

RHSeg User's Manual:

Including HSWO, HSeg,

HSegExtract, HSegReader,

HSegViewer and

HSegLearn

Version 1.59

February 7, 2014

Copyright © 2006 United States Government as represented by the Administrator of the

National Aeronautics and Space Administration. No copyright is claimed in the United

States under Title 17, U.S. Code. All Other Rights Reserved.

(Reserved for licensing information)

RHSeg User’s Manual Version 1.59

ii

 Table of Contents

Overview .. ii

Documentation Conventions .. 1

Additional Sources of Information .. 1

Chapter 1: What are HSWO, HSeg, RHSeg, HSegExtract, HSegReader and

HSegViewer? ... 2

Overview .. 2

What is Image Segmentation? .. 2

What is a Segmentation Hierarchy? ... 2

What is HSWO? ... 3

What is HSeg? .. 3

What is RHSeg? ... 5

What is HSegExtract? .. 7

What is HSegReader? .. 7

What is HSegViewer? .. 7

What is HSegLearn? .. 8

References .. 8

Chapter 2: Installing the Programs... 10

Overview .. 10

HSWO/HSeg/RHSeg Demonstration Version ... 10

HSWO/HSeg/RHSeg Licensed Serial Version .. 11

HSWO/HSeg/RHSeg Licensed Parallel Version ... 12

HSegExtract, HSegReader, and HSegViewer .. 12

Advice on Installing GDAL, gtkmm and pthreads .. 12

Chapter 3: Running the Programs .. 14

Overview .. 14

Running HSWO and HSeg... 14

Running RHSeg ... 14

Running HSegExtract... 16

Running HSegReader ... 18

Running HSegViewer .. 19

Running HSegLearn ... 21

Chapter 4: Guide to HSWO/HSeg/RHSeg Parameters and Parameter Settings 22

Overview .. 22

HSWO/HSeg/RHSeg Program Parameters .. 22

Guidance on HSWO/HSeg/RHSeg Program Parameter Settings 46

References .. 47

Chapter 5: HSegViewer Tutorial .. 49

Overview .. 49

HSegViewer Tutorial ... 49

Notes on viewing 3-D data with HSegViewer ... 54

 Chapter 6: HSegLearn Tutorial ... 55

Overview .. 55

HSegLearn Tutorial .. 55

RHSeg User’s Manual Version 1.59

1

Overview

This manual provides a detailed description of and detailed instructions on how to install

and use HSWO, HSeg, RHSeg, HSegExtract, HSegReader, HSegViewer and HSegLearn.

Documentation Conventions

The following conventions are followed within this document:

 Bold text signifies command line text.

 Italicized text signifies variable names and program parameter names.

 Unless otherwise specified, “clicking” the mouse button means pressing the left

mouse button.

Additional Sources of Information

The following web sites can be consulted for additional and updated information:

 http://ipp.gsfc.nasa.gov/ft_tech_rhseg.shtm

 http://science.gsfc.nasa.gov/606.3/TILTON/index.html

http://ipp.gsfc.nasa.gov/ft_tech_rhseg.shtm
http://science.gsfc.nasa.gov/606.3/TILTON/index.html

RHSeg User’s Manual Version 1.59

2

Chapter 1: What are HSWO, HSeg, RHSeg,
HSegExtract, HSegReader, HSegViewer and
HSegLearn?

Overview

HSWO is an implementation of the hierarchical step-wise region growing approach to

image segmentation. The HSeg algorithm is an augmentation of HSWO which (i)

provides for the merging of non-adjacent regions (effectively classifying groups of

connected region objects into spatially disjoint region classes), and (ii) provides

approaches for selecting region growing iterations from which segmentation results are

saved to form a segmentation hierarchy. RHSeg is a recursive approximation of HSeg.

RHSeg is implemented in a software package that can optionally utilize parallel

computing for increased processing speed.

HSegExtract is a program for extracting certain segmentation features (e.g., region mean,

region standard deviation) from selected levels of the segmentation hierarchies produced

by HSWO, HSeg or RHSeg.

HSegReader is a user interactive program for examining the region class and region

object feature values of the regions in the segmentation hierarchies produced by HSWO,

HSeg or RHSeg.

HSegViewer is a user interactive program for visualizing, manipulating and interacting

with the segmentation hierarchies produced by HSWO, HSeg or RHSeg.

HSegLearn is a user interactive program for photo-interpretive binary labeling of the

segmentation hierarchies produced by HSWO, HSeg or RHSeg.

A basic understanding of image segmentation and segmentation hierarchies is required

before the HSWO, HSeg and RHSeg algorithms can be described.

What is Image Segmentation?

Image segmentation is the partitioning of an image into related sections or regions. For

remotely sensed images of the Earth, an example of segmentation is a map that divides

the image into areas labeled by distinct Earth surface covers such as water, snow, and

types of natural vegetation, rock formations, crops and other man created objects. In

unsupervised image segmentation, the labeled map may consist of generic labels such as

region 1, region 2, etc., which may be converted to meaningful labels by a post-

segmentation analysis.

What is a Segmentation Hierarchy?

A segmentation hierarchy is a set of several image segmentations of the same image at

different levels of detail in which the segmentations at coarser levels of detail can be

produced from simple merges of regions at finer levels of detail. This may be useful for

applications that require different levels of image segmentation detail depending on the

characteristics of the particular image objects segmented. A unique feature of a

RHSeg User’s Manual Version 1.59

3

segmentation hierarchy that distinguishes it from most other multilevel representations is

that the segment or region boundaries are maintained at the full image spatial resolution

for all levels of the segmentation hierarchy.

In a segmentation hierarchy, an object of interest may be represented by multiple image

segments in finer levels of detail in the segmentation hierarchy, and may be merged into a

surrounding region at coarser levels of detail in the segmentation hierarchy. If the

segmentation hierarchy has sufficient resolution, the object of interest will be represented

as a single region segment at some intermediate level of segmentation detail. The

segmentation hierarchy may be analyzed to identify the hierarchical level at which the

object of interest is represented by a single region segment. The object may then be

potentially identified through its spectral and spatial characteristics. Additional clues for

object identification may be obtained from the behavior of the image segmentations at the

hierarchical segmentation levels above and below the level(s) at which the object of

interest is represented by a single region.

What is HSWO?

Hierarchical Step-Wise Optimization (HSWO) is a form of region growing segmentation

that directly forms a segmentation hierarchy [1]. HSWO is an iterative process, in which

the iterations consist of finding the best segmentation with one region less than the

current segmentation. The HSWO approach can be summarized as follows:

1. Initialize the segmentation by assigning each image pixel a region label. If a pre-

segmentation is provided, label each image pixel according to the pre-segmentation.

Otherwise, label each image pixel as a separate region.

2. Calculate the dissimilarity criterion value between all pairs of spatially adjacent

regions, find the pair of spatially adjacent regions with the smallest dissimilarity

criterion value, and merge that pair of regions.

3. Stop if no more merges are required. Otherwise, return to step 2.

HSWO naturally produces a segmentation hierarchy consisting of the entire sequence of

segmentations from initialization down to the final trivial one region segmentation (if

allowed to proceed that far). For practical applications, however, a subset of

segmentations needs to be selected out from this exhaustive segmentation hierarchy.

What is HSeg?

HSeg interjects between HSWO iterations of merges of spatially adjacent regions the

merges of spatially non-adjacent regions constrained by a threshold derived from the

previous HSWO iteration [2,3]. The relative importance of region growing and spectral

clustering merges is controlled by the parameter spclust_wght, which can vary from 0.0

to 1.0. When spclust_wght = 0.0, only merges between spatially adjacent regions are

allowed (no spectral clustering). With spclust_wght = 1.0, merges between spatially

adjacent and spatially non-adjacent regions are given equal priority. For 0.0 <

spclust_wght < 1.0, spatially adjacent merges are given priority over spatially non-

adjacent merges by a factor of 1.0/spclust_wght. Thus for spclust_wght > 0.0, spatially

RHSeg User’s Manual Version 1.59

4

connected region objects may be grouped or classified into spatially disjoint region

classes.

HSeg also adds to HSWO approaches for selecting a subset of segmentations for an

output segmentation hierarchy. By default, the subset is selected that minimizes the

number of hierarchical levels utilized to guarantee that each large region (a region

containing at least min_npixels pixels) is involved in no more than one merge with

another large region from one hierarchical level to the next. The user may instead choose

to explicitly a set of iterations based on the number of regions or merge thresholds at

those iterations. Further, since segmentation results with a large number of regions are

usually not interesting, the hierarchical segmentation results are not output until the

number of regions reaches a user specified value, chk_nregions, the first entry in the

hseg_out_nregions list, or the merging threshold reaches the value of the first entry of the

hseg_out_thresholds list. See Chapter 4 for a detailed description of the chk_nregions,

hseg_out_nregions and hseg_out_thresholds parameters. The min_npixels program

variable is discussed later in this section.

While the addition of non-adjacent region merging significantly reduces the number of

regions required to characterize an image, especially for larger highly varied images, it

also significantly increases HSeg’s computational requirements. This is because the

inclusion of spatially non-adjacent region merging in HSeg requires the inter-comparison

of each region to every other region. Since HSeg is normally initialized with single pixel

regions, this results in a combinatorial explosion of inter-comparisons in the initial stage

of the algorithm. In contrast, HSWO only requires that each region be compared just with

its neighboring regions. This increase in computational requirements is counteracted by

RHSeg, a computationally efficient recursive approximation of HSeg. RHSeg is

described in the next section.

However, with version 1.50 of HSeg, another method for reducing HSeg’s computational

requirements was implemented [3,4]. Here a program parameter spclust_max (defaulted

to 1024) was introduced along with a program variable min_npixels through which the

number of regions involved constrained spectral clustering is limited to no more than

spclust_max regions by allowing only those regions containing at least min_npixels pixels

to participate in the constrained spectral clustering. Such regions are termed “large

regions.” The value of min_npixels is adjusted periodically to the smallest value that

restricts the number of large regions to no more than spclust_max.

With version 1.51 of HSeg, this method for reducing HSeg’s computational requirements

was modified with the introduction of the spclust_min program parameter (defaulted to

512) which is used in a scheme that seeks to prevent the number of “large regions”

involved in spectral clustering from falling to too small of a value [3,5]. In tests of

version 1.50 of HSeg it was observed that at times image segmentation quality was

degraded when the number of “large regions” involved in spectral clustering dropped to a

small value. So with version 1.51 of HSeg, as in version 1.50, the value of min_npixels is

initially adjusted to the smallest value that restricts the number of “large regions” to no

more than spclust_max. However, if this value of min_npixels results in the number of

“large regions” being less than spclust_min, the value of min_npixels is reduced by one

(unless it is already equal to one) and the number of “large regions” with this new value

of min_npixels is checked. If this new value of min_npixels results in the number of

RHSeg User’s Manual Version 1.59

5

“large regions” being more than 6*spclust_max, the value of min_npixels is incremented

back up by one, unless this would result in the number of “large regions” becoming less

than two. In the later case, the value of min_npixels as is left as is even though this results

in the number of large regions exceeding 6*spclust_max.

What is RHSeg?

RHSeg is a recursive, divide-and-conquer, approximation of HSeg. Following [3,6] and

[7], it can be described for ND spatial dimension image data as:

1. Given an input image X, specify the number of levels of recursion (rnb_levels)

required and pad the input image, if necessary, so that for each spatial dimension the

image can be evenly divided by 2
(rnb_levels-1)

. (Prior to version 1.50, a good value for

rnb_levels was one that resulted in an image section at level = rnb_levels consisting

of roughly 1000 to 4000 pixels. However, with the introduction of spclust_max and

min_npixels with version 1.50 of HSeg, a good value of rnb_levels is now one that

results in an image section at level = rnb_levels that consists of about 1,048,576 =

1024*1024 pixels.) Set level = 1.

2. Call rhseg(level,X).

3. Execute the HSeg algorithm on the image X using as a pre-segmentation the

segmentation output by the call to rhseg() in step 2.

where rhseg(level,X) is as follows:

2.1. If level = rnb_levels, go to step 2.3. Otherwise, divide the image data into DN
2 equal

subsections and call rhseg(level+1, DN
X 2) for each image section (represented as

DN
X 2).

2.2. After all DN
2 calls to rhseg() from step 2.1 complete processing, reassemble the

image segmentation results.

2.3. If level < rnb_levels, initialize the segmentation with the reassembled segmentation

results from step 2.2. Otherwise, initialize the segmentation with one pixel per

region. Execute the HSeg algorithm on the image X with the following

modification: For level > 1, terminate the algorithm when the number of regions

reaches the preset value min_nregions.

Note that rnb_levels and min_nregions are user specified parameters (with default values

available).

Under a number of circumstances, the segmentations produced by the RHSeg algorithm

exhibit processing window artifacts. These artifacts are region boundaries that are along

the processing window seams, even though the image pixels across the seams are very

similar. Processing window artifacts are usually minor, but can be more noticeable,

depending on the image. They tend to be more noticeable and prevalent in larger images.

However, the processing window artifacts can be completely eliminated by adding a 4
th

step to the definition of rhseg(level,X) given above (following [3,8]):

RHSeg User’s Manual Version 1.59

6

2.4. If level = rnb_levels, exit. Otherwise do the following (and then exit):

a. For each region, identify other regions that may contain pixels that are more

similar to it than the region that they are currently in. These regions are placed in

a candidate_region_label set for each region. This is done by:

i. scanning the processing window seam between sections processed at the

next deeper level of recursion for pixels that are more similar (by a factor of

seam_threshold_factor) to the region existing across the processing window

seam.

ii. identifying regions that have a dissimilarity between each other less than or

equal to region_threshold_factor*max_threshold).

b. For each region with a non-empty candidate_region_label set, identify pixels in

the region that are more similar by a factor of split_pixels_factor to regions in

the candidate_region_label set than to the region they are currently in. If

spclust_wght = 1.0, simply switch the region assignment of these pixels to the

more similar region. Otherwise, split these regions out of their current regions

and remerge them through a restricted version of HSeg in which region growing

is performed with these split-out pixels and merging is restricted to neighboring

regions and regions in the candidate_region_label set from which the pixel

came from.

NOTE: For level > 1, step 2.4 is performed once HSeg reached a number of regions equal

to min_nregions. For level = 1 step 2.4 is usually performed once HSeg reaches a number

of regions equal to the greater of min_nregions, chk_nregions (if specified), or the first

entry in the hseg_out_nregions list (if specified). However, if this value is greater than

(3*init_nregions)/4, where init_nregion is the number of regions at the start of step 2.3,

step 2.4 is instead performed one HSeg reaches a number of regions equal to

(3*init_nregions)/4. To be most effective, a sufficient number of HSeg iterations must be

performed prior to the execution of step 2.4.

Processing window artifact elimination as introduced here not only eliminates the

processing window artifacts, but does so with minimal computational overhead. The

computational overhead is no more than double for a wide range of image sizes [3,7].

