
(12) United States Patent

US006721799B1

US 6,721,799 B1
Apr. 13, 2004

(10) Patent N0.:
(45) Date 0f Patent:

(54)

(75)

(73)

(21)
(22)

(60)

(51)
(52)

(58)

(56)

METHOD FOR AUTOMATICALLY
TRANSMITTING AN ACKNOWLEDGE
FRAME IN CANOPEN AND OTHER CAN
APPLICATION LAYER PROTOCOLS AND A
CAN MICROCONTROLLER THAT
IMPLEMENTS THIS METHOD

Inventor: William J. Slivko?', San Jose, CA (US)

Assignee: Koninklijke Philips Electronics N.V.,

Notice:

Appl. No.:

Filed:

09/474,904
Dec. 30, 1999

Eindhoven (NL)

Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 0 days.

Related US. Application Data
Provisional application No. 60/154,022, ?led on Sep. 15,

OTHER PUBLICATIONS

Siemens Microelectronics, Inc: “Control area Network”
Internet, ’Online! 1998, XP002156911 Retrieved from the
Internet p. 56 or p. 58.
Philips “XA—C3 Microcontroller” Internet, ’Online! Jan. 25,
2000, XP00215 6912 Retrieved from the Internet. The whole
document.

* cited by examiner

Primary Examiner—Rupal Dharia
Assistant Examiner—Adnan MirZa
(74) Attorney, Agent, or Firm—Aaron WaXler

(57) ABSTRACT

A method for use in a CAN device (e.g., a CAN

microcontroller) that includes a processor core, for auto
matically transmitting an acknowledge message. The
method includes the steps of receiving a frame of a multi
frame fragmented message, and automatically transmitting
an acknowledgment message without requiring any inter
vention of the processor core, in response to the receiving

1999- step. The automatically transmitting step is preferably per
Int. c1.7 G06F 15/16 formed by hardware @Xternal t9 the processor Core, 9g» a

US. Cl. 709/236; 700/101; 700/19; CAN/CAL module of the CAN device- In a Preferred
700/21; 710/121; 710/157 embodlment, the method mcludes the steps of sett1ng up a

Field of Search 700/1, 19, 20, ?rst message Oblect hiwmg an oblect number n 2.15 a recelve
700/23 24 55 709/236 message ob]ect, enabhng the recelve message ob]ect, sett1ng

’ ’ ’ up a second message ob]ect hav1ng an ob]ect number n+1 as

References Cited 21 transmit message object corresponding to the receive
message object, storing the acknowledgment message in a

US. PATENT DOCUMENTS response message buffer associated with the transmit mes

5 323 385 A * 6/1994 JurewicZ et al. 370/43 Sage Object’ receiving a frame of a mul?'frame fragmented
5:502:818 A * 3/1996 Lamberg 395/200.16 m‘f'ssage’ acceptanfze ?henng the recelved frame to deFer'
5,574,848 A * 11/1996 Thomson m1ne that the rece1ved frame matches the enabled rece1ve
5,675,830 A * 10/1997 Satula 395/829 message Object, enabling the transmit message Object, and
5,854,454 A * 12/1998 Upender et a1, __________ __ 187/247 automatically transmitting the acknowledgment message,
6,122,713 A * 9/2000 Huang et al. 711/147 without requiring any intervention of the processor core.
6,252,851 B1 * 6/2001 Siu et al.
6,363,083 B1 * 3/2002 Spielbauer et al. 370/470 26 Claims, 7 Drawing Sheets

___ .52.“...
f 34 _'

E Core Databus / _ XACPU Core x22 5

l Program bus 1‘ SFR bus i ROM/EPROM DAT x43 4, i

l V 27 i 51

u .

3? T O 4..
32 "*l 103% I

r 2 5 : -54

AN/DLL

U.S. Patent Apr. 13, 2004 Sheet 2 0f 7 US 6,721,799 B1

/20
I ______________ "54' _________________________ 5 Core Data bus 2 >1 XA CPU Core x22 5

i A i
: Program bus :

i 24\ 32K Bytes SFR bus 5
: ROM/EPROM x43 41 I

; ram 2 i I 25»_ 1024 Bytes US -
I DATA RAM 0 UART 0 _:_>
E v 27 : 51

External I I I I
gdiiméss/ XRAM x 28 36 4+ SPI <-I_
aa us ' - MEMORY “P’

‘7-’. INTERFACE 386 T 0 d5?) I - /—i/ I I imer —'—>

32 I 4:.’ ERMA <-I_> Timer1 <-%—
I I gme : /-|\54
: I 1 : '
i 3% ; MMR I 4+ Timer2 ”I—
I 401 S <#—> <~.—
I I l 1 I

RX_;—;_> : Watchdog :
I 42-?“ 2'08 ggrNe/DLL <|—> ' ' Tlmer ;

TX‘*—__"—. .__ _________ ____,k\ g I
5 ‘77 55 i

U.S. Patent Apr. 13, 2004 Sheet 3 0f 7 US 6,721,799 B1

MMRs
MMR name I R/W? I Reset [Access [Address Otlset IDesoription

Message Obieet Registers (n =0 -3l)
MnMlDH R/W x....x00b Word only 000n4n3n2n1ng0000bln0h) MessagenMatohlD High
MnMlDL R/W xxxxh Word only 00On4n3n2n1ng00l0b(n2h) MessagenMatehlDLow
MnMSKH R/W x....x000b Word only tl00n4ngngn1ngtli0tlbln4h) MessagenMaskHigh
MnMSKL R/W xxxxh Word only 000n4n3n2n1ngolltlbln6h) MessagenMasktow
MnClL R/W OOOOOxxxb ByteNllord 000tl4H3tt2tl1n01000bttt3h) MessagenControl
MnBLR R/W xxxxh Word only 000tl4ll3?2tt1tt01010btrlAh) Messagen Buttertooation
MnBSZ R/W 00000xxxb Byte/Word 00On4n3n2n1ngl100bMCh) Messagen Butler Size
MnFCR R/W 00x>o<x>orb Byte/Word 000n4n3ngn1nglll0bmEhl MessagenFragmentation Count

ClC Registers
MCPLL R/C 0000b Byte/Word 224h Message Complete Low
MCPLH R/C 0000b Byte/Word 226h Message Complete High
CANlNlELG R/C 0000b Byte/Word 228h CAN Interrupt Flag Register
MCIR R0 0000b Byte/Word 229h Message Complete lnlo Reg.
MElR R0 0000b Byte/Word 22Ah Message Error lnlo Register
FESTR R/C 0000b Byte/Word 22Ch Frame Error Status Register
FEENR R/W 0000h Byte/Word 22Eh Frame Error Enable Register

SCP/SPI Registers
SPICFG RAN 0000b Byte/Word 260h SCP/SPI Con?guration
SPIDATA RAN 00h Byte/Word 262h SCP/SPI Data
SPICS RNll 00h Byte/Word 263h SCP/SPI Control and Status

CCB Registers
CANCMR W 0th Byte/Word 270h CAN Command Register
CANSlR R/O 00h Byte/Word 27th CAN Status Register
CANBTR RAN 00h Byte/Word 272h CAN Bus Timing Reg (low)
- R/W 00h Byte/Word 273h CAN Bus liming Reg. (high)
TXERC R/W* 00h Byte/Word 274h Tx Error Counter
RXERC R/W* 00h Byte/Word 275h Rx Error Counter
EWLR R/W 96h Byte/Word 276h Error Warning Limit Register
ECCR R0 0000b Byte/Word 278h Error Code Capture Register
ALCR R0 0000h Byte/Word 27Ah Arbitration Lost Capture Reg.
RTXDTM W0 0000h Byte/Word 27Ch RTX Data lest Mode
GCTL R/W 0000b Byte/Word 27Eh Global Control Byte

