
NRAO VLA Archive Survey Pipeline System Users Manual
Jared Crossley (jcrossle@nrao.edu)

Typeset December 4, 2007
Source file (in CVS repository): filehost :/users/jcrossle/cvsroot/Archive Imaging Doc/Arch imag doc.tex

Last revision: v1.5 04 Dec 2007.

Contents

1 Setting Up the Pipeline 2

2 Running the Pipeline 3
2.1 Preparation 3
2.2 ArchQuery 3
2.3 ArchPreps 4

2.3.1 Command Line Interface 4
2.3.2 About Project Codes 5
2.3.3 Archive Data File Download . . 6

2.4 Auto-loading: ArchAuto 7
2.5 Run file execution: Arch Runs 8
2.6 Image Validation 8
2.7 Maintaining Available Disk Space 9

3 Documenting Pipeline Work 10
3.1 The VLA Loaded Data Log 10
3.2 The Supplementary VLA Log 10
3.3 The Users Manual 11
3.4 Going Deeper... 11

A Short List of Pipeline User Rules 11

B Why use cron? 11

C Using CVS to Store Pipeline User
Records 12

D Using AIPS Remotely 12

E Instructions and Procedures from Older
Versions of the Pipeline 13
E.1 Image Validation and Archiving in AIPS 13
E.2 Efficient Image Validation: SETPIX . . . 13
E.3 VLA Imaged Data Log: VLA LOG1.ods . 14
E.4 Efficient use of the Imaged Data Log . . 15

This document describes the use of the NRAO
VLA Archive Survey (NVAS) software pipeline,
also known as the “VLA Pipeline System”. The
NVAS pipeline calibrates and images raw VLA

data using the Astronomical Image Processing Sys-
tem (AIPS). The images and data output from
the pipeline are published as part of the Na-
tional Virtual Observatory and can be accessed on-
line at http://www.aoc.nrao.edu/∼vlbacald. The
pipeline system was written by Lorant Sjouwerman
(lsjouwer@nrao.edu) and Jared Crossley.

The pipeline system consists of a series of Perl
scripts, C-shell scripts, and AIPS run files (POPS1

scripts) that

1. query the VLA raw data archive,

2. download VLA data files,

3. setup shell scripts to process the data files,

4. invoke the shell scripts to automatically calibrate
the data and produce images,

5. move images, run files, log files, and calibrated
data to the VLA archive, and

6. index and create web pages for browsing through
images.

This guide will assume that the pipeline user is op-
erating within a C-shell compatible Unix shell; this is
accomplished, for example, by typing tcsh in a Unix
terminal2. Pipeline programs may work from other
shells, but this has not been tested. To run the pipeline
scripts in the NRAO Array Operations Center in So-
corro, a user must be a member of the groups vlbacald
and aips. In this document, the term shell script refers
to a C-shell script.

1POPS = People-Oriented Parsing System. POPS is the com-

mand line interpreter for AIPS. It was developed by Jerry Hud-

son at NRAO for the purpose of demonstrating that a language

can be constructed in Fortran in normal order, instead of reverse

polish. Thanks to Eric Greisen for this info.
2C-shell compatible shells include: C-shell and TC-shell. The

shells sh, bash, and korn are not C-shell compatible.

1

1 Setting Up the Pipeline

The master copy of all pipeline program files is stored
on the pipeline server, currently AOC computer auto.
The pipeline is initially setup in a given directory
on a client computer by executing the shell script
/home/auto/ArchSetup from the directory in which
the pipeline should be installed. In most cases this
should be done by the pipeline administrator as user
vlbacald.

> cd [installation directory]
> /home/auto/ArchSetup

This script copies the appropriate files and directo-
ries from /home/auto to the current directory and cre-
ates links in the current directory to other files on
/home/auto. It also adds the program Arch Runs as an
hourly job in the crontab file on the client computer.
To ensure the crontab file has been updated properly,
the user that executed ArchSetup can list the crontab
file with the command

> crontab -l

(For more about cron and crontab, see below in this
section.)

The directory into which the pipeline is installed
on each client computer is referred to here as the
pipeline working directory. Unless otherwise specified,
files named in this document are located in the pipeline
working directory. On computer hamal this might be,
for example, /home/hamal2/vlbacald.

If the pipeline is to be executed from a new com-
puter, i.e. one that has not run the pipeline before,
two steps must be taken. First, the AIPS manager on
computer auto (Lorant Sjouwerman) must run AIPS
script SYSETUP, and then add the appropriate en-
tries to auto AIPS files DADEVS.LIST and NETSP.
These steps will allow the new computer to execute
the version of AIPS installed on auto3.

The second step that must be taken before run-
ning the pipeline on a new computer is to edit the

3The client computer’s AIPS installation is not used be-

cause automatic AIPS updates (“midnight jobs”) can introduce

changes that cause the pipeline to fail; the version of AIPS on

auto is updated only after testing to ensure compatibility with

the pipeline.

∼/.dadevs file. Two lines must be added to this file
to tell AIPS where to store its data. For example,
computer zaurak stores pipeline AIPS data on the disk
mounted to /export/home/zaurak2. The two lines
that must be added to the .dadevs file are

- /export/home/zaurak2/AIPS/DA01

- /DATA/ZAURAK 2

Note that .dadevs must contain two spaces after the
dash at the beginning of each line. If in doubt, ask
the pipeline administrator (Lorant Sjouwerman) which
lines should be added to .dadevs.

After running ArchSetup, the current direc-
tory will contain a file named Arch Defs. This
file defines environment variables used by other
pipeline scripts and calls the AIPS setup file
/home/auto/aips/LOGIN.CSH. It is wise for the user
to check Arch Defs to be sure the environment vari-
ables have been set correctly by ArchSetup. Two vari-
ables are of special importance. The variable avla

holds the path to the pipeline working directory, where
the pipeline is installed (and where Arch Defs resides).
This may, for instance, look like

setenv avla /home/hamal2/vlbacald

The variable email holds the E-mail address of the
pipeline user. The pipeline uses the E-mail address to
inform the user that certain tasks have been completed.
The E-mail address may be set, for example, by

setenv email jcrossle@aoc.nrao.edu

It is recommended that the user sources Arch Defs

within their shell rc-file. If using the (T)C-shell, enter
the following in the file .(t)cshrc in the user’s home
directory:

source /working directory /Arch Defs

Note that Arch Defs is read at run time by some of
the pipeline scripts, so it is not sufficient to only set
environment variables; the file itself must be present
and its contents up-to-date.

