
Objective Systems, Inc. — February 2013

ASN2TXT v2.3

User's Manual



– 2 –



The software described in this document is furnished under a license agreement and may be used  

only in accordance with the terms of this agreement. 

Copyright Notice 

Copyright ©1997–2013 Objective Systems, Inc. All rights reserved. 

This document may be distributed in any form, electronic or otherwise, provided that it is distributed  

in its entirety and that the copyright and this notice are included. 

Author’s Contact Information 

Comments, suggestions, and inquiries regarding this product may be submitted via electronic mail to 

info@obj-  s  ys.co  m  .

– 3 –

mailto:info@obj-sys.com
mailto:info@obj-sys.com
mailto:info@obj-sys.com
mailto:info@obj-sys.com


– 4 –



Table of Contents
Revision History.............................................................................................................................................................6
Overview of ASN2TXT.................................................................................................................................................7
Using ASN2TXT .............................................................................................................................................................8

Installation .................................................................................................................................................................8
Installing on a Windows System ..........................................................................................................................8
Installing on a UNIX System .................................................................................................................................8
Command-line Options ..........................................................................................................................................9

Common Options...............................................................................................................................................10
XML Options.......................................................................................................................................................11
CSV Options........................................................................................................................................................12

Using the GUI...........................................................................................................................................................15
ASN.1 to XML Type Mappings.................................................................................................................................23

General Mapping without ASN.1 Schema Information................................................................................23
General Mapping with ASN.1 Schema Information......................................................................................24
Specific ASN.1 Type to Value Mappings...........................................................................................................25

ASN.1 to CSV Type Mappings .................................................................................................................................33
Mapping Top-Level Types ...................................................................................................................................33
Mapping Simple Types..........................................................................................................................................35
Mapping Complex Types .....................................................................................................................................36

CHOICE................................................................................................................................................................37
Simple SEQUENCEs and SETs.......................................................................................................................37

Mapping Nested Types .........................................................................................................................................38
SEQUENCE in a SEQUENCE..........................................................................................................................38
CHOICE in a SEQUENCE ...............................................................................................................................38
SEQUENCE OF in a SEQUENCE ..................................................................................................................39

Data Conversion .....................................................................................................................................................40
SEQUENCE OF in a SEQUENCE ..................................................................................................................40
Other Nested Data Types ...............................................................................................................................41
OPTIONAL and DEFAULT Elements ..........................................................................................................41

– 5 –



– 6 –



Revision History
• August 2012 — Initial release of ASN2TXT documentation (version 2.3.0)

• September 2012 — Updates for command-line options (version 2.3.0)

• February 2013 — Document conversion in response to notes that the PDFs were corrupted on 

some systems (version 2.3.0).

– 7 –



– 8 –



Overview of ASN2TXT
ASN2TXT  is  a  command-line  tool  that  translates  ASN.1  data  encoded  in  the  Basic,  Canonical,  

Distinguished, or Packed encoding rules into various text formats suitable for ingestion into spread-  

sheets, databases, or other text processing tools. At the time of initial release, ASN2TXT supports  

converting ASN.1 data to XML and comma-separated value (CSV) data formats. 

Conversions to XML support both an Objective Systems custom format as well as the XML Encoding 

Rules standard as described in ITU-T standard X.693. Conversions from all ASN.1 binary encodings 

(BER, CER, DER, PER) are supported by ASN2TXT. 

Conversions  to  CSV  are  done  by  a  custom  transformation,  since  no  standard  for  converting 

ASN.1-encoded data to CSV exists. Conversions from BER, CER, and DER are supported at the time 

of this release; PER is not supported.

– 9 –



– 10 –



Using ASN2TXT 

Installation 

ASN2TXT  comes  packaged  as  an  executable  installation  program  for  Windows  or  a  .tar.gz 

archive for UNIX systems. The package is comprised of the following directory tree: 

asn2txt_v23x  
| 

+-asn1specs 

| 

+-bin 

| 

+-doc 

| 

+-sample 

| 

+-sample_per  

The  bin subdirectory  contains  the  asn2txt executable.  The  asn1specs directory  contains 

specifications used by the sample programs in the sample directory. This document is found in the 

doc directory.

Installing on a Windows System 

To install ASN2TXT on a Windows system, simply double-click the executable installer program. 

Selecting the default installation options will install ASN2TXT in c:\asn2txt_v23x. 

Installing on a UNIX System 

To install ASN2TXT on a UNIX system, simply unzip and untar the .tar.gz archive. The program 

may be unpacked in any directory in which the user has permissions. No installation program is 

available to install  ASN2TXT to  /usr/local or  other common installation paths,  but it  is not 

difficult to manually add links if needed.

– 11 –



Command-line Options 

Invoking asn2txt without any options will show a usage message that contains the command-line 

options:

ASN2TXT, version 2.3.x

ASN.1 to text formatter 

Copyright (c) 2012 Objective Systems, Inc.  All Rights Reserved. 