MlF Registers
XRAMB R/W FEh Byte/Word 290h XRAM Base Address
MBXSR R/W FFh Byte/Word 29th Msg. Butt/XRAM Seg. Reg.
MlFBlRL RAN EFh Byte/Word 292h MlF Bus Timing Reg. Low
MIFBTRH R/W FFh Byte/Word 293h MlF Bus liming Reg. High

Legend: R/W=Read&Write, R0=Read Only, W0=Write Only. R/C=Read &Clear, W*=Writable only during 4
CAN Reset mode, x= unde?ned alter reset. -

U.S. Patent

OOFFFFff

4K Bytes

512 BytesT

OOOSFFh

Apr. 13, 2004 Sheet 4 0f 7

Data Memory Segment 0
_LLLLLLLI

Off-Chip

MMR Space

r-r‘nTr-r-r

Off-Chip

Off-Chip
_Ll_L_l_1_1_L_I

Off-Chip Data Memory
(Scratch Pad)

MMR Space

US 6,721,799 B1

MMR Base Address

XRAM Base Address

OOOOOOh

Offset FFFh ——+

Offset 1FFh—>
512 Bytes Object Registers

I>___ 4“ Offset OOOh

U.S. Patent Apr. 13, 2004 Sheet 5 0f 7 US 6,721,799 B1

Segment xy in Data
Memory Space

xyFFFFh

O - Ct HT Object n Message Butter H23 816 815 E10
Butter size I " <— MBXSR[7:0] MnBLR

XRAM

512 Bytes e23 a16 e15 a8 a7 a0
t_ 4- MBXSR[7:0] XHAMB[7:1]0 00h

l xyOOOOh

Segment xy in Data
Memory Space

xyFFFFh g

e23 e16 a15 at]
<- MBXSR[7:0] MnBLR

ObiecmT Object n Message Butter
XRAM Buttersize I

512 Bytes XRAM a23 e16 a15 a8 a7 a0
|—_<— MBXSR[7:0] XRAMB[7:1]0 00h

xyOOOOh

FIG. 8

U.S. Patent Apr. 13, 2004 Sheet 6 0f 7

Object n Match ID Field (MnMIDH and MnMlDL)

US 6,721,799 B1

Mid28-Mid18 Mldl7 — MidiU Mid9 — Mid2 Midi Midi) MlDE

Object n Mask Field (MnMSKH and MnMSKL)
Msk28 — MSki8 MSk17 — MSklO MSk9 — MSkZ MSkl MskO

Screener ID Field (assembled from incoming bit-stream)
CAN lD.28 — CAN lD.18 Data Bytel [7:0] Data Byte 2 [7:0] x X IDE

FIG. 9

Object n Match ID Field (MnMlDH and MnMlDL)
Mid28 — MidiS Midl7 — MidlO Mid9 — Mid2 Midi MidO MIDE

Object n Mask Field (MnMSKH and MnMSKL)
Msk28 — MSk18 Mski 7 — Mskil) Msk9 — MskZ Mski MskO

Screener ID Field (assembled from incoming bit-stream)
CAN |D.28 — CAN lD.0 IDE

FIG. 10

U.S. Patent Apr. 13, 2004 Sheet 7 0f 7 US 6,721,799 B1

81W“ 1WD)?
Data Byte 2 ADDRESS
Data Byte 3

Data Byte DLC

Data Byte 2 (next)
Data Byte 3 (next)

FIG. 11

DIRECTION OF
Frame'mo INCREASING
Data Byte 1 ADDRESS
Data Byte 2

Data Byte DLC
Framelnto (next)
Data Byte 1 (next)

Data Byte 2 (next)

FIG. 12

US 6,721,799 B1
1

METHOD FOR AUTOMATICALLY
TRANSMITTING AN ACKNOWLEDGE
FRAME IN CANOPEN AND OTHER CAN

APPLICATION LAYER PROTOCOLS AND A
CAN MICROCONTROLLER THAT
IMPLEMENTS THIS METHOD

This application claims the full bene?t and priority of
US. Provisional Application Ser. No. 60/154,022, ?led on
Sep. 15, 1999, the disclosure of Which is fully incorporated
herein for all purposes.

BACKGROUND OF THE INVENTION

The present invention relates generally to the ?eld of data
communications, and more particularly, to the ?eld of serial
communications bus controllers and microcontroller that
incorporate the same.

CAN (Control Area Network) is an industry-standard,
tWo-Wire serial communications bus that is Widely used in
automotive and industrial control applications, as Well as in
medical devices, avionics, office automation equipment,
consumer appliances, and many other products and appli
cations. CAN controllers are currently available either as
stand-alone devices adapted to interface With a microcon
troller or as circuitry integrated into or modules embedded
in a microcontroller chip. Since 1986, CAN users (softWare
programmers) have developed numerous high-level CAN
Application Layers (CALs) Which eXtend the capabilities of
the CAN While employing the CAN physical layer and the
CAN frame format, and adhering to the CAN speci?cation.
CALs have heretofore been implemented primarily in
softWare, With very little hardWare CAL support.
Consequently, CALs have heretofore required a great deal of
host CPU intervention, thereby increasing the processing
overhead and diminishing the performance of the host CPU.

Thus, there is a need in the art for a CAN hardWare
implementation of CAL functions normally implemented in
softWare in order to offload these tasks from the host CPU
to the CAN hardWare, thereby enabling a great savings in
host CPU processing resources and a commensurate
improvement in host CPU performance. One of the most
demanding and CPU resource-intensive CAL functions is
message management, Which entails the handling, storage,
and processing of incoming CAL/CAN messages received
over the CAN serial communications bus and/or outgoing
CAL/CAN messages transmitted over the CAN serial com
munications bus. CAL protocols, such as DeviceNet,
CANopen, and OSEK, deliver long messages distributed
over many CAN frames, Which methodology is sometimes
referred to as “fragmented” or “segmented” messaging. The
process of assembling such fragmented, multi-frame mes
sages has heretofore required a great deal of host CPU
intervention. In particular, CAL softWare running on the host
CPU actively monitors and manages the buffering and
processing of the message data, in order to facilitate the
assembly of the message fragments or segments into com
plete messages.

Based on the above and foregoing, it can be appreciated
that there presently eXists a need in the art for a hardWare
implementation of CAL functions normally implemented in
softWare in order to offload these tasks from the host CPU,
thereby enabling a great savings in host CPU processing
resources and a commensurate improvement in host CPU
performance.

The assignee of the present invention has recently devel
oped a neW microcontroller product, designated “XA-C3”,

10

15

25

35

45

55

65

2
that ful?lls this need in the art. The XA-C3 is the neWest
member of the Philips XA (extended Architecture) family
of high performance 16-bit single-chip microcontroller. It is
believed that the XA-C3 is the ?rst chip that features
hardWare CAL support.
The XA-C3 is a CMOS 16-bit CAL/CAN 2.0B micro

controller that incorporates a number of different inventions,
including the present invention. These inventions include
novel techniques and hardWare for ?ltering, buffering,
handling, and processing CAL/CAN messages, including
the automatic assembly of multi-frame fragmented mes
sages With minimal CPU intervention, as Well as for man
aging the storage and retrieval of the message data, and the
memory resources utiliZed therefor.

The present invention relates to a method for Writing a
three-state semaphore code to a given message buffer to
indicate an access status of the given message buffer. The
application (softWare) running on the CPU can then read this
three-state semaphore code to determine Whether the given
message buffer is ready for the CPU to read, Whether the
given message buffer is presently being accessed by the
DMA engine (and therefore is not ready for the CPU to
read), or Whether the given message buffer is presently being
read by the CPU. In this manner, the integrity of the data
stored in the given message buffer is ensured, even if the
DMA engine accesses the given message buffer While a CPU
read is in progress.

