Xpantrac Connection with IDEAL

David Cabrera Erika Hoffman Samantha Johnson Sloane Neidig
dcabrera@vt.edu herikab@vt.edu sjf2728@vt.edu sloanel0@vt.edu

Client: Seungwon Yang (syang20@gmu.edu)
CS4624, Edward A. Fox

Blacksburg, VA
May 8, 2014

Table of Contents

-1 0] (o) O] 41 1=] RO 2
LI 10 Lo o) o O TSSOSO 4
N 011 = Tod RSP PRRRR 5
LT3 I 21 4 LT 1 SR PRPRRI 6
(00 4]0t o I I USRI PRTRTRR 6
Developer’s MANUAL...........coiiiiiiiiii e 8
INVENTOrY OF Data FIlESc.oiiiiiii e 8
XPANTraC EXPIAINEA........ceiiiieiie bbb 9
EXPANSION. ...ttt bbbttt bbb 10
Ut T o PSS PRPOTPRN 10
HOW t0 Setup APACNE SOIT......ccui it re e 11
301701 [0 To [P RO USROS 11
SEAMTING the SEIVETottt be e te s e e sreesreenee e 11

T [=Y g1 oo OSSR 12

(@ 10T Y712 TSP 12
WARC Files With IDEAL DOCUMENESccviiiieieiieiiisiesiieeeie et see e e snesse e snens 13
Python Script t0 REMOVE HTIMLcooiiiiiiiceecec e 14
Indexing DOCUMENTS INTO SOITccviiiiiiccie e 14
Attempting to use the IDEAL Pages SCIPL........cooviiiiieiicc e 14
Manually Indexing Documents iNt0 SOIT..........ccooveiiiiciece e 15
CONCEPE IV ..t b bbbtk b et b et n e 17
Xpantrac for Yahoo SEArcCh APo.oii s 17
FIlE HIBTAICRY ... bbb 17
INPUE TEXE FIIES ..o e 18
Yahoo Search AP AUTNOMIZALIONcoviiiiiecece e 19
OULPUL et h bttt bt bttt s bbbt et b e bt et e s b e b 20
XPANTFAC TOF SOIT ...ttt bbb enes 20
Finding a Larger SOIr COHECTIONoovoiiiiiiiii e 20
Removing Code from Xpantrac_yahooWeD.pY ..o 20
Changing the URL N XPANTIACcoiriiieiieieie sttt 20

Handling the CoNteNt FIEId..........cvoiiiii e 21

Changing the XpantraC Parametersc.ooeieiiieiiiiiiee e 21
Connecting With IDEAL N the FULUIE..........coiiiiiii e 22
CoNFIGUIALTON FIIE ...t 23
Evaluation of EXTraCted TOPICS.oiuiiuiiiiieieieiesie sttt 24
FHIE HIBIAICRY ..ottt st et neesteenne s 24
HOW T0 RUN ... r e e e e neenneas 24
HUMAN ASSIGNEU TOPICS ...vveveeieeiieiteesie et e ste et ste e te e e e te e eesae e e e s baebeaneesraeeesneenreeeeas 24
GOld SANAAIA FIIES. ... bbb 24
EVAIUALION IMEITICS ...t ettt sne bbb e nneeneas 25
EVAIUALION ...t bbbttt et et bbb benneene s 25
LESSONS LBAMEM.eeitiiiieiiesieie sttt b e bbbt b e st e et sttt b ens 27
Yo L=Tol T L N[0 OSSR 27
ACKNOWIEAGEMENES ...ttt e e s e e te et e s be e be et e sreesreenee e 28
S (= =T g0 LSS P TP 28

Table

of Figures

Figure 1: The 0.txt file used to run the Xpantrac SCrPt.........cccoererereiiiiiinieeeeee e 6
Figure 2: How to run Xpantrac from the command line (with output)...........ccooeviiiiiiiiiiiis 7
Figure 3: Components of Xpantrac grouped iNt0 tWO PArtS..........cccererereriniinieenene e 10
Figure 4: Shows the command to start the server and initialization oUtput...........ccccocerirvrirnnne 11
Figure 5: Shows the Solr adminiStration PAgEcccooeiiriiiiiee e 12
Figure 6: A query of “*:*’ that returns all of the documents in the collectionc.cccvernne. 13
Figure 7: URL t0 the QUEIY rBSPONSEciuiiiieiieieieitesie sttt sttt 13
Figure 8: Python script to remove all other files except HTML from a directory.............cc.c...... 14
Figure 9: Text file containing the information from a CNN article.............cccocooeviieniiiiiinnen, 15
Figure 11: Command to index ‘50docs.Xxml’ int0 SOITcccoiriiiiiiiiiiiiee e 15
Figure 12: XML file using the correct formatcccoeoe e 16
Figure 13: IOException from indexing the ‘50docs.xml’ file into Solrccoevvviiiiiiininnnnn, 16
Figure 14: Xpantrac CONCEPE MAPccvveiuieieiieeiteeie st e seeeesteeste e e seeste e e sraesteeseessaesreasesreesreeneens 17
Figure 15: Creates a list of all file IDs from “plain_text 1ds.tXt”......c.ccvrviiiiiiiiiiiii 18
Figure 16: Shows how each input text file IS aCCESSEU.........ceevviieiiieiiee e 18
Figure 17: Authorization and query information for Yahoo Search APlc.cccccooveviiicieennn, 19
Figure 18: Output from Xpantrac_yahooWeb.py SCHPLcovveiviiiiiieeceece e 20
Figure 19: Importing urlopen to be used for the quUery requUEStccocoveeeevieie i 21
Figure 20: Shows the new query assembled with ‘content’ as the field name to query in the

collection. This can be found in the ‘makeMicroCorpus’ function.ccoeerereeieneneneienennns 21
Figure 21: Shows the return of the first 30 words of the content field.cccoevviiiiiinenns 21
Figure 22: num_topics represents the number of topics to be found for each input document.... 21
Figure 23: ‘u_size’ represents the query unit size and a_size represents the API return size. 22
Figure 24: A document from the IDEAL collection in SOIrccccooveveiiiii e 22
Figure 25: First 30 words of the content field from the IDEAL collection in Solr 22
Figure 26: Xpantrac configuration Tlcceiiiiiiiii e 23

Abstract

Title: Integrating Xpantrac into the IDEAL software suite, and applying it to identify topics for
IDEAL webpages

Identifying topics is useful because it allows us to easily understand what a document is about. If
we organize documents into a database, we can then search through those documents using their
identified topics.

