
Software Engineering
Final Exam
Review

Note: This review supplements the previous reviews, since the final will be
cumulative

Chapter 9

• Design: A problem solving process whose objective is to find and describe a way:
o Implement the system’s functional requirements
o While respecting the constraints imposed by the non-functional requirements

 Including the budget
o And while adhering to the general principles of good quality

• Design Issues
o Sub-problems of the overall design problem
o Solutions: design options

• To make decisions, the software engineer uses knowledge of:
o Requirements
o Design so far
o Technology
o Software design principles
o What has worked well in the past

• Component: Any piece of software or hardware that has a clear role
• Module: A component that is defined at the programming language level
• System: A logical entity, having a set of definable responsibilities or objectives, and consisting of

hardware, software, or both
• Top-down Design

o First design the very high level structure of the system
o Then gradually work down to detailed decisions about low-level constructs
o Finally arrive at detailed decisions such as:

 The format of particular data items
 The individual algorithms that will be used

• Bottom-up Design
o Make decisions about reusable low-level entities
o Then decide how these will be put together to create high-level constructs

• A mix of top-down and bottom-up approaches are normally used
• Different Aspects of Design

o Architecture Design: The division into subsystems and components
o Class Design: The various features of classes
o User Interface Design
o Algorithm Design: The design of computational mechanisms
o Protocol Design: The design of communications protocol

• Principles Leading to Good Design
o Goals

 Increase profit by reducing cost and increasing revenue
 Ensuring that we actually conform with the requirements
 Accelerating development
 Increasing RUMER qualities

• Design Principles
o Divide and Conquer

 Trying to deal with something big all at once is normally much harder than
dealing with a series of smaller things

• Separate people can work on each part
• An individual software engineer can specialize
• Each individual component is smaller, and therefore easier to

understand
• Parts can be replaced or changed without having to replace or

extensively change other parts
 Ways of Dividing a Software System

• Distributed system: clients and servers
• System can be divided up into subsystems
• Subsystem can be divided up into one or more packages
• A package is divided up into classes
• A class is divided up into methods

o Increase Cohesion Where Possible
 A subsystem or module has high cohesion if it keeps together things that are

related to each other, and keeps out other things
 Functional Cohesion

• This is achieved when all code that computes a particular result is kept
together – and everything else is kept out

o i.e. When a module only performs a single computation, and
returns a result, without having side-effects

 Layer Cohesion
• All the facilities for providing or accessing a set of related services are

kept together, and everything else is kept out
• The layers should form a hierarchy
• Commonly organized into an API (Application Programmer Interface)

 Communicational Cohesion
• All the modules that access or manipulate certain data are kept together

(i.e. in the same class) – and everything else is kept out
• A class would have good communication cohesion if:

o All the system’s facilities for manipulating and storing its data
are contained in this class

o If the class does not do anything other than manage its data
 Sequential Cohesion

• Procedures, in which one procedure provides input to the next, are kept
together – and everything else is kept out

• You should achieve sequential cohesion only after achieving the other
types of cohesion

 Procedural Cohesion
• Keep together several procedures that are used one after the other

o Even if one does not provide input to the next
o Weaker than sequential cohesion

 Temporal Cohesion
• Operations that are performed during the same phase of the program

are kept together, and everything else is kept out
o For example, placing together the code used during system

start-up or initialization
o Weaker than procedural cohesion

 Utility Cohesion
• When related utilities which cannot logically be placed in other

cohesive units are kept together
o Reduce Coupling Where Possible

 Coupling occurs when there are interdependencies between one module and
another

 Content Coupling
• Occurs when one component surreptitiously modifies data that is

internal to another component
• Solution: Encapsulate all instance variables; declare them as private

 Common Coupling
• Occurs whenever you use a global variable
• Solution: Use the Singleton pattern where applicable, or simply do not

use global variables
 Control Coupling

• Occurs when one procedure calls another using a ‘flag’ or ‘command’
that explicitly controls what the second procedure does