The pipeline uses the Unix program cron to initiate
data processing. The cron daemon is controlled by each
user’s crontab file. A user can write their crontab

2

file to the terminal using the command crontab -l (if
crontab is empty, nothing will be printed). Each user’s
crontab file contains instructions that tell the cron
daemon when to execute various programs. When the
pipeline is properly installed by executing ArchSetup,
the installing user’s crontab is edited to tell cron to
execute shell script bin/Arch Runs every hour at 55
minutes past the hour. The cron table is automati-
cally saved for future use.

2 Running the Pipeline

2.1 Preparation

Before running the pipeline, the user should verify that
the umask is set to produce files with group read-write
permissions. This is accomplished with the command

> umask 0002

The user must also source the file Arch Defs in the
pipeline working directory,

> tcsh

> cd [pipeline working directory]

> source Arch Defs

A regular pipeline user should include the above
umask and source commands in her/his shell rc-file:
∼/.tcshrc for TC-shell; ∼/.cshrc for C-shell.

2.2 ArchQuery

The pipeline is started with two user-executed shell
scripts: ArchQuery and ArchPreps. The user must
first query the VLA archive using ArchQuery. This
program acts as a command line interface to the world-
wide-web-based VLA data archive, accessed via the
URL http://archive.nrao.edu/.

ArchQuery requires the start date be specified on the
command line and allows two command line options,
specifying the subarray number and project code.

ArchQuery [-s#] YYYY mmm DD [Project code]

The command line option -s must be given after
‘ArchQuery’ and before the date; no space is allowed
between the ‘s’ and the subarray number, ‘#’; the sub-
array number should be a single digit between 1 and

5, inclusive. The date must be given in the specified
format. For example, to query all VLA observations
for December 5, 1995, type:

> ArchQuery 1995 dec 05

To limit this query to only observations with project
code AB628, type:

> ArchQuery 1995 dec 05 AB628

If executed without the ‘-s’ command line option,
ArchQuery immediately produces a prompt requesting
the user to specify the number of subarrays for which
data should be requested of the VLA data archive.

** Select subarray (1 to 5): [1]

The VLA can be divided into a maximum of five
subarrays for any given observation, and data must
be queried separately for each subarray configuration.
The default query is subarray 1, because it is the most
used subarray configuration. Subarrays 2 and higher
usually contain VLBI observations and system tests.

The range of time queried by ArchQuery is set in
file Arch Defs by the variable interval in the form of
days and hours, dd :hh . For example, a query interval
of 2 days and 6 hours is specified in file Arch Defs by
the line

setenv interval 02:06

With interval set to this range, the command

ArchQuery 1995 dec 05

will return data files that have a start time between
the beginning of December 05, 1995 and 06:00 hours
on December 07, 1995.

Successful execution of ArchQuery generates a text
file $atmp/archfiles.dat4 that contains

1. a comment line stating the date and time range,
subarray number, and optionally the specific
VLA project number submitted in the VLA data
archive query (the inputs to ArchQuery),

2. the command executed to query the VLA data
archive, and

4The file archfiles.dat is used as input to ArchPreps, see §
2.3.

3

3. information on each file (or, equivalently, data
set) returned by the VLA data archive in re-
sponse to the query.

In addition to generating archfiles.dat, ArchQuery
also echoes a filtered version of the VLA data archive
response to the terminal (this output is created by ex-
ecuting ArchPrep -; see below). An example of a fil-
tered response for December 5, 1995 is,

Selection of files:

- AA169 D 95-Dec-06 07:43:49 95-Dec-06 12:42:20

- AK403 B 95-Dec-05 03:20:39 95-Dec-05 08:46:49

- AK410 C 95-Dec-05 23:52:50 95-Dec-06 07:43:10

- AL364 D 95-Dec-07 04:11:10 95-Dec-07 08:37:10

- APHOLO F 95-Dec-05 01:21:56 95-Dec-05 03:18:03

- MJCTST D 95-Dec-05 22:27:20 95-Dec-05 23:44:19

The filtered response contains one data file in each row,
and each row is divided into six columns. From left to
right the columns are the project code, the segment,
the start date, the start time, the end date, and the
end time.

ArchQuery automatically filters out files from the
archive response that contain project codes that should
not be imaged by the pipeline. Such data includes
VLA tests and large VLA surveys that have been or
will be imaged separately (for example, NVSS, FIRST,
and others). Project codes containing “OPS”, “SYS”,
or “ZBL” should also be skipped; ArchQuery will au-
tomatically filter some of these project codes, but
since some code names are assigned at test time and
no exhaustive list of these project codes is available,
ArchQuery will not filter them all.

2.3 ArchPreps

The script ArchPreps can be run manually following
ArchQuery. ArchPreps downloads data files selected
from archfiles.dat, loads the data in AIPS, checks
that the data is appropriate for imaging in the pipeline,
and, if appropriate, prepares the loaded data for imag-
ing at a later time.

This data-loading program actually consists of two
parts: a Perl library (module) called Arch Preps.pm

and a user interface to the library simply called
ArchPreps. Under normal operation, the library

Up for download: (select only one project name!)

- Select AA0169 D 95-Dec-06 07:43:49 95-Dec-06 12:42:20? [Y]
n

- Select AB0628 AS 95-Dec-05 08:48:49 95-Dec-05 10:18:49? [Y]
n
- Select AB0628 AS 95-Dec-05 10:18:54 95-Dec-05 14:10:34? [Y]
n
- Select AB0628 AS 95-Dec-05 14:10:39 95-Dec-05 18:04:44? [Y]
n

Figure 1: Example of ArchPreps output when run
with no command line options.

should go unnoticed by the user. This document there-
fore refers to these two files by the name of the user
interface, ArchPreps.

2.3.1 Command Line Interface

ArchPreps allows for one command line option:

ArchPreps [project code |-|+ project code |+]

where project code is the project code to be loaded
into the pipeline. These options have the following ef-
fects:

• Using no command line option causes
ArchPreps to ask the user to make a selec-
tion from each file listed in archfiles.dat.
Figure 1 shows an example of ArchPreps output
when using no command line options.

• Using “project code ” for the command line op-
tion causes ArchPreps to ask the user to make
a selection only from the files with a matching
project code. Project codes with additional pre-
and post-pended characters will be listed for user
selection.

When run in one of the above two “selection”
modes (using the project code option or no op-
tion) ArchPreps places an ASCII marker, such
as

between files with different project codes and files
that are separated in time by 6 hours or more.
See example output in Figure 1.