SUMMARY OF THE INVENTION

The present invention encompasses a method for use in a
CAN device (e.g., a CAN microcontroller) that includes a
processor core, for automatically transmitting an acknoWl
edge message. The method includes the steps of receiving a
frame of a multi-frame fragmented message, and automati
cally transmitting an acknoWledgment message Without
requiring any intervention of the processor core, in response
to the receiving step. The automatically transmitting step is
preferably performed by hardWare external to the processor
core, e.g., a CAN/CAL module of the CAN device.

In a preferred embodiment, the method includes the steps
of setting up a ?rst message object having an object number
n as a receive message object, enabling the receive message
object, setting up a second message object having an object
number n+1 as a transmit message object corresponding to
the receive message object, storing the acknoWledgment
message in a response message buffer associated With the
transmit message object, receiving a frame of a multi-frame
fragmented message, acceptance ?ltering the received frame
to determine that the received frame matches the enabled
receive message object, enabling the transmit message
object, and automatically transmitting the acknoWledgment
message, Without requiring any intervention of the processor
core.

In a speci?c implementation, the acknoWledgment mes
sage includes an acknoWledgment byte de?ned by a gov
erning CAL protocol, e.g., the CANopen protocol, and the
method further includes the step of copying a toggle bit
included in the received frame into a corresponding bit
position of the acknoWledgment byte prior to the automati
cally transmitting step.
The present invention, in another of its aspects, encom

passes a CAN device, e.g., a CAN microcontroller, that
implements the above-described methods.

BRIEF DESCRIPTION OF THE DRAWINGS

These and various other aspects, features, and advantages
of the present invention Will be readily understood With

US 6,721,799 B1
3

reference to the following detailed description of the inven
tion read in conjunction with the accompanying drawings, in
which:

FIG. 1 is a diagram illustrating the format of a Standard
CAN Frame and the format of an Extended CAN Frame;

FIG. 2 is a diagram illustrating the interleaving of CAN
Data Frames of different, unrelated messages;

FIG. 3 is a high-level, functional block diagram of the
XA-C3 microcontroller;

FIG. 4 is a table listing all of the Memory Mapped
Registers (MMRs) provided by the XA-C3 microcontroller;

FIG. 5 is a diagram illustrating the mapping of the overall
data memory space of the XA-C3 microcontroller;

FIG. 6 is a diagram illustrating the MMR space contained
within the overall data memory space of the XA-C3 micro
controller;

FIG. 7 is a diagram illustrating formation of the base
address of the on-chip XRAM of the XA-C3
microcontroller, with an object n message buffer mapped
into off-chip data memory;

FIG. 8 is a diagram illustrating formation of the base
address of the on-chip XRAM of the XA-C3
microcontroller, with an object n message buffer mapped
into the on-chip XRAM;

FIG. 9 is a diagram illustrating the Screener ID Field for
a Standard CAN Frame, and corresponding Match ID and
Mask Fields;

FIG. 10 is a diagram illustrating the Screener ID Field for
an Extended CAN Frame, and corresponding Match ID and
Mask Fields;

FIG. 11 is a diagram illustrating the message storage
format for fragmented CAL messages; and,

FIG. 12 is a diagram illustrating the message storage
format for fragmented CAN messages.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

The present invention is described below in the context of
a particular implementation thereof, i.e., in the context of the
XA-C3 microcontroller manufactured by Philips Semicon
ductors. Of course, it should be clearly understood that the
present invention is not limited to this particular
implementation, as any one or more of the various aspects
and features of the present invention disclosed herein can be
utiliZed either individually or any combination thereof, and
in any desired application, e.g., in a stand-alone CAN
controller device or as part of any other microcontroller or
system.

The following terms used herein in the context of describ
ing the preferred embodiment of the present invention (i.e.,
the XA-C3 microcontroller) are de?ned as follows:

Standard The format of a Standard CAN Frame is depicted in FIG. 1.
CAN Frame:
Extended The format of an Extended CAN Frame is also depicted in
CAN Frame: FIG. 1.
Acceptance The process a CAN device implements in order to deter
Filtering: mine if a CAN frame should be accepted or ignored and,

if accepted, to store that frame in a pre-assigned Message
Object.

Message A Receive RAM buffer of pre-speci?ed size (up to 256
Object: bytes for CAL messages) and associated with a particular

Acceptance Filter or, a Transmit RAM buffer which the

10

15

25

35

45

55

65

4

-continued

User preloads with all necessary data to transmit a
complete CAN Data Frame. A Message Object can be
considered to be a communication channel over which a

complete message, or a succession of messages, can
be transmitted.
An 11-bit (Standard CAN 2.0 Frame) or 29-bit extended
CAN 2.0B Frame) identi?er ?eld placed in the CAN Frame
Header. This ID ?eld is used to arbitrate Frame access to
the CAN bus. Also used in Acceptance Filtering for CAN
Frame reception and Transmit Pre-Arbitration.
A 30-bit ?eld extracted from the incoming message which
is then used in Acceptance Filtering. The Screener ID
includes the CAN Arbitration ID and the IDE bit, and can
include up to 2 Data Bytes. These 30 extracted bits are the
information quali?ed by Acceptance Filtering.
A 30-bit ?eld pre-speci?ed by the user to which the in
coming Screener ID is compared. Individual Match IDs for
each of 32 Message Objects are programmed by the user
into designated Memory Mapped Registers (MMRs).
A 29-bit ?eld pre-speci?ed by the user which can override
(Mask) a Match ID comparison at any particular bit (or,
combination of bits) in an Acceptance Filter. Individual
Masks, one for each Message Object, are programmed by
the user in designated MMRs. Individual Mask patterns
assure that single Receive Objects can Screen for multiple
acknowledged CAL/CAN Frames and thus minimize the
number of Receive Objects that must be dedicated to such
lower priority Frames. This ability to Mask individual
Message Objects is an important new CAL feature.
CAN Application I_2ayer. A generic term for any high-level
protocol which extends the capabilities of CAN while em
ploying the CAN physical layer and the CAN frame format,
and which adheres to the CAN speci?cation. Among other
things, CALs permit transmission of Messages which
exceed the 8 byte data limit inherent to CAN Frames. This
is accomplished by dividing each message into multiple
packets, with each packet being transmitted as a single
CAN Frame consisting of a maximum of 8 data bytes. Such
messages are commonly referred to as “segmented” or
“fragmented” messages. The individual CAN Frames con
stituting a complete fragmented message are not typically
transmitted in a contiguous fashion, but rather, the
individual CAN Frames of different, unrelated messages are
interleaved on the CAN bus, as is illustrated in FIG. 2
A lengthy message (in excess of 8 bytes) divided into data
packets and transmitted using a sequence of individual
CAN Frames. The speci?c ways that sequences of CAN
Frames construct these lengthy messages is de?ned
within the context of a speci?c CAL. The XA-C3 micro
controller automatically re-assembles these packets into
the original, lengthy message in hardware and reports
(via an interrupt) when the completed (re-assembled)
message is available as an associated Receive Message
Object.
A block of locations in XA Data memory where incoming
(received) messages are stored or where outgoing (transmit)
messages are staged.
Memory Mapped Register. An on-chip command/control/
status register whose address is mapped into XA Data
memory space and is accessed as Data memory by the XA
processor. With the XA-C3 microcontroller, a set of eight
dedicated MMRs are associated with each Message Object.
Additionally, there are several MMRs whose bits control
global parameters that apply to all Message Objects.