The program defaults for the parameters values seam_threshold_factor = 1.5,

split_pixels_factor = 1.5 work well for a wide range of images. (The default value for

region_threshold_factor is 0.0, as this aspect of the processing window artifact

elimination procedure is usually unnecessary.)

The processing window artifact elimination step is performed after HSeg converges at

hierarchical levels 1 through rnb_levels – 1. At recursive level 1, HSeg is again run

normally after the processing window artifact elimination step is performed until it

reaches final convergence when the number of regions reaches the value of the program

parameter, conv_nregions.

Yet another modification of RHSeg introduced with version 1.50 is that those regions not

involved in spectral clustering (the “small” regions), are also not involved in the pixel

split out stage of processing window artifact elimination (step 2.4.a).

RHSeg User’s Manual Version 1.59

7

What is HSegExtract?

HSegExtract is a program written in C++ for extracting certain segmentation features

from selected levels of the segmentation hierarchies produced by HSeg or RHSeg.

With HSegExtract, an analyst can select a particular hierarchical segmentation level and

then output region class or region objects features from the selected hierarchical level in

the form of ENVI format images. The following region class or region objects features

may be output: Region labels, region number of pixels, region mean, region standard

deviation and region boundary pixel to number of pixels ratio. With version 1.53 of

HSegExtract, the program can also optionally output class and object shapefiles

containing region class and region object information plus “shapefile” information

describing the four nearest neighbor region object label map for the selected hierarchical

level.

What is HSegReader?

HSegReader is a graphical user interactive (GUI) program written in C++ (utilizing the

gtkmm GUI library, see http://www.gtkmm.org/) that enables an analyst to examine the

feature values of the region classes and region objects contained in the hierarchical

segmentation results produced by HSeg or RHSeg.

With HSegReader, an analyst can select a particular hierarchical segmentation level and

then view the feature values of the region classes in the segmentation at that particular

hierarchical level. The analyst can order the region classes by size, standard deviation or

boundary pixel ratio feature values. Then for each region class the analyst can view the

feature values of the region objects contained in that particular region class. These region

objects can also be ordered by size, standard deviation or boundary pixel ratio feature

value.

What is HSegViewer?

HSegViewer is a graphical user interactive (GUI) program written in C++ (utilizing the

gtkmm GUI library, see http://www.gtkmm.org/) that enables an analyst to visualize,

manipulate, and interact with, the hierarchical segmentation results produced by HSeg or

RHSeg. It is based on an earlier version of HSegViewer that was written in Java, which

was, in turn, based on the “Region Labeling Tool” [8], an earlier GUI program written in

C.

With HSegViewer, an analyst can view pseudo-color (random color table) versions of the

region class and region object segmentations at each hierarchical level saved by HSeg or

RHSeg, as well as view a region mean image and hierarchical region boundary map

image for each of these segmentations. An analyst can also select a particular region class

or object from a particular hierarchical level and label it with a selected color and ASCII

text string. With this region selection and labeling facility, an analyst can selectively

create a tailored image labeling. HSegViewer also displays certain region statistics for the

selected region class or object over all hierarchical levels, including region number of

pixels, region mean vector values, region boundary pixel ratio, and region standard

deviation.

RHSeg User’s Manual Version 1.59

8

What is HSegLearn?

HSegLearn is a graphical user interactive (GUI) program written in C++ (utilizing the

gtkmm GUI library, see http://www.gtkmm.org/) that is designed to facilitate the labeling

of image regions that are members of a specific category of land cover. HSegLearn uses

the output from the HSeg or RHSeg programs as a basis for defining similar image

regions. HSegLearn can be used by an analyst to label sets of regions (as defined by

HSeg or RHSeg) as “positive” or “negative” examples of the sought for category of land

cover. The HSegLearn program automatically searches the hierarchical segmentation for

HSeg or RHSeg for the coarsest level of segmentation at which selected positive example

regions do not conflict with negative example regions and labels the image accordingly.

The negative example regions are always defined at the finest level of segmentation

detail.

References

[1] J-M. Beaulieu and M. Goldberg, “Hierarchy in picture segmentation: A stepwise

optimal approach,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, Vol. 11, No. 2, pp. 150-163, Feb. 1989.

[2] James C. Tilton, “Image Segmentation by Region Growing and Spectral Clustering

with a Natural Convergence Criterion,” Proceedings of the 1998 International

Geoscience and Remote Sensing Symposium, Seattle, WA, pp. 1766-1768, July 6-

10, 1998.

[3] James C. Tilton, Yuliya Tarabalka, Paul M. Montesano and Emanuel Gofman, “Best

Merge Region Growing Segmentation with Integrated Non-Adjacent Region Object

Aggregation,” IEEE Transactions on Geoscience and Remote Sensing, Vol. 50, No.

11, November 2012, pp. 4454-4467.

[4] J. C. Tilton, “Refinement of the HSeg Algorithm for Improved Computational

Processing Efficiency,” Disclosure of Invention and New Technology: NASA Case

No. GSC 16,024-1, March 2, 2010.

[5] J. C. Tilton, “Further refinement of the computationally efficient HSeg algorithm,”

Disclosure of Invention and New Technology: NASA Case No. GSC 16,250-1, Feb.

21, 2011.

[6] J. C. Tilton, “D-dimensional formulation and implementation of recursive

hierarchical segmentation,” Disclosure of Invention and New Technology: NASA

Case No. GSC 15199-1, May 26, 2006.

[7] J. C. Tilton, “Parallel Implementation of the Recursive Approximation of an

Unsupervised Hierarchical Segmentation Algorithm,” Chapter 5 of High

Performance Computing in Remote Sensing, C.-I. Chang and A. J. Plaza, editors,

CRC Press, pp. 133-144, 2007.

[8] James C. Tilton, “A split-remerge method for eliminating processing window

artifacts in recursive hierarchical segmentation,” Disclosure of Invention and New

Technology: NASA Case No. GSC 14,994-1, March 9, 2005. NOTE: U. S. Patent

No. 7,697,759 was awarded to this technology on April 13, 2010.

http://www.gtkmm.org/

RHSeg User’s Manual Version 1.59

9

[9] James C. Tilton, “A Region Labeling Tool for use with Hierarchical Segmentation,”

Disclosure of Invention and New Technology: NASA Case No. GSC 14,331-1,

February, 29, 2000.

RHSeg User’s Manual Version 1.59

10

Chapter 2: Installing the Programs

Overview

The HSWO/HSeg/RHSeg package is available in three versions. Each version is installed

differently. This chapter provides detailed information on how to install each version.

The three versions are:

1. HSWO/HSeg/RHSeg Demonstration Version

2. HSWO/HSeg/RHSeg Licensed Serial Version

3. HSWO/HSeg/RHSeg Licensed Parallel Version

All versions also include HSegExtract, HSegReader, HSegViewer and HSegLearn.

NOTEs: The HSWO/HSeg/RHSeg Demonstration Version provides a 2-Dimensional

version of HSWO/HSeg/RHSeg with the processing window artifact elimination code.

The 3-Dimensional version is available only be special arrangement or with a licensed

version of HSWO/HSeg/RHSeg.

HSWO/HSeg/RHSeg Demonstration Version

The demonstration version is available for 32-bit Windows XP, Vista and 7, and for 64-

bit Windows 7 operating systems. Obtain a copy of RHSegV1p58_install.exe or

RHSegV1p58_install64.exe and copy it to a convenient location on your computer. You

can start the RHSeg installation by double clicking on the program icon. You can also

start the installation by clicking on “start”, then on “Run.” After browsing for the

RHSegV1p58_install.exe (or RHSegV1p58_install64.exe) program, run it by clicking on

“OK.”

By default, the RHSeg package is installed in the C:\Program Files\RHSeg directory.

However, you can choose to have it installed in another directory if you so desire. You

can then choose to have RHSeg installed in an existing Program Manager Group, or in its

own group called “RHSeg.” Following the simple installation instructions will complete

the process.

What the installation does:

The RHSeg suite of executables (rhsegGUI.exe, rhseg.exe, rhseg_setup.exe,

rhseg_run.exe, hsegextractGUI.exe, hsegextract.exe, hsegreader.exe, hsegviewer.exe and

hseglearn.exe) and several other associated files are copied to the installation directory

(by default, C:\Program Files\RHSeg). A subdirectory, named “Sample Data,” is also

created into which a sample image data set and parameter file are copied. You can use

this sample image data set and parameter file to test your installation of RHSeg. Finally

the dlls subdirectory is also created. This subdirectory contains the necessary dll library

files.

The directory paths to the RHSeg executables and the dll library files (by default

C:\Program Files\RHSeg and C:\Program Files\RHSeg\dll\bin, respectively) are added to

the system PATH environment variable.

RHSeg User’s Manual Version 1.59

11

An entry “RHSeg” is added to the Program List (accessed through the “start” button).

Included under the RHSeg entry, are subentries “HSegExtract,” “HSegReader,”

“HSegViewer,” “HSegLearn,” “RHSeg Release Notes,” and “RHSeg User's Manual.”

HSWO/HSeg/RHSeg Licensed Serial Version

The RHSeg suite of programs is written in C++. To install the programs, you need to

compile and link the provided source code with a C++ compiler.

The instructions provided here assume you have a GNU C++ (gcc) compiler installed

under a Linux or UNIX (e.g., Sun Solaris) operating system, or under a Linux-type

environment on Windows. Use cygwin (http://www.cygwin.com/), djgpp

(http://www.delorie.com/djgpp) or MinGW-msys (http://www.mingw.org) to provide a

Linux-type environment for Windows machines. Tests were performed using gcc

versions 4.1.2, 4.4.4, 4.5.1, 4.6.1, 4.6.3 and 4.8.0. Results are not guaranteed for other

compilers and systems, though it is very likely that you will be successful compiling the

code in other environments (particularly with the GNU C++ compiler).

The RHSeg program is available in three versions. Building the “rhseg_run” version

requires nothing else besides a C++ compiler. However, the “rhseg” version requires that

you have the Geospatial Data Abstraction Library (GDAL) installed on your computer. If

GDAL is not already installed on your computer go to http://www.gdal.org/ and install

GDAL before proceeding further in building the “rhseg” version of RHSeg. The

“rhsegGUI” version of RHSeg (RHSeg with a graphical user interface) also requires that

you have gtkmm (the C++ Interface for GTK+) installed on your system. GTK+ is a

toolkit for creating graphical user interfaces. See http://www.gtkmm.org to download and

install this software. The “rhsegGUI” of RHSeg also needs the pthreads library. The

GNU Portable Threads version of pthreads can be obtained from

http://www.gnu.org/software/pth/.

Please also see the note at the end of this section for advice on installing GDAL, gtkmm

and pthreads.

You will also need “makepp” (http://makepp.sourceforge.net/) in order to build the

RHSeg suite of programs. The build process was formulated and tested with the stable,

version 2.0 release candidate of makepp. Downloading and installing makepp is very

easy and straightforward. Just follow the instructions in the provided “INSTALL” file.

Note that you will also need to have version Perl 5.6.0 or higher (version 5.8.0 or higher

recommended) installed on you system. Most Linux-type systems have Perl pre-installed.

Once your licensing agreement is finalized, you should be provided with copies of

rhsegV1.59.tar.gz and CommonV1.59.tar.gz. As the first step in building the suite of

RHSeg programs, place rhsegV1.59.tar.gz in an appropriate directory (e.g., $HOME/

src/RHSeg) and uncompress and extract the files from this gzip’d tar file using gunzip

and tar (or just tar with the “z” option) as follows:

 gunzip rhsegV1.59.tar.gz

and

 tar xf rhsegV1.59.tar

or

http://www.cygwin.com/
http://www.delorie.com/djgpp
http://www.mingw.org/
http://www.gdal.org/
http://www.gtkmm.org/
http://www.gnu.org/software/pth/
http://makepp.sourceforge.net/

RHSeg User’s Manual Version 1.59

12

 tar xzf rhsegV1.59.tar.gz

Upon completing the above, you will see a directory rhsegV1.59 with various

subdirectories. In the following we will refer to this directory (with the suggested full

path $HOME/src/RHSeg/rhsegV1.59) as RHSEG_DIR.

The programs in the RHSeg suite that requires GDAL also require CommonV1.59.tar.gz

(which contains interfaces to various GDAL and gtkmm routines). Place this file in an

appropriate directory (e.g., $HOME/src) and unpack it. You will now see the directory

CommonV1.59 with various subdirectories. The path to this directory will be referred to

as COMMON_DIR (e.g., $HOME/src/CommonV1.59) in the following.

You will find files named “RootMakeppfile” and “standard_defs.mk” in the

RHSEG_DIR directory. These files contain the instructions on how to adaptively build

the RHSeg suite of programs in several different environments. Some minor changes in

these files should be all that is necessary to build the RHSeg suite of programs in

environments other than those the process has already been designed for.

To build the RHSeg suite of programs go to the RHSEG_DIR directory and just type

“makepp.” In some environments you might see a warning like

warning: '__cur' might be used uninitialized in this function

that you should ignore. Besides this warning all programs should build cleanly.

If you do not have GDAL, gtkmm or pthreads properly installed on your system, at the

end of the build makepp will report on whether or not it detected the proper installation of

these software packages, and what versions it detected if it did detect the proper

installation of these software packages. In any case, it will build the programs it can build

with the set of software packages you do have properly installed. It will always build at

least rhseg_run, rhseg_setup, and hsegextract because these programs do not need

anything besides a C++ compiler.

The following programs are built by makepp: rhseg, rhseg_setup, rhseg_setup_3d,

rhseg_run, rhseg_run_3d, hsegextract, hsegreader, hsegreader_3d, hsegviewer, and

hsegviewer_3d. (Under the Windows environment, makepp also builds rhsegGUI and

hsegextractGUI.)

Since you are a licensed user of RHSeg, you will want to make build versions of rhseg,

rhseg_run and rhseg_run_3d that don’t require a “Serial Key” to run the programs. You

can do this by building the RHSeg suite of programs with “makepp NOSKEY=true”

instead of just “makepp.”

RHSeg Licensed Parallel Version

TBD

Advice on Installing GDAL, gtkmm and pthreads

GTK+ (required for gtkmm) and pthreads are usually available as options in most Linux

installation. Precompiled binary versions of gtkmm for some operating systems are

available from http://www.gtkmm.org/en/download.html. Source code for gtkmm and

other software packages that gtkmm depends on can be also downloaded from or through

http://www.gtkmm.org/en/download.html

RHSeg User’s Manual Version 1.59

13

http://www.gtkmm.org/en/download.html. Precompiled binaries of GDAL for some

operating systems are available from http://trac.osgeo.org/gdal/wiki/

DownloadingGdalBinaries. Source code for GDAL and other software packages that

GDALdepends on can be downloaded from or through http://trac.osgeo.org/gdal/wiki/

DownloadSource.

