
Memorax
User Manual

Carl Leonardsson

October 22, 2012

1

Copyright (C) 2012 Carl Leonardsson

Permission is granted to copy, distribute and/or modify this document

under the terms of the GNU Free Documentation License, Version 1.3

or any later version published by the Free Software Foundation;

with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.

A copy of the license is included in the section entitled ‘‘GNU

Free Documentation License’’.

2

Contents

1 Introduction 3

2 Contact / Bug Report 4

3 Installation 4
3.1 Requirements . 4
3.2 Basic Installation . 4
3.3 Installation Options . 4
3.4 Troubleshooting . 5

4 Usage 5
4.1 Using the Command Line Interface 6
4.2 Using the Graphical Interface . 8

5 Tutorial 9

6 The Rmm language 12
6.1 Machine Model and Memory Addressing 13
6.2 An Example . 15
6.3 Semantics . 17

6.3.1 Statements . 17
6.3.2 Arithmetical and Boolean Expressions 17
6.3.3 Instructions Informally . 17
6.3.4 Control Structures . 20
6.3.5 TSO Semantics . 22

6.4 Grammar . 26
6.5 Macros . 28

7 Abstractions 29
7.1 PB - Bounded Buffers with Predicate Abstraction 29
7.2 SB - Single Buffer . 30

References 30

GNU Free Documentation License 31

1 Introduction

Memorax is a tool for verification of safety properties in programs running
under relaxed memory models, and for automatic inference of memory fences
that are necessary in order to guarantee satisfaction of those safety properties.

The verification is achieved through state space exploration and specifically
control state reachability analysis. Inference of fences is achieved by repeated
reachability analysis according to the method described in [3].

Programs running under relaxed memory models tend to have an infinite
state space, even in the cases where the same program would have a finite state
space if executed under SC. For this reason, explicit state space analysis is
impossible. The problem can be handled by using under approximation, over

3

approximation or by using exact, infinite state analysis methods such as the
well-quasi ordering method [1]. Memorax is built to accommodate different
approaches.

Currently Memorax supports two approaches for verification/fence inser-
tion of programs executed under the TSO memory model. Details are given in
section 7.

This manual will assume basic knowledge about memory models. An intro-
duction to the topic can be found in [4].

2 Contact / Bug Report

Feedback, questions or bug reports should be directed to Carl Leonardsson
(carl.leonardsson@it.uu.se).

3 Installation

3.1 Requirements

1. A C++ compiler supporting C++11. For example g++ version 4.6 or
higher.

2. In order to run the graphical interface, python is required at a version of
2.6 or higher installed with tcl/tk of version 8.4 or higher.

3. For predicate abstraction the MathSAT SMT solver as well as the library
gmpxx are required. Memorax supports MathSAT 4 and MathSAT 5.
MathSAT 4 is recommended. Memorax can be compiled without Math-
SAT and gmpxx, but will then not support predicate abstraction.

4. To be able to graphically draw automata, Graphviz is required.

3.2 Basic Installation

In the simplest case, Memorax can be installed with the following commands:

$ tar xvf memorax-<version>.tar.gz

$ cd memorax-<version>

$./configure

$ make

$ make install

3.3 Installation Options

The configure script is built with GNU autotools, and should accept the usual
options and environment variables. This section outlines some of the typical use
cases.

4

Changing Installation Directory The command ’make install’ will in-
stall Memorax, its graphical interface and its documentation in the directories
which are standard on your system. To override this behaviour add the switch
--prefix to the ’./configure’ command:

$./configure --prefix=/your/desired/install/path

Compiling with Predicate Abstraction Support To support predicate
abstraction, Memorax must be compiled with MathSAT and gmpxx. Their
header files and shared libraries must reside where they can be found by the
compilation. If they are installed in non-standard locations, then the compila-
tion can be directed to their location by appropriately specifying CXXFLAGS and
LDFLAGS when invoking the ’./configure’ command:

$./configure CXXFLAGS=’-I/path/to/mathsat/include’ \

LDFLAGS=’-L/path/to/mathsat/lib’

If MathSAT and/or gmpxx are not found by the configure script, then Mem-
orax will be installed without support for predicate abstraction.

Specifying Compiler When the configure script is invoked, it will by GNU
autotools magic determine which C++ compiler will be used during compilation.
In case e.g. your default compiler does not support C++11, but you have the
compiler g++-4.6 installed at a non-standard location you may want to override
this. In order to do so, specify the path to g++-4.6 in CXX when invoking the
’./configure’ command:

$./configure CXX=’/path/to/g++-4.6’

3.4 Troubleshooting

MSatFailure In case you get the following error message when trying to use
the PB abstraction:

Error: MSatFailure: Program is not compiled with MathSAT.

In order to use predicate abstraction, (e.g. the PB abstraction) Memorax
needs to be compiled with MathSAT. To solve the problem, install MathSAT on
your system and then reinstall Memorax. In case the installation fails to find
MathSAT (see the output from the configure script), then try the instructions
in the paragraph ”Compiling with Predicate Abstraction Support” above.

4 Usage

Memorax provides a command line interface, as well as a graphical interface.
It has three main modes of operation (henceforth “commands”): reachability
checking, automatic fence inference and graphical representation of programs
as automata. In all three modes Memorax works on parallel programs given
in the Rmm language (See section 6.).

The algorithms used for reachability and automatic fence inference depend
on which abstraction is selected. An abstraction defines what a configuration

5

looks like, what are the semantics of the analysed program and how the reacha-
bility analysis works. Abstractions can be over or under approximations of the
semantics given in section 6.3. They can alternatively be exact, or even an ap-
proximation that is neither an over approximation nor an under approximation.
Memorax currently supports two abstractions: SB and PB. See section 7 for
details.

Reachability checking In this mode, Memorax will attempt to determine
whether or not certain (“forbidden”) configurations are reachable when the Rmm
program is executed. The forbidden configurations are specified in the Rmm pro-
gram as combinations of control states; one for each process. Any configuration
where the processes are each in a control state such that they together satisfy
such a combination is considered forbidden.

The reachability is determined by some reachability analysis, which depends
on what abstraction is chosen.

Automatic fence inference In this mode, Memorax will perform repeated
reachability checks, while gradually adding memory fences that turn out to be
necessary in order to guarantee the non-reachability of the forbidden control
states. Memorax will report a collection C of sets S of memory fences such
that for every set S, the memory fences in S are sufficient to guarantee the
non-reachability of the forbidden control states. Furthermore each fence in S
is necessary, in the sense that adding all fences except one from S to the pro-
gram, is insufficient to guarantee non-reachability. Here, “reachability” should
be interpreted as reachability according to the given abstraction. Thus, an over
approximating abstraction may report more fences than are actually necessary
under the actual memory model, and an under approximating abstraction may
fail to report fences that are actually necessary. The abstractions SB and PB
(when run without a bound on the number of refinements) guarantee that the
reported fences are both necessary and sufficient.

For the TSO memory model, reported fences are identified with write instruc-
tions. Adding the fence to the Rmm program corresponds to making that write
instruction into a locked write instruction. In the actual machine code/assembly
code that implements the program runnable on real hardware, this corresponds
to adding memory fence immediately after the writing instruction. On x86, one
can alternatively change the writing instruction into a LOCK’d version of the
same instruction.

