
Version: 1.40b
Part number/version: TUG_1_40b
Release date: Spetember 12, 2006
www.trusster.com

Teal User’s Manual

©2006 Mike Mintz and Robert Ekendahl
Printed in the United States of America. All rights reserved.

Trusster makes no representations or warranties regarding the contents of this document. Information in this docum
is subject to change without notice and does not represent a commitment on the part of Trusster. This document is
protected by United States copyright law, and may not be copied, reproduced, transmitted, or distributed in whole o
part, without the express prior written permission of Trusster, Mike Mintz, or Robert Ekendahl. Trusster reserves t
right to make changes to this document or TEAL software without notice, and advises its customers to obtain the la
version of relevant information to verify that the information being relied on is current.

Trusster, Mike Mintz, and Robert Ekendahl assume no liability for applications assistance, customer product desig
software performance, or infringement of patents or services described herein.

Contents
Using this guide 1
Who this guide is for 1
What you need to know 1
Conventions used in this guide 1
Customer support 2
Overview 4
System requirements 4
Hardware 4
Software 4
Teal in General 5
Overview 8
Basic Teal verification components 8
Overview 12
Downloading and installing Teal 12
Running the Teal tests 12
Overview 16
Theory of operation 16
Here’s what you have to do: 17
C/C++ Interface 18
Examples 19
Overview 22
Theory of operation 22
C\C++ interface 23
Creating, copying and, destroying a reg 23
Reg access functions 24
Math functions 24
n n n n n n n i

Logic functions 25
Printing functions 26
Functions for HDL coherency 27
Examples: 27
Overview 30
Theory of operation 30
C/C++ interface 31
Creating, copying, and destroying a vreg 31
Functions for HDL coherency 32
Examples 33
Overview 36
Theory of operation 36
Basic Logging 37
Level based Logging 39
Advanced vlog objects 40
C/C++ interface 40
Examples 42
Overview 46
Theory of operation 46
C\C++ Interface 47
Examples 48
Overview 54
Theory of operation 54
C\C++ Interface 55
Examples 57
Overview 62
Theory of operation 62
C/C++ interface 65
Examples 67
Overview 72
Theory of operation 72
C/C++ Interface 73
Working with the dictionary 74
Examples 74
i i n n n n n n n T e a l U s e r ’ s G u i d e

Using this guide

This guide provides information about using Teal, a c/c++ Test
Environment Abstraction Layer.

Who this guide is for

This guide is for verification engineers who use, or want to use C++ for
verification. Specifically, engineers who want to use the Teal library to
accomplish verification tasks.

What you need to know

To understand and use the information in this guide, you must:

Be familiar with Hardware Description Languages (HDL) such as Verilog
or VHDL.

Have a general knowledge of the problem of hardware verification.

Be familiar with software programming in c++.

Know the use of the how to use the Linux operating system.

Conventions used in this guide
n n n n n n n 1

Throughout this guide, text written in this font is intended to be written in
either c/c++ or HDL.

Customer support

To report an error in Teal, go to www.trusster.com and click on the teal
section.

For support, search the forums on trusster.com or send e-mail to support@trusster.com
2 n n n n n n n T e a l U s e r ’ s G u i d e

http://www.sourceforge.com/projects/teal
mailto:support@applevalleysoftware.com

Chapter 1: Introduction to Teal
This chapter provides a general description of Teal.
n n n n n n n 3

Overview

Engineers perform verification to:

Minimize the probability of hardware functional errors.

Ensure that the hardware meets performance requirements.

Ensure that the hardware is usable by software.

Teal helps you perform verification by providing a set of capabilities that
access HDL signals and enable actions based on changes in the values of
these signals. In addition, Teal encourages independent generators,
transactors, and checkers by providing for management of independent
user-created threads.

Because Teal is a c/c++ library, you can develop algorithms that both
validate the hardware design and can be re-used in the production
software. Verification is C\C++ is appropriate because the language is
well-defined and well-documented.

System requirements

To install and run Teal, your system must meet these requirements.

Hardware

The base Teal library is independent of any specific hardware platform,
yet, as of this printing, it has only been compiled on Liunx based
operating systems. However, a windows port is in progress. Check the
trusster.com web site for the availibility.

You may have to modify the base types used in Teal as specified in Teal.h
to compile and run Teal on other hardware platforms.

Software

As teal is written in C++, it requires a c++ compiler.

You also need an HDL simulator.
4 n n n n n n n T e a l U s e r ’ s G u i d e

C p
Teal in General

Teal is a collection of C++ classes, functions and data placed within the teal
namespace. This set of code, along with build and run scripts that you write,
provides an environment for verification tests.

Realize that this collection of code is only a very small part of the work of
verification. Given Teal, you must write code to stimulate the Design Under
Test (DUT), code to check the output from the DUT, and files to control the
stimulus generation,. Also, you must write some some top level code to start
and stop the various stimulators, generators and, of course, guide these to
perform a test.
w w w . t r u s s t e r . c o m n n n n n n n 5

6 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 2: Components of a Teal
Verification System

This chapter describes the various parts that make up a Teal
Verification System.

Overview

There are many different definitions of a verification system. Within this
manual, the term is taken to mean those files needed to run a test and
those files that are produced by ruinning the test. These components are
elaborated in the next section.

Basic Teal verification components

The basic Teal verification components are:

 A Teal library

A set of Verilog design files, a design top

A set of c/c++ source files, organized as traffic generators, checkers,
and Bus Functional Models (BFMs).

There is also probably a run shell script and some makefiles.
8 n n n n n n n T e a l U s e r ’ s G u i d e

C p C p V S y
The diagram below shows these basic components.

Components of Teal based verification

Teal
Testbench

DUT

CheckerGenerator

BFM

Uart

CheckerGenerator

BFM

Ethernet

Test Parameters Results File
w w w . t r u s s t e r . c o m n n n n n n n 9

1 0 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 3: Installing Teal
This chapter describes how to download and install the Teal software.
n n n n n n n 1 1

Overview

Before you download and install the Teal software, you need to verify
that your system meets the requirements specified in the ”Using this
Guide” chapter.

As a check on the download and install process, you should run the tests
listed in the test subdirectory of teal.

Downloading and installing Teal

To install Teal:

1. Using a browser, go to trusster.com.

2. Click the download tab.

3. Extract Teal to a directory, making sure that the directory you use is
on your INCLUDE path (to enable C/C++ compilations).

Running the Teal tests

4. Set the environment variable SIMULATOR_HOME to the path for your
simulator.

5. Set the environment variable SIM to your simulator (currently only
ivl, mti, ncsim, vcs, or aldec)

6. Set the environment variable ARCH to your operating system
(currently linux, solarus, and windows)

7. If you want to build teal, change to the teal directory and do one of
these steps:

-To remove all the binaries and object files, enter this command:

make clean

To compile the sources, enter this command:
make
1 2 n n n n n n n T e a l U s e r ’ s G u i d e

C p g
8. Change to the test sub-directory and do one of these steps:

-To run all the examples, enter this command:

./run –c –clean $(SIM) –l test_list

To run a single test, enter this command:
./run –c -$SIM –t <some_test>

where you replace <some_test> with either: reg_test, vreg_test,
trandom_test, synch_test, mutex_test, or dictionary_test.

Note that the test is implemented by a pair of .cpp and Verilog files
with the same root name.

Note also that the run script will display whether the test (or test list)
passed or failed.
w w w . t r u s s t e r . c o m n n n n n n n 1 3

1 4 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 4: Verification Top
This chapter describes how Teal interacts with the simulator; that is, what
you need to add to your HDL testbench to use Teal.
n n n n n n n 1 5

Overview

Teal uses the Programming Language Interface (PLI 1.0 or 2.0) to allow c/c++
code to co-exist with the HDL. To this end, you must put a call somewhere in
the HDL to start Teal. You usually do this in an initial block in the top level,
but can be in any module at any statement. Of course, it it is not in an initial
block, Teal will not start at simulation time zero.

This PLI call that is used to start teal is $teal_top. Other than backdoor
memory access, this is the only required call to hookup Teal.

Theory of operation

When the simulation starts, the call to $teal_top causes Teal to start the
threading system and call your verification_top() function. Your
verification_top() function typically initializes global objects like the
random number generator, dictionary, and your own top level code, and
then waits for an init_done or out_of_reset signal from the HDL testbench.

After the Device Under Test (DUT) is out of reset, you typically start a series
of transactors and checkers. During execution, these generators and
checkers print log messages of checks that pass and errors that occur. Of
course, it’s up to you to decide what your verification_top should do. A block
level test or directed test may not need any threads and instead do
everything in the verification_top().

The verification_top() usually then waits for some signal from the lower
level units that they are done. The signal can happen when, for example, a
n n n n n n n 1 6

certain amount time has passed, or traffic generators are done, or maybe an
error threshold has been reached.

Finally, the verification_top() typically prints some statistics and signals to
the HDL testbench to quit. The HDL testbench calls $finish to shut down the
simulation Note that the HDL $finish() call is not required in terms of Teal,
but most systems have clocks that keep generating events. In this case, some
mechanism is needed to stop the simulation. Alternatively, you can call
teal_finish().

Here’s what you have to do:

1. Add a initial $teal_top() in your top level HDL testbench. Typically,
add an “reg test_end; initial begin test_end = 0; wait
(test_end); $finish; end “ as well.