• Solution: Use polymorphic methods or a lookup table
 Stamp Coupling

• Occurs whenever one of your application classes is declared as the type
of a method argument

• Solutions: Use an interface as the argument type or pass simple
variables (atomic types)

 Data Coupling
• Occurs whenever the types of method arguments are either primitive or

else simple library classes
• Solution: Do not give methods unnecessary arguments
• There is a trade-off between data coupling and stamp coupling

o Increasing one often decreases the other
 Routine Call Coupling

• Occurs when one routine (or method in an object-oriented system) calls
another

• Routine call coupling is always present in any system
 Type Use Coupling

• Occurs when a module uses a data type defined in another module
 Inclusion or Import Coupling

• Occurs when one component imports a package
o As in Java

• Or when one component includes another
o As in C++

 External Coupling
• When a module has a dependency on such things as the operating

system, shared libraries or the hardware
o Keep the Level of Abstraction as High as Possible

 Ensure that your designs allow you to hide or defer consideration of details, thus
reducing complexity

• A good abstraction is said to provide information hiding
 Classes are abstractions that contain procedural abstractions

• Increased by defining all variables as private
• The fewer public methods in a class, the better the abstraction
• Superclasses and interfaces increase the level of abstraction
• Attributes and associations are also abstractions
• Methods are procedural abstractions

o Better abstractions are achieved by giving methods fewer
parameters

o Increase Reusability Where Possible
 Design the various aspects of your system so that they can be used again in other

contexts

o Reuse Existing Designs and Code Where Possible
 Design with reuse is complementary to design for reusability

o Design for Flexibility
 Actively anticipate changes that a design may have to undergo in the future, and

prepare for them
• Reduce coupling, increase cohesion
• Create abstractions
• Do not hard-code anything
• Leave all options open

o Do not restrict the options of people who have to modify the
system later

• Use reusable code and make code reusable
o Anticipate Obsolescence

 Plan for changes in technology or environment so the software will continue to
run or can be easily changed

o Design for Portability
 Have the software run on as many platforms as possible

o Design for Testability
 Take steps to make testing easier

o Design Defensively
 Never trust how others will try to use a component you are designing
 Design by Contract

• A technique that allows you to design defensively in a systematic way
• Key idea

o Each method has an explicit contract with its callers
o Each contract has

 Preconditions
 Postconditions
 Invariants

• Techniques for Making Good Design Decisions
o Using priorities and objectives to decide among alternatives

 List and describe the alternatives for the design decision
 List the advantages and disadvantages of each alternative with respect to

objectives and priorities
 Determine whether any of the alternatives prevents you from meeting one or

more of the objectives
 Choose the alternative that helps you to best meet your objectives
 Adjust priorities for subsequent decision making

• Software Architecture
o Software architecture is the process of designing the global organization of a software

system, including:
 Dividing software into subsystems
 Deciding how these will interact
 Determining their interfaces

o Why you need to develop an architectural model:
 To enable everyone to better understand the system
 To allow people to work on individual pieces of the system in isolation
 To prepare for extension of the system
 To facilitate reuse and reusability

o Contents of a good architectural model
 A system’s architecture will often be expressed in terms of several different

views
• The logical breakdown into subsystems
• The interfaces among the subsystems

• The dynamics of the interaction among components at runtime
• The data that will be shared among the subsystems
• The components that will exist at runtime, and the machines or devices

on which they will be located
o Design stable architecture

 To ensure the maintainability and reliability of a system, an architectural model
must be designed to be stable

o Developing an architectural model
 Start by sketching an outline of the architecture

• Based on the principle requirements and use cases
• Determine the main components that will be needed
• Choose among the various architectural patterns
• Refine the architecture
• Consider each use case and adjust the architecture to make it realizable
• Mature the architecture

