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People come and go in our lives, so does every coal particle in a

blast furnace. Some day you will become coal, and if you are lucky,

you might be used in a blast furnace.

Nothing is static, not us, not you, not any of the images we analysed.

Fighting against changes, being static, is like .... No opinion on that

one!

A language can be used to control people, a computer can be used

to control much more. It is only stupid people/things that are easy

to control, but again everything is relative.

Do not ask us about the truth, we are still searching. When we �nd

it, you will know it or you are already dead. If you are not dead, you

are too lazy or you know something we do not know.

To the poor people.

�Jihad�

To Linda and my parents.

�Igor�





Abstract

This master thesis, based on work performed at Luleå University of Technology

in cooperation with Mefos, is about measurement of pulverised coal �ow injected

into a blast furnace, compensating for some of the usually used coke. Coal is drawn

from an injection vessel and transported under pressure with the help of nitrogen

gas to a blast furnace. It is blown through pipes to the tuyeres where it is injected

into the iron making process.

Irregular coal supply to the furnace has bad in�uence on the quality of the

produced iron so reliable control is needed. In controlling the �ow, it is of great

importance that the on-line �ow measurement is accurate. Enhancing the existing

measurement would be bene�cial for the quality of the produced iron. Therefore

new means of blast furnace process surveillance and �ow measurement, using cam-

eras and image processing, are studied. The idea behind camera surveillance is also

bene�cial for estimation of other process parameters.

The main goal is obtaining relevant information from image data in order to

estimate the pulverised coal �ow. Methods for achieving this are investigated and

discussed. A comparison to old measurement data is made. Also validation of data

retrieved with the help of image processing is mentioned.

It has been shown that video monitoring in conjunction with image processing

is a feasible option when it comes to coal �ow estimation. The images include

potential information for other purposes like determining the temperature of the

�ame and how well the coal is distributed inside the blast furnace. This would

solve some of the problems and eliminate obstacles caused by the nature of the

steel making process.





Preface

People have always asked us: Why study automatic control? The real question

is: Why not? There are not many �elds that a�ect our modern life as much as

automatic control does, of course mathematics and possibly physics are cornerstones

in any nutritious study. They are hard to compete with. Applied science in all its

forms is the way to go to enhance products and tools that are essential in today's

society. The achievements in the �eld of automatic control are surrounding us in

our everyday lives, no matter if we like it or not. A lot of things out there are

already done, many more are waiting to be done. There is also a lot of �ne tuning

to take care of, which is sometimes even more challenging. We wanted to be a part

of this evolving development. We want to thank Anders Grennberg, without him

we would not be closing loops these days.

This work is a part of a bigger project with involvement from the industrial and

research world, backed up by PROSA - Centre for Process and System Automa-

tion1. Our master thesis was carried out at the Department of Computer Science

and Electrical Engineering, Control Engineering Group at Luleå University of Tech-

nology2 in cooperation with Mefos3. The work you hold in your hands is brought

to you by two human beings, but is a result of many more human participants.

People without whose knowledge and willingness to help, you would not be able to

read this report.

During the time we spent on this research we learned to know several people

with di�erent backgrounds from di�erent companies, gained more understanding of

the complicated coal injection process in a blast furnace, and improved our skills

in image processing.

We had great help from our examiner Professor Alexander Medvedev and our

supervisor Ph. D. Olov Marklund, both at present working for the Department of

Computer Science and Electrical Engineering at Luleå University of Technology.

Thank you for o�ering us a part of your valuable time. We would also like to

thank Andreas Johansson, Wolfgang Birk and other researchers at the Control

Engineering Group. Roland Lindfors at the AV-centre. Per Mäkikaltio and others

at the Division of Industrial Electronics and Robotics. Krister Engberg at the

Division of Signal Processing for putting up with us. The system administrators,

Mattias Pantzare and Jonas Stahre for their indispensable help. All working at

Luleå University of Technology. The Free Software Foundation4 o�ering the world

the best they can achieve, without them we would be dependent on commercial

software, except for MATLAB where we had no time to write the needed toolbox

for Octave5. Not to forget the helpful people at Mefos, LKAB, Securitas and Björn

Olsson at SSAB. Re-Tek members for keeping up the spirit of being atrocious and

taking the computers we borrowed before we �nished the project. El-Tek members

1PROSA's home page. URL: http://www.sm.luth.se/csee/prosa/html/
2Department of Computer Science and Electrical Engineering's home page. URL:

http://www.sm.luth.se/
3Mefos' home page. URL: http://www.mefos.se/
4Free Software Foundation's home page. URL: http://www.fsf.org/
5Octave's home page. URL: http://www.che.wisc.edu/octave/octave.html
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for making it possible to buy provisions during the time we spent writing this report.

Last but not least, we want to thank our friends for their psychological support.

Thank you all, you made us do it.
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CHAPTER 1

Introduction

Heavy industries are the backbone of our society, any improvements in this

area mean indirectly a better standard of living. Steel and iron production is one

of these industries. Steel making has evolved dramatically since mankind learned

how to produce it. Yet there is still a lot to do because the process itself is quite

complicated and not fully understood. New technology has contributed in many

ways to improve the steel making procedure, where involvement of people with

di�erent backgrounds and academic knowledge is essential.

In existing blast furnaces there are many problems, which remain unsolved

despite many years of thorough research. New improvements and breakthroughs

are made every day, but there will always be more work to be done due to the

sophisticated process nature. E�ciency, quality, environmental issues and cost

reduction requirements are the main objectives. The fuel used in the furnace is

one of the targets. Changing the kind of fuel used has shown very good results.

Traditionally coke is used. Many other alternative fuels [10] have been tested, such

as pulverised coal, natural gas, oil but also waste materials. The future supply of

coke [1] is another problem that might lead to steadily increasing prices. Pulverised

coal has become a good alternative. It is 30-40% cheaper and more environmentally

friendly [12] than coke. Using pulverised coal resulted in a 40% saving in coke

requirements at British Steel, Scunthorpe works [11], [13]. In addition, pulverised

coal has a quicker impact on the reaction in the active zone of the furnace.

Beside choosing an alternative fuel, steelmakers need a better overview of the

process. Controlling the product quality relies on identifying the process param-

eters from a metallurgical point of view and how well the process is controlled.

Controlling the process, beside unidenti�ed process parameters, runs into problems

related to �ow measurement, temperature measurement and fuel distribution in the

blast furnace which are hard to deal with using old-fashion techniques because of

the high process complexity and the very demanding environment.

Quick development in computer hardware has opened new perspectives and

possibilities. At present it is an easy task to process a large amount of data to

extract useful information in order to control and supervise the steel production in

a blast furnace. One way to do this is the use of cameras pointed to the pulverised

coal outlet from the tuyeres into the furnace. Camera images can be analysed in

order to determine di�erent important process parameters. The goal is to calculate

high quality parameters that re�ect what happens in the furnace. This will make

life easier for metallurgical and automatic control people.

A prestudy [2] has shown that there is a signi�cant relation between the pul-

verised coal mass �ow estimation and the size of the coal plume in the analysed

video recorded series of images. The recording was done with a black and white

camera. Deeper investigation is required to verify the results and �nd algorithms

for calculation of the coal plume volume and coal �ow estimation, but also tem-

perature and coal powder distribution. It is also interesting to study the result

11



12 1. INTRODUCTION

obtained with a colour camera in order to use several independent estimation chan-

nels. In this report we will focus on the �rst part, i.e. coal �ow, but our results

will hopefully be useful for the other targets too.



CHAPTER 2

Process Description

We had an opportunity to work on LKAB's experimental blast furnace at Mefos

[17], where we had a setup of cameras and a possibility to collect needed data. In

this chapter we will brie�y describe the di�erent parts of the plant and the coal

injection part of the process.

DA

B

C

Figure 2.0.1. A schematic overview of the plant at Mefos.

2.1. The Blast Furnace

The blast furnace at Mefos is marked with an �A� in Figure 2.0.1. A picture of

the actual installation is in Figure 2.1.1. It has three tuyeres and a diameter at the

tuyere level of 1.2 m. The working volume is 8.2 m3. The hot blast is produced in

pebble heaters, capable of supplying 1300 ÆC of blast temperature. The furnace is

designed for operating with a top pressure of 1.5 bar. It has a bell-type charging

system without movable armour. The coal injection system, see �B� in Figure 2.0.1,

features individual control of coal �ow for each tuyere. Gas cleaning system, part

�D� of Figure 2.0.1, consists of dust catcher and electrostatic precipitator. Material

is transported to the top of the blast furnace through �C� as shown in Figure 2.0.1.

A tapping machine with drill and mud gun is installed. The blast furnace is well

equipped with sensors and measuring devices, and an advanced system for process

13



14 2. PROCESS DESCRIPTION

control. Probes for taking material samples from the furnace during operation are

being developed.

Figure 2.1.1. The blast furnace body.

LKAB use the furnace primarily for development of the next generation of blast

furnace pellets. The furnace performance shows that it is a good tool for other

development projects. An important area is recycling of waste oxides. Injection

of waste oxides is another research area as well as injection of slag formers. The

interesting parts of the plant are presented in Figure 2.1.2.

Air Lock Vessel

Vessel
Coal Injection Slag Vessel

���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������

Blast Furnace

Camera
Video

Tuyeres

Figure 2.1.2. The most relevant parts, for this project, of the

experimental blast furnace at Mefos.
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Figure 2.2.1. Control screen for coal injection, at Mefos.

2.2. Coal Injection

The coal injection arrangement, Figure 2.2.1, consists of two coal vessels and

three pipes each ending with a tuyere. The three tuyeres are evenly spaced around

the blast furnace, as shown in Figure 2.2.2.

Blast Furnace
Video Camera

Pulverized Coal Pipe

Tuyere

Coal Plume

Furnace
Wall

Figure 2.2.2. The three tuyeres are surrounding the blast furnace
with the surveillance cameras supporting framework.

Looking again at Figure 2.1.2. The upper vessel, the one that is �lled with coal

when needed, works as an airlock vessel used to pressurise the coal vessel below.

From the lower vessel, called the injection vessel, coal is divided and distributed

under pressure through pipes to the tuyeres in the blast furnace with the help of

nitrogen, which serves as a carrier medium. The left vessel is used to inject slag
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when desired. A big problem is determining the behaviour of the coal particles

travelling through the pipes. That is because of the various size of the particles,

turbulence e�ects in the pipes and pipes' characteristics. Coal particles can clog in

a pipe, which can disturb the process before being discovered. Another problem is

leakage of the carrier gas. Solution for the latter is proposed in [6].

2.3. Current Control

The existing control of the pulverised coal �ow to the blast furnace is based on

a continuous on-line measurement of the coal �ow itself. Although this is true, it is

not the whole truth. It has been shown that the �ow measurement device is not very

accurate, that is why the current control is dependent on a weight measurement of

the injection vessel.

2.3.1. Sensors. Mainly we can talk about three �ow measurement devices,

every one of them connected to pipes transporting pulverised coal to the tuyeres.

The devices used are Ramsey DMK 270 industrial mass �ow rate and velocity mea-

suring instruments for non homogeneous media [16]. Internally the device consists

of a solids concentration sensor and a velocity sensor with two measurement points

separated by a distance S, based on the capacitive measuring principle. The par-

ticle stream is measured in two points which the velocity transmitter correlates to

�nd the closest similarity between them. From this correlation function, the transit

time T from point one to point two can be determined. In the solid concentra-

tion sensor the change in capacitance is proportional to the solids concentration,

this voltage signal is transformed into a frequency signal and is Pulse Frequency

Modulated (PFM).

The �ow rate Q is given by Q = C � V � Asensor , where C is the concentration

of the medium, V its velocity and Asensor is the sensor cross-section area and is

calculated with Asensor =
d2
sensor

��

4
, where dsensor is the sensor diameter.

The concentration C = Ka

10
�(fPFM�fPFM0

)�K, whereKa is an adaption factor

to concentration sensor, fPFM is the measured frequency of PFM concentration

signal, fPFM0
is the frequency of PFM signal at concentration zero and K is a

calibration factor. Finally the velocity is calculated with the well known formula

V = S
T
.

Not to forget that the both vessels are equipped with weight gauges and pressure

meters. Other important sensors are the pressure measurement devices in the coal

injection pipes.

2.3.2. Controllers. Figure 2.3.1 is a schematic overview of the main con-

trollers. Because the �owmeter is not reliable, the on-line �ow measurement is

multiplied by a correction factor calculated according to the injection vessel weight

loss deviation, during a certain period of time. See Figure 2.3.2 for details. Do-

ing so the idea of on-line measurement is lost, in a short term perspective, while

it is relatively accurate considering a longer period of time. The corrected �ow

measurement itself is the output of a PI-controller using 1 as its setup value and

feedback with the �owmeters to coal vessel weight ratio. Before dividing the �ow

measurement by the vessel weight both signals are windowed with a window length

of 10 minutes before performing the division. This is done because the scale used

in the vessel has a limited sensitivity and a big error margin, if compared to the

�ow measurement during a short time.

The coal injection is controlled with three PID-controllers, one for each tuyere.

An operator is supposed to feed the system with the desired amount of coal �ow

needed in the furnace, the amount is divided by three and the result serves as a

setup value for each of the controllers. The output from the PI-controller is used as
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Figure 2.3.1. Coal powder injection control.

.

DMK 270

kg/s
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Concentration

Velocity

Mass Flow 1

Function

X
Weight Multiplicator

Mass Flow 1
Weight Corrected

Coal Pipe 1

Mass Flow 2
Mass Flow 3

Coal Vessel Weight
Slag Vessel Weight

Figure 2.3.2. A principle scheme for pulverised coal mass �ow calculation.

feedback. The control signal from each of the PID-controllers is used to control a

valve placed before the �owmeter on each pipe. A control based on these terms can

not be perfect having in mind the bad quality of the resulting measured/calculated

signals. Depending on how the multiplicator changes, the control signal will behave

di�erently. We will show later in Chapter 4.1 that some control signals have a

strange behaviour.

2.4. Video Surveillance

The conditions surrounding the steel making procedure are rather rough. The

very high temperature of the �ame and the high brightness from inside the blast

furnace make life hard for those who want to control or study this process. The

existing cameras at Mefos can not handle the incoming high light intensity and they

need to be protected from the heat. A damping �lter has to be employed to make
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the video picture viewable. The �lter itself is a dark green piece of thick glass that

is placed a bit away from the camera lens. The cameras themselves are mounted

about two meters from the outer wall of the blast furnace and are built-in inside a

protecting cover. The light from inside the furnace is led to the cameras through

peek holes in the wall near each tuyere via protecting pipes.

Tuyere

Coal Plume

Pulverized Coal PipeFurnace
Wall

Video Camera

Protecting Cover

Filter

Protecting Pipe

Panasonic

WV−CL410

Figure 2.4.1. The video camera setup.

For a full comprehension of the whole video camera apparatus, Figure 2.4.1

might be helpful for the devoured readers. On its way to the lens light passes the

previously mentioned glass �lter. The characteristics of this �lter have not been

examined in great detail but having a closer look at the three colour bu�ers shows,

for the human eye, that the red and in particular the green light pass the �lter

almost una�ected while the blue light is �ltered out to the extent that the blue

bu�er becomes nearly useless, as discussed in Chapter 5. It is therefore desired to

solve the �ltering problem. We had the possibility to use transparent glass instead

of the green one, which we believed would leave all the three colour bu�ers unspoilt.