Previously, our client, Seungwon Yang, developed an algorithm for identifying topics in a given
webpage called Xpantrac. This algorithm is based on the Expansion-Extraction approach.
Consequently, it is also named after this approach. In the first part, the text of a document is used
as input into Xpantrac and is expanded into relevant information using a search engine. In the
second part, the topics in each document are identified, or extracted. In his prototype, Yang used
a standard data set, a collection of one thousand New York Times articles, as a search database.

As our CS4624 capstone project, our group was asked to modify Yang’s algorithm to search
through IDEAL documents in Apache Solr. In order to accomplish this, we set up and became
familiar with a Solr instance. Next, we replaced the prototype’s database with the Yahoo Search
API to understand how it would work with a live search engine. Then we indexed a set of
IDEAL documents into Solr and replaced the Yahoo Search API with Solr. However, the amount
of documents we had previously indexed was far too few. In the end, we used Yang’s Wikipedia
collection in Solr instead. This collection has approximately 4.2 million documents and counting.

We were unable to connect Xpantrac to the IDEAL collection in Solr. This issue is discussed in
detail later (along with a future solution). Therefore, our deliverable is Xpantrac for Yang’s
Wikipedia collection in Solr along with an evaluation of the extracted topics.

User’s Manual

Command Line

In the command prompt, the user must navigate to Xpantrac’s project directory.

Before running the Xpantrac script, the user must ensure there is a document named “0.txt” in
that project directory. This document will be used as input to Xpantrac. To run the Xpantrac
script, simple type ‘python ./Xpantrac.py’. The output in the console will show the query size,

each query performed, and a list of topics found in the relevant documents.

(CNN) -- Nine Ringling Bros. and Barnum and Bailey circus performers were among 11 people injured
Sunday in Providence, Rhode Island, after an apparatus used in their act failed, circus spokesman
Stephen Payne said.

Eight performers fell when the hair-hang apparatus -- which holds performers by their hair -- failed,
Payne added. Another performer was injured on the ground, he said.

The performers were among 11 people hospitalized with injuries related to the accident, Rhode Island
Hospital spokeswoman Jill Reuter told CNN. One of those people was listed in critical condition, Reuter
said.

It was not immediately clear who the other two victims were.

Multiple emergency units responded to the accident at the Dunkin' Donuts Center.

Eyewitnesses told CNN affiliate WPRI that they saw acrobats up on a type of aerial scaffolding doing a
"human chandelier” when a cable snapped.

Payne told CNN's Fredricka Whitfield the apparatus had been used for multiple performances each
week since Ringling Bros. and Barnum & Bailey lauched its "Legends” show in February.

"Each and every time that we come to a new venue, all of the equipment that is used by this performer
-- this group of performers as well as other performers -- is carefully inspected. We take the health and
safety of our performers and our guests very seriously, and our company has a safety department that
spends countless hours making sure that all of our equipment is indeed safe and effective for continued
use," he said.

The circus and local authorities are investigating the incident together, Payne said.

"Legends" began a short Providence residency on Friday. The final five performances there were slated
for 11 a.m., 3 p.m. and 7 p.m. on Sunday, and 10:30 a.m. and 7 p.m. on Monday.

"The rest of the (11 a.m. Sunday) show was canceled and we're making a determination about the
remainder of the shows for the Providence engagement,” Payne said.

Figure 1: The 0.txt file used to run the Xpantrac script

PS C:\Users\sloan_000\Desktop\project> python .\Xpantrac.py

Input text: 0.txt is being processed
---- List of queries (query size:5) ----

: cnn+ringling+bros+barnum+bailey

: bailey+circus+performers+injured+providence

: providence+rhode+island+apparatus+failed

: failed+circus+spokesman+stephen+payne

: payne+performers+fell+hair+hang

: hang+apparatus+holds+performers+hair

: hair+failed+payne+performer+injured
injured+ground+performers+hospitalized+injuries
injuries+accident+rhode+island+hospital

: hospital+spokeswoman+jill+reuter+told

: told+cnn+Tisted+critical+condition

: condition+reuter+clear+victims+multiple

: multiple+emergency+units+responded+accident

: accident+dunkin+donuts+center+eyewitnesses

: eyewitnesses+told+cnn+affiliate+wpri

: wpri+acrobats+type+aerial+scaffolding

scaffolding+human+chandelier+cable+snapped
shapped+payne+told+cnn+fredricka

: fredricka+whitfield+apparatus+multiple+performances

: performances+week+ringling+bros+barnum

: barnum+bailey+lauched+legends+time

: time+venue+equipment+performer+group

: group+performers+well+performers+carefully

: carefully+inspected+health+safety+performers

: performers+guests+seriously+company+safety

: safety+department+spends+countiess+making

: making+equipment+safe+effective+continued

: continued+circus+local+authorities+investigating

: investigating+incident+payne+legends+began

: began+short+providence+residency+final

: final+performances+slated+rest+canceled

: canceled+making+determination+remainder+providence

: providence+engagement+payne

o

l_l
HHEWOO~Ou Wi
= O

(=]
—

2
s
2
'
2
s
rl
£
2
s
2
s
2
s
2
s
2
s
2
s
3
3
3
3

L
L
L
L
L
L
L
L
L
L
L
L
L
L

WNRPOW~IOUnkwMNnBRE
O Y T N T | N T T T |

---- Micro corpus is created ----
---- Vector Space Model 1is applied for topic extraction ----
---- Topics (separated by ',') ----

payne, island, rhode, circus, providence, reuter, american, county, john, state

Figure 2: How to run Xpantrac from the command line (with output)