• Architecture Patterns
o The notion of patterns can be applied to software architecture
o The Multi-Layer Architectural Pattern

 In a layered system, each layer communicates only with the layer immediately
below it

• Each layer has a well defined interface used by the layer immediately
above

o Lower layers: Services
• A complex system can be built by superimposing layers at increasing

levels of abstraction
 Example:

 Design Principles
• Divide and Conquer – layers can be independently designed
• Increase Cohesion – uses layer cohesion
• Reduce Coupling – Lower level layers do not know about higher level

ones; higher level layers access lower level ones through well-defined
API’s

• Increase abstraction – You do not need to know how the lower level
layers are implemented

• Increase reusability – Lower level layers can often be designed
generically

• Increase reuse – Reuse layers in other applications that provide needed
services

• Increase flexibility – You can add new facilities to lower level layers,
or replace higher level ones

• Anticipate Obsolescence – Isolating components makes the system
obsolescent resistant

• Design for portability – All dependent facilities can be isolated into
lower layers

• Design for testability – Layers can be tested independently
• Design defensively – API’s are natural places to build in rigorous

assertion-checking
o Client Server and other Distributed Architectural Patterns

 At least one component has the role of server, waiting for and then handling
connections

 There is at least one component that has the role of client, initiating connections
in order to obtain some service

 Extension: Peer-to-Peer pattern
• A system composed of various software components that are

distributed over several hosts
 Example:

 Design Principles
• Divide and Conquer – Client and Server systems
• Increase Cohesion – The server can provide a cohesive service to

clients
• Reduce Coupling – One communication channel exchanging simple

messages
• Increase Abstraction – Separate distributed components are often good

abstractions
• Increase Reuse – Possible to find suitable frameworks to build good

distributed systems
• Design for Flexibility – Easily reconfigured
• Design for Portability – Write clients for new platforms without having

to port the server
• Design for Testability – Test clients and servers independently
• Design Defensively – You can put rigorous checks into the message

handling code
o Broker Architectural Pattern

 Transparently distribute aspects of the software system to different nodes
 Example:

 Design Principles
• Divide and Conquer – Remote objects can be independently designed

• Increase Reusability – Possible to design remote objects so that other
systems can use them too

• Increase Reuse – You may be able to reuse remote objects that others
have created

• Design for Flexibility – Brokers can be updated as required, or the
proxy can communicate with a different remote object

• Design for Portability – Can write clients for new platforms while still
accessing brokers and remote objects on other platforms

• Design Defensively – You can provide careful assertion checking in the
remote objects

o Transaction-Processing Architectural Pattern
 A process reads a series of inputs one by one

• Each input describes a transaction
• There is a transaction dispatcher component that decides what to do

with each transaction
• This dispatches a procedure call or message to one of a series of

components that will handle the transaction
 Example:

 Design Principles
• Divide and Conquer – Transaction handlers are suitable system

divisions
• Increase Cohesion – Transaction handlers are naturally cohesive units
• Reduce Coupling – Separating the dispatcher from the handler tends to

reduce coupling
• Design for Flexibility – You can readily add new transaction handlers
• Design Defensively – You can add assertion checking in each

transaction handler and/or in the dispatcher
o The Pipe-and-Filter Architectural Pattern

 A stream of data, in a relatively simple format, is passed through a series of
processes

• Each process transforms the data in some way
• The data is constantly fed into the pipeline
• The processes work concurrently
• The architecture is very flexible

 Example:

 Design Principles
• Divide and Conquer – Separate processes can be independently

designed
• Increase Cohesion – The processes have functional cohesion
• Reduce Coupling – The processes have only one input and one output
• Increase Abstraction – Pipeline components are often good abstractions
• Increase Reusability – The processes can be used in many different

contexts
• Increase Reuse – It is often possible to find reusable components to

insert into a pipeline
• Design for Flexibility – There are several ways in which the system is

flexible
• Design for Testability – It is normally easy to test the individual

processes
• Design Defensively – You rigorously check the inputs of each

component, or you can use design by contract
o The Model-View-Controller (MVC) Architectural Pattern

