SYNOPSYS'

SmartModel Products
Application Notes Manual

uuuuuuuuuu

SmartModel Application Notes

Copyright © 2001 Synopsys, Inc.
All rights reserved.
Printed in USA.

Information in this document is subject to change without notice.

SmartModel, Model Access, Model Tools, SourceModel Library, LM-1200, and
Synopsys Eaglei are registered trademarks; MemPro, MemSpec, MemScope,
FlexModel, LM-family, LM-1400, Logic Model, Model Source, and SourceModel are
trademarks of Synopsys, Inc.

All company and product names are trademarks or registered trademarks of their
respective owners.

Synopsys, Inc. August 2001

SmartModel Application Notes Contents

Contents

Preface ... 7
About ThisManual e e e 7
Related DOCUMENESottt e e e 7

Manual OVerVIEW 7
Typographical and Symbol Conventions 8
GettiNgHE D .. e 9
The SynopsysSWEDSIte it e e e e 9
Synopsys Common Licensing (SCL) DocumentSet 10
COMMIENES? . 10

Chapter 1

VerifyiNg FPGA DeSIgNSottt 11
INtrodUCHION 11
What Are SmartCircuit ModelS? 11
SmartCircuit Design FloOw 12
SmartCircuit Models— SomeBasiCs ... 13

Load Command SWItches 14
Other General MCF Commandst 15
Debugging TooISo 15
Visual SmartBrowser (VSB)o 16
WNOOWS o 23
EVent TraCingo 26
Targeting Unsupported DeVICESt e 31
Interactive SmartBrowser Commands i 31

Chapter 2

Interfacingwith Non-FlexModels i, 33
INErOdUCLION . . . o e e e 33
Synchronizingwith Non-FlexModels 34
Sync8 fx Model Interface ... 35
Using PCI SourceModels and ppc603_fx FlexModel in SameDesign 36
Sync8 as Non-design Verification Pin 37

Chapter 3

SystemC SmartModel Library 41
Supported SmartModel Library Capabilities 42

August 2001 Synopsys, Inc. 3

Contents SmartModel Application Notes

Command Control 42
AtHDULES . .o 42
TIMING . 42
Timing Check Control e 42
Command Channel 43
Fault SImulation e 43
Saveand RESIOrE 43
Reset and Reconfigure e 43
Model StatUSREPOIto 43
Dumping Memory Contentsuuiiiiii e 43
Model Logging . ..ottt 44
L= T 44
SmartModel WINdowso 44
Wrapper GENErationttt 44
Model Header File 45
Model Command Header File i 46
Platform SUPPOIto e 48
Product Usage 49
INStallation 49
Using SWIFT Modelsin SystemC Designs 51
Wrapper Files ... 51
Code EXamples ... 51
MakeFiles 53
SIMUIAION .. e 54
INOEX . e 55

4 Synopsys, Inc. August 2001

SmartModel Application Notes Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10:

August 2001

Figures

SmartCircuit FPGA Design Flow i, 12
Waveform Viewing ThroughWindows 23
BEvent TraCing 26
Causal and Event TraCingoviiiii e 27
FlexModel Command Core ...t 34
sync8 fx Model Interface 35
PCI SourceModel Coordinated with FlexModel 36
Non-design Verification PinExample 38
Testbench Connectivityc i 49
Installing SystemC SmartModel Support 50

Synopsys, Inc. 5

Figures SmartModel Application Notes

6 Synopsys, Inc. August 2001

SmartModel Application Notes Preface

Preface

About This Manual

This manual contains application notes for the SmartModel Library of simulation
models and other compatible products. Topics include different ways to use multiple
Synopsys products or tools in combination to solve verification problems.

Related Documents

For general information about SmartModel Library documentation, or to navigate to a
different online document, refer to the Guide to SmartModel Documentation. For the
latest information on supported platforms and ssimulators, refer to SmartModel Library
Supported Smulators and Platforms.

For detailed information about specific models in the SmartModel Library, use the
Browser tool ($LMC_HOME/bin/d_browser) to access the online model datasheets.

Manual Overview
This manual contains the following chapters:

Preface Describes the manual and lists the typographical
conventions and symbols used in it. Tells how to get
technical assistance.

Chapter 1 Different ways that you can use SmartModel FPGA
Verifying FPGA Designs models to debug programmable designs.

Chapter 2 How to use the special sync8 fx FlexModel to

I nterfacing with Non-FlexM odels interface with non-FlexModels and simplify

complex verification processes.

August 2001 Synopsys, Inc. 7

Preface SmartModel Application Notes

Typographical and Symbol Conventions
« Default UNIX prompt
Represented by a percent sign (%).
o User input (text entered by the user)
Showninbol d type, asin the following command line example:
% cd $LMC_HOME/ hdl
« System-generated text (prompts, messages, files, reports)
Shown asin the following system message:
No M snatches: 66 Vectors processed: 66 Possible”
« Variablesfor which you supply a specific value
Shown in italic type, as in the following command line example:
% setenv LMC HOME prod_dir

In this example, you substitute a specific name for prod_dir when you enter the
command.

« Command syntax

Choice among alter nativesis shown with avertical bar (|) asin thefollowing
syntax example:

-effort_level low | medium | high

In this example, you must choose one of the three possibilities: low, medium, or
high.

Optional parameters are enclosed in square brackets ([]) asin the following
syntax example:

pinl[pin2 ... pinN]

In this example, you must enter at |east one pin name (pinl), but others are optional
([pin2 ... pinN]).

8 Synopsys, Inc. August 2001

SmartModel Application Notes Preface

Getting Help

If you have a question while using Synopsys products, use the following resources:

1. Start with the available product documentation installed on your network or located
at theroot level of your Synopsys CD-ROM. Every documentation set contains
overview information in the intro.pdf file.

Additional Synopsys documentation is available at thisURL.:
http://www.synopsys.com/products/Im/doc
Datasheets for models are available using the Model Directory:
http://www.synopsys.com/products/|m/model Dir.html
2. Visit the online Support Center at this URL:
http://www.synopsys.com/support/lm/support.html
This site gives you access to the following resources:
o SOLV-IT!, the Synopsys automated problem resolution system
o product-specific FAQs (frequently asked questions)
o lists of supported simulators and platforms
o the ability to open a support help call
o the ability to submit a delivery request for some product lines
3. If you still have questions, you can call the Support Center:

North American customers:

Call the Synopsys Eaglei and Logic Modeling Products Support Center hotline at
1-800-445-1888 (or 1-503-748-6920) from 6:30 AM to 5 PM Pacific Time, Monday
through Friday.

International customers:
Call your local sales office.

The Synopsys Website
Genera information about Synopsys and its productsis available at this URL :
http://www.synopsys.com

August 2001 Synopsys, Inc. 9

http://www.synopsys.com/products/lm/doc
http://www.synopsys.com/products/lm/modelDir.html
http://www.synopsys.com/support/lm/support.html
http://www.synopsys.com

Preface SmartModel Application Notes

Synopsys Common Licensing (SCL) Document Set

Synopsys common licensing (SCL) software is delivered on a CD that is separate from
the tools that use this software to authorize their use. The SCL documentation set
includes the following publications, which are located in (root)/docs/scl on the SCL CD
and aso available on the Synopsys FTP server (ftp://ftp.synopsys.com):

« Licensing QuickSart—(142K PDF file)
This booklet provides instructions for obtaining an electronic copy of your license
key file and for installing and configuring SCL on UNIX and Windows NT.

« Licensing Installation and Administration Guide—(2.08M PDF file)
This guide provides information about installation and configuration, key concepts,
examples of license key files, migration to SCL, maintenance, and troubleshooting.

You can find general SCL information on the Web at:
http://www.synopsys.com/keys

Comments?

To report errors or make suggestions, please send e-mail to:
doc@synopsys.com

To report an error that occurs on a specific page, select the entire page (including
headers and footers), and copy to the buffer. Then paste the buffer to the body of your
e-mail message. Thiswill provide us with information to identify the source of the
problem.

10 Synopsys, Inc. August 2001

mailto:doc@synopsys.com
ftp://ftp.synopsys.com/pub/SCL/LQS.pdf
ftp://ftp.synopsys.com/pub/SCL/LIAG.pdf
http://www.synopsys.com/keys

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

1

Verifying FPGA Designs

Introduction

Custom logic implemented in an FPGA is often the most critical part of a system and
must be extensively tested. As many designers have discovered, however, thereisa
difference between testing the functionality of a stand-alone device and testing a device
installed in a system. While adesigner can add flexibility and speed to the early stages
of design using text-based, high-level design methods and synthesis, the device can later
appear as a black box to an engineer. Additionally, designs are now typically too large
and complex to rely on manual debugging methods. This dilemmaresultsin the need for
adifferent approach to verifying and debugging FPGA designs.

This application note explains how to use the debug features associated with
SmartModel FPGA models—known as SmartCircuit models—to verify designs that
contain FPGA devices.

What Are SmartCircuit Models?

SmartCircuit models are essentially templates of unconfigured devices. These models
provide designers with advanced verification and debugging features that enable them to
verify, in the shortest timeframe, a design incorporating a complex FPGA device.

The models are programmed by adesign netlist in astandard format produced by vendor
place-and-route tools. SmartCircuit FPGASs increase productivity by enabling designers
to focus on the design and system verification tasks, rather than on simulation details.