2. Create a directory in which to run your sims.

3. Copy the example/example_1.cpp file and modify the
verification_top() function for your test.

4. Copy the Makefile from the examples directory into your directory.

5. Copy the run script for the examples directory into your directory.

6. Make sure the environment variables ARCH, SIM, SIMULATOR_HOME,
and TEAL_HOME are set.

7. Type run -c -clean -$SIM –t <your_file_name>
n n n n n n n 1 7

Figure 1: Example Process flow

C/C++ Interface

HDL Simulator Teal

start

Initial $teal_main
user_main ()

at (posedge (reset n));

reset_n <= 1; start transactors, etc

… vreg finish (“tb.finish”) = 1;
initial begin
 wait (finish);
 $finish ()
end
n n n n n n n 1 8

There is only one entry point (other than the memory system) for the Teal
system. It is the verification_top. The prototype is shown below.
void verification_top ();

Teal calls this function during initialization:.

Shown below is a typical verilog testbench.

Figure 2: A sample Verilog testbench.v

Examples

Given the testbench example in the previous section, this simple program
just runs for 20 clock pulses.

timescale 1ns/1ns
module testbench
<your wires, clocks, etc>
reg clk;
always #0.5 clk = ~clk;
<your DUT instance here>
initial $teal_top; //hookup to Teal
reg test_end;
initial begin
 test_end = 0;
 wait (test-end);
 $display ([%t] [%m] [Verilog] Received Exit from Teal;
 $finish ();

end
n n n n n n n 1 9

#include “teal.h”

using namespace teal;

int verification_top ()

{

 vreg clock (“testbench.clk”);

vout log (“Chapter 4- Example 1”);

dictionary::start (“simple_clock_test.txt”);

uint number_of_periods (dictionary::find (“number_of_clocks”,

20));

for (int i(0); i < number_of_periods; ++i) {

 log << note << “i is “ << i << clock is << clock << endm;

}

dictionary::stop ();

vlog::get (expected) << “test completed” << endl;

}

In this example, the test runs for a number of positive edges in a clock
register. The simple_clock_test.txt test file picks up the duration (The
dictionary is discussed in a later chapter). This file only has one line -
“number_of_periods 23” - which defines the length of the run.
n n n n n n n 2 0

Chapter 5: The Reg Class
This chapter describes one of the most basic classes in the Teal library,
the reg class. It’s main purpose is to provide arbitrary length 4-state
operations.
n n n n n n n 2 1

Overview

When you go about designing a class library, an important decision is
the creation of the “common currency” of the system. This chapter
and the next few describe the common currency of the Teal system;
that is, the basic generic building blocks of a Teal based verification
system. The reg class, which is the most basic, is described first.

Theory of operation

Hardware simulators compute in four possible values for a bit1:

1

0

X

Z

In addition, hardware languages support arrays of bits, called reg. HDLs
also support a rich set of operators on regs.

The Teal class reg implements this four-state logic and makes sure Xs
propagate through calculations.

The reg class supports the usual HDL wire/register operations such as
addition, subtraction, shifting, Boolean operations, and four-state
comparison. Note that because multiplication and division are not
part of the standard HDL operations, these opersations are not
provided. As in HDL languages, bitfields or subranges of reg are
supported. The subranges can be on either the left or right side of an
expression.

1. Some simulators use 8 logic vlaues, but Teal uses only four because the concept of drive strenghts are
not typically relevant to functional verification. Teal uses the HDL simulator for signal value resolution.
2 2 n n n n n n n T e a l U s e r ’ s G u i d e

C p g C
C\C++ interface

Creating, copying and, destroying a reg

Reg has only a few constructors and a copy constructor. The default
constructor creates a one-bit register and is marked explicit to prevent you
from accidentally creating such a register. The most common constructor
build 64-bit register. Theer is a second, optional parameter that
specifices the bit width. Some examples are shown here.

reg a (45); //create a 64-bit register initialized to 45

reg a (0x22, 73); //create a 73-bit register initialized to 0x22

The reg_slice class is another helper class that is automatically created
(and destroyed) when a register subrange is used. The reg_slice
constructor is automatically used when a register is needed in an
expression. For example reg a(45); reg b (a(10,0)); creates a reg_slice
of a. Because reg_slice is a temporary object automatically created
during left-hand assignment, it is not documented further.

The last reg constructor takes in an integer and creates a 64-bit reg set to
that value. This constructor allows statements such as:

 reg a(length(32)); a = a + 5; and a(4:0) = 1;

The operator=() method sets the current value of the instance to the rhs
but does not change the length of the instance. Specifically, the
operator=() extends (with zeros) or truncates, as appropriate, depending
on the length of the rhs.

The virtual destructor allows for subclasses to clean up any allocated
storage.

reg () [explicit]

reg (const reg_slice &)

reg (uint64, uint32 length = 64)

reg (const reg &)

reg& reg::operator= (const reg &)
w w w . t r u s s t e r . c o m n n n n n n n 2 3

~reg () [virtual]

Reg access functions

This set of functions convert registers to intergral types, and allow
access to parts of a register.

The to_int() method converts the register to a 64 bit integer. Any X or
Z bits are returned as their encoded aval, so be careful when using this
method. Also, the result will be truncated if the register is more than 64
bits long.

There are three register slicing methods. These methods allow access to
a subset of the total bits in a register. They are overloaded methods of
operator(). The single argument operator() is the single bit read-only
access function for a register. You use this method to get a single bit. To
get more than a single bit, you use the two-argument method. There
are two forms of the two-argument operator() method.

The constant two-argument method returns a copy of the bits of the
reg as specified by the arguments. This method is called
automatically by the compiler when the slicing operation is on the
right-hand side of an expression.

The two-argument non-constant method returns a reference to the bits
of the reg as specified by the arguments. This method is called
automatically by the compiler when the slicing operation is on the left-
hand side of an expression.

uint64 to_int () const

char operator() (uint32 b) const

reg operator() (uint32 u, uint32 l) const

reg_slice operator() (uint32 u, uint32 l)

Math functions

The math functions come in two flavors:
2 4 n n n n n n n T e a l U s e r ’ s G u i d e

C p g C
 Global functions. These functions exist because they are symmetrical.
They are used when it is not appropriate to define the function as a
member function, usually because either:

−Reg objects are passed in.

−The operation is communative.
The functions listed next are for the mathematical binary addition and
subtraction operations. Note that the registers are considered unsigned.

reg operator+ (const reg & lhs, const reg & rhs)

reg operator- (const reg & lhs, const reg & rhs)

reg& operator+= (const reg & rhs)

reg& operator-= (const reg & rhs)

Member functions. These functions sends the mathematical result back to
itself (the <x>= operators).

The functions listed next perform left and right shift operations. There
are equivalent symmetrical operators as well. These functions, while
seemingly complex, provide capabilities that make reg act like a built-in
type.

Note that zeros are shifted in during a right shift.

reg& roperator<< (uint32 rhs)

reg& operator>> (uint32 rhs)

vlog& operator<< (vlog & c, const reg & rhs)

reg operator>> (const reg & lhs, const uint32 rhs)

Logic functions

These functions implement the Boolean operations that are associated
with a register. Some functions also implement the logic as a four-state
enumeration, as in the HDL. As with the math functions, some are global
and symmetrical, while others are methods.

By default, the relational (less than or greater than) operators act like
the normal two-state mathematical less than. However, when a single bit
is X, the result is X.
w w w . t r u s s t e r . c o m n n n n n n n 2 5

The reduce_xor method models the unary “^” operator of Verilog.

The functions listed below perform the usual logical operations.

enum four_state {zero=0, one, X, Z}

bool operator== (const reg & lhs, const reg & rhs)

reg operator~ (const reg & lhs)

reg operator| (const reg & lhs, const reg & rhs)

reg& reg::operator|= (const reg & rhs)

reg operator & (const reg & lhs, const reg & rhs)

reg& reg::operator &= (const reg & rhs)

bool operator!= (const reg & lhs, const reg & rhs)

four_state operator< (const reg & lhs, const reg & rhs)

four_state operator< (const reg & lhs, const reg & rhs)

four_state triple_equal (const reg & lhs, const reg & rhs)

four_state reduce_xor (const reg &)

Printing functions

The printing functions allow a reg and any derived classes to be
printed as part of a message line (see Chapter 7). The
reg::operator<<() is the virtual method that allows you to print reg
and all subclasses as built-in types. By default operator<<() senses
the output format (hex, dec, or binary) and calls the appropriate
string formatter, described below.

The format_hex_string() method returns a hexadecimal representation
of the reg, for example, 4’hf. The format_decimal_string() method
prints the register as in integer and the format_binary_string() method
prints the register as a sequence of ones and zeroes, like 5’b01001.

vlog & reg::operator<< (vlog & c) const [virtual]

vlog & operator<< (vlog & c, const reg&)

std::string format_hex_string () const
2 6 n n n n n n n T e a l U s e r ’ s G u i d e

C p g C
std::string format_binary_string () const

std::string format_decimal_string () const

Functions for HDL coherency

The methods shown in the next examples are used by derived classes like
vreg to allow them to make sure the HDL signal and the c/c++ world agree.

Within reg, all these methods do nothing. The read_check() method is
called before every access to the reg internal storage (aval/bval array).
The write_check() method is the corollary to read_check(), in that it is
called whenever any part of the reg is updated.

virtual void read_check () const [virtual]

virtual void write_through () const [virtual]

Examples:

This section shows some basic examples of reg. These examples can be
used as an introduction of the capabilities and use of the reg class. Note
that some of these examples use the derived class vreg, which is
discussed in the next chapter.