 An architectural pattern used to help separate the user interface layer from other
parts of the system

• Model – Underlying classes whose instances are to be viewed and
manipulated

• View – Contains objects used to render the appearance of the data from
the model in the user interface

• Controller – Contains the objects that control and handle the user’s
interaction with the view and the model

• The Observable design pattern is normally used to separate the model
from the view

 Example:

 Design Principles
• Divide and Conquer – The three components can be somewhat

independently designed
• Increase Cohesion – The components have stronger layer cohesion than

if the view and controller were together in a single UI layer
• Reduce Coupling – The communication channels between the three

components are minimal
• Increase Reuse – The view and the controller normally make extensive

use of reusable components for various kinds of UI controls
• Design for Flexibility – It is usually quite easy to change the UI by

changing the view, the controller, or both
• Design for Testability – You can test the application separate from the

UI

Chapter 10

• Basic Definitions
o Failure: Unacceptable behavior exhibited by a system

 Frequency of failures measures the reliability
 Design goal: achieve low failure rate, thus ensuring high reliability
 A failure can result from a violation of an explicit or implicit requirement

o Defect: A flaw in any aspect of the system that contributes, or may potentially contribute,
to the occurrence of one or more failures

o Error: A slip-up or inappropriate decision by a software developer that leads to the
introduction of a defect

• Effective and Efficient Testing
o To test effectively, you must use a strategy that uncovers as many defects as possible
o To test efficiently, you must find the largest possible number of defects using the fewest

possible tests
• Black-box Testing

o Testers provide the system with inputs and observe the outputs
 They can see none of

• The source code
• The internal data
• Any of the design documentation describing the system’s internals

• Glass-box Testing
o Also called ‘white-box’ or ‘structural’ testing
o Testers have access to the system design

 They can
• Examine the design documents

• View the code
• Observe at run time the steps taken by algorithms and their internal

data
 Individual programmers often informally employ glass-box testing to verify

their own code
• Equivalence Classes

o Inappropriate to test by brute force, using every possible input value
o You should divide the possible inputs into groups which you believe will be treated

similarly by all algorithms
 Such groups are called equivalence classes

o Examples
 Valid input number: (1 – 12)

• Equivalence Classes are: [-inf..0], [1..12], [13..inf]
 Valid input is one of ten strings representing a type of fuel

• Equivalence Classes are
o 10 classes, one for each string
o A class representing all other strings

• Detecting Specific Categories of Defects
o A tester must try to uncover any defects the other software engineers might have

introduced
 This means designing tests that explicitly try to catch a range of specific types of

defects that commonly occur
• Defects in Ordinary Algorithms

o Incorrect Logical Conditions
 Defect:

• The logical conditions that govern looping and if-then-else statements
are wrongfully formatted

 Testing Strategy:
• Use equivalence class and boundary testing
• Consider as an input each variable used in a rule or logical condition

o Performing a Calculation in the Wrong Part of a Control Construct
 Defect:

• The program performs an action when it should not, or does not
perform an action when it should

• Typically caused by inappropriately excluding or including the action
from a loop or an if construct

 Testing Strategy:
• Design tests that execute each loop zero times, exactly once, and more

than once
• Anything that could happen while looping is made to occur on the first,

an intermediate, and the last iteration
o Not Terminating a Loop or Recursion

 Defect:
• A loop or recursion does not always terminate, i.e. it is ‘infinite’

 Testing Strategies:
• Analyze what causes a repetitive action to be stopped
• Run test cases that you anticipate might not be handled correctly

o Not Setting Up the Correct Preconditions for an Algorithm
 Defect:

• Preconditions state what must be true before the algorithm should be
executed

• A defect would exist if the program proceeds to do its work, even when
the preconditions are not satisfied