CAN
Arbitratio n

ID :

Screener ID:

Match ID:

Mask:

CAL:

Fragmented
Message:

Message
Buffer:

MMR:

With reference now to FIG. 3, there can be seen a
high-level block diagram of the XA-C3 microcontroller 20.
The XA-C3 microcontroller 20 includes the following func
tional blocks that are fabricated on a single integrated circuit
(IC) chip packaged in a 44-pin PLCC or a 44-pin LQFP
package:

an XA CPU Core 22, that is currently implemented as a
16-bit fully static CPU with 24-bit program and data
address range, that is upwardly compatible with the
80C51 architecture, and that has an operating fre
quency of up to 30 MHZ;

US 6,721,799 B1
5

a program or code memory 24 that is currently imple
mented as a 32K ROM/EPROM, and that is
bi-directionally coupled to the XA CPU Core 22 via an
internal Program bus 25. A map of the code memory
space is depicted in FIG. 4;

a Data RAM 26 (internal or scratch pad data memory) that
is currently implemented as a 1024 Byte portion of the
overall XA-C3 data memory space, and that is
bi-directionally coupled to the XA CPU Core 22 via an
internal DATA bus 27;

an on-chip message buffer RAM or XRAM 28 that is
currently implemented as a 512 Byte portion of the
overall XA-C3 data memory space Which may contain
part or all of the CAN/CAL (Transmit & Receive
Object) message buffers;

a Memory Interface (MIF) unit 30 that provides interfaces
to generic memory devices such as SRAM, DRAM,
?ash, ROM, and EPROM memory devices via an
external address/data bus 32, via an internal Core Data
bus 34, and via an internal MMR bus 36;

a DMA engine 38 that provides 32 CAL DMA Channels;
a plurality of on-chip Memory Mapped Registers
(MMRS) 40 that are mapped to the overall XA-C3 data
memory space—a 4K Byte portion of the overall
XA-C3 data memory space is reserved for MMRs.
These MMRs include 32 (Message) Object or Address
Pointers and 32 ID Screeners or Match IDs, corre
sponding to the 32 CAL Message Objects. A complete
listing of all MMRs is provided in the Table depicted in
FIG. 5;

a 2.0B CAN/DLL Core 42 that is the CAN Controller
Core from the Philips SJA1000 CAN (2.0A/B) Data
Link Layer (CDLL) device (hereinafter referred to as
the “CAN Core Block” (CCB)); and,

an array of standard microcontroller peripherals that are
bi-directionally coupled to the XA CPU Core 22 via a
Special Function Register (SFR) bus 43. These stan
dard microcontroller peripherals include Universal
Asynchronous Receiver Transmitter (UART) 49, an
SPI serial interface (port) 51, three standard timers/
counters With toggle output capability, namely, Timer 0
& Timer 1 included in Timer block 53, and Timer 2
included in Timer block 54, a Watchdog Timer 55, and
four 8-bit I/O ports, namely, Ports 0—3 included in
block 61, each of Which has 4 programmable output
con?gurations.

The DMA engine 38, the MMRs 40, and the CCB 42 can
collectively be considered to constitute a CAN/CAL module
77, and Will be referred to as such at various times through
out the folloWing description. Further, the particular logic
elements Within the CAN/CAL module 77 that perform
“message management” and “message handling” ftmctions
Will sometimes be referred to as the “message management
engine” and the “message handler”, respectively, at various
times throughout the folloWing description. Other nomen
clature Will be de?ned as it introduced throughout the
folloWing description.
As previously mentioned, the XA-C3 microcontroller 20

automatically implements, in hardWare, many message man
agement and other functions that Were previously only
implemented in softWare running on the host CPU (or not
implemented at all), including transparent, automatic
re-assembly of up to 32 concurrent, interleaved, multi
frame, fragmented CAL messages. For each application that
is installed to run on the host CPU (i.e., the XA CPU Core
22), the user (softWare programmer) must set-up the hard

10

15

25

35

45

55

65

6
Ware for performing these functions by programming certain
ones of the MMRs and SFRs in the manner set forth in the
XA-C3 Functional Speci?cation and XA-C3 CAN Transport
Layer Controller User Manual. The register programming
procedures that are most relevant to an understanding of the
present invention are described beloW, folloWed by a
description of the various message management and other
functions that are automatically performed by the CAL/
CAN module 77 during operation of the XA-C3 microcon
troller 20 after it has been properly set-up by the user.
FolloWing these sections, a more detailed description of the
particular invention to Which this application is directed is
provided.

Set-up/Programming Procedures

As an initial matter, the user must map the overall XA-C3
data memory space, as illustrated in FIG. 5. In particular,
subject to certain constraints, the user must specify the
starting or base address of the XRAM 28 and the starting or
base address of the MMRs 40. The base address of the
MMRs 40 can be speci?ed by appropriately programming
Special Function Registers (SFRs) MRBL and MRBH. The
base address of the XRAM 28 can be speci?ed by appro
priately programming the MMRs designated MBXSR and
XRAMB (see FIG. 4).
The user can place the 4 KByte space reserved for MMRs

40 anyWhere Within the entire 16 Mbyte data memory space
supported by the XA architecture, other than at the very
bottom of the memory space (i.e., the ?rst 1 KByte portion,
starting address of 000000h), Where it Would con?ict With
the on-chip Data RAM 26 that serves as the internal or
scratch-pad memory. The 4 KBytes of MMR space Will
alWays start at a 4 K boundary. The reset values for MRBH
and MRBL are OFh and FOh, respectively. Therefore, after a
reset, the MMR space is mapped to the uppermost 4 KBytes
of Data Segment OFh, but access to the MMRs 40 is
disabled. The ?rst 512 Bytes (offset 000h-1FFh) of MMR
space are the Message Object Registers (eight per Message
Object) for objects n=0—31, as is shoWn in FIG. 6.
The base address of the XRAM 28 is determined by the

contents of the MMRs designated MBXSR and XRAMB, as
is shoWn in FIGS. 7 and 8. As previously mentioned, the 512
Byte XRAM 28 is Where some (or all) of the 32 (RX/T X)
message buffers (corresponding to Message Objects n=0—
31) reside. The message buffers can be eXtended off-chip to
a maXimum of 8 KBytes. This off-chip eXpansion capability
can accommodate up to thirty-tWo, 256-Byte message buff
ers. Since the uppermost 8 bits of all message buffer
addresses are formed by the contents of the MBXSR
register, the XRAM 28 and all 32 message buffers must
reside in the same 64 K Byte data memory segment. Since
the XA-C3 microcontroller 20 only provides address lines
A0—A19 for accessing eXternal memory, all eXternal
memory addresses must be Within the loWest 1 MByte of
address space. Therefore, if there is eXternal memory in the
system into Which any of the 32 message buffers Will be
mapped, then all 32 message buffers and the XRAM 28 must
also be mapped entirely into that same 64 KByte segment,
Which must be beloW the 1 MByte address limit.

After the memory space has been mapped, the user can
set-up or de?ne up to 32 separate Message Objects, each of
Which can be either a Transmit (TX) or a Receive (RX)
Message Object. A RX Message Object can be associated
either With a unique CAN ID, or With a set of CAN IDs
Which share certain ID bit ?elds. As previously mentioned,
each Message Object has its oWn reserved block of data

US 6,721,799 B1
7

memory space (up to 256 Bytes), Which is referred to as that
Message Object’s message buffer. As Will be seen, both the
siZe and the base address of each Message Object’s message
buffer is programmable.
As previously mentioned, each Message Object is asso

ciated With a set of eight MMRs 40 dedicated to that
Message Object. Some of these registers function differently
for TX Message Objects than they do for RX Message
Objects. These eight MMRs 40 are designated “Message
Object Registers” (see FIG. 4).
The names of these eight MMRs 40 are:

1. MnMIDH Message n Match ID High
2. MnMIDL Message n Match ID LoW
3. MnMSKH Message n Mask High
4. MnMSKL Message n Mask LoW
5. MnCTL Message n Control
6. MnBLR Message n Buffer Location Register
7. MnBSZ Message n Buffer Size
8. MnFCR Message n Fragment Count Register

Where n ranges from 0 to 31 (i.e., corresponding to 32
independent Message Objects).