4

• Using “-” for the command line option causes
ArchPreps to echo a filtered version of the data
set information contained in file archfiles.dat,
identical to the filtered version echoed to the ter-
minal by ArchQuery5.

• Using “+ project code ” for the command line
option causes ArchPreps to load all matching
files in archfiles.dat without the user confirm-
ing individual file selection. Since file selection
is automated, project codes with additional pre-
and post-pended characters are not matched.

• Using “+”, with no project code, causes
ArchPreps to automatically load each project
code beginning on the query date. The query
date is the date used in the most recent call to
ArchQuery.

When the “+” option is not used, it is left to the
user to decide which files with a given project
code should be processed together. When in
doubt, use the ASCII markers as a guide to
project file grouping.

When using the “+” auto-loading option, all files
with the same project code and beginning on the query
date are grouped together. Files with the same project
code beginning on subsequent days are joined to the
group according to the following algorithm (files are
inspected in chronological order):

1. If the gap between the previous file (starting on
day 1 or later) and the next file (starting on day
2 or later) is < 30 minutes, then include the next
file in the current group.

2. Else, if the gap is > 6 hours, then exclude the
next file from the current group.

3. Else, if the gap is > 30 minutes and < 6 hours,
then

(a) If the difference between the start of the
next file (starting on day 2 or later) and the

5Actually, the ArchQuery terminal output is produced by call-

ing ArchPreps with option “-”.

end of the LAST 6 file satisfying conditions
(1) or (3) (starting on day 2 or later) is < 6
hours, then process all files together;

(b) Else, exclude the next file from the current
group.

2.3.2 About Project Codes

ArchPreps will abort if two or more files with dif-
ferent project codes are requested by the user. This
makes sense, because different projects should not be
processed together.

A small number of project names may contain non-
standard characters that cause ArchPreps to fail. The
user should make a list of the project name and the
archive date on which the name occurred. A future
version of ArchPreps may be designed to deal with
unusual project names, or the project name may re-
quire manual loading into AIPS.

If two archive files with the same project code on the
same day in the same subarray are processed separately
but on the same computer, the ArchPreps output files
will overwrite each other. This occurs because the file
naming scheme used by ArchPreps only accounts for
the project code, date, and subarray number. If the
two files are processed separately on different comput-
ers, when the pipeline output files are moved to the
image archive, some of the output from the second file
will overwrite some of the output from the first file.
This is why files with the same project code, same start
date, and same subarray number should be processed
together.

Remember that project codes containing “OPS”,
“SYS”, “ZBL”, or any other obvious system check,
should be skipped. However, testing project codes such
as “TEST” and “TST” should be loaded. Some of the
unusable files will be excluded from archfiles.dat by
ArchQuery. However, it is not possible to identify all
unusable tests. The user should watch for files of the
same project name that repeatedly fail to load in AIPS.
By identifying such files, archive imaging will proceed

6This is the last file to be added to the group; this condition

is assumed true until the group is fully built, at which time the

condition is assessed, and files are excised from the group as

necessary.

5

at a faster rate.
When the files have been selected (if in selection

mode), ArchPreps will either download the files from
the VLA data archive to the $avis directory, or, if the
files have already been downloaded, will ask the user to
confirm use of the files already present in the download
area.

2.3.3 Archive Data File Download

The latest version of ArchPreps automatically mon-
itors archive file download. This is accomplished by
monitoring the user’s email file. The VLA Archive
sends an email to the user when each file download
is complete. This e-mail has a standardized format,
and contains the full path name of the downloaded
file; the file name itself contains the project code,
date, and subarray number. ArchPreps searches email
file /users/username /mail/NVASmail for this unique
string, ArchPreps is able to verify download com-
pletion. Currently, this email file is hard-coded in
ArchPreps, and it is the user is responsibility to filter
archive email messages to this file; this can be accom-
plished with the Unix utility procmail (see §???).

NRAO policy is to “lock” all data files associated
with project codes for which observations have been
taken in the past year; a locked file can only be down-
loaded with a password given to the observer; it cannot
be downloaded by ArchPreps. If ArchPreps attempts
to download a locked file, the archive will send the user
an E-mail containing a message similar to this,

Copy process canceled. LOCKED archive file :

/home/archive VLA/tapes/XH00035/file 6

If a data file is locked, it should be skipped and loaded
into the pipeline at a later date.

ArchPreps creates run and log files during its execu-
tion. The run files are shell scripts that are executed ei-
ther immediately by ArchPreps or later by Arch Runs.
The log files store diagnostic output during run file ex-
ecution. The run and log file names differ only in their
extension. Loading data into AIPS is accomplished by
a run file with extension fill.run, and diagnostic mes-
sages are stored in a log file with extension fill.log.
Data is moved to different AIPS numbers by a run file
with extension move.run, and diagnostic messages are

stored in a log file with extension move.log. For ex-
ample, running ArchPreps on project AB998 on 2001
July 04 produces the following files:

AB998 2001JUL04 1.fill.run

AB998 2001JUL04 1.fill.log

AB998 2001JUL04 1.move.run

AB998 2001JUL04 1.move.log

When the user has received the download confir-
mation E-mail and pressed ENTER to confirm that the
archive download is complete, ArchPreps will then load
the downloaded file(s) into AIPS, split the data accord-
ing to observing center frequency, and move each sep-
arate frequency to its own AIPS user number. C-shell
scripts are then generated for each AIPS number in di-
rectory run; these scripts are referred to as run files
and given a filename suffix run7. The run file names
are made by concatenating the selected project name,
the observing date, the subarray number, an exten-
sion, and a suffix. For projects with multiple observ-
ing frequencies (and therefore multiple assigned AIPS
numbers) the run file extension contains a sequentially
incremented number that distinguishes multiple run
files. For example, run files for VLA project AD433,
observed on March 1st, 2000, have file names,

AD433 2000MAR01 1.0.run
AD433 2000MAR01 1.1.run
AD433 2000MAR01 1.2.run
AD433 2000MAR01 1.3.run

ArchPreps returns to the command line after creating
the run files.

There are presently two conditions under which
ArchPreps will skip some, but not necessarily all, data
in a file:

1. If the data is spectral line8, ArchPreps will skip
it with explanation,

‘ZAP LINE :’ ‘AIPS file name ’

7C-shell script run files, which execute Unix commands,

should not be confused with AIPS run files which execute AIPS

commands.
8Future versions of the pipeline system will not skip spectral

line observations.