Installation packages for GDAL and gtkmm binaries are available for most Linux

operating systems and for the MinGW-msys environment under Windows. While pthread

binaries don’t appear to be generally available, this package should be easy to build from

source under most Linux operating systems. Pre-built versions of the latest DLL,

development library and include files for pthreads on Windows (including MinGW-msys)

are available from ftp://sourceware.org/pub/pthreads-win32/dll-latest.

I build versions of the HSeg software for Windows machines using MSYS/MinGW.

Instructions for installing MSYS/MinGW on Windows machines (32 bit and 64 bit) can

be found at http://sourceforge.net/apps/trac/mingw-w64/wiki/MSYS. The GCC/MinGW-

w64 compiler suite for 32- and 64-bit Windows can be downloaded from

http://tdm-gcc.tdragon.net/download. An install package for gtkmm version 2.22 is

available from https://live.gnome.org/gtkmm/MSWindows.

Building GDAL under MSYS/MinGW is a bit tricky, but doable. The advice provided at

http://trac.osgeo.org/gdal/wiki/BuildingWithMinGW is helpful, but appears to be

somewhat out of date (all of the recommended steps are not actually necessary).

I have built the latest versions of gtkmm and GDAL under MSYS/MinGW on my

Windows 7 64-bit machine. Please contact me directly for detailed instructions by

sending email to James.C.Tilton@nasa.gov.

http://www.gtkmm.org/en/download.html
http://trac.osgeo.org/gdal/wiki/%20DownloadingGdalBinaries
http://trac.osgeo.org/gdal/wiki/%20DownloadingGdalBinaries
http://trac.osgeo.org/gdal/wiki/%20DownloadSource
http://trac.osgeo.org/gdal/wiki/%20DownloadSource
ftp://sourceware.org/pub/pthreads-win32/dll-latest
http://sourceforge.net/apps/trac/mingw-w64/wiki/MSYS
http://tdm-gcc.tdragon.net/download
https://live.gnome.org/gtkmm/MSWindows
http://trac.osgeo.org/gdal/wiki/BuildingWithMinGW
mailto:James.C.Tilton@nasa.gov

RHSeg User’s Manual Version 1.59

14

Chapter 3: Running the Programs

Overview

This chapter provides an overview of how to run the HSWO, HSeg, RHSeg,

HSegExtract, HSegReader, HSegViewer and HSegLearn suite of programs.

Running HSWO and HSeg

HSWO and HSeg are run by running one of the variants of the RHSeg program (see next

section) and selecting “Program Mode” “HSWO” or “HSEG,” respectively, in the

graphic user interface (GUI) versions or specifying “HSWO” or “HSEG,” respectively,

for the value of the “program_mode” parameter in the non-GUI versions.

Running RHSeg

There are three versions of the RHSeg program provided with the demonstration version

of RHSeg, all of which can also be built in the licensed version. The version that does not

depend on gtkmm or GDAL is named “rhseg_run,” the version that depends on both

gtkmm and GDAL is named “rhseg.” (In the Windows environment this version is called

“rhsegGUI,” and a version that depends on GDAL and doesn’t depend on gtkmm is

called “rhseg.”) There is also a companion program to “rhseg_run” called “rhseg_setup,”

which depends on both gtkmm and GDAL.

The version of RHSeg most similar to versions of RHSeg prior to version 1.45 is

“rhseg_run.” This is also the only version that can be used for three-dimensional image

processing and for parallel processing (licensed version only). To run “rhseg_run,” create

a parameter file with the appropriate entries, and run the program with the following

command:

rhseg_run parameter_file_name

The parameter file consists of entries of the form:

-parameter_name parameter_values(s)

This parameter file may be constructed manually following the definitions provided in

the on-line help, which may be obtained through the command:

rhseg_run –h or rhseg_run -help

and/or by referring Chapter 4 of this User’s Manual.

The “rhseg_run” version of RHSeg requires that the input data be a headerless binary 1-,

2-, or 3-spatial dimension image or image-like data file in band sequential format. See

Chapter 4 of this User’s Manual for more details.

The parameter file may also be constructed automatically using the “rhseg_setup”

program with the command:

rhseg_setup

RHSeg User’s Manual Version 1.59

15

Invoking this command will display a GUI through which you can provide the input

parameter information. In this case, the input image data must be in one of the image data

formats recognized by GDAL instead of the headerless binary data file expected by

“rhseg_run.” You must specify the “Program Mode,” “Input image data file,” “the

relative importance of spectral clustering vs. region growing,” (for HSeg and RHSeg) and

the “Output log file” through this GUI. You may also optionally specify an “Input mask

data file” and “Input region map data file” as well as specify a “Dissimilarity Criterion”

other than the default “Square Root of Band Sum Mean Squared Error.” Once the

requirements of this GUI panel are satisfied, you may either run the program by selecting

the “Program Action” “Run RHSeg Setup,” or specify additional output files by selecting

the “Program Action” “Go to Next Panel.” From the “RHSeg Output File Specification”

panel you may similarly also choose to “Run RHSeg Setup” or “Go to Next Panel.” In

this case, the next panel allows you to specify non-default values for other RHSeg

parameters. From this “RHSeg Parameter Specification” panel you may also run the

program by selecting the “Program Action” “Run RHSeg Setup.”

Running the “rhseg_setup” program does not actually run the RHSeg algorithm, but

instead creates an input parameter file for “rhseg_run” (with the default name

“rhseg_run.params”). It also creates the headerless binary input data files required by

“rhseg_run.”

You may also run RHSeg from a command line with a parameter file using the “rhseg”

command. In contrast the “rhseg_run,” in this case the input image data must be in one of

the image data formats recognized by GDAL instead of the headerless binary data file

expected by “rhseg_run.” At a minimum you must also specify a value for the parameters

program_mode, spclust_wght and log (see Chapter 4 of this User’s Manual).

Invoking “rhseg” (without the parameter file name) will bring up the GUI version of

RHSeg (in the Windows environment invoke “rhsegGUI” instead). The GUIs are exactly

the same as described in the discussion of “rhseg_setup” above. In this case, though,

when you select “Run Program” from the first panel menu, or when you select “Run

RHSeg” (or “Run HSWO” or “Run HSeg”) from the other parameter input panels you

will actually run the RHSeg (or the HSWO or HSeg) algorithm! If you like, you can

create a shortcut for this program and place it on your desktop.

When RHSeg is run using the rhseg GUI version, upon completion of the RHSeg

program, the user is given the opportunity to run HSegReader, HSegViewer and/or

display the log file by selecting buttons on a GUI.

Again, for help on the parameter file entries, type

rhseg –h or rhseg -help

To find out the version of your copy of RHSeg type

rhseg –v or rhseg -version

Special notes for the RHSeg demonstration version:

Notes for the demonstration version:

(i) For the demonstration version, the first time you run the “rhseg” or “rhseg_run”

version of the RHSeg program, you will be prompted for your user name and Serial Key,

RHSeg User’s Manual Version 1.59

16

which should have been provided to you with RHSeg_setup.exe. This information is

written to a file in the system TEMP directory. Subsequent runs of RHSeg read the user

name and Serial Key information from this file, and you will not be prompted at all.

However, if this file gets corrupted or deleted - then you will again be prompted for the

information. In this case, reenter your original Serial Key, or obtain a new Serial Key

from the distributor of RHSeg_setup.exe. When your time allotment expires you will

again be prompted to enter your user name and Serial Key. In this case, you will have to

contact the distributor of RHSeg_setup.exe for terms under which a new Serial Key can

be obtained, or for arranging the procurement of a licensed version of RHSeg.

(ii) For the demonstration version, the Sample Data folder in the RHSeg installation

directory (C:\Program Files\RHSeg by default) contains the following sample files:

girl.bmp Sample Image Data File

rhseg.params Sample Parameter File

Using these files, you can test RHSeg by bringing up a DOS window, setting your

directory location to this Sample Data folder and typing the command:

rhseg rhseg.params

The program should take about 30 seconds to run on a 2 GHz clock machine. You may

also use this sample data set to test the GUI version of RHSeg.

Running HSegExtract

In running the HSegExtract program, you will find it most convenient to set your

directory location to the directory where the output files from a run of the RHSeg reside,

but this is not necessary. You may run HSegExtract with either of the following

commands:

hsegextract

or

hsegextract parameter file name

The first choice brings up a parameter input GUI (in the Windows environment invoke

“hsegextractGUI” instead). This version of HSegExtract can also be called from

“RHSeg” group in “All Programs” in the “start” menu in Windows. If you like, you can

create a shortcut for this program and place it on your desktop.

The second choice uses an input parameter file. A description of the contents of this file

can be found using the command:

hsegextract –h or hsegextract -help

To find out the version of your copy of HSegExtract type

hsegextract –v or hsegextract -version

The HSegExtract program is designed to directly use the outputs from the RHSeg

program as its inputs. In particular, the output parameter file from RHSeg (with the suffix

“oparam”) provides most of the needed inputs for the HSegExtract program.

RHSeg User’s Manual Version 1.59

17

If you run HSegExtract with a parameter file and all the required parameters are not

specified properly in the parameter file, the program will display the parameter input GUI

panel (as if run with the “hsegextract” command). Once all appropriate parameters are

entered in the HSegExtract parameter input GUI panel, select the “Run Program” option

in the “Program Actions” menu. The HSegExtract program will now run producing the

selected outputs.

For the demonstration version, the Samples folder in the RHSeg installation directory

(C:\Program Files\RHSeg by default) contains the following sample files:

 girl.bmp Sample Image Data File

 rhseg.params Sample Parameter File

As noted earlier in the section “Running RHSeg,” RHSeg can be tested by bringing up a

DOS window, setting your directory location to this Samples folder and typing the

command:

rhseg rhseg.params

Once RHSeg completes, you will find that RHSeg produced the following files:

 girl.log RHSeg log file

 girl.oparam RHSeg output parameter file

 girl_boundary_map RHSeg hierarchical boundary map

 girl_boundary_map.hdr ENVI header for girl_boundary_map

 girl_class_labels_map RHSeg region class label map for hierarchical level 0

 girl_class_labels_map.hdr ENVI header for girl_class_labels_map

 girl_object_labels_map RHSeg region object label map for hierarchical level 0

 girl_object_labels_map.hdr ENVI header for girl_object_labels_map

 girl_region_classes RHSeg region class information (all levels)

 girl_region_objects RHSeg region object information (all levels)

HSegExtract uses these files as input (except for girl.log). The girl.oparam file contains

the names of all of the input files for HSegExtract, plus other required information such

as number of regions at hierarchical level 0, and the number of hierarchical levels.

An input parameter file for HSegExtract is also provided: hsegextract.params.

Thus, HSegExtract can be run by simply providing it with the name of the HSegExtract

input parameter file:

hsegextract hsegextract.params

An alternate way to run HSegExtract is with the command:

hsegextract

As noted earlier, this version of HSegExtract can also be called from “RHSeg” group in

“All Programs” in the “start” menu in Windows. In this case you will need to enter

“girl.oparam” as the “RHSeg/HSeg Output Parameter File” (as an input to HSegExtract).

When run with the “hsegextract” command, all the other required parameter value entries

will be read from the “RHSeg/HSeg Output Parameter File.” Once you have selected

values for the optional parameters (or left them at their default values) you run the

RHSeg User’s Manual Version 1.59

18

program by selecting “Run Program,” under the “Program Actions” menu (upper left

corner of the panel). The HSegExtract program will now run producing the selected

outputs.

Running HSegReader

In running the HSegReader program, you will find it most convenient to set your

directory location to the directory where the output files from a run of the RHSeg reside,

but this is not necessary. You may run HSegReader with either of the following

commands:

hsegreader

or

hsegreader parameter file name

The first choice brings up a parameter input GUI. This version of HSegReader can also

be called from “RHSeg” group in “All Programs” in the “start” menu in Windows. If you

like, you can create a shortcut for this program and place it on your desktop.

The second choice uses an input parameter file (this version is not available in the

Windows environment). A description of the contents of this file can be found using the

command:

hsegreader –h or hsegreader -help

To find out the version of your copy of HSegReader type

hsegreader –v or hsegreader -version

The HSegReader program is designed to directly use the outputs from the RHSeg

program as its inputs. In particular, the output parameter file from RHSeg (with the suffix

“oparam”) provides most of the needed inputs for the HSegReader program.

If you run HSegReader with a parameter file and all the required parameters are not

specified properly in the parameter file, the program will display the parameter input GUI

panel (as if run with the “hsegreader” command). Once all appropriate parameters are

entered in the HSegReader parameter input GUI panel, select the “Run Program” option

in the “Program Actions” menu. The main panel for the HSegReader program will now

appear.

For the demonstration version, the Samples folder in the RHSeg installation directory

(C:\Program Files\RHSeg by default) contains the following sample files:

 girl.bmp Sample Image Data File

 rhseg.params Sample Parameter File

As noted earlier in the section “Running RHSeg,” RHSeg can be tested by bringing up a

DOS window, setting your directory location to this Samples folder and typing the

command:

rhseg rhseg.params

Once RHSeg completes, you will find that RHSeg produced the following files:

RHSeg User’s Manual Version 1.59

19

 girl.log RHSeg log file

 girl.oparam RHSeg output parameter file

 girl_boundary_map RHSeg hierarchical boundary map

 girl_boundary_map.hdr ENVI header for girl_boundary_map

 girl_class_labels_map RHSeg region class label map for hierarchical level 0

 girl_class_labels_map.hdr ENVI header for girl_class_labels_map

 girl_object_labels_map RHSeg region object label map for hierarchical level 0

 girl_object_labels_map.hdr ENVI header for girl_object_labels_map

 girl_region_classes RHSeg region class information (all levels)

 girl_region_objects RHSeg region object information (all levels)

HSegReader uses these files as input (except for girl.log). The girl.oparam file contains

the names of all of the input files for HSegReader, plus other required information such

as image number of rows and columns, number of regions at hierarchical level 0, and the

number of hierarchical levels.

An input parameter file for HSegReader is also provided: hsegreader.params.

Thus, HSegReader can be run by simply providing it with the name of the HSegReader

input parameter file:

hsegreader hsegreader.params

An alternate way to run HSegReader is with the command:

hsegreader

As noted earlier, this version of HSegReader can also be called from “RHSeg” group in

“All Programs” in the “start” menu in Windows. In this case you will need to enter

“girl.oparam” as the “RHSeg/HSeg Output Parameter File” (as an input to HSegReader).

When run with the “hsegreader” command, all the other required parameter value entries

will be read from the “RHSeg/HSeg Output Parameter File.” Once you have selected

values for the optional parameters (or left them at their default values) you run the

program by selecting “Run Program,” under the “Program Actions” menu (upper left

corner of the panel). The main “Hierarchical Segmentation Results Reader” panel will

then appear.