Usage: asn2txt <input files> options 

  <input files>          ASN.1 message file name (wildcards are okay) 

  options: 

    -xml                   Output to XML 

    -csv                   Output to CSV 

  Common options: 

    -schema <filename>     ASN.1 definition file name(s) 

    -I <directory>         Import ASN.1 files from <directory> 

    -ber                   Use basic encoding rules (BER) 

    -pdu <typename>        Message PDU type name 

    -bcdhandling <default|none|bcd|tbcd> 

                           Define handling of OCTET STRINGs declared to be 

                             binary coded decimal (BCD) strings 

    -noopentype            Disable automatic open type decoding 

    -paddingbyte <hexbyte> Additional padding byte 

    -bitsfmt <hex|bin>     BIT STRING content output format 

    -inputFileType <binary|hextext|base64> 

                           Format of data in input file 

    -skip <num>            Skip <num> bytes between messages 

    -headerOffset <num>    Skip the first <num> bytes in a data file 

    -lickey <key>          License key to activate 

  XML options: 

    -per                  Use aligned packed encoding rules (PER) 

    -uper                 Use unaligned packed encoding rules (U-PER) 

    -xer                  Output XML in ASN.1 XER format 

– 12 –



    -o <filename>          Output XML filename (use "<base>.xml" for batch output) 

    -ascii                 Print out ASCII for printable hex values 

    -emptyoptionals        Insert empty XML elements in place of

                             missing optional elements 

    -emptydefault          Insert XML elements with default values in place 

                             of missing elements with default values 

    -nowhitespace          Remove all whitespace between elements 

    -rootElement <element> Root Element Name 

  CSV options: 

    -s <separator>         Field separator 

    -minLevel <num>        Set the minimum output depth 

    -maxLevel <num>        Set the maximum output depth 

    -outdir <directory>    Specify the output directory 

    -noquotes              Do not quote strings in output file 

    -padFields             Pad fields with data that would otherwise be empty 

    -prefix                Prefix output filenames with input filenames 

    -q                     Turn off all output except errors

The following sections summarize the command-line options.

Common Options

The following options are common to both CSV and XML transformations.

Option Arguments Description
-csv Selects CSV output. 

-xml Selects XML output.

<filename> <filename> is the name of the input message to 
decode.   This  element is  required.   The use of 
wildcards (e.g.* and ?) is supported.

-schema <filename> This  option  is  required when  using  CSV  or 
decoding PER data. When converting BER data 
to XML, a schema is not required; ASN2TXT will 
convert the data using tag names. 

-bitsfmt <hex | bin> -bitsfmt  may  be  used  to  specify  how  BIT 
STRING items are  formatted.   By  default  they 
are expressed as hexadecimal strings; use bin to 
express them as binary strings instead.

– 13 –



Option Arguments Description
-inputFileType <binary | hextext | base64> -inputFileType  may  be  used  to  tell  ASN2TXT 

how  the  input  data  are  formatted.  By  default 
ASN2TXT will  assume that  the  input  data  are 
binary,  but  it  can  also  decode  hexadecimal  or 
base64 encoded data. Whitespace in the input is 
ignored when hextext is specified.

-lickey <key> In  Linux,  Macintosh,  and  Windows  systems, 
license  checking  is  performed  by  the  Reprise 
License  Manager.  This  option  permits 
command-line license activation. This option is 
compiled out for operating systems that do not 
support the RLM license.

-noopentype This  option  disables  the  conversion  of  open 
types in the output. This is the default behavior 
when converting BER to CSV.

-paddingbyte <hexbyte> <hexbyte> is the hexadecimal value of a padding 
byte that may appear in the input message. Call 
data records (CDRs) are commonly continuously 
dumped to files by telephony equipment. If no 
information  is  available,  the  records  are  often 
padded  by  0x00  or  0xFF  bytes.  The  default 
padding  byte  is  0x00.  <hexbyte>  may  be 
formatted with or without a 0x prefix.

-pdu <typename> <typename> is the name of the PDU data type to 
be decoded. This option is necessary when the 
top-level  data  type  is  ambiguous.  It  is  also 
required when converting PER data.

XML Options

The following options can be used when converting to XML.

Option Arguments Description
-ber Selects  the  use  of  Basic  Encoding  Rules  for 

decoding.

-per Selects  the  use  of  the  Packed  Encoding  Rules 
(aligned) for decoding.

-uper Selects  the  use  of  the  Packed  Encoding  Rules 
(unaligned) for decoding.

-ascii Scan  data  in  untyped  fields  and  if  all  bytes 
contain values within the ASCII character range, 

– 14 –



Option Arguments Description
display as standard text.   Otherwise display as 
formatted  hexadecimal  text.   Note  that  this 
option only has meaning if BER/DER/CER data 
is being decoded and no schema file is specified.

-emptyDefault Insert  an  element  with  a  default  value  as 
specified  in  the  schema  at  the  location  of  a 
missing element in the instance.

-emptyOptionals Insert  an  empty  element  at  the  location  of  a 
missing element in the schema that was declared 
to be optional.

-nowhitespace Do  not  generate  any  whitespace  (blanks  and 
newline  characters)  between  elements.   This 
makes  the  generated  XML  document  more 
compact at the expense of readability.

-o <filename> Specify the output  XML <filename> instead of 
writing output to standard out.  Set <filename> 
to  “<base>.xml”  to  specify  batch  output  when 
converting multiple files.

-rootElement <name> Specify the root element <name> used to wrap 
the entire XML message at the outer level.  This 
makes it possible to create an XML document for 
an  ASN.1  file  containing  multiple  individually 
encoded binary messages (a common feature of 
many Call Detail Record ASN.1 formats).

CSV Options

The following options can be used when converting to CSV.