6

2. If the data is P-band (300 MHz), ArchPreps will
skip it because it requires special atmospheric cal-
ibration. ArchPreps skips P-band data with ex-
planation,

‘ZAP P-BAND :’ ‘AIPS file name ’

3. If the data is 4-band (74MHz), ArchPreps will
skip it because it requires special treatment of at-
mospheric calibration. ArchPreps skips 4-band
with explanation,

‘ZAP 4-BAND :’ ‘AIPS file name ’

In both of these cases, if other acceptable data resides
in the data file, the acceptable data will still be pro-
cessed and imaged.

There are three conditions under which ArchPreps

will abort, skipping all data in the file:

1. If there is no standard calibrator source in the
data, the pipeline does not know how to set the
flux scale. Thus, ArchPreps will abort with ex-
planation,

‘ZAP - NO STD CAL SRC FOR :’ ‘AIPS file

name ’

2. If the data was recorded as a single dish for the
purpose of VLBI, an image cannot be made from
the data. In this case, ArchPreps will abort with
explanation,

‘ZAP S-DISH :’ ‘AIPS file name ’

3. If there are fewer than 8 antennas used in the ob-
servation, making a proper image is very difficult.
Thus, ArchPreps will abort with explanation,

‘MINI ARRAY :’ ‘AIPS file name ’

If ArchPreps skips all data in a file or if the file is found
to have no visibilities (no data), the AIPS data will be

deleted, reserved AIPS numbers will be freed, and the
following message will be issued along with an audible
bell before quitting:

No files left to work on - see

/working directory /run/pcode date subarray.fill.log

After splitting the data according to observing band
and skipping data where appropriate, ArchPreps will
write the AIPS number, project code, extension num-
ber, and log file path to bin/Arch AIPS; one line is
written for each AIPS number used. If all data is
skipped, only one line is written and the five digit AIPS
number is replaced with zeros. If only some of the data
is skipped, the data that has not been skipped is en-
tered in Arch AIPS.

For each computer used to load data into the VLA
pipeline, only one instance of ArchPreps should be al-
lowed to load data into AIPS at any given time. If mul-
tiple instances of ArchPreps finish loading data at the
same time, they will both try and write to Arch AIPS,
but no more than one program will succeed. When
ArchPreps fails to write to Arch AIPS, the AIPS num-
bers it used for loading data will be lost and may be
reused by a subsequent instance of ArchPreps. In this
case, the best course of action is to rerun ArchPreps on
the same data so it will successfully store its AIPS
numbers in Arch AIPS. It is also advisable in such a
situation for the user to check the Arch AIPS file for
potential errors caused by the conflict; for example,
duplicate instances of the same AIPS number.

2.4 Auto-loading: ArchAuto

The highest level of data loading automation is at-
tained through the Perl script ArchAuto. The script
takes a start and stop date as command line param-
eters and then calls ArchQuery and ArchPreps auto-
matically for each date in the range, including the start
and stop dates. A call to ArchAuto has the form

ArchAuto start date stop date

The start date and stop date are formated as

YYYY MMM DD

where YYYY is the numerical year, MMM is the first
three letters of the month (upper, lower, or mixed

7

case), and DD is the one or two digit day of the month.
For example, to auto-load the entire month of February
1998, type

> ArchAuto 1998 feb 01 1998 feb 28

ArchAuto contains some internal error check-
ing to verify appropriate start and stop dates.
While ArchAuto runs, the standard output from
ArchQuery and ArchPreps will be sent to the ter-
minal. Audible beeps have been entered into
ArchPreps to alter the user to circumstances of inter-
est, such as when a project group spans multiple days.
It is advisable to monitor ArchAuto periodically as it
runs, to insure that it is working properly.

2.5 Run file execution: Arch Runs

All new run files are executed automatically and se-
quentially by the program Arch Runs. This does not
require any user interaction; the cron daemon initi-
ates Arch Runs automatically every hour. By default,
Arch Runs checks the modification time of uninitiated
run files and only executes them if they are more than
5 minutes old. This gives the user time to manually al-
ter the script or data if desired. For example, in some
cases the user may want to flag bad data manually be-
fore the pipeline begins imaging.

Alternatively, the user may choose to execute run
files manually without delay by using the command
line option “-”:

Arch Runs -

Execution with the “-” option causes Arch Runs

to request user verification that the data has been
fully downloaded from the archive and loaded into
AIPS. After responding to this prompt, the user may
choose to background Arch Runs using control-z

and the linux command bg. This makes the ter-
minal immediately available for additional commands
while Arch Runs continues to run in the background.
Be aware that closing the terminal window while
Arch Runs is backgrounded may force Arch Runs to
exit early; the unix utility nohup may be used to avoid
this. Arch Runs is not dependent on the state of the
user’s terminal if it is initiated by the cron daemon.

When Arch Runs is executed, all run files that meet
the age requirement are renamed with extension .auto;
this extension signifies that the run file has been initi-
ated but not completed. When execution of a run file
is complete, it is renamed with the original extension
.aips.run. Likewise, the log files are given the name
.aips.log. Note that Arch Runs initiates immediately
all run files meeting the age requirement, but executes
the run files sequentially.

Since it is possible for Arch Runs to run for longer
than one hour, multiple instances of Arch Runs may be
running simultaneously. There are limitations to the
number of instances of AIPS that one computer can
run simultaneously. Furthermore, simultaneous exe-
cution slows every imaging process and all other pro-
cesses running in the computer. To avoid this situa-
tion, Arch Runs will not execute if two other instances
of Arch Runs are already in execution.

When all run files initiated by Arch Runs have been
completed, Arch Runs deletes the AIPS data stored in
each AIPS user number it has used and sends an E-
mail to the user stating (1) the AIPS user number, (2)
the run file name, and (3) the completion time for each
file executed. The net start and end time of Arch Runs

is also given in the email. These time stamps can be
used as an indicator of Arch Runs success or failure. If
a run file’s completion time is within a few seconds of
the previous run file’s completion time, then something
has probably gone wrong. In this case, check the log
files in the tmp directory for possible causes of the error.

Arch Runs stores its output in the pipeline working
directory. When it has finished, the output image, visi-
bility plots, u-v plots, log files, and raw data remain on
disk until a cron job moves them to the image archive
server. Presently, this file transfer process occurs once
each morning, on Tuesday through Saturday. The file
transfer is accomplished by the program Arch Fill.
The data in AIPS is all removed automatically.

