stages

= Before the complete each stage, they should complete quality assurance
(verification and validation)
= The waterfall model also recognizes, to a limited extent, that you sometimes
have to step back to earlier stages

o Limitations of the Waterfall Model

= Suggests you should complete a stage before moving on to the next
* Doesn’t account for requirements changing
* Customers cannot use anything until the entire system is complete
= Makes no allowances for prototyping
= Implies you can get the requirements right by simply writing them down and
reviewing them
= Implies that once the product is finished, everything else is maintenance

The Phased-Release Model

e : ™
Phase 1
Requiremants | W v
gathering and | & .
definition v Design b
W
f H M
Spedification
paciical 3‘ Implementation | &
v
v v
Planning & Integration and &
Vv deployment v
L -
o * T
Phose 2
W
Dasign &
W
W
Implamantation | &
v
Intagration and ;
deployment |/
\ J

o Itintroduces the notion of incremental development
= After requirements gathering and planning, the project should be broken up into
separate subprojects, or phases
= FEach phase can be released to customers when ready
= However, continues to suggest that all requirements be finalized at the start of
development

The Spiral Model

Releqse 2

Ralease 1

Review Analysis of risk

Requirements
Integraticn and
eployment
Specification
Implementation

o Itexplicitly embraces prototyping and an iterative approach to software development
= Start by developing a small prototype
= Followed by a mini-waterfall process, primarily to gather requirements
= Then, the first prototype is reviewed
= In subsequent loops, the project team performs further requirements, design,
implementation and review
= First thing to do before embarking on a new loop: risk analysis
= Maintenance is simply a type of on-going development

The Evolutionary Model
Time

Y
L

Developmant
actvity

o It shows software development as a series of hills, each representing a separate loop of
the spiral
= Shows that loops, or releases, tend to overlap each other
= Makes it clear that development work tends to reach a peak, at around the time
of the deadline for completion
= Shows that each prototype or release can take
» Different amounts of time to deliver

¢ Differing amounts of effort

® The Concurrent Engineering Model

Work on Waork on Work on
component or component or ML component or
loyer A layer B layer X

Integrate

o Itexplicitly accounts for the divide and conquer principle
* Choosing a Process Model
o From the Waterfall Model:
= Incorporate the notion of stages
o From the Phased-Release Model:
= Incorporate the notion of doing some high-level analysis, and then dividing the
project into releases
o From the Spiral Model:
= Incorporate prototyping and risk analysis
o From the Evolutionary Model:
= Incorporate the notion of varying amounts of time and work, with overlapping
releases
o From the Concurrent Engineering Model:

" Incorporate the notion of breaking the system down into components and
developing them in parallel