Once the “Hierarchical Segmentation Results Reader” panel is displayed, you may select

a particular hierarchical segmentation level. Once you do so, you can choose to order the

region classes by size, standard deviation or by boundary pixel ratio feature value. The

feature values for the appropriate region class are now displayed. You can then examine

the next largest region class, or choose to order the region objects contained in the

selected region class by size, standard deviation or by boundary pixel ratio feature value.

The feature values for the appropriate region object are now displayed.

Running HSegViewer

In running the HSegViewer program, you will find it most convenient to set your

directory location to the directory where the output files from a run of the RHSeg reside,

but this is not necessary. You may run HSegViewer with either of the following

commands:

RHSeg User’s Manual Version 1.59

20

hsegviewer

or

hsegviewer parameter file name

The first choice brings up a parameter input GUI. This version of HSegViewer can also

be called from “RHSeg” group in “All Programs” in the “start” menu in Windows. If you

like, you can create a shortcut for this program and place it on your desktop.

The second choice uses an input parameter file (this version is not available in the

Windows environment). A description of the contents of this file can be found using the

command:

hsegviewer –h or hsegviewer -help

To find out the version of your copy of HSegViewer type

hsegviewer –v or hsegviewer -version

The HSegViewer program is designed to directly use the outputs from the RHSeg

program as its inputs. In particular, the output parameter file from RHSeg (with the suffix

“oparam”) provides most of the needed inputs for the HSegViewer program.

If you run HSegViewer with a parameter file and all the required parameters are not

specified properly in the parameter file, the program will display the parameter input GUI

panel (as if run with the “hsegviewer” command). Once all appropriate parameters are

entered in the HSegViewer parameter input GUI panel, select the “Run Program” option

in the “Program Actions” menu. The main panel for the HSegViewer program will now

appear.

Note: The “Output Selected Class Label Map File” and the optional “Output ASCII Class

Label Names List File” can be used to store intermediate results from one session of the

HSegViewer program. These files can be used as the “Input Class Label Map File” and

“Input ASCII Class Label Names List File”, respectively, to start up where you left off in

a previous session. (The ASCII Class Label Names List File also includes color map

information.)

For the demonstration version, the Samples folder in the RHSeg installation directory

(C:\Program Files\RHSeg by default) contains the following sample files:

 girl.bmp Sample Image Data File

 rhseg.params Sample Parameter File

As noted earlier in the section “Running RHSeg,” RHSeg can be tested by bringing up a

DOS window, setting your directory location to this Samples folder and typing the

command:

rhseg rhseg.params

Once RHSeg completes, you will find that RHSeg produced the following files:

 girl.log RHSeg log file

 girl.oparam RHSeg output parameter file

 girl_boundary_map RHSeg hierarchical boundary map

 girl_boundary_map.hdr ENVI header for girl_boundary_map

RHSeg User’s Manual Version 1.59

21

 girl_class_labels_map RHSeg region class label map for hierarchical level 0

 girl_class_labels_map.hdr ENVI header for girl_class_labels_map

 girl_object_labels_map RHSeg region object label map for hierarchical level 0

 girl_object_labels_map.hdr ENVI header for girl_object_labels_map

 girl_region_classes RHSeg region class information (all levels)

 girl_region_objects RHSeg region object information (all levels)

HSegViewer uses these files as input (except for girl.log), along with the original data file

(in this case, girl.bmp). The girl.oparam file contains the names of all of the input files for

HSegViewer, plus other required information such as image number of rows and

columns, number of regions at hierarchical level 0, and the number of hierarchical levels.

An input parameter file for HSegViewer is also provided: hsegviewer.params.

Thus, HSegViewer can be run by simply providing it with the name of the HSegViewer

input parameter file:

hsegviewer hsegviewer.params

An alternate way to run HSegViewer is with the command:

hsegviewer

As noted earlier, this version of HSegViewer can also be called from “RHSeg” group in

“All Programs” in the “start” menu in Windows. In this case you will need to enter

“girl.oparam” as the “RHSeg/HSeg Output Parameter File” (as an input to HSegViewer).

When run with the “hsegviewer” command, with the exception of the Red, Green and

Blue Display Band values, all the other required parameter value entries will be read

from the “RHSeg/HSeg Output Parameter File.” Since the example girl image is a RGB

image with bands stored in the order blue, green then red, enter “0” for the “Red Display

Band,” “1” for the “Green Display Band,” and “2” for the “Blue Display Band.” Then,

under the “Program Actions” menu (upper left corner of the panel), select “Run

Program.” The main “Hierarchical Segmentation Results Viewer” panel will then appear.

Details on using the HSegViewer main panel for viewing and interacting with the

hierarchical segmentation results, and more details on configuring and starting the

HSegViewer program are provided in Chapter 5: “HSegViewer Tutorial.”

Running HSegLearn

The HSegLearn program is run exactly the same way the HSegViewer is run. Just follow

the instructions provided in the previous sections substituting “hseglearn” for

“hsegviewer.”

Details on using the HSegLearn main panel to label image regions that are members of a

specific category of land cover, and more details on configuring and starting the

HSegLearn program are provided in Chapter 6: “HSegLearn Tutorial.”

RHSeg User’s Manual Version 1.59

22

Chapter 4: Guide to HSeg/RHSeg Parameters and
Parameter Settings

Overview

This chapter provides information on the HSeg/RHSeg program parameters and provides

some guidance as to appropriate parameter settings. For a history of program changes see

the Release Notes.

HSWO/HSeg/RHSeg Program Parameters

NOTE: In the following discussion, most parameters are valid for HSWO, HSeg and

RHSeg. However some parameters are not valid for HSWO or HSeg. The discussion will

indicate which parameters are not valid for HSWO or HSeg.

The first entry in the input parameter file should be the program mode:

program_mode (string) Program Mode – Valid values are:

 HSWO,

 HSEG, or

 RHSEG

 (no default)

This parameter specifies which mode the program (“rhseg,” “rhseg_setup” or

“rhseg_run”) is to be run in, HSWO (Hierarchical Step-Wise Optimization),

HSEG (Hierarchical Segmentation), or RHSEG (Recursive Hierarchical

Segmentation). HSeg is a subset of the RHSeg code and HSWO, in turn, is a

subset of the HSeg code.

The input image data file name must be specified in the input parameter file:

input_image (string) Input image data file name

The input image data file from which hierarchical image segmentation is to be

produced.

For “rhseg_run,” this image data file may be a headerless binary 1-, 2-, or 3-

spatial dimension image or image-like data file in band sequential format. This

means that the column index increments that fastest, followed by the row index,

followed by the slice index, followed by the spectral band index. The number of

columns, rows, slices, spectral bands and the data type are specified by other

required parameters (see below). Data types “unsigned char (byte),” “short

unsigned int,” and “float” are supported (see dtype below).

For “rhseg_setup” and “rhseg” this image data file is assumed to be in one of the

wide variety of image data formats supported by GDAL (Geospatial Data

Abstraction Library – see http://www.gdal.org/). If “rhseg_run” is compiled in an

environment in which GDAL is available, it can also accept image data in GDAL

supported formats.

http://www.gdal.org/

RHSeg User’s Manual Version 1.59

23

If using a headerless binary file for image data input for “rhseg_run,” the

following parameters must also be specified (no defaults):

ncols (int) Number of columns in the input image data

 (0 < ncols < 65535)

nrows (int) Number of rows in the input image data

 (0 < nrows < 65535)

nslices (int) Number of slices in the input image data

 (Only for the 3-D version) (0 < nslices < 65535)

nbands (int) Number of spectral bands in input image data

 (0 < nbands < 65535)

dtype (string) Data type of input image data:

 dtype = UInt8 designates “unsigned char (byte)”

 dtype = UInt16 designates “short unsigned int”

 dtype = Float32 designates “float”

 (otherwise undefined)

The following input image data files may also be specified in the input parameter file:

mask (string) Input data mask file name (default = {none})

The optional input data mask must match the input image data in number of

columns and rows. Even if the input image data has more than one spectral band,

the input data mask need only have one spectral band. If the input data mask has

more than one spectral band, only the first spectral band is used and is assumed to

apply to all spectral bands for the input image data. If the data value of the input

data mask is not equal to mask_value (see the next parameter definition), the

corresponding value of the input image data object is taken to be a valid data

value. If the data value of the input data mask object is equal to mask_value, the

corresponding value of the input image data object is taken to be invalid and a

region label of “0” is assigned to that spatial location in the output region label

map data. If using a headerless binary file for image data input for “rhseg_run,”

the input data mask data type is assumed to be “unsigned char (byte).” Otherwise,

the GDAL supported format input data mask is converted, as necessary, to

“unsigned char (byte).”

mask_value (int) If input data mask file is provided, this is the value

 in the mask file that designates bad data.

 (In general, the default = 0. However, if the

 “no_data_value” is specified in the GDAL

 recognized formatted image for “rhseg_setup” and

 “rhseg,” this “no_data_value” is the default.)

region_map_in (string) Input region label map file name.

 (default = {none})

The optional region label map must match the input image data in number of

columns and rows (and slices for 3-D). If provided, the image segmentation is

RHSeg User’s Manual Version 1.59

24

initialized according to the input region label map instead of the default of each

pixel as a separate region. Wherever a region label of “0” is given by the input

region label map, the region labeling is assumed to be unknown and the region

label map is initialized to one-pixel regions at those locations (except see

mask_value above). If using a headerless binary file for image data input for

“rhseg_run,” the input region label map data type is assumed to be “short

unsigned int.” Otherwise, the GDAL supported format input region label map is

converted, as necessary, to “short unsigned int.”

The following parameters must also be specified:

spclust_wght (float) Relative importance of spectral clustering versus

 region growing (Not valid and need not be specified

 for HSWO.)

 (0.0  spclust_wght  1.0, no default)

dissim_crit (int) Dissimilarity criterion

1. “1-Norm,”

2. “2-Norm,”

3. “Infinity Norm,”

4. “Spectral Angle Mapper,”

5. “Spectral Information Divergence,”

6. “Square Root of Band Sum Mean Squared

Error,”

7. “Square Root of Band Maximum Mean Squared

Error,”

8. “Normalized Vector Distance,”

9. “Entropy,”

10. “SAR Speckle Noise.”

(default: 6 “Square Root of Band Sum Mean Squared Error”)

Criterion for evaluating the dissimilarity of one region versus another.

Dissimilarity criteria 1, 2 and 3 are based on vector norms. The 1-Norm of the

difference between the region mean vectors, ui and uj, of regions Xi and Xj, each

with B spectral bands, is:

 ,
1

1




B

b

jbibji uu  (4-1a)

where μib and μjb are the mean values for regions i and j, respectively, in spectral

band b, i.e., ui = (i1, i2, …, iB)
T
 and uj = (j1, j2, …, jB)

T
. The dissimilarity

function for regions Xi and Xj, based on the vector 1-Norm, is given by:

 d1-Norm  .,
1jiji uuXX  (4-1b)

RHSeg User’s Manual Version 1.59

25

The vector 2-Norm of the difference between the region mean vectors, ui and uj,

of regions Xi and Xj is:

   ,
2

1

1

2

2 







 



B

b

jbibji uu  (4-2a)

The dissimilarity function for regions Xi and Xj, based on the vector 2-Norm, is

given by:

 d2-Norm  .,
2jiji uuXX  (4-2b)

The vector -Norm of the difference between the region mean vectors, ui and uj,

of regions Xi and Xj is:

  ,,,2,1,max Bbuu jbibji 


 (4-3a)

The dissimilarity function for regions Xi and Xj, based on the vector -Norm, is

given by:

 d-Norm  .,


 jiji uuXX (4-3b)

Dissimilarity criterion 4 is the Spectral Angle Mapper (SAM) criterion, which is

widely used in hyperspectral image analysis [1]. This criterion determines the

spectral similarity between two spectral vectors by calculating the “angle”

between the two spectral vectors. An important property of the SAM criterion is

that poorly illuminated and more brightly illuminated pixels of the same color will

be mapped to the same spectral angle despite the difference in illumination. The

spectral angle  between the region mean vectors, ui and uj, of regions Xi and Xj is

given by:

   















22

arccos,
ji

ji

ji
uu

uu
uu

 .arccos
21

1

2

21

1

2

1













































B

b

jb

B

b

ib

B

b

jbib




 (4-4a)

The dissimilarity function for regions Xi and Xj, based on the SAM distance vector

measure, is given by:

 dSAM   .,, jiji uuXX  (4-4b)

Note that the value of dSAM ranges from 0.0 for similar vectors up to /2 for the

most dissimilar vectors.

Dissimilarity criterion 5 is the Spectral Information Divergence (SID) criterion,

which is derived from the concept of divergence in information theory, and

RHSeg User’s Manual Version 1.59

26

measures the discrepancy of probabilistic behaviors between two spectral

signatures [2, 3]. It is based on a process that models the region mean vector, ui,

of region Xi as a random variable. Although the assumption of this model do not

necessarily hold true for most images, the effect of the violation is negligible [4].

Noting that, for image data, the elements of ui are nonnegative, a probability

measure for ui can be defined as

   ,

1





B

b

ib

ib
ib uq




 (4-5a)

where ui = (i1, i2, …, iB)
T
 as before. This being the case, the entropy of the

region mean vector, ui, of region Xi is

       .logH
1

ibi

B

b

bi uququ 


 (4-5b)

The relative entropy of the region mean vector, uj, of region Xj with respect to the

region mean vector, ui, of region Xi with can be defined by

            


ibjbi

B

b

bji uquququu loglog||K
1

  
 
 

.log
1 












 jb

ib
i

B

b

b
uq

uq
uq (4-5c)

K(ui||uj) in (4-5c) is also known as the Kullback-Leibler information measure [5].