By doing this we risked introducing overexposure to the video surveillance system.

Possible solutions will be discussed later in this report.

(a) With green glass. (b) With transparent glass.

Figure 2.4.2. Sample images taken with green glass as �lter and

with transparent glass.

An example of what is seen with the help of the cameras is in Figure 2.4.2,

where the mouth of the tuyere is seen together with a dark, elliptic shaped cloud,

the pulverised coal injected inside the furnace.



CHAPTER 3

Collecting Data

Doing a project of this nature needs of course collaboration with the industry in

order to improve things. Simply there is a need of being at the �eld for investigating

possible ways to get across suitable data to kick-o� the project. People working at

the plant know how to run it and how it behaves. Collecting data does not only

mean pure data measurements, it also includes collecting the knowledge possessed

by the plant workers. Every detail is important, every worker has something to tell

that we probably need to know. The knowledge we gained from people in the �eld

is spread all over the report. Below we are dealing mostly with measurement data

collection.

3.1. Available Signals and Equipment

To start with, we will shortly discuss which signals were available to us for fur-

ther study. After an exhaustive investigation of the process and the parameters that

were available and examining the signal collecting equipment we �nally concluded

what had to be done. It was obvious right from the start that the coal �ow signals

were of importance for this project. Also the nitrogen pressure in the pipes leading

the pulverised coal to the blast furnace was thought to be of interest. Further some

other signals were considered in case they would later show to be signi�cant for the

study of the coal powder �ow. For convenience Table 1 with available signals is

attached. Of course there were many other signals available but we did not think

that they were of interest.

Nr. Connection Internal Signal Tag Signal Description Range

1 205 31PI101 Pressure, inj. pipe 1 0-16 bar

2 207 31PI102 Pressure, inj. pipe 2 0-16 bar

3 209 31PI103 Pressure, inj. pipe 3 0-16 bar

4 298 31FV138 Control sig., pipe 1 0-100%

5 300 31FV139 Control sig., pipe 2 0-100%

6 302 31FV140 Control sig., pipe 3 0-100%

7 029 31FI101 Mass �ow, pipe 1 0-41667 g/s

8 031 31FI102 Mass �ow, pipe 2 0-41667 g/s

9 033 31FI103 Mass �ow, pipe 3 0-41667 g/s

10 237 31PI021 Pressure, inj. vessel 0-20 bar

11 470 31WI001 Weight, inj. vessel 0-3000 kg

12 322 31PI108 Pressure, lock vessel 0-16 bar

13 474 31WI102 Weight, lock vessel 0-3000 kg

Table 1. The considered signals and their description.

Unfortunately the collected signals could not be taken straight from Mefos'

computer system. The reason for this was simply the de�cient capacity of the

presently used system. In this case it was necessary to wire a signal collecting

19



20 3. COLLECTING DATA

equipment into an electrical cabinet, consisting of a National Instrument data ac-

quisition box SCXI-2000 equipped with SCXI-1120, an 8-channel isolation ampli�er

and SCXI-1100, a 32 channels programmable ampli�er with gains. Those modules

contained an IO-board and an analogue to digital converter with ampli�ers. In to-

tal we had two di�erent opportunities to log signals, we did that on three di�erent

dates. The 8-channel card was used in the third logging session while the other one

was what we had in the �rst and second session. A portable computer was used to

store data with the help of the data collecting programme LabView. This was the

best option available although not very favourable, which will be discussed later.

The signals in the electrical cabinet were in the range of 4-20 mA, a current circuit

connection was employed for its robustness to signal noise, not a�ecting the plant

and its easiness.

Not surprisingly this project also demanded video recordings from the three

cameras, beside the previously mentioned signals. These video signals could be

found at another electrical cabinet at the plant. Using ordinary video recorders,

video signals could be recorded for later usage and investigation.

3.2. Measured Signals

Knowing the situation presented in the previous section and the uncertainty of

which signals to collect, a decision was made to collect all of the 13 listed signals

considered if possible. This was done during the �rst data gathering on the 4th of

June 1999. Although some problems arose in the blast furnace, data was stored

on a laptop and transferred to stationary computers standing in a small image

processing lab at Luleå University of Technology, for later consideration. A couple

of days later sadly the pressure signal of injection pipe 1 was discovered to be faulty.

It was necessary to arrange another signal collecting session, which was eventually

done on the 10th of June 1999. This time all signals were �ne except for one of the

video signals. Apparently we can not have them all! Again there were problems

with the furnace process during data gathering time, which later turned out to

possibly be related to the equipment used. Although the data acquisition module

was thought to be galvanically isolated. Unfortunately it was found that was not

the case. Neglecting that fact collected data was analysed. During both those

logging sessions we used the same cabling with 250 
 resistances.

Wanting to verify what was concluded from the data collected in June another

trip to Mefos was required. This time, not wanting to be be blamed for disturbing

the blast furnace process once again. Another data acquisition card had to be

used. The National Instruments signal collecting box turned out to have a card

supporting collection of only eight signals at a time, if they were to be isolated. We

also changed the cables used and switched to 50 
 resistances. This was found to

be a good solution after an examination of what went wrong with the blast furnace

process during the June sessions at Mefos. Of course, a limitation like this meant

a risk. An omitted signal could later turn out to be of great importance. We had

to concentrate on two of the three tuyeres, speci�cally pipe 2 and 3. The chosen

signals have, looking in Table 1, numbers 2, 3, 5, 6, 8, 9, 10 and 11. Motivation for

this choice was that mass �ow was wanted together with both the control signal

and pressure signal. Weight of the injection vessel as well as the pressure inside it

were also taken into consideration on the expense of the control, pressure and �ow

signals for tuyere 1. Control, pressure and �ow signals in pipes 2 and 3 were thought

to be su�cient regarding the small number of signals that could be gathered using

the available equipment. The main reason for this logging session was to record

a new video signal of the injection without using a green glass �lter, instead we

changed the glass in front of the camera in pipe 2 to a transparent one. The glass
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in front of the other camera, pipe 3, remained unchanged. Bad luck and possible

wiring problems resulted in a missed signal, this time it was the coal injection vessel

weight. A summary list can be found in Table 2. Other activities at the plant linked

to our work can be found in Table 3.

Occasion Date Time Duration Collected Signals Tuyeres Recorded

1 999-06-04 17:54:08-18:47:23 2-13 1, 2, 3

2 999-06-10 12:45:46-14:49:08 1-13 1, 2

3 999-11-18 13:24:34-15:04:24 2, 3, 5, 6, 8, 9, 10 2, 3

Table 2. Data collection occasions.

Occasion Slag
�

g

Nm3

�
Coal Setup Value

h
kg

h

i
Tapping Time

1 No 130 18:47-18:51

2 20 125 3:04-13:19 14:30-14:36

3 No 125 14:05-14:15

Table 3. Activities and setup values during the logging time.

During the third logging session we had an opportunity to disturb the coal �ow

in one of the pipes. We chose pipe 2. This test series originated from a need of

data for an extra validation of achieved results in a di�erent project ran by Ph.

D. student Andreas Johansson related to his research in clogging detection in a

pressurised system [6] at Luleå University of Technology. We refer to this test

series as Andreas test. This test is also interesting in our case to see if we can

detect the �ow changes with image processing. We had two valves which we could

close to prevent the coal �ow into the furnace. The �rst valve was located directly

after the injection vessel and before the �owmeter, the other valve was placed after

the �owmeter; we refer to those as the valve before and the valve after, relative

to the �owmeter as illustrated in Figure 3.2.1. We opened and closed the valves

repeatedly with di�erent throughput rates. The test duration was limited due to

a desire for not a�ecting the plant or ending up with a plugged pipe. We realised

later that the time between the di�erent actions was not far from the limit of being

too short, because the �ow measurement is very strongly �ltered; see Chapter 4.1

for further insight.

DMK 270

kg/s

Vessel
Coal Injection 

Flow Meter

Tuyere

Valve
After

Before
Valve

Valve

Controlled

Slag Vessel

Figure 3.2.1. The locations of valves along the injection pipe.

Table 4 shows the actions taken during the test, the valve position we mention

is actually the valve handle position and not the real valve opening rate (position)
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which is most likely non-linear. Notice that the valves were totally opened before

and after the test. Other signals as slag vessel weight and its pressure as well

as weight correction multiplicator should have been collected, but this was not

discovered before it was too late.

Action Time Valve placement Valve position

1 14:23:30 after 1/2 closed

2 14:24:30 after 1/1 opened

3 14:26:00 after 1/1 closed

4 14:27:00 after 1/2 closed

5 14:27:30 after 1/1 opened

6 14:29:00 after 1/2 closed

7 14:31:40 after 1/1 closed

8 14:33:00 after 1/1 opened

9 14:36:00 before 1/2 closed

10 14:36:30 before 1/1 closed

11 14:37:30 before 1/1 opened

12 14:38:00 before 1/2 closed

13 14:39:00 before 3/4 closed

14 14:39:40 before 1/1 closed

15 14:41:00 before 1/1 opened

Table 4. Actions and time schedule during Andreas test.

3.3. Video Recording

At the same time as data was collected using the data collecting module a video

recording had to be made. This was clearly a sensitive issue to deal with. The time

delay between the start of collecting other data and recording the video signals from

the cameras had to be determined in some way, because those signals were to be

compared during later analysis. The only viable alternative was to start gathering

data at a certain point in time, then start the video recording and marking a �xed

point in time on the �lm sequence by manually dimming the light to the cameras

for a couple of seconds. That way the time delay was restored later when analysing

data. Using a more sophisticated synchronisation method would be a better option

if it was not such a lengthy procedure, remembering that the electrical cabinets and

the cameras are apart from each other making a complex wiring scheme doomed to

fail in such environment, and also having in mind the quite small bene�ts employing

an approach di�erent from the simple solution used.

Video cameras presently installed at Mefos are of the type Panasonic WV-CL

410. These cameras were used at both occasions in June. However in November a

decision was made to try another, slightly more advanced camera for �lming the

injection at tuyere 2. The camera used was also a Panasonic camera from the

400 series. The di�erence was mainly the larger dynamic range, and employment

of a new Panasonic technique known as SuperDynamic. Good reference manuals

with the camera speci�cations could not be found. The necessity of using a more

advanced camera occurred to us when trying to record a �lm sequence without

the dark green protecting glass. Operators knew from experience that the existing

cameras were not able to handle the intake of very bright light when the protecting

glass was removed. Removing the dimming �lter, transparent glass was mounted

in its place. The new camera used was performing better than the old one but
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unfortunately it also reached the saturation point due to the extreme brightness of

the light from inside the blast furnace.

Another problem discovered during the signal collecting session in November

was the dynamic adjustment of the range. This caused changes in the background of

the picture depending on the amount of visible coal. When there is a lot of coal the

picture is percepted as darker by the camera so it adjusts to a darker picture, when

there is no coal the picture is brighter and again the camera adjusts accordingly.

As a result of these constant adjustments we get a background for the pulverised

coal cloud that is constantly changing. Those changes are not great but can be

irksome when, for instance, trying to retrieve information about the temperature

of the �ame. Problems are in that case caused by the fact that a change in colour

does not have to re�ect a change in temperature, which seems like a troublesome

case to solve. Maybe the easiest way to deal with this problem would be disabling

the auto adjustment function in the cameras used.

Further another source of concern is the noise introduced by the poor quality

video tapes and the video recorders themselves. Watching a recorded sequence it is

apparent for a human observer that unwanted noise is present. Luckily the extent

of this phenomenon is limited and it should not a�ect the outcome of later analysis

too much.

All problems discussed are evidently of harm for the quality of images to be

analysed. Obviously a higher quality of images is better but it has to be pointed

out that their quality is still well above what is needed for image processing to be

performed in order to obtain vital information about the blast furnace process.

3.4. Video Digitising

The recorded video signals on the tapes needed to be converted into a usable

format in order to process them in a computer. Digitising the video signals was

required. It is always hard to choose a computer environment to work with, in our

case the choice was easy. Microsoft's Windows family has never been a choice of a

serious researcher/engineer and hopefully will never be, specially when she/he deals

with automatic control. Free Software is widely available, reliable, supported and

su�cient in most cases. We used RTLinux as a platform for digitising the video

tapes we recorded. Using an ordinary S-VHS video player, a common PC (old

timer) equipped with RTLinux, a Matrox Meteor frame grabber card and a simple

grabbing program, see the source code in Appendix B.1, the work was accomplished.

The task here is to convert a full motion video, PAL-signal (Phase Alteration

Line) running at 25 frames per second, into single frames stored in a digital format.

The �rst step in the process of converting an analogue signal into a digital repre-

sentation is sampling. This is accomplished by measuring the value of the analogue

signal at regular intervals called samples. These values are then encoded to provide

a digital representation of the analogue signal. The power spectral density (PSD)

of the �ow signals, we have collected, shows that in the worst case a sampling time

of two seconds is su�cient. Remember that we are not sampling to control, we are

just trying to recreate the �ow signal in someway. Two seconds might sound too

fast but some of our �ow signals have a signi�cant frequency peak caused by bad

control. The same frequency peak has been found in the pressure and control sig-

nals. See Figure 4.1.3 for a closer look at PSD signals related to pipe 2, taken form

the second data collecting occasion, which can be compared to the ones related to

pipe 1, also from the second occasion, in Figure 4.1.4. As you can see the peaks

in (a), (b) and (c) are below 0,2 Hz, which means according to Nyquist's sampling

theorem, that a sampling time of 2,5 seconds ( 1
0;2�2

) should be su�cient. Choosing
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3 seconds sampling time is kind of adventurous because it will catch up with fre-

quencies up to 0,16 Hz which may result in some aliasing in our case. We assumed

that the characteristics, in the collected signals, would be re�ected in the data to

be extracted from the recorded video signal. Actually the �ow measurement device

used a couple of seconds data �ltering and the control system used at Mefos use a

time base of 0,20 - 0,25 seconds.

(a) 10 frames before capturing.

(b) 10 captured �elds of the frames above.

Figure 3.4.1. Interlace principle [3].

Video is sampled and displayed such that only half the lines needed to create

a picture are scanned at a particular instant in time. A video frame in our case

consists of two interlaced �elds of 625 lines. Interlace is the manner in which a video

picture is composed, scanning alternate lines to produce one �eld, approximately

every 1/50 of a second in PAL. Two �elds comprise one video frame. As shown

in Figure 3.4.1, if the upper sequence is captured by a conventional video camera

the result will be the lower sequence which means that our frame consists of two

di�erent �elds captured at di�erent times. This is a drawback in digitising analogue

video signals that use interlace. We had to separate each captured frame into two

�elds, but this did not a�ect our results. A reason for that is: We sampled at a

very low rate compared to the �eld rate and it is not very likely that much of the

image, in our case, has changed in 1/50 seconds. Figure 3.4.2 shows how this e�ect

is present in our case.