Option Arguments Description
-maxLevel <level> By default,  all  entries  in the input  file  will  be 

dumped to the output file.  Deeply nested types 
may result  in excessive output,  however.   The 
-maxLevel  switch  causes  ASN2TXT  to  skip 
outputting  data  after  <level>  levels  have  been 
processed.

-minLevel <level> Similar  to  the  -maxLevel  option,  the-minLevel 
option will  cause ASN2TXT to skip outputting 
top-level data types <level> levels deep.

-noquotes By default, ASN2TXT will quote all of the fields 
to  ensure  that  they  are  processed  as  text  by 

– 15 –



Option Arguments Description
spreadsheet  programs  to  avoid  converting 
numeric  fields  into  scientific  notation.   Using 
this option suppresses that behavior.

-padfields ASN2TXT will omit fields that would normally 
be duplicated in output files.  Using this option 
will output these fields.  It produces larger files, 
but is more explicit and may simplify ingesting 
the data.

-prefix ASN2TXT will normally output all records to a 
predetermined  filename  based  on  the  module 
name  and  PDU.   When  the  -prefix  option  is 
selected,  the  output  filenames  will  be  prefixed 
with the input message filename.

-q This  option  causes  ASN2TXT  to  operate  in  a 
“quiet” mode more suitable for batch processing. 
Informational  messages  are  limited  and  only 
error output will be reported.

-s <separator> By  default,  ASN2TXT  assumes  the  record 
separator will be a comma.  When this conflicts 
with  output  data  (e.g.,  a  field  may  consist  of 
City,  State),  users  may  use  the  -s  switch  to 
specify a different separator such as a tab or a 
pipe.   Enclosing  the  separator  in  quotation 
marks is  necessary when using a  tab or  other 
whitespace character.

Using the GUI

ASN2TXT for Windows is provided with a graphical user interface that can be used to invoke the 

command-line tool from a windowed environment. The GUI supports a project file format so that  

commonly used specifications and messages can be transformed to XML or CSV as needed.

The opening screen follows:

– 16 –



The initial screen contains options for users who wish to open or create a new project, but this is not 

necessary to use the software. The next screen is used to select the input specifications and message 

data used for decoding.

– 17 –



The next button in the file selection window will not activate until both the input message and input 

specification have been provided. After this is done, the following common options can be set:

– 18 –



The options are described in detail in the User's Guide. When selecting CSV output, the GUI will  

automatically disable the PER input options and open type decoding. Conversions to CSV do not  

support either PER or open type decoding at this time.

If XML is the selected output format, the following screen will appear:

– 19 –



Users have two options for how to direct their XML output: it can be dumped to the GUI directly or  

else to a file. When the XML output filename is not provided, users will see the decoded XML output 

in the compilation window.

If output to CSV is requested, the following screen will appear instead:

– 20 –



Unlike XML output, CSV output is always directed to a file (or, more likely, several files). The output  

in the compilation window is therefore a little  different than what is seen when XML output is  

selected without an output filename. This behavior is normal. 

When the appropriate options for either type have been selected, the following screen is presented 

for compilation:

– 21 –



– 22 –



ASN.1 to XML Type Mappings
This chapter defines the mapping between ASN.1 encoded data values and XML for each of the 

ASN.1 types defined in the X.680 standard.

General Mapping without ASN.1 Schema Information

A BER, DER,  or  CER encoded data stream may be translated to XML format without  providing  

associated ASN.1 schema information. In this case, XML element names are derived from built-in 

ASN.1 tag information contained within the message and values are encoded as either hexadecimal 

text, ASCII text, or as specific data-typed values if universal tag information is present.

XML element names derived from ASN.1 tag names for all tags except known universal tags is in the 

following general form: 

<TagClass_TagValue> 

where TagClass is the tag class name (APPLICATION, CONTEXT, or PRIVATE) and TagValue is the 

numeric tag value. For example, an [APPLICATION 1] tag would be printed as <APPLICATION_1> 

and a [0] tag (context-specific zero) would be printed as <CONTEXT_0>. 

In the case of known universal tags, the tag value is derived using the name of the known type. In  

general, this is the type name defined in the ASN.1 standard with an underscore character used in 

place of embedded whitespace if it exists. The following table shows the XML tag names for the 

known types:

Tag XML Element Name
UNIVERSAL 1 BOOLEAN

UNIVERSAL 2 INTEGER

UNIVERSAL 3 BIT_STRING

UNIVERSAL 4 OCTET_STRING

UNIVERSAL 5 NULL

UNIVERSAL 6 OBJECT_IDENTIFIER

UNIVERSAL 7 OBJECT_DESCRIPTOR

UNIVERSAL 8 EXTERNAL

UNIVERSAL 9 REAL

UNIVERSAL 10 ENUMERATED

– 23 –



Tag XML Element Name
UNIVERSAL 12 EMBEDDED_PDV

UNIVERSAL 13 RELATIVE_OID

UNIVERSAL 16 SEQUENCE

UNIVERSAL 17 SET

UNIVERSAL 18-22, 25-30 Character string

UNIVERSAL 23 UTCTIME

UNIVERSAL 24 GENERALIZEDTIME

Element content will be formatted in one of three ways: hexadecimal text, ASCII (character) text, or 

specific-typed value.