The symmetric hyperspectral measure, SID, can be defined using (4-5c) by

        
 
 

 
 
 

.loglog||K||K,SID
1


 


































B

b ib

jb

jb

jb

ib
ibijjiji

uq

uq
uq

uq

uq
uquuuuuu (4-5d)

The dissimilarity function for regions Xi and Xj, based on the SID vector measure,

is given by:

 dSID   .,SID, jiji uuXX  (4-5e)

Dissimilarity criteria 6 and 7 are based on minimizing the increase of mean

squared error between the region mean image and the original image data. The

sample estimate of the mean squared error for the segmentation of band b of the

image X into R disjoint subsets X1, X2, , XR is given by:

    ,
1

1

1





R

i

ibb XMSE
N

XMSE (4-6a)

where N is the total number of pixels in the image data and

RHSeg User’s Manual Version 1.59

27

    



ip Xx

ibpbib XMSE
2

 (4-6b)

is the mean squared error contribution for band b from segment Xi. Here, xp is a

pixel vector (in this case, a pixel vector in data subset Xi), and pb is the image

data value for the b
th

 spectral band of the pixel vector, xp. A dissimilarity function

based on a measure of the increase in mean squared error due to the merge of

regions Xi and Xj is given by:

 dBSMSE   ,,,
1





B

b

jibji XXMSEXX (4-7a)

where

 ∆MSEb(Xi,Xj) = MSEb(Xi Xj) - MSEb(Xi) - MSEb(Xj) . (4-7b)

BSMSE refers to “band sum MSE.” Instead of summing over the bands in (4-7a)

one could take the maximum over the spectral bands, resulting in a “band

maximum MSE:”

 dBMMSE    .,2,1,,max, BbXXMSEXX jibji  (4-7c)

Using (4-6b) and exchanging the order of summation, (4-7b) can be manipulated

to produce an efficient dissimilarity function based on aggregated region features:

        













 

 jpipijp Xx

jbpb

Xx

ibpb

Xx

ijbpbjib XXMSE
222

, 

          













 

 jpip Xx

jbpbijbpb

Xx

ibpbijbpb

2222


 

 
































jp

ip

Xx

jbjbpbpbijbijbpbpb

Xx

ibibpbpbijbijbpbpb

2222

2222

22

22





































22

22

22

22

jbj

Xx

pbjbijbj

Xx

pbijb

ibi

Xx

pbibijbi

Xx

pbijb

nn

nn

jpjp

ipip
























222

222

22

22

jbjjbjijbjijbjbj

ibiibiijbiijbibi

nnnn

nnnn





    2222 22 ijbijbjbjbjijbijbibibi nn 

     .
22

ijbjbjijbibi nn   (4-8a)

where μijb is the mean value for the b
th

 spectral band of the mean vector, uij, of

region represented by Xij = Xi Xj.

RHSeg User’s Manual Version 1.59

28

Since

 ,
ji

jbjibi

ijb
nn

nn







 (4-8b)

an alternate form for Equation (4-8a) is:

∆MSEb(Xi,Xj) =

    
22

ijbjbjijbibi nn 

 2222 22 jbjijbjbjijbjibiijbibiijbi nnnnnn 

    222 2 ijbjiijbjbjibijbjibi nnnnnn  

 
       



2222 2
1

jbjibijbjibijbjibiji

ji

nnnnnnnn
nn



 
     



2221
jbjibijbjibiji

ji

nnnnnn
nn



 
 



2222222222 2
1

jbjjbibjiibijbjibjijbjiibi

ji

nnnnnnnnnn
nn



 
 


jbibibjb

ji

ji

nn

nn
 222

 

  .
2

jbib

ji

ji

nn

nn
 


 (4-8c)

Combining Equations (4-7a) and (4-8c),

 dBSMSE
 

 
  .,

1

2








B

b

jbib

ji

ji

ji
nn

nn
XX  (4-9a)

Similarly combining Equations (4-7c) and (4-8c),

 dBMMSE
 

 
  .,,2,1:max,

2
Bb

nn

nn
XX jbib

ji

ji

ji 


  (4-9b)

The dimensionality of the dBSMSE and the dBMMSE dissimilarity criteria is equal to

the square of the dimensionality of the image pixel values, while the

dimensionality of the vector norm based dissimilarity criteria is equal to the

dimensionality of the image pixel values. To keep the dissimilarity criteria

dimensionalities consistent, HSeg uses the square root of these dissimilarity

criteria. The “Square Root of Band Sum Mean Squared Error” criterion is:

  
 

  ,,d

2
1

1

22
1

BSMSE















 



B

b

jbib

ji

ji

ji
nn

nn
XX  (4-10a)

RHSeg User’s Manual Version 1.59

29

and the “Square Root of Band Sum Maximum Squared Error” criterion is:

  
 

   .,,2,1:max,d

2
1

22
1















 Bb

nn

nn
XX jbib

ji

ji

jiBMMSE  (4-10b)

Dissimilarity criterion 8, the Normalized Vector Distance (NVD), is taken from

papers by Baraldi and Parmiggiani [6, 7]. The NVD is based on a combination of

a vector modulus measure (such as the 2-norm of the vector) with the previously

defined SAM criterion (4-4a). Under this criterion, two vectors are considered to

be equal if they have the same modulus (i.e., 2-norm) and the spectral angle

between them is zero.

As before, let ui and uj be the mean vectors of regions Xi and Xj, respectively.

Define

   















2

2

2

2
1 ,min,

i

j

j

i

ji
u

u

u

u
uu

 .,min
21

1

2

21

1

2

21

1

2

21

1

2













































































B

b

ib

B

b

jb

B

b

jb

B

b

ib








 (4-11a)

Note that 0.0  1(ui,uj)  1.0 and 0.0/0.0 is defined to equal 1.0. Here, similar

length vectors will have 1 close to 1.0 and dissimilar vectors will have 1 close to

0.0.

The spectral angle  between the region mean vectors, ui and uj, of regions Xi and

Xj was defined earlier in (4-4a). Define

  
  
2

,2
,2






ji

ji

uu
uu


 (4-11b)

as the normalized spectral angle between the vectors ui and uj. Note that 0.0 

2(ui,uj)  1.0 and that similar length vectors will have 2 close to 1.0 and

dissimilar vectors will have 2 close to 0.0. The NVD dissimilarity criterion is

then defined as:

 dNVD     .,,0.1, 21 jijiji uuuuXX  (4-11c)

Note that 0.0  dNVD  1.0 and that similar length vectors will have dNVD close to

0.0 and dissimilar vectors will have dNVD close to 1.0.

The Entropy criterion, dissimilarity criterion 9, was first defined by Tilton [8].

The basic idea behind the Entropy criterion is to minimize the change of entropy

between the existing region mean image and the region mean image created after

a pair of regions merge. For the previously defined Spectral Information

Divergence criterion, we defined a probability measure for a pixel element by

normalizing the pixel element value by the sum of the pixels at that location over

RHSeg User’s Manual Version 1.59

30

all spectral bands. However, for the Entropy criterion, we define a probability

measure for a pixel element, pb, by normalizing the pixel element value by the

sum over all pixels for a particular spectral band over all image pixels:

  




N

p

pb

pb

pb xq

1

'




, (4-12)

where xp = (p1, p2, …, pB)
T
. Then, entropy of band b (out of B spectral bands)

of the image X is then given by

        















 

 b

pb
N

p b

pb

pbp

N

p

bb
NMNM

xqxqX


loglogH
1

'

1

'

         .log
1

logloglog
11














N

p

pbpb

b

b

N

p

bpb

b

pb

NM
NMNM

NM



 (4-13a)

where Mb is the mean value of spectral band b over all N image pixels. The total

multispectral entropy is taken to be

    .HH
1

XX
B

b

b


 (4-13b)

This summation is strictly true only if all spectral bands are uncorrelated, which is

generally not the case. Notwithstanding this statistical technicality, this

summation still leads to a useful dissimilarity criterion for multispectral (and

hyperspectral) data.

For a particular pair of regions Xi and Xj, with mean vectors, ui and uj,

respectively, let H(ui,uj) be the change in H(X) for the multispectral region mean

image formed after the pair of regions is merged as compared to the region mean

image before the merge:

         











  

 

B

b Xx

jbjb

Xx

ibib

Xx

ijbijb

b

ji

jpipijp
MN

uu
1

logloglog
11

,H 

         .logloglog
11

1





B

b

ijbijbjijbjbjibibi

b

nnnn
MN

 (4-14a)

where the ijb are the elements of the mean vector uij = (ij1, ij2, …, ijB)
T
 and ni

(nj) is the number of pixels in region Xi (Xj). Noting that the factor N has no effect

on dissimilarity comparisons, the Entropy criterion is defined as:

 dENT    jiji uuNXX ,H,

         .logloglog
1

1





B

b

ijbijbjijbjbjibibi

b

nnnn
M

 (4-14b)

RHSeg User’s Manual Version 1.59

31

If the data is normalized so as to have equal mean values across the bands (see the

discussion for the normind parameter below), the Mb factor can also be dropped:

           .logloglog,d
1

' 



B

b

ijbijbjijbjbjibibijiENT nnnnXX  (4-14c)

Note that ijb can easily be calculated using (4-8b) above.

Dissimilarity criterion 10 is based on the “SAR Speckle Noise Criterion” from a

paper by J.-M. Beaulieu [9].The criterion is:

  
 

 
 

 


















B

b jbjibi

jijbib

ji

ji

jiSAR
nn

nn

nn

nn
XX

1

2
1

*
,d





   
 

,
1

2
1


 




B

b jbjibi

jbib

jiji
nn

nnnn




 (4-15)

NOTE: Other dissimilarity criterion can be included as additional options without

changing the nature of the RHSeg implementation.

log (string) Output log file (no default)

At a minimum (for debug = 1), the output log file records program parameters and

the number of regions and maximum merge ratio value for each level of the

region segmentation hierarchy.

The following optional parameters specify the scaling of the input image data:

scale (double) Comma delimited list of input data scale factors

 (specify one value per band, default = 1.0 for each band)

offset (double) Comma delimited list of input data offset factors

 (specify one value per band, default = 0.0 for each band)

The optional scale and offset values were added to accommodate the input of

MODIS data into RHSeg. The MODIS multispectral data are normally stored in

scaled short integer format, with scale and offset factors provided to rescale the

data into calibrated reflectance or radiance values. These scale and offset values

are used in the following manner to scale the input image data (input_image) for

each band:

scaled_input_image[band] = scale[band]*(input_image[band] – offset[band])

The following parameters specify output files (with default names):

class_labels_map (string) Output region class labels map data file name

 (default = ‘input_image’_class_labels_map)

The region class labels map at the finest level of segmentation detail (hierarchical

level 0). Together with region_classes (see below), this forms the main output of

RHSeg. Region class label values of “0” correspond to invalid input data values in

the input image data. Valid region label values range from 1 through

4,294,967,295. The data is of data type “unsigned int,” and the rows and columns

RHSeg User’s Manual Version 1.59

32

(and slices for 3-D) of class_labels_map correspond to the rows and columns (and

slices for 3-D) of the input image data.

boundary_map (string) Output hierarchical boundary map file name

 (default = {none})

The hierarchical boundary map is an optional output of RHSeg. The data values

of this map are (of type unsigned char (byte)), and the rows and columns (and

slices for 3-D) of boundary_map correspond to the rows and columns (and slices

for 3-D) of the input image data. The data values of the boundary map correspond

to the last hierarchical level (plus one) at which the image pixel was last on the

boundary of a region.

region_classes (string) Output region classes file name

 (default = ‘input_image’_region_classes)

The region classes file contains selected information about each region class at

each hierarchical level. The information includes the “region merges list” and

“region number of pixels” feature values, plus various region features as selected

by the region_sum, region_std_dev, region_boundary_npix, region_threshold,

region_nb_objects, and region_objects_list parameters (see below).

The region merges list feature consists of the renumberings of the region class

labels map required to obtain the region class labels map for the second most

detailed level (hierarchical level 1) through the coarsest (last) level of the

segmentation hierarchy from the class_labels_map (see above). The data is stored

as rows of values, with the column location (with counting starting at 1)

corresponding to the region class labels value in the class_labels_map (the region

class labels map at the finest level of detail in the segmentation hierarchy) and the

row location corresponding to the segmentation hierarchy level (the l
th

 row

contains the renumberings required to obtain the (l+1)
th

 level of the segmentation

hierarchy).

The region number of pixels feature consists of the number of pixels in each

region class stored as rows of values, with the column location (with counting

starting at 1) corresponding to the region class label value and the row location

corresponding to the segmentation hierarchy level (with counting starting at 0).

oparam (string) Output parameter file name

 (default = ‘input_image’.oparam)

The output parameter file contains (in ascii form) all the output parameters from

RHSeg. This parameter file is formatted in the same way as the input parameter

file for RHSeg and contains most of the same parameters. Additional parameters

are the number of hierarchical segmentation levels (nb_levels) in the hierarchical

segmentation output and the number of regions (level0_nregions) in the

hierarchical segmentation with the finest segmentation detail. These additional

parameter values are required to interpret the region_classes output file and the

optional region_objects output file (see below).

When spclust_wght > 0.0, the following optional parameters may be used to output

information on the region objects contained in each region class (no defaults, not valid

RHSeg User’s Manual Version 1.59

33

for HSWO and ignored if spclust_wght = 0.0 or if both of the object_labels_map and

region_objects parameters are not specified):

object_conn_type1 (bool) If 1 (true), create object labels map with

 “conn_type” = 1, irrespective of the value of

 “conn_type” (below), (optional, default = 0 (false)).

object_labels_map (string) Output region object labels map data file name

 (optional)

The region object labels map at the finest level of segmentation detail

(hierarchical level 0). Region object label values of “0” correspond to invalid

input data values in the input image data. Valid region label values range from 1

through 4,294,967,295. The data is of data type “unsigned int,” and the rows and

columns (and slices for 3-D) of object_labels_map correspond to the rows and

columns (and slices for 3-D) of the input image data.

region_objects (string) Output region objects file name (optional)

The region objects file contains selected information about each region object at

each hierarchical level. The information includes the “region merges list” and

“region number of pixels” feature values, plus various region features as selected

by the region_sum, region_std_dev and region_boundary_npix parameters (see

below).

The region merges list feature consists of the renumberings of the region object

labels map required to obtain the region object labels map for the second most

detailed level (hierarchical level 1) through the coarsest (last) level of the

segmentation hierarchy from the object_labels_map (see above). The data is

stored as rows of values, with the column location (with counting starting at 1)

corresponding to the region object labels value in the object_labels_map (the

region object labels map at the finest level of detail in the segmentation hierarchy)

and the row location corresponding to the segmentation hierarchy level (the l
th

row contains the renumberings required to obtain the (l+1)
th

 level of the

segmentation hierarchy).

The region number of pixels feature consists of the number of pixels in each

region object stored as rows of values, with the column location (with counting

starting at 1) corresponding to the region object label value and the row location

corresponding to the segmentation hierarchy level (with counting starting at 0).

The following parameters select the optional contents of the required output

region_classes file and the optional output region_objects file (above):

region_sum (bool) Region sum feature inclusion flag

 (1 (true) or 0 (false), default = 1 if nbands < 20,

 default = 0 otherwise)

When this flag is true, the region sum feature values for each spectral band are

stored in the region_classes file (and region_objects file, if specified). When

available, the region sum squared values and the sum of the product of the region

values times the log of the region values are also stored.

RHSeg User’s Manual Version 1.59

34

region_std_dev (bool) Region standard deviation inclusion flag

 (1 (true) or 0 (false), default = 0)

When this flag is true, the region standard deviation feature values are stored in

the region_classes file (and region_objects file, if specified). Here the region

standard deviation feature is defined as the maximum over spectral bands of the

region mean normalized standard deviation for each region. See the discussion of

the std_dev_wght parameter (below) for more information on this feature.

region_boundary_npix (bool) Region boundary number of pixels inclusion flag

 (1 (true) or 0 (false), default = 0)

When this flag is true, the region number of boundary pixels feature values are

stored in the region_classes file (and region_objects file, if specified).

region_threshold (bool) Inclusion flag for the merge threshold for the most

 recent merge for each region class

 (1 (true) or 0 (false), default = 0)

When this flag is true, the merge threshold for the most recent merge for each

region class is stored in the region_classes file.

region_nb_objects (bool) Flag to request the inclusion of the number of region

 objects contained in each region class.

