
 1

Xpantrac Connection with IDEAL

David Cabrera

dcabrera@vt.edu

Erika Hoffman

herika6@vt.edu

Samantha Johnson

sjf2728@vt.edu

Sloane Neidig

sloane10@vt.edu

Client: Seungwon Yang (syang20@gmu.edu)

CS4624, Edward A. Fox

Blacksburg, VA

May 8, 2014

 2

Table of Contents
Table of Contents .. 2

Table of Figures .. 4

Abstract ... 5

User’s Manual ... 6

Command Line.. 6

Developer’s Manual .. 8

Inventory of Data Files ... 8

Xpantrac Explained ... 9

Expansion .. 10

Extraction .. 10

How to Setup Apache Solr .. 11

Download .. 11

Starting the Server... 11

Indexing .. 12

Querying ... 12

WARC Files with IDEAL Documents ... 13

Python Script to Remove HTML .. 14

Indexing Documents into Solr .. 14

Attempting to use the IDEAL Pages Script .. 14

Manually Indexing Documents into Solr .. 15

Concept Map ... 17

Xpantrac for Yahoo Search API ... 17

File Hierarchy ... 17

Input Text Files ... 18

Yahoo Search API Authorization ... 19

Output ... 20

Xpantrac for Solr... 20

Finding a Larger Solr Collection .. 20

Removing Code from Xpantrac_yahooWeb.py .. 20

Changing the URL in Xpantrac .. 20

 3

Handling the Content Field ... 21

Changing the Xpantrac parameters ... 21

Connecting with IDEAL in the Future.. 22

Configuration File ... 23

Evaluation of Extracted Topics ... 24

File Hierarchy ... 24

How to Run ... 24

Human Assigned Topics ... 24

Gold Standard Files... 24

Evaluation Metrics .. 25

Evaluation ... 25

Lessons Learned.. 27

Special Note .. 27

Acknowledgements ... 28

References ... 28

 4

Table of Figures
Figure 1: The 0.txt file used to run the Xpantrac script .. 6

Figure 2: How to run Xpantrac from the command line (with output) ... 7

Figure 3: Components of Xpantrac grouped into two parts .. 10

Figure 4: Shows the command to start the server and initialization output 11

Figure 5: Shows the Solr administration page .. 12

Figure 6: A query of ‘*:*’ that returns all of the documents in the collection 13

Figure 7: URL to the query response .. 13

Figure 8: Python script to remove all other files except HTML from a directory 14

Figure 9: Text file containing the information from a CNN article .. 15

Figure 11: Command to index ‘50docs.xml’ into Solr ... 15

Figure 12: XML file using the correct format .. 16

Figure 13: IOException from indexing the ‘50docs.xml’ file into Solr 16

Figure 14: Xpantrac concept map ... 17

Figure 15: Creates a list of all file IDs from “plain_text_ids.txt” ... 18

Figure 16: Shows how each input text file is accessed ... 18

Figure 17: Authorization and query information for Yahoo Search API 19

Figure 18: Output from Xpantrac_yahooWeb.py script ... 20

Figure 19: Importing urlopen to be used for the query request .. 21

Figure 20: Shows the new query_assembled with ‘content’ as the field name to query in the

collection. This can be found in the ‘makeMicroCorpus’ function. ... 21

Figure 21: Shows the return of the first 30 words of the content field. .. 21

Figure 22: num_topics represents the number of topics to be found for each input document 21

Figure 23: ‘u_size’ represents the query unit size and a_size represents the API return size. 22

Figure 24: A document from the IDEAL collection in Solr ... 22

Figure 25: First 30 words of the content field from the IDEAL collection in Solr 22

Figure 26: Xpantrac configuration file ... 23

 5

Abstract

Title: Integrating Xpantrac into the IDEAL software suite, and applying it to identify topics for

IDEAL webpages

Identifying topics is useful because it allows us to easily understand what a document is about. If

we organize documents into a database, we can then search through those documents using their

identified topics.

Previously, our client, Seungwon Yang, developed an algorithm for identifying topics in a given

webpage called Xpantrac. This algorithm is based on the Expansion-Extraction approach.

Consequently, it is also named after this approach. In the first part, the text of a document is used

as input into Xpantrac and is expanded into relevant information using a search engine. In the

second part, the topics in each document are identified, or extracted. In his prototype, Yang used

a standard data set, a collection of one thousand New York Times articles, as a search database.