Another important factor when it comes to digitising is the frame grabber

equipment. The used frame grabber card, a PCI Matrox Meteor, should be con-

sidered as appropriate in our case. The card could make 24 bpp at 768 � 576 pixels

resolution. This gave us 256 � 256 � 256 (RGB) colours. At the time this project

started the device driver available for the grabber card, for Linux, was not of a

very high quality. We were forced, due to some possible hardware limitations, to

increase the delay time for the card in order to make the desired resolution men-

tioned above. This could sometimes lead to unwanted e�ects, which resulted in

grabbing an image combined of two frames, see Figure 3.4.3. We had to accept this

bug for the time being, specially because it does not appear so often and could not

have a major in�uence on the total result.

We did not use the real-time functionality in RTLinux for several reasons: The

program we wrote for grabbing the video frames gave a good synchronisation (a
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Figure 3.4.2. Interlace phenomenon in a sampled frame, from

our video recording.

Figure 3.4.3. An image composed of two di�erent frames.

couple of milliseconds), the sampling time was 2 seconds so a strict time scheduling

was not necessary and we wanted to make the program code for grabbing the frames

easier. Bear in mind the data acquisition programme used, LabView, was running

on Windows 95 sampling data every second. We have every reason to assume that

the sampling was not perfect on the millisecond level.

Because lack of a very good synchronisation signal, as mentioned in Chapter

3.3, to start grabbing the images we had to rely on our extremely good re�ex time
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and start grabbing when the synchronisation signal was visible on a monitor screen

attached to our VCR. Any mistakes here will result in a time delay when comparing

the logged data with the one extracted from the sampled video recording, which is

hopefully much smaller than the overall time delay for the whole system.

A fully operational system based on real-time image processing of the video

signal should consider to deal with a short sampling time and enjoy using the real

time features in RTLinux.



CHAPTER 4

Data Processing

The collected data is of no use if it is not analysed with a critical eye. Knowing

the data characteristics and its limitations is of great help when it is later used

in Chapter 7 for validating the extracted �ow measurement. Decisions based on

the analysed data can then be taken with good accuracy. To make this analysis

fast and practical, a small user interface was written in MATLAB. It was given the

name Danalyzer from the two words "data" and "analyse" and will be described

later in Chapter 4.2.

4.1. Analysis of Signals

Performing the analysis of collected signals it is close at hand to start by looking

at the plain signals, comparing their shapes and trends. Trying to �nd possible sim-

ilarities which could reveal interconnections and dependencies between the signals

is basically the �rst step.

To start with the pressure signals were viewed. First signal collecting occasion

gave us only the last twelve signals according to their numbers in Table 1. As

mentioned before the pressure in injection pipe 1 was not stored due to hardware

problems. The other two pressure signals looked quite the same, the pressure in

injection pipe 3 being slightly higher than the pressure in injection pipe 2. We do not

think that should be the case. The level, not considering the fast �uctuations, was

quite constant. Then the mass �ow for the three pipes was examined. It seemed to

be almost the same in all pipes although of course small di�erences could be noticed.

Moving over to the control signals it could be noticed that the control signal for

pipe 1 was behaving in a much better way than control signals for pipes 2 and

3. Looking at those signals it is clear that the controllers are not working as they

should. Both the control signals 2 and 3 reach their lower bound frequently and are

varying quite a lot which indicates bad control. Well, with a risk of being nasty we

would say, very bad control. Examine Figure 4.1.1 for clari�cation. Could this be

a result of our non-galvanically isolated data acquisition equipment? A comparison

between the control signals from the �rst and the second data collecting occasions,

which we carried out using the same cabling, shows that the control signals do not

saturate as often as the one in Figure 4.1.1 does. This makes us conclude that we

are not responsible for the bad control, something else went haywire. The controller

for pipe 1 functions somewhat better at that given time. Pressure as well as weight

of the lock vessel remain constant for the whole time period. For the injection

vessel pressure we notice a sinusoidal looking curve with a diminishing amplitude,

whereas its weight is steadily falling because coal powder is persistently drawn from

it and transferred to the blast furnace and no re�llment of the coal vessel has taken

place during logging time. The constant negative slope of the signal suggests an

even supply of coal to the blast furnace.

The second time we went to Mefos to collect signals we managed to get all

thirteen of them i.e. the same twelve as before and also the pressure in injection

pipe 1. Pressure signals for the three pipes look very much the same and there is

nothing distinctive about them except for the sudden variations seen throughout a

27
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(a) Pipe 1.
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(b) Pipe 2.
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(c) Pipe 3.

Figure 4.1.1. Control signals, �rst data logging occasion. X-axis
is samples taken 1 per second and Y-axis is sensor value in Volts.

section in the �rst part of the data. This is not as obvious in the mass �ow signals

except for the �ow signal for pipe 3. Actually it is hard to tell anything decisive

studying the mass �ow in pipes 2 and 3. Possibly the �ow is slightly higher in the

�rst part of the data. The control signals are weird looking things which have very

little in common. Control signal for pipe 1 is following a constant line with quick,

high variations. In control signal 2 we can discern that the signal drops after a while

which resembles a little the behaviour of control signal 3. In the last mentioned

signal again clear deviation from normal behaviour appears in the beginning. Lastly

looking at the injection vessel and air lock vessel signals it is clear that something

happens exactly the same time as seen in the other signals.

The strange behaviour in the beginning has been shown to be caused by tapping

of iron during logging time as stated in Table 3. Although the time does not exactly

match there is no indication that it could be caused by anything else. The �rst

tapping is visible in all the signals but the second one appears only in the control

signal of pipe 2. It has nothing to do with the duration of the tapping, because the

e�ect on the signals is visible during the whole tapping time. What happens in the

blast furnace during the tapping is a very interesting topic to look into.
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(a) Flow signal, compared to valve posi-

tion.
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(b) Pressure signal, compared to valve

position.
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(c) Control signal, compared to valve po-

sition.

Figure 4.1.2. Measured signals in pipe 2 (blue) compared to valve

position (red) during Andreas test. X-axis is samples taken 1 per

second and Y-axis is sensor value in Volts.

During the November visit to Mefos only eight signals were collected due to the

previously mentioned hardware limitations. One of these signals turned out to be

of no use, namely the injection vessel weight signal. Pressure in the vessel seems to

be relatively constant. Now looking at the other signals we have to keep in mind

that we choked the pulverised coal �ow for injection pipe 2 in Andreas test, as we

mentioned in Chapter 3.2. Strangling the �ow could only be done for short periods

of time not to block pipe 2 permanently, needing a serious intervention in the

system. Not very surprisingly inspecting the �ow signal 2 we can unambiguously

see distinct changes in the �ow, as Figure 4.1.2-(a) clearly shows. A very interesting

thing is the delay in the �ow measurement signal, it seems to be caused by some

�lter; this made us start scratching our heads. Later, this discovery will be treated

in Chapter 4.1.1.

Another interesting observation is that the �ow is not really a�ected until a

valve is totally opened or totally closed and we have an overshoot when a valve is

totally opened. A possible reason is that the valves have a non-linear characteristics

and that, as shown below, the �ow can be kept as long as the pressure is constant.
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A shame is that we never let the �ow measurement settle or saturate before we

changed the valve position. The pressure signal in pipe 2 did also respond to our

test, strangling of the pipe reveals itself by an increment/decrement in pressure.

As shown in Figure 4.1.2-(b) the pressure increases each time the valve after the

�owmeter is closed and decreases each time the valve before the �owmeter is closed.

It seems that the pressure in the pipe can be kept constant when a valve is half

closed.
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(a) Mass �ow.
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(b) Control.
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(c) Pressure.

Figure 4.1.3. PSD plots for di�erent measurements in pipe 2,

second occasion. Frequency is in Hz.

good look at the control signal of pipe 2, presented in Figure 4.1.2-(c) ensures

us about a reaction from the controller. The response time is about 30 seconds.

Sometimes we were about to reopen the valve before the controller hits its upper

limit. The more important thing is that the control signal increases when the

valve is closed, which is an indication of a functioning controller. The controller's

feedback, see Chapter 2.3 for further information, is a reason for the bad response

time; unless Mefos' engineers have designed it that way. That proves that at least

there is a reaction from the �owmeter when the coal �ow to the furnace is drastically

reduced. What can be considered as strange is that looking at the pressure, control

and �ow signals for pipe 3 there are no changes that could be directly connected to

the changes in the �ow for pipe 2. Since the coal leaves the injection vessel and is
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then divided in three �ows one could conclude that smaller �ow in one of the pipes

would mean more coal in the remaining pipes if the total �ow was to be the same.

Here we can deduce that either the total �ow decreased or that the �owmeters do

not work very well.
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(a) Mass �ow.
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(b) Control.
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(c) Pressure.

Figure 4.1.4. PSD plots for di�erent measurements in pipe 1,

second occasion. Frequency is in Hz.

Next step in the study of the collected signals was to try di�erent things, like

for example addition, subtraction and other such operation on the di�erent signals.

One of the more interesting things tried here was frequency analysis. Frequency

contents of our signals were analysed using Danalyzer, just as all of the above

analysis to make life simpler and save some time. Studying signals collected on the

4th of June, we found the same dominant frequency for pipe 2 and 3 in control and

�ow signals, as shown in Figure 4.1.3 for pipe 2. This could point to poor control

a�ecting the �ow and making it �uctuate or the opposite, if we assume that the

controllers are the same in all the pipes but the �ow measurement device behaves

badly in di�erent ways. For our purposes though this was an excellent opportunity

to check if the same frequency could be found in the processed images. This matter

will be investigated in Chapter 7.2, where all the data extraction is performed and

thoroughly discussed. We could not identify such control problems for pipe 1, see
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Figure 4.1.4, nor could they be found in the signals collected later, which should

not be misinterpreted as the control signal being unsurpassed.
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(a) Control-pressure, �rst logging.
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(b) Control-pressure, third logging.
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(c) Control-�ow, �rst logging.
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(d) Control-�ow, third logging.
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(e) Pressure-�ow, �rst logging.
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(f) Pressure-�ow, third logging.

Figure 4.1.5. Correlation between pressure, �ow and control sig-

nals for the �rst and third collected data.
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By looking at the correlation between di�erent signals, we can see how hard they

are coupled and see if there exist any delays. Figure 4.1.5 shows clear correlation

between the control and pressure signals. The control signal does not follow the �ow

signal as well as the pressure does. This indicates that either the control is bad or

there is something else beside the �ow signal that a�ects the control signal (which

we will see is true here) or both. Almost the same correlation is found between the

pressure and the �ow signals. The same �gure shows delays between the di�erent

signals. Notice that the the correlation plots are di�erent if you compare those from

the �rst nd the last occasion, there is a clear frequency present in the Figure 4.1.5-

(a) , (c) and (e). It is most likely the frequency we have pointed out earlier, that

we call �Mefos carrier-frequency�. Beside the di�erence in the frequency the delays

seem to be pretty much the same in both the �rst and third data collection. The

pressure is very dependent on the control signal with a delay of 3 seconds. In the

control-�ow correlation we see the clear feedback e�ect, represented as a negative

correlation with a very short delay and the positive correlation with a �ow signal

following the control signal after a delay of about 25 seconds. Notice also that the

negative correlation in the third signal logging is much stronger than the one in the

�rst one, implying a stronger feedback coupling. The pressure-�ow correlation plots

are very much alike the control-�ow correlation plots, with almost the same delays

translated by about -2 seconds which con�rms what we saw in the control-pressure

and control-�ow plots.

Having just these signals to study, it is hard to draw further conclusions. They

were mainly collected in order to, at a later stage, be compared to data extracted

from recorded �lm sequences. Thus, just as means to verify our sequitures from

image processing of the video.
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Figure 4.1.6. Comparison between the �ltered �ow signal

(green), un�ltered �ow signal (blue) and the valve position signal

(red).

4.1.1. Filter Identi�cation. We saw earlier that the �ow measurement did

not respond in the way we expected it to do when applying Andreas test. Because

we had no access to documentation regarding the �owmeter and the control system

in general, at the time we ran into this, we started to investigate the case. A

�lter was a good way to start in. Connecting a �lter to a measurement device
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is quite common. A possible �lter could be: H(z) =
z�(1�e

�1

22:3679 )

z�e
�1

22:3679

, obtained by

identi�cation.

Inverting the �lter and �ltering the �ow measurement with it should hopefully

recreate the supposed original signal. Figure 4.1.6-(a) hows how the �ltered signal

is related to the original signal and Figure 4.1.6-(b) shows how this �ts with the

valve position, after zooming on the interesting parts. A further knowledge of the

control system has shown that, as mentioned in Chapter 2.3, the feedback signal

sent to the controller is not the pure �ow measurement we have examined here.

Having a look in the user manual for the �owmeter the �lters are integrated in

the sub-measurement used in the device in order to calculate the �ow. For our

knowledge the measurement device can not be separated into a �ow measurement

and a �lter.

4.2. Danalyzer

Figure 4.2.1. A screenshot of Danalyzer.

A tool to simplify the routine work in MATLAB had to be developed. We

found a tool called Danalyzer1 that was developed during another project [4] at
Luleå University of Technology. Danalyzer was in its early development stage,

version 0,1, and needed some work to make it suitable for our needs. After further

development we reached what we called version 0,2. A screenshot is in Figure 4.2.1.

The Danalyzer essence is its portability and the ability to use for di�erent purposes

whenever there are signals involved that need to be analysed. Danalyzer should

combine ease of use with functionality and eliminate the tedious work to produce

needed plots and perform data analysis.

Danalyzer today is capable of viewing and manipulating data in di�erent ways,

the main features are:

� Viewing of signals.

� Browsing through the signals to view speci�c parts of them.

� Several plots on one window.

� Multiple windows with di�erent plots simultaneously.

� Analysis: FFT, PSD, removal of trends.

� Adding and subtracting signals.

� Decimation of the signals.

� Simplicity in creating data �les.

� Possibility of zooming and gridding.

� Loading of signal sets.

1Dnalyzer �les, version 0,1. URL: http://mir.campus.luth.se/washers/work/danalyzer/



CHAPTER 5

Image Processing

In order to be able to evoke any useful information from the images we have

sampled, we need to know more about them. A need for a close examination

of the images general properties is as important as the images themselves. As

we mentioned before we used two di�erent types of glass as �lters during the video

recording. We also used two di�erent types of cameras. This makes the comparison

we made here below not as bulletproof as we wanted it to be.

We will strive to explain most of the image processing carried out by inserting

nice illustrative images and plots as a complement to the explanatory text. In the

very beginning it might be appropriate to explain two systems for representation

of colour images, RGB and HSI. Later we will try to visualise the image content

using di�erent techniques.

5.1. Image Decomposition

Any description of the human visual system only serves to illustrate how far

computer vision has to go before it approaches human ability. In terms of image

acquisition, the eye is totally superior to any camera system yet developed. People

are continuously trying to improve the existing arti�cial vision systems. One of

the problems to be solved is how to represent colours. Several systems have been

invented for this purpose. Here we will only discuss a couple of the most frequently

used systems, RGB and HSI.