Developer’s Manual

Inventory of Data Files

File Description

Jproject Directory containing all project files

project/Xpantrac.py Script containing Xpantrac algorithm to be used
with Apache Solr

Jproject/0.txt Sample input file to be used by algorithm

Jproject/pos_tagger.py

Part of speech tagger; Trained using the
CoNLL2000 corpus provided by the Natural
Language Tool Kit (NLTK)

Jproject/pos_tagger.pyc

Compiled version of ‘./project/pos_tagger.py’

Jproject/get-pip.py

Package installer

project/stopwords.txt

A list of words to exclude from the topic
identification

Jproject/custom_stops.txt

A list of words to exclude from the topics
identification

Jproject/Xpantrac_yahooWeb.py

Script containing the Xpantrac algorithm to be
used with the Yahoo Search API

Jproject/plain_text_ids.txt

Text file containing a list of file IDs
Used in ‘./project/Xpantrac_yahooWeb.py’

Jproject/files

Directory of text files with corresponding IDs
Used in ‘./project/Xpantrac_yahooWeb.py’

Jproject/processWarcDir.py

Unpacks a WARC file and returns only html files

Jproject/CTR_30

A directory of 30 CTR files

Jproject/VARIOUS 30

A directory of 30 various files

Jproject/gold_ctr30.csv

The “gold standard” of merged human topics

Jproject/gold_various30.csv

The “gold standard” of merged human topics

Jproject/human_topics_ CTR30.csv

Human assigned topics for 30 CTR articles

Jproject/human_topics_ VARIOUS30.csv | Human assigned topics for 30 various articles

Jproject/xpantrac_ctr30_10topics.csv Xpantrac assigned topics for 30 CTR articles;
10 topics per article

Jproject/xpantrac_ctr30_20topics.csv Xpantrac assigned topics for 30 CTR articles;
20 topics per article

Jproject/xpantrac_various30_10topics.csv | Xpantrac assigned topics for 30 various articles;
10 topics per article

Jproject/xpantrac_various30_20topics.csv | Xpantrac assigned topics for 30 various articles;
20 topics per article

Jproject/computePRF1.py Computes the precision, recall, F1 score of the
extracted topics

Xpantrac Explained

Xpantrac is an algorithm that combines Cognitive Informatics with the VVector Space Model to
retrieve topics from an input of text. The name Xpantrac came from the Expansion-Extraction
approach it takes when expanding the query and eventually extracting the topics. Consider this
use case of Xpantrac in the following scenario:

Rachel is a librarian working at a children’s library. This library received about 100
short stories, each of which was written by young writers who recently started their
literary career. To make these stories accessible online, Rachel decides to organize them
based on the topic tags. So, she opens a Web browser and enters a URL of the Xpantrac
Ul. After loading documents that contain 100 stories, she selects each document to
briefly view it, and then extracts suggested topic tags using the Ul. After selecting
several suggested tags from the Xpantrac Ul, and also coming up with additional tags by
herself, she enters them as the topic tags representing a story. A library patron, Jason,
accesses the library homepage at home, clicks a tag “Christmas”, which lists 5 stories
about Christmas. He selects a story that might be appropriate for his 4-year daughter,
and reads the story to her. (Yang, 90)

The design of Xpantrac has two parts: Expansion and Extraction. The flow of the algorithm can
be shown in the figure below.

Input Text

|
I
[]

Preprocessor

Symbo
Remowver

Stopword
Remover

EXPANSION

| Query Unit Bullder |

| External Knowledge Collector |‘ * Web

Xpantrac

MNLP Module

‘ POS Tagger ‘ | Lemmatizer

| Term-Dac Matrix Builder |

EXTRACTION

| Topic Selector |

Topic tags

Figure 3: Components of Xpantrac grouped into two parts

Because of the modular design of Xpantrac, any component can be flexibly replaced. For our
project, we used a web API as the External Knowledge Collector on the first run and later
replaced it with a Solr system.

Expansion

The Expansion part of the algorithm is responsible for building a “derived corpus” of relevant
information by accessing an external knowledge source by expanding input text. This part
contains three parts:

1) Preprocessor: removes symbol characters (e.g. &, #, $,) and stopwords (e.g. ‘a’, ‘and’,
‘the’)

2) Query Unit Builder: segments the preprocessed input texts into uniform sized groups of
words. The words are grouped with neighboring words to keep the context.

3) External Knowledge Collector: accesses a knowledge source, located outside the system,
to search and retrieve relevant information on the queries sent

Extraction
The extraction part is where a list of words is derived from the corpus created from expansion.
This part contains three parts:

1) NLP Module: applies a POS (Part of Speech) tagger to the corpus to select only nouns,

verbs, or both. It also finds “lemmas” of the nouns or verbs to resolve singular and plural
forms

10

2) Term-Doc Matrix Builder: develops a term index using the unique words from the
derived corpus and constructs a term-document matrix as in the Vector Space Model
3) Topic Selector: identifies significant words representative of the input text

How to Setup Apache Solr

Download

In order to setup Solr, you need to have the latest Java JRE installed on your system. At the time
of this writing, the current version of Java, Java 8, is fully compatible with Apache Solr but
previous versions can be used if desired. Once the latest Java is installed, you can download
Apache Solr.