 (true (1) or false (0), default = 1 (true)

 if spclust_wght != 0.0 and both

 "-object_labels_map" and "-region_objects"

 are specified, and 0 (false) otherwise.

 A true value is allowed only when

 spclust_wght != 0.0 and both “-object_labels_map"

 and "-region_objects" are specified.

 User provided value ignored and set to

 true if "-region_objects_list" (below) is true.)

When this flag is true, the number of region objects contained in each region class

is stored in the region_classes file.

region_objects_list (bool) Flag to request the inclusion of the list of region objects

 contained in each region class. (1 (true) or 0 (false),

 default = 1 (true) if spclust_wght != 0.0 and both

 "-object_labels_map" and "-region_objects" are

 specified, and 0 (false) otherwise.

 A true value is allowed only when

 spclust_wght != 0.0 and both "-object_labels_map"

 and "-region_objects" are specified.)

When this flag is true, the list of the labels of the region objects contained in each

region class is stored in the region_classes file.

RHSeg User’s Manual Version 1.59

35

The following optional parameters are recommended for variation by all users (defaults

provided):

conn_type (int) Neighbor connectivity type:

 One-dimensional case:

1. “Two Nearest Neighbors,”

2. “Four Nearest Neighbors,”

3. “Six Nearest Neighbors,”

4. “Eight Nearest Neighbors,”

 (default: 1. “Two Nearest Neighbors”)

based on the following neighborhood chart, where the focal pixel is marked “X”:

7 5 3 1 X 2 4 6 8

Using this chart, n Nearest Neighbors include pixels 1, 2, … n.

 Two-dimensional case:

1. “Four Nearest Neighbors,”

2. “Eight Nearest Neighbors,”

3. “Twelve Nearest Neighbors,”

4. “Twenty Nearest Neighbors,”

5. “Twenty-Four Nearest Neighbors,”

 (default: 2. “Eight Nearest Neighbors”)

based on the following neighborhood chart, where the focal pixel is marked “X”:

21 15 11 17 23

13 5 3 7 19

9 1 X 2 10

20 8 4 6 14

24 18 12 16 22

Using this chart, n Nearest Neighbors include pixels 1, 2, … n.

 Three-dimensional case:

1. “Six Nearest Neighbors,”

2. “Eighteen Nearest Neighbors,”

3. “Twenty-Six Nearest Neighbors,”

 (default: 3. “Twenty-Six Nearest Neighbors”)

based on the following neighborhood chart, where the focal pixel is marked “X”:

slice-1 Slice slice+1

19 11 23

 7 3 9

 22 14 26

15 5 17

 1 X 2

 18 6 16

25 13 21

 10 4 8

 24 12 20

RHSeg User’s Manual Version 1.59

36

Using this chart, n Nearest Neighbors include pixels 1, 2, … n.

chk_nregions (unsigned int) Number of region classes at which segmentation

 hierarchy output is initiated

 (2  chk_nregions < 65535, default = 255 if

 hseg_out_nregions and hseg_out_thresholds

 not specified)

The chk_nregions parameter specifies the number of region classes (or region

objects in the case of HSWO) at which the segmentation hierarchy output is

initiated. After this point, the iterations at which the segmentation is output is

determined such that the minimal subset of hierarchical levels in which no large

region (i.e., a region with number of pixels greater or equal to the current value of

min_npixels) is involved in more than one merge with another large region. (See

the discussion following the definition of the spclust_min and spclust_max

parameters for the definition of min_npixels).

hseg_out_nregions (unsigned int) The set of number of regions at which

 hierarchical segmentation output are made

 (a comma delimited list, default = {none})

hseg_out_thresholds (float) The set of merge thresholds at which

 hierarchical segmentation output are made

 (a comma delimited list, default = {none})

NOTE: chk_nregions, hseg_out_nregions, and hseg_out_thresholds are mutually

exclusive. If more than one of these is specified, the last one specified controls and the

previous specifications are ignored.

conv_nregions (short unsigned int) Number of regions for final convergence (the

 iteration at which HSeg or RHSeg is terminated)

 (0 < conv_nregions < 65535, default = 2)

gdissim (bool) Flag specifying whether or not the global

 dissimilarity value is output for each level of the

 output segmentation hierarchy

 (1 (true) or 0 (false), default = 0)

The dissimilarity criterion utilized is specified by the dissim_crit parameter

(above). The global dissimilarity is a measure of the quality of the image

segmentations based on the global dissimilarity of the region mean image versus

the original image data.

The global dissimilarity criteria 1, 2 and 3 are based on vector norms. The global

dissimilarity function, based on the vector 1-Norm, for the R region segmentation

of the N pixel data set X is given by:

 D1-Norm  .
1

1
1

 
 


R

i Xx

ip

ip

ux
N

X (4-16)

where xp is the p
th

 image pixel and ui is the region mean vector for region Xi.

RHSeg User’s Manual Version 1.59

37

The global dissimilarity function, based on the vector 2-Norm, for the R region

segmentation of the N pixel data set X is given by:

 D2-Norm  .
1

1
2

 
 


R

i Xx

ip

ip

ux
N

X (4-17)

The global dissimilarity function, based on the vector -Norm, for the R region

segmentation of the N pixel data set X is given by:

 D-Norm   .
1

1

 
 




R

i Xx

ip

ip

ux
N

X (4-18)

The global dissimilarity criterion 4, based on the Spectral Angle Mapper (SAM)

criterion introduced previously, is given by:

 DSAM     .arccos
1

,
1

1
22

1

  
  
















R

i Xx ip

ip
R

i Xx

ip

ipip
ux

ux

N
ux

N
X  (4-22)

where (xp,ui) is the spectral angle between xp, the p
th

 image pixel, and ui, the

region mean vector for region Xi.

The global dissimilarity criterion 5 is based on the Spectral Information

Divergence (SID) criterion introduced previously. The entropy of the p
th

 image

pixel, xp, and the entropy of the region mean vector, ui, for region Xi are defined

as

 




B

b

pb

pb

pb xq

1




and  





B

b

ib

ib
ib uq

1




,

respectively, where xp = (p1, p2, …, pB)
T
 and ui = (i1, i2, …, iB)

T
. Then

    
 
 

 
 
 

.loglog
1

D
1 1

  
   

































R

i Xx

B

b pb

ib
ib

ib

pb

pbSID

ip
xq

uq
uq

uq

xq
xq

N
X (4-19)

The global dissimilarity criteria 6 and 7 are based on the square root of the mean

squared error between the region mean image and the original image data. With

the mean square error for spectral band b as given in (4-6a) and (4-6b), the global

dissimilarity criterion “Square Root of Band Sum Mean Squared Error” is:

 
 

 
2

1

1 1

22
1

1

1
D















   

  

B

b

R

i Xx

ibpbBSMSE

ip
N

X 

 

.
1

1
2

1

1 1

22











































  

  

R

i

B

b

ibi

Xx

pb n
N

ip

 (4-20)

Similarly, the global dissimilarity criterion “Square Root of Band Maximum

Mean Squared Error” is:

RHSeg User’s Manual Version 1.59

38

 

.max
1

1
D

2
1

1

22

1

2
1













































  

 


R

i

ibi

Xx

pb

B

b
BMMSE n

N
ip

 (4-21)

Global dissimilarity criterion 8 is based on the Normalized Vector Distance

(NVD) introduced previously. Let xp be the p
th

 image pixel and ui be the region

mean vector for region Xi. Then define

  















2

2

2

2
1 ,min,

p

i

i

p

ip
x

u

u

x
ux and  

  
2

,2
,2






ip

ip

ux
ux


 , (4-22a)

where (xp,ui) is the spectral angle between xp, the p
th

 image pixel, and ui, the

region mean vector for region Xi (see (4-4a) and (4-22)). Then the NVD global

dissimilarity criterion is given by

       .,,0.1
1

D
1

21NVD  
 


R

i Xx

ipip

ip

uxux
N

X 

(4-22b)

Global dissimilarity criterion 9 is a measure of how much the entropy of the

region mean image differs from the original image data. Using the notation

defined previously, the total multispectral entropy of the image, X, is given by

       







 

 

B

b

N

p

pbpb

b

b
NM

NMX
1 1

log
1

logH 

      
   













B

b

R

i Xx

pbpb

b

b

ip
NM

NM
1 1

log
1

log  (4-23a)

where the summation over the N image pixels is reordered to sum over the groups

of pixels in each of the regions in an R region segmentation. Similarly, the total

multispectral entropy of the region mean image of an R region segmentation of

the image, X, is given by

       
 











B

b

R

i

ibibi

b

bR n
NM

NMX
1 1

log
1

logH  (4-23b)

The increase in image entropy of the R region mean image over that of the

original data is then DENT(X) = HR(X) – H(X), or (after changing the order of

summation)

        .loglog
11

D
1 1

  
   



























R

i

B

b

ibibi

Xx

pbpb

b

ENT n
MN

X
ip

 (4-24)

The global dissimilarity criterion 10 is based on the SAR Speckle Noise criterion.

The global dissimilarity function, based on the SAR Speckle Noise criterion, for

the R region segmentation of the data set X is given by:

RHSeg User’s Manual Version 1.59

39

 DSAR     
 

.
1 1

2
1

  
   



















R

i Xx

B

b jbjpb

jbpb

jiji

ip
n

nnnnX



 (4-25)

where xp is the p
th

 image pixel and ui is the region mean vector for region Xi.

The default values should be used for the following optional parameters, except in special

circumstances (defaults provided):

debug (int) Debug option (debug  0, default = 1)

normind (short unsigned int) Image normalization type

1. “No Normalization,”

2. “Normalize Across Bands,”

3. “Normalize Bands Separately”

 (default: 2. “Normalize Across Bands”)

Let pb be the original value for the p
th

 pixel (out of N pixels) in the b
th

 band (out

of B bands). The sample mean and sample variance of the b
th

 band are

   ,
1

1
and

1

1

22

1








N

p

bpbb

N

p

pbb
NN

 (4-26)

respectively. The following transformation of the data, pb, will produce image

data, pb, with mean, , and standard deviation, :

    ,''

bpbbbpb

b

pb 










 


 (4-27a)

where

 .and ''





 b

bb

b

b





 (4-27b)

For convenience, for most dissimilarity criteria, the data is normalized by default

such that 
2
(=)=1, and =0. However the Spectral Angle Mapper, Spectral

Information Divergence, Normalized Vector Distance and Entropy assume that all

data values are nonnegative. Moreover, to avoid the singularity at log(0.0) for the

Spectral Information Divergence and Entropy criteria, all data values should be

strictly positive (i.e., all greater than zero) in these cases. Due to these

considerations, the default value of M is set such that the overall normalized

minimum value is 0.0 for the Spectral Angle Mapper and Normalized Vector

Distance criteria, and the default value of M is be set such that the overall

normalized minimum value is 1.0 for the Spectral Information Divergence and

Entropy criteria.

As written above, the normalization is applied to each spectral band separately. It

can also be defined to apply equally across all spectral bands. For this case, use

 Bbb ,,2,1:max   in (4-27a) and (4-27b). However, this choice of

normalization will produce the same hierarchical segmentation result as no

normalization at all.

RHSeg User’s Manual Version 1.59

40

init_threshold (float) Threshold for initial fast region merging by a

 region oriented first merge process adapted from

 an algorithm proposed by Muerle and Allen [10].

 (default = 0.0)

In this region scan version of first merge region growing, unmerged pixels are

visited in random order and designated as a new single pixel region. This new

region is grown by adding individual (unmerged) neighboring image pixels that

are similar enough to the growing region. After no more pixels can be added to a

particular region, a region is similarly grown from the next randomly selected

unmerged pixel. This process continues until no unvisited or unmerged pixels

remain.

The seminal first merge region growing approach of Muerle and Allen [10],

hereafter called MARG, utilizes a left to right, top to bottom scan to select the

next unmerged pixel from which to start growing a region. However, in the

adaptation of their algorithm that is utilized for initialization of HSeg and RHSeg,

a random scan order is used to select the next pixel. The adaptation of MARG

utilized herein is as follows:

1) Give all image pixels, xp, in image X (p = 1 to NP) region label 0, and

compute a random ordering, p’ = Rand(p), over the NP pixels. Set T as the

value of the merge threshold, p = 0, r = 0, and continue to step 2.

2) Set p = p + 1. If p > NP, exit (the segmentation result contains NR = r

regions). Otherwise, continue to step 3.

3) Select image pixel 'p
x , where p’ = Rand(p). If the image pixel 'p

x has

already been merged into a region (i.e, it has a region label other than 0),

return to step 2. Otherwise, set r = r + 1 and create region object or with

region label r, feature values computed from pixel 'p
x , and a pixel neighbor

list specifying the pixel index of unmerged neighboring pixels (i.e.,

neighboring pixels having region label 0). If the new region object or has no

unmerged neighboring pixels, give region label r to pixel 'p
x and return to step

2. Otherwise, randomly shuffle the ordering of the pixel indices in the pixel

neighbor list, give region label r to pixel 'p
x , and continue to step 4.

4) Successively compute the dissimilarity, d(or,xk), between region object or

and the unmerged neighboring pixels, xk, in the randomly shuffled pixel

neighbor list until a pixel is found that has d(or,xk)  T, or all neighboring

pixels are checked. If d(or,xk) > T for all unmerged neighboring pixels, xk,

return to step 2. Otherwise, continue to step 5.

5) Merge the first found neighboring unmerged neighboring pixel, xk, with

d(or,xk)  T into region object or by updating the region feature values and

neighbor pixel index list for region object or, and giving pixel xk region label

r. If the new region object or has no neighboring unmerge pixels, return to

step 2. Otherwise, randomly shuffle the ordering of the pixel indices in the

new pixel neighbor list, and return to step 4.