2.6 Image Validation

Data that has been processed by the pipeline is auto-
matically exported to the image archive server. From
this server the images, visibility plots, u-v plots, log
files, run files, multisource FITS files, and single source

8

FITS files can be accessed from the NVAS9 web page:

http://www.aoc.nrao.edu/∼vlbacald/

However, some percentage of the images produced by
the pipeline are not suitable to be stored in the image
archive; this is often a result of improper calibration
or flagging. These images must be removed from the
archive server by the user. A web-based “image valida-
tion” script is available for this purpose at this URL:

http://www.aoc.nrao.edu/∼vlbacald/val/

Anyone can submit queries form the validation web
page. However, the user must be granted permission
by the pipeline administrator to remove images; a user-
name and password is required to authorize image re-
moval.

Images are queried by the image validation tool ac-
cording to the date that the image was placed in the
image archive. The script reports the total number of
images found for the query, but will only display 200
images at one time. Thus, if there are more than 200
images returned by a query, the user must also spec-
ify the range of indices that should be displayed (for
example: 1-200, 201-400, or 401-600).

Each query will return a table in which each row
corresponds to one image. The table presently contains
five columns. From left to right the table columns are:

1. the index number of the image in the query, a
removal (“zap”) check box, and the file name of
the JPEG image10;

2. a thumbnail of the VLA image;

3. a thumbnail plot of visibility amplitude versus
baseline length;

4. a thumbnail plot of real versus imaginary parts
of the image visibilities;

5. a thumbnail plot of u-v coverage.
9NVAS = NRAO VLA Archive Survey

10The image file name contains much information

about the image. See the NVAS README page

for instructions on how to interpret the file name:

http://www.aoc.nrao.edu/∼vlbacald/read.shtml.

Clicking on any thumbnail image will open a larger
version of the image in a new browser window11.

To remove images, check the “zap” box in the first
column of each row containing a poor image. When all
appropriate boxes have been checked, enter the user
name and password and click the submission button.

Some example visibility and u-v plots are provided
with comments on the NVAS README web page.
These can be referenced for comparison when judging
image quality. The root-mean-square flux, contained
in the image file name in column one is also useful for
assessing image quality.

When using the image validation script, be aware
that the table of images returned by a query cannot
be “refreshed” like a standard HTML file. The web
page table is generated when the query is submitted,
and to reload the page may require query resubmis-
sion. The open source web browser Firefox is able
to reload a query page after submission. It does this
using the html and image files in its cache. It will
also reload checked boxes. Firefox can be obtained at
http://www.mozilla.com/en-US/firefox/. Eventu-
ally, Firefox may delete old files from cache, after which
time the web page cannot be reloaded without resub-
mitting the original query.

2.7 Maintaining Available Disk Space

Pipeline data processing can rapidly consume large
amounts of hard disk space. Inadequate disk space can
cause cron jobs to fail, sometimes running indefinitely
in the background. It is recommended that the user
check the available disk space daily.

One of the daily cron jobs maintained by the pipeline
administrator sends email to the user giving a sum-
mary of the disk space available on each partition and
each computer used for pipeline imaging. Another
cron job setup by the pipeline administrator should
remove older visibility files (via the script clean-vis,
described below). However, if a very large amount of
data is loaded on one computer in a 24 hour period,
or on the weekend when cron jobs may not run, the

11The size of the VLA image depends on the resolution and

field of view available in the corresponding observation. In some

cases, the original image will be smaller than the thumbnail.

9

available disk space may need to be checked and the
old visibility files removed manually.

Available disk space can be checked with Unix com-
mand df -h. The amount of free memory available on
the pipeline systems partition can be queried with the
command

> df -h $avla

The environment variable $avla will only work after
sourcing the file Arch Defs, located in the pipeline
working directory.

When free disk space is low, the user should run
script /home/auto/bin/clean-vis. This script will
delete all but the ten newest visibility data files from
the vis directory; the script will remove files on all
computers used for pipeline imaging.

3 Documenting Pipeline Work

3.1 The VLA Loaded Data Log

The VLA loaded data log (referred to as the VLA im-
aged data log in earlier versions) is a data table that
contains information on every data file downloaded
from the raw data archive and loaded into the pipeline.
Presently, the loaded data log resides in a CVS repos-
itory on the AOC filehost:

/users/jcrossle/cvsroot/VLA log/VLA log 2.txt

The loaded data log is written as an ASCII file
in comma-separated-variable format, and contains 8
columns:

1. the project code,

2. the observation date,

3. the name of the computer used to load and image
the data,

4. the AIPS number,

5. the frequency (or extension) number that differ-
entiates between different frequency observations
within the data file,

6. the file status at the time ArchPreps finished
(“Queued” means successfully loaded and await-
ing imaging; “Skip” means the file is not appro-
priate for imaging and has been skipped)

7. a user comment,

8. and a comment date, which is typically the date
the data was entered in the log file.

Data files that are found to be inappropriate for imag-
ing are given the status “Skip” and AIPS number “0”.

The VLA loaded data log is constructed from the
pipeline data file bin/Arch AIPS via the bash script

/users/jcrossle/cvsroot/script/MakeLog,

also located in a CVS repository. MakeLog uses awk

to read Arch AIPS on each computer used for pipeline
processing. Any new data files found in Arch AIPS and
not in the VLA loaded data log are appended to the
log file. Comment lines in MakeLog explain the details
of how the log update is accomplished.

3.2 The Supplementary VLA Log

The supplementary VLA log contains all information
important to the pipeline imaging process that is not
contained in the VLA Loaded Data Log. The supple-
mentary log is contained in a CVS repository,

/users/jcrossle/cvsroot/VLA log/VLA log 2 sup.txt.

The supplementary log includes, from top to bottom
of the file,

1. a list of data files that failed to load along with
any appropriate comments intended to aid the
pipeline administrator in resolving the problem,

2. any useful comments for the user (for example, a
list of project codes to skip, or dates that should
not be processed for various reasons),

3. a list of pipeline improvements

4. a list of months in the archive for which data has
been fully loaded,

5. a list of dates for which data has been fully
loaded,

10

6. a list of dates that have been validated.

The supplementary log is maintained by the user
during the data loading and validation process.

3.3 The Users Manual

The Pipeline Users Manual (this document) exists
for the purpose of documenting, on the user’s level,
what the imaging pipeline does and how to operate
it. The Users Manual is written and maintained with
Latex. Latex can be obtained via links at the web
page http://www.latex-project.org/. The present
version of the Users Manual is formatted for compila-
tion on the author’s computer, in Macintosh program
TeXShop. Some minor modifications may be necessary
for compilation on other computers.