Hexadecimal text is the default format for untyped content. ASCII text will be used if the -ascii 

command-line switch is specified and all byte values within a particular field are determined to be 

printable ASCII characters. A specific-type value encoding will be done if a known universal tag is  

found. The mapping in this case will be as described in the "Specific ASN.1 Type to XML Value  

Mapping" section below.

General Mapping with ASN.1 Schema Information

ASN.1  schema  information  is  used  if  one  or  more  ASN.1  schema  files  are  specified  on  the 

command-line using the -schema command-line switch. In this case, element names as specified in 

the schema file are used for the XML element names and the content is decoded based on the specific  

type. 

It is possible to use the  –pdu command-line switch to force the association of a type within the 

specification to the message. This is only necessary if the ASN.1 files contain multiple types with the 

same start tag as the message type. Otherwise, the program will be able to determine on its own 

which type to use by matching tags. This is true for BER/DER/CER messages only: for PER, it is 

necessary to specify the PDU type along with the schema.

– 24 –



Specific ASN.1 Type to Value Mappings

This section defines the type-to-value mapping for each of the specific ASN.1 types. By default, these  

mappings are not in the form defined in the ASN.1 XML Encoding Rules (XER) standard (ITU-T 

X.693).

When a schema is provided using the -schema option, the output may be adjusted to conform to 

XER if desired by using the -xer option. XER is more verbose and less validation-friendly than our 

native  XML  export.  It  is  provided  for  those  occasions  when  strict  conformance  is  required. 

Differences between the two formats are provided along with the schemaless mappings below.

BOOLEAN.  An  ASN.1  boolean  value  is  transformed  into  the  keyword  'true'  or  'false'.  If  BER/ 

DER/CER data is being decoded without a schema and the universal tag for this type is parsed, a  

<BOOLEAN> tag is added.

b BOOLEAN ::= TRUE

Schemaless <BOOLEAN>TRUE</BOOLEAN>

XML Mode <b>true</b>

XER Mode <b><TRUE/></b>

INTEGER. An ASN.1 integer value is transformed into numeric text. The one exception to this rule 

is if named number identifiers are specified for the integer type. In this case, if the number matches 

one of the declared identifiers, the identifier text is used. 

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,  

an <INTEGER> tag is added.

i INTEGER ::= 35

Schemaless <INTEGER>35</INTEGER>

With schema <i>35</i>

ENUMERATED.  An ASN.1 enumerated value is transformed into the enumerated identifier text 

value. If BER/DER/CER data is being decoded without a schema and the universal tag for this type is  

parsed, an <ENUMERATED> tag is added.

– 25 –



colors ENUMERATED {r, g, b} ::= g

Schemaless <ENUMERATED>1</ENUMERATED>

XML Mode <colors>g</colors>

XER Mode <colors><g/></colors>
BIT STRING. An ASN.1 bit string value is transformed into one of three forms: 

1. Binary Text (0's and 1's) 

2. Hexadecimal text 

3. Named bit identifiers 

Binary text is the default output format. This is used if the bit string type contains no named bit  

identifiers  and  if  specification  of  hexadecimal  output  was  not  specified  on  the  asn2txt 

command-line.

Hexadecimal text is displayed when the -bitsfmt hex command-line option is used. Any unused 

bits in the last octet are set to zero. Note that the other bits are displayed in most-significant bit order  

as they appear in the string in the last byte (i.e., they are not right shifted). For example, if the last  

byte contains a bit string value of 1010xxxx (where x denotes an unused bit), the string is displayed  

as A0 in the XML output, not 0A. 

Named bit identifiers are used in the case of a bit string declared with identifiers. In this case, the  

XML content is a space-separated list of identifier values corresponding to the bits that are set. It is 

assumed that bits in the string all have corresponding identifier values. 

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,  

a <BIT_STRING> tag is added.

bs BIT STRING {z(0), a(1), b(2), c(3)} ::= 
'100100'B

Schemaless <BIT_STRING>100100</BIT_STRING>

With Schema <bs>100100</bs>

OCTET STRING. An ASN.1 octet string value is transformed into one of two forms: 

1. Hexadecimal text 

2. ASCII character text 

– 26 –



Hexadecimal text is the default  display type. ASCII  text will  be used for  the content when the   

ascii command-line option is used and the field contains are printable ASCII characters. A special 

case of OCTET STRING handling is for declared binary-coded decimal (BCD) data types.  This is  

discussed in a later section. 

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,  

a <OCTET_STRING> tag is added.

os OCTET STRING ::= '3031'H

Schemaless <OCTET_STRING>3031</OCTET_STRING>

With schema <os>3031</os>

With -ascii <os>01</os>

NULL. An ASN.1 null value is displayed as an empty XML element. If BER/DER/CER data is being  

decoded without a schema and the universal tag for this type is parsed, a <NULL> tag is added.

n NULL ::= NULL

Schemaless <NULL/>

XML Mode <n/>

XER Mode <n><NULL/></n>

OBJECT IDENTIFIER and RELATIVE OID.  An  ASN.1  object  identifier  value  is  mapped into 

space-separated  list  of  identifiers  in  numeric  and/or  named-number  format.  The  identifiers  are 

enclosed in curly braces ({ }). Numeric identifiers are simply numbers. The named-number format is a 

textual identifier followed by the corresponding numeric identifier in parentheses. It is used in cases  

where the identifier can be determined from the schema or is a well known identifier as specified in 

the ASN.1 standard. 