Graphical representation of Rmm programs In this mode, Memorax
produces a PDF file containing a graphical representation of automata corre-
sponding to the given Rmm program. There will be one automaton per process
in the program.

4.1 Using the Command Line Interface

A call to the command line interface is on the following form:

memorax [command] [options] [program]

6

The [command] part indicates the mode of operation. It should be given as
one of reach (indicating reachability analysis), fencins (indicating automatic
fence inference) and dotify (indicating graphical representation of the Rmm
program).

The [options] part is optional and gives details about how the command
should be executed. Accepted options are listed and explained below.

The [program] part should be the path to a text file containing an Rmm
program. The program path can be left out of the command line invocation, in
which case Memorax will expect the Rmm program via the standard input.

Options:

• -o <filename> or --output <filename>

Write output to <filename>. This option is used to specify the desired
path of the PDF file produced by the dotify command.

• -a <abstraction> or --abstraction <abstraction>

Use abstraction <abstraction>. The abstraction should be one of pb and
sb. If no abstraction is specified, then Memorax will default to using the
SB abstraction.

• -k <int>

Use k as buffer bound. The TSO buffers in the PB abstraction will not
be allowed to grow larger than this many elements.

• --cegar

Use CEGAR refinement in reachability analysis. CEGAR can be used
with the PB abstraction, and will refine the abstraction by gradually, and
as necessary, using additional predicates in the predicate abstraction, and
a larger bound on the length of the TSO buffers.

• --max-refinements <int>

Perform at most <int> many refinements in the CEGAR loop. If more
refinements are necessary, then Memorax will terminate with an error
message.

• -v or --verbose
Print output verbosely.

• -vv or --very-verbose
Print output very verbosely.

• -vvv or --very-very-verbose
Print output very very verbosely.

• -o1 or --only-one
During fence insertion, stop searching after finding one sufficient, minimal
fence set.

• --rff

Convert machine to register free form before using it. Converting an Rmm
program to register free form, means to rewrite it such that the values of
the registers are encoded in the control states, and all registers are replaced

7

by the corresponding integer literals wherever they occur in instructions.
This conversion is possible when all registers in the program have finite
domains. Converting a program to register free form may be beneficial for
analysis time, in particular when using the SB abstraction.

4.2 Using the Graphical Interface

The graphical interface is a python script using tcl/tk, running on top of the
command line interface. It runs on top of the command line interface, provides
the CLI with appropriate switches and performs some interpretation of the
output from the CLI. The graphical interface is installed as memorax-gui.

The GUI window contains, from top to bottom:

• A menu bar, allowing to load and save Rmm programs and output, and
to configure the behaviour of the GUI.

• A command area containing a number of buttons, check buttons etc.

• A code area where an Rmm program may be loaded, edited and saved.
All commands executed with the GUI will act on the program displayed
here.

• An output area where text output from the underlying CLI will be dis-
played. The output is divided into two different consoles: “Output” and
“Error”.

At the top of the command area are radio buttons allowing the user to chose
a command: “Reachability” (indicating reachability analysis), “Fence insertion”
(indicating automatic fence inference) and “Draw automata” (indicating graph-
ical representation of the Rmm program).

For all commands, the user may specify a level of output verbosity ranging
from “Only Results” (least output) to “Extreme” (most output). For most users
and use cases, one of the levels “Only Results” and “Messages” is probably the
most suitable.

Execution of the selected command is started with the button “Run”. A
running execution can be interrupted with the button “Break” (shortcut Ctrl-
C). While the underlying tool is running, it will output text to the text fields
“Output” and “Error” at the bottom of the GUI window.

For commands “Reachability” and “Fence Insertion”, the user may chose
what abstraction should be used: SB or PB. (See section 7.) Whether CEGAR
should be used for automatically refining the PB abstraction. Also the user
may chose to convert the Rmm program into register free form before analysing
it. Converting an Rmm program to register free form, means to rewrite it
such that the values of the registers are encoded in the control states, and all
registers are replaced by the corresponding integer literals wherever they occur in
instructions. This conversion is possible when all registers in the program have
finite domains. Converting a program to register free form may be beneficial
for analysis time, in particular when using the SB abstraction.

When the command “Fence Insertion” finds a set of fences, they are indicated
in the output by textual representation of the writing transitions in the Rmm
automata which should be changed into locked writes. Mouse-over will highlight

8

the corresponding lines of code in the code area, and clicking them will center
the code area over those lines.

For the command “Draw Automata”, the user should specify a path, where
a PDF file displaying the Rmm program will be created. When the “Draw
Automata” command is used, the PDF file will be immediately displayed,
provided that the user has specified a PDF viewer in the GUI configuration
(Misc→Configuration).

5 Tutorial

This section gives a short tutorial to usage of Memorax.
Start the GUI.

$ memorax-gui &

The GUI window shows an example Rmm program that can be analysed,
an output area showing the version of the GUI, and a number of controls that
allow the user to select a command and options.

Reachability analysis First, let us analyse the reachability of the forbidden
states in the example program: Select the command “Reachability”, the ab-
straction “SB” and the verbosity “Messages”. Press the “Run” button to start
the analysis.

In case the GUI is unable to find the Memorax CLI, then you will receive
an error message:

Failed to start subprocess (...)

[Errno 2] No such file or directory

Failed to terminate subprocess.

Interrupted

If so, enter Misc→Configuration and setup the correct path to where you
have installed the Memorax CLI.

If the GUI finds the CLI, you should instead receive a screenful of text
describing the result. The most important part is the last section. It tells you
that the forbidden states are reachable when the example program is executed
under the TSO memory model. I.e. that the program is unsafe.

Reachability analysis results:

Reachable: Yes

Generated constraints: 500

Size of visited set: 216

Time consumption: 0 s

You will also receive a “witness trace” showing how the forbidden states can
be reached in the SB semantics.

Fence inference Now, let us see how Memorax can be used to automatically
infer the fences that are necessary to make the example program safe. Select the
command “Fence insertion”. Keep the abstraction “SB” and verbosity “Mes-
sages”. Press the “Run” button.

If all goes well you should receive an output like this:

9

$ /path/to/memorax fencins --json -v --abstraction sb

Currently examining fence set:

(No fences)

Reachability analysis results:

Reachable: Yes

Generated constraints: 500

Size of visited set: 216

Time consumption: 0.01 s

Cycles found in trace:

TsoCycle (complete):

P0: update(var:0, P0)

L14 P0: read: var:1 = 0

L22 P1: locked{ write: var:1 := 1 }

L23 P1: read: var:0 = 0

Currently examining fence set:

L13 P0: write: x := 1

L22 P1: write: y := 1

Reachability analysis results:

Reachable: No

Generated constraints: 86

Size of visited set: 39

Time consumption: 0 s

Found 1 fence set:

Fence set #0:

L13 P0: write: x := 1

L22 P1: write: y := 1

Total time to insert fences: 0.01s.

Reading it from top to bottom, it tells us the following:

Currently examining fence set:

(No fences)

The inference procedure starts without any inserted memory fences.

Reachability analysis results:

Reachable: Yes

Generated constraints: 500

Size of visited set: 216

Time consumption: 0.01 s

Without any memory fences, the forbidden states are reachable. At the
verbosity level “Messages”, the witness traces are omitted. If you want to see
the traces, use e.g. “Debug” instead.