For general information on SmartCircuit models, refer to “ SmartCircuit FPGA Models’
in the SmartModel Library User’s Manual. You can navigate to other SmartModel
manual s from the Guide to SmartModel Documentation.

August 2001 Synopsys, Inc. 11

Chapter 1: Verifying FPGA Designs

SmartCircuit Design Flow

Figure 1 provides a conceptual overview of the FPGA design flow using SmartCircuit
models in system verification.

12

SmartModel Application Notes

Design Entry — Synthesize Design

v

Place and route using vendor tools
Create post-routed netlist

v

System verification using SmartModel Library
FPGA configured using netlist

v

Program device

v

uP

FPGA

Figure 1: SmartCircuit FPGA Design Flow

Synopsys, Inc.

August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

SmartCircuit Models — Some Basics

Before you can start simulating with a SmartCircuit model, you need to configure it
using a netlist generated from your vendor’s tools. Refer to the individual model
datasheet for an explanation of how to generate the netlist in the correct format. The
model extracts al of the design’s function and timing information from this netlist. You
can access datasheets for all Synopsys models through this link:

http://www.synopsys.com/products/|m/model Dir.html

Each SmartCircuit model has a property called “SCFFILE” associated with it.
Depending on which simulator you are using, this may be one of the following:

« Property on the symbol
« VHDL generic
« Verilog defparam

The SCFFILE property must be set to point to amodel command file (MCF), whichisa
text file that you use to tell the model which netlist to load and to enable/disable the
simulator interactive model debugging features.

SCFFILE => Model Command File (MCF)

The following is an example of abasic MCF:

HE R R T R
#H#E Model Command File (MOF): HHHH
HHH AR R R R

Load netlist design file (.ccn):

| oad -source /d/projects/flying_ducks/edif/ducks. edo

There are several reasons to configure a SmartCircuit model through an MCF file.
During a simulation, you will typically turn on and off the debugging features you are
using. If you have to change a property on the model to do this, you might have to
recompile the design.

Setting the SCFFILE property once and then changing values in the MCF means
changes won't require you to recompile your design. Configuring the model in this
fashion also meansthat you only haveto learn how to use the SmartCircuit models once,
irrespective of which simulator you are using. This process enables you to develop a
clean and easy simulation design flow for all your FPGA vendors.

August 2001 Synopsys, Inc. 13

http://www.synopsys.com/products/lm/modelDir.html

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

Load Command Switches

The load command specifies the netlist to load for the model when you start the
simulator. The following are switches you can use with the load command:

-source

-nocheck

-scale

The -source switch tells the model to auto-compile the netlist. The
netlist is compiled into the SmartCircuit internal .ccn format. The
netlist iscompiled only if the .ccnfileisout of date with respect to
the source netlist, which can happen if you overwrite the vendor
netlist with anew one. Compiling likethis savestime at smulation
startup.

To configure the full-functional, full-timing model in your
simulator, you need a minimum of one linein the MCF:

| oad -source netlist_pat hnane

The -nocheck switch disables reports of all timing constraint
violations. You should use this switch only if you do not care
about timing violations during the simulation. The following MCF
example incorporates the -nocheck switch:

| oad -source netlist_pat hnane -nocheck

The -scale switch scales all of the timing that is extracted from the
netlist. This switch enables you to experiment with how a change
in the timing characteristics would affect on your design. Asan
example, afactor of 0.9 will up-rate the timing, whereas afactor of
1.1 will de-rate the timing. The following MCF example
incorporates the -scale switch:

| oad -source netlist_pathnane -scale 1.1

You can aso pass switches from the load command to a compiler called smartcen,
which is called to compile the vendor netlist into the .ccn format of the netlist design
file. For more information on smartccn and smartcen switches, refer to “ smartcen
Command Reference” in the SmartModel Library User’s Manual.

14

Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

Other General MCF Commands
The following are other commands that you can use in conjunction with an MCF:

echo“string” The echo command enables you to print a message to the
simulator transcript window when the model reads the MCF file.
Thisis useful inidentifying which netlist you have loaded at
simulation startup. The following example combines aload
command and an echo command:

| oad -source netlist_pat hnane
echo “Loaded Design 1 of Project Hying Ducks”
do filename The do command executes MCF commands that are stored in

another file. Storing MCF commands in this manner enables you
to partition the debugging feature commands into separate files,
which makes them easier to manage if you intend to enable all of
the debugging features. The following example combines aload
command, an echo command, and two do commands that
reference two separate files containing different sets of MCF
commands:

| oad -source netlist_pat hnane

echo “Loaded Design 1 of Project Hying Ducks”
do /d/ projects/flying ducks/ncf fil es/w ndows. do
do /d/ projects/flying ducks/ncf files/causal trace. do

For more information on MCF files as they relate to SmartCircuit models, refer to
“Using SmartCircuit Models’ in the SmartModel Library User’s Manual.

Debugging Tools

SmartCircuit models operate with a set of advanced debugging tools that enable you to
efficiently and quickly identify the root cause of a problem. You can use the following
debugging tools on your design:

« Visua SmartBrowser (VSB)
« Windows
« Event Tracing

August 2001 Synopsys, Inc. 15

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

Visual SmartBrowser (VSB)

With today's very large and complex FPGA designs, designerstypically areinterestedin
only asmall section of anetlist. A good starting point for debugging any project iswith
the design schematic.

The Visua SmartBrowser (V SB) tool enables you to visually display an FPGA netlist
(.cen file) using an on-demand viewing technique, which enables you to concentrate on
only the portions of the design in which you are interested.

V SB comes with a self-paced tutorial that introduces you to all of the VVSB features.
Since this discussion cannot address hands-on learning, you might want to refer to
“Learning Visual SmartBrowser” inthe UNIX version or NT version of the Visual
SmartBrowser User’s Manual. You can also access the tutorial document from the VSB
help pull-down menu.

Using the VSB

To start the VSB on your FPGA design, execute one of the following commands, as
appropriate for your platform:

« UNIX

$LMC_HOME/ bi n/ vsb OCN fi | e_pat hnarre
e NT

% MC_HQOVE% bi n\vsb CCN fil e_pat hname
For example, if you are on aUNIX platform, you would issue the following command
on anetlist design file called ducks_alpha.ccn:

$LMC_HOVE/ bi n/ vsb /d/ proj ects/flying_ducks/ ncf_fil es/ ducks_al pha. ccn

The .cenfile exists only if you have already run asimulation. If you want to view the
netlist with VSB before you run the ssmulation, you must compile the netlist with the
smartcen netlist compiler.

To run smartcen from the command line, execute the following as appropriate for your
platform:

« UNIX

$LMC_HOVE/ bi n/ smart ccn - m nodel _nane net | i st _pat hname

o« NT

% MC_HQOVE% bi n\ smart ccn - m nodel _name net | i st_pat hnarre

You must use the -m model_name argument to designate to smartccn which model to
target.

16 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

The smartccn compiler generates a.cen file in the current working directory, after which
you can invoke the VSB on the new file. The smartccn compiler also generates a.pmp
file, which you can use to see which internal port names have been mapped to the
SmartCircuit model. SmartCircuit pin names are generic for the configurable pins,
whereas all the dedicated FPGA device pins are set by the vendor.

For more information on smartccn and smartcen switches, refer to “ smartccn Command
Reference” in the SmartModel Library User’s Manual.

275> Note
For the NT version only: If you exit VSB, but then want to view the last
window you used, you can restart the VSB using the -r log_file argument in
the vsb command.

VSB Tools

There are several tools within the VSB environment, some of which are discussed in this
application note:

« Main Window

« Hierarchy View
« Connection View
« Examine View
o Timing Form

« Windows

August 2001 Synopsys, Inc. 17

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

Main Window

When the V SB invokes, it displays the Main window. The Main window is the starting
point for debugging your design, giving you access to specialized views that contain
different types of information.

Hierarchy View _ _ Windows & Monitors
Examine View

F‘ - l: J %’ Trace
l_E Et ==l:i 8 & [m‘ L] —rﬂ E ‘ 3 |
|Seleu:tiu:un: [lhstance] TOF [Type] iﬁructiun_regi;k\ [Scope] I
(For Help, pfess F1 / N\ | N Urmodified /|
/ : Global Select \ Causal Trace
Connection View Net Tags

From the Main Window, you can:
« Examine the post-routed netlist at a number of different levels.
« Look at the design hierarchy using the Hierarchy View.
« Create an “on-demand” schematic of the design using the Connection View.
« Examine the timing of any cell using the Examine View.

« Search through the netlist for a particular cell, net, or port instance using the Global
Select tool.

« View acausal path using the Causal Trace Tool; causal tracing is discussed in
“Event Tracing” on page 26.

« Create awindows declaration file; windows are discussed in “Windows’ on
page 23.

For more information on the Main Window, refer to “Main Window” in the UNIX
version or NT version of the Visual SmartBrowser User’s Manual.

18 Synopsys, Inc. August 2001

SmartModel Application Notes

Hierarchy View

Chapter 1: Verifying FPGA Designs

The best place to start navigating your design is with the Hierarchy View.