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,  

an <OBJECT_IDENTIFIER> tag is added.

oid OBJECT IDENTFIER ::=
   { 1 2 840 113549 1 1 2 }

Schemaless <OBJECTIDENTIFIER>{1 2 840 113549 
1 1 2} </OBJECTIDENTIFIER>

With schema <oid>{ 1 2 840 113549 1 1 2 }</oid>

– 27 –



The mapping for RELATIVE OID is the same as that for OBJECT IDENTIFIER.

Character String. An ASN.1 value of any of the known character string types is transformed into 

the character string text in whatever the default encoding for that type is. For example, an IA5String 

would contain an ASCII text value whereas a BMPString would contain a Unicode value. 

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,  

a tag is added which is the name of the character string type as defined in the ASN.1 standard in 

angle brackets. For example, the default tag for a UTF8String type would be <UTF8String>.

str UTF8String ::= “testing”

Schemaless <UTF8String>TRUE</UTF8String>

With schema <str>testing</str>

Binary-coded Decimal String. Binary-Coded Decimal (BCD) strings and Telephony Binary-Coded 

Decimal  (TBCD) strings are  not  part  of  the ASN.1 standard,  but  their  use  is  prevalent  in many 

telephony-related ASN.1 specifications. Conversion of these types into standard numeric text strings 

is supported. 

In general, BCD strings pack two numeric digits into a single byte value by using a four-bit nibble to  

hold each digit.  By convention, the digits are reversed in TBCD strings, but there are no official  

standards for this encoding.

The -bcdhandling command-line option can be used to force a certain type of conversion if an 

encoding does not follow the usual conventions. The default handling is to reverse digits in strings  

determined to be TBCD strings and not reverse digits in BCD strings. The bcd option is used to for 

no reversal of digits in all of these types of strings. The tbcd option instructs ASN2TXT to reverse 

the digits for all BCD strings.

If no processing is desired, -bcdhandling none can be used to instruct ASN2TXT not to process 

these strings.

REAL.  An  ASN.1  real  value  is  transformed into  numeric  text  in  exponential  number  format.  If 

BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed, a  

<REAL> tag is added.

r REAL ::= 2.99

– 28 –



Schemaless <REAL>2.99</REAL>

With schema <r>2.99</r>

SEQUENCE and SET. An ASN.1 sequence value is transformed into an XML value containing an 

element wrapper with each of the XML element encoded values inside.

name ::= SEQUENCE {
  first  UTF8String,
  middle UTF8String OPTIONAL,
  last   UTF8String
}

name Name ::= {
   first “Joe”,
   last “Jones”
}

Schemaless <SEQUENCE> 
 <CONTEXT_0> 
  <UTF8String>Joe</UTF8String> 
 </CONTEXT_0> 
 <CONTEXT_2> 
  <UTF8String>Jones</UTF8String> 
 </CONTEXT_2> 
</SEQUENCE> 

With schema <name> 
   <first>Joe</first> 
   <last>Jones</last> 
</name> 

With -emptyOptionals <name> 
   <first>Joe</first> 
   <middle/> 
   <last>Jones</last> 
</name> 

When a SET is used instead, the outer SEQUENCE tag is  replaced with SET.  The mappings are 

otherwise identical.

SEQUENCE OF / SET OF. The representation of a repeating value in XML varies depending on the 

type of the element value. 

If  the  value  being  translated  is  a  sequence  of  an  atomic  primitive  type,  the  XML content  is  a 

space-separated list of values. The definition of "atomic primitive type" is any primitive type whose  

value may not contain embedded whitespace. This includes BOOLEAN, INTEGER, ENUMERATED, 

REAL, BIT STRING, and OCTET STRING values. 

– 29 –



If  the value being translated is  a constructed type or  if  it  may contain whitespace,  the value is  

wrapped in a tag which is either the name of the encapsulating type (defined or built-in) or the  

SEQUENCE OF element name if this form of the type was used. 

If BER/DER/CER data is being decoded without a schema and the universal tag for this type is parsed,  

a <SEQUENCE> or <SET> tag is added. That is because the tag value (hex 30 or 31) is the same for  

SEQUENCE OF or SET OF as it is for SEQUENCE or SET.

soi SEQUENCE OF INTEGER ::= {1, 2, 3}

Schemaless <SEQUENCE> 
  <INTEGER>1</INTEGER> 
  <INTEGER>2</INTEGER> 
  <INTEGER>3</INTEGER> 
</SEQUENCE>

With schema <soi>
  <INTEGER>1</INTEGER> 
  <INTEGER>2</INTEGER> 
  <INTEGER>3</INTEGER> 
</soi>

sos SEQUENCE OF UTF8String ::= {
   “test 1”,
   “test 2”
}

Schemaless <SEQUENCE> 
  <UTF8STRING>test 1</UTF8STRING>
  <UTF8STRING>test 2</UTF8STRING> 
</SEQUENCE>

With schema <sos>
  <UTF8String>test 1</UTF8String>
  <UTF8String>test 2</UTF8String>
</sos>

Name ::= SEQUENCE { 
   first UTF8String, 
   middle UTF8String OPTIONAL, 
   last UTF8String 
} 

son SEQUENCE OF Name ::= { 
   { first 'Joe', 
     last 'Jones' }, 
   { first 'John', 
     middle 'P', 
     last 'Smith' } 
} 

Schemaless <SEQUENCE> 

– 30 –



 <SEQUENCE>
  <UTF8STRING>Joe</UTF8STRING>
  <UTF8STRING>Jones</UTF8STRING>
 </SEQUENCE>
 <SEQUENCE>
  <UTF8STRING>John</UTF8STRING>
  <UTF8STRING>P</UTF8STRING>
  <UTF8STRING>Smith</UTF8STRING>
 </SEQUENCE>

With schema.   This  example shows the results 
with  -emptyOptionals selected.   If  it  were 
not,  the  first  <middle/> element  would  be 
omitted.