Cycles found in trace:

10

TsoCycle (complete):

P0: update(var:0, P0)

L14 P0: read: var:1 = 0

L22 P1: locked{ write: var:1 := 1 }

L23 P1: read: var:0 = 0

Currently examining fence set:

L13 P0: write: x := 1

L22 P1: write: y := 1

The inference procedure analyses the witness trace, and concludes that in
order to prevent the example program from reaching the forbidden states by
such an execution, two memory fences are necessary. The memory fences are
“L13 P0: write: x := 1” and “L22 P1: write: y := 1”. This nota-
tion should be interpreted as follows: L13 P0: write: x := 1 is the writing
instruction of process 0 that occurs at line 13 in the code. The corresponding
fence, which is suggested by the inference procedure, should be placed immedi-
ately after this writing transition. In the Rmm language, inserting the fence is
done by changing write: x := 1 into locked write: x := 1 in the code.

Reachability analysis results:

Reachable: No

Generated constraints: 86

Size of visited set: 39

Time consumption: 0 s

The inference procedure attempts another reachability analysis, now with
the two new fences inserted. This time it turns out that the forbidden states
are not reachable, and the current fence set is sufficient for safety.

Found 1 fence set:

Fence set #0:

L13 P0: write: x := 1

L22 P1: write: y := 1

The inference procedure terminates, telling us that it detected exactly one
minimal and sufficient set of memory fences:

{L13 P0: write: x := 1, L22 P1: write: y := 1}

Hovering the mouse over the fence set will highlight the corresponding write
instructions in the code area. Clicking the fence set will center the code over
the highlighted instructions.

Adding the fences Let us manually insert the fences, and then try again.
Rewrite the code by adding “locked” in two places as shown below:

11

/* An example code */

forbidden

CS CS

data

x = 0 : [0:1]

y = 0 : [0:1]

process process

text text

L0: L0:

locked write: x := 1; locked write: y := 1;

read: y = 0; read: x = 0;

CS: CS:

write: x := 0; write: y := 0;

goto L0 goto L0

The previous fence inference result told us that this new version of the ex-
ample code should be safe. To satisfy our curiosity and to see what it looks like
when we run the fence inference procedure on an already safe program, let us
try to run the fence insertion command again. We get the following result:

$ /path/to/memorax/build/bin/memorax fencins --json -v \

--abstraction sb

Currently examining fence set:

(No fences)

Reachability analysis results:

Reachable: No

Generated constraints: 86

Size of visited set: 39

Time consumption: 0 s

Found 1 fence set:

Fence set #0:

(No fences)

Total time to insert fences: 0s.

It tells us that the fence inference procedure starts with no fences (no fences
except the ones that are explicitly part of the program). It runs the reachability
analysis and finds that the forbidden states are not reachable; the program is
safe. Memorax concludes by telling us that it found exactly one memory fence
set that is necessary and sufficient: the empty set. I.e. as expected, the program
is safe and requires no additional fences.

6 The Rmm language

The Rmm language allows to model a parallel program and specify safety prop-
erties that should hold.

12

The sometimes assembly-like syntax of the Rmm language is motivated by
the necessity, when analysing programs under relaxed memory models, of un-
ambiguously specifying the order of memory accesses, and whether variables are
stored in memory or in registers. Note that for conventional programming lan-
guages, such as e.g. C, the memory access ordering, register allocations, reuse
of common sub-expressions and the like depend on the compiler (and compiler
switches). Therefore, when trying to verify an implementation written in a high
level language, it may be necessary to examine the machine code after compila-
tion, or use inline assembly, to be certain that the model, written in Rmm, and
the compiled program, written in some high level language, correspond.

This section will start by introducing the Rmm language by giving an ex-
ample together with explanation. Then we continue by explaining the abstract
machine on which an Rmm program runs. We introduce control structures and
informally explain about instructions under the Sequentially Consistent memory
model. Finally we give formally and informally, the semantics of all instructions
under the TSO memory model.

6.1 Machine Model and Memory Addressing

This section describes the abstract machine on which an Rmm program is exe-
cuted.

A machine (P, A,R,X) consists of a memory with (shared) memory loca-
tions X , and a set of processes P executing in parallel. Each process p ∈ P has
a unique process identifier pid(p) ∈ {0, · · · , |P| − 1}. We will subsequently use
p and pid(p) interchangingly where there is no danger of confusion.

Automata Each process p is equipped with an automaton A(p) = (Qp,∆p)
describing the program executed by p. The set Qp = {0, · · ·} is the set of
control states of the automaton. The set ∆p is the set of transitions of the
automaton. A transition (q0, instr, q1) consists of a source control state q0, a
target control state q1 and an Rmm instruction. Instructions will be defined
and given semantics in later sections.

Registers Each process p has a set of registers R(p). Registers r ∈ R(p) hold
integer values and can only be accessed by the owning process p. Registers are
not affected by memory model relaxations since they are not located in memory
(and also are private). The differences between registers and memory locations
are summarised in table 1.

Integer Domains Each memory location v and each register r has an asso-
ciated domain domain(v), domain(r) ⊆ Z. The domain is either the (infinite)
set of integers Z, or a finite interval {i, i + 1, · · · , j − 1, j}.

Memory Addressing Memory locations in X are of two kinds: local and
global. Both kinds are accessible for reading and writing by all processes, and
there is no difference between the two kinds regarding memory model relaxation.
The difference is purely in how they are addressed. A global memory location
v has an alphanumerical name n, and is addressed by all processes by precisely
that name. A local memory location v has an alphanumerical name n, but

13

Memory locations Registers

Integer values Yes Yes

Accessible by All processes Owning process

In arith. expr. No Yes

Write write-instruction

Assignment instruction
(E.g. $r0 := $r1 + 1)

or assigning read
(E.g. read: $r0 := x)

Read
read-instruction

(assigning read or
asserting read)

Use in arithmetic expression
(E.g. $r1 + 1)

Names
Alphanumerical or

alphanumerical followed
by process specifier

$ followed by alphanumerical

Table 1: Differences between memory locations and registers.

is also associated with one particular process owner(v) ∈ P. When a process
p accesses the local variable v, it should use the name n[spec] where spec
depends on owner(v) and on p as described in table 2. For example: suppose
that process 2 should access a local variable v by the name x. If owner(v) = 1
then the correct address of v for process 2 would be x[1]. If owner(v) = 2
then x[my] would be the address, and if owner(v) = 5 then x[4] would be the
correct address.

condition spec
owner(v) < p owner(v)
owner(v) = p my

owner(v) > p owner(v)− 1

Table 2: Process p, when accessing variable v declared locally in process
owner(v), should use the name v[spec].

Pointers As a third way of addressing memory, pointer expressions are al-
lowed in Rmm. The syntax is [e], where e is an arithmetic expression over
literal integers and register values. A pointer [e] occurring in a statement
stmt([e]) in Rmm is really syntactic sugar for the following composed state-
ment:
either{
assume: e = 0; stmt(v0)

or

· · ·
or

assume: e = n; stmt(vn)
}

Here v0 · · · vn are all global memory locations in the program, in the or-
der they were declared. Local memory locations cannot be accessed through

14

pointers.