5.1.1. RGB and HSI spaces. First the RGB system will be presented. RGB

stands for red-green-blue. Using these three colours in di�erent amounts almost any

other colour can be produced. On a screen mixing is done by having three adjacent

dots, one dot for each of the three colours. If these dots are small enough and the

observer is far enough away, this gives the appearance of one pixel colour rather

than three adjacent ones. These three colours are primary colours, mixing any

combination of two of them does not make the third. In fact any three colours

could be used, providing they are independent i.e. primary. RGB is the most

widely spread colour system.

HSI stands for hue-saturation-intensity. HSI may be regarded as the same

space as RGB but represented in a di�erent coordinate system. Hue is e�ectively

a measure of the wavelength of the main colour i.e. there are di�erent numbers

representing di�erent colours. E.g. lets say 0 represents red, then move all the

way through di�erent colours up to 256, in case we have 256 colours, which again

represents red. Imagine a coloured disc that warps around, here 256 is mapped to 0.

Saturation is a measure of hue in each spot. If saturation is 0, then the �nal colour

is without hue, i.e. it consists of white light only. Intensity is simply a measure of

brightness of each pixel.

Consult Figure 5.1.1 for a visualisation of the colour spaces.

5.1.2. Image Quality. Colour image capture involves the capture of three

images simultaneously. With RGB, an early industry standard, intensity of each of

red, green and blue has to be measured for each spot. These are then stored in three

35
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(a) RGB model. (b) HSI model.

Figure 5.1.1. RGB and HSI model representation [7].

(a) Full color. (b) Red compo-

nent.

(c) Green compo-

nent.

(d) Blue compo-

nent.

(e) Grey scale. (f) Hue compo-

nent.

(g) Saturation

component.

(h) Intensity

component.

Figure 5.1.2. An image example with its decompositions in RGB,

HSI and grey scale.

matrices, every matrix containing the values for one of the colours. In our case every

spot in a matrix holds a value representing the intensity of the particular colour.

For each spot in every of the three matrices we had eight bits available allowing

256 di�erent values between 0 and 255, where 0 represents the lowest intensity and

255 the highest. Using MATLAB the grabbed images could be transformed into
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this form. Now further operations could be applied to them in order to retrieve

vital information. MATLAB allows also a transition from RGB to HSI and further

manipulation of images.

As an example a nice picture taken outside Luleå University of Technology

representing the university's logotype engraved in a block of ice, Figure 5.1.2, has

been separated into its RGB-components. We can also see the same image in grey

scale and its HSI-components. Dissection performed on this image will be used for

a quick comparison to our grabbed images.

(a) Full color. (b) Red compo-

nent.

(c) Green compo-

nent.

(d) Blue compo-

nent.

(e) Grey scale. (f) Hue compo-

nent.

(g) Saturation

component.

(h) Intensity

component.

Figure 5.1.3. An image taken with a green glass, with its decom-

positions in RGB, HSI and grey scale.

Now, decomposing an arbitrary image from inside the blast furnace taken with a

green glass in front of the camera gives images in Figure 5.1.3. For RGB, the red and

green part look �ne whereas the blue one looks di�erent due to the characteristics of

the �lter. For HSI, the hue and saturation bu�ers are very noisy and therefore hard

to deal with. The intensity component is quite alright though. Hue and saturation

can be compared to the ones in Figure 5.1.2 where no noise is present.

Finally the same was done to an arbitrary chosen image from the �lm sequence

�lmed with a transparent glass, Figure 5.1.4. Blue component of the RGB looks

better here than in the previous series. It would therefore be advantageous to

use transparent glass. Evidently, being able to use three channels instead of two

would increase the redundancy when approximating the pulverised coal �ow. A

restriction here are the cameras used. The very bright light makes even the better

cameras saturate. That is clear in the saturation component in Figure 5.1.3, the

lower area of the interior of the blast furnace, and in Figure 5.1.4 it is visible on

the edges around the peek hole. Fortunately, strictly measuring the �ow should

not be a�ected too much by cameras saturating for pixels surrounding the plume.

Temperature measurements of the �ame would be much more problematic. Looking

into the hue, saturation and intensity bu�ers we can conclude that there is still

noise present for hue and saturation although it looks sharper than previously. The

intensity component is not remarkably a�ected, it look more alike the grey scale

image than it did in the image taken with green glass.
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(a) Full color. (b) Red compo-

nent.

(c) Green compo-

nent.

(d) Blue compo-

nent.

(e) Grey scale. (f) Hue compo-

nent.

(g) Saturation

component.

(h) Intensity

component.

Figure 5.1.4. An image taken with a transparent glass, with its

decompositions in RGB, HSI and grey scale.

5.2. Image Content

An important issue is to �nd the di�erence between a coal free image and

another one with coal. A coal free image does not mean a gas free image, nor does

it mean an activity free image. It is only an image that seems to have less coal

than other images in general. This di�erences might be viewable when looking at

the intensity histograms of the picture. Another issue is �guring out where to look

for the plume, the �ame and the gases.

5.2.1. Image Histograms. n Figures 5.2.1 and 5.2.2 we see images with their

corresponding histograms. First we have RGB decomposition of the pictures and

then HSI components. The upper part of each �gure is taken with a green glass

and the lower part is taken with a transparent glass, the left side represents coal

free images and the right side represents images with coal.

In the RGB domain, Figure 5.2.1, searching the histograms of the images we

can make some observations. Starting with the green glass images and their RGB

decomposition, the green component is saturated in both images. From the red

components we can conclude that gases have an intensity value just below 50 in

those images. The blue component of the coal free image has other characteristics

than the other components, but the red and green components are slightly similar.

If we assume that the green glass is not harmful to the image contents, then we

have an unanswered question. What do we see there? We will try to answer this

question later in Chapter 5.2.2. We notice a slight shift from the high intensities to

the low ones when we move from a coal free image to one with coal. This is because

obviously the �rst hill represents mostly the coal in the picture. The conclusion is

that we can, by comparing histograms, determine if there is coal present or not.

This phenomenon is even seen in the blue component which is the most noisy one.

Comparing the images taken with the transparent glass and the green glass we

notice that the width of the �rst hill in the histograms changes. The �rst hill in the

histogram located at around value 50 is much wider when coal is present. Interesting
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(c) Based on an image taken with a trans-

parent glass, without coal.
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(d) Based on an image taken with a

transparent glass, with coal.

Figure 5.2.1. A comparison of image intensities in the RGB-space.

enough the green and blue histograms for the coal free image do not reach above

220, those bu�ers are not saturated. In fact the red component is not saturated

either. This is not the case in the image with coal except for the blue component.

Those shifts in the colour scale are quite interesting in temperature analysis and

are not found in the images taken with green glass. Notice also that in those images

we do have something in the intermediate register between the brightest and the

darkest hills. This was not present in the pictures taken with the green glass. It

might be an e�ect of better camera dynamics. The only di�erence here is that

green glass images contain more noise, especially for the blue component.

Moving over to the HSI domain it is easy to see that the hue and saturation

parts are noisy, possibly due to overexposure. Use of di�erent types of glass does not

a�ect the level of noise considerably. The intensity part is however not disturbed.
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(d) Based on an image taken with a

transparent glass, with coal.

Figure 5.2.2. A comparison of image intensities in the HSI-space.

It is easily seen that the �rst hill in the histogram for the intensities re�ects the

amount of pulverised coal present. We see a clear colour shift when changing the

glass. The histograms of the hue and saturation are not fully occupied, a possible

opportunity for histogram stretching appears. We can see which values are the

most frequent ones when coal appears in an image, but the problem is that those

values are not only reserved for the coal. Other elements in the image share the

same space.

Looking at the height and the width is the �rst approach. Also we could think

of comparing the low intensity part of the histogram to the high intensity part.

This could be done by forming a ratio between those after dividing the histogram

in half. A high ratio value would indicate coal whereas a low one would mean that

a minor amount of coal is present. It has to be pointed out that again we do not
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know which part is coal and which are just gases formed inside the blast furnace,

since both seem to be present in the same place in the histograms.
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(b) Di�erence of images taken with a

transparent glass.

Figure 5.2.3. Di�erence in the histograms in RGB-space. The

x-axes represent intensities and the y-axes are the di�erence in

pixels.

It might be hard to draw all the conclusions from the former �gures. Another

way of seeing the same thing is subtracting histograms of the coal free images from

those with coal. The result is illustrated in Figure 5.2.3 and 5.2.4. The positive

values represent intensities found in the images with coal and the negative values

are those found in images without coal.

In the RGB-space we see that the blue component of the images taken with

a green glass is quite noisy. Also the red one is a little bit so. The three bu�ers

in 5.2.3-(a) are di�erent, no speci�c characteristic, on the other side 5.2.3-(b) are

more or less three identical graphs.

Inspecting the HSI-space, the two histogram sets show di�erent behaviour.

The noise in the hue and saturation components is clear. Concentrating on the

histograms of the images taken with the green glass we can see in an image with no

coal values, 50-65, that are missing in an image with coal for the hue component.

The same phenomenon is visible between 115-175 for the saturation component

and above 250 for the intensity component. This is not true for the images taken

with the transparent glass. A clear impact of changing the glass can be seen, which

e�ects can not be addressed to the change of camera. The intensity component

graph is almost a copy of the RGB-components graphs for the same images, that

is usually the case in a healthy image.

We can see where we can expect coal and where we do not. A way to emphasise

the di�erence between the coal and no coal in the images is to multiply each image

histogram by the di�erence histogram we saw in the �gures above, before any

further image processing, in order to �nd the plume.

5.2.2. Image Threshold. To see if there is any de�nite threshold that can

separate the background from the interesting elements, the coal from gases and

so forth, we took the pictures we used above, decomposed them into their RGB-

components, quantised them linearly with ten steps and thresholded at those steps.

The steps used were between 0 and 1 with a step size of 0,1. Studying Figure 5.2.5

and 5.2.6 shows that threshold values can be examined in more detail. Evidently
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Figure 5.2.4. Di�erence in the histograms in HSI-space. The

x-axes represent intensities and the y-axes are the di�erence in

pixels.

the plume's size and to some extent also the shape changes are dependent on the

chosen threshold value. This is seen when looking at what parts of the image belong

to which shade for the three colour bu�ers.

Figure 5.2.5 is based on images taken with a green glass. In general, the images

show that the coal including the background is found between 0,1 and 0,5. The

background should be separated from the coal somewhere in between 0,1 and 0,2

and the gases lie between 0,5 and 0,9. The foreground is seen at the lower part of

the images. The blue components are kind of special, the last two thresholds are

reserved for the foreground. That could be something related to the temperature of

the foreground. The plume has a di�erent shape here and is getting bigger. There

are clearly elements that have a breakthrough in the blue component. Maybe the

green glass has enhanced it even more.

Next stop is on Figure 5.2.6 where we have images taken with a transparent

glass. The �rst thing to notice is that the plume is smaller. Overexposure? We

believe that the plume is distorted. Di�erent thresholds do not give separate areas

in general. It is easier here to see the background. There is almost no coal at 0,2.
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(a) Red component, image without coal.
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(b) Red component, image with coal.
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(c) Green component, image without

coal.
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(d) Green component, image with coal.
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(e) Blue component, image without coal.
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(f) Blue component, image with coal.

Figure 5.2.5. RGB components, based on images taken with a

green glass. Thresholded between 0 and 1 with steps of 0,1.
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(a) Red component, image without coal.
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(b) Red component, image with coal.
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(c) Green component, image without
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(d) Green component, image with coal.
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(e) Blue component, image without coal.
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(f) Blue component, image with coal.

Figure 5.2.6. RGB components, based on images taken with a

transparent glass. Thresholded between 0 and 1 with steps of 0,1.



CHAPTER 6

Algorithms

Here procedures for extracting information from video sequences will be dis-

cussed as well as a few useful algorithms designed to calculate changes in the pul-

verised coal �ow. Beginning with �nding a static background used to mask out the

coal plume, we will move through an alternative method of �nding a background

for every image, �nding the coal plume and last we will introduce three algorithms

for continuously approximating the volume of coal material injected i.e. a possible

replacement measurement for the currently used �ow measurement. We will also

try to point out possible drawbacks of the algorithms.

Starting with an image of coal injected into a blast furnace we need to end up

with data that can be used in our steel making process. We need to calculate coal

�ow, �ame temperature and coal distribution data. While we are not handling the

temperature and coal spreading parts in this report we will concentrate on the coal

�ow, emphasising that the same ideas apply for all three parts. Remember that we

have colour images, that means we have several information channels that can be

combined after processing them separately. The algorithms listed below handle a

single information channel of the image if nothing else is mentioned explicitly. All

the discussed algorithms are implemented, see Appendix , and tested in MATLAB.

See Chapter 7 for further investigation of the implemented algorithms used with

our data.

The steps from an image to a fully useful �ow data can be outlined as follows:

� Finding the image background.

� Finding the coal plume.

� Finding the plume's volume.

� Conversion between volume and �ow measurement.

The �rst three points are dealt with next.

6.1. Finding the Background

A background is the dark area in the image representing the protecting pipe

and the visible part of the tuyere. Finding a suitable background is a �rst step

in isolating the plume in every sampled image. The need of a background will be

explained in Chapter 6.2. The following discussion covers two di�erent investigated

approaches for �nding the background mask, a black and white image (binary

image). We want to keep apart the use of two terms throughout this report: plume

and �ame. By plume we mean the coal particle cloud being injected through a

tuyere meanwhile �ame refers to the surrounding burning area which might include

gases.

6.1.1. One Background Approach. The �rst background approach is to

search for an image with a small amount of coal powder visible. Reasonably one

would argue that the best way of �nding the plume would be to �nd the right

threshold values, �rst �nding the background and then extracting the plume. The

shortcoming of this method is obvious in our case. In our images the plume, the

visible part of the tuyere and everything around the opening in the blast furnace

45
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wall is very dark. Under those conditions there is no simple way of distinguishing

the coal plume from other parts. The same problem is encountered in both RGB

bu�ers as well as HSI bu�ers.

Figure 6.1.1. A typical �xed background image.

Establishing that thresholding is not su�cient means of recovering the back-

ground from our images, we have to think of slightly more advanced solutions. One

possibility is to look for an image containing very small quantities of coal and then

thresholding to obtain a nice background without any trash. As long as we can

�nd an image not containing too much coal this works. The drawbacks are that

it might be hard to �nd an appropriate image and that the cameras are not �xed,

which means that if someone would accidently bump into one of them, the whole

image would move and suddenly our background would not �t the picture i.e. a

new background mask would have to be found. The same applies to zooming, where

the operators usually have the possibility to do. Of course there is a simple cure to

this problem, �xing the cameras while the blast furnace is in use, and banning the

operators from doing any adjustment. Alternatively one can have a procedure of

taking fresh new coal free images every time the camera setup is changed. A useful

background image mask that can be used to remove all the uninteresting details is

in Figure 6.1.1.

6.1.2. Customised Background Approach. The one background approach
is su�cient in most the cases, but it has several limitations. If a worker happened

to touch the camera housing causing some trembling, then the extracted data se-

quence should be trashed until the camera settles. An operator can control the

camera position, focus and zoom. Any of these actions and any calculations based

on one �xed background is faulty. Most importantly, we want a system that is as

easy as possible and can automate most of the work with minimum interaction from

the operators. No one in the industry has time to grab a coal free image every time

something changes in the camera setup or its surrounding environment. A need of

�nding the background in every image is unavoidable.