Starting the Server

Once Solr is downloaded, you can run the server in its template form by navigating to [solr
download]/example. From here, running “java -jar start.jar” starts the server. You can then
navigate to http://localhost:8983/solr/. If the server is successfully started, you should be able to
see the administrator page. The figure below shows the command to start the server and what a
developer should see when initializing the server.

® 00 __| example — java ¥
dcabrera@DMBP:example$ 1s

README . txt example-DIH/ 1ib/ resources/ solr-webapp/

contexts/ example-schemaless/ logs/ scripts/ start. jar

etc/ exampledocs/ multicore/ solr/ webapps/
dcabrera@DMBP:example$ java -jar start.jar

0 [main] INFO org.eclipse.jetty.server.Server - jetty-8.1.10.v20130312

46 [main] INFO org.eclipse.jetty.deploy.providers.ScanningAppProvider - Deployment monitor /Users/d
cabrera/Downloads/solr-4.7.2/example/contexts at interval @

57 [main] INFO org.eclipse.jetty.deploy.DeploymentManager - Deployable added: /Users/dcabrera/Downl
oads/solr-4.7.2/example/contexts/solr-jetty-context.xml

1616 [main] INFO org.eclipse.jetty.webapp.StandardDescriptorProcessor - NO JSP Support for /solr, did
not find org.apache.jasper.servlet.JspServliet

16990 [main] INFO org.apache.solr.servlet.SolrDispatchFilter - SolrDispatchFilter.init()

1708 [main] INFO org.apache.solr.core.SolrResourceLoader - INDI not configured for solr (NoInitialCon
textEx)

1708 [main] INFO org.apache.solr.core.SolrResourceloader - solr home defaulted to 'solr/' (could not
find system property or JNDI)

1709 [main] INFO org.apache.solr.core.SolrResourceLoader - new SolrResourcelLoader for directory: 'sol
r/!

1865 [main] INFO org.apache.solr.core.ConfigSolr - Loading container configuration from /Users/dcabre
ra/Downloads/solr-4.7.2/example/solr/solr.xml

Figure 4: Shows the command to start the server and initialization output

11

@ Chrome File Edit View History Bookmarks Window Help

800 s Solr Admin x ™ L
« C' [} localhost:8383 /solr/#/ e OO =
TN
Apache Y L Instance = system (3
o
SOI r ® Start 3 minutes ago Physical Memory
& Dashboard (=] Versions
| Logging 5o SOIr-spec 4.7.2
= solr-impl 4.7.2 1586229 - rmuir - 2014-04-10 09:27:27
£l Core Admin Swap Space
i} 7. lucene-spec 472
Java Praperties
lucene-impl 4.7.2 1586229 - rmuir - 2014-04-10 09:00:35
Thread Dump
ol File Descriptor Count
o JVM @ JVM-Memory
=) Runtime Oracle Corporation Java HotSpot(TM) 64-Bit Server VM (1.7.0_51 24.51-b03)
B Processors 4
[] Documentation 4 Issue Tracker A IRC Channel Community forum || Solr Query Syntax

To index documents with the default setup of the Solr server, you can use the post.jar file that is
located in the exampledocs folder. You can copy and paste the post.jar file into any folder and do
the command “java -jar post.jar [file name here]”. Once you run post, it uploads the files to
servers and they are indexed.

Querying

To query the files you have indexed, you choose the Solr collection to search (for the default
setup, the collection is named Collection 1). Once you choose the collection from the
administrator page, you can select the Query tab to see the Query menu. From here you have a
lot of options when you search. What we are most concerned about is the ‘q’ box containing the
“*.*%” query. The left asterisk indicates the tag you want to search in (you can leave the * to
search all tags) and the right asterisk indicates the content you want to search within the tag.
Searching “*:*” returns all of the documents that are contained within the server.

12

@ Chrome File Edit View History Bookmarks Window Help

8006

s Solr Admin

« C [localhost:8983/solr/#/collection1/query

T
Apache ’Y Request-Handler (qU)
SOI r s J/select
common responseHead {
& Dashboard q -
(2 Logging
A
Zi Core Admin
; fq % e
Java Praperties =2a . 393407928508",
"Wt “jsen’
Thread Dump sort)
collectionl - "respomnse”: {
start, rows - noned®s 51
#t "start”: o,
f "does": |
{
£] "id"s 0",
df "title": [
"Enife-wielding mob kills 27 at China train station”
L Ir
Raw Query Parameters "content”: [
— "At least 27 people were killed and 109 wounded when a group of people armed with knives stormed a railway station in the
& i
wt
i o _version_": 1467200232247787500
P r
I
@ indent {
& debugQuery "id: "1,
Teitle': [
dismax "after forest fires and drought, now rains torment Southern California”
1r
edismax . N
content”: [
hi "Mario vazquez grabbed his dog and got out of the way, as a stream of water and mud came qushing on to his streets. Since
facet 1
spatial _version_": 1467200232282390500
i
spellcheck .
"title': [

Figure 6: A query of “*:*’ that returns all of the documents in the collection

The link at the top of the query gives you the general structure of a query if you do not want to

use the Admin page.

Figure 7: URL to the query response

From here, the “*” in the link represent the the things we search for and you can replace the
asterisks with the queries of your choice. This link stays constant for all queries. Another option

9% ¢

“python”’ f.‘ruby ,

29 ¢e

that you see is the part that says “json”. Here, you can change it to return “json”,
php”, or “csv”.

WARC Files with IDEAL Documents

Our group collaborated with the IDEAL Pages group for the initial part of our project since we
were both working with IDEAL and Solr. The IDEAL Pages group goal was to index the IDEAL
documents into Solr. To achieve this goal, they had been given a set of WARC files containing
IDEAL documents in the form of HTML pages. However, the WARC files also contained non-

xml”,

HTML documents that were unnecessary for our purposes. After the IDEAL Pages group created
a Python script to unpack the WARC files, they sent it to us for further modification.