Hierarchy View
Zoom Buttons

Design Hierarchy

instruction_register
TOQr
[13]
4] 1 4
Medium Il 1 /0 Y cLOCK IR [DPOSS)
T2 || T/0)iMsT_BITO [DPO42)
Law || I/0IMST BIT1 [DPO4E)
l"" 1/0 YINGT_BITZ [DPOS4]
Expand|| L0 YRESET (DPO3E)
l" 1/0) SHIFT_IR (DF044)
Collpse 1./0) TDI [DP040)
1,/0) 700 [DP053)
B || 170)1RsT DPosz
Find || 1,0 yMoate R ipPoss
E%E |Seleu:tiu:un: [Insta\:e] \EIF' [Type] instruction_r
(For Help, press F1\ | 4
N\
Design Ports
August 2001

The Hierarchy View displays the hierarchy
of the post-routed netlist. By default, thetop
level of the design is selected so that you
can see the external ports of the FPGA
design in the bottom half of the window.

A port icon identifies a port as an input,
output, or I/O pin. Next to the icon you can
see your design port name, followed by the
model pin name.

If you double-click on any of the cellsin the
upper part of the Hierarchy View, the VSB
will display an Examine View for the cell.

The zoom in and zoom out buttons enable
you to select the amount of detail that you
want to see in the Hierarchy View.

If you double-click on the port iconsin the
lower section of the Hierarchy View, the

V SB will display the schematic Connection
View.

For more information on the Hierarchy
View, refer to “Hierarchy View” in either
the UNIX version or NT version of the
Visual SmartBrowser User’s Manual.

Synopsys, Inc. 19

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

Connection View

As FPGA designs have grown larger, it has become possible to create designs of 250K
gates and more. Trying to debug a 100—-250K gate schematic is nearly impossible. The
V SB Connection View helps by enabling you to view your design schematic in an
“on-demand” fashion.

Connection View

¥: Connection Yiew [CLOCK_IR]

Zoom Action: Wiew Window el
Buttons

INEUF_0
L

o ";’ff
o TOO | DPISE)
- 1

& (F{u]

| e Bl |

| e
a5
i

CLOCEK_IR OFPC
1o

QUTEUF_n
"'..l un

r
d
J J

Cllapse DFFC

5§12 'w
__: '-_l
E = 3 DUTEFI]UF_I]
- Find 4 e r H
Hide . T |
Cells EE_ | | !
\ Hier. j

Hide Sel

View Design Schematic on Demand

V SB enables you to navigate around a schematic by clicking on acell port, which causes
V SB to generate the associated net. You can then track backward or forward, moving
through the design from one cell port to another. If you unintentionally expand a route,
you can simply select the net and hide it using the Hide Selected button. You can also
create hardcopy of the section of schematic displayed in a Connection View.

20 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

When tracking back into adesign, you can use an Event Tracing algorithm called causal
tracing, which expands to only the net or cell that directly affects the value on the
original cell. When expanding forward in the design schematic, you can fan out to all
connected nets and cells. These features enable you to quickly look at the path in which
you are actually interested, which saves time in searching through the entire schematic
for adesign problem.

For more information on the Connection View, refer to “Connection View” in the UNIX
version or NT version of the Visual SmartBrowser User’s Manual.

Examine View

Since the VSB isrun on a SmartCircuit netlist that contains all of adesign’s specific
delay and timing information—extracted from the original vendor netlist—you can
access this delay and timing information through the VSB Examine View by
double-clicking on any of the cellsin the Connection View. Thisenablesyou to view the
net names connected to the cell and change the timing that applies to that cell.

Examine View

2> Examine View [1$12)

Wiew windom Help
Mame: 1§12 Type: DFFC
Scope: A$124
Diocurnentation;
Ng7 | —_I g P g
Ng2 A /V'm
Timng _— g 14 S
H Ighllghted Gnd ground .'" PRE

Tirning Farm V| State Form V| Cloze I Help |
— For Help, prezé F1 Unmodified 2
Timing | | | Z

button displays /
timing information

For more information on the Examine View, refer to “Examine View” in the UNIX
version or NT version of the Visual SmartBrowser User’s Manual.

August 2001 Synopsys, Inc. 21

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

Timing Form

Model timing includes timing check values and cell/routing delay values, which contain
al of the functional and timing information extracted from your place-and-route tool.
You can access timing information through the VSB Timing Form, which enablesyou to
change any timing parameter on the cell and experiment with different scenarios to
identify afix to atiming problem. These changes do not affect the source netlist, but
enable you to identify exactly where the problem lies so that you can then fix the
problem in the source.

Timing Form
e Pk, I
Tirnirg Farm |AI State Farm YI Cloze I Help |
Timing Selected Timing
PMOMENSHAEA] || Mame: 75 D_CLKNLD [EceesihibdiEaton]
H_CLR_CLEMI Description
TS CLR_CLEML —
TH PRE_ CLEN Setup on 0 before CLE j
TS_PRE_CLEMI
Fir/LiIM_CLEM
o FraHMIN_ CLEN Timing Yalue Units: & ps © ns © us © ms
Timing PiasLiIN_CLRM alvos | -
PusHIN_PRER alues in.coh File:
Values E_EEF‘E_%EW_ 1300 3600 B200
TPD. CLRLH Current Values:
KE_ELKHL |1aun 3600 |52IIIIII
_CLRLH
TPD CLEHL LI [Fin] [Typ] [Max]
|Far Help, press F1 | |Unmodified

As an example, suppose you have encountered some sort of timing violation. You can
use VSB Event Tracing (discussed on page 26) to identify the critical path, which
enables you to look at the timing used for the cells on that path. If you identify alarge
delay on that path, you can use the timing form to decrease a small amount of time from
the path, re-save the .ccn file, and re-simulate the modified design. If thisfixes the
problem, you know that you have to return to the source and constrain that path more
tightly. However, you may find that by reducing the delay on that path, you cause hold
violations. In that case, you can go back to the original .ccn file and try something else
to fix the problem.

Asyou can see, using SmartCircuit debugging processes to modify a.ccn filein much
quicker than arepetitive, iterative process of going back to the source, re-synthesizing,
and re-doing the place-and-route.

22 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

For more information on the timing form in the Examine View, refer to “ Examine View”
inthe UNIX version or NT version of the Visual SmartBrowser User’s Manual.

Windows

Visibility into the FPGA design during ssmulation is another critical success factor. The
ability to trace the contents of an internal net or register helps you debug your overall
design. SmartCircuit models also have the ability to look inside the FPGA design using
awindows feature, which means that the FPGA is no longer a black box within the
simulation, asillustrated in Figure 2.

xebL L
xeQ 1 /X <
XerL 4 p)
Out<2> /:
—— A [/
——— S —
S [—
c —
[| il
e FPGA
block
DUT

Figure 2: Waveform Viewing Through Windows

Windows enable you to use the simulation waveform window to trace all nets, ports, or
states that are internal to the FPGA design. This gives you full visibility into the FPGA
design at alevel that you can easily understand. Having this visibility substantially eases
the FPGA verification and subsequent debug process. You can also trace designated
nets, ports, or states and force values on them, which enables you to recreate corner
cases and evaluate the functionality of adesign.

August 2001 Synopsys, Inc. 23

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

You can use the VSB Windows & Monitorstool to view nets and states.

Windows & Monitors

Windows & Monitors [vsb_tutorial ccn |

Wiew Sindow Help
- o] windows Select Glnbs |
=@ Monitors
_ - Mets Clear Selection |
Window] States
Names —_|| =g oot |

o =-80F N7_Bus
N

""" W Fresiew File... |

I A$IIMET > 1513 NET "

T 51287 > "_|12_N?“/' Save oFie._|

Alias Name —| = Element Editar [T Partial MCF

[legal Chars... |

Add Bus M7

IFidoy

Save MCF — &+ Manitar

— Selection Adder

Selected Object I[N et]l M$7 [Scope] /%124 Add Global Sel |

¥ Automaticaly Add Mew Selections

Auto-Add

Object Type Add To
WV Mets [T windows [Bus:
[States ¥ | tEritars INT-"_EuS [Manitor] j
Cloze | Help |
|Seleu:tiu:un: [Met] H$F [Scope] A$124
|Far Help, press F1 | | *Modified 2

When you select anything in other VSB windows, the selected object is added to the
windows. You can also alias hames in order to make them easier to understand in a
simulation.

24 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

Finally, when you have al the windows that you want in asimulation, you can save a
new or partial MCF for use in alater ssimulation. Here is an example that shows how to
specify windowsin an MCF file:

bus SEGS7 /u2/ segs1333<7>
w ndow SEGS7

bus SEGS2 /u2/segs1332<2>
wi ndow SEGS2

The bus command aliases the internal signal; in this example, the internal net
/u2/segs1333<7> isaliased to SEGS7. The window command makesthe signal available
in the simulator.

You can include this new file into your main MCF by using ado command, as shownin
the following example:

| oad -source /d/projects/flying_ducks/ ncf _fil es/ ducks_al pha. ccn
do /d/projects/flying ducks/ ncf _fil es/w ndows. do

The windows file tells the SmartCircuit model which extra signals should be available
within the simulation. To access a designated window from a simulator, you should use
the trace and assign commands appropriate for that simulator. For the exact command to
access windows, refer to your simulator documentation.