As our CS4624 capstone project, our group was asked to modify Yang’s algorithm to search

through IDEAL documents in Apache Solr. In order to accomplish this, we set up and became

familiar with a Solr instance. Next, we replaced the prototype’s database with the Yahoo Search

API to understand how it would work with a live search engine. Then we indexed a set of

IDEAL documents into Solr and replaced the Yahoo Search API with Solr. However, the amount

of documents we had previously indexed was far too few. In the end, we used Yang’s Wikipedia

collection in Solr instead. This collection has approximately 4.2 million documents and counting.

We were unable to connect Xpantrac to the IDEAL collection in Solr. This issue is discussed in

detail later (along with a future solution). Therefore, our deliverable is Xpantrac for Yang’s

Wikipedia collection in Solr along with an evaluation of the extracted topics.

 6

User’s Manual

Command Line
In the command prompt, the user must navigate to Xpantrac’s project directory.

Before running the Xpantrac script, the user must ensure there is a document named “0.txt” in

that project directory. This document will be used as input to Xpantrac. To run the Xpantrac

script, simple type ‘python ./Xpantrac.py’. The output in the console will show the query size,

each query performed, and a list of topics found in the relevant documents.

(CNN) -- Nine Ringling Bros. and Barnum and Bailey circus performers were among 11 people injured
Sunday in Providence, Rhode Island, after an apparatus used in their act failed, circus spokesman
Stephen Payne said.
Eight performers fell when the hair-hang apparatus -- which holds performers by their hair -- failed,
Payne added. Another performer was injured on the ground, he said.
The performers were among 11 people hospitalized with injuries related to the accident, Rhode Island
Hospital spokeswoman Jill Reuter told CNN. One of those people was listed in critical condition, Reuter
said.
It was not immediately clear who the other two victims were.
Multiple emergency units responded to the accident at the Dunkin' Donuts Center.
Eyewitnesses told CNN affiliate WPRI that they saw acrobats up on a type of aerial scaffolding doing a
"human chandelier" when a cable snapped.
Payne told CNN's Fredricka Whitfield the apparatus had been used for multiple performances each
week since Ringling Bros. and Barnum & Bailey lauched its "Legends" show in February.
"Each and every time that we come to a new venue, all of the equipment that is used by this performer
-- this group of performers as well as other performers -- is carefully inspected. We take the health and
safety of our performers and our guests very seriously, and our company has a safety department that
spends countless hours making sure that all of our equipment is indeed safe and effective for continued
use," he said.
The circus and local authorities are investigating the incident together, Payne said.
"Legends" began a short Providence residency on Friday. The final five performances there were slated
for 11 a.m., 3 p.m. and 7 p.m. on Sunday, and 10:30 a.m. and 7 p.m. on Monday.
"The rest of the (11 a.m. Sunday) show was canceled and we're making a determination about the
remainder of the shows for the Providence engagement," Payne said.

Figure 1: The 0.txt file used to run the Xpantrac script

 7

Figure 2: How to run Xpantrac from the command line (with output)

 8

Developer’s Manual

Inventory of Data Files

File Description

./project Directory containing all project files

./project/Xpantrac.py Script containing Xpantrac algorithm to be used

with Apache Solr

./project/0.txt Sample input file to be used by algorithm

./project/pos_tagger.py Part of speech tagger; Trained using the

CoNLL2000 corpus provided by the Natural

Language Tool Kit (NLTK)

./project/pos_tagger.pyc Compiled version of ‘./project/pos_tagger.py’

./project/get-pip.py Package installer

./project/stopwords.txt A list of words to exclude from the topic

identification

./project/custom_stops.txt A list of words to exclude from the topics

identification

./project/Xpantrac_yahooWeb.py Script containing the Xpantrac algorithm to be

used with the Yahoo Search API

./project/plain_text_ids.txt Text file containing a list of file IDs

Used in ‘./project/Xpantrac_yahooWeb.py’

./project/files Directory of text files with corresponding IDs

Used in ‘./project/Xpantrac_yahooWeb.py’