13

Python Script to Remove HTML

As stated before, the WARC files included the HTML documents we needed, but they also
included a lot of other files we did not need. Figure 8 shows the Python script we created to
remove all of the unnecessary documents.

rermoveAllButHTML.py

0s

def deleteAllbutHML(rootdir):
root, subFolders, files os.walk{rootdir):
filename files:

filePath - os.path.join(root, filename)
filename. find(".html", len(filename) - 5, len(filename))
filePath
os.remove(filePath)

Figure 8: Python script to remove all other files except HTML from a directory

This script recursively deletes all of the files in a root directory that do not end with the HTML
extension. When running the script, the only parameter needed is the path to the root directory
where the files are located. The full path to each deleted file is printed as it is removed.

Indexing Documents into Solr

Attempting to use the IDEAL Pages Script

As mentioned before, the IDEAL Pages group goal was to index IDEAL documents into Solr.
Our group also needed to do this in order to later use IDEAL documents with Xpantrac. After
speaking with our professor and primary contacts, our groups were asked to work together. The
IDEAL Pages group would supply the Xpantrac group with the script to index documents into
Solr and the Xpantrac group would manually index the documents until that script was created.

When the IDEAL Pages script was finally received, it would not run with our Solr instance. Our
group spent a lot of time trying to fix the script and get it to run with our instance. The IDEAL
Pages group was also unable to help. Eventually, we realized that we would rather spend time
manually indexing the files into Solr instead of trying to fix a script that may never work for us.

14

Manually Indexing Documents into Solr

Initially, we had 50 text documents from CNN that were supposed to be indexed into Solr (See
Figure 9). These documents would represent documents from the IDEAL collection. However,
Solr needed those documents to be in XML format (See Figure 10).

£ 1.xt - Notepad -0
File Edit | Format | View Help

|fter forest fires and drought, now rains torment Southern california ~
By Kyung Lah and Ben Brumfield, CNN

updated 3:26 PM EST, Sat March 1, 2014

Watch this video

Mudslides wreak havoc on Southern calif.

STORY HIGHLIGHTS

Rains are the first since the weather system behind the drought collapsed

Though desperately needed, the rain has not been great news

The deluge has come down at more than an inch an hour at times

Rain and cold will move, hitting the East Coast Monday

(CNN) -- Mario Vazquez grabbed his dog and got out of the way, as a stream of water and mud came gushing on to his streets.

Since California has been in the middle of its worst drought in 1@0 years, it would seem that the sight of rain would be good news.

But in Glendora and other towns in Los Angeles County, it wasn't.

The rain has been much needed, but Friday's deluge -- coming down at more than an inch an hour at times -- landed on bone-dry hills scorche
With little vegetation left to stop them, walls of water have gushed into valleys below. They have spewed mud and debris into quiet resider
More could hit before Saturday is up, the National Weather Service says. It has placed Los Angeles and Ventura counties under a flash flooc
By the time it's over up to six inches will have landed on the foothills of Los Angeles County and as much as 18 inches on the ridge line.
Weather weirdness

Figure 9: Text file containing the information from a CNN article

_

1 <idrl</id>

2 <titlexAfter forest fires and drought, now rains torment Southern
California</title>

3 <content>Mario Vazquez grabbed his dog and got out of the way, as a

stream of water and mud came gushing on to his streets.

4 Since California has been in the middle of its worst drought in 188
yvears, it would seem that the sight of rain would be good news.

5 But mud from the streets is beginning to ocoze over into yards,
pools and houses. It has damaged two homes in Glendora so far,
police chief Tim Staub said.<ffgniﬁﬂﬁﬂ

Figure 10: XML file containing the information from the text file in Figure 9

Next, we tried to manually index those XML files into Solr using the command line.

[Na¥s) (] exampledocs — bash '

dcabrerc@DMBP : exampledocsS java -jar post.jar 50docs.xml
Figure 11: Command to index ‘50docs.xml’ into Solr

However, we ran into an error. After examining Solr’s schema.xml file and reviewing some
tutorials, we realized that we had been formatting our XML files incorrectly for Solr. The correct
formatting can been seen in Figure 12.

15

S0docs.xml

content">At least 27 people were killed and 189 wounded when a group of people armed
with knives stormed a railway station in the southwest Chinese city of Kunming, authorities said,
according to state news agency Xinhua.
It was an organized, premeditated terrorist attack, authorities told the news agency. No motive has
been provided. A doctor with the Kunming Mo.1 People's Hospital told Xinhua over the phone they're

not sure of the number of casualties. Xinhu said the Kunming Railway Station is one of the largest
stations in southwest China.</ >

name="content">Mario Vazquez grabbed his dog and got out of the way, as a stream of water and
mud came gushing on to his streets. Since California has been in the middle of its worst drought in
108 years, it would seem that the sight of rain would be good news.

Figure 12: XML file using the correct format

Initially, we had 50 separate XML files for each of the 50 articles. However, we learned that we
were able to combine these into one long XML file, with each article in its own <doc> tag.
When we tried to index the ‘50docs.xml’ file into Solr, we received the error seen in Figure 13.

dcabrerc@DMBP: exampledocs$ java -jar post.jar @.xml
SimplePostTool version 1.5
Posting files to base url http://localhost:8983/solr/update using content-type application/xml..
POSTing file @.xml

SimplePostTool: WARNING: Solr returned an error #500 Server Error

SimplePostTool: WARNING: IOException while reading response: java.io.IOException: Server returned HTTP
response code: 500 for URL: http://localhost:8983/solr/update

1 files indexed.