In general, the user de?nes or sets up a Message Object
by con?guring (programming) some or all of the eight
MMRs dedicated to that Message Object, as Will be
described beloW. Additionally, as Will be described beloW,
the user must con?gure (program) the global GCTL register,
Whose bits control global parameters that apply to all
Message Objects.

In particular, the user can specify the Match ID value for
each Message Object to be compared against the Screener
IDs extracted from incoming CAN Frames for Acceptance
Filtering. The Match ID value for each Message Object n is
speci?ed in the MnMIDH and MnMIDL registers associated
With that Message Object n. The user can mask any Screener
ID bits Which are not intended to be used in Acceptance
Filtering, on an object-by-object basis, by Writing a logic ‘1’
in the desired (to-be-masked) bit position(s) in the appro
priate MnMSKH and/or MnMSKL registers associated With
each particular Message Object n. The user is responsible,
on set-up, for assigning a unique message buffer location for
each Message Object n. In particular, the user can specify the
least signi?cant 16 bits of the base address of the message
buffer for each particular Message Object n by programming
the MnBLR register associated With that Message Object n.
The upper 8 bits of the 24-bit address, for all Message
Objects, are speci?ed by the contents of the MBXSR
register, as previously discussed, so that the message buffers
for all Message Objects reside Within the same 64 KByte
memory segment. The user is also responsible, on set-up, for
specifying the siZe of the message buffer for each Message
Object n. In particular, the user can specify the siZe of the
message buffer for each particular Message Object n by
programming the MnBSZ register associated With that Mes
sage Object n. The top location of the message buffer for
each Message Object n is determined by the siZe of that
message buffer as speci?ed in the corresponding MnBSZ
register.

The user can con?gure (program) the MnCTL register
associated With each particular Message Object n in order to
enable or disable that Message Object n, in order to de?ne
or designate that Message Object n as a TX or RX Message
Object; in order to enable or disable automatic hardWare
assembly of fragmented RX messages (i.e., automatic frag
mented message handling) for that Message Object n; in
order to enable or disable automatic generation of a

10

15

25

35

45

55

65

8
Message-Complete Interrupt for that Message Object n; and,
in order to enable or not enable that Message Object n for
Remote Transmit Request (RTR) handling. In CAN open and
OSEK systems, the user must also initialiZe the MnFCR
register associated With each Message Object n.
As previously mentioned, on set-up, the user must con

?gure (program) the global GCTL register, Whose bits
control global parameters that apply to all Message Objects.
In particular, the user can con?gure (program) the GCTL
register in order to specify the high-level CAL protocol (if
any) being used (e.g., DeviceNet, CANopen, or OSEK); in
order to enable or disable automatic acknoWledgment of
CANopen Frames (CANopen auto-acknowledge); and, in
order to specify Which of tWo transmit (TX) pre-arbitration
schemes/policies is to be utiliZed (i.e., either TX pre
arbitration based on CAN ID, With the object number being
used as a secondary tiebreaker, or TX pre-arbitration based
on object number only).

Receive Message Objects and the Receive Process

During reception (i.e., When an incoming CAN Frame is
being received by the XA-C3 microcontroller 20), the CAN/
CAL module 77 Will store the incoming CAN Frame in a
temporary (13-Byte) buffer, and determine Whether a
complete, error-free CAN frame has been successfully
received. If it is determined that a complete, error-free CAN
Frame has been successfully received, then the CAN/CAL
module 77 Will initiate Acceptance Filtering in order to
determine Whether to accept and store that CAN Frame, or
to ignore/discard that CAN Frame.
Acceptance Filtering

In general, because the XA-C3 microcontroller 20 pro
vides the user With the ability to program separate Match ID
and Mask ?elds for each of the 32 independent Message
Objects, on an object-by-object basis, as described
previously, the Acceptance Filtering process performed by
the XA-C3 microcontroller 20 can be characteriZed as a
“match and mask” technique. The basic objective of this
Acceptance Filtering process is to determine Whether a
Screener ID ?eld of the received CAN Frame (eXcluding the
“don’t care” bits masked by the Mask ?eld for each Message
Object) matches the Match ID of any enabled one of the 32
Message Objects that has been designated a Receive Mes
sage Object. If there is a match betWeen the received CAN
Frame and more than one Message Object, then the received
CAN Frame Will be deemed to have matched the Message
Object With the loWest object number

Acceptance Filtering is performed as folloWs by the
XA-C3 microcontroller 20:

(1) A Screener ID ?eld is eXtracted from the incoming
(received) CAN Frame. In this regard, the Screener ID
?eld that is assembled from the incoming bit stream is
different for Standard and EXtended CAN Frames. In
particular, as is illustrated in FIG. 9, the Screener ID
?eld for a Standard CAN Frame is 28 bits, consisting
of 11 CAN ID bits eXtracted from the header of the
received CAN Frame+2><8 (16) bits from the ?rst and
second data bytes (Data Byte 1 and Data Byte 2) of the
received CAN Frame+the IDE bit. Thus, the user is
required to set the Mskl and Msk0 bits in the Mask
Field (MnMSKL register) for Standard CAN Frame
Message Objects, i.e., to “don’t care”. In addition, in
many applications based on Standard CAN Frames,
either Data Byte 1, Data Byte 2, or both do not
participate in Acceptance Filtering. In those
applications, the user must also mask out the unused
Data Byte(s). The IDE bit is not maskable. As is

US 6,721,799 B1

illustrated in FIG. 10, the Screener ID ?eld for an
Extended CAN Frame is 30 bits, consisting of 29 CAN
ID bits extracted from the header of the incoming CAN
Frame+the IDE bit. Again, the IDE bit is not maskable.

(2) The assembled Screener ID ?eld of the received CAN
Frame is then sequentially compared to the correspond
ing Match ID values speci?ed in the MNMIDH and
MnMIDL registers for all currently enabled Receive
Message Objects. Of course, any bits in the Screener ID
?eld that are masked by a particular Message Object
are not included in the comparison. That is, if there is
a ‘1’ in a bit position of the Mask ?eld speci?ed in the
MnMSKH and Mn MSKL registers for a particular
Message Object, then the corresponding bit position in
the Match ID ?eld for that particular Message Object
becomes a “don’t care”, i.e., alWays yields a match With
the corresponding bit of the Screener ID of the received
CAN Frame.

(3) If the above comparison process yields a match With
more than one Message Object, then the received CAN
Frame Will be deemed to have matched the Message
Object having the loWest object number

Message Storage
Each incoming (received) CAN Frame that passes Accep

tance Filtering, Will be automatically stored, via the DMA
engine 38, into the message buffer for the Receive Message
Object that particular CAN Frame Was found to have
matched. In an exemplary implementation, the message
buffers for all Message Objects are contained in the XRAM
28.
Message Assembly

In general, the DMAengine 38 Will transfer each accepted
CAN Frame from the 13-byte pre-buffer to the appropriate
message buffer (e.g., in the XRAM 28), one Word at a time,
starting from the address pointed to by the contents of the
MBXSR and MnBLR registers. Every time the DMA engine
38 transfers a byte or a Word, it has to request the bus. In this
regard, the MIF unit 30 arbitrates betWeen accesses from the
XA CPU Core 22 and from the DMA engine 38. In general,
bus arbitration is done on an “alternate” policy. After a DMA
bus access, the XA CPU Core 22 Will be granted bus access,
if requested. After an XA CPU bus access, the DMA engine
38 Will be granted bus access, if requested. (HoWever, a
burst access by the XA CPU Core 22 cannot be interrupted
by a DMA bus access).