Knowing that the colour of the coal is the same as, or at least very close to,

the colour of the tuyere and the surrounding area makes �nding the background a

hard task. Several algorithms have been looked at in order to evaluate which one

gives most satisfactory performance.

The easiest thing to do is just thresholding the images and doing some morpho-

logical operations to clean up unwanted trash and �x the shape of the background.
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Algorithm 1 Im�lter

im�lter(im, y)

1. pim  zero pad im with 2�y pixels, around im
2. mask  y�y zero matrix surrounded by ones

3. irows  rows(im)

4. icols  columns(im)

5. for r  y+1 to irows+y
6. for c  y+1 to icols+y
7. if pim[r, c] then
8. tmp  pim[r-y..r+y, c-y..c+y] � mask
9. if sum(tmp) = 0 then
10. pim[r-y..r+y, c-y..c+y] = 0

11. end
12. end
13. end
14. end

Typical cleaning up operations are: erosion, dilation, shrinking and �lling. The

problem with this simple algorithm outline is that we believe, from our exami-

nation of the images in Chapter 5, that there is no such a threshold that could

guarantee us a good background image. Compromises have to be made and more

advanced algorithms have to be implemented in order to eliminate the bad e�ects of

the compromises. Filtering can be used to remove any unwanted small objects that

are not possible to eliminate with the previously mentioned operations. Algorithm

1 does such kind of �ltering, it looks for islands, isolated pixels, and removes them

according to the �lter parameter which decides the size of the unwanted objects.

Figure 6.1.2. Edge detection containing some discontinuities.

Di�erent threshold values can be used to �nd the edges in an image. In our

case the most prominent edges are those between the peek hole's edges with the

tuyere and the inside of the furnace but also the coal particle cloud and the furnace

interior. If we could �nd a reasonable threshold that gives us the �rst mentioned

edges then we are done. This is the same problem as the one we mentioned in the

simple algorithm we started with above. Tests have shown that it is possible, most

of the time, to choose a threshold that can be used to edge detect the image and

keep parts of the most interesting edges. The result of such edge detection looks like
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the one in Figure 6.1.2. What we need to do in order to recreate our background

is retie our disconnected edge parts.

Algorithm 2 Imends

imends(im)

1. mask  

2
4 07 11 13

17 00 19

23 29 31

3
5

2. order  

2
4 01 02 03

04 00 05

06 07 08

3
5

3. eim  0

4. irows  rows(im)

5. icols  columns(im)

6. for r  1 to irows
7. for c  1 to icols
8. if im[r, c] then
9. tmp  the nine pixels surrounding im[r, c]
10. isum  sum (mask � tmp)
11. if isum 2mask then
12. dir  get the order of isum in mask
13. eim[r,c]  dir
14. end
15. end
16. end
17. end

Connecting edge parts like these is an easy task for a human equipped with a

pencil, but it is harder for a computer to accomplish the same thing. Algorithms

exist to connect parts/pixels representing a regular shaped pattern. What we have

here is a circle with a part of a tuyere inside; this is a tough one. Closer examination

has shown that we can assume that each two adjacent edge section's endpoints

facing each other should be connected to create a continuous edge. We can also

look at the direction of each edge part's endpoints before we connect it to anther

endpoint. In this manner we try to trace through the edge parts in order to connect

them all. Finding those endpoints, the edge part they belong to and the direction

they are pointing in is done using Algorithm 2. This algorithm takes a binary image

with disconnected edges and returns the possible endpoints and their direction

encoded as a digit 0-8, where 0 is no connection and is imply an isolated pixel.

In this algorithm we look at the eight-neighbouring pixels for each pixel before

deciding anything. A pixel is regarded as an endpoint if it is only connected to one

of its neighbours. We have to ensure ourselves that the edges are one pixel wide,

otherwise we need to look at more than the eight-neighbouring pixels to determine

whether a pixel is an endpoint or not.

A problem we still need to deal with are all the T-connections, as shown in Fig-

ure 6.1.3; those endpoints that are not to be connected are called ghost endpoints.

As you can see there is no doubt about how the green points should be connected

(8 ! 7 and 6 ! 5). It is not obvious knowing which point should be connected to

4. The right answer is 3 and in this case 1 and 2 are the ghost endpoints. They

should either be removed from the endpoint list returned by Algorithm 2 or dealt

with later in an algorithm that uses it.

Having the endpoints selected, it is time to move on and connect them. This is

accomplished with Algorithm 3, based on the ideas presented earlier in this section.
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Figure 6.1.3. T-connections and ghost endpoints.

Algorithm 3 Imconnect

imconnect(im)

1. oim  �nd and identify the objects in im
2. eim  �nd the pixels representing the endpoints of the objects in oim
3. dis  calculate the distances between all the pixels in eim
4. cim  im
5. while there are unconnected objects in oim
6. p1, p2  �nd the pixels with shortest distance in dis between non-

connected objects according to oim
7. cim  cim + connect p1 and p2
8. update oim by making the objects that p1 and p2 belongs to one object

9. end

Thus connecting the edges with a reasonable result is possible. This algorithm starts

with an image that has disconnected edge parts, identi�es them, �nds the endpoints

and makes a list of the object they belong to, calculates the distance for all possible

connections between the endpoints (watching out for ghost endpoints), looks for

the minimum distance, makes a connection between the two parts and updates the

endpoint list to regard the last connected parts as one part. The algorithm does

this until we have only one object in our image with no disconnections. An auxiliary

algorithm, Algorithm 4, is used to draw a line between two endpoints in an image

given their coordinates.

Back to our initial subject, �nding the background. Algorithm 5 lists the

needed steps. Edge detecting, morphological �ltering, connecting any disconnected

edges and �nally �lling the resulting object with ones to get the black and white

background.

In a short run the background image is static, the happenings are restricted to

the inner parts of the furnace. If we stack several succeeding images, the static part

of the images will be dominating. The background can now be regarded as the most

signi�cant pixels, those that are repeatedly found in most of the images within the

stacked bunch. It is now easy to �nd the edges surrounding the interesting area.

Algorithm 6 shows how this is done.

Similar approach is made in Algorithm 7, apart from the fact that we stack the

edges found in the images instead of the images themselves. Decisions have to be
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Algorithm 4 line2pixels

line2pixels(x1, y1, x2, y2 )

1. m  y2�y1
x2�x1

2. b  y2 - m �x2
3. r  []

4. c  []

5. if y1 < y2
6. r  y1 .. y2
7. elseif y2 > y1
8. r  y2 .. y1
9. end
10. if x1 < x2
11. c  x1 .. x2
12. elseif x2 > x1
13. c  x2 .. x1
14. end
15. if c = nil
16. c[1..length(r)]  x1
17. elseif r = nil
18. r[1..length(c)]  y1
19. else
20. ci  round

�
r�b
m

�
21. ri  round

�
m�c
b

�
22. cpix  append(c, ci)
23. rpix  append(r, ri)

Algorithm 5 Imback

imback(im, th)

1. eim  edge detect im according to th
2. mim  clean up eim using morphological operations

3. cim  connect the objects mim
4. bg  �ll cim's inside with 1:s

Algorithm 6 Bgmulti

bgmulti(ims, layers)

1. ok  0

2. tmp  0

3. for i  1 to (length(ims)-layers+1)
4. while ok < layers
5. tmp  ims[1..end, 1..end, ok+i]+ tmp
6. ok  ok + 1

7. end
8. mtmp  tmp

layers

9. eim  edge detect mtmp
10. eims[1..end, 1..end, i]  clean up eim using morphological operations

11. ok  ok -1

12. tmp  tmp - ims[1..end, 1..end, i]
13. end
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made about how many images to stack and when a pixel is counted as static or not.

Final polishing is done with some well chosen morphological operation sequence.

Algorithm 7 Bgmultiedge

bgmultiedge(ims, layers, accept)

1. ok  0

2. for i  1 to (length(ims)-layers+1)
3. while ok < layers
4. eims[1..end, 1..end, ok+1]  edge detect ims[1..end, 1..end, ok+i]
5. ok  ok + 1

6. end
7. tmp  sum eims layers pixel wise

8. bg  tmp � accept
9. bgs[1..end, 1..end, i]  clean up bg using morphological operations

10. ok  ok -1

11. eims  shift_left(eims)
12. end

In a well controlled plant there always exists a certain coal �ow, which makes

this algorithm fail in �nding the real background. It simply assumes the areas close

to the tuyere's mouth to be part of the background, when they do not change, and

the sharp edge between the tuyere and the coal is gone. The result is a discon-

tinuous edge. This e�ect is illustrated in Figure 6.1.4. The best thing we can do

is connecting the discontinuous parts using the algorithm we discussed earlier, but

the tuyere shape is still not perfect.

Figure 6.1.4. Multiple layer edge detection.

The bigger an image is the more CPU and time is needed to process it. Because

the nature of our images, a hot spot surrounded by a static dark part, we need only

to process the interesting part of them. The area of interest is not always in the

same location in a �exible system, that is why we need to �nd the area in every

single frame we want to process. This is done with Algorithm 8. This algorithm

basically scans the image for light pixels. The rectangular area with a lot of light

pixels inside is the most interesting part of the image. Combining this with the

previously mentioned background algorithms will make them faster.
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Algorithm 8 Dyncrop

dyncrop(im)

1. csum  sum of the pixels in im column-wise

2. rsum  sum of the pixels in im row-wise

3. cth  calculate a column threshold

4. rth  calculate a row threshold

5. cint  csum > cth
6. rint  rsum > rth
7. cim  im[rint, cint]

Algorithm 9 is a modi�ed version of Algorithm 5. It does pretty much the same

thing beside it starts with median �ltering of the image and �nds the interesting

area in it before further processing.

Algorithm 9 Dynbg

dynbg(im, th)

1. �m  median �lter im
2. i�m  �nd the interesting area in �m
3. �nd th for i�m if th is not given

4. e  edge detect i�m according to th
5. em  enhance e using morphological operations

6. cim  connect the edges in em if needed

7. bg  �ll cim's inside with 1:s

To summarise: The best approach in order to �nd the background is stacking

several consecutive images, crop the resulting image, edge detect it, improve the

edges by morphological operations, connect any discontinuous edges and �nally �ll

the inside with ones. The result typically, although exceptions exist, looks like the

one in Figure 6.1.5, which can be compared to Figure 6.1.1.

Figure 6.1.5. A background using the suggested algorithm approach.

6.2. Finding the Coal Plume

Having nice background we can e�ortlessly �nd the coal plume. What we

basically have to do is just to subtract each image from its background and then
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Original image Background image

Masked image Plume image

(a) Based on an image taken with green

glass.

Original image Background image

Masked image Plume image

(b) Based on an image taken with trans-

parent glass.

Figure 6.2.1. Plume extraction.

threshold it. In result we obtain the coal plume. This operation is illustrated in

Figure 6.2.1. There is some decision making problem here: What should we regard

as the coal plume? We know for sure that there is no sharp edge between coal and

the gases inside the furnace. Also it is not obvious what threshold value should

be chosen. Depending on the threshold value chosen, the coal cloud has di�erent

sizes and sometimes even slightly di�erent shapes, although it is always close to

being elliptic. Choosing the correct threshold involves distinguishing between coal

and gases in the image, which is not completely unequivocal. Figure 6.2.2 shows

the same plume extracted with di�erent thresholds. Notice well, plumes with high

thresholds are not of any use in the video series taken with transparent glass but

are quite nice in the green glass case.

(a) Based on an image taken with a green

glass.

New data, threshold 0.25 New data, threshold 0.30 New data, threshold 0.35

New data, threshold 0.40 New data, threshold 0.45 New data, threshold 0.50

New data, threshold 0.55 New data, threshold 0.60 New data, threshold 0.65

(b) Based on an image with a transparent

glass.

Figure 6.2.2. Size of the plume depending on threshold value.
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Algorithm 10 Findplume

�ndplume(im, bg, bwth, th)

1. bwim  im > bwth
2. csum  sum of the pixels in bwim column-wise

3. rsum  sum of the pixels in bwim row-wise

4. cint  csum > th
5. rint  rsum > th
6. roi  bwim[rint, cint]
7. �m  (1-roi) � bg

We have been looking at two algorithms in order to obtain a good result.

Algorithm 10 is used when we do not know where the background mask �ts in the

image. First we threshold the given image, �nd where the background best �ts and

then we remove the unwanted objects by multiplying the thresholded image with

the background and voilà the plume is there. The second algorithm, Algorithm 11,

is for the case when we know where to place the background on the image. Also

here we start with thresholding the image, use morphological operations to get rid

of unwanted objects and �nish with morphological �ltering, Algorithm 12, in case

the earlier morphological operations were not enough. This �ltering can also be

executed as the last stage of Algorithm 10.

Algorithm 11 Implume

implume(im, th, bg, x, y)

1. nim  bg - (im > th)
2. mim  clean up nim using morphological operations

3. �m  identify the �ame in mim knowing its originate from (x, y)

Algorithm 12 Plumeident

plumeident(im, th, x, y)

1. lim  identify the objects in im
2. for i  1 to the number of objects in lim
3. isum  sum(lim[i])
4. if isum > th
5. xc, yc  �nd the centre of lim[i]

6. dist[i]  
p
(y � yc)2 + (x� xc)2

7. else
8. dist[i]  0

9. end
10. end
11. mindist  min(dist) 6=0
12. �m  lim[mindist]

The need of morphological �ltering arose when we started to process the video

signal from our third signal collecting session, where the images tend to be overex-

posed and thresholding gave sometimes several unwanted objects beside the plume

itself. You can see the di�erence for yourself in Figure 6.2.3.

The idea behind the algorithm is �rst identifying the di�erent objects in the

image, followed by removing the smallest of them according to a given value. Then

by knowing the tuyere's position in the image, the distance between that point and
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(a) Before using the algorithm. (b) After using the algorithm.

Figure 6.2.3. Morphological �ltering, using Algorithm 12.

centre of every object left can be calculated to �nally choose the object with the

shortest distance.

6.3. Estimation of Plume's Area

Having isolated the plume from the rest of the image we could easily calculate

its size in pixels. The number of white pixels in the picture is determined and the

resulting value describes the size of the coal particle cloud and its density. We have

to be aware of that �ow is given by the volume of the particle cloud. As an a priori

study we can use the area of the plume to represent pulverised coal �ow.

6.4. Estimation of Plume's Volume

The area of a two-dimensional plume in the �lm sequence is easily calculated,

however the three-dimensional pulverised coal body is what we are looking for.

Estimating the volume of the coal cloud is not an easy task. First of all we see the

cloud from an angle. Secondly we do not know what form this cloud possesses in

three dimensions, having only access to its two-dimensional projection. We have to

make an assumption about its shape. Three di�erent approaches to estimate the

volume of the pulverised coal cloud will therefore be discussed here. None of these

gives us the actual �ow. Using these algorithms we will obtain numbers representing

the �ow, which can be compared to numbers in the same series i.e. we can conclude

if the �ow is increasing, decreasing or staying at the same level. However, small

future adjustments should allow using these values for real measurement, where

the �ow is given in grammes per second. What still has to be done is deciding

what value corresponds to what �ow, which should be a part of a further study.