COMMITting Solr index changes to http://localhost:8983/solr/update. .
Time spent: 0:00:00.072
dcabrerc@OMBP : exampledocs$ []

Figure 13: IOException from indexing the ‘50docs.xml’ file into Solr

The issue was caused by the existence of ampersand characters (‘&’) in the XML file we tried to
index. To fix this problem we removed the ampersands and then ran the indexing command
again. The files were then able to be indexed into our local Solr instance without any more
iSsues.

16

Concept Map

stands Cognitive Informatics
Algorithm |€———is an eXPANsion exTRACtion |€— ¢ —- combines —» with Information
Retrieval
AN
contains
components
used to for
|
retrieve topics of a given
page ’
made up of
P made up of

e TS P

el nit Buil er} Natural Language
(P'ED"'CESE‘“’] [Q” (ST [External Knowledge Collector] s T T
a text file containing f | Module Builder Topic Selector

for

relevant information for \
on article (i.e. first | nstruct
30 words in article) such as constructs
Symbel and Stopword - . f contains
Remaoval Creatlng queries out of
the input text to
use as input
to External Knowledge Web API Part of speech -
Coliecto) SOLR (i.e. yahoo tagger
system API or bing
currently builds APL ||
selects a term document
\ matrix as in the
Vector Space
Queries of every 5 words, with Model
a 1 word overlap only nouns and verbs

Figure 14: Xpantrac concept map

Xpantrac for Yahoo Search API

For our midterm presentation, we tried to modify Yang’s original Xpantrac script that used a
database to instead use the Bing Search API. However, we ran into multiple authentication
issues. As a result of these problems, we modified the original Xpantrac script to use the Yahoo
Search API.

File Hierarchy

File Description
Jproject Directory containing all project files
Jproject/Xpantrac_yahooWeb.py Script containing the Xpantrac algorithm to be used

with the Yahoo Search API

Jproject/plain_text_ids.txt Text file containing a list of file IDs
Used in ‘./project/Xpantrac_yahooWeb.py’

Jproject/files Directory of text files with corresponding IDs
Used in ‘./project/Xpantrac_yahooWeb.py’

17

Input Text Files

The Xpantrac_yahooWeb.py script used a plain_text_ids.txt file to identify all of the 1Ds of the
text files to be used as input. These text files can be found in the ./project/files directory. The IDs
for the text files are simply 0-50 and the text files themselves are named 0.txt -50.txt,
respectively. Figures 15 and 16 show how the files are accessed in the Xpantrac for Yahoo script.

develop 1id List

fi = open("plain_text ids.txt", "r")
li = fi.read().split()

fi.close()

Figure 15: Creates a list of all file IDs from “plain_text_ids.txt”

print "\n--—————-———-——- Document ID: %¥s is being processed --------—------ \n" % doc_id
filename = str(filenum) + ".txt"

for Llinux/mac machine

text = open("files/"+filename, "r").read()

for Windows machine:

text = open("files/"+filename, "r").read()

Figure 16: Shows how each input text file is accessed

18

Yahoo Search APl Authorization

Querying the Yahoo Search API required authorization. Therefore, this script had a few extra
authorization lines than normal. Figure 17 shows the necessary authorization and query
information.

it query = "":
try:
url = ""
if yahoo api_ type == "web":
url = "http://yboss.yahooapis.com/ysearch/web?gq=" + query
else:
url = "http://yboss.yahooapis.com/ysearch/news?g=" + query

consumer = oauth2.Consumer(key=0AUTH_CONSUMER_KEY,secret=0AUTH_CONSUMER_SECRET)
params = {

'ovauth_version': '1.8°',

'oauth_nonce': oauth2.generate_nonce(),

‘oauth_timestamp': int(time.time()),

¥

pauth_request = ocauth2.Request(method="GET', url=url, parameters=params)
pauth_request.sign_request({oauth2.SignatureMethod HMAC SHA1(), consumer, MNone)
oauth_header=oauth_request.to_header(realm="yahocapis.com')

Get search results

http = httplib2.Http()

resp, content = http.request(url, 'GET', headers=ocauth_header)
print resp

print content

results = simplejson.loads(content)

Figure 17: Authorization and query information for Yahoo Search API

19

Output
See Figure 18 for instructions on how to run the Xpantrac for Yahoo script in the command
prompt. This figure also shows the list of topics (output) for each document processed.

PS C:\Users\sloan_000\Desktop\project> python .\Xpantrac_yahooweb.py
1399317485.37
Document ID: O is being processed
m39 10 Topics
station,people,attack,news,railway,xinhua,china,train,group,knife
29.3789999485 seconds
1399317514.75

Document ID: 1 1is being processed

m39 10 Topics
ater,rain,california,weather,drought,los,angeles,storm,fire,street

81.75 seconds
1399317596.51

Document ID: 2 1is being processed

Figure 18: Output from Xpantrac_yahooWeb.py script

Xpantrac for Solr

Finding a Larger Solr Collection

After we successfully indexed our 50 CNN documents into Solr, we found out that 50 files is too
small a number to enable Xpantrac to work correctly. Instead, we ended up using Yang’s
collection of Wikipedia articles on Solr. This collection currently holds 4.2 million documents
(and counting).

Removing Code from Xpantrac_yahooWeb.py

First, we removed all of the database code (and ‘db’ variables) from the Xpantrac Yahoo.py
script. This database held one thousand New York Times articles. Solr will replace this database,
so we can remove it and the ‘import MySQLdb’ statement.

Changing the URL in Xpantrac
After obtaining the URL to Yang’s Wikipedia collection in Solr, we created a new query request
in Xpantrac. First, we had to import ‘urlopen’ as seen in Figure 19.

20

from urllib import urlopen

Figure 19: Importing urlopen to be used for the query request

Next, we had to modify the ‘query assembled’ with the correct URL and field name.

for item in query_list:
query +“.jJoin(item)
num_results_returned = ©

if query !
conn urlopen(query assembled)

rsp eval(conn.read())
results = rspf |)

Figure 20: Shows the new query assembled with ‘content’ as the field name to query in the
collection. This can be found in the ‘makeMicroCorpus’ function.