The VSB tool also has a monitor feature that enables you to create atext printout of the
values on the nets, ports, or states in the selected portions of the FPGA design that are
within the simulator transcript window. For example, to enable the monitors feature for
the OE and DBUS signals, you would add the following line to your MCF file:

monitor CE , DBUS

You can put monitor commands into an MCF “do” file, just as you can the window and
bus commands.

For more information on SmartModel windows, refer to “ SmartModel Windows™ and
“SmartCircuit Monitor” in the SmartModel Library User’s Manual. For more
information on the V SB Windows & Monitors, refer to “Windows & Monitors Tool” in
the UNIX version or NT version of the Visual SmartBrowser User’s Manual.

August 2001 Synopsys, Inc. 25

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

Event Tracing

A key factor in successfully verifying an FPGA design is the ability to debug functional
and timing errors. If you encounter functional or timing errors during asimulation run, it
isimportant to quickly trace the event back to the parent event that is the root cause of
the problem. In alarge design, this can be a very complex task. For example, suppose
you have aviolation of setup constraints like those illustrated in Figure 3. Manually
analyzing hundreds of possible paths to identify alogic or timing error would be very
time consuming.

2420—0to 1onportAl

Al _’J— /:_’J— J_
A2 — T] Violated setup constraint
A3 on D at time 260.0ns.

Ty, Was 2ns;
specified minimum is 5.0ns.

A4 — >O \
o il

A5 — *D—} D |
REG1 REG2
CLK

s [

258.0—0to 1 on port CLK

Figure 3: Event Tracing

Event tracing helps you identify the source of afunctional error or timing constraint
violation so that you can quickly correct a problem with minimal impact on simulation
performance.

Event tracing uses an automated history mechanism that operates from user-specified
trigger pointsto:

« Trace back to locate the root cause of any logic event error.
« Traceforward to find the effects of any specific logic event.
« ldentify the root cause of any timing constraint violation.

26 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

Event tracing reports identify the root of logic or timing errors by generating alist of
eventsinternal to the FPGA that are causally related to the problem event. You can
control the scope of the report, as well as target multiple events and simulation times, as
shown in Figure 4.

Effect Trace
! |
! B 8 causal Trace
H"""H-J
o
© (@]
1 I
| T
[O
I I Logic Event Flow
o P tE t
o— O Child Event
0| L

Figure 4: Causal and Event Tracing

For more information on SmartCircuit debugging tools, refer to “ SmartCircuit FPGA
Models’ in the SmartModel Library User’s Manual.

Causal Tracing
To turn on causal tracing, add the following lines to your MCF file:

set cause full
report cause net_name [start _tine] [end_tine]

For a complete example, suppose you want to turn on causal tracing for adesign called
ducks alpha.ccn. You would place the following in your MCF file:

| oad -source /d/projects/flying_ducks/ncf_fil es/ ducks_al pha. ccn
set cause full
report cause net_ CE 150 300

August 2001 Synopsys, Inc. 27

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

The command “set cause full” enables afull causal report. The full switch generates a
report that lists all the nets and cells in that path. The nofull switch generates a report
that lists only the start and end points. The start_time and end_time specify the window
in which the causal tracing on the selected net is turned on. Typically, you would only
want to turn on causal tracing around a particular problem that you are seeing, such asa
glitch or an X on apin.

You can aso turn on the causal tracing feature around all timing violations. To do this,
add the following line to your MCF file:

set cause constraint

Causal Trace Report Example

The following causal trace report istriggered on a user-specified event and then traces
that event back through time to the parent event. In this case, the parent event occurred
on the CLOCK_EN port. Asyou can see, causal tracing has tracked the output event all
the way back to the causal event on an input pin. You can seethe X traveling through the
design to the output.

Snart Model TRACE
I nstance / TESTBENCH DUT/ SNART(SmartGircuit),at tine 586.3 NS

Begi nni ng cause report from " DBUS<6>":

586.3 ns 1->X on nodel port DBUS<6>

586.3 ns 1->X on cell port /CELL4/ Q net DBUS<6>

586.3 ns 1->X on cel|l port /CELL4/T, net DBUS ENABLE<O>
569.4 ns 1->X on cel|l port /CELL40/ Q net DBUS ENABLE<O>
564.9 ns 0->X on cell port /CELL44/Q net ENABLEBUS SI G
562.6 ns 1->X on cell port /CELL43/Q net W2; N735
560.6 ns 0->X on cell port /CELL42/Q net YSI&

558.1 ns 0->X on cell port /W2; MDE<1>/ Q net W2; MCDE<1>
555.3 ns 0->X on cell port /W2; MDE<1>/C net CLOK EN
553.9 ns 0->X on cell port /BUFGS TL/Q net CLOCK EN
550.0 ns 0->Z on nodel port CLOCK EN

Report conpl et ed.

MCF Example for Causal Tracing Around Timing Violations

Suppose you want to turn on causal tracing around timing violationsin adesign called
ducks_alpha.ccn. You would place the following in your MCF file:

| oad -source /d/projects/flying_ducks/ ncf _fil es/ ducks_al pha. ccn
set cause constraint

The set cause command defaults to “noconstraint,” so you must specify “constraint” as
the set cause argument in order to constrain causal tracing around timing violations.

28 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

Causal Trace/Timing Constraint Violation Example

In the following example, you can see a causal trace that was triggered by atiming
constraint violation, where a pulse on the RESET port was too small.

Snart Model ERRCR
Violated pul sewidth constraint PWCLR+ on LR for cell W2; MDE<1> at
tinme 12. 1 ns.

Actual pulsewidth time 3.0ns, specified mnimumis 4.0 ns.
I nst ance / TESTBENCH DUT/ SMART(SmartGircuit),at tine 12.1 NS

Smart Model TRACE

Constrai nt causal report for event on "CLR' at 12.1 ns:
12.1 ns 1->0 on cell port /CELL72/Q net YSI X7

10.5 ns 1->0 on cell port /CELL37/Q net W2; N658

5.5 ns 0->1 on cell port /CELL33/O net N4

3.0 ns 0->1 on nodel port RESET

Report conpl et ed.

For more information on causal tracing, refer to “Visualizing a Cause Report from a
Simulation Run” in the UNIX version or NT version of the Visual SmartBrowser User’s
Manual.

Effect Tracing Example

You can aso perform effect tracing that enables you to track forward into an FPGA
design. Effect tracing is a technique that shows you what effect an input change has on
the design.

To turn on effect tracing, add the following line to your MCF file:
Report effect net_name [start_time] [end_time]

For a complete example, suppose you want to turn on effect tracing for adesign called
ducks_alpha.ccn. You would place the following in your MCF file:

| oad -source /d/projects/flying_ducks/ nef _fil es/ducks_al pha. ccn
set cause full
report effect | N _DATA 4500 6000

August 2001 Synopsys, Inc. 29

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

Effect Trace Report Example

The following report traces the effect that a O-to-X transition has on the DBUS<6> port.
You can see that the X propagates through the design to the U3/I<6> instance net.

Snart Model TRACE
| nst ance / TESTBENCH DUT/ SMART(SMartGircuit),at time 1087.1 NS

Triggering effect report from"DBUS<6>" at 1087.1 ns:
1087.1 ns Effect 0->X on cell port /CELL3/ Q net U3; NL63
1090.9 ns Effect 0->X on cell port /CELL50/Q net YSI G5
1090.9 ns Effect 0->X on cell port /U3;1<6>/D net YSI G5
Report conpl et ed.

For more information on effect tracing, refer to “ Visualizing an Effect Report from a
Simulation Run” in the UNIX version or NT version of the Visual SmartBrowser User’s
Manual.

Causal Trace Report

You can enable both causal and effect tracing on any internal net or port within the
FPGA design. You can control the scope of the report and target multiple events and
simulation times. You can also cut a causal report from the simulator transcript and paste
it into the VSB Causal Trace window. The V SB will then graphically display the path in
which you are interested.

Causal Trace Window

:~-'¥5B Causal Trace

Enter Trace Text from Simulatian :

r'_l\/C Mbdel Trace in ' TB. DUT. CFPGA SMARTMODEL' at 16100 ps: ;I
Begi nni ng cause report from"JDCE FSRAME':

16.1 ns 0->X on cell port /U1287/$1120. GTS. TR/ QUT, net

16.1 ns 0->X on cell port /U1287/$1l120/ QUT, net /U1287/

5.3 ns 0->X on cell port /FSRAMCE | NT_reg/ QUT, net

5.3 ns X->1 on cell port /FSRAMCE | NT_reg/ CLK, net

3.9 ns X->1 on cell port /UW79; cl kbuf/QJT, net n2468

0.0 ns X->1 on cell port /W79;clkio_buf/QJT, net

0.0 ns X->1 on nodel port FCLOCK

Report conpl et ed.

" o

Show Trace | Cloze I

T3> Note
Currently, the VSB Causal Trace window isonly available on the Intel NT

platform.

30 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 1: Verifying FPGA Designs

For more information on causal tracing, refer to “Using Tracesfrom a Simulation Runin
Causal Trace” inthe NT version of the Visual SmartBrowser User’s Manual.

Targeting Unsupported Devices

You may come across an FPGA device package type that Synopsys does not support.
This does not mean that you cannot simulate that device. If there is a Synopsys device
model in the same FPGA family that has the same number of pins or more, you can still
simulate the device. For example, you might have a package type called sqt-208,
whereas you might find amodel for only the sgt-240 device. The 208/240 nomenclature
specifies the number of device pins. You can use the model for the 240-pin deviceto
simulate the 208-pin device. To learn how to use unsupported device typesin your
design, refer to “Using Unsupported Devices’ in the SmartModel Library User’s
Manual.