Being able to translate evaluated values to grammes per second, we will have a

good measurement of the �ow just using image processing.

6.4.1. Weighted Pixel Estimation. The �rst more advanced attempt to

make an approximation of the volume of the pulverised coal cloud seen in the

grabbed images discussed in this report will be the Weighted Pixel Estimation.

Weighted Pixel Estimation is based on the fact that the cloud is not uniformly

dark. This implies that in the middle of the cloud there is more coal than on the

edges where it is not at all as dark. We can establish that the size of the cloud
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is dependent on the chosen value for thresholding of the image. Giving all the

pixels belonging to the thresholded plume the same importance is clearly unfair.

Common sense suggests weighting pixels so that darker pixels are weighted heavier.

Although this seems to be a reasonable solution there are no de�nite rules for this

kind of weighting. In our case it came to be, more or less, all about trial and error

for how the weighting should be arranged. More knowledge about the spreading of

coal injected into the blast furnace and metallurgical competence would probably

help when deciding the weighting.

Algorithm 13 Imweight

imweight(im)

1. imax  max(im)

2. imin  min(im) 6= 0

3. nim  imax -im+ imin
4. warea  sum(nim � imax )

Giving pixels weights according to their shade can be seen as trying to establish

a measure of the plume's volume. A darker pixel means more depth, a lighter less

depth in the inwards direction of the image. It has to be made clear that there is

nothing indicating a linear weighting of pixels. A logarithmic or inverse logarithmic

weighting might be a better approach. One could also consider a look-up-table

solution which would be suitable for storing and recovering weights in a future

implementation of a fully developed algorithm. Algorithm 13 is based on a linear

weighting.

6.4.2. Rotated Plume Estimation. Rotating the two dimensional projec-

tion of the plume we can approximate the coal particle cloud volume by estimating

the plume's body of revolution. The algorithm here might seem a little awkward

considering computational e�ciency. To start with the mean values for the pixels

representing the coal plume are found for both the horizontal and the vertical di-

rection. The covariance matrix and the eigenvalues are calculated. This is done

in order to rotate the detected coal particle cloud with such an angle that it is

standing upright i.e. the lower end is where the coal comes out of the tuyere, see

Figure 6.4.1.

Now we can apply the actual algorithm itself. The mean values for the pixels

in the horizontal direction are calculated. The volume of the left part and the

right part are calculated separately and then added together to embody the total

approximated volume. This is done as an attempt to describe the body of revolution

for the plume.

Calculating each half of the coal particle cloud is done in the following way.

First the number of pixels in each row on the left side i.e. left of the calculated

middle line of the plume, are stored in a vector. Then each value in the vector

is treated as a radius of the plume's left half at that particular row. Using these

radia we can calculate areas of as many half circles as there are values in the vector.

Summing all the areas we obtain a volume for the left half of the pulverised coal

cloud. Now the same procedure is applied to the right side of the plume. In the

end the two volumes are added to form the �nal result, the plume's approximated

volume. Algorithm 14 illustrates the procedure.

6.4.3. Approximated Shape Estimation. Yet another algorithm for ap-

proximating the volume of the pulverised, coal injected at any point in time and

seen with the help of cameras, is the algorithm we chose to call Approximated

Shape Estimation. Algorithm 15.
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(a) Before. (b) After.

Figure 6.4.1. Plume image before and after rotation.

Algorithm 14 Rotalgo

rotalgo(im)

1. n  length(im > 0)

2. x  0

3. y  0

4. c  0

5. vol  0

6. for i  1 to rows(im)

7. for j 1 to columns(im)

8. if im[i, j] then
9. y  y + i
10. x  x + j

11. c  

�
j

i

�
�
�
j i

�
+ c

12. end
13. end
14. end

15. m  

2
4 x

y

3
5

n

16. cov  c
n
�m�m

tr

17. eigv  calculate the eigenvalues of cov

18. alpha  180
�
� arctan

�
�eigv[2]

eigv[1]

�
19. rim  rotate im by alpha
20. dias  count the pixels of rim row-wise

21. for i  1 to length(dias)

22. vol  vol + � �
�
dias(i)

2

�2

23. end
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Algorithm 15 Ellipalgo

ellipalgo(im)

1. minax  �nd the minor axis length in im
2. majax  �nd the major axis length in im
3. vol  4

3
� � �majax �minax

2

Approximated Shape Estimation is based on the observation of the plume's

shape. We could establish that the shape of the projection of the coal particle

cloud was very close to elliptic. Now assuming that our three dimensional object

is symmetrical along its axes i.e. rugby ball look alike, we can easily compute

the volume of such a three dimensional body. Finding both axes' lengths for our

projection, computation of the volume is reduced to a straightforward calculation.

volume = 4
3
�� �a2 � b, where a is the length of minor axis and b the length of major

axis.



CHAPTER 7

Data Extraction and Validation

Image processing had to be used for recovering data from the recorded image

sequences. To start with, recorded video signals were digitised according to Chapter

3.4. Performing tests on data from all three data collecting occasions and after some

initial stages , have shown similar results on video signals from di�erent tuyeres. We

could restrict the �nal tests to one tuyere from the �rst and last video recordings.

Using the procedures and algorithms developed in Chapter 6, we could extract data

from the images. We tried tuyere number 2 from the �rst and third video recordings,

representing two independent data sets, because they had di�erent characteristics.

Film sequences were sampled with 2 second intervals and were 600 images long i.e.

the studied sampled sequences were 20 minutes long, except for the sequence of

Andreas test which consisted of 650 images corresponding to about 22 minutes.

The earlier explained background extracting methods, �xed and customised,

were used to �nd the backgrounds in order to isolate the coal cloud in each picture.

The coal cloud was thresholded at eleven di�erent levels, from 0,2 up to 0,7 with step

size of 0,05; regarding 0 as the darkest level and 1 as the brightest with 256 grey scale

levels in total. From there four algorithms, Area, Imweight, Rotalgo and Ellipalgo,

were used for data extraction. Of course we applied all these on each colour bu�er.

Ending up with 2 � 2 � 11 � 4 � 3 = 528 di�erent runs. Calculations performed on

pictures, as is often the case in image processing, were computationally demanding

and time consuming. Today's computers, not the one we used, o�er the needed

speed. This in combination with an optimised code implementation and suitable

choice of programming language, compared to the MATLAB code we used, would

boost the data extraction speed in order to allow real-time execution.

Extracted data had to be analysed in a cautious way so that nothing was

omitted. Having estimated the coal �ow using images, it was close at hand to

search for a correlation between our estimation of the �ow and di�erent measured

signals at the plant.

7.1. Relations Between Algorithms

Having our four algorithms we want to build an opinion about how the algo-

rithms are related to each other. Figure 7.1.1 shows some three-dimensional plots

describing the main correlation features according to colour bu�ers and threshold

levels. The colours are running from 1 to 3 and represent red, green and blue

respectively. Thresholds are ranging between 1 and 11 from the smallest to the

largest. As you can see there are big di�erences between the two video signals.

The left column representing the �rst video capturing. The Area algorithm shows

small correlation with the other algorithms, demonstrating the non-linear relation

between them. It is higher for small threshold values due to the fact that the plume

is close to non-existent and there is no bigger di�erence between area and volume

estimations. Volume estimation algorithms show high correlation with each other

in general. Comparing them using the di�erent background algorithms till shows

relatively strong correlation. Figure 7.1.1-(e) reveals the previously mentioned fact

that the blue component is not very nice. The customised background tends to
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get hard to detect, resulting in vanishing plumes while the plumes using the other

algorithm are not representative for the coal �ow which results in a false strong

correlation between them. In this case we have to rely more on the red and green

colour bu�ers.

Moving on to the right column of Figure 7.1.1, we notice that the third video

recording is showing some di�erent behaviour. The correlation between area and

volume estimation algorithms is weak as expected but uncovers the uneven quality

between di�erent threshold levels. Looking at the correlation between the volume

algorithms gives high overall correlation but again there are indications of the poor

plume quality depending on thresholding level. The lowest threshold levels give no

plumes, meanwhile high levels lean toward being fully white; due to overexposure of

the video. The good plumes residue somewhere in the middle of the threshold range,

where the small correlation dip could otherwise mislead any super�cial examiner.

Our knowledge of the similarity between the colour bu�ers in this video signal is

con�rmed in 7.1.1-(f) in contrast to those in the previously examined video signal.

Here we have three useful colours that can be a part of �ow estimation algorithms.

A good redundancy can be achieved.

7.2. Extracted Data Characteristics

The question now is if the algorithms, applied to the video recordings, give an

accurate and representative measurement of the pulverised coal �ow.

Close examination has been done on each of the resulting signals after running

the di�erent algorithms. This has shown, apart from what we have mentioned

about the colour bu�er quality and plume thresholding value in Chapter 7.1, that

the �xed background gives a better result in general compared to the customised

one. This could be related to some bugs in our implementation of the Imconnect

algorithm and our badly calculated/estimated threshold values, used in �nding the

background, in conjunction with not using the best developed algorithm, based on

multiple images, for �nding the background. The Imweight algorithm proved to be

the most suitable among the tested ones, although the other algorithms were not

that bad and could be more useful with some modi�cations. All of the following

plots are based on the red bu�er of the images, using a �xed background and

Imweight for volume estimation at a threshold level of 0,45.

We were lucky to have frequency distorted signals in our �rst data collecting

session, as mentioned in Chapter 4.1. This trait is helpful when looking at the signal

dynamics. A quick glance at the frequency content of the measured �ow signal and

the extracted one shows the same dominant frequency peaks as presented in Figure

7.2.1. The extracted signal is based on fewer samples which gives rougher impression

compared to the collected signal but the frequency peak is there at 0,15 Hz. By

this we know that we are able to reconstruct the same frequency characteristic

of the �ow signal with our algorithms. This was a �rst step in assuring that our

measurement was valid.

At a later stage of the project we had to face the fact that the �ow measurement

quality was not satisfactory. Lack of high correlation is likely due to bad existing

measurement. The measured signal is as explained corrected with a correction

factor based on the weight signal. This is done because the �ow measurement is

not good enough to be completely trusted. In this case validation of the extracted

data is not an easy task. Searching for the truth we had to look at the other signals

related to each tuyere. Those are the pressure and the control signals.

As before both the �rst and the third video recordings have been inspected and

the result is presented in Figure 7.1.1. The left side of the �gure, representing the

�rst video signal, is as usual characterised by its frequency content. Best correlation



7.2. EXTRACTED DATA CHARACTERISTICS 61

0
2

4
6

8
10

12

1

1.5

2

2.5

3
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Threshold level
Colour

C
or

re
la

tio
n 

co
ef

fic
ie

nt

(a) Rotalgo vs. Area, both with �xed

background. First recording.

1 2 3 4 5 6 7 8 9 10 11

1

1.5

2

2.5

3

0

0.1

0.2

0.3

0.4

0.5

Threshold level

Colour

C
or

re
la

tio
n 

co
ef

fic
ie

nt
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background. Third recording.
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background. First recording.
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(d) Rotalgo vs. Imweight, both with

�xed background. Third recording.
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Figure 7.1.1. Correlation between di�erent algorithms.
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(b) Collected �ow signal.

Figure 7.2.1. FFT of the extracted �ow signal and the collected

�ow signal.

is obtained with the control signal and the worst one is found with the �ow signal

measurement. The right side of the �gure, representing the third video signal, shows

exactly the same trends except for the absence of the �Mefos carrier-frequency�

which is not present in the collected signals on this occasion and also the time

delays di�er. The delay was found to be very small, a few seconds at the most.

Our �ow estimation is delayed by approximately 11-13 seconds compared to

the control signal. The pressure on the other hand proceeds our extracted data

by 9-11 seconds. As a result the correlation peak di�ers by 2 seconds between he

pressure and the control signal. Comparing Figure 7.2.2-(a) nd (b) with Figure

4.1.5-(c) and (d) we notice that there is no clear negative correlation present in

the �rst ones, that is because our �ow estimation has no direct feedback to the

controller. When it comes to the �ow signals correlated with our estimated �ow we

see a clear di�erence in the �ow measurement quality. In the �rst recording we can

register the �ow 3 seconds before the �owmeter, while in the third recording we

can do the same 9 seconds before the �owmeter. The negative correlation could be

related to the di�erent delays for the control-�ow and control-estimated �ow, the

di�erence between them is approximately the maximum value in the �rst minus the

maximum value in the second which is about 13 seconds.

Applying the �lter identi�ed in Chapter 4.1.1 to the �ow signal, from the third

video recording and correlating it with the extracted �ow measurement resulted

in the plot in Figure 7.2.3. he positive correlation noticed in Figure 7.2.2-(f) has

increased and moved from -9 to 9 seconds, because of the �lter in�uence. Also

we can clearly see a suppression in the negative correlation we had at 13 seconds.

This makes the correlation plot look much more similar to those in Figure7.2.2-(b)

nd Figure 7.2.2-(d). The good job done by the �lter should not be overestimated,

remembering that �ltering followed by inverse �ltering can distort the signal. This

could be noticed because the signal �uctuates with higher frequency as Figure 4.1.6

shows.

Data was �ltered using di�erent low-pass �lters to get rid of the high frequency

�uctuations consisting of pure noise. This was mainly visible in the algorithms using

a customised background approach. Now the correlation, not very surprisingly,

increased slightly to reach above 0,5. Unfortunately, for a closer validation we

would need to know the exact amount of coal injected at any time. However, for



7.2. EXTRACTED DATA CHARACTERISTICS 63

−200 −150 −100 −50 0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
C

o
rr

e
la

tio
n

 c
o

e
ff

ic
ie

n
t

Time shift [seconds]

13 sec.

(a) With control signal. First recording.

−200 −150 −100 −50 0 50 100 150
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

C
o

rr
e

la
tio

n
 c

o
e

ff
ic

ie
n

t

Time shift [seconds]

11 sec.

(b) With control signal. Third recording.

−200 −150 −100 −50 0 50 100 150 200 250
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

C
o

rr
e

la
tio

n
 c

o
e

ff
ic

ie
n

t

Time shift [seconds]

11 sec.

(c) With pressure signal. First recording.
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(d) With pressure signal. Third record-

ing.
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(e) With �ow signal. First recording.
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(f) With �ow signal. Third recording.

Figure 7.2.2. Correlation between the extracted �ow signal and

di�erent measured signals.
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Figure 7.2.3. Correlation between the extracted �ow signal and

the �ltered �ow signal, from the third video recording.

now we were looking forward to see a higher correlation with the current data. Here

we have a problem since we know that the current measurement can not be trusted

and the other measured data are related to the �ow measurement. A warning �nger

should be raised whenever there is slag injected together with coal, because then

the �owmeters really misbehave and do not serve their purpose any good. Slag and

coal powder can not be separated in our images, with the current quality. We have

only seen slag injected from behind a green glass.

7.3. Andreas Test Properties
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(b) Using customised background.

Figure 7.3.1. A comparison between valve position signal (red) ,

�ow signal (green) and extracted �ow signal (blue) during Andreas

test.
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Another test was made to check if choking the �ow could be noticed in the

data extracted from the �lm sequence, see Figure 7.3.1 for a simple comparison.