 Testing Strategy:

• Run test cases in which each precondition is not satisfied
o Not Handling Null Conditions

 Defect:
• A null condition is a situation where there are normally one or more

data items to process, but sometimes there are none
• It is a defect when a program behaves abnormally when a null

condition is encountered
 Testing Strategy:

• Brainstorm to determine unusual conditions and run appropriate tests
o Not Handling Singleton or Non-singleton Conditions

 Defect:
• A singleton condition occurs when there is normally more than one of

something, but sometimes there is only one
• A non-singleton is the inverse
• Defects occur when the unusual case is not properly handled

 Testing Strategy:
• Brainstorm to determine unusual conditions and run appropriate tests

o Off-by-one Errors
 Defect:

• A program inappropriately adds or subtracts one
• Or loops one too many times or one too few times
• This is a particularly common type of defect

 Testing Strategy:
• Develop tests in which you verify that the program:

o Computes the correct numerical answer
o Performs the correct number of iterations

o Operator Precedence Errors
 Defect:

• An operator precedence error occurs when a programmer omits needed
parentheses, or puts parentheses in the wrong place

• Operator precedence errors are often extremely obvious
o But can occasionally lie hidden until special conditions arise

• E.g. If x * y + z should be x * (y + z) this would be hidden if z was
normally zero

 Testing Strategy:
• In software that computes formulae, run tests that anticipate such

defects
o Use of Inappropriate Standard Algorithms

 Defect:
• An inappropriate standard algorithm is one that is unnecessarily

inefficient or has some other property that is widely recognized as
being bad

 Testing Strategies:
• The tester has to know properties of algorithms and design tests that

will determine whether any undesirable algorithms have been
implemented

 Examples:
• An inefficient sort algorithm

o The most classical choice ‘bad’ choice of algorithm is sorting
using a so-called ‘bubble sort’

• An inefficient search algorithm
o Ensure that the search time does not increase unacceptably as

the list gets longer

o Check that the position of the searched item does not have a
noticeable impact on search time

• A non-stable sort
• A search or sot that is case sensitive when it should not be, or vice

versa
• Defects in Numerical Algorithms

o Not using enough bits or digits
 Defect:

• A system does not use variables capable of representing the largest
values that could be stored

• When the capacity is exceeded, an unexpected exception is thrown, or
the data stored is incorrect

 Testing Strategies:
• Test using very large numbers to ensure the system has a wide enough

margin of error
o Not using enough places after the decimal point or significant figures

 Defects:
• A floating point value might not have the capacity to store enough

significant figures
• A fixed point value might not store enough places after the decimal

point
• A typical manifestation is excessive rounding

 Testing Strategies:
• Perform calculations that involve many significant figures, and large

differences in magnitude
• Verify that the calculated results are correct

o Ordering operations poorly so errors build up
 Defect:

• A large number does not store enough significant figures to be able to
accurately represent the result

 Testing Strategies:
• Make sure the program works with inputs that have large positive and

negative exponents
• Have the program work with numbers that vary a lot in magnitude

o Make sure computations are still accurately performed
o Assuming a floating point value will be exactly equal to some other value

 Defect:
• If you perform an arithmetic calculation on a floating point value, then

the result will very rarely be computed exactly
• To test quality, you should always test if it is within a small range

around that value
 Testing Strategies:

• Standard boundary testing should detect this type of defect
• Defects in Timing and Co-ordination

o Deadlock and livelock
 Defects:

• A deadlock is a situation where two or more threads are stopped,
waiting for each other to do something

o The system is hung
• Livelock is similar, but now the system can do some computations, but

can never get out of some states
 Testing Strategies:

• Deadlocks and livelocks occur due to unusual combinations of
conditions that are hard to anticipate or reproduce

• It is often most effectual to use inspection to detect such defects, rather
than testing alone