RHSeg User’s Manual Version 1.59

41

Besides the random order of seed pixel selection, the main difference between the

above algorithm and Muerle and Allen’s approach is in step 5 where the first

found unmerged neighboring pixel with dissimilarity less than or equal to T is

selected for merging from a randomly shuffled list of unmerged neighboring

pixels. It is not clear what scanning order Muerle and Allen used to select this

next found unmerged neighboring pixel, but it is unlikely that it was a random

ordering. Another difference is that Muerle and Allen initially aggregate the

image pixels into blocks sized anywhere from 2  2 to 8  8 before performing

region growing, whereas the initial regions in the above algorithm are single pixel

in size.

random_init_seed (bool) Flag to request a “random” seed for the

 sampling procedure utilized in the initial

 fast region merging process

 (1 (true) or 0 (false), default = 1)

If a “random” seed is request, the program generates a seed for the random

sampling procedure based on the current clock time. Otherwise, the random

sampling procedure is initialized with a hard coded seed. The option of a hard

coded seed is provided if consistency is needed between runs of the programming,

such as when debugging is being performed.

sort (bool) Flag to request that the region classes

 and region objects (if requested) are sorted.

 fast region merging process

 (1 (true) or 0 (false), default = 1)

If true, the output numerical labels of the region classes and region objects will be

sorted to have the darkest to brightest regions correspond to the smallest to largest

values, based on the vector distance from the minimum valued image data vector,

std_dev_wght (float) Weight for standard deviation spatial feature

 (std_dev_wght  0.0, default = 0.0)

The parameter std_dev_wght sets the weighting for the standard deviation feature.

The mean normalized standard deviation is used here instead of the usual standard

deviation feature. If D is the dissimilarity function value before combination with

the spatial feature value, the combined dissimilarity function value (comparing

regions i and j), D
c
, is:

 

,_*0.1*

















 dev_wghtstd

sdfsdf

sdfsdf
DD

ji

jic
 (4-28)

where sdfi and sdfj are the standard deviation feature values for regions i and j,

respectively.

The standard deviation feature employed here is the spectral band maximum,

mean normalized region standard deviation. For regions consisting of 2 or more

pixels, the mean normalized region standard deviation for spectral band b of

region i is:

RHSeg User’s Manual Version 1.59

42

     

ib

ibi

Xx

pb

i

ib

Xx

ibpb

i

ib

n
nn

ipip


































222

1

1

1

1

, (4-29a)

where ni is the number of pixels in the region and ib is the region mean for

spectral band b of region i:





ipx

pb

i

ib
n 


1

.

The standard deviation feature value for region i is then defined as:

  Bbsdf ibii ,,2,1:max   (4-29b)

where B is the number of spectral bands.

The region standard deviation is not defined for regions consisting of only one

pixel. Further, the mean normalize region standard deviation as calculated by

equation (4-17a) can only be considered a rough estimate for small regions (say,

regions less than 9 pixels in size). Thus, if one of the regions being compared

consists of less than 9 pixels, the std_dev_wght factor is modified by a

std_dev_factor as follows:

 std_dev_wght’ = std_dev_factor*std_dev_wght, (4-30a)

where

 std_dev_factor =(min_npix-1.0)/8.0, (4-30b)

and min_npix is the number of pixels in the smaller of the two regions being

compared. Note that for min_npix = 1, std_dev_factor = 0.0. Thus, std_dev_factor

serves to gradually phase in the standard deviation spatial feature as the regions

get larger.

split_pixels_factor (float) Pixel splitting factor. This factor is used to

 determine if a pixel will be split out from

 its current region. User specified value ignored

 and set to 0.0 for HSWO and HSEG when

 hseg_out_thresholds are specified.

 (0.0 = split_pixels_factor, default = 1.5

 for the RHSEG program mode, and default =

 0.0 for HSWO and HSEG program modes.

 The “min_nregions” and “region_threshold_factor”

 parameters must also be specified in the HSWO

 and HSEG programs modes. No pixel splitting is

 performed if split_pixels_factor = 0.0.)

For the RHSEG program mode, for each region with a non-empty “candidate

region label” set, compute the dissimilarity of each pixel in that region to its

current region (own_region_dissim) and to each region in the region’s “candidate

region label” set (other_region_dissim). If a pixel is found to have

RHSeg User’s Manual Version 1.59

43

own_region_dissim > split_pixels_factor*other_region_dissim, the pixel is split

out from its current region. (In this case, normally split_pixels_factor > 1.0.)

For the HSWO and HSEG program modes, compute the dissimilarity of each

pixel to its current region (own_region_dissim). Let max_threshold be the

maximum merging threshold utilized so far in the region growing process. If a

pixel is found to have own_region_dissim > split_pixels_factor*max_threshold,

the pixel is split out from its current region. (In this case, it may be necessary to

set split_pixels_factor < 1.0 for any pixel splitting to occur.)

NOTE: The lower the value of split_pixels_factor, the more pixels are split out

from their regions.

seam_threshold_factor (float) This threshold factor is used in determining whether

 a region found across a processing window seam is

 to be considered in determining whether a pixel is

 to be split out of its current region. Not valid and

 ignored for HSWO and HSEG program modes.

 (1.0 <= seam_threshold_factor, default = 1.5. If

 seam_threshold_factor = 1.0, no regions are

 selected by this method)

During the processing window elimination process, a “candidate region label” set

is accumulated for use in considering whether or not a pixel is to be split out of its

current region. Consider the data points that are in the pairs of rows and columns

along the seam between the data quadrants reassembled in step 2 of the RHSeg

algorithm. For each of these pixels calculate the dissimilarity between the pixel

and its current region (own_region_dissim), and calculate the dissimilarity

between the pixel and the region of the pixel across the seam

(other_region_dissim). If own_region_dissim > seam_threshold_factor*

other_region_dissim, add the region label of the region of the pixel across the

seam to the “candidate region label” set of the region the pixel belongs to.

NOTE: The lower the value of seam_threshold_factor, the more regions are

included in the “candidate region label” set.

region_threshold_factor (float) This threshold factor is used in determining which

 regions are to be considered in determining whether

 a pixel is to be split out of its current region.

 (0.0 < threshold_factor, default = 0.0. If

 region_threshold_factor = 0.0, no regions are

 selected by this method)

During the processing window elimination process, a “candidate region label” set

is accumulated for use in considering whether or not a pixel is to be split out of its

current region. Compare each region to every other region. If the dissimilarity

between a pair of regions is less than region_threshold_factor* max_threshold,

add each region label to the “candidate region label” set for the other region.

NOTE: max_threshold is the maximum merging threshold encountered in the

previous merging iterations. This factor is ignored for spclust_wght = 0.0. Also,

RHSeg User’s Manual Version 1.59

44

the higher the value of region_threshold_factor, the more regions are included in

the “candidate region label” set.

rnb_levels (short unsigned int) Number of recursive levels. Not valid and ignored

 for HSWO and HSEG program modes.

 (1  rnb_levels < 255, default calculated)

The number of recursive levels. The default is calculated such that the number of

data points in the subsections of data processed at recursion level rnb_levels is no

more than 1024*1024 = 1,048,576 data points. The number of columns, rows and

slices at recursion level rnb_levels is sub_ncols = ncols/2
rnb_levels-1

, sub_nrows =

max(1, nrows/ 2
rnb_levels-1

, and sub_nslices = max(1, nslices/2
rnb_levels-1

). NOTE: A

different default is used for parallel processing: In this case the calculated such

that the number of data points in the subsections of data processed at recursion

level rnb_levels is no more than 128*128*2 = 32,768 data points.

ionb_levels (short unsigned int) Recursive level at which data I/O is performed. Not

 valid and ignored for HSWO and HSEG.

 (1  ionb_levels  rnb_levels, default calculated)

The recursive level at which data I/O is performed and pixel oriented data is

maintained (sequential version only). Temporary data files are used to store the

pixel oriented data for each section of data that the image is divided into at this

recursive levels. The default value is ionb_levels = 1, unless the number of data

points exceeds 9,437,184 (=262,144*36), where the default is calculated such that

the number of data points in the subsections of data processed at recursion level

ionb_levels is no more than 262,144 (=512
2
) data points. The number of columns,

rows and slices at recursion level ionb_levels is ionb_ncols = ncols/2
ionb_levels-1

,

ionb_nrows = max(1, nrows/2
ionb_levels-1

), and ionb_nslices = max(1, nslices/

2
ionb_levels-1

). In any case, the value of ionb_levels is less than or equal to

rnb_levels.

Important note: RHSeg uses environmental variables to determine in what

directory the temporary files should be stored in. RHSeg first looks for the TMP

environmental variable, and if this does not exist, it looks for the TEMP

environmental variable, and if this does not exist, it looks for the TMPDIR

environmental variable, and if this does not exist, it assumes the temporary

directory is /tmp. To be sure RHSeg works as it should you should, set one of the

listed environmental variables to a directory that has sufficient disk space to hold

the temporary files. The space required will vary with data set characteristics and

parameter settings. You should monitor the free space available in the temporary

directory during your initial runs if your image contains more than 9,437,184

pixels (with the default parameter settings).

RHSeg User’s Manual Version 1.59

45

min_nregions (unsigned int) Number of regions for convergence for recursive

 stages. Not valid and ignored for HSWO

 and HSEG program modes.

 (0 < min_nregions < 65,535, default calculated)

If not specified, the default is calculated to be min_nregions =

sub_ncols*sub_nrows*sub_nslices / DN
2 , where ND is the number of spatial

dimensions (for sub_ncols, sub_nrows and sub_nslices see the rnb_levels

parameter). NOTE: At recursive level 1, HSeg is stopped when reaching the

number of regions equal to converge_nregions, where converge_nregions is the

greater of min_nregions, chk_nregions (if specified), or the first entry in the

hseg_out_nregions list (if specified), and the processing window artifact

elimination step is performed at that point before HSeg is resumed until final

convergence at conv_nregions regions. However, to ensure that a sufficient

number of HSeg iterations are performed prior to running the artifact elimination

step, if converge_nregions > (3*init_nregions)/4, converge_nregions is set to

(3*init_nregions)/4, where init_nregions is the number of regions (large and

small) at point where the segmentation is reassembled from the results from the

previous recursive level.

spclust_min (short unsigned int) Nominal minimum number of regions for which

 non-adjacent region merging (spectral clustering) is

 performed in HSEG or RHSEG program modes.

 (0  spectral_max < 65,535, default = 512 for HSEG

 and RHSEG. Invalid and ignored for HSWO.)

spclust_max (short unsigned int) Nominal maximum number of regions for which

 non-adjacent region merging (spectral clustering) is

 performed in HSEG or RHSEG program modes.

 (0  spectral_max < 65,535, default = 1024 for HSEG

 and RHSEG. Invalid and ignored for HSWO.)

The spclust_min and spclust_max parameters, along with the min_npixels

variable, are used to control the number of regions that are involved in non-

adjacent region merging (or constrained spectral clustering). The regions involved

in non-adjacent region merging are restricted to those regions that contain at least

min_npixels pixels. Such regions are termed “large regions,” and the number of

these regions is designated at nb_large_regions. The value of min_npixels is

initially set to the smallest value such that nb_large_regions <= spclust_max.

However, if this value of min_npixels results in nb_large_regions < spclust_min,

the value of min_npixels is reduced by one (unless it is already equal to one) and

the value of nb_large_regions with this new value of min_npixels is determined.

If this new value of min_npixels results in nb_large_regions > 6*spclust_max, the

value of min_npixels is incremented back up by one, unless this would result in

nb_large_regions < 2. In the later case, the value of min_npixels as is left as is

even though this results in nb_large_regions > 6*spclust_max.

The above logic for setting the value of min_npixels serves to keep the

nb_large_regions as close as possible to and less than spclust_max. However, this

RHSeg User’s Manual Version 1.59

46

logic allows nb_large_regions to rise above spclust_max (but not too far above

spclust_max) as necessary to keep nb_large_regions > spclust_min. Finally,

nb_large_regions is allowed to fall below spclust_min if keeping

nb_large_regions above spclust_min would result in nb_large_regions being too

large, that is, being more than 6*spclust_max. However, nb_large_regions is

never allowed to fall below 2.

Further, the value of min_npixels is not checked for adjustment every iteration.

Whenever the value of min_npixels is changed, “current” values of spclust_max

and spclust_min are determined (call them current_spclust_max and

current_spclust_min for this discussion), and the value of min_npixels is checked

only when the number of “large regions” becomes less than current_spclust_min

(and the value of min_npixels is more than one) or larger than

current_spclust_max.

The value of current_spclust_min is determined as follows whenever min_npixels

is checked for adjustment: First a maximum value for current_spclust_min

(max_spclust_min) is determined as max_spclust_min = spclust_max -

0.05*(spclust_max - spclust_min). Let nb_large_regions be equal to the current

number of “large regions.” Initialize current_spclust_min = nb_large_regions. If

nb_large_regions ≤ spclust_max, then compute temp_int = spclust_max -

2*(spclust_max – nb_large_regions). If temp_int > spclust_min, then let

current_spclust_min = temp_int. If current_spclust_min > nregions (the current

number of regions, both “large” and “small”), let current_spclust_min = nregions.

If current_spclust_min > max_spclust_min, let current_spclust_min =

max_spclust_min.

The value of current_spclust_max is determined as follows whenever min_npixels

is checked for adjustment: Initialize current_spclust_max = spclust_max.

However, if nb_large_regions > spclust_max, let current_spclust_max =

nb_large_regions.

The above logic for determining when to check the value of min_npixels for

adjustment prevents wasting computation when it is unlikely that the value of

min_npixels would be changed by the result of that computation.

merge_acceleration (bool) Flag to request utilization of a merge

 acceleration factor for small regions.

 (1 (true) or 0 (false), default = 0)

If merge acceleration for small regions is requested, the value of the min_npixels

variable is used to calculate a merge acceleration factor, factor, which is

multiplied times the dissimilarity criterion value. For two regions of size (number

of pixels) n1 and n2, let Ni = min(ni, min_npixels) for i = 1 and 2, and let Nmax =

max(N1,N2). Then

RHSeg User’s Manual Version 1.59

47

 

 

 
.

*

**2

*

*
2

1

21

21

2
1

2
1

21

21








































NNN

NN

NN

NN

NN

NN

factor
max

maxmax

maxmax

 (4-31)

Note that if both n1 and n2  min_npixels, factor = 1.0.

Guidance on HSWO/HSeg/RHSeg Program Parameter Settings

The parameters that have the most effect on the nature of the segmentation results for

HSWO, HSeg and RHSeg are dissim_crit and chk_nregions. The spclust_wght parameter

also has a major effect for HSeg and RHSeg. The default values are recommended for the

other optional parameters for routine use of HSWO, HSeg and RHSeg, with the

exception that specification of the output file name parameter boundary_map is also

recommended. Of course, if some input data elements are invalid, the some method of

data masking should also be employed.

The following paragraphs give some guidance on the setting of the spclust_wght,

dissim_crit, and chk_nregions parameters:

spclust_wght: The user may want to vary the value of spclust_wght to modify the overall

nature of the segmentation results. For spclust_wght = 0.0, you will obtain relatively

coherent closed connected regions. For spclust_wght = 1.0, you will obtain relatively

variated regions consisting of possibly several spatially disjoint subsections. For other

values of spclust_wght you will obtain results intermediate the spclust_wght = 0.0 and

spclust_wght = 1.0 results.

dissim_crit: The user may also want to vary the value of dissim_crit to modify the overall

nature of the segmentation results. The different dissimilarity criterion will result in

different merge ordering. It has been noted that the segmentation results generally have

fewer smaller regions for the mean squared error and entropy based criteria (dissim_crit –

6, 7 or 9)

chk_nregions: The user may want to vary the value of chk_nregions to vary the level of

segmentation detail in the most detailed level of the segmentation hierarchy. Higher

values will increase the detail (the segmentation will have more regions) and lower

values will decrease the detail (the segmentation will have fewer regions) and the most

detailed level of the segmentation hierarchy.