Both the �xed and customised backgrounds follow the valve position roughly, and

so does the �ow signal. We can see that the customised background fails slightly

when the valve is totally closed. On the other hand we can see that the customised

background based algorithm behaves in the same way, as the valve position signal,

during the third and fourth valve closings; in contrast to the �xed background based

algorithm which shows di�erent behaviour.
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(b) With pressure signal.
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(c) With �ow signal.

Figure 7.3.2. Correlation between the extracted �ow signal and

di�erent measured signals during Andreas test.

We found it suitable to highlight the correlation between the collected signals

and the extracted one during the Andreas test, as we did before for the other

video sequences. Because the valve closing takes place on di�erent valves that are

placed di�erently, relative to the measurement device, we will have di�erent plots

compared with those we got earlier. As Figure 7.3.2 illustrates, the correlation with

the control signal is strongly negative at -6 seconds, that is a delay of 6 seconds in

the control signal after an action of closing or opening has been taken.

Looking further into the properties of the pressure signal, no particular corre-

lation can be found. This does not surprise however since we know that choking

the coal �ow after the pressuremeter will result in increased pressure while doing
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(a) The valve after the pressure meter.
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(b) The valve before the pressure meter.

Figure 7.3.3. Correlation between the extracted �ow signal and

the pressure signal during Andreas test.

the same before the pressuremeter will decrease it, whereas the �ow will always

decrease. In this case we need to separate the Andreas test into two cases which

are outlined in Figure 7.3.3. The �rst, shutting of the �ow after the meter, gave a

strong negative correlation with 11 seconds delay before we discovered that some-

thing had happened in our images. The second, where shutting of the �ow was

before the meter, led to a positive correlation after 37 seconds. Seemingly, the dif-

ference in the delay time is simply depending on the distance the coal has to travel,

before reaching the tuyere's mouth and get on the tape, but we still think it is too

long.
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(a) The valve after the �ow meter.
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(b) The valve before the �ow meter.

Figure 7.3.4. Correlation between the extracted �ow signal and

the �ow during Andreas test.

Lastly we will, without being inconvenient, torture the �ow measurement and

see f it will confess. Figure 7.3.2-(d) shows a positive correlation at 9 seconds which

con�icts with our previous result of -9 seconds. Again here we had a reason to

separate the extracted signal in two parts. This has increased the correlation in

general. Plot (a) in Figure 7.3.4 gave us a delay of -2 seconds implying that we are
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able to detect the changes in the coal �ow before the meter does. The meter seems

to continue measuring the �ow for a while after the actual �ow cut o�. On the

contrary plot (b) in the same �gure tell us that the correlation maximum occurs at

29 seconds. Now the �owmeter is faster than our calculated �ow. We guess that

the �owmeter is very dependent on the carrier medium.
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CHAPTER 8

Conclusions and Suggestions

Image processing has hopefully proven to be an asset amongst other tools that

can be used for enhancing the monitoring of the blast furnace process. This is

quite a new research area which most probably will eventually lead to an improved

surveillance and control of the process. What is described in this report is a �rst

reach for utilising computer vision systems in steel making industry by monitoring

process parameters. To round o� this report we will brie�y present some conclusions

and then discuss a few suggestions for potential improvements and further work to

be done.

8.1. Conclusions

Studying the whole process and developing algorithms based on image process-

ing for watching the process' behaviour, we came up with some conclusions. They

are all gathered here.

First, we can say that the current �ow measurement is not satisfactory or at

least it could be improved using image processing. This statement is based partly

on what we have been told at Mefos but mostly on what we discovered comparing

data extracted using image processing to the collected �ow signals. There should

be a high correlation between those which could not be found. We could only detect

a lower degree of correlation. Since this was quite a surprising result further tests

were made. In one of these the coal �ow was choked and later the measured �ow

examined. Our algorithms could detect changes in the coal �ow. We tried also

to correlate the estimated volume to the control signal, the correlation increased.

Another, less sophisticated way of seeing that the present �ow measurement is not

very reliable was to simply �nd a �lm sequence where we saw that the �ow was low

in the beginning and high towards the end. We also knew that the camera was not

moved or zoomed during �lming time. Now, the present �ow measurement did not

change at all whereas data recovered from images indicated the observed rise in coal

particle �ow. Unless coal �ow suddenly changed path, right after injection to the

blast furnace, the current coal �ow measurement is inadequate. The missing link

here is still a conversion between calculated volume and useful �ow measurement.

Another conclusion was that using the green glass, as a protecting �lter for

the cameras, skews the colour bu�ers, specially the blue one. Since the cameras

are colour cameras, we lose valuable information in one of the channels. The red

and green bu�ers look decent despite the just mentioned �lter. But of course all

information is valuable so being able to use the blue bu�er as well as the two others

would be advisable.

Still investigating the cameras, we can state that if image processing is to be

applied, not making it too complicated, a static image is needed. Algorithms have

been developed to avoid this problem and those are comparable with the assumption

of static images. An additional obstacle is that the plume is �lmed from an angle.

This makes it slightly harder to estimate the volume of it. Strict camera positions

have to be used in order to be able to rotate the plume and calculate its exact

volume.
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Looking into the future, not only do we want to estimate the coal �ow but

also study other process parameters. For this a good resolution and adjustment of

cameras is of great importance. Image processing algorithms must be working in

real-time, which could demand quite a lot of computational power, especially if the

number of tuyeres is large. It would though certainly be an investment that pays

o� in the future.

8.2. Suggestions

Having discussed all encountered problems it would be nice to give some an-

swers. These suggestions might be technically very hard to achieve but neverthe-

less complaining about things in the existing plant we owe some suggestions for

improvements.

First of all, the �ow measurement should be improved using image processing.

Image processing could even be used alone in the future, providing e�cient and

reliable image processing algorithms are fully developed. A closer study of the

behaviour of the pulverised coal in the pipes could also be enlightening. It would

for sure, to some extent, help understanding how the �ow should be measured.

Other changes to be made in order to make the image processing and calculations

involved as simple as possible are mostly concerning the cameras.

The green glass �lter in front of each camera should be replaced by a transparent

�lter that lowers the intensity of light but does not distort it in any way. Doing that

we will gain a set of three channels with information, which as mentioned would

be good for redundancy reasons and at the same time do not expose cameras to

excessive light.

When it comes to video recording synchronisation, a good synchronisation sig-

nal should be created if delays have to be determined with great accuracy. This

should trig the cameras/VCRs and the data acquisition box. An external trig signal

is preferred. Using the same trig signal to initiate grabbing is a good idea.

It is a good idea to change Andreas test from closing valves to changing the

setup value of the coal powder �ow. This is easier to change and more sensitive

to small changes. Changing the setup value in a manner that guarantees di�erent

transitions between low-high �ows, will improve the test, keeping in mind that the

changes have to be held for periods longer than the system delays.

As we discussed before a static picture makes analysis less complicated. There-

fore cameras should be zoomed on the interesting area of the picture and then

mounted in some way so this picture remains static during the whole time we are

interested in surveilling coal injection. If the cameras were �xed, as well as other

movable parts like the tuyeres also the task of compensating for the angle from

which the plume is seen would be a one-time calculation. When the angles of the

cameras can be changed, they can be moved backward and forward, and the tuyeres

are not �xed, then we have a situation where the angle from which the plume is

seen is constantly changing, which of course does not make life any easier.

A somewhat di�erent problem to be solved, concerning cameras used for coal

powder surveillance, is that most cameras auto-adjust to current conditions. This

means that a camera is constantly adjusting depending on the amount of coal

present in the image due to noticeable changes in brightness. This phenomenon

will evidently harm a measurement of temperature which is highly dependent on

colours being compared between two di�erent frames. It could also harm the coal

�ow estimation. Having a �xed colour reference is valuable. Even when no real

changes occur in the colour of the �ame, an auto adjusting camera could perceive

two di�erent colours. A remedy for this is, if possible, disallowing auto adjustment.



8.2. SUGGESTIONS 71

Shutter time has to be constant and no changes made to the lens aperture while in

operation.

Further if we are to do all computations needed in real-time, the most feasible

solution is using digital cameras to avoid distortions in image quality by eliminating

digitising and sampling e�ects. It is of great help when comes to squashing the time

needed to produce useful data from images. 12-bit cameras, which have appeared

on the market, could enhance the resolution and using several cameras for each

tuyere would allow a more accurate measurement of the volume of the coal particle

cloud. More than one camera for each tuyere will complicate the problem, therefore

it is advisable to improve the algorithm developed for one camera unless a more

exact coal estimation is needed.

Finding a functional model for the coal cloud behaviour would contribute to

enhancing the coal �ow measurement as well. A good model for the plume/�ame

would be of great help. Having a good volume estimation is essential.

A closer investigation of what exactly happens when slag is injected, besides

pure coal powder, is advised. Slag injection makes the whole injection process even

more complicated. The case when slag is injected with coal should be studied and

compared to the pure coal injection.
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APPENDIX A

MATLAB Code

A.1. mam.m

% Purpose:
% Get the largest element, independent of the matrix dimension.
%Synopsis:
% m = mam(x);
%Description:
% First establish the dimension of X and then get the largest
% element in it.
%See also:
% MAX, MIN

function m = mam(x);

= length(size(x));
m = x;
for i = 1:d
m = max(m);

end

A.2. mip.m

%Purpose:
% Get the smallest element in a 2-D matrix and return its position.
%Synopsis:
% [v, r, c] = mip(x);
%Description:
% First the smallest element the matrix and then calculate its position.
%See also:
% MAM, MAX, MIN

function [v, r, c]=mip(x);

[v a] = min(x);
[v c] = min(v);

r = a(c);

A.3. imframe.m

%Purpose:
% Make the image boundary black.
%Synopsis:
% j = imframe(i,s)
%Description:
% If 2*s+1 is smaller than the number of columns and rows of the
% image then j is the same images as i with a black s-pixels boundary.
%See also:
%
function j = imframe(i,s);
[r,c] = size(i);
if (r<2*s|c<2*s)
error(�'2*s� should be smaller than the image size in each direction');

end
j=zeros(r,c);
(s+1:r-s,s+1:c-s)=i(s+1:r-s,s+1:c-s);

A.4. imends.m

%Purpose:
% Find the end pixels in an binary images.
%Synopsis:
% [e,v,u]=imends(i)
%Description:

75
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% An end in a binary image is a pixel connected with at most one
% other pixel, to the neighbouring 8 pixels. e is a vector of
% pixels order, u is describing which line segment each pixel
% belong to, and v is the direction in which way they are connected
% as it is described below (zero means no connection), as you may
% imagine we assume thin line segments:
% 1 2 3
% 4 0 5
% 6 7 8
%See also:
% IMCHAIN, IMFILTER

function [e,v,u]=imends(i)

[r,c]=size(i);
i1=zeros(r+2,c+2);
i1(2:r+1,2:c+1)=i;
[r1,c1]=find(i1);
p=[07 11 13;

17 00 19;
23 29 31];

=sort(reshape(p,9,1)');
%This l below is if you don't want to treat single points as end
%points. Comment it if you don't like it and don't forget to change
%v=[v y] into v=[v y-1] below.
%l=l(2:9);
e=[];
v=[];
n=i1;
w=1;
wx=[];
u=[];
for x=1:length(r1),

a=r1(x);
b=c1(x);
d=i1(a-1:a+1,b-1:b+1);

en=n(a-1:a+1,b-1:b+1);
y=unique(en(find(en>1)));
f sum(max(y)*ones(size(y))-y)

up=[];
down=[];
for ij=1:length(y)

down=[down (find(n==y(ij)))' ];
end

n(down)=max(y);
if length(u)

for ij=1:length(y)
up=[up find(u==y(ij))];
end

u(up)=max(y);
end

end
mn=mam(en);

if mn==1
w=w+1;
mn=w;

end;
na-1:a+1,b-1:b+1)=(n(a-1:a+1,b-1:b+1)&ones(3))*mn;
s=sum(sum(d.*p));

y=find(l==s);
if y
if length(wx)<mn
wx(mn)=0;

end
wx(mn)= wx(mn)+1;

e=[e x];
v=[v y-1];
%v=[v y];
u=[u mn];

end

end

A.5. line2pixel.m

%Purpose:
% Convert lines, described by two end points, into pixel(s) in an
% image or elements in a matrix.
%Synopsis:
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% [r,c]=line2pixel(x,y)
%Description:
% Found the pixels below a line and return thiere positions.
% Don't worry about any warning like "Warning: Divide by zero.", it
% has been taken care of.
%See also:
% CAPTURE, ROIPOLY

function [r,c]=line2pixel(x,y)

warning off;
r=[];
c=[];

i=2:2:length(x);
j=i-1;
x1=x(j);
x2=x(i);
y1=y(j);
y2=y(i);
=(y1-y2)./(x1-x2);
b=y2-m.*x2;
for p=1:length(b)

s=x1(p);
t=x2(p);
u=y1(p);
v=y2(p);
if u<v
r1=u+1:v-1;

elseif u>v
r1=v+1:u-1;

else
r1=[];

end
if s<t
c1=s+1:t-1;

elseif s>t
c1=t+1:s-1;

else
c1=[];

end

if isempty(c1)
c1=s*ones(size(r1));
elseif isempty(r1)
r1=u*ones(size(c1));

else
c2=round((r1-b(p))/m(p));
r2=round(m(p)*c1+b(p));

c1=[c2 c1];
r1=[r1 r2];

end
c=[c c1];
r=[r r1];

end

A.6. imconnect.m

%Purpose:
% Connect discontinuous edges or pixels in a binary image.
%Synopsis:
% j=imconnect(i)
%Description:
% Find the discontinuous parts using imends and then connect the
% parts in a minimum way. j is the new edge connected image.
%See also:
% IMENDS, IMCHAIN
function j=imconnect(i)
%When you are in trouble, you need at least two objects in the image to connect!
%(:,round(length(i)/2))=0;
%(round(size(i,1)/2),:)=0;
[e,v,u]=imends(i);
% Remember that all the endpoints are not real endpoints!
[r,c]=find(i);
% d is the distance matrix between the endpoints.
for z=1:length(e)
()sqrt((r(e)-r(e(z))).^2+(c(e)-c(e(z))).^2);
end
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u1=u;
count=zeros(1,max(u));
losers=[];
dfind(d==0))=mam(d)+1;
m=1:length(e);
on=zeros(1,length(e));
sel=[];
w=[];
ines=length(unique(u));
done=0;
while find(con==0)
m1=setdiff(m,union(sel,losers));
bad=1;

if isempty(m1)
break;

end
while bad

[v1,r1,c1]=mip(d(m1,m1));
x1=m1(r1);
x2=m1(c1);

%if length(find(con==0))==2
if length(unique(u))==1

ok=0;
%%%%% bad=0;

% the next two rows is used if you want to connect every end
% in the last segment!