Declarations

reg a(23); //64 bit register/initialize it with the value 23

reg b(length (323)); //323 bit register with the initial value of all

X’s

b = 0x11; //assign b to 11 (clearing the upper bits)

b(315,300) = a; //set bits 315 to 300 of b to 23.

a = b(63,0); //uses the lower 64 bits of b

reg c(b); //323 it register with the initial value of b’s current

value

c(440, 413) = 1; //illegal – run time error, bit index out of range

vreg d(“tb.chip.reset_n); //create a vreg that is tied to reset_n
w w w . t r u s s t e r . c o m n n n n n n n 2 7

c = d; //clear all but the lowest bit of c, c(0) = current value

of reset_n

d = 0x0; //push reset_n to 0;

Math on reg/vreg

std::string path (“testbench.top.main_bus”); //the root of the

bus module

vreg addr(path + “.address”); //address, bit length copied from

HDL

reg b(length (32));

b(31:0) = 0x12; //init b

addr += 2; //increment address, push to HDL

addr = b << 3; //same as addr(addr.length() –1, 3) = b;

addr(2,0) = 0;

Bit fields

reg b (101);

std::string root (“tb”);

std::string module (“bus”);

vreg addr (root + “.” + module + “.rd_addr”);

addr(1,0) = b(28,27); //copy the two bits, push to HDL

int c (addr (31,28).format_int()); //get current upper nibble

of address

addr(27,20) &= 0x55; //do some bit bashing
2 8 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 6: The vreg class
This chapter describes the class that is used to connect your c++ code to the
HDL. This class provides mechanisms to use signals in the DUT as though
they are built-in c++ variables. The vreg class is derived from the reg class.
n n n n n n n 2 9

Overview

The reg, by itself, has very little to do with simulation. The vreg class,
which is derived from reg, implements the hookup to the Hardware
description Language (HDL).

In order to do verification, pre-silicon co-verification, or software
algorithm development, interacting with the hardware is a basic
necessity. The vreg class provides the ability to stimulate inputs and
interrogate/respond to outputs.

Theory of operation

The vreg object uses the Verilog Procedural Language (VPI) or
Programming Language Interface (PLI), depending on the compile
options, to find the wire or register in the HDL. The path to the register
or wire is the handle to the HDL register or wire. The path is formed by
concatnating the module names and then the wire/register name. For
example, assuming that your top level module is called testbench, and
you have a top level wire called usb_dp and a module called uart with
an internal register called clk, this is how the path would be passed in
to the vreg constructor.

vreg (“testbench.uart.clk”)

ßvreg (“testbenchb.usb_dp”)

A vreg differs from a reg in that its value is initialized and conceptually
exists in the HDL. Therefore, any assignment (or sub-range
assignment) is pushed to the HDL as if it were a non-blocking
assignment.

The example below shows a top level module called module_1 and a
register within the module_1 called addr. The C/C++ code on the left
shows how to declare and use the vreg variable address.
3 0 n n n n n n n T e a l U s e r ’ s G u i d e

C p g
Figure 1: Example of how the vreg interacts with the DUT

Because reg was designed with vreg in mind, there are classes to virtual
methods for determining when a reg should be written to the HDL or
when the most recent HDL value is needed.

C/C++ interface

This section describes the programming interface. Note that there may be
undocumented private interface data and members.

Creating, copying, and destroying a vreg

To create a vreg, pass in a string path down to the wire or register. The
path is copied so that later printing functions can print the signal by name.
If the path does not map to an HDL signal, you get an error, and all
subsequent usage of this vreg will fail.

 vreg (const std::string & path_and_name)

 ~vreg ()

vreg & vreg::operator= (const reg &)

Sometime, when designing reusable Intellectual Property (IP), you may not
know if a particular register is going to be implkemented in every instance
of the DUT. Yet, to minimize the chance of having different versions of IP,
you want to write the IP such that it always exists. This is supported in the
vreg class by allowing the path to be zero (NULL). In this case, the vreg is
w w w . t r u s s t e r . c o m n n n n n n n 3 1

not “hooked up” and all operations proceed as though this was a reg
obejct. You can test this condition by the enabled() method.

 bool enabled ()

Similar to the above discussion, there are times when you do not know
the name when the object must be constructed. This case should be
rare, as two stage construction is more prone to errors. To supported
delayed hookup to the HDL, the name() method is used. This resets the
path to the register.

 void name (const std::string & path_and_name)

Finally, the verification effort may be ahead of a particular
implementation or there may be many varients of a chip with subsets of
the full feature set. In this case, the C++ modules may want to test for
the presense of a module or wire to determine if the functionality is
present. In this case, the static method present () can be used.

bool present(const std::string & path_and_name)[static]

Functions for HDL coherency

The methods below are overridden by vreg to allow it to make sure the
HDL signal and the c/c++ representation agree.

Specifically:

ßThe read_check() method checks the current integer global state, and
if its value is not the same, calls the HDL to get the current value of
the signal. Then read_check() sets its internal state variable to the
global one.

ßThe write_check() implementation pushes a value to the HDL, as
though it were a non-blocking assignment.

ßInvalidate_all_vregs() is a method used only by the threads
management system. This method is called when the c/c++ code is
called from the HDL side, causing the global state value to change
and causing all vregs to get a new value when or if they are
referenced.

virtual void read_check () const

void write_through () const
3 2 n n n n n n n T e a l U s e r ’ s G u i d e

C p g
void invalidate_all_vregs () [static]

Examples

This section shows some basic examples of reg and vreg. You can use these
examples as an introduction to the capabilities and use of these classes.

Declarations:

std::string path (“testbench.top.main_bus”); //root of the main bus

vreg addr(path + “.address”); //access the address, bit length from

HDL

vreg clk((“testbench.top.clk”);

vreg a(23); //illegal. Need a path

reg b(length (72)); //create a 72 bit register, initial value of

all X’s

b(71,32) = addr; //set bits 71 to 32 of b to current value of

address.

clk = 0x0; //force clk to 0;

Bit fields

reg b (101);

std::string root (“tb”);

std::string module (“bus”);

vreg addr (root + “.” + module + “.rd_addr”);

addr(1,0) = b(28,27); //copy the two bits, push to HDL

int c (addr (31,28).format_int()); //get current upper nibble of

address

addr(27,20) &= 0x55; //do some bit bashing
w w w . t r u s s t e r . c o m n n n n n n n 3 3

3 4 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 7: Logging Simulation
Output

This chapter describes how to write to a results file. This chapter
covers why a uniform output format is desirable and the facilities
included in Teal to make this happen.

Overview

Often, you use a log file as a trace of what happened during a
simulation. It is important to have a consistent message format to
enable post processing, error counting and possibly filtering. The Teal
classes vout and vlog encourages such uniformity.

To increase the probability that a piece of verifcation code can be
reused, Teal provides a very flexible formatting system. Why ar ethey
related? Well, different teams have different specification for output
format. Teal is flexible enough to match almost any desired output
format. However, this flexibility comes at a cost of some complexity. It
is hoped that suitable initial settings make this complexity only
apparent when sophisticated flexibility is needed.

Theory of operation

Logging seems so simple when you first start writing to cout or using
printf()s. As your code or team size grows, however, it becomes quite
complex. This is because different people think about logging in
different ways. Some like generous amounts of data (and may post
process the results file). Others prefer to think of a “level” of
debugging, where a bigger number represents more verbosity and zero
represents an unmaskable message. Others prefer a mask-based
approach.

Orthagonal to the amount of data to be displayed, there is the
presentaton order of the data. Should the simulation time be first, or
the type of message (note, error, expected, etc) ? Also, in more
advanced applications, you may sometimes want to redirect or
duplicate the messages to a display or another unit in the system. Add
to all that, the possibility of getting verification IP from an outside
vendor or another part of the company and logging becomes
downright painful.
3 6 n n n n n n n T e a l U s e r ’ s G u i d e

C p g g g S O p
Teal attemps to provide a maximum of flexibility while keeping the simple
outputting simple. Because of the sloping complexity of logging, this
section is divided into basic and several advanced parts.

Creating a results file within Teal has two basic components. One is the
vout class, which is intended to be instianiated at each component or
functional area of a design (e.g a each transactor, checker, and maybe the
verification_top). The other object is called a singleton, which means there
is only one of them in the system. This is the vlog class. The figure below
shows the relationship between your code, the vout class and the vlog
class.

Figure 1: View of many vout objects and a single vlog

Basic Logging

As shown above, all vout instances call the single vlog to print a message.
This is done so there is a single point of control to reorder, demote, change
or delete parts of any message. This ability is provided by the vout::get()
function chain and it is described below. Since all messages start at the
vout, this will be described first.

bfm_3
vout

bfm_2
vout

vlog

Checker
vout Stimulus

vout

main
vout

bfm_1
vout
w w w . t r u s s t e r . c o m n n n n n n n 3 7

The vout class is modeled after the c++ cout object. It directly supports
output of the standard types. By following a few simple guidelines,
you can print complex objects as conveniently as the standard types.
See example three in this chapter. To end a message, call the endm
function (see the basic example). To describe a multi line message, use
endl (just like cout) where needed and use a final endm at the end.