Interactive SmartBrowser Commands

This application note provides lots of information about how you can use the Visual
SmartBrowser (VSB) to debug your FPGA design. There is also an interactive tool
called SmartBrowser that enables you to debug an internal FPGA from the simulator
command line of atestbench. For more information on the interactive SmartBrowser,
refer to “Browsing Your Design Using SmartBrowser” in the SmartModel Library
User’s Manual.

August 2001 Synopsys, Inc. 31

Chapter 1: Verifying FPGA Designs SmartModel Application Notes

32 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 2: Interfacing with Non-FlexModels

2

Interfacing with Non-FlexModels

Introduction

One of the most useful FlexModelsisn’'t areal model at all. The sync8 fx FlexModel
does not represent any physical device or bus protocol. Instead it acts as an interface to
other modelsin the testbench and simplifies complex verification processes. You can use
the sync8_fx model to:

« Make SourceModels, user-developed models, and 3rd-party models visible to the
FlexModel Command Core so that you can synchronize those models with the
FlexModelsin your design.

« Serve asanon-design verification pin that makes design under verification (DUV)
signals visible to C testbenches and easier to trace in the simulator waveform
viewer.

This chapter explains how to use the sync8 fx model to solve these and other common
verification problemsin the following major sections:

« “Synchronizing with Non-FlexModels’ on page 34

« “Sync8 fx Model Interface” on page 35

« “Using PCI SourceModels and ppc603_fx FlexModel in Same Design” on page 36
« “Sync8 as Non-design Verification Pin” on page 37

August 2001 Synopsys, Inc. 33

Chapter 2: Interfacing with Non-FlexModels SmartModel Application Notes

Synchronizing with Non-FlexModels

The command streams for one or more FlexModels are synchronized by the FlexM odel
Command Core. But thereis an issueif your design includes SourceM odels, user-
developed models, or 3rd-party models—these models are not visible to the FlexM odel
Command Core. This means that you cannot coordinate testbench processes for
FlexModels with non-FlexModels. To solve this problem, instantiate the sync8_fx
model in your design and hook it up to the non-FlexModel that you want to coordinate
with FlexModels. The central role of the Command Coreisillustrated in Figure 5.

HDL Simulator

HDL Testbench «—» DUV ,\'
{' Model Pins
SWIFT Interface
HDL2C
Pipe
VERA
FlexModel
Command <™ FlexModel 1
Core
C Testbench 4—/(\
// FlexModel 2 <e-—
sync8 fx 1 syncs_fx 2 syncs_fx 3

3rd-Party Model SourceModel

Figure 5: FlexModel Command Core

34 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 2: Interfacing with Non-FlexModels

You can connect the sync8 fx model to pins on your non-FlexModel using the model’s
8-bit 1/0 bus and four 1/O pins. Then you can use sync8 fx FlexModel commands to
sample the values on any of those pins. If you want to use async8_fx pin as an output,
just enable the pin using the sync8 output_enable command. You can aso use the
flex_synchronize command to synchronize the activity of your non-FlexModel with the
other FlexModelsin your design.

For detailed information on the all of the model-specific commands supported by the
sync8_fx model, refer to the model datasheet. Like al FlexModel datasheets, you can
access the latest version of the sync8 fx datasheet using the Model Directory:

http://www.synopsys.com/products/lm/ds/s/sync8_fx.pdf

For information about using global FlexModel commands such as flex_synchronize,
refer to the FlexModel User’s Manual.

Sync8_ fx Model Interface

The sync8 _fx isasimple model, with just the 8-bit bus and four 1/O pins mentioned
above and four 8-bit internal registers, as shown in Figure 6.

|0_BUS [7:0] N

/

100
SYNC8_RO_REG

SYNC8_R1_REG

SYNC8_R2_REG

SYNC8_R3_REG

Figure 6: sync8 fx Model Interface

If you need to hook up awider bus, just instantiate the sync8 fx model multiple timesto
achieve the desired configuration. For example, you could use four instances of the
sync8 fx 8-bit busto expose all lanes of a 32-bit bus to the FlexModel environment. In
many cases one model instance is sufficient to get the desired results, but that depends
on your testing requirements.

August 2001 Synopsys, Inc. 35

http://www.synopsys.com/products/lm/ds/s/sync8_fx.pdf

Chapter 2: Interfacing with Non-FlexModels SmartModel Application Notes

The sync8_fx model also provides four 8-bit registers that you can use to save and
compare data patterns using the FlexModel commands documented in the sync8 fx
FlexModel Datashest.

Using PCI SourceModels and ppc603_fx

FlexModel in Same Design

For illustration purposes, consider a PCl bridge DUV being verified with the help of the
PCl SourceM odels and the ppc603e _fx processor FlexModel. You can use the sync8 fx
model to bring the PCI SourceModel under the control of the FlexModel Command
Core. Then, useflex_synchronize commandsto coordinate the command streamsfor the
two different types of models. Figure 7 provides a high-level overview of the process.

FlexModel
Command

Core
_ 4 ppc603e_fx
reag - FlexModel
1
Memory \
A PCI Bridge
, write DUV
sync8_fx |
/ ‘
; :
/
7
PCI Master PCI Slave PCI Monitor Memory
SourceModel SourceModel SourceModel

Figure 7: PCI SourceModel Coordinated with FlexModel

36 Synopsys, Inc. August 2001

http://www.synopsys.com/products/lm/ds/s/sync8_fx.pdf
http://www.synopsys.com/products/lm/ds/s/sync8_fx.pdf

SmartModel Application Notes Chapter 2: Interfacing with Non-FlexModels

For example, abus cycle can occur when the PCI Master iswriting a block of video data
to local memory and the processor is simultaneously trying to read the same block of
video data from memory. Even though the processor has to arbitrate for the busto read
from memory, what if you want to wait until four packets of video data are available
before reading them all? To solve this problem, use flex_synchronize commands to
coordinate the command streams of the two different model typesin your testbench.

You can aso use the sync8_fx to coordinate model processes across multiple
testbenches. Thisworks for any combination of HDL and C, but is particularly useful
for multiple C testbenches that have model processes running in parallel. The sync8 fx
model is the tool that make this synchronization possible when you are using non-
FlexModelsin any of the testbenches.

Sync8 as Non-design Verification Pin

One of the drawbacks of using C testbenchesis limited visibility into the DUV and
testbench registersthat are easily accessed in the top-level HDL. For example, if you are
designing an ASIC and need to decode the state of multiple output pins for event
synchronization in the testbench or to drive a microprocessor reset, you can hook up an
instance of the sync8 fx model to those ASIC pins. You can then write some
combinational logic in the C testbench to decode the states of those pins and drive a
signal on one of the sync8 fx bidirectional pins. Suddenly, an event of interest in the
top-level HDL isvisible to your C testbench. You can create complex verification
triggers thisway and start or stop testbench processes based on the states of those
triggers at any point in the ssmulation. In thisway, the sync8 fx model helps make up
for the lack of aclock in the C testbench.

August 2001 Synopsys, Inc. 37

Chapter 2: Interfacing with Non-FlexModels SmartModel Application Notes

With the addition of the non-design verification pin provided by the sync8 fx model,
you can also more easily track trigger events in the simulation waveform viewer. There
is now one decoded signal to view, rather than multiple independent signals. One
examplefor how to use the sync8 fx model asanon-design verification pinisillustrated
in Figure 8.

Testbench Trigger

(cache_read) HDL Testbench
I0_3
100 |
l0_1 B
sync8_fx 0 2 ASIC B
C Testbench 1 C Testbench 2

Figure 8: Non-design Verification Pin Example

For example, if you wanted to detect when conditions were ready for a cache write, your
C testbench #1 could contain code similar to the following:

if (100=18&101=0) || (102 =0)

{
sync8_set _pin(lnst_1,SYNC8 I _PIN 1'bl, &status);
flex fprintf (stdout, "Condition set for cache wite : % STATUS =
%\ n", pin_rslt, &status);

}

}

38 Synopsys, Inc. August 2001

SmartModel Application Notes Chapter 2: Interfacing with Non-FlexModels

Then your C testbench #2 could use awhile loop that looks for the detected condition
and reads the cache with code similar to the following:

cache wite _done = fal se;
while (!cache_wite_done)
{
sync8 pin_req(lnst_1, SYNGB IGB PIN FLEX WA T F, &status);
sync8 pin_rslt(lnst_1, SYNGB_ IGB_PIN pin_rslt, &status);
if (pin_rslt == 1)

{
read_cache;
cache_wite _done = fal se;
}
flex wait(l, &status);/* Wit for Ohe dock Cycle */

}

You can control the direction of the I/O bus or pins using the sync8 output_enable
command. For example, if you have awhile loop looking for atrigger condition in your
C testbench, you can enable apin on the sync8_fx model for output and set the pin value
when your trigger condition is met using code similar to the following:

found pattern = fal se;
while (!found pattern)

{
sync8_pin_req(lnst_1, SYNGB IOL PIN FLEX WAIT_F, &status);
sync8 pin_rslt(lnst_1, SYNGB_ IOL_ PIN pin_rslt, &status);
if(pin_rslt =="1")
{
found _pattern = true;
sync8_out put _enabl e(Inst_1, SYNGB I3 PIN FLEX ENABLE, &status);
flex_ wait(2, &status); /* Wait for 2 clock cycles */
sync8_set_pin(lnst_1, SYNGB_ IB_PIN "b0", &status);
flex_fprintf (stdout, "The value of pin PO _FRAME =SYNC8 | (B_PIN
is: % STATUS = %\n", pin_rslt, &status);
}
}

You can set or clear individual or group timing checks for any pin on the sync8 fx using
the model’s controllable timing shell. For example, to disable al setups in the model,
use the following command:

sync8_set _timng_control (I nst_1, SYNC8 SETUP, FLEX DI SABLE, &status);
To enable al holdsin the model, use the following command:
sync8_set _timng_control (I nst_1, SYNCG8 HOLD, FLEX ENABLE, &status);

For more information about the sync8_set_timing_control command and the predefined
constants you can use to control model timing, refer to the sync8 fx FlexModel
Datasheet.