Once bus access is granted by the MIF unit 30, the DMA
engine 38 Will Write data from the 13-byte pre-buffer to the
appropriate message buffer location. The DMA engine 38
Will keep requesting the bus, Writing message data sequen
tially to the appropriate message buffer location until the
Whole accepted CAN Frame is transferred. After the DMA
engine 38 has successfully transferred an accepted CAN
Frame to the appropriate message buffer location, the con
tents of the message buffer Will depend upon Whether the
message that the CAN Frame belongs to is a non-fragmented
(single frame) message or a fragmented message. Each case
is described beloW:
Non-Fragmented Message Assembly

For Message Objects that have been set up With automatic
fragmented message handling disabled (not enabled—i.e.,
the FRAG bit in the MnCTL register for that Message
Object is set to ‘0’), the complete CAN ID of the accepted
CAN Frame (Which is either 11 or 29 bits, depending on
Whether the accepted CAN Frame is a Standard or Extended
CAN Frame) is Written into the MnMIDH and MNMIDL
registers associated With the Message Object that has been
deemed to constitute a match, once the DMA engine 38 has

10

15

25

35

45

55

65

10
successfully transferred the accepted CAN Frame to the
message buffer associated With that Message Object. This
Will permit the user application to see the eXact CAN ID
Which resulted in the match, even if a portion of the CAN ID
Was masked for Acceptance Filtering. As a result of this
mechanism, the contents of the MnMIDH and MnMIDL
registers can change every time an incoming CAN Frame is
accepted. Since the incoming CAN Frame must pass
through the Acceptance Filter before it can be accepted, only
the bits that are masked out Will change. Therefore, the
criteria for match and mask Acceptance Filtering Will not
change as a result of the contents of the MnMIDH and
MnMIDL registers being changed in response to an accepted
incoming CAN Frame being transferred to the appropriate
message buffer.
Fragmented Message Assembly

For Message Objects that have been set up With automatic
fragmented message handling enabled (i.e., With the FRAG
bit in the MnCTL register for that Message Object set to ‘1’),
masking of the 11/29 bit CAN ID ?eld is disalloWed. As
such, the CAN ID of the accepted CAN Frame is knoWn
unambiguously, and is contained in the MNMIDH and
MnMIDL registers associated With the Message Object that
has been deemed to constitute a match. Therefore, there is no
need to Write the CAN ID of the accepted CAN Frame into
the MnMIDH and MnMIDL registers associated With the
Message Object that has been deemed to constitute a match.
As subsequent CAN Frames of a fragmented message are

received, the neW data bytes are appended to the end of the
previously received and stored data bytes. This process
continues until a complete multi-frame message has been
received and stored in the appropriate message buffer.

Under CAL protocols DeviceNet, CANopen, and OSEK,
if a Message Object is an enabled Receive Message Object,
and its associated MnCTL register has its FRAG bit set to ‘ 1’
(i.e., automatic fragmented message assembly is enabled for
that particular Receive Message Object), then the ?rst data
byte (Data Byte 1) of each received CAN Frame that
matches that particular Receive Message Object Will be used
to encode fragmentation information only, and thus, Will not
be stored in the message buffer for that particular Receive
Message Object. Thus, message storage for such “FRAG
enabled” Receive Message Objects Will start With the second
data byte (Data Byte 2) and proceed in the previously
described manner until a complete multi-frame message has
been received and stored in the appropriate message buffer.
This message storage format is illustrated in FIG. 11. The
message handler hardWare Will use the fragmentation infor
mation contained in Data Byte 1 of each CAN Frame to
facilitate this process.

Under the CAN protocol, if a Message Object is an
enabled Receive Message Object, and its associated MnCTL
register has its FRAG bit set to ‘1’ (i.e., automatic frag
mented message assembly is enabled for that particular
Receive Message Object), then the CAN Frames that match
that particular Receive Message Object Will be stored
sequentially in the message buffer for that particular Receive
Message Object using the format shoWn in FIG. 12.
When Writing message data into a message buffer asso

ciated With a Message Object n, the DMA engine 38 Will
generate addresses automatically starting from the base
address of that message buffer (as speci?ed in the MnBLR
register associated With that Message Object n). Since the
siZe of that message buffer is speci?ed in the MNBSZ
register associated With that Message Object n, the DMA
engine 38 can determined When it has reached the top
location of that message buffer. If the DMA engine 38

US 6,721,799 B1
11

determines that it has reached the top location of that
message buffer, and that the message being Written into that
message buffer has not been completely transferred yet, the
DMA engine 38 Will Wrap around by generating addresses
starting from the base address of that message buffer again.
Some time before this happens, a Warning interrupt Will be
generated so that the user application can take the necessary
action to prevent data loss.

The message handler Will keep track of the current
address location of the message buffer being Written to by
the DMA engine 38, and the number of bytes of each CAL
message as it is being assembled in the designated message
buffer. After an “End of Message” for a CAL message is
decoded, the message handler Will ?nish moving the com
plete CAL message and the Byte Count into the designated
message buffer via the DMA engine 38, and then generate an
interrupt to the XA CPU Core 22 indicating that a complete
message has been received.

Since Data Byte 1 of each CAN Frame contains the
fragmentation information, it Will never be stored in the
designated message buffer for that CAN Frame. Thus, up to
seven data bytes of each CAN Frame Will be stored. After
the entire message has been stored, the designated message
buffer Will contain all of the actual informational data bytes
received (exclusive of fragmentation information bytes) plus
the Byte Count at location 00 Which Will contain the total
number of informational data bytes stored.

It is noted that there are several speci?c user set-up/
programming procedures that must be folloWed When invok
ing automatic hardWare assembly of fragmented OSEK and
CANopen messages. These and other particulars can be
found in the XA-C3 CAN Transport Layer Controller User
Manual that is part of the parent Provisional Application
Serial No. 60/154,022, the disclosure of Which has been
fully incorporated herein for all purposes.

Transmit Message Objects and the Transmit
Process

In order to transmit a message, the XA application pro
gram must ?rst assemble the complete message and store it
in the designated message buffer for the appropriate Trans
mit Message Object n. The message header (CAN ID and
Frame Information) must be Written into the MnMIDH,
MnMIDL, and MnMSKH registers associated With that
Transmit Message Object n. After these steps are completed,
the XA application is ready to transmit the message. To
initiate a transmission, the object enable bit (OBJiEN bit)
of the MnCTL register associated With that Transmit Mes
sage Object n must be set, eXcept When transmitting an
Auto-Acknowledge Frame in CAN open. This Will alloW this
ready-to-transmit message to participate in the pre
arbitration process. In this connection, if more than one
message is ready to be transmitted (i.e., if more than one
Transmit Message Object is enabled), a TX Pre-Arbitration
process Will be performed to determine Which enabled
Transmit Message Object Will be selected for transmission.
There are tWo TX Pre-Arbitration policies Which the user can
choose betWeen by setting or clearing the PreiArb bit in the
GCTL register.

After a TX Message Complete interrupt is generated in
response to a determination being made by the message
handler that a completed message has been successfully
transmitted, the TX Pre-Arbitration process is “reset”, and
begins again. Also, if the “Winning” Transmit Message
Object subsequently loses arbitration on the CAN bus, the
TX Pre-Arbitration process gets reset and begins again. If
there is only one Transmit Message Object Whose OBJiEN

15

25

35

45

55

65

12
bit is set, it Will be selected regardless of the TX Pre
Arbitration policy selected.