• However, when testing
o Vary the time consumption of different threads
o Run a large number of threads concurrently
o Deliberately deny resources to one or more threads

o Critical races
 Defects:

• One thread experiences a failure because another thread interferes with
the ‘normal’ sequence of events

 Testing Strategies:
• It is particularly hard to test for critical races using black box testing

alone
• One possible, although invasive, strategy is to deliberately slow down

one of the threads
• Use inspection

o Semaphore and synchronization
 Critical races can be prevented by locking data so that they cannot be accessed

by other threads when they are not ready
• One widely used locking mechanism is called a semaphore
• In Java, the synchronized keyword can be used

o It ensures that no other thread can access an object until the
synchronized method terminates

• Defects in Handling Stress and Unusual Situations
o Insufficient throughput or response time on minimal configurations

 Defect:
• On a minimal configuration, the system’s throughput or response time

fails to meet requirements
 Testing Strategy:

• Perform testing using minimally configured platforms
o Incompatible with specific configurations of hardware or software

 Defect:
• The system fails if it is run using particular configurations of hardware,

operating systems, and external libraries
 Testing Strategy:

• Extensively execute the system with all possible configurations that
might be encountered by users

o Defects in handling peak loads or missing resources
 Defects:

• The system does not gracefully handle resource shortage
• Resources that might be in short supply include:

o Memory, disk space or network bandwidth, permission
• The program being tested should report the problem in a way the user

will understand
 Testing Strategies:

• Devise a method of denying resources
• Run a very large number of copies of the program being tested, all at

the same time
o Inappropriate management of resources

 Defect:
• A program uses certain resources but does not make them available

when it no longer needs them
 Testing Strategy:

• Run the program intensively in such a way that it uses many resources,
relinquishes them and then uses them again repeatedly

o Defects in the process of recovering from a crash
 Defects:

• Any system will undergo a sudden failure if its hardware fails, or if its
power is turned off

• It is a defect if the system is left in an unstable state and hence is unable
to fully recover

• It is also a defect if a system does not correctly deal with the crashes of
related systems

 Testing Strategies:
• Kill a program at various times during execution
• Try turning the power off, however operating systems themselves are

often intolerant of doing that
• Documentation Defects

o Defect:
 The software has a defect if the user manual, reference manual, or on-line help:

• Gives incorrect information
• Fails to give information relevant to a problem

o Testing Strategy:
 Examine all the end-user documentation, making sure it is correct
 Work through the use cases, making sure that each of them is adequately

explained to the user
• Writing Formal Test Cases and Test Plans

o A test case is an explicit set of instructions designed to detect a particular class of defect
in a software system

o A test plan is a document that contains a complete set of test cases for a system
• Along with other information about the testing process

 The test plan is one of the standard forms of documentation
 The test plan should be written long before testing starts

• Strategies for Testing Large Systems
o Big bang testing versus integration testing

 In big bang testing, you take the entire system and test it as a unit
 A better strategy in most cases is incremental testing

• You test each individual subsystem in isolation
• Continue testing as you add more and more subsystems to the final

product
o Top-down Testing

 Start by testing just the user interface
 The underlying functionality are simulated by stubs
 Then you work downwards, integrating lower and lower layers
 The big drawback to top-down testing is the cost of writing the stubs

o Bottom-up Testing
 Start by testing the very lowest levels of the software
 You need drivers to test the lower layers of software
 Drivers in bottom-up testing have a similar role to stubs in top-down testing, and

are time-consuming to write
o Sandwich Testing

 A hybrid between bottom-up and top-down testing
 Test the user interface in isolation, using stubs
 Test the very lowest level functions, using drivers
 When the complete system is integrated, only the middle layer remains on which

to perform the final set of tests
• The Test-Fix-Test Cycle

o When a failure occurs during testing:
 Failure is reported into a failure tracking system
 Screened, assigned a priority
 Low-level priorities are often put in a known-bugs list and released with the

software to be fixed later
 Someone is assigned to investigate the failure
 That person tracks down the defect and fixes it
 Finally a new version of the system is created, ready to be tested again