<son>
 <Name>
  <first>Joe</first>
  <middle/>
  <last>Jones</last>
 </Name>
 <Name>
  <first>John</first>
  <middle>P</middle>
  <last>Smith</last>
 </Name>
</son>

CHOICE. The mapping of an ASN.1 CHOICE value is the alternative element tag followed by the 

value translated to XML format.

C CHOICE ::= {
   a INTEGER,
   b OCTET STRING,
   c UTF8String
}

c C ::= { a : 42 }

Schemaless <INTEGER>42</INTEGER>

With schema <C>
   <a>42</a>
</C>

Open Type. The mapping of an ASN.1 open type value depends on whether the actual type used to 

represent the value can be determined. ASN2TXT attempts to determine the actual type using the  

following methods (in this order): 

1. Table constraints 

2. Tag lookup in all defined schema types (BER/DER/CER only) 

– 31 –



3. Universal tag lookup (BER/DER/CER only) 

If the type can be determined, an XML element tag containing the type name is first added followed 

by the translated content of the value. 

If the type cannot be determined, the open type content is translated into hexadecimal text from of  

the encoded value. This will also be done if the -noopentype command-line switch is used. 

As an example,  consider the AlgorithmIdentifier  type used in the AuthenticationFramework and 

other related security specifications:

AlgorithmIdentifier ::= SEQUENCE { 

   algorithm ALGORITHM.&id({SupportedAlgorithms}), 

   parameters ALGORITHM.&Type({SupportedAlgorithms}{@algorithm})

    OPTIONAL 

}

In this case, the parameters element references an open type that is tied to a type value based on the 

value  of  the  algorithm  key.  Without  getting  into  the  details  of  the  use  of  the  accompanying 

information object sets, it is known that for an algorithm value of object identifier  { 1 2 840 

113549 1 1 2 },  the  type  of  the  parameters  field  is  NULL  (i.e.  there  are  no  associated 

parameters). The XML translation in this case will be the following:

<algorithm>{ 1 2 840 113549 1 1 2 }</algorithm> 

<parameters> 

   <NULL/> 

</parameters>

– 32 –



ASN.1 to CSV Type Mappings 
Converting ASN.1 types to CSV output is not always very straightforward. It is akin to normalizing a  

database,  except  that  there  is  only  one  table.  For  complex  types,  it  is  necessary  to  duplicate  

information across several rows. 

There exists no standard for converting ASN.1 data to CSV. BER, CER, and DER data are encoded in a 

hierarchical format that lends itself to translation to other hierarchical formats such as XML. CSV, on  

the other hand, is flat data format: there are no structured types or children, and all data in a CSV file  

are displayed on single lines. This complicates the translation of ASN.1 to CSV, since structured data  

types like SEQUENCEs can be nested to an arbitrary depth or repeated an arbitrary number of times. 

While these limitations make conversion a difficult problem, CSV offers some advantages over XML. 

CSV files are usually considerably smaller than XML, since no markup is necessary to distinguish 

elements. Many databases import CSV data directly into tables, so no intermediate transformations  

are  required.  CSV files  can  be  easier  to  manipulate  procedurally;  no  external  XML parsers  are  

required to read the files, and many scripting languages have built-in facilities for working with 

comma-delimited data. 

We  may  divide  conversion  into  roughly  two  steps:  collecting  the  column  headers  and  then 

outputting the column data. Header information comes from parsing the input specification, while  

the column data are found in the actual encoded content. This documentation is primarily concerned 

with how the column headers are collected.

Mapping Top-Level Types 

PDU  data  types  are  stored  in  their  own  CSV  files,  usually  in  the  form  of 

ModuleName_ProductionName.csv. There are three main top-level data types of interest: 

1. SEQUENCE / SEQUENCE OF 

2. SET / SET OF 

3. CHOICE 

The list types (SEQUENCE and SET OF) are the same as the unit types. The content is repeated when  

needed on multiple rows of the CSV file. 

– 33 –



Simple types may be used as top-level data types, but in practice this is rare. Translation in this case  

proceeds as described in the following sections. 

As an example, the following SEQUENCE would be dumped to MyModule_Type1.csv:

MyModule DEFINITIONS ::= BEGIN 

Type1 ::= SEQUENCE { 

   ... 

} 

END

If  the  input  file  type  had  two  such  SEQUENCEs,  the  resulting  files  would  be  

MyModule_Type1.csv and MyModule_Type2.csv.