Handling the Content Field

In addition to changing the query field to ‘content’ in the query assembled for the request, we
also had to change the field name in the configuration for the results seen later in the code. First,
we changed the field name to ‘content’. Next, we returned on the first 30 words of the content
field. Only the first 30 words are used because they tend to represent the key issues of an entire
document. The field change can be seen in Figure 21.

for M_43 configuration (only 10 results merged) ------------
for result in results[9:10]:
short_result = " ".join(result['content’'][0].split()[:3@])
clean_result = short_result.replace("...", "").strip().replace("\"", "")

Figure'21: SHO\}VS thé réturﬁ of the fi}st 30 Words' of the conténf field.

Because we are no longer using the Yahoo Search API, we also removed all of the authorization
code that enabled us to access that API.

Changing the Xpantrac parameters

With Yang’s help, the number of topics for Xpantrac to find was changed to 10, the number of
API results to return to be 10, and the query unit size to be 5. These changes can be seen in
Figures 22 and 23.

def ():
num_topics = 18
window overlap = 1

Figure 22: num_topics represents the number of topics to be found for each input document

21

put text (¢

iter_id = 1

z [i_sizd in [20, 15, 10, 5, 1][3:4]:

for |m” (20, 15, 18, 5, 2, 1][3:4]: # [3:4] -> group 5
for a_return in [50, 10, S5, 1][1:2): # [1:2] -> ask Solr to return 10

Figure 23: ‘u_size’ represents the query unit Size and a_size represents the API return size.
This can be found in the ‘main’ function.

for lu <1
Jor |u_
together

matching documents

Connecting with IDEAL in the Future

In the future, Xpantrac should connect to the IDEAL collection in Solr. This collection can be
found at http://nick.dlib.vt.edu:8080/solr/#/collection1/query. While this collection does contain
a ‘content’ field, it does not meet the specifications of our project at this time.

The IDEAL Pages group was given a different specification to use for the content of their Solr
collection. Their group was instructed to collect the entire content of an HTML page. This means
that all of the text in the <body> of an HTML page will be put into their ‘content’ field. Figure
24 shows an example of a content field.

{
"content": [
"Google Newsvar GLOBAL window=window; (function () {function
d(a) {this.t={};this.tick=function(a, c,b) {b=void 0!=b?b: (new
Date) .getTime () ;this.t[a]l=[b,c]};this.tick(\"start\",null,a) }var a=new
d;GLOBAL window.jstiming={Timer:d,load:a};if (GLOBAL window.performance&&GLOBAL windo
w.performance.timing) {var
a=GLOBAL window.performance.timing, c=GLOBAL window.]jstiming.load,b=a.navigationStart
,a=a.responseStart;0<b&&a>=b&s& (c.tick (\" _wtsrt\",void
0,b),c.tick(\"wtsrt \",\" wtsrt\",a),c.tick(\"tbsd \",\"wtsrt \"))}try{a=null, GLOBAL
_window.chrome&&GLOBAL window.chrome.csi&&\n(a=Math.floor (GLOBAL window.chrome.csi ()
.pageT) ,c&&0<bé&s& (c.tick (\"_ tbnd\",void...”],
"collection_id": "3650",
"id": "7£74825401865487f671bd0fd388ce2b",
"_version ": 1465938356823130000

by

Figure 24: A document from the IDEAL collection in Solr

As you can see, there is a lot of unnecessary text and JavaScript inside of the ‘content’ field. If
Xpantrac thought that this page was a match and we returned the first 30 words of the content

field, it would look like:

"Google Newsvar GLOBAL window window function function d a this t this tick
functiona a ¢ b b void b b new Date getTime this t a b ¢ this tick start null a

var a new d GLOBAL window jstiming”

Figure 25: First 30 words of the content field from the IDEAL collection in Solr

22

Therefore, we are unable to use the Solr collection at this time because the project specifications
for IDEAL Pages and Xpantrac were not the same. If an IDEAL collection is created to match
our specifications, then you would only need to change the URL to match the collection URL
and the field name to match the field containing the relevant content information.

For example, if the current IDEAL collection in Solr is changed to suit our specifications, then
you would only need to change the hostname and port to the match the corresponding URL.

Configuration File

In order to help create an easier Xpantrac experience for future developers, we have created a
configuration file. This file will allow users to enter commonly changed variables, such as
hostname, port, query field, title of input documents, path to input documents, number of topics
to be found, and window overlap.

- xpanconfig.ini] -

1 [server]

2 hostname = hostname

3 port = port

4 query_field = content

5 input documents = [@]

6 path_to_input documents = ./
7 num_topics = 18

2 window overlap = ﬂ

Figure 26: Xpantrac configuration file
Because of this configuration file, there is no longer a need to change variables directly in the

Xpantrac script. This will help ensure that all variables are changed correctly when a new user
wishes to use the system.

23

Evaluation of Extracted Topics

File Hierarchy

File Description

Jproject/CTR_30 A directory of 30 CTR files
Jproject/VVARIOUS_30 A directory of 30 various files
Jproject/gold_ctr30.csv The “gold standard” of merged human topics
Jproject/gold_various30.csv The “gold standard” of merged human topics
Jproject/human_topics_CTR30.csv Human assigned topics for 30 CTR articles

Jproject/human_topics_ VARIOUS30.csv | Human assigned topics for 30 various articles

Jproject/xpantrac_ctr30_10topics.csv Xpantrac assigned topics for 30 CTR articles;
10 topics per article

Jproject/xpantrac_ctr30_20topics.csv Xpantrac assigned topics for 30 CTR articles;
20 topics per article

Jproject/xpantrac_various30_10topics.csv | Xpantrac assigned topics for 30 various articles;
10 topics per article

Jproject/xpantrac_various30_20topics.csv | Xpantrac assigned topics for 30 various articles;
20 topics per article

Jproject/computePRF1.py Computes the precision, recall, F1 score of the
extracted topics

How to Run
> python computePRF1l.py gold _ctr3@.csv xpantrac_ctr30_#topics.csv
> python computePRF1l.py gold various3@.csv xpantrac_various30 #topics.csv

Human Assigned Topics

Two sets of test files, CTR_30 and VARIOUS 30, were included in this project. These files have
been tagged with topics by multiple human sources. The people who tagged these articles were
from the Library Sciences field, so they were experienced taggers. The human assigned topics
for each file can be found in human_topics_ CTR30.csv and human_topics_ VARIOUS30.csv.