Once an enabled Transmit Message Object has been
selected for transmission, the DMA engine 38 Will begin
retrieving the transmit message data from the message buffer
associated With that Transmit Message Object, and Will
begin transferring the retrieved transmit message data to the
CCB 42 for transmission. The same DMA engine and
address pointer logic is used for message retrieval of trans
mit messages as is used for message storage of receive
messages, as described previously. Further, message buffer
location and siZe information is speci?ed in the same Way,
as described previously. In short, When a transmit message
is retrieved, it Will be Written by the DMA engine 38 to the
CCB 42 sequentially. During this process, the DMA engine
38 Will keep requesting the bus; When bus access is granted,
the DMA engine 38 Will sequentially read the transmit
message data from the location in the message buffer cur
rently pointed to by the address pointer logic; and, the DMA
engine 38 Will sequentially Write the retrieved transmit
message data to the CCB 42. It is noted that When preparing
a message for transmission, the user application must not
include the CAN ID and Frame Information ?elds in the
transmit message data Written into the designated message
buffer, since the Transmit (TX) logic Will retrieve this
information directly from the appropriate MnMIDH,
MnMIDL, and MnMSKH registers.
The XA-C3 microcontroller 20 does not handle the trans

mission of fragmented messages in hardWare. It is the user’s
responsibility to Write each CAN Frame of a fragmented
message to the appropriate message buffer, enable the asso
ciated Transmit Message Object for transmission, and Wait
for a completion before Writing the neXt CAN Frame of that
fragmented message to the appropriate message buffer. The
user application must therefore transmit multiple CAN
Frames one at a time until the Whole multi-frame, frag
mented transmit message is successfully transmitted.
HoWever, by using multiple Transmit Message Objects
Whose object numbers increase sequentially, and Whose
CAN IDs have been con?gured identically, several CAN
Frames of a fragmented transmit message can be queued up
and enabled, and then transmitted in order.
To avoid data corruption When transmitting messages,

there are three possible approaches:
1. If the TX Message Complete interrupt is enabled for the

transmit message, the user application Would Write the
neXt transmit message to the designated transmit mes
sage buffer upon receipt of the TX Message Complete
interrupt. Once the interrupt ?ag is set, it is knoWn for
certain that the pending transmit message has already
been transmitted.

2. Wait until the OBJiEN bit of the MnCTL register of
the associated Transmit Message Object clears before
Writing to the associated transmit message buffer. This
can be accomplished by polling the OBJiEN bit of the
MnCTL register of the associated Transmit Message
Object.

3. Clear the OBJiEN bit of the MnCTL register of the
associated Transmit Message Object While that Trans
mit Message Object is still in TX Pre-Arbitration.

In the ?rst tWo cases above, the pending transmit message
Will be transmitted completely before the neXt transmit
message gets transmitted. For the third case above, the
transmit message Will not be transmitted. Instead, a transmit
message With neW content Will enter TX Pre-Arbitration.

There is an additional mechanism that prevents corruption
of a message that is being transmitted. In particular, if a

US 6,721,799 B1
13

transmission is ongoing for a Transmit Message Object, the
user will be prevented from clearing the OBJiEN bit in the
MnCTL register associated with that particular Transmit
Message Object.

CAN/CAL RELATED INTERRUPTS

The CAN/CAL module 77 of the XA-C3 microcontroller
20 is presently con?gured to generate the following ?ve
different Event interrupts to the XA CPU Core 22:

1. RX Message Complete
2. TX Message Complete
3. RX Buffer Full

4. Message Error
5. Frame Error
For single-frame messages, the “Message Complete” con

dition occurs at the end of the single frame. For multi-frame
(fragmented) messages, the “Message Complete” condition
occurs after the last frame is received and stored. Since the
XA-C3 microcontroller 20 hardware does not recogniZe or
handle fragmentation for transmit messages, the TX Message
Complete condition will always be generated at the end of
each successfully transmitted frame.
As previously mentioned, there is a control bit associated

with each Message Object indicating whether a Message
Complete condition should generate an interrupt, or just set
a “Message Complete Status Flag” (for polling) without
generating an interrupt. This is the INTiEN bit in the
MnCTL register associated with each Message Object n.

There are two 16-bit MMRs 40, MCPLH and MCPLL,
which contain the Message Complete Status Flags for all 32
Message Objects. When a Message Complete (TX or RX)
condition is detected for a particular Message Object, the
corresponding bit in the MCPLH or MCPLL register will be
set. This will occur regardless of whether the INTiEN bit
is set for that particular Message Object (in its associated
MnCTL register), or whether Message Complete Status
Flags have already been set for any other Message Objects.

In addition to these 32 Message Complete Status Flags,
there is a TX Message Complete Interrupt Flag and an RX
Message Complete Interrupt Flag, corresponding to bits [1]
and [0], respectively, of an MMR 40 designated
CANINTFLG, which will generate the actual Event inter
rupt requests to the XA CPU Core 22. When an End-of
Message condition occurs, at the same moment that the
Message Complete Status Flag is set, the appropriate TX or
RX Message Complete Interrupt ?ip-?op will be set pro
vided that INTiEN=1 for the associated Message Object,
and provided that the interrupt is not already set and pend
mg.

Further details regarding the generation of interrupts and
the associated registers can be found in the XA-C3 Func
tional Speci?cation and in the XA-C3 CAN Transport Layer
Controller User Manual, both of which are part of the parent
Provisional Application Serial No. 60/154,022, the disclo
sure of which has been fully incorporated herein for all
purposes.

THE PRESENT INVENTION

Some CAL protocols, most notably the CANopen
protocol, require an acknowledgment message to be trans
mitted by a receiving CAN device in response to each
CANopen Frame received by the receiving CAN device,
even though the CANopen protocol supports multi-frame,
fragmented messages. Interrupting the XA-C3 CPU Core 22
(hereinafter referred to sometimes as simply the “processor

10

15

25

35

45

65

14
core”) following reception of each CANopen Frame of a
fragmented, multi-frame CANopen message, in order to
permit it to transmit the required acknowledgment, would
seriously undermine the major advantages that inure from
the automatic hardware assembly of multi-frame, frag
mented messages provided by the XA-C3 microcontroller
20. Thus, in accordance with the present invention, the
XA-C3 microcontroller 20 permits the hardware to auto
matically issue the required acknowledgments under the
CANopen protocol, without interrupting the processor core
22 and with no signi?cant increase in die cost. It should be
noted that this so-called “automatic (or “auto-”) acknowl
edgment” feature is only advantageous for fragmented
messages, and high-level CAL protocols, such as CANopen,
that require such acknowledgments to be issued. Messages
which are completely contained within a single CAN Frame
will generate End-of-Message interrupts to the processor
core 22 anyway, so there would be no added value or bene?t
in having the hardware automatically issue an acknowledg
ment.