• The Ripple Effect
o There is a high probability that the efforts to remove the defects may have actually added

new defects
• Regression Testing

o It tends to be far too expensive to re-run every single test case every time a change is
made to the software

o Hence only a subset of the previously-successful test cases is actually re-run
o This is called regression testing
o The “law of the conservation of bugs”

 The number of bugs remaining in a large system is proportional to the number of
bugs already fixed

• Inspections
o An inspection is an activity in which one or more people systematically

 Examine source code or documentation, looking for defects
 Normally, inspection involves a meeting…

• Although participants can also inspect alone at their desks

Chapter 11

• What is project management?
o Project management encompasses all the activities needed to plan and execute a project:

 Deciding what needs to be done
 Estimating costs
 Ensuring there are suitable people to undertake the project
 Defining responsibilities
 Scheduling
 Making arrangements for work
 Directing
 Being a technical leader
 Reviewing and approving decisions made by others
 Building morale and supporting staff
 Monitoring and controlling
 Coordinating the work with managers of other projects
 Reporting
 Continually striving to improve the process

• Software Process Models
o Software process models are general approaches for organizing a project into activities

 The models should be seen as aids to thinking, not rigid prescriptions of the way
to do things

 Each project ends up with its own unique plan

• The Opportunistic Approach

Think of Idea
for

Improvement

Modify
Until

Satisfied

First
Prototype

o … is what occurs when an organization does not follow good engineering practices
 It does not stress the importance of working out requirements and a design first
 The design of software deteriorates if it is not well designed
 No plans = no aim
 No recognition of a need for systematic testing

• The Waterfall Model

o The classic way of looking at S.E. that accounts for the importance of requirements,
design and quality assurance

 The model suggests that software engineers should work in a series of stages
 Before the complete each stage, they should complete quality assurance

(verification and validation)
 The waterfall model also recognizes, to a limited extent, that you sometimes

have to step back to earlier stages
o Limitations of the Waterfall Model

 Suggests you should complete a stage before moving on to the next
• Doesn’t account for requirements changing
• Customers cannot use anything until the entire system is complete

 Makes no allowances for prototyping
 Implies you can get the requirements right by simply writing them down and

reviewing them
 Implies that once the product is finished, everything else is maintenance

• The Phased-Release Model

o It introduces the notion of incremental development
 After requirements gathering and planning, the project should be broken up into

separate subprojects, or phases
 Each phase can be released to customers when ready
 However, continues to suggest that all requirements be finalized at the start of

development

• The Spiral Model

o It explicitly embraces prototyping and an iterative approach to software development
 Start by developing a small prototype
 Followed by a mini-waterfall process, primarily to gather requirements
 Then, the first prototype is reviewed
 In subsequent loops, the project team performs further requirements, design,

implementation and review
 First thing to do before embarking on a new loop: risk analysis
 Maintenance is simply a type of on-going development

• The Evolutionary Model

o It shows software development as a series of hills, each representing a separate loop of
the spiral

 Shows that loops, or releases, tend to overlap each other
 Makes it clear that development work tends to reach a peak, at around the time

of the deadline for completion
 Shows that each prototype or release can take

• Different amounts of time to deliver
• Differing amounts of effort

• The Concurrent Engineering Model

o It explicitly accounts for the divide and conquer principle
• Choosing a Process Model

o From the Waterfall Model:
 Incorporate the notion of stages

o From the Phased-Release Model:
 Incorporate the notion of doing some high-level analysis, and then dividing the

project into releases
o From the Spiral Model:

 Incorporate prototyping and risk analysis
o From the Evolutionary Model:

 Incorporate the notion of varying amounts of time and work, with overlapping
releases

o From the Concurrent Engineering Model:
 Incorporate the notion of breaking the system down into components and

developing them in parallel