./project/processWarcDir.py Unpacks a WARC file and returns only html files

./project/CTR_30 A directory of 30 CTR files

./project/VARIOUS_30 A directory of 30 various files

./project/gold_ctr30.csv The “gold standard” of merged human topics

./project/gold_various30.csv The “gold standard” of merged human topics

./project/human_topics_CTR30.csv Human assigned topics for 30 CTR articles

 9

./project/human_topics_VARIOUS30.csv Human assigned topics for 30 various articles

./project/xpantrac_ctr30_10topics.csv Xpantrac assigned topics for 30 CTR articles;

10 topics per article

./project/xpantrac_ctr30_20topics.csv Xpantrac assigned topics for 30 CTR articles;

20 topics per article

./project/xpantrac_various30_10topics.csv Xpantrac assigned topics for 30 various articles;

10 topics per article

./project/xpantrac_various30_20topics.csv Xpantrac assigned topics for 30 various articles;

20 topics per article

./project/computePRF1.py Computes the precision, recall, F1 score of the

extracted topics

Xpantrac Explained
Xpantrac is an algorithm that combines Cognitive Informatics with the Vector Space Model to

retrieve topics from an input of text. The name Xpantrac came from the Expansion-Extraction

approach it takes when expanding the query and eventually extracting the topics. Consider this

use case of Xpantrac in the following scenario:

Rachel is a librarian working at a children’s library. This library received about 100

short stories, each of which was written by young writers who recently started their

literary career. To make these stories accessible online, Rachel decides to organize them

based on the topic tags. So, she opens a Web browser and enters a URL of the Xpantrac

UI. After loading documents that contain 100 stories, she selects each document to

briefly view it, and then extracts suggested topic tags using the UI. After selecting

several suggested tags from the Xpantrac UI, and also coming up with additional tags by

herself, she enters them as the topic tags representing a story. A library patron, Jason,

accesses the library homepage at home, clicks a tag “Christmas”, which lists 5 stories

about Christmas. He selects a story that might be appropriate for his 4-year daughter,

and reads the story to her. (Yang, 90)

 10

The design of Xpantrac has two parts: Expansion and Extraction. The flow of the algorithm can

be shown in the figure below.

Figure 3: Components of Xpantrac grouped into two parts

Because of the modular design of Xpantrac, any component can be flexibly replaced. For our

project, we used a web API as the External Knowledge Collector on the first run and later

replaced it with a Solr system.

Expansion

The Expansion part of the algorithm is responsible for building a “derived corpus” of relevant

information by accessing an external knowledge source by expanding input text. This part

contains three parts:

1) Preprocessor: removes symbol characters (e.g. &, #, $,) and stopwords (e.g. ‘a’, ‘and’,

‘the’)

2) Query Unit Builder: segments the preprocessed input texts into uniform sized groups of

words. The words are grouped with neighboring words to keep the context.

3) External Knowledge Collector: accesses a knowledge source, located outside the system,

to search and retrieve relevant information on the queries sent

Extraction

The extraction part is where a list of words is derived from the corpus created from expansion.

This part contains three parts:

1) NLP Module: applies a POS (Part of Speech) tagger to the corpus to select only nouns,

verbs, or both. It also finds “lemmas” of the nouns or verbs to resolve singular and plural

forms

 11

2) Term-Doc Matrix Builder: develops a term index using the unique words from the

derived corpus and constructs a term-document matrix as in the Vector Space Model

3) Topic Selector: identifies significant words representative of the input text

How to Setup Apache Solr

Download

In order to setup Solr, you need to have the latest Java JRE installed on your system. At the time

of this writing, the current version of Java, Java 8, is fully compatible with Apache Solr but

previous versions can be used if desired. Once the latest Java is installed, you can download

Apache Solr.

Starting the Server

Once Solr is downloaded, you can run the server in its template form by navigating to [solr

download]/example. From here, running “java -jar start.jar” starts the server. You can then

navigate to http://localhost:8983/solr/. If the server is successfully started, you should be able to

see the administrator page. The figure below shows the command to start the server and what a

developer should see when initializing the server.

Figure 4: Shows the command to start the server and initialization output

 12

Figure 5: Shows the Solr administration page

Indexing

To index documents with the default setup of the Solr server, you can use the post.jar file that is

located in the exampledocs folder. You can copy and paste the post.jar file into any folder and do

the command “java -jar post.jar [file name here]”. Once you run post, it uploads the files to

servers and they are indexed.