6.2 An Example

1: /* Dijkstra’s lock */

2: forbidden

3: CS CS

4: data

5: turn = * : [0:1]

6: process

7: data

8: flag = 0 : [0:2]

9: registers

10: $flag = * : [0:2]

11: $turn = * : [0:1]

12: text

13: START:

14: write: flag[my] := 1;

15: read: $turn := turn;

16: while $turn != 0 do{

17: read: $flag := flag[0];

18: if $flag = 0 then

19: write: turn := 0;

20: read: $turn := turn

21: };

22: write: flag[my] := 2;

23: read: $flag := flag[0];

24: if $flag = 2 then

25: goto START;

26: CS:

27: write: flag[my] := 0;

28: goto START

29: process

30: data

31: flag = 0 : [0:2]

32: registers

33: $flag = * : [0:2]

34: $turn = * : [0:1]

35: text

36: START:

37: write: flag[my] := 1;

38: read: $turn := turn;

39: while $turn != 1 do{

40: read: $flag := flag[0];

41: if $flag = 0 then

42: write: turn := 1;

43: read: $turn := turn

44: };

45: write: flag[my] := 2;

46: read: $flag := flag[0];

47: if $flag = 2 then

48: goto START;

49: CS:

50: write: flag[my] := 0;

51: goto START

Figure 1: Rmm model of two processes using Dijkstra’s mutual exclusion pro-
tocol [5]

Figure 1 shows an Rmm model of two processes using Dijkstra’s mutual
exclusion protocol. We will explain the format line by line.

The first line is a comment. Everything starting with /* continuing until */
is ignored by the parser.

Lines 2 and 3 declare the safety property. Every Rmm file must start with
such a declaration. The word forbidden is a reserved word. Line 3 tells us that
the declared safety property states that at no time may simultaneously process
0 be at its control state labelled CS (line 26) and process 1 be at its control state
labelled CS (line 49). The label names CS and CS are coincidentally the same,
but refer to different processes and hence different control states. Additional
lines like line 3 can be added provided that they are separated by semi-colons.
Below we have added the safety properties that none of the processes may enter

15

its critical section (label CS) while the other process is at its initial control state
(label START).

forbidden

CS CS ;

START CS ;

CS START

Lines 4 and 5 declare a memory location called turn. The word data is a
reserved word. After the word data comes a list of memory location declara-
tions. The declaration turn = * : [0:1] starts with the name of the memory
location. Then states (= *) that it may initially have any value in its domain.
The last part (: [0:1]) specifies that the domain of the memory location is all
integers from and including 0 up to and including 1. Below we have extended the
declaration section to also declare a variable x with domain Z and initial value
0, and a variable y with the default domain (which is also Z) and unspecified
initial value.

data

turn = * : [0:1]

x = 0 : Z

y = *

Lines 6 to 28 declare process 0. Lines 29 to 51 similarly declare process 1,
and will not be separately explained. The word process on line 6 is a reserved
word and informs us that a process declaration begins. The process declaration
has three parts: data declaration (optional), register declaration (optional) and
text declaration (mandatory).

Lines 7 and 8 is the data declaration for process 0. It declares a memory
location named flag, with domain {0, 1, 2} and initial value 0. This memory
location is like the memory location turn that we declared earlier, in that it is
accessible for both reading and writing to all processes and in that it is affected
by the memory model. The only difference between memory locations declared
at the top level (global memory locations) and memory locations declared inside
a process declaration (local memory locations) is the naming. In order to access
a global memory location, a process will use its name as it is. A local memory
location var is accessed by its name and a specifier: var[spec]. The correct way
of addressing local memory locations is described in section 6.1 and in particular
in table 2.

Lines 9 to 11 declare the registers of process 0. Registers are similar to
memory locations. They correspond to processor registers, so they are accessible
only to the process owning them, and they are not affected by the memory
model. In Rmm, registers have alphanumerical names preceded by a single $

character.
The word text on line 12 informs that the program code begins.
The program code is a semi-colon separated sequence of statements. Each

statement is optionally preceded by a process-unique label and a colon.
Line 13 declares a label START that identifies the control state immediately

before execution of the first instruction.
Line 14, 19, 22 and 27 are memory writes. A value computed by arithmetic

operations on literal integers and on values in registers is assigned to a memory

16

location. In this case literal integers 0, 1 and 2 are stored in the global memory
location turn and the local memory location flag of process 0.

Line 15, 17, 20 and 23 are memory reads. The value in a memory location
is loaded into a register. In the case of line 17, the value in the local variable
flag of process 1 (see table 2) is loaded into the register $flag of process 0.

Lines 16 to 21 is a while-loop. The loop condition works on literal integers
and values in registers.

Lines 18-19 and 24-25 are if-statements. The if-condition works on literal
integers and values in registers. If-statements may optionally have an else-clause.

Lines 25 and 28 are goto-statements. A goto-statement goto LBL immedi-
ately redirects the control flow to the control state labelled by LBL.

6.3 Semantics

6.3.1 Statements

In the Rmm language a process’s automaton is defined by a statement that
follows the keyword text in the process declaration. Statements come in two
kinds: instructions and control structures.

An instruction is a statement that can be attached to a transition in an
automaton, and be executed atomically. An instruction corresponds loosely
to a machine language instruction on an actual piece of hardware. But there
are differences: Some composed operations that would require many machine
language instructions can be performed in a single Rmm instruction. This is
the case for local operations, such as evaluation of arithmetic expressions over
private registers, where the non-atomicity of the operation on actual hardware
is not observable. Furthermore, some instructions on hardware architectures,
such as e.g. un-LOCK’d INC on Intel x86, appear as a single instruction in the
machine language but executes equivalently to multiple subsequent and non-
atomic memory accesses. Such instructions are not included in Rmm.

A control structure is a statement that affects the structure of the process
automaton. Control structures themselves cannot occur as labels for individual
transitions, but control structures may contain instructions and define a sub-
automaton with transitions labelled by those instructions.

Table 3 lists all types of Rmm statements.

6.3.2 Arithmetical and Boolean Expressions

Some statements make use of arithmetical or boolean expressions. An arith-
metical expression may contain registers, integer literals, addition, subtraction,
unary minus and parentheses. A boolean expression may contain the boolean
literals true and false, conjunction (&&), disjunction (||), negation (not),
parentheses ([] is used for boolean expressions as opposed to () for arithmeti-
cal) and comparison of arithmetical expressions by the following comparison
functions: =, !=, <, >. The expressions are interpreted in the obvious way. Note
that memory locations cannot be used in expressions!

6.3.3 Instructions Informally

This section gives an informal description of the semantics of Rmm instructions
under the SC memory model.