When a CHOICE is used as the top-level data type, the typename for the CHOICE is ignored and the  

files are generated using the typenames in the CHOICE. For example, the following specification 

would generate  the same output  as  the one with two top-level  SEQUENCEs named  Type1 and 

Type2:

MyModule DEFINITIONS AUTOMATIC TAGS ::= BEGIN 

Type1 ::= SEQUENCE { 
   ... 
} 

Type2 ::= SEQUENCE { 
   ... 
} 

PDU ::= CHOICE { 
   t1 Type1, 
   t2 Type2 
}

– 34 –



When a SEQUENCE or SET OF type is used as the top level, the underlying unit type is referenced 

instead.  For  example,  the  following  ASN.1  specification  would  create  the  file 

MyModule_Type1.csv:

MyModule DEFINITIONS ::= BEGIN 

Type1 ::= SEQUENCE { 
   ... 
}

PDU ::= SEQUENCE OF Type1 

END

In this case,  the PDU type carries  no extra information for  outputting the data;  the contents  of  

Type1 are outputted on separate lines.

One  of  the  implications  of  this  kind  of  translation  is  that  the  message  structure  cannot  be 

reconstructed  from  the  output  data  files.  A  top-level  data  type  of  a  CHOICE,  SEQUENCE,  or 

SEQUENCE OF may result in exactly the same output files, even though the bytes of the message  

may differ.  Such  ambiguity  should  not  cause  any problems since  a  specification is  required  for 

decoding the ASN.1 data.

Mapping Simple Types

Simple types in ASN.1 consist of the following:

• BOOLEAN 

• INTEGER 

• BIT STRING 

• OCTET STRING 

• NULL 

• OBJECT IDENTIFIER 

• REAL 

• ENUMERATED 

– 35 –



• Character strings

• RELATIVE-OID

• UTCTime 

• GeneralizedTime 

• GraphicString 

• VisibleString 

• GeneralString

Each simple type is mapped to a corresponding string representation of the input data. This is a 

relatively straightforward conversion. Of special note, we use the BOOLEAN values "TRUE" (for any 

hex  octet  not  equal  to  0x00)  and  "FALSE"  (for  any  hex  octet  equal  to  0x00).  NULL  values  are  

outputted simply as "NULL."

Simple type mappings require no extra logic for output. Their textual representations are generally 

quite straightforward. Mapping complex types, however, is more difficult.

Mapping Complex Types 

Complex types of interest include the following: 

• SEQUENCE 

• SEQUENCE OF 

• SET 

• SET OF 

• CHOICE 

Complex  types  by  their  nature  are  more  difficult  to  transform than simple  types.  They can  be 

self-referential and nested, which complicates transformation. CSV is a flat file format that cannot 

properly represent nested types in a fixed number of columns, so care must be taken in transforming 

the data to ensure that it is properly represented. This process is very similar to a first-order database 

normalization.

– 36 –



CHOICE

As explained in the previous section, the CHOICE at the top level is effectively ignored: the elements  

of  the CHOICE are used to generate the output of  a file  instead. In the routine case where the  

CHOICE is contained in another data type or stands alone, the mapping is slightly different.

Take for example the following CHOICE: 

C ::= CHOICE { 
   i INTEGER, 
   b BOOLEAN, 
   s UTF8String 
} 

The elements contained in the CHOICE will be used as the column names. The name of the CHOICE 

itself will be ignored. The resulting column names from this example would look like this: 

i,b,s

Simple SEQUENCEs and SETs

This section describes the transformation of SEQUENCE data types. The SET data type is analogous  

to  the  SEQUENCE  and  so  bears  no  extra  discussion.  As  described  in  previous  sections,  the 

SEQUENCE OF and SET OF types are likewise equivalent. 

The only significant difference between SEQUENCE and SET is that elements may be encoded in any 

order in a SET. ASN2TXT will order SET elements in the order they appear in the specification. The 

SEQUENCEs considered in this section contain only simple types to simplify the collection of header 

data. Other cases are considered in the next sections. 

Take, for example, the following SEQUENCE specification:

S ::= SEQUENCE { 
   i INTEGER ,
   s UTF8String, 
   b BIT STRING 
}

Each element of the SEQUENCE will be represented by an item in the output CSV file as follows: 

i,s,b

– 37 –



Mapping Nested Types 

When a SEQUENCE or SET contains other complex data types, it is said to be nested. Types may be 

nested to an arbitrary depth in ASN.1, so the resulting output can be extremely verbose in complex  

specifications. Moreover, these nested types can be repeating. The following sections describe how 

ASN2TXT handles nested types. A SEQUENCE is exactly the same as a SET to ASN2TXT; the two  

types are used interchangeably in the following sections.

SEQUENCE in a SEQUENCE

One form of  nested  data  occurs  when a SEQUENCE type  contains  another,  as  in  the following 

example: 

A ::= SEQUENCE { 
   a INTEGER, 
   b SEQUENCE { aa INTEGER, bb BOOLEAN }, 
   c BIT STRING 
} 

In this case, the following columns would be generated in the output CSV:

a,aa,bb,c 

ASN2TXT removes all references to the SEQUENCE named b. Instead, the inner data (aa and bb) is  

collapsed  into  the  main  data  type.  It  is  as  though  we  have  instead  provided  the  following 

specification: 

A ::= SEQUENCE {
   a  INTEGER,
   aa INTEGER,
   bb BOOLEAN,
   b  BIT STRING
}

While the BER encoding of the two specifications is different, they are functionally equivalent to 

ASN2TXT.

CHOICE in a SEQUENCE 

When a CHOICE appears in a SEQUENCE, each of the elements in the CHOICE is represented in the  

output CSV file, even though only one will be selected in any given message. 