Querying

To query the files you have indexed, you choose the Solr collection to search (for the default

setup, the collection is named Collection 1). Once you choose the collection from the

administrator page, you can select the Query tab to see the Query menu. From here you have a

lot of options when you search. What we are most concerned about is the ‘q’ box containing the

“*:*” query. The left asterisk indicates the tag you want to search in (you can leave the * to

search all tags) and the right asterisk indicates the content you want to search within the tag.

Searching “*:*” returns all of the documents that are contained within the server.

 13

Figure 6: A query of ‘*:*’ that returns all of the documents in the collection

The link at the top of the query gives you the general structure of a query if you do not want to

use the Admin page.

Figure 7: URL to the query response

From here, the “*” in the link represent the the things we search for and you can replace the

asterisks with the queries of your choice. This link stays constant for all queries. Another option

that you see is the part that says “json”. Here, you can change it to return “json”, “xml”,

“python”, “ruby”, “php”, or “csv”.

WARC Files with IDEAL Documents
Our group collaborated with the IDEAL Pages group for the initial part of our project since we

were both working with IDEAL and Solr. The IDEAL Pages group goal was to index the IDEAL

documents into Solr. To achieve this goal, they had been given a set of WARC files containing

IDEAL documents in the form of HTML pages. However, the WARC files also contained non-

HTML documents that were unnecessary for our purposes. After the IDEAL Pages group created

a Python script to unpack the WARC files, they sent it to us for further modification.

 14

Python Script to Remove HTML

As stated before, the WARC files included the HTML documents we needed, but they also

included a lot of other files we did not need. Figure 8 shows the Python script we created to

remove all of the unnecessary documents.

Figure 8: Python script to remove all other files except HTML from a directory

This script recursively deletes all of the files in a root directory that do not end with the HTML

extension. When running the script, the only parameter needed is the path to the root directory

where the files are located. The full path to each deleted file is printed as it is removed.

Indexing Documents into Solr

Attempting to use the IDEAL Pages Script

As mentioned before, the IDEAL Pages group goal was to index IDEAL documents into Solr.

Our group also needed to do this in order to later use IDEAL documents with Xpantrac. After

speaking with our professor and primary contacts, our groups were asked to work together. The

IDEAL Pages group would supply the Xpantrac group with the script to index documents into

Solr and the Xpantrac group would manually index the documents until that script was created.

When the IDEAL Pages script was finally received, it would not run with our Solr instance. Our

group spent a lot of time trying to fix the script and get it to run with our instance. The IDEAL

Pages group was also unable to help. Eventually, we realized that we would rather spend time

manually indexing the files into Solr instead of trying to fix a script that may never work for us.

 15

Manually Indexing Documents into Solr

Initially, we had 50 text documents from CNN that were supposed to be indexed into Solr (See

Figure 9). These documents would represent documents from the IDEAL collection. However,

Solr needed those documents to be in XML format (See Figure 10).

Figure 9: Text file containing the information from a CNN article

Figure 10: XML file containing the information from the text file in Figure 9

Next, we tried to manually index those XML files into Solr using the command line.

Figure 11: Command to index ‘50docs.xml’ into Solr

However, we ran into an error. After examining Solr’s schema.xml file and reviewing some

tutorials, we realized that we had been formatting our XML files incorrectly for Solr. The correct

formatting can been seen in Figure 12.

 16

Figure 12: XML file using the correct format

Initially, we had 50 separate XML files for each of the 50 articles. However, we learned that we

were able to combine these into one long XML file, with each article in its own <doc> tag.

When we tried to index the ‘50docs.xml’ file into Solr, we received the error seen in Figure 13.

Figure 13: IOException from indexing the ‘50docs.xml’ file into Solr

The issue was caused by the existence of ampersand characters (‘&’) in the XML file we tried to

index. To fix this problem we removed the ampersands and then ran the indexing command

again. The files were then able to be indexed into our local Solr instance without any more

issues.

 17

Concept Map

Figure 14: Xpantrac concept map

Xpantrac for Yahoo Search API
For our midterm presentation, we tried to modify Yang’s original Xpantrac script that used a

database to instead use the Bing Search API. However, we ran into multiple authentication

issues. As a result of these problems, we modified the original Xpantrac script to use the Yahoo

Search API.