17

Instructions

Name Example

Nop nop

Assignment $reg := 42

Assume assume: $r0 = 0 && $r1 > 2

Asserting read read: x = 3

Assigning read read: $reg := x

Write write: x := $r0 + $r1 - 1

Locked block

locked{

read: x = 0;

write: x := 1

}

(Locked write) locked write: x := 1

(Compare & Swap) cas(x,2,13)

Control statements

Name Example

Goto goto LBL

Sequence

{

read: $r0 := x;

$r1 := $r0 + 1;

write: x := $r1

}

If-statement

if $r0 = 0 then {

$r1 := 1;

$r2 := 20

} else

goto L0

While-statement
while $reg > 0 do

read: $reg := x

Either-statement

either{

read: v = 0

or

read: v = 1;

write: w := 1

}

Table 3: Rmm statements

18

In the below, we use the following conventions: Registers are named reg,
reg′ etc. Registers used in an instruction always refer to registers owned by
the process that executes the instruction. Arithmetical expressions are named
expr, expr′ etc. Boolean expressions are named bexpr, bexpr′ etc. Memory
locations are named v, v′ etc. That an instruction is enabled means that it can
be executed. An instruction that is not enabled is blocking.

Nop nop

This instruction is always enabled, and has no effect when executed.

Assignment reg := expr
Evaluates the expression expr and stores the result in the register reg. The

instruction is enabled precisely when the valuation of expr is within the domain
of reg.

Assume assume: bexpr
Is enabled precisely when bexpr evaluates to true. The instruction has no

effect when executed.

Asserting Read read: v = expr
Is enabled when the value of memory location v in memory is the same as

the value to which expr evaluates. The instruction has no effect when executed.

Assigning Read read: reg := v
Reads the value of memory location v from memory and stores the value in

register reg. The instruction is enabled precisely when the value of v in memory
is within the domain of reg.

Write write: v := expr
Evaluates the expression expr and writes the result to memory location v.

Enabled when the value of expr is in the domain of v.

Locked Block
locked{

sl0
or

· · ·
or

sln
}

Here sli for all 0 ≤ i ≤ n is a semi-colon separated sequence of instructions.
The sequence sli is said to be enabled if it is possible to execute its constituent
instructions in order without blocking and without context-switching. When
the locked block is executed, any one single enabled sequence sli is picked, and
the instructions of sli are executed in order atomically. The locked block is
enabled when there is at least one sequence sli that is enabled.

Important: The locked block is a powerful construction meant to enable
modellers to model the occasional more obscure machine instructions that may
occur on their hardware. Its TSO semantics are quite complicated, and improper

19

use is easy. It is therefore recommended to not explicitly use locked blocks unless
absolutely necessary. It is recommended to limit use of locked blocks to implicit
use by means of the two instructions locked write and Compare & Swap.

Locked Write locked write: v := expr
Under SC semantics, a locked write is equivalent to an ordinary write. The

locked write locked write: v := expr is syntactic sugar for
locked{ write: v := expr}

Compare & Swap (CAS) cas(v,expr,expr′)
The compare and swap instruction is enabled precisely when the value of v in

memory is equal to the value of expr, and expr′ evaluates to a value within the
domain of v. Executing the compare and swap instruction will store the value
of expr′ in memory location v. The instruction cas(v,expr,expr′) is syntactic
sugar for locked{ read: v = expr; write: v := expr′}

6.3.4 Control Structures

This section describes how control structures in the Rmm language are used
to shape the process automata of a machine. This is done by describing the
sub-automata corresponding to each type of control structure.

Below we use the following conventions: The described sub-automaton is a
part of the automaton A(p) corresponding to process p. The initial state of the
sub-automaton is qsrc. The control state that corresponds to the position in the
Rmm code immediately after the control structure is named qtgt.

Instructions s
A single instruction s translates into a transition (qsrc, s, qtgt).

qsrc qtgt
s

Goto goto LBL
Here LBL is a label attached to some control state qLBL in Qp. The goto

statement translates into a transition (qsrc, nop, qLBL).

qsrc

qLBL

qtgt

nop

20

Sequence {s0;· · ·;sn}
The sequence construct arranges its constituent sub-statements, unsurpris-

ingly, in a sequence from qsrc to qtgt, as shown in the diagram below.

qsrc qtgt
s0 · · · sn

If-statement if bexpr then sthen else selse
An if-statement branches the automaton into two branches where the initial

assume transitions ensure that only one branch can be taken at any one time.

qsrc qtgt

assume: bexpr

assume: not bexpr

sthen

selse

While-statement while bexpr do s
A while-statement translates to a loop that will be taken as long as bexpr

evaluates to true, but no longer.

qsrc qtgt

assume: bexpr s

assume: not bexpr

Either-statement either{s00;· · ·;sm0 or · · · or s0n;· · ·;sln}
An either statement is a non-deterministic choice. It translates into multiple

branches with no attached guards (except for what may occur in the constituents
sji).

21

qsrc ...
...

qtgt

s00

s0n

· · ·

· · ·

sm0

sln

6.3.5 TSO Semantics

This section describes the TSO semantics of the instructions in the Rmm lan-
guage. This is done formally and informally in parallel.

A constraint (M,Mreg, pc, B) describes the configuration of an abstract ma-
chine at a particular time. Each memory location v ∈ X has a particular value
M(v) ∈ domain(v). Each register r owned by each process p has a particular
value Mreg(p)(r) ∈ domain(r). Each process p is at a particular control state
pc(p) ∈ Qp.

Furthermore, each process p is equipped with a FIFO buffer
B(p) = 〈B(p)0, · · · , B(p)n〉 where n = len(B(p)) − 1. More recently inserted
elements have a lower index. For all 0 ≤ i ≤ n, the element B(p)i = (v, w) ∈
X × Z is a pending write of process p to memory location v with value w ∈
domain(v).

When a process executes a write to a memory location under TSO, it does
not immediately update the memory, but instead it enqueues the write in its
write buffer B(p). Asynchronously, and without the active participation of the
process p itself, the enqueued writes will be pushed, one by one in the same
order they were enqueued, to memory and dequeued from the write buffer. The
event of a write reaching memory is called an update.

In the below we describe the rules for process p to perform a transition t.
For a function f , by f [x := v] we denote the function f ′ such that f ′(y) = f(y)
if y 6= x and f ′(x) = v. For a register valuation Mreg(p) and an arithmetic
expression expr over registers from R(()p), we let Mreg(p)[expr] denote the
evaluation of expr where each register r in expr evaluates to Mreg(p)(r). We
define similarly Mreg(p)[bexpr] for a boolean expression bexpr.

Nop t = (qsrc, nop, qtgt)
The nop instruction is the same under TSO semantics as under SC semantics:

It does nothing.

pc(p) = qsrc
(M,Mreg, pc, B)→t (M,Mreg, pc[p := qtgt], B)

22

Assignment t = (qsrc, reg := expr, qtgt)
The assignment instruction is the same under TSO semantics as under SC

semantics: It evaluates expr and assigns the result to the register reg.

pc(p) = qsrc w ∈ domain(reg)
M ′reg = Mreg[p := M ′p]

where
w = Mreg(p)[expr]

M ′p = Mreg(p)[reg := w]

(M,Mreg, pc, B)→t (M,M ′reg, pc[p := qtgt], B)

Assume t = (qsrc, assume: bexpr, qtgt)
The assume instruction is the same under TSO semantics as under SC se-

mantics: It evaluates bexpr and is enabled precisely when the result is true.

pc(p) = qsrc Mreg(p)[bexpr]

(M,Mreg, pc, B)→t (M,Mreg, pc[p := qtgt], B)

Asserting Read t = (qsrc, read: v = expr, qtgt)
A read under TSO semantics will read the value of memory location v from

memory, provided that the buffer of p does not contain any write to v. If there
is a write to v in B(p), then the value of the newest such write in B(p) is read.