August 2001 Synopsys, Inc. 39

http://www.synopsys.com/products/lm/ds/s/sync8_fx.pdf
http://www.synopsys.com/products/lm/ds/s/sync8_fx.pdf

Chapter 2: Interfacing with Non-FlexModels SmartModel Application Notes

40 Synopsys, Inc. August 2001

SmartModel Products Application Notes Manual Chapter 3: SystemC SmartModel Library

3

SystemC SmartModel Library

SystemC isa C++ class library used for creating cycle-accurate models of software
algorithms, hardware architecture, and interfaces for System-on-Chip (SoC) and
system-level designs. For more information on SystemC, refer to the SystemC User’s
Guide. You can obtain SystemC documentation from http://www.systemc.org.

SystemC provides a cycle simulation environment as part of its class library. The
SmartModel Library is designed to work with event-driven logic simulators and has
extensive support for modeling device timing accurately. For more information on the
SmartModel Library, refer to the SmartModel Library User’s Manual. The SystemC
classlibrary providesa“SWIFT Integration” for SystemC.

I Note
Because of the mismatch between the cycle simulation capabilities of
SystemC and the event ssimulation bias of the SmartModel Library, there are
some restrictions for SystemC users of the SmartModel Library.

This chapter contains information about the following topics:
« “Supported SmartModel Library Capabilities” on page 42
o “Wrapper Generation” on page 44
« “Platform Support” on page 48
« “Product Usage’ on page 49
« “Using SWIFT Modelsin SystemC Designs’ on page 51

August 2001 Synopsys, Inc. 41

http://www.systemc.org/

Chapter 3: SystemC SmartModel Library SmartModel Products Application Notes Manual

Supported SmartModel Library Capabilities

Command Control

All FlexModels and MemPro models support command control. FlexModels provide
“HDL” and “C” command control. SystemC users of FlexModels will typically call
commands from SystemC testbenches, thus using HDL control.

Attributes

Note that the model configuration attributes that are supported in the SystemC
framework are provided as parametersto the model class constructor. Thefollowing lists
pertinent information for the supported model configuration attributes:

« All models must havethel nst anceNane attribute.

« Thetiming attributes Ti m ngVer si on and Del ayRange are not available since they
are not supported in SystemC.

« All file attributes are available for non-FlexModels.

« FlexModelsautomatically set the command stream ID attributes based on the model
Instance name.

Timing
SystemC is acycle ssmulator. Therefore, timing in the event simulation sense is not
supported. FlexModels run in “no-timing” mode in SystemC. Other SWIFT models use

a settling-out technique to permit them to function adequately in the SystemC cycle
environment.

Timing Check Control
Timing checks are not applicable for the SystemC environment and are disabled.

42 Synopsys, Inc. August 2001

SmartModel Products Application Notes Manual Chapter 3: SystemC SmartModel Library

Command Channel

SmartModel Library users send session commands by calling the Sessi onConmand
static member function in the LSC Swi f t Sessi on class. Model commands are available
through the | sc_Swi f t Mbdel static member function Model Comrand. It takes the
model’s | nst anceNane and the command string as arguments, as shown in the
following example:

LSC Swi ft Sessi on: : Sessi onCommand("trace on");
LSC Swi ft Model : : Model Command(" U3", "Report Status”);
LSC Swi ft Sessi on: : Sessi onCommand("trace off");

The typical access to the command channel through the LMC_COMVAND environment
variable is available.

Fault Simulation
SystemC/SWIFT does not support fault simulation.

Save and Restore
SystemC does not support Save/Restore (Checkpoint/Restart).

Reset and Reconfigure
SystemC does not support reset or reconfigure.

Model Status Report

The model status report is available through the model command channel and also
through the | sc_Swi f t Mbdel static member function Repor t . It takes the model’s
| nst anceNane as an argument, as shown in the following report status example:

LSC Swi ft Model : : Report (" U2");

Dumping Memory Contents

The SystemC/SWIFT integration provides access to the memory dump capability
through the DunpMenror y static member function LSC Swi f t Model and through the
model command channel. The following are dump memory examples:

LSC _Swi ft Model : : DunmpMenory(" UL", "dunp2");
LSC Swi ft Mbdel : : Model Command(" U1", "DunpMenory dunpl");

August 2001 Synopsys, Inc. 43

Chapter 3: SystemC SmartModel Library SmartModel Products Application Notes Manual

Model Logging

The standard model logging support works in SystemC/SWIFT. Most models use the
standard SWIFT model logging triggered from the presence of an og. cf g filein the
working directory or by using the Set LogFi | e and Tr aceEvent s model commands.

Advanced users may wish to use the model command channel to control the n og file as
well. The following are model logging command examples.

LSC Sw ft Model : : Model Command(" Ul1", "SetLogFile mog.log");
LSC Swi ft Model : : Model Command(" U1l", "TraceEvents On");

Tracing

Tracing works through the usual settings of the LMC_COMVAND environment
variable and the session command channel, as shown in the following example:

LSC Swi ft Sessi on: : Sessi onComand("trace on");

SmartModel Windows
SmartM odel Windows are not supported at thistime.

Wrapper Generation

The wrapper generator scsg residesin $LMC_HOW bi n. To generate a SystemC
wrapper for any installed models, enter the model names as argumentsto scsg
separated by white space, as in the following example:

scsg cake fz usbhost fz
scsg writes the wrapper files into the working directory.

To generate wrappers for all installed models, usethe-a or-all options, asshownin
the following example:

scsg -all

The following sections describe the generated wrappers for the cake_f z model.

44 Synopsys, Inc. August 2001

SmartModel Products Application Notes Manual Chapter 3: SystemC SmartModel Library

Model Header File

The model header fileisjust like the standard for SystemC model s except that the model
constructor isin aseparate file. A notable part of the model header fileisthe
representation of logic values. Note that for high performance, SystemC documentation
strongly encourages the use of integer and bit vector values for models. Since the
modelsin the SmartModel Library already support four-state logic, the wrappers
provide accessto four (4) states through the use of sc_| ogi ¢ and sc_| v typesfor the
model ports.

The only parameter to the model constructor isthe model instance name. The command
Instance name is derived automatically from the model instance name. None of the other
attributes for this model are applicable in a cycle-simulator framework and, therefore,
are handled automatically. Note that the port names are in upper case to avoid conflict
with C++ keywords.

cake fz.h

#i f ndef CAKE FZ H
#define CAKE FZ H
#i ncl ude "I sc_Fl exMdel . h"

class cake fz : public LSC F exMdel

{

publi c:
sc_in< bool > CLK;
sc_in< sc_logic > HALD
sc_in< sc_logic > INT;
sc_in< sc_|v<3> > I NIB;
sc_in< sc_logic > NM;
sc_in< sc_logic > RDY;
sc_in< sc_logic > RST;
sc_out< sc_logic > ADS;
sc_out< sc_logic > DG
sc_out< sc_| ogic > HOLDA
sc_out< sc_logic > PEND,

sc_out< sc_logic > RW

sc_i nout < sc_| v<32> > AD,
cake_fz(const string& Nane);
~cake_fz() {}

1

#endif // CAKE FZ H

August 2001 Synopsys, Inc. 45

Chapter 3: SystemC SmartModel Library SmartModel Products Application Notes Manual

Model Command Header File

The model has a separate command class for each of its command streams. A command
header for the model contains a class constructor, destructor, and declarations for a
method for each of the stream commands. The parameters for the constructor include
the required SystemC instance name and the name of the corresponding model instance.
The model instance name, Mbdel | nst ance, must be the instance name of the model and
must be the same as the Name parameter to the model constructor.

In other FlexModel HDL wrappers, the commands have model name prefixes. For
example, in Verilog thereisacake_read_r eq command for this model, whilein this
wrapper, the command iscalled r ead_r eq. Note that there is no potential for name
conflicts since the command is a member function of the cake fz_cnd class.