File Hierarchy

File Description

./project Directory containing all project files

./project/Xpantrac_yahooWeb.py Script containing the Xpantrac algorithm to be used

with the Yahoo Search API

./project/plain_text_ids.txt Text file containing a list of file IDs

Used in ‘./project/Xpantrac_yahooWeb.py’

./project/files Directory of text files with corresponding IDs

Used in ‘./project/Xpantrac_yahooWeb.py’

 18

Input Text Files

The Xpantrac_yahooWeb.py script used a plain_text_ids.txt file to identify all of the IDs of the

text files to be used as input. These text files can be found in the ./project/files directory. The IDs

for the text files are simply 0-50 and the text files themselves are named 0.txt -50.txt,

respectively. Figures 15 and 16 show how the files are accessed in the Xpantrac for Yahoo script.

Figure 15: Creates a list of all file IDs from “plain_text_ids.txt”

Figure 16: Shows how each input text file is accessed

 19

Yahoo Search API Authorization

Querying the Yahoo Search API required authorization. Therefore, this script had a few extra

authorization lines than normal. Figure 17 shows the necessary authorization and query

information.

Figure 17: Authorization and query information for Yahoo Search API

 20

Output

See Figure 18 for instructions on how to run the Xpantrac for Yahoo script in the command

prompt. This figure also shows the list of topics (output) for each document processed.

Figure 18: Output from Xpantrac_yahooWeb.py script

Xpantrac for Solr

Finding a Larger Solr Collection

After we successfully indexed our 50 CNN documents into Solr, we found out that 50 files is too

small a number to enable Xpantrac to work correctly. Instead, we ended up using Yang’s

collection of Wikipedia articles on Solr. This collection currently holds 4.2 million documents

(and counting).

Removing Code from Xpantrac_yahooWeb.py

First, we removed all of the database code (and ‘db’ variables) from the Xpantrac_Yahoo.py

script. This database held one thousand New York Times articles. Solr will replace this database,

so we can remove it and the ‘import MySQLdb’ statement.

Changing the URL in Xpantrac

After obtaining the URL to Yang’s Wikipedia collection in Solr, we created a new query request

in Xpantrac. First, we had to import ‘urlopen’ as seen in Figure 19.

 21

Figure 19: Importing urlopen to be used for the query request

Next, we had to modify the ‘query_assembled’ with the correct URL and field name.

Figure 20: Shows the new query_assembled with ‘content’ as the field name to query in the

collection. This can be found in the ‘makeMicroCorpus’ function.

Handling the Content Field

In addition to changing the query field to ‘content’ in the query_assembled for the request, we

also had to change the field name in the configuration for the results seen later in the code. First,

we changed the field name to ‘content’. Next, we returned on the first 30 words of the content

field. Only the first 30 words are used because they tend to represent the key issues of an entire

document. The field change can be seen in Figure 21.

Figure 21: Shows the return of the first 30 words of the content field.

Because we are no longer using the Yahoo Search API, we also removed all of the authorization

code that enabled us to access that API.

Changing the Xpantrac parameters

With Yang’s help, the number of topics for Xpantrac to find was changed to 10, the number of

API results to return to be 10, and the query unit size to be 5. These changes can be seen in

Figures 22 and 23.

Figure 22: num_topics represents the number of topics to be found for each input document

 22

Figure 23: ‘u_size’ represents the query unit size and a_size represents the API return size.

This can be found in the ‘main’ function.

Connecting with IDEAL in the Future

In the future, Xpantrac should connect to the IDEAL collection in Solr. This collection can be

found at http://nick.dlib.vt.edu:8080/solr/#/collection1/query. While this collection does contain

a ‘content’ field, it does not meet the specifications of our project at this time.

The IDEAL Pages group was given a different specification to use for the content of their Solr

collection. Their group was instructed to collect the entire content of an HTML page. This means

that all of the text in the <body> of an HTML page will be put into their ‘content’ field. Figure

24 shows an example of a content field.