When you create a vout, you give it a string that represents the
functional area it is providing messages for. You can then build any
mumber of message statements. For example:

vout log (“a test”);

log << teal_info << “A number” << hex << 562393 << endm;

This example prints (assuming a file os simple.cpp, at line 101, thread
of “uart_o_tx”, and a simulation time of 77 ns):

[77 ns] [simple.cpp] [line 101] [uart_0_tx] [a test] A number 64’h894D9

Note that when you finish a message statement (using endm), the vout
instance adds the simulation time, the file, the line number, the current
thread name and the functional area to the message and sends it to the
vlog singleton. It does not send it as a text string, which would not
allow efficient modification of the message. Rather, it sends the
message as a set of pairs of IDs and strings. This allows you to instruct
the vlog instance to modify messages based on their components.

The vlog class also supports decimal, hexadecimal, or binary output.
You select the output basis by placing either a hex or dec or bin in the
message statement.

Before moving on to the vlog class and it’s message manipluation
capabilities, you can also turn off display of parts of a message directly
at the vout instance. The message_display() function takes in an ID and
a boolean. If the boolean is false, the message part represented by the
ID is not displayed. The standard message IDs are “time, thread_name,
functional_area, error, note, warning, expected, and message_data”.
Note that since the message_display() function takes in an integer, you
can add your own message IDs and control their display.
3 8 n n n n n n n T e a l U s e r ’ s G u i d e

C p g g g S O p
As shown above, completed messages are sent to the vlog object.
Generally, you include a message ID pair that describes the type of the
message. The message type is generally either :

teal_info.Used for standard messages.

teal_fatal. Used when a test must exit the simulator immediatly.

teal_error. The error type is used when the expected behavior is different
from the expected.

The number of info and error messages is counted and can be used for end
of test checking or summary reports.

The vlog has two main functions. One is to assemble the message items
into a string. The other is to print them out. The standard vlog (see
Advanced vlog below for other possibilities) performs these two tasks
using an output_message() and a local_print() method.

The local_print() method is basic and prints the string to standard out
(using printf). Also, there is a subclass of the standard vlog called
foile_vlog, which can send the text to the file (via fprintf).

Level based Logging

Sometimes its more convient to implement logging as based on a debug
level. What you are getting in the level feature more expressive power, at
the expense of additional complexity. The vout class supports debug
printing with ethe teal_debug manipulator and the level (<#>) io
manipulator.

The vout class can be constructed with a functional area string (like its
base, vout) and a default uint32 level. The dictionary parameter
“<functional area> + show_level” is searched for a command line or file
override to the level for this functional area. This is so that debug levels can
be overridden without changing or rebuilding the verification
environment (or object file, if a Verification IP provider did not provide
source code). When a message is written, the manipulator function
level(uint32) is used, like so:

vout log (“a_test”, 3);

log << teal_debug << level (4) << “level 4 message” << endm;
w w w . t r u s s t e r . c o m n n n n n n n 3 9

In this case, without a dictionary override, the message will not be
printed. This is because the level_vout was created at level 3 and the
message is at level 4.

The show_debug_level() method allows the verbosity to be set
programatically.

Note that info, error, and fatal messages are printed out at level 0, so
they cannot be suppressed using the show_debug_level(). There are
other ways, and they are shown in the Advanced vlog object section.

Debug messages are set to level 1 until a level(<#x>) is encountered, so
you may want to not use level(), and thus treat all debug messages as
either all on or all off.

Advanced vlog objects

The vlog class supports a static method get(), which returns the
currently vlog object. This is what is used by the vout to output a
message.

However, vlog is only logically a singleton. It is actually implemented
as a linked list of filters, each with the ability to manipluate the list of
mesage items or the formed string.

By constructing a new vlog, the vlog constructor automatically assigns
the new object to the logical singleton “get()”. The vlog class also keeps
track of the previous value of get(). In this way a chain is formed. So,
when a message is printed, your object is the first to be able to suppress
or change the message.

Your derived class of vlog that overrides the local_print_() method, you
have the ability to get the std::string that is the completed message and
perform any post processing that is appropriate.

Also, if you build a derived class of vlog that overrides the
local_print_() method, you have the ability to get the std::string that is
the completed message and perform any post processing that is
appropriate.

C/C++ interface
4 0 n n n n n n n T e a l U s e r ’ s G u i d e

C p g g g S O p
Creating, copying, and destroying a vlog

vlog is unlike a “normal” class in that it is expected to always be there - so
there is no explicit construction step. You create a vlog by calling the get()
method1. Also, because vlog is implementing a logical singleton, it cannot
be copied or assigned. Finally, because vlog will exist for the duration of
the simulation, it is not destroyed2.
The message type describes the type of message that is being printed:

enum message_type = {info, expected , error, fatal}

However, you generally use the teal IO manipulators instead of directly
putting the message type in the message. These functions are placed in-line
with the output message.
teal_info () - for normal messages

teal_debug () - for developer messages

teal_error () - for incorrect DUT behaviour messages

teal_fatal () - print the message and exit the sim

This function returns the object at the top of the vlog chain.
vlog & get () [static]

Statistics
As each type of message is printed, vlog increments a counter. You retrieve
the current count of any message id by using this call.

int how_many (int) //where int is usually error !

Output of the standard types
These functions handle outputting of the standard types in c/c++:

1.Inside of this call, there is a test to see if no vlog has been created. If this is the case an object called
local_vlog() is created. As this is an implementation detail, it is not documented further. The class is imple-
mented in the Teal file teal_vlog.cpp.

2.Of course, you can create local scoped vlogs and they will be added abd removed from the chain as appro-
priate.
w w w . t r u s s t e r . c o m n n n n n n n 4 1

vlog& operator<< (vlog &(* f)(vlog &))

vlog & operator<< (double)

vlog & operator<< (const std::string &)

vlog & operator<< (long long unsigned int)

vlog & operator<< (long)

vlog & operator<< (unsigned int)

vlog & operator<< (int)

vlog & operator<< (char)

Output Format
The next functions set the output type, add a line feed, and end a
message. Note that, although these are functions, the iomanip template
allows then to be used in-line as part of the “<<“ expression, as in the
cout model.

Be aware that you must call endm() to end a line. However, you may
want to have multiple lines in the same message. In this case, call
endl(). This inserts a note to the vout object to begin a new line.

vlog& dec (vlog & a_vlog)

vlog& hex (vlog & a_vlog)

vlog& bin (vlog & a_vlog)

vlog& endl (vlog & a_vlog)

vlog& endm (vlog & a_vlog)

Examples

1: Simple

vout a_log (“Basic”);

a_log << note << “Hello World ” << 42 << endm;

Assuming the previuos lines are called at simulation time 5
nanoseconds, the output is:
4 2 n n n n n n n T e a l U s e r ’ s G u i d e

C p g g g S O p
[5 ns] [simple.cpp] [line 3] [verification_top] [Basic] Hello World

42

2. Logging a reg

reg a(23);

reg b(length (48)); b[7:4] = 3;

vout a_log (“Basic”);

a_log << note << “basic a is” << dec << a << endm;

a_log << expected << “a is” << hex << a << “ and also “ << bin << a

<< endm;

a_log << error << “b is “ << hex << b () << endm;

Assuming the previous lines are called at simulation time 565
nanoseconds, the output is:

[565 ns] [basic.cpp] [line 4] [verification_top] [Basic] Note:

basic a is 64’d23

[565 ns] [basic.cpp] [line 6] [verification_top] [Basic] EXPECTED:

a is 64’h23 and also

64’b000101

11

[565 ns] [basic.cpp] [line 6] [verification_top] [Basic] ERROR: b

is 512’hXXXXXXXXXX3X

3. Output of an object:

This example shows code that enables complex objects to be printed as
native types. First, declare the base operator<<() method as virtual, to
allow derived classes to have their own output:

class base {

 virtual vout& operator<< (vout& v) const {v << “Base class”;

return v;}

};

Now, declare a single global function to call the virtual one. The compiler
automatically finds this function when you do the following:
w w w . t r u s s t e r . c o m n n n n n n n 4 3

my_log << note << base_instance << endm;

inline vout& operator<< (vout& v, const base& b) {

return b.operator<< (v);}

class derived : public base {

 virtual vout& operator<< (vout& v) const { v << “Derived “;

return v;}

};

base a_base;

derived a_derived;

vout a_log (“Basic”);

a_log << note << a_base << “ and “ << a_derived << endm;

Assuming the previous lines are called at simulation time 565
nanoseconds, the output is:

[565 ns] [object.cpp] [line 7] [verification_top] [Basic] Base

class and Derived
4 4 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 8: The Random Number
Module

This chapter describes what is means to have independent streams of
random numbers and why that is important for verification. It then
describes Teal’s facilities for random number generation and shows some
random number generation examples.
n n n n n n n 4 5

Overview

Using random numbers for test values is a staple of modern verification.
The numbers must be well-distributed and stable across runs. The first is
important because you need to find all the possible valid values and the
second is important because after you find a bug, you need to rerun that
simulation at least twice:

Once to create a vcd file.

Once to confirm that the bug is fixed.

You might want to put that run in a regression suite as well. The reruns
of that simulation must produce exactly the same sequence of random
numbers.

This chapter describes Teal’s random number capability.

Theory of operation

Teal’s trandom class provides a stable random number generator. To
provide independent streams of random numbers, the random class uses
a string and an integer to create the start seed.The start seed is the
initial value for the random number generator. In addition to the start
seed for each instance, the random class itself is initialized with a master
seed, which provides a tie-in to all the streams. In this way, a single
number, given to the static random::init() function, possibly from the
command line or test file, is used to guide all random number streams.