The Users Manual uses the latex pack-
age glossary. This package can be obtained
along with installation instructions at this URL:
http://tug.ctan.org/tex-archive/macros/latex/contrib/glossary/

The glossary installation package contains a perl script,
makeglos.pl, that must be run each time glossary
entries are updated.

3.4 Going Deeper...

To learn more about the pipeline system, the user can
contact the pipeline administrator or delve into the
pipeline system source code. A few remarks may be
useful for accomplishing the latter.

A Short List of Pipeline User

Rules

1. Before loading data, check to be sure there is suf-
ficient disk space. It is difficult to gauge what
”sufficient” is, but a rule of thumb might be 2
GB free for each archive day loaded. Avoid com-
puters with less than 5 GB free disk space.

2. Do not simultaneously run multiple instances
of ArchPreps and/or ArchAuto on one com-
puter. To be more specific, do not allow mul-
tiple instances of ArchPreps to simultaneously
load data into AIPS on any one computer. This
can sometimes cause AIPS user number conflicts
that may crash ArchPreps.

3. Keep a record of dates that have been loaded and
dates that have been validated. The pipeline does
not do this automatically.

B Why use cron?

I was recently asked why the pipeline system uses cron
to run the data processing and data archive stages.
Pondering this has led me to an interesting realization.

Lorant Sjouwerman designed the pipeline system to
use cron to start Arch Runs and, less frequently, to
run the archiving and filesystem monitor and cleanup
scripts. In earlier days (late 2006), the pipeline data
loading stage was quite interactive. There was no
ArchAuto and no autoload command line option in
ArchPreps. The data processing however, was fully
automated. cron thus provided a “pipeline interface”
between more interactive and less interactive stages.
The user interactively loaded data into the pipeline,
and then could go away while cron processed all the
data. Without an automated program like cron to
start the data processing stage, the user would need
to load data and wait for it to finish imaging before
loading more data.

cron also allows the pipeline operation to switch
from one user to another. For example, user jcrossle
operates the data loading, and user vlbacald operates

11

the data processing and archiving. This can be advan-
tageous, if the two users do not want to accidentally
interfere with each other’s stages of the pipeline.

C Using CVS to Store Pipeline

User Records

A pipeline user must maintain the VLA Loaded
Data Log, the Supplementary VLA Log, and the
Pipeline Users Manual. A version control sys-
tem can simplify maintenance of these records12.
Presently the open source program Concurrent
Versions System, or CVS, is used. CVS can
be obtained at http://www.nongnu.org/cvs/.
Documentation on CVS is available at
http://ximbiot.com/cvs/manual/. Users unfa-
miliar with CVS are referred to this documentation.
Some of the more important commands are briefly
explained below.

The pipeline CVS repository is currently located
on AOC computers in /users/jcrossle/cvsroot. A
user wishing to checkout pipeline records from the
repository can do so by entering the command

cvs -d hamal.aoc.nrao.edu:/users/jcrossle/cvsroot

checkout Archive Imaging Doc aips run VLA log

This command will create directories
Archive Imaging Doc, aips run, and VLA log in
the users current working directory. The files con-
tained in these directories can then be read, written,
and executed by the user as usual.

Changes made within one directory can be saved to
the repository with the command

cvs commit

executed from within the modified directory.
The users working directories can be made concur-

rent with any changes made to files in the repository
with the command

12Note that version control is not strictly necessary for main-

taining pipeline user records; it provides no great advantage for

a local user; however, version control is quite advantageous for a

remote users since it offers an easy way of backing-up the user’s

files. Since version control is currently being used, some details

are given here.

cvs -d hamal.aoc.nrao.edu:/users/jcrossle/cvsroot

update

executed from the top-level working directory, that
is, the directory containing Archive Imaging Doc,
aips run, and VLA log.

D Using AIPS Remotely

In the present version of the pipeline, the user needs
only access AIPS directly for troubleshooting purposes.
Even this might be avoided if the pipeline administrator
is available to address problems that arise. However,
such is not always the case, and on occasion the user
may need to access AIPS. These notes provide instruc-
tions for using AIPS remotely.

If the user wishes to run the pipeline on a remote
computer, AIPS will need to be run remotely but us-
ing the local TV13. To accomplish this AIPS must be
installed on the local computer. An AIPS installa-
tion and installation instructions can be obtained at
http://www.aoc.nrao.edu/aips/.

Start the local copy of AIPS so that the TV, message
server, and Tek server windows open. To accomplish
this, any normal AIPS user number can be used, for
example 101. Then exit AIPS with the EXIT command.

Login to the remote machine using ssh. If AIPS
has not been run remotely using this pair of client
and host computers, it is necessary to be sure that
the remote host can “see” the client. If the client has
ssh-ed directly to the remote host, the environment
variable $REMOTEHOST may contain the client IP ad-
dress; otherwise, the command who may give the client
IP address or host name. Use ping or ssh with the
given IP address or host name to insure that the re-
mote host can “see” the client. If the client computer
has a firewall or is behind a firewall, access to TCP and
UDP ports 5000-5017 from outside sources will have to
be allowed; see the AIPS Managers FAQ for details,
http://www.aoc.nrao.edu/aips/aipsmgr/.

Start AIPS on the remote computer using the fol-
lowing command:

aips tv=client tvok

13X-forwarding may be able to display a remote TV on a local

machine, but this will introduce additional lag.)

12

Here, client is the IP address or host name of the
client computer. A simple test of the functionality of
the AIPS TV can be done by typing TVINIT at the
AIPS prompt; if no error messages are returned, then
congratulations, the TV is working.

E Instructions and Procedures

from Older Versions of the

Pipeline

The following sections detail procedures that were used
in previous versions of the VLA pipeline, but which are
currently not necessary. These notes may be useful for
investigating errors or interpreting old log files.

E.1 Image Validation and Archiving in

AIPS

In the present version of the imaging pipeline, images
are automatically placed in the public image archive af-
ter they are created. The user may then remove low
quality images by following the process described in
§ 2.6. In older versions of the pipeline, image qual-
ity was verified in AIPS and images were exported to
the image archive manually. The following discussion
about validating and exporting images from AIPS is
preserved here for posterity.