To formalise this, we define the function read : ((X 7→ Z)× buffer) 7→ X 7→
Z as follows:

read(M, b)v = w If for some i ∈ Z

 bi = (v, w)
and

¬∃0 ≤ j < i, w′ ∈ Z.bj = (v, w′)

M(v) Otherwise

Now we can define the transition rule:

pc(p) = qsrc read(M,B(p))v = Mreg(p)[expr]

(M,Mreg, pc, B)→t (M,Mreg, pc[p := qtgt], B)

Assigning Read t = (qsrc, read: reg := v, qtgt)
An assigning read, reads the value of v from memory or from B(p) in the

same manner as an asserting read, but then assigns the read value to the register
reg.

pc(p) = qsrc w ∈ domain(reg)
M ′reg = Mreg[p := M ′p]

where
w = read(M,B(p))v

M ′p = Mreg(p)[reg := w]

(M,Mreg, pc, B)→t (M,M ′reg, pc[p := qtgt], B)

23

Write t = (qsrc, write: v := expr, qtgt)
A write instruction evaluates the value w of the expression expr, and en-

queues the write as (v, w) in its buffer.

pc(p) = qsrc w ∈ domain(v)
B′ = B[p := (v, w) ·B(p)]

where
w = Mreg(p)[expr]

(M,Mreg, pc, B)→t (M,Mreg, pc[p := qtgt], B′)

Update t = updatep
An update is not a transition in any process automaton. Instead it is an

event that may happen at any time the buffer of process p is non-empty. When
an update occurs, the oldest write (v, w) in the buffer of process p is dequeued,
and the value of variable v is assigned w.

B(p) = 〈B(p)0, · · · , B(p)n−1, (v, w)〉
B′ = B[p := 〈B(p)0, · · · , B(p)n−1〉]

(M,Mreg, pc, B)→t (M [v := w],Mreg, pc, B′)

Locked Write t = (qsrc, locked write: v := expr, qtgt)
A locked write acts as a write followed by a TSO fence. It requires the buffer

of process p to be empty before it is executed. Then it evaluates the value w of
expr and writes w directly to v in memory without enqueueing the write in the
buffer.

pc(p) = qsrc B(p) = 〈〉
w ∈ domain(v)

where
w = Mreg(p)[expr]

(M,Mreg, pc, B)→t (M [v := w],Mreg, pc[p := qtgt], B)

The locked write locked write: v := expr is syntactic sugar for
locked{ write: v := expr}.

CAS t = (qsrc, cas(v,expr,expr
′), qtgt)

A compare and swap instruction acts as a fence in that it requires the buffer
of process p to be empty before it can be executed. It then evaluates the values
w and w′ respectively for expr and expr′, compares the value of v in memory
with w, if the values are equal then the value w′ is written to v in memory,
otherwise the instruction blocks. A compare and swap instruction does not
enqueue any write to the buffer.

pc(p) = qsrc B(p) = 〈〉
M(v) = w w′ ∈ domain(v)

where
w = Mreg(p)[expr] w′ = Mreg(p)[expr′]

(M,Mreg, pc, B)→t (M [v := w′],Mreg, pc[p := qtgt], B)

24

Locked Block locked{s00;· · ·;sm0
0 or · · · or s0n;· · ·;smn

n }

A locked block acts as a fence iff there is some sji that is a write. If so, then
the whole locked block is enabled only if the buffer of process p is empty.

When a locked block executes, it non-deterministically selects one sequence
s0i ; · · · ;smi

i and executing atomically all constituent instructions sji in order.
When doing so each constituent instruction executes as it normally does, except
for writes, which execute as locked writes.

In order to formalise the above, we first define the functions is write and
contains write:

is write(s) = (∃v ∈ X , w ∈ Z.s = write: v := w)

contains write(s) =
is write(s)

or
∃s00, · · · , sm0 , · · · , s0n, · · · , sln, i, j.
s = locked{s00; · · · ;sm0 or · · · or s0n; · · · ;sln}
and

contains write(sji)

Next we define the locked transition relation →locked

s , for instructions s by
the following two rules:

¬is write(s)
(M,Mreg, pc, B)→(pc(p),s,pc(p)) (M ′,M ′reg, pc

′, B′)

(M,Mreg, pc, B)→locked
s (M ′,M ′reg, pc

′, B′)

is write(s)
(M,Mreg, pc, B)→(pc(p),s,pc(p)) (M ′,M ′reg, pc

′, B′)
(M ′,M ′reg, pc

′, B′)→updatep (M ′′,M ′′reg, pc
′′, B′′)

(M,Mreg, pc, B)→locked
s (M ′′,M ′′reg, pc

′′, B′′)

Now we are ready to define the transition rule for the locked block. Let
s = locked{s00; · · · ;sm0

0 or · · · or s0n; · · · ;smn
n }.

pc(p) = qsrc
(contains write(s)⇒ B(p) = 〈〉)
∃0 ≤ i ≤ n, c0, · · · , cmi+1.

c0 = (M,Mreg, pc, B)
cmi+1 = (M ′,M ′reg, pc, B

′)
∀0 ≤ j ≤ mi.cj →locked

sji
cj+1

(M,Mreg, pc, B)→t (M ′,M ′reg, pc[p := qtgt], B′)

Important: The locked block is a powerful construction meant to enable
modellers to model the occasional more obscure machine instructions that may
occur on their hardware. Its TSO semantics are quite complicated, and improper
use is easy. It is therefore recommended to not explicitly use locked block unless
absolutely necessary. It is recommended to limit use of locked blocks to implicit
use by means of the two instructions locked write and Compare & Swap.

25

6.4 Grammar

RMM ::=

BAD-STATES PREDICATES ’data’ VAR-INIT PROCESS-LIST

| BAD-STATES PREDICATES PROCESS-LIST

BAD-STATES ::= ’forbidden’ BAD-STATES-LIST-LIST

BAD-STATES-LIST-LIST ::=

BAD-STATES-LIST

| BAD-STATES-LIST ’;’ BAD-STATES-LIST-LIST

BAD-STATES-LIST ::=

LABEL

| LABEL BAD-STATES-LIST

PREDICATES ::=

’’

| ’predicates’ BEXPR-LIST

BEXPR-LIST ::=

BEXPR

| BEXPR ’;’ BEXPR-LIST

PROCESS-LIST ::=

PROCESS

| PROCESS PROCESS-LIST

PROCESS ::=

’process’ PROC-COUNT VAR-INIT REG-INIT ’text’ STMT-LIST

PROC-COUNT ::=

’’

| ’(’ NAT ’)’

VAR-INIT ::=

’’

| ’data’ VAR-INIT-LIST

VAR-INIT-LIST ::=

ID ’=’ VAR-INIT-VALUE VAR-DOMAIN

| ID ’=’ VAR-INIT-VALUE VAR-DOMAIN ’,’ VAR-INIT-LIST

VAR-INIT-VALUE ::=

NAT

| ’-’ NAT

| ’*’

VAR-DOMAIN ::=

’’

26

| ’:’ ’[’ INT ’:’ INT ’]’

| ’:’ ’Z’