{
"content": [
 "Google Newsvar GLOBAL_window=window;(function(){function

d(a){this.t={};this.tick=function(a,c,b){b=void 0!=b?b:(new

Date).getTime();this.t[a]=[b,c]};this.tick(\"start\",null,a)}var a=new

d;GLOBAL_window.jstiming={Timer:d,load:a};if(GLOBAL_window.performance&&GLOBAL_windo

w.performance.timing){var

a=GLOBAL_window.performance.timing,c=GLOBAL_window.jstiming.load,b=a.navigationStart

,a=a.responseStart;0<b&&a>=b&&(c.tick(\"_wtsrt\",void

0,b),c.tick(\"wtsrt_\",\"_wtsrt\",a),c.tick(\"tbsd_\",\"wtsrt_\"))}try{a=null,GLOBAL

_window.chrome&&GLOBAL_window.chrome.csi&&\n(a=Math.floor(GLOBAL_window.chrome.csi()

.pageT),c&&0<b&&(c.tick(\"_tbnd\",void...”],
"collection_id": "3650",
"id": "7f74825401865487f671bd0fd388ce2b",
"_version_": 1465938356823130000
},

Figure 24: A document from the IDEAL collection in Solr

As you can see, there is a lot of unnecessary text and JavaScript inside of the ‘content’ field. If

Xpantrac thought that this page was a match and we returned the first 30 words of the content

field, it would look like:

"Google Newsvar GLOBAL_window window function function d a this t this tick

functiona a c b b void b b new Date getTime this t a b c this tick start null a

var a new d GLOBAL_window jstiming”

Figure 25: First 30 words of the content field from the IDEAL collection in Solr

 23

Therefore, we are unable to use the Solr collection at this time because the project specifications

for IDEAL Pages and Xpantrac were not the same. If an IDEAL collection is created to match

our specifications, then you would only need to change the URL to match the collection URL

and the field name to match the field containing the relevant content information.

For example, if the current IDEAL collection in Solr is changed to suit our specifications, then

you would only need to change the hostname and port to the match the corresponding URL.

Configuration File
In order to help create an easier Xpantrac experience for future developers, we have created a

configuration file. This file will allow users to enter commonly changed variables, such as

hostname, port, query field, title of input documents, path to input documents, number of topics

to be found, and window overlap.

Figure 26: Xpantrac configuration file

Because of this configuration file, there is no longer a need to change variables directly in the

Xpantrac script. This will help ensure that all variables are changed correctly when a new user

wishes to use the system.

 24

Evaluation of Extracted Topics

File Hierarchy

File Description

./project/CTR_30 A directory of 30 CTR files

./project/VARIOUS_30 A directory of 30 various files

./project/gold_ctr30.csv The “gold standard” of merged human topics

./project/gold_various30.csv The “gold standard” of merged human topics

./project/human_topics_CTR30.csv Human assigned topics for 30 CTR articles

./project/human_topics_VARIOUS30.csv Human assigned topics for 30 various articles

./project/xpantrac_ctr30_10topics.csv Xpantrac assigned topics for 30 CTR articles;

10 topics per article

./project/xpantrac_ctr30_20topics.csv Xpantrac assigned topics for 30 CTR articles;

20 topics per article

./project/xpantrac_various30_10topics.csv Xpantrac assigned topics for 30 various articles;

10 topics per article

./project/xpantrac_various30_20topics.csv Xpantrac assigned topics for 30 various articles;

20 topics per article

./project/computePRF1.py Computes the precision, recall, F1 score of the

extracted topics

How to Run

> python computePRF1.py gold_ctr30.csv xpantrac_ctr30_#topics.csv
> python computePRF1.py gold_various30.csv xpantrac_various30_#topics.csv

Human Assigned Topics

Two sets of test files, CTR_30 and VARIOUS_30, were included in this project. These files have

been tagged with topics by multiple human sources. The people who tagged these articles were

from the Library Sciences field, so they were experienced taggers. The human assigned topics

for each file can be found in human_topics_CTR30.csv and human_topics_VARIOUS30.csv.

Gold Standard Files

The gold standard files are a merged version of the human assigned topics. That means that if

Tagger A said that a file’s topics are “Florida, marsh, tropical, coast” and Tagger B said that

same file’s topics are “marsh, storm, Jacksonville”, then those topics would be merged in the

 25

gold standard file. Therefore, the gold standard of topics for that file would be “Florida, marsh,

tropical, coast, storm, Jacksonville”.

Evaluation Metrics

This evaluation of topics measures precision, recall, and F1. Precision can be used to compute

the proportion of matching topics (i.e., C) from all the retrieved topics (i.e., A) by the following

formula:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝐶|

|𝐴|
 = 𝑃(𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 | 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑)

Recall is the proportion of the matching topic (i.e., C) from all of the retrieved topics (i.e., B),

which are assigned by the human topic indexers or exist as the gold standard:

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝐶|

|𝐵|
= 𝑃(𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 | 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡)

Ideally, both the precision and recall values should be 1. This would mean that the sets of topics

compared would be exactly the same.