When Arch Runs successfully finishes, images have
been created for each unique source and center fre-
quency pair in the data set. The user must check for
image validity by starting AIPS with the appropriate
user number (contained in the Arch Runs results E-
mail), and load each image.

When all images in a data set (under a single AIPS
user number) have been validated by the user, the
AIPS command NVASARCH should be manually exe-
cuted. NVASARCH creates FITS14 files for each im-
age and places them in directory img/source name /,
where source name is the source coordinate name.
NVASARCH also stores the log files in subdirectory
dat/project code /, where project code is the VLA
project code.

14FITS = Flexible Image Transport System

Currently, AVLAPIPE is not configured to create mo-
saic images. Data that is intended to be made into
a mosaic can be identified using AIPS task LISTR

with adverb OPTYPE‘SCAN’15: below the “Scan sum-
mary listing”, LISTR will print the “Source summary”;
if many sources listed here have very similar names
and coordinates that are very close together (that is,
the coordinates differ by less than a few degrees) the
data is intended to be made into a mosaic. This data
should not be exported under the current version of the
pipeline.

E.2 Efficient Image Validation: SETPIX

In the present version of the pipeline direct access to
AIPS is not required for image validation. These notes
document an AIPS run file that was used to display
images in earlier versions of the pipeline.

An AIPS run file has been written to ease the
task of verifying pipeline images. This file is named
SETPIX.001 and is stored in the CVS repository (see
Glossary); SETPIX.001 must be copied to the bin di-
rectory of the pipeline working directory to be accessi-
ble, along with the other pipeline scripts, from within
AIPS (see discussion of distrib.bash, below). This
run file contains two AIPS procedures: LISTRSC and
SETPIX. LISTRSC runs AIPS task LISTR on catalog file
1 with adverb OPTYPE set to ‘SCAN’. SETPIX is an au-
tomated procedure that displays a set of images within
a range specified by input parameters; SETPIX auto-
matically adjusts the pixel gray scale range to allow
for easier image validation. The command

SETPIX(10,15)

will display catalog images 10 through 15. SETPIX

does this by first running AIPS verb IMSTAT to de-
termine the minimum and maximum flux of the image.
The range of flux to be displayed on the TV is then
specified by setting AIPS adverb PIXRANGE(1) and
PIXRANGE(2), which set the lower and upper bounds
on the displayed flux, respectively. PIXRANGE(1) is set
to the minimum image flux. PIXRANGE(2) is set to the

15The procedure LISTRSC can setup and run LISTR automati-

cally. See § E.2.

13

larger of

(flux maximum)
100

and (flux minimum)× 5,

unless this larger value is greater than the flux maxi-
mum, in which case PIXRANGE(2) is set to the flux max-
imum. After setting the displayed flux range, SETPIX
runs AIPS verb QHEADER followed by TVALL.

A simple bash shell script has been written to copy
the latest version of SETPIX.001 to all pipeline working
directories. This file is named distrib.bash and is
stored in the CVS repository (see Glossary).

E.3 VLA Imaged Data Log:

VLA LOG1.ods

In the present version of the VLA pipeline the Loaded
Data Log is maintained via a shell script that reads
the Arch AIPS file on each computer and rewrites the
data in a convenient format. In earlier versions of the
pipeline, the log (then called the Imaged Data Log) was
manually updated each time a project was loaded in the
archive. This log still exists and contains information
about projects that were successfully and unsuccessfully
loaded and imaged in the pipeline at that time. The
comments below are a guide to interpreting this log file.

The VLA imaged data log is a spreadsheet file that
exists for the purpose of maintaining a record of data
files that have been imaged and exported, data files
that are in the process of being imaged, data files that
have been skipped, or data files that have failed to be
imaged. The imaged data log also contains information
on image quality, pipeline bugs, and pipeline improve-
ments.

The data log is presently a spreadsheet maintained
with OpenOffice.org Calc. OpenOffice.org is an open
source office suite distributed by SUN Microsystems.
Installation packages for a variety of operating systems
can be obtained at http://www.openoffice.org/.
Calc is the spreadsheet program within the OpenOf-
fice.org suite.

The data log consists of 6 worksheets: ‘Process’,
‘Success’, ‘Skip’, ‘Fail’, ‘Dates’, and ‘Fixes’. The first
four worksheets contain the same column formats and
hold information about VLA data files; each of these

Table 1: VLA Imaged Data Log Column Headings

Column Heading Description

Project Code VLA project code
Date Date of observation

Comp Name of computer on which data was processed
AIPS # AIPS user number used to process this data

File # Run file extension number (see § 2.3)
Freq (Hz) Observing center frequency

Status Short imaging status description
Description Long imaging status and image quality description

Comment Date Date of last modification of entries in this spreadsheet row
Pipeline Issues Comments to developers about pipeline bugs (or features)

evidenced in this data
Comments Any additional comments about this data.

worksheets contains one row entry for each observ-
ing frequency in each VLA project processed with the
pipeline. The 11 columns used in the first four work-
sheets are described in Table 1.

Worksheet ‘Process’ holds entries for data that are
currently being imaged or have been imaged by the
pipeline but have not yet been exported. Worksheet
‘Success’ holds entries for data that have successfully
been imaged and exported. Worksheet ‘Skip’ holds en-
tries for raw data that have been intentionally skipped,
most often because the pipeline is not yet capable of
imaging this type of data. Worksheet ‘Fail’ holds en-
tries for data that the pipeline has unexpectedly failed
to image; entries in ‘Fail’ are often only temporary since
failures are usually followed by fixes or recognition that
this type of data should presently be skipped.

Worksheet ‘Dates’ holds dates for which all observed
data have been imaged and exported or skipped. This
worksheet serves as a convenient log for using Arch-
Query, which requires the user to specify a date and
date range. To this end, the worksheet contains 5
columns for the 5 different subarray numbers that can
be queried using ArchQuery. The user can thus keep
a record of which dates have been processed for each
subarray number.

Worksheet ‘Fixes’ holds a brief description of
pipeline improvements (or fixes) along with the date

14

of the improvement.

E.4 Efficient use of the Imaged Data
Log

In addition to maintaining a log of imaged and skipped
data files, imaged data characteristics, and pipeline im-
provements, the Imaged Data Log can be used to ef-
ficiently load data into the pipeline and validate the
resulting image. For this purpose, each data file pro-
cessed by ArchPreps can be recorded in the Imaged
Data Log, in the “Process” worksheet. Each reserved
AIPS number should be written to a separate row.
Data files that ArchPreps fails to load should be cut
from the “Process” worksheet and pasted into the
“Skip” or “Fail” worksheet, as appropriate. What re-
mains in the “Process” worksheet are the successfully
loaded data files. This worksheet can be arranged or
sorted at the users convenience to aid in image vali-
dation. When all images in a data file have been val-
idated, the data file can be cut from “Process” and
pasted into worksheet “Success”.