REG-INIT ::=

’’

| ’registers’ REG-INIT-LIST

REG-INIT-LIST ::=

REG ’=’ VAR-INIT-VALUE VAR-DOMAIN

| REG ’=’ VAR-INIT-VALUE VAR-DOMAIN ’,’ REG-INIT-LIST

STMT-LIST ::=

LSTMT

| LSTMT ’;’ STMT-LIST

LSTMT ::=

STMT

| LABEL ’:’ STMT

STMT ::=

’nop’

| ’read:’ MEMLOC ’=’ EXPR

| ’read:’ REG ’:=’ MEMLOC

| ’write:’ MEMLOC ’:=’ EXPR

| ’locked write:’ MEMLOC ’:=’ EXPR

| ’cas(’ MEMLOC ’,’ EXPR ’,’ EXPR ’)’

| REG ’:=’ EXPR

| ’assume:’ BEXPR

| ’if’ BEXPR ’then’ LSTMT

| ’if’ BEXPR ’then’ LSTMT ’else’ LSTMT

| ’while’ BEXPR ’do’ LSTMT

| ’goto’ LABEL

| ’either’ ’{’ STMT-LIST EITHER-LIST ’}’

| ’locked’ ’{’ STMT-LIST EITHER-LIST ’}’

| ’{’ STMT-LIST ’}’

EITHER-LIST ::=

’’

| ’or’ STMT-LIST EITHER-LIST

BEXPR ::=

BEXPR-AND

| BEXPR ’||’ BEXPR

BEXPR-AND ::=

BEXPR-ATOM

| BEXPR-AND ’&&’ BEXPR-AND

| ’not’ BEXPR-ATOM

BEXPR-ATOM ::=

27

’true’

| ’false’

| EXPR ’=’ EXPR

| EXPR ’!=’ EXPR

| EXPR ’<’ EXPR

| EXPR ’>’ EXPR

| ’[’ BEXPR ’]’

EXPR ::=

EXPR ’+’ EXPR

| EXPR ’-’ EXPR-UNIT

| EXPR-UNIT

EXPR-UNIT ::=

REG

| NAT

| ’-’ EXPR-UNIT

| ’(’ EXPR ’)’

REG ::= $[_a-zA-Z0-9]+

MEMLOC ::=

ID

| ID ’[’ ’my’ ’]’

| ID ’[’ NAT ’]’

| ’[’ EXPR ’]’

LABEL ::= ID

ID ::= [_a-zA-Z][_a-zA-Z0-9]*

6.5 Macros

The parsing of Rmm code involves a preprocessing step, where macros can be
defined and called. This allows for example, to define a process as a macro, then
instantiate it multiple times with different arguments, to avoid typing similar
processes definitions multiple times.

The syntax of macro definition is as follows, where mname is some identifier
which is the name of the defined macro, p0, · · · , pn are identifiers which are
the formal parameters of the macro, and mbody is some Rmm code that may
contain p0, · · · , pn at any point as a replacement for some sequence of symbols.
The body mbody may not contain the keyword endmacro.

macro mname(p0,· · ·,pn)
mbody(p0, · · · , pn)
endmacro

28

forbidden forbidden

CS CS CS CS

data data

cs0 = 0 : [0:1] cs0 = 0 : [0:1]

cs1 = 0 : [0:1] cs1 = 0 : [0:1]

x = 0 : [0:1] x = 0 : [0:1]

y = 0 : [0:1] y = 0 : [0:1]

macro p(x,y,pid) process

process text

text write: x := 1;

write: x := 1; read: y = 0;

read: y = 0; CS: write: cs0 := 1

CS: write: [pid] := 1

endmacro process

text

p(x,y,0) write: y := 1;

p(y,x,1) read: x = 0;

CS: write: cs1 := 1

Figure 2: Left: Rmm code using macros. Right: Equivalent, expanded code.

A macro call may occur at any position in an Rmm code, after the called
macro has been completely defined. A macro call has the following syntax,
where mname is the name of some defined macro of arity n + 1, and each ai is
some sequence of symbols.

mname(a0,· · ·,an)

Each sequence of symbols ai must be well-formed with respect to (and),
and may not contain a comma (,) except if it is within some nesting of (and
). Cyclic macro calls are not allowed.

Figure 2 shows an example of macro usage.

7 Abstractions

7.1 PB - Bounded Buffers with Predicate Abstraction

The PB abstraction is the implementation of [2]. It is an over approximation of
TSO.

The PB abstraction uses an over approximation of the TSO store buffers.
For a positive integer k, it stores the k most recent messages for each memory
location and process. The information of older messages is dropped.

Predicate abstraction is used to enable (infinite) integer domains for memory
locations and registers.

The reachability analysis is by backward state space exploration.

29

If CEGAR is used, then the value of k as well as the set of predicates for
predicate abstraction is gradually refined. When CEGAR is used, analysis and
fence insertion with PB is sound, but not complete. For fence insertion this
means that any fence sets reported by Memorax are sufficient and minimal for
preventing reachability of the forbidden states.

For details about the PB abstraction, see [2].

7.2 SB - Single Buffer

The SB abstraction is a reimplementation of [3]. Reachability analysis and fence
insertion with SB is both sound and complete.

The SB abstraction defines a program semantic which is equivalent to TSO
with regards to control state reachability. For the SB semantics, the well-quasi
ordering framework [1] is applicable and provides a sound and complete reach-
ability analysis.

The SB semantics replaces the TSO store buffers with a single, shared store
buffer. Each message in the single store buffer contains a complete memory
snapshot.

The reachability analysis is by backward state space exploration.
For details about the SB abstraction, see [3].

References

[1] P. A. Abdulla, K. Cerans, B. Jonsson, and Y.-K. Tsay. General decidability
theorems for infinite-state systems. In LICS, 1996.

[2] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonards-
son, and Ahmed Rezine. Automatic fence insertion in integer programs via
predicate abstraction. In SAS, volume 7460 of LNCS. Springer, 2012.

[3] Parosh Aziz Abdulla, Mohamed Faouzi Atig, Yu-Fang Chen, Carl Leonards-
son, and Ahmed Rezine. Counter-example guided fence insertion under tso.
In TACAS, 2012.

[4] S. Adve and K. Gharachorloo. Shared memory consistency models: a tuto-
rial. Computer, 29(12), 1996.

[5] N. Lynch and B. Patt-Shamir. DISTRIBUTED ALGORITHMS , Lecture
Notes for 6.852 FALL 1992. Technical report, MIT, Cambridge, MA, USA,
1993.

30

GNU Free Documentation License

Version 1.3, 3 November 2008
Copyright c© 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

<http://fsf.org/>

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

Preamble

The purpose of this License is to make a manual, textbook, or other func-
tional and useful document “free” in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without modifying
it, either commercially or noncommercially. Secondarily, this License pre-
serves for the author and publisher a way to get credit for their work, while
not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works
of the document must themselves be free in the same sense. It complements
the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software
does. But this License is not limited to software manuals; it can be used
for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose
purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that
contains a notice placed by the copyright holder saying it can be distributed

1

2

under the terms of this License. Such a notice grants a world-wide, royalty-
free license, unlimited in duration, to use that work under the conditions
stated herein. The “Document”, below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as “you”. You
accept the license if you copy, modify or distribute the work in a way requiring
permission under copyright law.