In outline, the command class for a FlexModel is a subclass of LSC Fl exComrands. It
contains register declarations, constructor and destructor, and declarations for the model
command member functions. The constructor requires a SystemC instance name, and it
also requires the model instance name so the commands will be directed to the correct
model instance.

cake_fz_cmd.h
#i fndef CAKE_FZ_ OVD H
#define CAKE FZ CMD H
#i ncl ude "I sc_Fl exComrands. h"
class cake fz_cmd: public LSC H exComrands

{
publ i c:
Cake Pin Declarations
Cake Regi ster Declarations

cake_fz_cnd(const string&,
const string& Mddel | nstance) ;
~cake fz_cmd();
Cake Mbdel GCommand Decl ar ati ons
;}#endi f // CAKE FZ OMD H

The pin declarations provide access to the FlexModel pin commands. Each model pin
has a corresponding member in this structure. Each pin name has the stream name as a
prefix to help avoid confusion with the normal pin operations. These members are
automatically initialized when the model command class is constructed. The read-only
pins support Pi nReq and Pi nRs| t operations. Writable pins aso support the Set Pi n
operation. Set Pi n is aso available through an = operator. Seel sc_ComrandPi n. h and
| sc_ConmandPi nTenpl at es. h in SLMC_HOWE i ncl ude for the details of using these
member functions.

46 Synopsys, Inc. August 2001

SmartModel Products Application Notes Manual Chapter 3: SystemC SmartModel Library

Cake Pin Declarations
LSC CommandBus<32> cndAD,

LSC CommandPi n crmdALS;
LSC CommandPi n cmdCLK;
LSC CommandPi n crmdDC,
LSC CommandPi n cndHOLD,
LSC CommandPi n cndHOLDA,
LSC CommandPi n crdl NT;
LSC CommandBus<3> cndl NTB;
LSC CommandPi n crmdNM ;
LSC CommandPi n cndPEND,
LSC CommandPi n crmdRDY;
LSC CommandPi n cmdRST;
LSC CommandPi n cndRW

Thereisamember for each model register. The parameter for the LSC Regi st er class
template isthe register width. LSC Regi st er provides member functions RegReq,
RegRsl t, and Set Reg (also available as the = operator). LSC Regi st er ReadOnl y does
not havethe Set Reg operation. Seel sc_Regi ster. hand| sc_Regi st er Tenpl ates. h
in $LMC_HOW i ncl ude for usage details.

Cake Register Declarations
LSC Regi ster<16> cnt cl k;
LSC Regi st er ReadOnl y<4> st at e;
LSC Regi ster<4> eagle_trattr;

The model command declarations provide access to al the model commands. The
generic FlexModel commands are availableinthe LSC _Fl exConmands parent class.

Cake Model Command Declarations

voi d set_nsg | evel (const int node,
i nt &stat us);

voi d set _timng_control (const int i ndex,

const bool st ate,

i nt &st at us);
void idle(const int i dl e _count,
const bool wai t _node,
i nt &st at us) ;

voi d read_reqg(const sc_int< 32 > addr_bv,

August 2001 Synopsys, Inc. 47

Chapter 3: SystemC SmartModel Library

const int
const bool
i nt

voi d wite(const
const
const
const

sc_int< 32 >
i nt
sc_int< 32 >
bool
i nt

SmartModel Products Application Notes Manual

xfer_attr,
wai t _node,
&st at us) ;

addr _bv,
xfer attr
dat a,
wai t _node,
&stat us);

voi d burst_read reqg(const sc_int<

const int
const bool
i nt

voi d burst_wite(const sc_int< 32

const int
const sc_int< 32
const sc_int< 32
const sc_int< 32
const sc_int< 32
const bool

i nt

void read_rslt(const int
const int

sc_int< 32 >
i nt

voi d print_mnsg(const char*

i nt

Platform Support

Currently, SystemC is available for Linux (x86), Solaris, HPUX, and Microsoft
Windows NT. SystemC on Solarisworks best with gcc, but also works, with limitations,
with the SUN SC5.0 compiler.

48

Synopsys, Inc.

32 >

\Y

V V V V

addr _bv,
xfer_attr,
wai t _node,
&st at us);

addr _vu,
xfer_attr
dat a0,

dat al,

dat a2,

dat a3,
wai t _node,
&stat us);

Tag,

cnd_t ag,
&dat a,
&st at us) ;

t esxt,
&st at us) ;

August 2001

SmartModel Products Application Notes Manual Chapter 3: SystemC SmartModel Library

Product Usage

The overall flow of atestbench for a CFlex model in SystemC is shown in Figure 9.
Each box in the figure represents a separate SystemC module. The solid arrows in the
diagram represent global signalsin the testbench to which all the ports of the model are
connected. The dotted arrows indicate command activity. In more realistic designs, the
SWIFT models will be nested inside other SystemC processes. Since the command
interactions do not depend on SystemC scheduling, they are not required to bein
separate modules but can be interleaved with port activity.

Port Driver
Stream 1 v
Command -— # Modd — g:ﬂjll(ts
Driver ecKer
Stream N I
Command - — — — — — 4
Driver

Figure 9: Testbench Connectivity

SystemC enforces a one-cycle delay on the propagation of signals between
SC_THREAD modules, soif the port driver setsavalue at time T, the model will not see
it until time T+1. Thereis a corresponding delay between the model and the results
checker. There are no delays associated with the command interactions that do not use
SystemC for scheduling, but instead go directly to the model. If you place input
commands with port inputs and result commands with port outputs, these effects can be
avoided.

Installation

SystemC/SWIFT is astandard part of the SmartModel Library delivery. Its components
areinstalled by way of the conventional installation process. For more information about
the installation process, refer to the SmartModel Library Installation Guide. The check
box to install the SystemC support is outlined in Figure 10 from the SmartM odel
Administration tool, s| _adm n.

August 2001 Synopsys, Inc. 49

Chapter 3: SystemC SmartModel Library SmartModel Products Application Notes Manual

Select Platforms [.'." SmaliMudel Library Installation

Figure 10: Installing SystemC SmartModel Support

50 Synopsys, Inc. August 2001

SmartModel Products Application Notes Manual Chapter 3: SystemC SmartModel Library

Using SWIFT Models in SystemC Designs

Wrapper Files

After the SmartModel Library isinstalled, you must generate wrapper files for the
desired models, as shown in the following wrapper generation example:

$LMC _HOVE/ bi n/ scsg cake fz
For most modelsthere are two wrapper fileswith . h and . cpp suffixes. For FlexModels,

therearealso. h and. cpp filesfor the command interface. Note that the wrapper
generator puts the wrapper files in the working directory.

Code Examples

A SystemC designisaset of SystemC (C ++) filesthat you construct. Note that the set of
filesincludes an associated Makef i | e. To use the SWIFT models, you must include the
model header filein thefiles that refer to it, as shown in the following include example:

#i ncl ude "cake fz.h"

Here are fragments from a testbench that usesthe cake_f z model illustrating how it is
set up. Since the model instance name must agree between the model and its command
class, it isworth defining aglobal constant for it, as shown in the following example:

const char* const Mbdel | nstanceNane = "i nstance";

Modules that use the testbench commands must include the command header, as shown
in the following example:

#i ncl ude "cake_fz_cnd. h"
Command Sti nul us

The following example shows the clock and signal declarations and how they connect to
aSWIFT model.
i nt
sc_main(int ac, char* av[])
{
sc_clock CLK("QK");
sc_signal < sc_Iv<32> > AD,

sc_signal < sc_logic > ADS
sc_signal < sc_logic > DC
sc_signal < sc_logic > HOLD,
sc_signal < sc_logic > HOLDA
sc_signal < sc_logic > INT;
sc_signal < sc_lv<3> > | NTB;
sc_signal < sc_logic > NM;
sc_signal < sc_l ogi c > PEND,

August 2001 Synopsys, Inc. 51

Chapter 3: SystemC SmartModel Library SmartModel Products Application Notes Manual

sc_signal < sc_logic > RDY;
sc_signal < sc_logic > RST;
sc_signal < sc_logic > RW
cake fz Cake("Wapper", Mbdel | nstanceNane) ;
Cake. ALK(QLK signal ());

Cake. ADS(ADS) ;

Cake. DQ(DO) ;

Cake. HOLD(HOLD) ;

Cake. HOLDA(HOLDA) ;

Cake. | NT(I NT);

Cake. | NTB(| NTB) ;

Cake. NM (NM) ;

Cake. PEND(PEND) ;

Cake. RDY(RDY) ;

Cake. RST(RST) ;

Cake. R RW;

Cake. AD(AD) ;

[/ CQher initializations here.
sc_start(-1);

return O;

}

Note that preceding sc_mai n, thereis usualy a module containing command (and
possibly port) stimulus. The following shows an example of command stimulus:

cake fz cmd CakeOrd(" CakeQmd", Mbdel | nst anceNare) ;
CakeQmd. set_nsg | evel (Ox4fffffff, status);

CakeQmd. i dl e(0Ox1, false, status);

CakeOnd. fl ex_print_nsg("Hello Wrld", status);
CakeOnd. read_req(Oxf 00, 0x3, false, status);

CakeOnd. read_req(Oxf 04, 0x3, false, status);

CakeQOmd. wite(Oxf 08, 0x3, 0x76543210, fal se, status);
CakeQOmd. wite(OxfOc, 0x3, OxfoOf0O, fal se, status);
Cake Regi ster (perations

The following fragment illustrates how to set and get values from acake_f z register. It
first setsthe value of the cnt cl k model register to, waits two cycles, then gets the value
back.