The basic random number class generates a [0..1.0) random double on
every draw. The random_range class maps this double to a range of
integers.

To support stability, you must carefully choose the seed string or number
passed into the constructor. The example section shows some common
techniques that can be used to provide the appropriate level of flexibility
and stability.

The random class is a basic one. It provides all the basic operations
needed, it’s often the use and interaction of the random numbers that
are the complex part of verification. Feel free to derive other classes to
implement different distributions.
4 6 n n n n n n n T e a l U s e r ’ s G u i d e

C p
C\C++ Interface

Required Initialization

Before using any random numbers, you must initialize the generator. There
are two ways to do this. The first way is to pass in a path to the master seed
file. This file, if it exists, is searched for a dictionary entry of master_seed. If
a line beginning with “master_seed” is found, the remainder of the line is
assumed to be a set of hex digits used for the master seed. If the
“master_seed” string is not found, a master seed is chosen and the
“master_seed” and hex digits are written to the file.

void trandom::init_with_file (const std::string &

master_seed_path) [static]

The other way to initialize the random number master seed is to explicitly
pass it to the init() method. This is useful when you pickup the master seed
from the dictionary. This is the method used by the example run script and
test files.

void trandom::init_with_seed (uint64) [static]

Note that these functions can be called multiple times if a combination of
master “key” seeds are desired.

Common macros
Before describing the trandom class, you need to know about some common
macros that you may use often. The RAND_8() and RAND_32() macros
generate random numbers of the appropriate bit length. The RAND_RANGE()
macro generates a bounded random number.

 RANDOM_RANGE (output_value, min_value, max_value);

 RAND_8 (output_value);

 RAND_32 (output_value);

Creating, copying and destroying a trandom
After the random number class is initialized, you can build trandom objects.
The constructor takes in a string and an integer, both of which are optional.
The macros described above pass in the ansii (americal national standard for
information interchange) standard __FILE__ and __LINE__ macros. Note that
omitting both creates identical random number generators. The default
copy constructor and operator=() can be used to copy a random number
stream or set one stream to match another.
w w w . t r u s s t e r . c o m n n n n n n n 4 7

trandom (const std::string & file, uint32 line)

~trandom ()

Getting random numbers
The draw() method is used to draw a random number. The number will
be between 0 and 1, specifically [0..1).

double draw ()

Creating, copying and destroying a trandom_range
A simple derived class of trandom is trandom_range. This class shifts the
0..1 double into a uint32-based range.

trandom_range (const std::string &, uint32)

Examples

1. Stable across source file editing

As a general technique, you may find it useful to enclose each call to a
random number generator (RAND_RANGE, RAND8, and so on) within a
static function at the top of a file. This is because the default macros use
__FILE__ and __LINE__ as the seed, and you don’t want the line
number to change as you add or remove code from a source file. For
example:

static uint32 get_next_channel (uint32 a_min, uint32 a_max) {

uint32 r; RAND_RANGE (r, a_min, a_max); return r; }

};

2. Direct use of the trandom class

You also can bypass the macro and provide your own string (or
number). This would also be stable across code changes. For example:

trandom my_random (“Hello World”, 0);

uint32 my_random_value = my_random.draw ();
4 8 n n n n n n n T e a l U s e r ’ s G u i d e

C p
3. Cycling through random numbers

Sometimes you need to track which random number has been handed out.
This is usually either when you want to walk an entire range before
returning to a previous value or make sure you never hand out a duplicate.
In this case, the number represents a resource, like an endpoint number,
that can be “allocated” and “released” randomly during a simulation.

In this case, you can use a bool array of the appropriate size. You can also
use a std::map to track the random number usage. For example, assume
that you are handing out uint8s. Using the technique in example one to
isolate random number streams in a static function at the top of the file,
you could have:

static uint8 next_channel () {

 uint8 x;

 uint32 deadlock = 100000; //Good enough for most cases.

 static bool used[256] = {0};

 do { RAND_8 (x);}while (--deadlock &&used[x]);

 if (!deadlock)

 vout::vout (“next_channel”) << error << :Deadlock! no more

channels at” << __FILE__ << __LINE__ << endm;

 }

};

Note that the deadlock ensures that the system never is hung up, which is
important whenever you constrain a random value. As the interactions of
the random numbers increases, so does the possibility of a deadlock.

4. Selecting a boolean via a 0..100% probability

Sometimes it’s useful to skew a random distribution so that it’s not
gaussian. There are several ways to do this. This and the following
examples explore some of the ways. For a single bit (or a Boolean), one
simple way is to provide a threshold, which represents probability of
success. Then by generating a random number between 0 and 99, and
comparing it to the threshold, you can skew a distribution.
w w w . t r u s s t e r . c o m n n n n n n n 4 9

static bool get_use_tone_detection () {

 uint8 threshold = dictionary::get (“tone_detection”, 50); //

default is balanced random%

 uint8 x; RAND_RANGE (x, 0, 99);

 return (x < threshold);

};

5. Selecting a enum

A way to randomize the selection of an enum is to all the possible
values, and then pick a random index. For example:

#include <vector>

using namespace std;

typedef enum valid_address_type {config, io, cached, uncached};

static valid_address_type get_next_address () {

std::vector<address_probability> addresses; {

addresses.push_back (config);

addresses.push_back (io);

addresses.push_back (cached);

addresses.push_back (uncached);

uint32 x; RAND_RANGE (0, addresses.size () –1);

return addresses[x];

};

6. Subclassing trandom

Another way to provide a non-gaussian distribution is to subclass the
trandom or trandom_range object and apply a post-processing step. For
example, taking the log of the result of the draw() method produces a
logorithmic distibution.
5 0 n n n n n n n T e a l U s e r ’ s G u i d e

C p
7. Constrained random example

Often it is useful to constrain the generation of random numbers using an
external to the test mechanism. This allows one test to have several
different runs. One way to do this is to use the master seed picked
differently for each run. Another way is to use a test file that provides
variables to be used as bounds in the thresholds or distributions shown in
the previous examples.

For some examples of how to get external variables into your test, see the
dictionary namespace in Chapter 11.
w w w . t r u s s t e r . c o m n n n n n n n 5 1

5 2 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 9: Accessing Memory
This chapter describes how you use Teal to read and write memory in zero
simulation time. It also explains how the Teal memory system can be used
for more generic abstraction of reading and writing registers (in zero time
or through a DUT interface).
n n n n n n n 5 3

Overview

Almost every chip that is verified has internal memory or interacts
with external memory. This chapter describes Teal’s capability for
testing those interfaces. It describes the types of memories that are
supported and how these are mapped to integer address ranges. This
chapter also describes how you can use memory building blocks to
support error injection, grouped memory, and bank/front door
memory access.

Theory of operation

For simulation, you can implement the memory in either c/c++ or the
HDL. Implementing the memory in c/c++ is appropriate in these cases:

For extremely large memories

When all accesses must be checked

When statistics must be gathered

Because a c/c++ implementation could be built on top of Teal (using the
vreg class, the run_loop class (see), and the memory_bank class (see
next), this chapter does not discuss it. This chapter is primarily
concerned with accessing memory implemented in the HDL. The
information in this chapter is based on the assumption that you are
implementing the memory as a HDL register array.

You can get access to HDL implemented putting a hook task into the
module that contains the register bank. See teal_memory_note()1.

A memory_bank object is created for each teal_memory_note() call. This
object contains code to access the internal memory of the simulator that
is implementing the HDL register array. The memory_bank that is
created by the hook function contains to_memory() and from_memory()
methods, which carry out the access without advancing simulation time.

1.One could augment Teal to provide a memory acessor via a string as well, but it is not provided at this
time.
5 4 n n n n n n n T e a l U s e r ’ s G u i d e

C p g y
The memory_bank also has low and high address 64 bit integers, which are
used to allow access to memory using an integer address.

The memory namespace keeps track of all memory banks. Note that memory
banks are the workhorses of the memory namespace. They do the actual
work, while the namespace just figures out which one to hand the access
request to. For the interface method to find the right memory_bank when
using an integer address, you must map the memory banks into an integer
address range. The memory::map() function maps a memory_bank to an
address range. You can put this mapping in the initialization code of your
verification_top(), and all other code can just read/write by integer
address.

Sometimes several memory banks are grouped together to provide one
logical memory bank. In this case, you need to write a special memory
bank that first retrieves all the sub-memory banks (using
memory::bank_lookup ()) and then adds itself to the memory namespace’s
list of memory banks, using memory::add_bank().

Sometimes you want to inject errors in the memory system. You can do so
in a manner similar to the grouped case, where you look up the bank in
question, and add a new bank that handles the memory accesses.

Often it ‘s helpful to randomly use either front door access (via a memory
bank that uses a bus transactor, like PCI or AHB) or back door access, using
a memory bank that is connected to an HDL model. The front door access
is slower and takes simulation time, but front door access tests that HDL
code path and may also test contention.

You can also build a memory bank that aggrgrates several vreg objects, so
that back door register access occurs as a result of memory reads/writes.