%ucount(u1(x1))=ucount(u1(x1))+1;
%ucount(u1(x2))=ucount(u1(x2))+1;
else
ok=u(x1)==u(x2);
end
if ok
m2=setdiff(m1,x1);
if isempty(m2)

break;
end

[v1,r1,c1]=mip(d(m2,m2));
m3=setdiff(m1,x2);

[v2,r2,c2]=mip(d(m3,m3));
if v1<v2

m1=m2;
else

m1=m3;
end

else
bad=0;

end
end

w=[w x1 x2];
ucount(u1(x1))=ucount(u1(x1))+1;
ucount(u1(x2))=ucount(u1(x2))+1;

if ucount(u1(x1))==2
losers=[losers find(u1==u1(x1))];

end;
if ucount(u1(x2))==2

losers=[losers find(u1==u1(x2))];
end;
if (lines-done)~=2

up=find(u==u(x1));
u(up)=u(x2);

end
done=done+1;

if ~con(x1)
if v(x1)
con(x1)=1;

else
v(x1)=9;

end
end

if ~con(x2)
if v(x2)
con(x2)=1;

else
v(x2)=9;

end
end

sel=find(con);
end
,]=line2pixel(r(e(w)),c(e(w)));
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ull(sparse(y,x,ones(size(x)),size(i,1),size(i,2))) | i;

A.7. im�lter.m

%Purpose:
% Filter out isolated pixels in an image.
%Synopsis:
% f=imfilter(i,y)
%Description:
% The binary image p is converted into double, if needed, and the image
% will be scanned with a y-by-y square that filter out isolated spots
% according to y. y is the sized of isolated spots.
%See also:
% FILTER2, BWMORPH, IMREG

function f=imfilter(i,y);

f isa(i, 'uint8')
i = double(i);
end
[m,n]=size(i);
for d=1:length(y)
x=y(d);
f=zeros(m+2*x,n+2*x);
f(x+1:m+x,x+1:n+x)=i;
[c,r,v]=find(f);
x0=ones(2*x+1);

x0(2:2*x,2:2*x)=0;
for j=1:length(c)

ci=c(j);
ri=r(j);

i-x:ci+x,ri-x:ri+x)=~(sum(sum(f(ci-x:ci+x,ri-x:ri+x).*x0))==0).*f(ci-x:ci+x,ri-x:ri+x);
end

i=f(x+1:m+x,x+1:n+x);
end

f=i;

A.8. imback.m

%Purpose:
% Get an image background and make it black.
%Synopsis:
% bg=imback(i)
%Description:
% bg is a binary image where the black part represent the
% background and the white is, off course, the foreground. The
% parameter t is the threshold used to detect the background
% edges.
%See also:
% BWMORPH, IMCONNECT, BWFILL, EDGE

function bg = imback(i, t);

%Try to Find the optimal threshold for each image, image type,
%it is more accurate than any imthresh based on the mean value and/or
%the standard deviation of the image. This seems to be true at
%least for the stupid blue image we have!
e = edge(i, �, t);
j = imframe(e, 5);
%A better imconnect could eliminate the next step. The goal of this
%is to get a thin edge, one pixel wide with no glitches!
bwmorph(bwmorph(j, 'dilate', 2), 'shrink', 3);
% adjust this due to what trash you want to clean, "3" is good for
% getting rid of "single" pixels.
%f=imfilter(b, 3);
c = imconnect(b);

g = bwfill(c, 'holes');

A.9. dyncrop.m

%Purpose:
% Find the interesting area in an image and crop it.
%Synopsis:
% [i, x, y, r, c] = dyncrop(im)
%Description:
% Based on the standard deviation and the mean value of
% an image and where the light area are present the image
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% is cropped and its crop parameters are returned. i is
% the cropped image, x and y are the start positions,
% r and c are the dimensions of the cropped area.
%See also:
% IMCROP

function [i, x, y, c, r] = dyncrop(im)

%Find where the interesting area is
xs = sum(im);
ys = sum(im');
m = mean(xs)-std(xs)/2;
m = mean(ys)-std(ys)*2/3;
xf = find(xs>xm);
yf = find(ys>ym);
x = min(xf);
x2 = max(xf);
y = min(yf);
y2 = max(yf);
c = x2-x;
r = y2-y

i = imcrop(im, [x y c r]);

A.10. dynbg.m

%Purpose:
% Find the image background.
%Synopsis:
% bg = dynbg(im, th)
%Description:
% First find the interesting area in the image, then do some
% edge detection and morphological operations.
%See also:
% DYNCROP, IMBACK

function [bg, x, y, c, r] = dynbg(im, th)

fim = medfilt2(im);
%Find where the interesting area is
[fim, x, y, c, r] = dyncrop(fim);
if nargin==1
fim = edge(fim, �, (255-mean2(fim))*4/7/255);
else
fim = edge(fim, �, th);
end
= bwmorph(bwmorph(fim, 'dilate', 2), 'shrink', 3);
fim = imconnect(fim);

im = bwfill(fim, 'holes');

A.11. bgmulti.m

%Purpose:
% Find the background in an image.
%Synopsis:
% y = bgmulti(im, s, n, c, layer, accept)
%Description:
% Find the background in a series of images based on several
% consecutive images. im is the image series, s is the start
% point, n is the number of images to detect their background
% and c is the wanted color layer. layer is the number of
% consecutive images to use and accept is the threshold for
% edge acceptance which is less than or equal to layer.
%See also:
% IMBACK,

function y = bgmulti(im, s, n, c, layer, accept)

ok = 0;
for i = 0:n-1

while ok < layer
e(:, :, ok+1) = edge(im{s+ok+i}(:,:,c), �, (255-mean2(im{s+ok+i}(:,:,c)))/2/255);

ok = ok + 1;
end

tmp = sum(e,3)>(accept-1);
{s+i}(:, :, c) = bwmorph(bwmorph(tmp, 'dilate', 5), 'thin', inf);
ok = ok - 1;
for j = 1:ok
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e(:, :, j) = e(:, :, j+1);
end

end

A.12. imarea.m

%Purpose:
% Calculate the weighted area in an image.
%Synopsis:
% a = imarea(i);
%Description:
% A dark pixel have a higher weight than a light pixel. Given an
% intensity image the maximum and minimum intensity values (!= 0)
% are calculated and the pixels values are re-mapped to reflect
% their weight. The result is the sum of the weighted pixels.
%See also:
% BWAREA

function a = imarea(i);

[n, m] = size(i);
r = reshape(i, n * m, 1);
[x, y, v] = find(r);
i1=0;
if ~isempty(v)

vmin = min(v);
vmax = max(v);

i1 = double(i) - double(vmin);
l = find(i1 < 0);
i1 = double(vmax) - i1;
i1(l) = 0;

end

= sum(sum(i1));

A.13. algox.m

%Purpose:
% Clean up in an BW-image, from uninteresting objects.
%Synopsis:
res = algox(im, th, xc ,yc)
%Description:
% Identify the objects in the image and see which object is closest
% to the given point (xc, yc). th is used to get rid of small
% object, it is simply the number of white pixels in those objects.
%See also:
% BWMORPH

unction res = algox(im, th, xc ,yc)

im = bwlabel(im);
a = max(max(im));
r = [];
if ma > 1

for i = 1:ma
tmp = im==i;

s = sum(sum(tmp));
if s < th

im(tmp)=0;
else

[y, x] = find(tmp);
xt = mean(x);
yt = mean(y);

r(i) = sqrt((yt-yc)^2+(xt-xc)^2);
end

end
if length(r) > 0

r(find(r==0)) = 1000;
[v, o] = min(r);
res = (im == o);

else
res = im;

end
else

res = im;

end
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A.14. �nd�ame.m

%Purpose:
% Find flame in a picture, when the background is available but the
% interesting region in the image is unknown.
%Synopsis:
% flame=findflame(im,mask,th1,th2)
%Description:
% Given an image, a background mask (smaller than the image) and
% threshold values it is possible to a flame in the picture.th1 is
% the value used to threshold for the flame and th2 is used to
% position the mask on the image.
%See also:
% IMFLAME

function out=findflame(im,mask,th1,th2)

[I1,J1]=size(mask);
im=double(im)>th1;
i=find(sum(im')>th2);
j=find(sum(im)>th2);
iround((max(vi)+min(vi))/2);
jround((max(vj)+min(vj))/2);
ri=im(i-I1/2:i+I1/2-1,j-J1/2:j+J1/2-1);

out=(1-roi).*mask;

A.15. im�ame.m

%Purpose:
% Find a certain intensity level, representing the flame.
%Synopsis:
% l = imflame(I, th, BG, x, y);
%Description:
% The background, BG, image is subtracted from the image I after
% thresholding at th, where th is 0.0-1.0. The resulting image is
% modified and cleaned with some morphological operation. x and y
% represent the end of the tuyere where the coal is spread out.
%See also:
% EDGE, IM2BW, BWMORPH, FINDFLAME

function l = imflame(I, th, BG, x, y);

l= double(BG)-double(im2bw(I, th));
bwmorph(bwmorph(l>0,'erode',2),'dilate',2);

l = algox(l, 200, x, y);

A.16. algo2vol.m

%Purpose:
% Calculate the approximate volume of a 2-D coal particle cloud.
%Synopsis:
% v=algo2vol(plym)
%Description:
% Assuming that the projection of the plume is always oval we can use a
% simple algorithm for calculation of the volume. All we need is the length
% and the width of the plume.
% a is the width of the plume
% b is the length of the plume
%See also:
% IMFEATURE

function volume=algo2vol(plym)

[x,y]=find(plym);
if x>0

master=imfeature(plym,'MinorAxisLength');
a=master.MinorAxisLength;

master=imfeature(plym,'MajorAxisLength');
b=master.MajorAxisLength;
area=pi*a*b;
volume=4*area*a/3;

else
volume=0;

end
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A.17. evalvol.m

%Purpose:
% Evaluation of volume given a vector of radia.
%Synopsis:
% v=evalvol(vector)
%Description:
% Find the volume of half circles given their radia in a vector. Then add
% all these values together to get an approximate volume for one half of
% the body of revolution.
%See also:
% COUNTPIXELS, FINDVOLUME2

function vol=evalvol(vector)

vol=0;
for n=1:length(vector)

vol=vol+(pi*vector(n)^2)/2;

end;

A.18. countpixels.m

%Purpose:
% Count the on pixels in every row of an image and store the result as
% numbers in a vector.
%Synopsis:
% vector=countpixels(plym,begincolumn,endcolumn)
%Description:
% Given a binary image of a plume, the beginning and the end columns
% for which we want the calculation to be performed a vector of number of
% on pixels in each row between these two columns is calculated.
% If no start or end values are given, calculation is performed
% for the whole length of the horizontal-axis.
%See also:
% EVALVOL, FINDVOLUME2

function vector=countpixels(plym,b,e)

[r, c]=size(plym);
if nargin==1

b=1;e=c;
end
if r==0

r=1;
end
if e==0

vector=0;
else

for l=1:r
vector(l)=length(find(plym(l,b:e)==1));
end

end

A.19. �ndvolume2.m

%Purpose:
% Calculate the approximate volume of a 2-D coal particle cloud using the
% rotation algorithm.
%Synopsis:
% v=findvolume2(plym)
%Description:
% Find the volume of a particle cloud using countpixels and evalvol. To start
% with the mean values for the on pixels are found for both horizontal and
% vertical direction.The covariance matrix is calculated and then the
% eigenvalues for it. This is done in order to rotate the plume with such
% an angle that it is standing upright i.e. the bottom end is where it
% comes out of the tuyere.
% Now the algorithm can be applied on the plume. The mean for the on pixels
% is calculated for the horizontal direction. When this is done the volume
% volume of the left part and the right part are calculated separately using
% the functions countpixels and then evalvol.
%See also:
% COUNTPIXELS, EVALVOL, COV, EIG

function volume=findvolume2(bwplymim)

[ycoord,xcoord]=find(bwplymim);
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if length(ycoord)>0
v=[ycoord xcoord];

m=mean(v);
c=cov(ycoord,xcoord);
[v,d]=eig(c);

alpha=180*atan(-v(1,2)/v(1,1))/pi;
rotated=imrotate(bwplymim,-alpha,'crop')>0;
[i,j]=find(rotated);
im=mean(i);jm=mean(j);
rotax=round(jm);
if rotax>0
left=countpixels(rotated,1,rotax);
right=countpixels(rotated,rotax+1,size(rotated,2));

else
left=0;
right=0;

end
l=evalvol(left);r=evalvol(right);
volume=l+r;

else
volume=0;

end
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C Code

B.1. ssnap.c

#include <fcntl.h>
#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <sys/mman.h>
#include <sys/ioctl.h>
#include <sys/time.h>
#include "ioctl_meteor.h"

#define ROWS 576
#define COLS 768
#define DEV "/dev/mmetfgrab0"
#define SRC METEOR_INPUT_DEV0
#define OFMT METEOR_GEO_RGB24
#define IFMT METEOR_FMT_PAL
#define CAP METEOR_CAP_SINGLE
#define FRAMES 1

int main(int argc, char **argv)
{

FILE *fp = stdout;
int noframes = 1;
float pause = 5;
int src = SRC, ifmt = IFMT, cap = CAP;
int size = COLS * ROWS;
struct meteor_frame_offset off;
struct meteor_geomet geo;
char *mem, *buf, str[11];
int dev, i, j;
unsigned char *ptr, *mmbuf;
struct timeval time;
struct timezone zone;
double ot;

if (--argc > 0)
noframes = atoi(*++argv);

if (--argc > 0)
pause = atof(*++argv);

dev = open(DEV, O_RDONLY);
geo.rows = ROWS;
geo.columns = COLS;
geo.frames = FRAMES;
geo.oformat = OFMT;

ioctl(dev, METEORSETGEO, &geo);
ioctl(dev, METEORGFROFF, &off);
ioctl(dev, METEORSINPUT, &src);
ioctl(dev, METEORSFMT, &ifmt);

mem = mmap((caddr_t)0, off.fb_size, PROT_READ, MAP_PRIVATE, dev, (off_t)0);
gettimeofday(&time, &zone);

ot = (double) (time.tv_sec + time.tv_usec/1e6 - pause);
fprintf(stderr, "Press Enter to start grabbing.");
getc(stdin);
gettimeofday(&time, &zone);

for (j=0; j<noframes; j++)
{
while ((double) (time.tv_sec + time.tv_usec/1e6) < ot)
gettimeofday(&time, &zone);
ioctl(dev, METEORCAPTUR, &cap);

fprintf(stdout, "Image: %03d, sec: %d, usec: %d\n", j, time.tv_sec, time.tv_usec);
mmbuf = (unsigned char *)(mem + off.frame_offset[0]);
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86 B. C CODE

ptr = buf = (unsigned char *)malloc(size * 3);
for(i = 0; i < size;i++)
{

*(ptr + 2) = *mmbuf++;
*(ptr + 1) = *mmbuf++;
*ptr = *mmbuf++;
ptr += 3;
mmbuf++;

}
sprintf(str, "pic%03d.pnm", j);
if (fp = fopen(str, "w"))
{

fprintf(fp,"P%c\n#Luleå University of Technology, The Visualization Project\n%d %d\n255\n",
'6', COLS, ROWS);

fwrite (buf, 3 * sizeof(char), size, fp);
fclose(fp);
free(buf);
ot = (double) (time.tv_sec + time.tv_usec/1e6 + pause);

}
}

munmap(mem, off.fb_size);
close(dev);
exit(0);
}