For example, take the following specification: 

– 38 –



A ::= SEQUENCE { 
   a INTEGER, 
   b CHOICE { aa INTEGER, bb BOOLEAN }, 
   c BIT STRING 
} 

The resulting columns will appear as though the CHOICE were actually a SEQUENCE: 

a,aa,bb,c

SEQUENCE OF in a SEQUENCE 

The last data type to consider is the SEQUENCE OF. This is handled very much like a SEQUENCE:  

the SEQUENCE OF is ignored and its contents are represented for the column headers as in the  

following example: 

A ::= SEQUENCE { 
   a INTEGER, 
   b SEQUENCE OF INTEGER, 
   c BIT STRING 
}

In this case, the columns will be straightforwardly translated: 

a,b,c 

It is possible that the repeated data type is not primitive, but rather complex. For example: 

A ::= SEQUENCE { 
   a INTEGER, 
   b SEQUENCE OF SEQUENCE { 
      aa INTEGER, 
      bb BOOLEAN 
   }, 
   c BIT STRING 
} 

In this case, the innermost data are represented in the output CSV files, but the actual SEQUENCE OF 

will be ignored as before:

a,aa,bb,c

The exact same columns would be represented if a CHOICE were used instead of a SEQUENCE.  

ASN2TXT will always do its best to collapse nested data types, drilling down to the innermost data to  

collect the column headers. 

– 39 –



Data Conversion 

Having collected column headers for the output CSV, the second and final step is to output the actual  

data from the decoded BER message.  Fortunately this  is  considerably more straightforward than 

collapsing the data structures in the specification. 

The main case to consider is that in which data types are repeated: when a SEQUENCE OF is nested 

inside of a SEQUENCE. Some brief comments follow for other nested data types. 

SEQUENCE OF in a SEQUENCE 

Take for example the simple case previously seen: 

A ::= SEQUENCE { 
   a INTEGER, 
   b SEQUENCE OF INTEGER, 
   c BIT STRING 
} 

Let us assume for sake of argument that there are two integers in the inner SEQUENCE OF.  In this  

case, the resulting CSV file will have two rows in addition to the header row. 

The  common  data,  columns  a and  c,  will  be  represented  once  in  the  output  file  (unless 

-padFields is specified), while the repeated element b will change. For example: 

a,b,c 
1,97823789324,010010 
,18927481, 

If you have chosen to pad the fields, the output will look like this: 

a,b,c 
1,97823789324,010010 
1,18927481,010010 

While this example is very simple, it is possible to nest data types to an arbitrary depth, and the 

representation of columns and their data can be quite large. In pathological instances, the CSV output 

may be larger than the output generated by other tools like ASN2XML.

– 40 –



Other Nested Data Types 

The other nested data types,  SEQUENCE and CHOICE, are relatively trivial  to convert once the 

columns have been assembled as described in the previous section. A single row may be used to 

output a message without repeating types. 

The CHOICE data type bears some explanation. The following specification is the same used in the  

previous section: 

A ::= SEQUENCE { 
   a INTEGER, 
   b CHOICE { aa INTEGER, bb BOOLEAN }, 
   c BIT STRING 
} 

Some example output data follows: 

a,aa,bb,c 
1,,FALSE,101010 
2,137,,100001 

The output lines will contain data in either the aa or  bb columns but not both. Only the selected 

data should be represented in the output line.

OPTIONAL and DEFAULT Elements 

Optional primitive elements that are missing in an input message will result in a blank entry in the 

output CSV file. Take, for example, the following specification: 

A ::= SEQUENCE {
   a INTEGER, 
   b UTF8String OPTIONAL, 
   c BIT STRING 
} 

This might result in the following output: 

a,b,c 
1,test string,100100 
2,,100101 
3,another test,100100 

In this example, the second message does not contain the optional UTF8String, so it is omitted from 

the output. 

– 41 –



Elements marked DEFAULT are handled differently in the output. If an element is missing in the 

input specification, the default value is copied into the output CSV file. The following specification is  

used to demonstrate: 

A ::= SEQUENCE { 
   a INTEGER, 
   b UTF8String DEFAULT "test", 
   c BIT STRING 
} 

In this case, we might have the following output: 

a,b,c 
1,test string,100100 
2,test,100101 
3,another test,100100 

Like the previous example, the input data omitted the default UTF8String. Instead of a blank entry, 

however, the output CSV data contains test.

– 42 –


	Revision History
	Overview of ASN2TXT
	Using ASN2TXT
	Installation
	Installing on a Windows System
	Installing on a UNIX System
	Command-line Options
	Common Options
	XML Options
	CSV Options

	Using the GUI

	ASN.1 to XML Type Mappings
	General Mapping without ASN.1 Schema Information
	General Mapping with ASN.1 Schema Information
	Specific ASN.1 Type to Value Mappings

	ASN.1 to CSV Type Mappings
	Mapping Top-Level Types
	Mapping Simple Types
	Mapping Complex Types
	CHOICE
	Simple SEQUENCEs and SETs

	Mapping Nested Types
	SEQUENCE in a SEQUENCE
	CHOICE in a SEQUENCE
	SEQUENCE OF in a SEQUENCE

	Data Conversion
	SEQUENCE OF in a SEQUENCE
	Other Nested Data Types
	OPTIONAL and DEFAULT Elements