Glossary of Pipeline Files

In the following file names, pcode is an abbreviation
for project code, which, in the actual file name, will be
replaced by the VLA project code of the corresponding
data set; date will be replaced in the actual file name
by the date of the observation; “#” will be be replaced
by a numerical value that serves to differentiate this file
from files that would otherwise have the same name.

aips

Link to AIPS directory on computer auto,
/home/auto/aips/.
client :/working directory /aips

Arch AIPS

ASCII file containing a list of each AIPS user
number reserved by the pipeline in addition to
the associated project code, unique run file num-
ber, and pipeline log file.
client :/working directory /bin/Arch AIPS

Arch Cprt

A copyright message placed in publicly available
log files.
client :/working directory /Arch Cprt

Arch Defs

A C-shell script that defines environment vari-
ables used by the pipeline and calls AIPS
setup file LOGIN.CSH. This file is also read by
ArchQuery at run time.
client :/working directory /Arch Defs

Arch Docs

Short text file documentation of the pipeline.
client :/working directory /Arch Docs

Arch Runs

A C-shell script that looks for uninitiated
pipeline run files in directory run/. All files found
are marked as initiated by being given the exten-
sion .auto, or, when run file execution is com-
plete, the extension .aips.
client :/working directory /bin/Arch Runs

ArchPreps

Perl script that loads files listed in the most re-
cent execution of ArchQuery into the VLA imag-
ing pipeline. The user interactively confirms the
files to be loaded at runtime. ArchPreps allows
the user to specify the project code of interest as
the command line option. When executed with
the command line option “-”, ArchPreps echoes
the most recent ArchQuery results.
client :/working directory /bin/ArchQuery

ArchQuery

Perl script that queries the VLA archive for data
within a given time range, the start of which is
specified by a command line option. The sub-
array number to be queried is specified interac-
tively by the user at run time. The range of time
queried is controlled by the variable interval in
file Arch Defs, which has the form days :hours

(2:12 = time range of 2 days and 12 hours); the
observing bands queried are also specified in file

15

Arch Defs by variable obsbands.
client :/working directory /bin/ArchQuery

ArchSetup

A C-shell setup script that copies pipeline files
and directories to the client computer, from
which the pipeline will be run; links are also cre-
ated on the client computer to files that are main-
tained on the pipeline server.
auto:/home/auto/ArchSetup

AVLAPIPE.001

AIPS run file containing AVLAPIPE and other
associated procedures.
client :/working directory /bin/AVLAPIPE.001

AVLAPIPE.HLP

AIPS help file for AIPS procedure AVLAPIPE.
client :/working directory /bin/AVLAPIPE.HLP

AVLAPOST.001

AIPS run file containing AVLAPOST and associ-
ated procedures.
client :/working directory /bin/AVLAPOST.001

AVLAPREP.001

AIPS run file containing AVLAPREP and associ-
ated procedures.
client :/working directory /bin/AVLAPREP.001

bin/

Directory that holds shell scripts, perl scripts,
AIPS run files, AIPS executables, and other exe-
cutables used by the pipeline.
client :/working directory /bin/

clean-vis

C-shell script that recovers disk space on each
computer used for pipeline imaging. Disk space
is recovered by removing all but the ten newest
files from directory vis.
client :/home/auto/bin/clean-vis

dat/

Directory that contains
pcode date #.data.log files; these files

receive messages from shell and perl scripts
stored in bin/.
client :/working directory /dat/

distrib.bash

Bash shell script that copies file SETPIX.001

from its CVS working directory to the bin

subdirectory of all pipeline working directories.
The list of pipeline working directories in this file
should be maintained separately by each user.
(CVS Repository)
filehost :/users/jcrossle/cvsroot/aips run/distrib.bash

img/

Directory that contains FITS images.
client :/working directory /img/

LOGIN.CSH

C-shell script that defines where the AIPS shell
scripts are and sets the environment variable
AIPS ROOT so that AIPS is run from computer
auto rather than from the local host.
client :/working directory /aips/LOGIN.CSH

NVASDEFS.001

AIPS run file that initializes the inputs to
AVLAPIPE. Execution requires “RUN NVASDEFS”
within AIPS. Unlike other AIPS run files, for
example AVLAPIPE.001, NVASDEFS.001 does not
contain AIPS procedures and thus does not need
to be executed like a procedure.
client :/working directory /bin/NVASDEFS.001

pcode date # #

Raw visibility data file downloaded from the
VLA archive. In the actual file name, “#” is
replaced by numbers that distinguish the file
from those that would otherwise have the same
name, for example, when there are multiple files
with the same project code and same date.
client :/working directory /vis/pcode date # #

16

pcode date #.fill.log

Log file for C-shell script
pcode date #.fill.run.
client :/working directory /run/pcode date #.fill.log

pcode date #.fill.run

C-shell script created and executed by Arch-
Preps that loads downloaded data into AIPS and
verifies that the data is acceptable for processing.
Writes to log file pcode date #.fill.log

client :/working directory /run/pcode date #.fill.run

run/

Directory that contains pipeline run files, and run
file logs.
client :/working directory /run/

SETPIX.001

AIPS run file containing procedures SETPIX

and LISTRSC that aid in efficient validation of
pipeline images. LISTRSC runs AIPS task LISTR

on catalogue file 1 with OPTYPE set to ‘SCAN’.
SETPIX uses a simple algorithm to display a
specified range of images with the optimal range
of displayed flux; see § E.2 for details.
(CVS Repository)
filehost :/users/jcrossle/cvsroot/aips run/SETPIX.001

tmp/

Directory that holds shell scripts generated and
executed hourly by cron and log files of the cron
scripts. Also contains the ArchQuery log file
archfiles.dat that holds the full text of the
archive query and archive response.
client :/working directory /tmp/

uvf

Obsolete directory.
client :/working directory /uvf/

vis/

Directory that holds raw (visibility) data down-
loaded from the VLA data archive.
client :/working directory /vis/

web

Link to directory containing pipeline
web page documentation files; this
web page can be accessed via URL
http://www.aoc.nrao.edu/∼vlbacald/src.shtml.
client :/working directory /web

17