In overview, the basic scheme for effectuating the auto
acknowledgment feature involves having the software (i.e.,
the application running on the processor core 22) set up a
dedicated “Response” Message Object corresponding to
each Receive Message Object requiring acknowledgment.
Each such Response Message Object must be designated as
a Transmit Message Object, and must be assigned an object
number immediately following the object number of the
associated Receive Message Object. For eXample, if Mes
sage Object n=13 is a Receive Message Object for a frag
mented message which requires acknowledgments to be
issued, then Message Object n=14 would be set up by the
software as a Transmit Message Object containing the
requisite response code for Message Object n=13.
More particularly, the auto-acknowledgment feature is

implemented in the following manner in the XA-C3 micro
controller 20. Assuming that the CAL protocol speci?ed in
the Global Control (GCTL) Register is CANopen (by virtue
of the [Prtcl1 and Prtc10] bits being set to 00), then the
auto-acknowledgment feature can be enabled by virtue of
the user (application) setting the AutoiAck bit in the GCTL
Register to ‘1’.
Assume that an enabled Receive Message Object n has

been set up with automatic hardware assembly of frag
mented messages enabled (i.e., with the FRAG bit in the
MnCTL Register associated with that Receive Message
Object n set to ‘1’). The Message Object n+1 is set up with
the OBJiEN bit in the Mn+1CTL Register associated with
that Message Object n+1 not set to ‘1’, i.e., with the
OBJiEN bit cleared to ‘0’=disabled. The user (software)
must store the proper “Acknowledgment Byte”, as de?ned
by the CALopen protocol speci?cation, in byte offset 0 of
the message buffer associated with the Message Object n+1.
Bit position [4] is a “don’t care”, because the CAN/CAL
module 77 will automatically insert the toggle bit value from
the incoming CANopen Frame into the toggle bit position
[4] of the outgoing auto-acknowledge Frame, as will be
described below.
Assume that the auto-acknowledge feature has been

enabled, and assume that an incoming CANopen Frame is
successfully received, passes through the Acceptance Filter
ing process, and is deemed to match the enabled Receive
Message Object n. With the above set-up, the following
steps are automatically implemented, in hardware, by the
CAN/CAL module 77.
More particularly, the CAN/CAL module 77 will auto

matically set the OBJiEN and TX bits in the Mn+1CTL

US 6,721,799 B1
15

Register associated With the matching Message Object n+1
to ‘1’, thereby enabling that Message Object as a Transmit
Message Object. This Will activate that Transmit Message
Object n+1, and cause it to be included in the Transmit
Pre-Arbitration process, as previously described. The
acknoWledgment Frame stored in the message buffer asso
ciated With that Transmit Message Object n+1 Will be
automatically retrieved and transmitted as soon as its prior
ity permits. As previously mentioned, the CANopen proto
col speci?es that the state of a control bit, termed the “toggle
bit”, contained in the identi?er ?eld of the incoming CANo
pen Frame, must be re?ected in the acknowledgment Frame.
In this connection, the CAN/CAL module 77 of the XA-C3
microcontroller 22 includes logic that automatically copies
the toggle bit of the incoming CANopen Frame into the
corresponding bit position [4] of the acknowledgment Frame
stored in the message buffer associated With the Transmit

Message Object n+1 before it is enabled for transmit Although the present invention has been described in

detail hereinabove in the conteXt of a speci?c preferred
embodiment/implementation, it should be clearly under
stood that many variations, modi?cations, and/or alternative
embodiments/implementations of the basic inventive con
cepts taught herein Which may appear to those skilled in the
pertinent art Will still fall Within the spirit and scope of the
present invention, as de?ned in the appended claims.
What is claimed is:
1. In a CAN device that includes a processor core, a

method for automatically transmitting an acknoWledgment
message, the method including the steps of:

receiving a frame of a multi-frame fragmented message in
a temporary buffer; and

automatically transmitting an acknoWledgment message
created by a CAN/CAL hardWare module external to
the processor core, said CAN/CAL (Control Area
NetWork/CAN Application Layers) hardWare module
includes said temporary buffer, and said hardWare
module emulates CAL softWare functions so that pro
cessor core intervention is not required to create the
acknoWledgment message in CAL softWare that desig
nates the recipient of the acknoWledgment message is
the sender of the multi-frame fragmented message, in
response to the receiving step.

2. the method as set forth in claim 1, Wherein the CAN
device is enabled to operate under a CAL protocol that
requires transmission of the acknoWledgement message.

3. The method as set forth in claim 2, Wherein the CAL
protocol comprises a CANopen protocol.

4. The method as set forth in claim 1, Wherein the
acknoWledgment message is stored in a response message
buffer associated With a designated transmit message object.

5. The method as set forth in claim 4, Wherein the
acknoWledgment message includes an acknoWledgment
byte de?ned by a governing CAL protocol.

6. The method as set forth in claim 5, Wherein the
acknoWledgment byte is stored in the response message
buffer by an application running on the processor core.

7. The method as set forth in claim 5, Wherein the
acknoWledgment byte is stored in the response message
buffer by a user during an object set-up procedure.

8. The method as set forth in claim 5, Wherein the
governing CAL protocol is a CANopen protocol.

9. The method as set forth in claim 8, further including the
step of copying a toggle-bit included in the received frame
into a corresponding bit position of the acknoWledgment
byte.

10. The method as set forth in claim 4, Wherein the
transmit message object comprises a message object having

16
an object number n+1 that is assigned to a receive message
object having an object number n by a user during an
object-set-up procedure.

11. The method as set forth in claim 1, further including
5 the steps of:

setting up a ?rst message object having an object number
n as a receive message object;

enabling the receive message object;
setting up a second message object having an object

number n+1 as a transmit message object correspond
ing to the receive message object; and

storing the acknoWledgment message in a response mes
sage buffer associated With the transmit message
object;

Wherein each of the above-recited steps is performed prior
to the receiving step.

12. The method as set forth in claim 11, Wherein the
acknoWledgment message includes an acknoWledgment
byte de?ne by a governing CAL protocol.

13. The method as set forth in claim 12, Wherein the
governing CAL protocol is a CANopen protocol.

14. The method as set forth in claim 13, further including
the step of copying a toggle bit included in the received
frame into a corresponding bit position of the acknoWledg
ment byte.

15. The method as set forth in claim 11, further including
the steps of:

10

15

25

acceptance ?ltering the received frame to determine that
the received frame matches the enabled receive mes
sage object; and

30

enabling the transmit message object;
Wherein the above-recited steps are performed betWeen

the receiving and the automatically transmitting steps.
16. In a CAN device that includes a processor core, a

method for automatically transmitting an acknoWledgment
message, the method including the steps of:

35

setting up a ?rst message object having an object number
40 n as a receive message object;

enabling the receive message object;
setting up a second message object having an object

number n+1 as a transmit message object correspond
ing to the receive message object;

45 storing the acknoWledgment message in a response mes
sage buffer associated With the transmit message
object;

receiving a frame of a multi-frame fragmented message;

acceptance ?ltering the received frame to determine that
the received frame matches the enabled receive mes
sage object; and

50

automatically transmitting the acknoWledgment message
Without requiring intervention of the processor core to
create the acknoWledgment message and identify a
recipient of said acknoWledgment message by using a
CAN/CAL hardWare module that is arranged eXternal
to the processor core to emulate CAL (Control Area
NetWork Application Layers) softWare function by said
CAN/CAL hardWare module.

17. The method as set forth in claim 16, Wherein the
acknoWledgment message includes an acknoWledgment
byte de?ned by a governing CAL protocol.

18. The method as set forth in claim 17, Wherein the
65 governing CAL protocol is the CANopen protocol.

19. The method as set forth in claim 18, further including
the step of copying a toggle bit included in the received

55

US 6,721,799 B1
17

frame into a corresponding bit position of the acknowledg
ment byte prior to the automatically transmitting step.

20. The method as set forth in claim 16, Wherein the
automatically transmitting step is performed by hardWare
external to the processor core.

21. The method as set forth in claim 20, Wherein the
hardWare external to the processor core includes a CAN/
CAL module.

22. The method as set forth in claim 21, Wherein the CAN
device comprises a CAN microcontroller.

18
23. A CAN device that implements the method set forth

in claim 1.
24. The CAN device as set forth in claim 23, Wherein the

CAN device comprises a CAN microcontroller.
25. A CAN device that implements the method set forth

in claim 16.
26. The CAN device as set forth in claim 25, Wherein the

CAN device comprises a CAN microcontroller.

* * * * *