C\C++ Interface

Memory functions
The memory manager has a small interface. You can map memory to some
integer range. You also can add banks of memory for special purpose
memory, such as ECC, parity protected memory, or a Context Addressable
Memory (CAM). Later, other parts of your simulation can retrieve this
memory by address or by path, and you can read and write this memory.
w w w . t r u s s t e r . c o m n n n n n n n 5 5

void add_map (const std::string & path, uint64 first_address,

uint64 last_address)

void add_memory_bank (memory_bank *)

memory_bank * lookup (const std::string & parial_path)

memory_bank * lookup (uint64 address_in_range)

void read (uint64 global_address, reg*)

void write (uint64 global_address, const reg & value)

One item to note is that the read does not just simply return a reg. It
may seem, at first, appropriate to do this, but then multiple data path
width memory could not be supported. It is fairly common for todays
memory subsystem to support byte, word, and long word access.

Creating, copying, and destroying a memory_bank
An internal class derived from the memory_bank class connects to the
DUT. This class is within the memory namespace and is created
whenever a $note_memory_bank() is placed in the HDL. However, you
may want to aggregrate or add special functions for a memory range. In
such a case, you want to create your own memory bank. The only
parameter is the name of the memory bank:

memory_bank::memory_bank (const std::string &)

memory_bank::~memory_bank () [virtual]

Determining the right memory bank
For the read and write memory functions to work (when accessed by
integer address), they must determine which memory_bank object will
handle the access. Since the memory manager namespace contains a list
of memory_banks, the lookup functions use the contains() methods to
find a match. The first one to return true is the bank that is used. Note
that there are two contains functions:

One for lookup by address

One for lookup by name

bool memory_bank::contains (uint64 address) const
5 6 n n n n n n n T e a l U s e r ’ s G u i d e

C p g y
bool memory::memory_bank::contains (const std::string & path)

const

Actually reading and writing memory
After a bank has been selected, the memory function calls one of these two
methods:

virtual void from_memory (uint64 address, reg*) [pure virtual]

virtual void to_memory (uint64 address, const reg & value) [pure virtual]

Examples

1. Simple memory use

This example shows how to hookup the HDL memory to Teal. It shows the
most common way to read and write memory entries.

In your top level testbench, define some regsiter banks and hook them to
Teal, like so:

module some_memory

reg[1:0] bank_0[1024:0];

initial $teal_memory_note(bank_0) //in module tb.memory_1

endm

module tb

some_memory memory_1();

some_memory memory_2 ();

endm

Now, in the verification_top() of a C/C++ source file, you tell Teal how to
view this memory as an address range. Like so:

memory::add_map (“memory_1”, 0x100, 0x200);

memory::add_map (“memory_2”, 0x201, 0x400);

At this point, your program can read and write this memory by address.
Here are some examples:
w w w . t r u s s t e r . c o m n n n n n n n 5 7

memory::write (0x10a, 22); //write local offset 0xa in memory_1

to 22.

reg val; memory::read (0x10a, &val);

if (val != 22) {

 vout log (“memory_example_1”);

log << << teal_error << “At memory_1[“ 0xa << “] “ got “<<

val << “ expected “ << 22 << “.”

}

memory::write (0x20b, 33); //write local offset 0xb in memory_2

to 33.

reg val; memory::read (0x20b, &val);

if (val != 22) {

vout log (“memory_example_1”);

log << teal_error << “At memory_2[“ 0xb << “] “ got “ << val <<

“ expected “ << 33 “.”

}

2. Directly interacting with a memory_bank

This example shows how to read and write a memory bank directly.
This can be useful when a large number of reads/write must be
preformed to a single bank (as in initing a memory or in a pre-aging
test) or when the memory is not designed for an “external” address
range, in other words, internal RAM.

In your top level testbench, define some regsiter banks and hook them
to Teal, like in the previous example. Then, you can get a pointer to the
memory bank using Teal, like so:

memory_bank* bank = memory::lookup (“memory_2”); //partial path

bank->to_memory (0x10, 44); //directly write a 44 to local

offset 0x10

reg val; bank->from_memory (0x10, &val);

if (val != 44) {
5 8 n n n n n n n T e a l U s e r ’ s G u i d e

C p g y
 vout (“memory example_2”) << teal_error << “At memory_2[“ 0x10 <<

“] “ got “

 << val << “ expected “ << 44 “.”

}

w w w . t r u s s t e r . c o m n n n n n n n 5 9

6 0 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 10: Concurrency in Teal
This chapter discusses the mechanisms Teal provides for dividing the
verification task into separate, independent threads of execution. There are
three main components to any such system: (1) a way to start, stop and join
threads, (2) a mechanism for threads to signal one another, and (3) a way
for threads to serialize data access. This chapter discusses how Teal
provides these components.
n n n n n n n 6 1

Overview

Verification is a complicated task. If a complicated task can be broken
down to a set of simpler, independent tasks the problem becomes less
complicated. These tasks often are concurrent. This chapter describes
creating, managing, and interacting with these concurrent tasks.

Theory of operation

As discussed in Chapter 4, the verification_top() function is your top-
level controller thread. Generally, this thread waits for the DUT to be
ready and then initializes the dictionary and random number
subsystems. Next, a series of generators/checkers/transactors is
started, and some end condition is tested. When the end condition
occurs, all threads are stopped and the main thread exits.

You create threads using the run_thread() function. This function
takes in the function you want to run and a pointer to a data area. A
thread is created and the function is called. Normally, the thread never
returns; your “main” thread cancels it with stop_thread()1. If, however,
the thread is a temporary one, and so it returns, the last line must be
note_thread_completed(). Teal needs this call for internal reasons.

When a thread is started, including verification_top(), it runs until it
reaches a waiting point, which tells Teal that control can be returned to
the HDL simulator. After a wait condition has been satisfied, the
blocked thread runs.

There are three types of waiting points:

at()

mutex::enter()

semaphore::wait()

1. The exception to this rule is generally the verification_top() thread, which spawns other threads and
then returns.
6 2 n n n n n n n T e a l U s e r ’ s G u i d e

C p C y
The at() function

The at() function, the most common wait point, is intended to model the
@(sensitivity list) statement in Verilog. This function takes in a
sensitivity list of vreg signals. The signals are matched on the posedge,
negedge or any change. A statement such as:

at (posedge (clk) || change (reset_n));

would mean to pause the thread until either :

The clk signal went from an X, Z, or 0 to a 1.

Any change occurred in the reset_n signal.

Execution would then continue after that statement.
The example above shows that, after simulation is started (in module Top) the verification_top() function is executed. It will run (in zero simulation time) until the at (posedge… clause. At this point, the thread pauses until either clock goes positive or reset_n

goes negative. Execution then continues after the at() clause, at the now more advanced simulation time.

Figure 1: Concurrency - Pausing the thread with the at() clause

at (posedge (clock) || negedge (reset_n));

···

vreg address (“top.module_1.addr”);
vreg data (“top.module_1.data”);

···

···

User Main function

Module top

module_1

reg [37:0] addr;
reg [31:0] data;
wire reset_n;
wire clock;

Start Simulation
w w w . t r u s s t e r . c o m n n n n n n n 6 3

The example above shows that, after simulation is started (in module
top), the verification_top() function is executed. It will run in zero
simulation time until the “at (posedge (...)” clause. At this point, the
thread pauses until either the clock goes positive or reset_n goes
negative. Execution then continues after the at() clause, with the now
more advanced simulation time.

Mutex::enter ()

The mutex::enter() wait point is used when two or more threads need
access to some common hardware resource. A good example is the PCI or
AHB bus in the system. In the test system and in the software, many
threads can be competing to access the bus (as the same master). The
mutex::enter() call waits until no other thread is using that mutex object
and then locks the object. After your thread finishes using the hardware,
you must call mutex::unlock () to tell Teal that you have finished. At that
point, any other waiting thread is allowed to access the hardware. For
simple mutex management, see the mutex_sentry()utility object, in
Teal.h.

semaphore::wait ()

The semaphore class is intended to loosely model the event object in
Verilog. In this context, one thread is waiting for another thread to
signal to it. The semaphore class provides this functinality with signal()
and wait() methods1. The semaphore class is most often used for inter-
thread communication. For example, suppose you have a monitor thread,
and your test is waiting for an ACK packet to be sent. You would declare
a semaphore object for ack in the monitor object (which also is a
separate thread) and have a method wait_for_ack() that calls
semaphore::wait() on the ack semaphore. When the main loop of the
monitor object sees an ack on the wire, it would call semaphore::signal
() on the ack object. This call would cause the wait_for_ack() method to
return and the calling thread to continue running.

Simulation Time

The current simulaton time is returned by the vtime()function, which
returns a uint64.

1. Note: This is exactly the same as the pthread condition variable, except that the Teal one is tied in to the
simulation. Using the pthread condition variable will most likely crash the simulation.
6 4 n n n n n n n T e a l U s e r ’ s G u i d e

C p C y
Getting the Thread name from a thread_id

The function called thread_name(pthread_t) returns the name associated
with the thread ID, which is returned by an earlier call to run_thread().