The F1 score is used to compare precision and recall with the following formula:

F1 =
2 ∗ precision ∗ recall

precision + recall

Evaluation

The tables below show the evaluation of average precision, recall, and F1 of the gold standard of

topics versus 10 Xpantrac topics.

> python computePRF1.py gold_ctr30.csv xpantrac_ctr30_10topics.csv

Evaluation Value

Average Precision 0.4534

Average Recall 0.2110

Average F1 0.2800

 26

> python computePRF1.py gold_various30.csv xpantrac_various30_10topics.csv

Evaluation Value

Average Precision .5922

Average Recall .1640

Average F1 .2547

Above, the number of human assigned topics are much larger than the number of Xpantrac topics

(10). Because of this, the recall value will be somewhat low. Increasing the number of Xpantrac

topics from 10 to a larger number, such as 20, will increase the recall value. Eventually, the F1

measure will increase as well. However, the precision value may decrease slightly. Below are the

average precision, recall, and F1 scores for the increased number of topics (20).

> python computePRF1.py gold_ctr30.csv xpantrac_ctr30_20topics.csv

Evaluation Value

Average Precision 0.3067

Average Recall 0.2608

Average F1 0.2777

> python computePRF1.py gold_various30.csv xpantrac_various30_20topics.csv

Evaluation Value

Average Precision 0.4000

Average Recall 0.2221

Average F1 0.2824

As expected, the precision value has decreased and the recall value has increased. Overtime, we

should still expect the F1 score to increase.

 27

Lessons Learned
This capstone project was definitely an eye-opening experience for all of us. We had never done

this type of work in any of the courses from our past semesters before. Because of this, we felt

that we learned a lot of lessons and gained a lot of experience.

While all of our group members had previous experience working in a team, none of us had ever

had to coordinate with another separate team before. Overall, we felt that there was a good deal

of miscommunication between our group and the IDEAL Pages group. Throughout the semester,

we were under the impression that some of our project goals overlapped with their project goals.

However, this was not the case. In hindsight, we should have made our objectives more clear

with the other group and ensured that we had a better understanding of their project goals. We

had initially thought they could help us accomplish some of our tasks, so we waited for them to

finish one of their deliverables so that they could share it with us. It turned out that this particular

deliverable did not accomplish the same thing we needed, so we wasted time waiting on it.

Another lesson learned was dealt with Apache Solr. We were very confused about the purpose of

Solr when we first started our project. Additionally, we were unsure how to use it. We did not

understand how to index or query files, so we had to find a lot of tutorials (some of which were

misleading) or ask our primary contact. However, these tasks became more clear after was had

the guest lecture from Tarek Kanan about Solr and completed the Solr assignments for

homework. We hope that in the future the Solr activity will be moved toward the beginning of

the semester instead of the end. We believe that we would have experienced less troubles if the

course had been structured this way.

Overall, we gained a lot of knowledge regarding tools that were new to us, such as Solr and

Yahoo Search API. We are glad to have the experience of working with Yang’s code and hope

that his research can be carried on in the future.

Special Note
Yang has requested that the URL to the GMU Wikipedia Solr collection be redacted as it should

not yet be public. This explains the blackened hostname and port in Figure 20.

 28

Acknowledgements
We would first like to thank Seungwon Yang for taking the time out of his busy schedule at

George Mason University to help our group better understand the Xpantrac algorithm and goals

for this capstone project.

We would also like to mention Mohamed Magdy and IDEAL Pages group (consisting of

Mustafa Aly and Gasper Gulotta) for their contributions to the initial part of our project. The

IDEAL Pages project goal was to index the IDEAL documents into Solr.

Lastly, we would like to thank Dr. Edward Fox for presenting us with the opportunity to work on

and improve this project for our capstone class and the National Science Foundation (NSF) for

supporting the Integrated Digital Event Archiving and Library (IDEAL) organization.

References
Yang, Seungwon. Automatic Identification of Topic Tags from Texts Based on Expansion-

Extraction Approach. Diss. Virginia Polytechnic Institute and State University, 2013, 230 pages.

<http://hdl.handle.net/10919/25111>.