Cake Regi ster (perations

int status;

CakeQml. cntcl k = 5;

vait();

vait();

CakeOnd. cnt ¢l k. RegReq(true, status);

sc_|lv<l6> Ontd k = CakeQOnd. cntcl k. RegRsl t (status);

The following is an example of a complete thread process performing pin commands.

Cake Pin Command exanpl e
SC MODULE(CAKEPi ns) {

52 Synopsys, Inc. August 2001

SmartModel Products Application Notes Manual Chapter 3: SystemC SmartModel Library

sc_in< bool > CLK;
sc_inout< sc_| v<32> > QmiAD,
sc_out< sc_logic > OHALD,
voi d eval ();
SC_CTCOR(CAKEPI ns)
{
SC THREAD(eval) ;
sensitive « CLK
}

}; /1 CAKEPi ns

voi d CAKERiI ns: : eval ()

{
int status;
cake_fz_cnmd CakeOnd(" CakeQmd", Model | nst anceNane);
for (int i =0; i <12; i++) {
vait();
}

CakeOnd. cnmdAD. Set Pi n(" XOX0X0X0XOX0X0X0X0X0XOXOX0X0X0X0") ;
while (true) {
CakeOnd. cndAD. Pi nReq(f al se, status);
CakeQmd. cndHOLD. Pi nReq(true, status);
QmAD = CakeOnd. cndAD. Pi nRsl t (stat us) ;
sc_| ogi ¢ HOLDval ue = CakeQOnd. cndHOLD. Pi nRsl t (stat us) ;
OHAOLD = HALDval ue;

Make Files

The Makef i | e must be arranged to compile and link the models and link the associated
runtime support files. You would add the model . cpp filesto the SRCS variable, add the
SWFTI NCvariableto | NODI R and define EXTRA LI BS, as shown in the Makefile
example. EXTRA LI BSarrangesfor | i bscswift.a tobeavailablein case SWIFT
models are used in the design. It also addsthe - | dI library sol i bswi ft will be loaded
dynamically. LMC_HOVE would typically come from the corresponding shell
environment variable. Makef i | e. def s isfrom the exanpl es directory in the
SystemC distribution.

TARGET_ARCH = |i nux

MODULE = cake_tb

SRCS = cake_tb.cpp cake fz.cpp cake fz_cnd. cpp
OBJS = $(SRCS: . cpp=.0)

i nclude ../ Makefile.defs

SWFTINC = -1$(LMC_HOVE) / si m systent/src

| NCDI R += $(SW FTI NC)

August 2001 Synopsys, Inc. 53

Chapter 3: SystemC SmartModel Library SmartModel Products Application Notes Manual

EXTRA LIBS += -L $(LMC_HOVE)/1ib/x86_linux.lib -Iscswift -Idl

Simulation

With the above in place, you can proceed as described in the SystemC documentation
and release notes. For more information on SystemC, you can obtain documentation
from http://www.systemc.org.

54 Synopsys, Inc. August 2001

http://www.systemc.org/

SmartModel Application Notes

A

attributes 42
command stream |D 42
configuration 42

cycle-simulator framework 45

DelayRange 42
files42

InstanceName 42
model configuration 42
TimingVersion 42

C

C++
classlibrary 41
keywords 45

cake model command declarations 47

cake pin declarations 47
cakeregister declarations 47
cake fz_cmd class 46

Causal Trace VSB window 30

causal tracing

enabling 27

MCF example 28

report example 28
CFlex model 49
class

command 46, 51

constructor 42, 46

template 47
classlibrary, C++ 41
command channel 43
command channel session 44
Command Core

FlexModel 34
commands

channel 43

class 46

do 15

echo 15

Flex model pins 46

August 2001

Synopsys, Inc.

Index

Index

general, for MCF 15
header 46, 51
instance name 45
interactive for Visual SmartBrowser 31
load 14
member functions 46
model 44
model name prefixes 46
session 43
smartcen 14
stream ID 42
streams 46
testbench 51
Verilog 46
comments, submitting 10
configuration attributes 42
constructor class 46
conventions, typographical and symbol 8
cycle simulation environment 41
cycle simulator 42

D

datasheets, accessing 13
debugging tools for SmartCircuit models
15

declarations

constructor 46

register 46
design flow for SmartCircuits 12
destructor class 46
devices, simulating unsupported 31
do command 15
do filefor MCF 25

E

echo command 15
effect tracing
MCF example 29
report example 30

55

Index

environment variables
$LMC_COMMAND 43, 44
$LMC_HOME 44, 53

event simulation 41, 42

event tracing 15

event tracing for VSB 22

examples
model logging command 44
session command channel 44

F

fault smulation 43
file attributes 42
Flex models 42, 46, 51
HDL wrapper 46
FlexModel
Command Core 34
four-state logic 45
FPGA
design flow 12
SmartModels 11
verifying designs 11

G
global signals49

H

HDL 42
help about Synopsys products 9
HPUX 48

instance name 46
command 45
model 45

interactive SmartBrowser commands 31

K
keywords, C++ 45

56

Synopsys, Inc.

SmartModel Application Notes

L

Linux (x86) 48
load command switches 14

M

M CF commands 15
MCF do file 25

MCF. See aso model command file.

memory contents 43
MemPro models 42
Microsoft Windows NT 48
model
cake fz.h 45
cake fz_cmd.h 46
CFlex 49
class constructor 42
command channel 43
command class 46
command declarations 47
commands 43
SetLogFile 44
TraceEvents 44
configuration attributes 42
constructor 45, 46
Flex 42, 46
header file 51
instance 46
instance name 42, 45, 46, 51
logging 44
MemPro 42
non-Flex 42
pin 46
ports 45, 49
status report 43
model command channel 43
model command file (MCF) for
SmartCircuit model 13
model command header file 46
model directory 9
model status report 43
monitor feature for VSB 25

August 2001

SmartModel Application Notes

N
Non-design verification pin
using sync8 fx as 37
no-timing mode 42

pins
commands 46
declarations 46
name 46
read-only 46
writable 46
ports
connected 49
driver 49
naming convention 45

R

reset 43
runtime support files 53

S
SCFFILE property for SmartCircuit models
13

session commands 43
settling-out technique 42
smartccn command 14
SmartCircuit model
basic information 13
debugging tools 15
definition 11
design flow 12
model command file (MCF) 13
SCFFILE property 13
SmartModel library 41
SmartModel Library documentation 7
SmartM odel windows 44
Solaris 48
SOLV-IT! 9
SourceModels
symchronizing with FlexModels 36

August 2001

Index

static member function, LSC_SwiftModel
43

status report 43
stream name 46
SUN SC5.0 compiler 48
Support Center 9
SWIFT integration 41
SWIFT models 51, 53
sync8_fx

as non-design verification pin 37

asuser pin 37

model interface 35

synchronizing non-FlexModels 34
Synchronizing

with non-FlexModels 34
Synopsys website 9
SystemC 41

classlibrary 41

design 51

distribution 53

module 49

scheduling 49
SystemC/SWIFT 43
System-on-Chip (SoC) 41

T

testbenches 42, 49

Timing 42

timing check control 42

typographical and symbol conventions 8

U
unsupported devices, smulating 31
User pin
sync8 fx as 37
\Y

Verilog command 46
Visual SmartBrowser (VSB) 15

Visua SmartBrowser, interactive
commands 31

VSB

Synopsys, Inc. 57

Index SmartModel Application Notes

Causal Trace window 30
causal tracing example 28
causal tracing report 28
Connection View 18

effect trace report example 30
effect tracing example 29
enabling causal tracing 27
event tracing 22

Examine View 18

global select tool 18

Hierarchy View 18

monitor feature 25

timing form. timing form for VSB 22
using. Visual SmartBrowser 15

w

Windows 15
windows

including in model command file 25
wrapper generation 44, 51

58 Synopsys, Inc. August 2001

	Contents
	Figures
	Preface
	About This Manual
	Related Documents
	Manual Overview
	Typographical and Symbol Conventions

	Getting Help
	The Synopsys Website
	Synopsys Common Licensing (SCL) Document Set

	Comments?

	1 Verifying FPGA Designs
	Introduction
	What Are SmartCircuit Models?
	SmartCircuit Design Flow
	SmartCircuit Models — Some Basics
	Load Command Switches
	Other General MCF Commands

	Debugging Tools
	Visual SmartBrowser (VSB)
	Windows
	Event Tracing

	Targeting Unsupported Devices
	Interactive SmartBrowser Commands

	2 Interfacing with Non-FlexModels
	Introduction
	Synchronizing with Non-FlexModels
	Sync8_fx Model Interface
	Using PCI SourceModels and ppc603_fx FlexModel in Same Design
	Sync8 as Non-design Verification Pin

	3 SystemC SmartModel Library
	Supported SmartModel Library Capabilities
	Command Control
	Attributes
	Timing
	Timing Check Control
	Command Channel
	Fault Simulation
	Save and Restore
	Reset and Reconfigure
	Model Status Report
	Dumping Memory Contents
	Model Logging
	Tracing
	SmartModel Windows

	Wrapper Generation
	Model Header File
	Model Command Header File

	Platform Support
	Product Usage
	Figure 9: Testbench Connectivity
	Installation
	Figure 10: Installing SystemC SmartModel Support

	Using SWIFT Models in SystemC Designs
	Wrapper Files
	Code Examples
	Make Files
	Simulation

	Index