C/C++ interface

Creating and destroying threads

You create a new task with run_thread(). This function takes in a function
to run, a data parameter, and a task name. run_thread() returns an ID to be
used to stop the thread (or any other pthread function). The stop_thread()
function takes in a thread ID and stops that thread

In general, a thread runs until it is stopped by another thread. If, however,
a thread runs to completion and returns from the user_thread function, it
must call note_task_completed() to let Teal clean up internal data
structures.

void (user_thread) (void* user_data)

pthread_t run_thread (user_thread, void * user_data, const

std::string & name)

void * stop_thread (pthread_t)

void teal_finish () - iafter stopping all threads, end the

simulation

void note_task_completed ()

The thread_name() function converts between the thread_id and the task
name.

std::string thread_name (pthread_t)

The vtime() function returns the current simulation time:

uint64 vtime ()

The at() function is the main way a task pauses. It is given a sensitivity list,
which is an object that is automatically created (and destroyed) by calling
posedge(), negedge() or change() with a vreg as its argument. The list is also
extended when you have multiple vreg changes (negedge, posedge, or change)
separated by the || operator.
w w w . t r u s s t e r . c o m n n n n n n n 6 5

Be aware that, by default, posedge() and negedge()test only the lowest bit
for the appropriate edge. If you need to test for a different bit, pass a
second parameter indicating the specific bit to test.

void at (const sensitivity &)

 posedge (vreg & v, uint32 bit_pos = 0)

 negedge (vreg & v, uint32 bit_pos = 0)

 change (vreg & v, uint32 bit_pos = 0)

Creating and destroying a mutex

Often several independent threads need to use a common hardware
resource, such as a bus. If each thread has its own master identifier and
the bus has hardware arbitrartion, each task can arbitrate for the bus
wing the DUT hardware. In this case, a mutex is not needed.

However, if the independent tasks are the same master (as if they are
emulating multiple software threads on a CPU), they need a simulation
mechanism to arbitrate. This is the purpose of the mutex class. Once
constructed, its pointer is passed to all affected modules (or hidden in a
common transactor, like pci_bus_master, see the mutex test in the test
directory of Teal). Each task calls lock() to either gain access to the
hardware or block until the current task is finished with the hardware.
Once the lock() method returns, you access the hardware, and then call
release() to inform Teal that you are done with the hardware. At that
point, any waiting threads re-arbitrate for the mutex.
The constructor only takes in a name for the mutex:

 mutex (const std::string & name)

~mutex ()

Working with a mutex
There are only two operations on a Mutex. One is to acquire the mutex,
by calling lock() and the other is to release the mutex by calling
unlock():

void lock ()

void unlock ()
6 6 n n n n n n n T e a l U s e r ’ s G u i d e

C p C y
Creating and destroying a condition

Whenever you have multiple tasks, there is a good chance that they will
need to communicate. While tasks can put data into work queues and take
data out, there must be some mechanism to signal that one task as just put
some data in (or taken something out). Also, a monitor task may need to
announce a particular condition (like ack, nak, or byte_sent). There may or
may not be a receiver to note the announced event. The condition class
provides such inter-task communication.
A condition is given a name when constructed:

condition (const std::string & name)

 ~condition ()

Working with a condition
Once a condition is created, its pointer is passed to the affected tasks (or
buried in a method of a class, like monitor::wait_for_ack ()). At the appropriate
time, one task calls wait() and it blocks until another thread calls signal.

void signal ()

void wait ()

Examples

Simple at() expressions

This example demonstrates how a thread can be paused on a number of
signals. It is assumed that the testbench top module contains a register for
an address and a clk.

vreg address (“testbench.address”);

vreg clk (“tb.clk”);

at (posedge (clk) || change (address)); //wait until next rising

clk or any address change

at (negedge (clk)); //falling edge test
w w w . t r u s s t e r . c o m n n n n n n n 6 7

Mutex

This example demonstrates how two threads cooperate to place their
address on the shared hardware register called address. In addition to
the testbench to having address, clk and data registers, it is assumed
that there is a module that placed data on the bus in response to the
address changing.

First, two similar functions are defined. Each one tries to get the mutex
(passed in the context parameter) and then puts its address on the
address register. One clock later, they retrive the value put in the data
register (by the DUT) and then release their mutex.

void master_one (void* context) {

 mutex* m = static_cast<mutex*> context;

 m.lock ();

 vreg address (“tb.address”); address = 0x10;

 vreg clk (“tb.clk”);

 at (posedge (clk)); //wait one clk pulse

 vreg data (“tb.data”);

vout log (“master_one”);

log << teal_note << “data is “ << data << endl;

}

void master_two (void* context) {

 mutex* m = static_cast<mutex*> context;

 m.lock ();

 vreg address (“tb.address”); address = 0x16;

 vreg clk (“tb.clk”);

 at (posedge (clk)); //wait one clk pulse

 vreg data (“tb.data”);

vout log (“master_two”);

log << teal_note << “data is “ << data << endl;
6 8 n n n n n n n T e a l U s e r ’ s G u i d e

C p C y
}

The verification_top function creates the common mutext and starts the
two threads running. It then waits for the two threads to complete.

void verification_top () {

mutex main_bus_mutex (“main bus”);

pthread_id one = run_thread (master_one, &bus_mutex, “task one”);

pthreda_id two =run_thread (master_two, &bus_mutex, “task two”);

join_thread (one); join_thread (two);

}

Semaphore

This semaphore example shows a producer/consumer pair of threads. One
thread creates data and then signals the other to get the data. The
consumer waits for data and then consumes the data.

A context structure is created that holds the semaphore and the data to be
communicated. Note that this is a simple mailbox scheme.

struct context {

void context (): mailbox (“main mailbox”) {};

semaphore mailbox;

 std::vector <uint32> work_queue;

}

The producer gets the context and pushes two uint32s into the queue.
Note that, in another design, the mailbox could have signalled just once. In
this case the producer would have to drain the entire work queue.

void producer (void* c) {

 context* the_context = static_cast<context*> (c);

 the_context.work_queue.push_back (10);

 the_context.mailbox.signal ();
w w w . t r u s s t e r . c o m n n n n n n n 6 9

 the_context.work_queue.push_back (20);

 the_context.mailbox.signal ();

}

The consumer gets the context and reads the two uint32s.

void consumer (void* c) {

 context* the_context = static_cast<context*> (c);

 for (uint8 i(0); i < 2; ++i) {

 the_context.mailbox.wait ();

 vout log(”consumer”);

log << received << the_context.work_queue.front ();

 the_context.work_queue.pop_front ();

 }

}

The verification_top() function builds a context, runs the two threads
and waits for them to complete.

void verification_top () {

context my_context;

pthread_id one = run_thread (producer, &my_context,

“producer”);

pthread_id two (run_thread (consumer, &my_context,

“consumer”));

join_thread (one); join_thread (two);

}

7 0 n n n n n n n T e a l U s e r ’ s G u i d e

Chapter 11: The Dictionary
Module

This chapter describes Teal’s way of getting parameters into a test. The
dictionary is useful if the test can cover a range of features and capabilities,
as it can be used to constrain the features on a per test basis.
n n n n n n n 7 1

Overview

This chapter introduces the dictionary, a namespace with several
functions to solve a common problem in simulation: getting test
parameters. Test parameters are separate from tests (although the test
should have defaults) in that they bind a test to some specific range (or
value) of parameters. The dictionary namespace integrates a file
heirachy and command line parameters into a uniform interface.

Theory of operation

Sometimes you want to control a test using an external file. This allows a
single test to have many different directed runs. These runs would still
use random numbers, but that their range might be constrained by the
test file. For example, the probability of a feature or error may be an
external variable. Alternatively, your test file might be used to turn on
and off features.

Teal provides a dictionary namespace for this purpose. After the
dictionary namespace is initialized with a filename, the file is opened
and the first word in every line is cached. Then, your test can query the
dictionary (with the find() function) and recover the value after the
keyword. For example, if the file had “number_of_streams 33” on a line,
a call to dictionary::find (“number_of_streams”); would return 33.

There is one special first word “include”. If this word is found, the next
word is taken as a filename and the dictionary module processes this file
as well.

If the same word shows up in several lines (in any of the files), the last
one processed will be the value that is stored.

For example, assume a file named “directed_test.txt” had the following
lines:

Figure 1: directed_test.txt
7 2 n n n n n n n T e a l U s e r ’ s G u i d e

C p y
Also assume that the file “basic_text.txt” has the following lines:

Figure 2: basic_text.txt

Since the parameter force_error is in both files, and the force_error setting
of 1 is after the include with the force_error set to 0, the setting of 1 will
override the setting of 0.

Since it’s often the case that command line parameters also act as test
parameters, they are folded into the dictionary module. One the command
line, a parameter such as “+my_parameter+my_value” will be entered as the
word “my_parameter” with the value “my_value”. The command line
parameters override any words of the same name in any file processed.

Since a test may want to get the dictionay file name from the command line,
the find_on_command_line() function can be used before the
dictionary::start() function is called.

C/C++ Interface

Dictionary main functions
To use the dictionary, you must first call start(). This function opens the
file, processes all include directives,and copies all the entries as strings.
When you are done with the file, call stop():

void start (const std::string & path)

void stop ()

To see if a parameter is on the command line, you can use the function
below. This function is useful if you want to get the name of the dictionary
file to open, or do not want to use a dictionary file. If the parameter is not
on the command line, te default is returned. Note: You can pass in “” for
the default if you want to just see if the parameter is there.
w w w . t r u s s t e r . c o m n n n n n n n 7 3

std::string find_on_command_line (const std::string &

parameter, const std::string & default_name)

Working with the dictionary

There is only one function to get the value of a parameter. The find()
function returns the string associated with the parameter, or “” if it
cannot find the word.