A “Modified Version” of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with modifications
and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section
of the Document that deals exclusively with the relationship of the publishers
or authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Sec-
ondary Section may not explain any mathematics.) The relationship could
be a matter of historical connection with the subject or with related matters,
or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License. If a section does not fit
the above definition of Secondary then it is not allowed to be designated
as Invariant. The Document may contain zero Invariant Sections. If the
Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed,
as Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License. A Front-Cover Text may be at
most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general public,
that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for
drawings) some widely available drawing editor, and that is suitable for input
to text formatters or for automatic translation to a variety of formats suitable
for input to text formatters. A copy made in an otherwise Transparent file
format whose markup, or absence of markup, has been arranged to thwart or
discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy
that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML

3

using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of trans-
parent image formats include PNG, XCF and JPG. Opaque formats include
proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are
not generally available, and the machine-generated HTML, PostScript or
PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus
such following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, “Title Page” means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

The “publisher” means any person or entity that distributes copies of
the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document
whose title either is precisely XYZ or contains XYZ in parentheses follow-
ing text that translates XYZ in another language. (Here XYZ stands for
a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Ti-
tle” of such a section when you modify the Document means that it remains
a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice
which states that this License applies to the Document. These Warranty
Disclaimers are considered to be included by reference in this License, but
only as regards disclaiming warranties: any other implication that these War-
ranty Disclaimers may have is void and has no effect on the meaning of this
License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either com-
mercially or noncommercially, provided that this License, the copyright no-
tices, and the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever
to those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you dis-
tribute a large enough number of copies you must also follow the conditions
in section 3.

4

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have
printed covers) of the Document, numbering more than 100, and the Doc-
ument’s license notice requires Cover Texts, you must enclose the copies in
covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these
copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in
addition. Copying with changes limited to the covers, as long as they pre-
serve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the actual
cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document number-
ing more than 100, you must either include a machine-readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a computer-network location from which the general network-using public
has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the
latter option, you must take reasonably prudent steps, when you begin dis-
tribution of Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least one year after
the last time you distribute an Opaque copy (directly or through your agents
or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release the Mod-
ified Version under precisely this License, with the Modified Version filling
the role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must
do these things in the Modified Version:

5

A. Use in the Title Page (and on the covers, if any) a title distinct from that
of the Document, and from those of previous versions (which should, if
there were any, be listed in the History section of the Document). You
may use the same title as a previous version if the original publisher of
that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all
of its principal authors, if it has fewer than five), unless they release
you from this requirement.

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to
the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving
the public permission to use the Modified Version under the terms of
this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and
required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to
it an item stating at least the title, year, new authors, and publisher of
the Modified Version as given on the Title Page. If there is no section
Entitled “History” in the Document, create one stating the title, year,
authors, and publisher of the Document as given on its Title Page, then
add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public
access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on.
These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to
gives permission.

6

K. For any section Entitled “Acknowledgements” or “Dedications”, Pre-
serve the Title of the section, and preserve in the section all the sub-
stance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their
text and in their titles. Section numbers or the equivalent are not
considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or
to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections
as invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from any
other section titles.

You may add a section Entitled “Endorsements”, provided it contains
nothing but endorsements of your Modified Version by various parties—for
example, statements of peer review or that the text has been approved by
an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover
Texts in the Modified Version. Only one passage of Front-Cover Text and
one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same
entity you are acting on behalf of, you may not add another; but you may
replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

7

You may combine the Document with other documents released under
this License, under the terms defined in section 4 above for modified versions,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve
all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and mul-
tiple identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History”
in the various original documents, forming one section Entitled “History”;
likewise combine any sections Entitled “Acknowledgements”, and any sec-
tions Entitled “Dedications”. You must delete all sections Entitled “En-
dorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other docu-
ments released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH

INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, is called an “aggregate” if the copyright resulting from
the compilation is not used to limit the legal rights of the compilation’s users
beyond what the individual works permit. When the Document is included in

8

an aggregate, this License does not apply to the other works in the aggregate
which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies
of the Document, then if the Document is less than one half of the entire
aggregate, the Document’s Cover Texts may be placed on covers that bracket
the Document within the aggregate, or the electronic equivalent of covers if
the Document is in electronic form. Otherwise they must appear on printed
covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing Invari-
ant Sections with translations requires special permission from their copy-
right holders, but you may include translations of some or all Invariant Sec-
tions in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the
Document, and any Warranty Disclaimers, provided that you also include
the original English version of this License and the original versions of those
notices and disclaimers. In case of a disagreement between the translation
and the original version of this License or a notice or disclaimer, the original
version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedica-
tions”, or “History”, the requirement (section 4) to Preserve its Title (sec-
tion 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense, or distribute it is void, and will automatically terminate
your rights under this License.

However, if you cease all violation of this License, then your license from
a particular copyright holder is reinstated (a) provisionally, unless and until
the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by
some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated
permanently if the copyright holder notifies you of the violation by some
reasonable means, this is the first time you have received notice of violation

9

of this License (for any work) from that copyright holder, and you cure the
violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under this
License. If your rights have been terminated and not permanently reinstated,
receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS

LICENSE

The Free Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to address
new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If
the Document specifies that a particular numbered version of this License “or
any later version” applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose
any version ever published (not as a draft) by the Free Software Foundation.
If the Document specifies that a proxy can decide which future versions of
this License can be used, that proxy’s public statement of acceptance of a
version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any
World Wide Web server that publishes copyrightable works and also pro-
vides prominent facilities for anybody to edit those works. A public wiki
that anybody can edit is an example of such a server. A “Massive Multi-
author Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0
license published by Creative Commons Corporation, a not-for-profit corpo-
ration with a principal place of business in San Francisco, California, as well
as future copyleft versions of that license published by that same organiza-
tion.

10

“Incorporate” means to publish or republish a Document, in whole or in
part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License,
and if all works that were first published under this License somewhere other
than this MMC, and subsequently incorporated in whole or in part into
the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the
site under CC-BY-SA on the same site at any time before August 1, 2009,
provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for

your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright c© YEAR YOUR NAME. Permission is granted to
copy, distribute and/or modify this document under the terms of
the GNU Free Documentation License, Version 1.3 or any later
version published by the Free Software Foundation; with no In-
variant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled “GNU Free
Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts,
replace the “with . . . Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts
being LIST.

If you have Invariant Sections without Cover Texts, or some other com-
bination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we rec-
ommend releasing these examples in parallel under your choice of free soft-
ware license, such as the GNU General Public License, to permit their use
in free software.

	Introduction
	Contact / Bug Report
	Installation
	Requirements
	Basic Installation
	Installation Options
	Troubleshooting

	Usage
	Using the Command Line Interface
	Using the Graphical Interface

	Tutorial
	The Rmm language
	Machine Model and Memory Addressing
	An Example
	Semantics
	Statements
	Arithmetical and Boolean Expressions
	Instructions Informally
	Control Structures
	TSO Semantics

	Grammar
	Macros

	Abstractions
	PB - Bounded Buffers with Predicate Abstraction
	SB - Single Buffer

	References
	GNU Free Documentation License