Gold Standard Files

The gold standard files are a merged version of the human assigned topics. That means that if
Tagger A said that a file’s topics are “Florida, marsh, tropical, coast” and Tagger B said that
same file’s topics are “marsh, storm, Jacksonville”, then those topics would be merged in the

24

gold standard file. Therefore, the gold standard of topics for that file would be “Florida, marsh,
tropical, coast, storm, Jacksonville”.

Evaluation Metrics

This evaluation of topics measures precision, recall, and F1. Precision can be used to compute
the proportion of matching topics (i.e., C) from all the retrieved topics (i.e., A) by the following
formula:

C
precision = % = P(relevant | retrieved)

Recall is the proportion of the matching topic (i.e., C) from all of the retrieved topics (i.e., B),
which are assigned by the human topic indexers or exist as the gold standard:

C
recall = — = P(retrieved | relevant)

|B|

Ideally, both the precision and recall values should be 1. This would mean that the sets of topics
compared would be exactly the same.

The F1 score is used to compare precision and recall with the following formula:

. 2 * precision * recall
1 =

precision + recall

Evaluation
The tables below show the evaluation of average precision, recall, and F1 of the gold standard of
topics versus 10 Xpantrac topics.

> python computePRF1l.py gold ctr30.csv xpantrac_ctr30_10topics.csv

Evaluation Value

Average Precision 0.4534
Average Recall 0.2110
Average F1 0.2800

25

> python computePRF1l.py gold_various3@.csv xpantrac_various30_1@topics.csv

Evaluation Value
Average Precision .5922
Average Recall .1640
Average F1 2547

Above, the number of human assigned topics are much larger than the number of Xpantrac topics
(10). Because of this, the recall value will be somewhat low. Increasing the number of Xpantrac
topics from 10 to a larger number, such as 20, will increase the recall value. Eventually, the F1
measure will increase as well. However, the precision value may decrease slightly. Below are the
average precision, recall, and F1 scores for the increased number of topics (20).

> python computePRF1l.py gold_ctr3@.csv xpantrac_ctr30_20topics.csv

Evaluation Value

Average Precision 0.3067
Average Recall 0.2608
Average F1 0.2777

> python computePRF1l.py gold various3@.csv xpantrac_various30 2@topics.csv

Evaluation Value

Average Precision 0.4000
Average Recall 0.2221
Average F1 0.2824

As expected, the precision value has decreased and the recall value has increased. Overtime, we
should still expect the F1 score to increase.

26

Lessons Learned

This capstone project was definitely an eye-opening experience for all of us. We had never done
this type of work in any of the courses from our past semesters before. Because of this, we felt
that we learned a lot of lessons and gained a lot of experience.

While all of our group members had previous experience working in a team, none of us had ever
had to coordinate with another separate team before. Overall, we felt that there was a good deal
of miscommunication between our group and the IDEAL Pages group. Throughout the semester,
we were under the impression that some of our project goals overlapped with their project goals.
However, this was not the case. In hindsight, we should have made our objectives more clear
with the other group and ensured that we had a better understanding of their project goals. We
had initially thought they could help us accomplish some of our tasks, so we waited for them to
finish one of their deliverables so that they could share it with us. It turned out that this particular
deliverable did not accomplish the same thing we needed, so we wasted time waiting on it.

Another lesson learned was dealt with Apache Solr. We were very confused about the purpose of
Solr when we first started our project. Additionally, we were unsure how to use it. We did not
understand how to index or query files, so we had to find a lot of tutorials (some of which were
misleading) or ask our primary contact. However, these tasks became more clear after was had
the guest lecture from Tarek Kanan about Solr and completed the Solr assignments for
homework. We hope that in the future the Solr activity will be moved toward the beginning of
the semester instead of the end. We believe that we would have experienced less troubles if the
course had been structured this way.

Overall, we gained a lot of knowledge regarding tools that were new to us, such as Solr and
Yahoo Search API. We are glad to have the experience of working with Yang’s code and hope
that his research can be carried on in the future.

Special Note

Yang has requested that the URL to the GMU Wikipedia Solr collection be redacted as it should
not yet be public. This explains the blackened hostname and port in Figure 20.

27

Acknowledgements

We would first like to thank Seungwon Yang for taking the time out of his busy schedule at
George Mason University to help our group better understand the Xpantrac algorithm and goals
for this capstone project.

We would also like to mention Mohamed Magdy and IDEAL Pages group (consisting of
Mustafa Aly and Gasper Gulotta) for their contributions to the initial part of our project. The
IDEAL Pages project goal was to index the IDEAL documents into Solr.

Lastly, we would like to thank Dr. Edward Fox for presenting us with the opportunity to work on
and improve this project for our capstone class and the National Science Foundation (NSF) for
supporting the Integrated Digital Event Archiving and Library (IDEAL) organization.

References

Yang, Seungwon. Automatic Identification of Topic Tags from Texts Based on Expansion-
Extraction Approach. Diss. Virginia Polytechnic Institute and State University, 2013, 230 pages.
<http://hdl.handle.net/10919/25111>.

28