Since most parameters are not strings, there is another templated
function to convert the string into other forms. This is based on the
std::istringstream class defined in C++. The templated find() function
relies on operator>>(const std::istream&) being implemented for the
data type you need. This is a bit complicated, but fortunately, C++
provides this function for all the built-in types (int, char, long, double,
etc). Note that it is the default parameter that keys C++ to the right
template instance. So you can just call find(“my_parameter),
my_integer_default) to get an integer value from the dictionary. See the
examples, below.

std::string find (const std::string & name)

template<class data_type> inline data_type find (const

std::string & name, data_type default_val)

Examples

Getting basic parameters

This example shows how to find integer parameters. Assume that a file,
“teal_test.txt” has only three lines “foo 10”, “bar 12.34”., and
“hex_value 0xffdd0”. The following code will read and print those
parameters.

void verification_top () {

dictionary::start (“teal_test.txt”); //assume it has a line

“foo 10”

vout my_log(“basic parameters”);
7 4 n n n n n n n T e a l U s e r ’ s G u i d e

C p y
my_log << teal_info << “Foo is “ << dictionary::find (“foo”, 20) <<

endm;

std::string not_here (dictionary::find (“not_here”));

if (not_here == “”) {

 my_log << teal_info << “expected \“not_here\” not found.” <<

endm;

} else {

my_log << teal_error << “\”not_here\” found.” << endm;

}

my_log << “bar is “ << dictionary::find (“bar”, 20.0) << endm;

//a fancy hex value

std::istringstream ss (dictionary::find (“hex_value”));

uint32 hex_value (9);

 ss >> std::hex >> hex_value;

my_log << teal_info << “Hex value is “ << hex_value << endm;

 }

}

A min max integer

This example shows how to find integer parameters. Assume that a file,
“teal_test.txt” has only one line “ds0_channel_range 0 23””. The following
code will read and print that parameter.

void verification_top () {

dictionary::start (“teal_test.txt”); //assume it has a line

“ds0_channel_range 0 23”

vout my_log(“two integer parameters”);

std::string channel_text (dictionary::find (“ds0_channel_range));

if (channel_text == “”) {

 my_log << teal_error << “channel range not found” << endm;
w w w . t r u s s t e r . c o m n n n n n n n 7 5

}

else {

 std::istringstream bar (channel_text);

 uint32 min_val (0);

 uint32 max_val (0);

 bar >> min_val >> max_val;

 my_log << teal_info << “ expected Min is “ << min_val << “ and

max is “ << max_val << endm;

}

7 6 n n n n n n n T e a l U s e r ’ s G u i d e

Symbols
~condition

teal::condition 67
~mutex

teal::mutex 66
~reg

teal::reg 24

A
add_map

teal::memory 56
add_memory_bank

teal::memory 56
at

teal 66

C
change

teal::change 66
condition

teal::condition 67
contains

teal::memory::memory_bank 56, 57

D
dec

teal 42
draw

teal::trandom 48
w w w . t r u s s t e r . c o m n n n n n n n 7 7

E
endl

teal 42
error

teal 41
error_count

teal::vout 41
expected

teal 41

F
find

teal::dictionary 74
find_on_command_line

teal::dictionary 74
format_string

teal::reg 26, 27
from_memory

teal::memory::memory_bank 57

G
get

teal::vout 41

H
hex

teal 42

I
init

teal::trandom 47
7 8 n n n n n n n T e a l U s e r ’ s G u i d e

invalidate_all_vregs
teal::vreg 33

L
lock

teal::mutex 66
lookup

teal::memory 56

M
memory_bank

teal::~memory::memory_bank 56
teal::memory::memory_bank 56

message_type
teal 41

mutex
teal::mutex 66

N
negedge

teal::negedge 66
note_task_completed

teal 65

O
operator 25, 26, 26, 42
operator-

teal 25
operator &

teal 26
operator &=

teal::reg 26
w w w . t r u s s t e r . c o m n n n n n n n 7 9

operator!=
teal 26

operator():teal::reg 24
operator+

teal 25
operator+=

teal::reg 25
operator-=

teal::reg 25
operator=

teal::vreg 23, 31
operator==

teal::reg 26
operator>>

teal::reg 25
operator|

teal::reg 26
operator|=

teal::reg 26
operator~

teal::reg 26

P
posedge

teal::posedge 66

R
RAND_32

teal:: RAND_32 47
RAND_8

teal:: RAND_8 47
RANDOM_RANGE

teal::RANDOM_RANGE 47
random_range

teal::random_range 48
8 0 n n n n n n n T e a l U s e r ’ s G u i d e

read_check
teal::reg 27
teal::vreg 32

reduce_xor
teal::reg 26

reg
teal::reg 23

run_thread
teal 65

S
signal

teal::condition 67
start

teal::dictionary 73
stop

teal::dictionary 73
stop_thread

teal 65

T
teal

at 66
dec 42
endl 42
error 41
expected 41
hex 42
message_type 41
note_task_completed 65
operator- 25
operator & 26
operator!= 26
operator+ 25
run_thread 65
w w w . t r u s s t e r . c o m n n n n n n n 8 1

stop_thread 65
thread_name 65
user_thread 65
vtime 65

teal:: RAND_32 47
teal:: RAND_8 47
teal::change

change 66
teal::condition

~condition 67
condition 67
signal 67
wait 67

teal::dictionary
find 74
find_on_command_line 74
start 73
stop 73

teal::memory
add_map 56
add_memory_bank 56
lookup 56
write 56

teal::memory::~memory_bank
memory_bank 56

teal::memory::memory_bank
contains 56, 57
from_memory 57
memory_bank 56
to_memory 57

teal::mutex
~mutex 66
lock 66
mutex 66
unlock 66

teal::negedge
negedge 66

teal::operator 25
8 2 n n n n n n n T e a l U s e r ’ s G u i d e

teal::posedge
posedge 66

teal::RANDOM_RANGE 47
teal::random_range

random_range 48
teal::reg

~reg 24
format_binary_string 27
format_decimal_string 27
format_hex_string 26
operator 25, 26, 26
operator &= 26
operator() 24
operator+= 25
operator-= 25
operator== 26
operator> 26
operator>> 25
operator| 26
operator|= 26
operator~ 26
read_check 27
reduce_xor 26
reg 23
teal::operator 25
to_int () 24
triple_equal 26
write_through 27

teal::trandom
draw 48
init 47
trandom 48

teal::vout
error_count 41
get 41
operator 42

teal::vreg
~vreg 31
w w w . t r u s s t e r . c o m n n n n n n n 8 3

enabled 32
invalidate_all_vregs 33
name 32
operator= 23, 31
read_check 32
vreg 31
write_through 32

thread_name
teal 65

to_int:teal::reg 24
to_memory

teal::memory::memory_bank 57
trandom

teal::trandom 48
triple_equal

teal::reg 26

U
unlock

teal::mutex 66
user_thread

teal 65

V
vreg

teal::~vreg 31
teal::enabled 32
teal::name 32
teal::vreg 31

vtime
teal 65
8 4 n n n n n n n T e a l U s e r ’ s G u i d e

W
wait

teal::condition 67
write

teal::memory 56
write_through

teal::reg 27
teal::vreg 32
w w w . t r u s s t e r . c o m n n n n n n n 8 5

8 6 n n n n n n n T e a l U s e r ’ s G u i d e

	Teal User’s Manual
	Using this guide
	Chapter 1: Introduction to Teal
	Overview
	System requirements
	Teal in General

	Chapter 2: Components of a Teal Verification System
	Overview
	Basic Teal verification components

	Chapter 3: Installing Teal
	Overview
	Downloading and installing Teal
	Running the Teal tests

	Chapter 4: Verification Top
	Overview
	Theory of operation
	Here’s what you have to do:
	Figure 1: Example Process flow

	C/C++ Interface
	Figure 2: A sample Verilog testbench.v

	Examples

	Chapter 5: The Reg Class
	Overview
	C\C++ interface
	Declarations
	Math on reg/vreg
	Bit fields

	Chapter 6: The vreg class
	Overview
	Theory of operation
	Figure 1: Example of how the vreg interacts with the DUT

	C/C++ interface
	Declarations:
	Bit fields

	Chapter 7: Logging Simulation Output
	Overview
	Theory of operation
	Figure 1: View of many vout objects and a single vlog

	Creating, copying, and destroying a vlog
	Statistics
	Output of the standard types
	Output Format
	1: Simple
	2. Logging a reg
	3. Output of an object:

	Chapter 8: The Random Number Module
	Overview
	Theory of operation
	Required Initialization
	Common macros
	Creating, copying and destroying a trandom
	Getting random numbers
	Creating, copying and destroying a trandom_range
	1. Stable across source file editing
	2. Direct use of the trandom class
	3. Cycling through random numbers
	4. Selecting a boolean via a 0..100% probability
	5. Selecting a enum
	6. Subclassing trandom
	7. Constrained random example

	Chapter 9: Accessing Memory
	Overview
	Memory functions
	Creating, copying, and destroying a memory_bank
	Determining the right memory bank
	Actually reading and writing memory
	1. Simple memory use
	2. Directly interacting with a memory_bank

	Chapter 10: Concurrency in Teal
	Overview
	The at() function
	Figure 1: Concurrency - Pausing the thread with the at() clause

	Mutex::enter ()
	semaphore::wait ()
	Simulation Time
	Getting the Thread name from a thread_id
	Creating and destroying threads
	Creating and destroying a mutex
	Working with a mutex
	Creating and destroying a condition
	Working with a condition
	Simple at() expressions
	Mutex
	Semaphore

	Chapter 11: The Dictionary Module
	Overview
	Figure 1: directed_test.txt
	Figure 2: basic_text.txt

	Dictionary main functions
	Getting basic parameters
	A min max integer
	Symbols
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W