Another parameter you might consider varying is rnb_levels. This parameter is only valid

for RHSeg. The calculated default value should give the fastest or nearly the fastest

processing time. However, sometimes increasing or decreasing this value by one vis-à-vis

the default can give somewhat faster processing times.

Varying the other optional parameter values away from the default values requires a

thorough understanding of the inner workings of the HSeg and RHSeg programs.

RHSeg User’s Manual Version 1.59

48

References

[1] F. A. Kruse, A. B. Lefkoff, J. W. Boardman, K. B. Heidebrecht, A. T. Shapiro, P. J.

Barloon, and A. F. H. Goetz, “The Spectral Image Processing System (SIPS) –

Interactive Visualization and Analysis of Imaging Spectrometer Data,” Remote

Sensing of Environment, Vol. 44, Nos. 2-3, pp. 145-163, May-June 1993.

[2] Chein-I Chang, “An Information-Theoretic Approach to Spectral Variability,

Similarity, and Discrimination for Hyperspectral Image Analysis,” IEEE

Transactions on Information Theory, Vol. 46, No. 5, pp.1927-1932, August 2000.

[3] J. C. Tilton,W. T. Lawrence, and A. J. Plaza, “Utilizing Hierarchical Segmentation

to Generate Water and Snow Masks to Facilitate Monitoring Change with Remotely

Sensed Image Data,” GIScience and Remote Sensing, Vol. 43, No. 1, pp. 39-66,

2006.

[4] Chein-I Chang, Hyperspectral Imaging: Techniques for Spectral Detection and

Classification, Kluwer Academic/Plenum Publishers: New York, 2003.

[5] Peter J. Bickel and Kjell A. Doksum, Mathematical Statistics: Basic Ideas and

Selected Topics, Holden-Dya, Inc.: San Francisco, 1977.

[6] A. Baraldi and F. Parmiggiani, “A Neural Network for Unsupervised Categorization

of Multivalued Input Patterns: An Application to Satellite Image Clustering,” IEEE

Transactions on Geoscience and Remote Sensing, Vol. 33, No. 2, pp. 305-316,

March 1995.

[7] A. Baraldi and F. Parmiggiani, “Single Linkage Region Growing Algorithms Based

on the Vector Degree of Match,” IEEE Transactions on Geoscience and Remote

Sensing, Vol. 34, No. 1, pp.137-147, January 1996.

[8] J. C. Tilton, “Experiences using TAE-Plus Command Language for an Image

Segmentation Program Interface,” Proceedings of the TAE Ninth Users’

Conference, New Carrollton, MD, pp. 297-312, Nov. 5-7, 1991.

[9] J.-M. Beaulieu, “Utilization of contour criteria in micro-segmentation of SAR

images,” International Journal of Remote Sensing, Vol. 25, No. 17, pp. 3497-3512,

Sept. 10, 2004.

[10] J. L. Muerle, D. C. Allen, “Experimental Evaluation of Techniques for Automatic

Segmentation of Objects in a Complex Scene,” in G. C. Cheng, et al. (Eds.),

Pictorial Pattern Recognition, Thompson, Washington, DC, pp. 3-13, 1968.

RHSeg User’s Manual Version 1.59

49

Chapter 5: HSegViewer Tutorial

Overview

This chapter provides a tutorial on the HSegViewer program.

HSegViewer Tutorial

The demonstration version of RHSeg includes a sample data set which is by default

installed in the C:\Program Files\RHSeg\Sample Data directory. To provide inputs for the

HSegViewer program, run the RHSeg program on the “girl.bmp” sample image provided,

using the provided “hseg.params” input parameter file:

rhseg hseg.params

With the specified set of parameters, the rhseg program should take about 1 minute and

20 seconds to run on a 64-bit 2.66 GHz clock machine. (NOTE: Be sure to use the

“hseg.params” parameter file instead of the “rhseg.params” parameter file. The

“hseg.params” parameter file selects the “Entropy” dissimilarity criterion. The processing

time would be much shorter – about 15 seconds – if the default dissimilarity criterion,

"“Square Root of Band Sum Mean Squared Error” was used instead. The “Entropy”

dissimilarity criterion is selected here because of the quality of the segmentation results

that are produced with that criterion.) When rhseg completes processing, you may run

HSegViewer by entering the command:

hsegviewer

You may also run this version of HSegViewer from “RHSeg” group in “Run Program” in

the “start” menu in Windows. If you like, you can create a shortcut for this program and

place it on your desktop.

The “Hierarchical Segmentation Results Viewer Parameter Input” GUI panel will now

appear. You will need to enter the HSeg/RHSeg output parameter file through this panel.

The easiest way to do this is to click on the file input box under the label “Input HSeg

Parameter File (oparam) for Input to HSegViewer,” and then select the “girl.oparam” file

through the file selector. You will then have to enter the appropriate values for Red,

Green and Blue Display Bands. Since the girl image is an RGB image, enter these values

by typing the number 0 in the box to the right of the “Red Display Band” label, the

number 1 in the box to the right of the “Green Display Band” label, and the number 2 in

the box to the right of the “Blue Display Band” label.

(NOTE: When viewing a single-band image, enter the number 0 for all three “Display

Band” values – Red, Green and Blue.)

At this point you may also specify if you want to view the region class map in pseudo

color or in grey scale by selecting either “Display Region Classes in Psuedo Color” or

“Display Region Classes in Grey Scale” from a “Combo Box.” For this tutorial, use the

default “Display Region Classes in Psuedo Color.”

Now you are ready to run the HSegViewer program. Click on the “Program Actions”

menu button at the top left of the panel and select “Run Program.” The main

RHSeg User’s Manual Version 1.59

50

“Hierarchical Segmentation Results Viewer” panel will then appear. You may resize this

panel as desired.

You may also run HSegViewer by entering the command (using the provided

“hsegviewer.params” file):

hsegviewer hsegviewer.params

When running HSegViewer in this manner, the main “Hierarchical Segmentation Results

Viewer” panel will then appear without further user input.

The main panel holds several buttons and value entry fields with a large table at the

bottom. Click on the “RGB Image” button. You will see an RGB rendition of the girl

image, with a main viewing panel and a reduced sized image in the upper left. For large

images, this reduced sized image will help you navigate to desired locations in your large

image. As with all other HSegViewer panels, this panel has an “Actions” menu button in

the upper left corner. Click on this menu button and select “Zoom In.” The image data in

the “RGB Image” panel will now be displayed zoomed by a factor of two. You may view

the entire image by resizing the panel. Return to the original display resolution by

selecting “Zoom Out” from the “Actions” menu.

Now click on the “Current Region Labels” button on the main panel. You will now see

the “Current Region Labels” display panel, which is initially blank. Now enter the value

“1” in the text field to the right of the label “Select Pixels with Segmentation Level 0

Region Class Label” (you need to press the “Enter” key after typing “1” in the text field).

This will cause region class 1 at hierarchical level 0 to be highlighted in white in the

“Current Region Labels” panel. Region class 1 consists of several dark (mainly

shadowed) areas. You may highlight any specific region class in this way by entering in

the region class label value in this text box.

You can also highlight other region classes by clicking on any pixel in the RGB Image

panel, and then clicking the “Select Pixels with Segmentation Level 0 Region Class

Label” button on the main panel. Use this facility now by clicking on a bright yellow

pixel in the yellow flower and then clicking on “Select Region Class at Location of Last

Left Mouse Click” button on the main panel. If you clicked on the pixel I clicked on (at

column 175 and row 235), bright portions of the yellow flower will be highlighted.

Looking at the table on bottom portion of the main panel, you should see region class 62

listed with 279 pixels at hierarchical level 0. We can explore how this region class

changes at coarser levels of the segmentation hierarchy by clicking on the “Select Next

Coarser Segmentation” button on the main panel. Click on this button once now.

You should now see that more of the yellow flower is added to the region at hierarchical

level five (you can tell that this region at hierarchical level five is being highlighted by

noting that the value “5” is displayed in the text box between the “Select Next Finer

Segmentation” and “Select Next Coarser Segmentation” buttons) along with most of the

pink flower some bright hair areas. Clicking on this button a second time adds some more

bright hair areas at hierarchical level seven, along with bright areas in the window behind

the girl. Clicking on this button yet another time adds the rest of the yellow flower to the

region at hierarchical level nine, along with several other bright areas.

RHSeg User’s Manual Version 1.59

51

You can also highlight region objects in the same way. Enter the value “1” in the text

field to the right of the label “Select Pixels with Segmentation Level 0 Region Object

Label.” This will cause region object 1 at hierarchical level 0 to be highlighted in white in

the “Current Region Labels” panel. Region object 1 is a fourteen pixel dark region in the

center lower part of the image (a dark portion of the green leaf). You may highlight any

specific region object in this way by entering in the region object label value in this text

box.

You can also highlight other region objects by clicking on any pixel in the RGB Image

panel, and then clicking the “Select Pixels with Segmentation Level 0 Region Object

Label” button on the main panel. Use this facility now by clicking on a bright yellow

pixel in the yellow flower and then clicking on “Select Region Object at Location of Last

Left Mouse Click” button on the main panel. If you clicked on the pixel I clicked on (at

column 175 and row 235), a small bright yellow portion of the yellow flower will be

highlighted. Looking at the table on bottom portion of the main panel, you should see

region object 1665 listed with 90 pixels at hierarchical level 0.

We can explore how this region object changes at coarser levels of the segmentation

hierarchy by clicking on the “Select Next Coarser Segmentation” button on the main

panel. Click on this button once now. You should now see that more of the yellow flower

is added to the region object at hierarchical level five. Click on the “Select Next Coarser

Segmentation” button once again, and you will see that most of the rest of the yellow

flower together with the pink flower is added to the region at hierarchical level nine.

Let’s go ahead and label this area “yellow flower” by clicking on the “Label Region”

button in the upper right corner of the main “Hierarchical Segmentation Results Viewer”

panel (we will correct the mislabeling of the pink flower in the next step).

You will now see the “Label Region Panel.” With this panel you can label a highlighted

region with a desired color, and associate that color with a text label. You can even

modify one of the pre-configured colors by clicking on one of the colors. Let’s go ahead

and do that by clicking on the bright yellow color button labeled “60:” towards the

bottom right of the panel.

You will now see a “Pick a color” panel. For example, you can select a different shade of

yellow by clicking somewhere on the triangle in the left part of the panel. Alternatively

you can provide specific HSB or RGB values in the provide text fields. Let’s change the

Blue value to 100 (to lighten the color a bit). Save this new color and exit this panel by

clicking on the “OK” button.

To label the highlighted area with your chosen color type in a label, such as “yellow

flower,” in the text box to the right of your chosen color. Hitting the “Enter” key while in

that text box will record your text label and label the highlighted region with your chosen

color. Now close the “Label Region Panel” by clicking on the “X” at the upper left corner

of the panel or by selecting “Close” from the “Action” menu.

Now go the RGB Image panel and select a pixel in the pink flower for highlighting. Do

this by performing a left mouse click in the middle of the pink flower in the “RBG

Image” and click on the “Select Region Object at the Location of Last Left Mouse Click”

button on the main panel. If you clicked on the pixel I clicked on (at column 210 and row

RHSeg User’s Manual Version 1.59

52

250), you should now have region object 1664 highlighted. Looking at the bottom of the

table on the main panel, you should see region 1664 listed with 148 pixels at hierarchical

level zero. Click on the “Select Next Coarser Segmentation” button three times and most

of the remaining pixels from the pink flower will be added to the highlighted region at

hierarchical level seven. Give this highlighted region a pink color and the label “pink

flower” using the “Label Region Panel.”

Now select an area on the girl’s red shawl for highlighting. Do this by clicking on a pixel

in the girl’s shawl and then clicking on the “Select Region Class at the Location of Last

Left Mouse Click” button. If you clicked on the pixel I clicked on (at column 90 and row

200), you should see that portions of the red shawl and part of the girl’s red lips are

highlighted. Click on the “Select Next Coarser Segmentation” button, and you will see

that part of the red flower is added at hierarchical level one. Clicking on the “Select Next

Coarser Segmentation” button again adds more of the red flower at hierarchical level

four. Click on this button one more time to add more of the girl’s lips to the region, along

with more of the red shawl at hierarchical level five.

We can separate the girl’s red lips from the rest of the highlighted region by doing the

following. Select “Circle Region of Interest” from the “Program Control” menu of the

“Current Region Labels” panel, and draw a line surrounding the girl’s lips on the panel.

Now only the girl’s lips will be highlighted. Use the “Label Region” panel to label this

area “girl’s lips” with a shade of red.

Now perform a left mouse click in the lower middle portion of the green leaf in the girl’s

flower bouquet in the “RBG Image” and click on the button “Select Region Class at the

Location of Last Left Mouse Click.” If you clicked on the pixel I clicked on (at column

150 and row 230), you will now see most of the green leaf highlighted plus some other

dark areas throughout the image. Looking at the bottom of the table on the main panel,

you should see that this is region class 3 consisting of 2011 pixels. (If statistics for

another region are displayed at the bottom of the table, you can select region class 3 by

entering the number “3” in the text box to the right of the “Select Pixels with

Segmentation Level 0 Region Class Label” label and pressing the “Enter” button on your

keyboard.) Now click on the “Select Next Coarser Segmentation” button. You will see

that region class 3 grows to 3746 pixels at hierarchical level four with the addition of

more of the green leaf along with numerous other dark areas throughout the image.

Clicking on this button one more time adds more of the green leaf and additional

background areas to the region at hierarchical level five.

You can select and label a portion of the green leaf as follows. From the “Actions” menu

on the “Current Region Labels” panel select “Select Region” from the menu and perform

a left mouse click on the bottom portion of the leaf. Let’s now label the lower portion of

the green leaf currently highlighted by clicking on the “Label Region” button. In the

“Label Region Panel” that now appears, type “green leaf” in the text box to the right of

dark green color button towards the lower left of the panel and then hit “Enter” on your

keyboard. You will now see this region colored dark green in the “Current Class Labels

Image” panel. You can now close the “Label Region Panel.”

You will note that a dark portion of the girl’s red shawl was mislabeled as “green leaf.”

We can correct this by clicking on a pixel in this area (e.g., column 130 and row 214) and

RHSeg User’s Manual Version 1.59

53

clicking on the “Select Region Object at Location of Last Left Mouse Click” button. Use

the “Label Region” button to label this area as “dark shawl.” Correct another mislabeled

portion of the green leaf region by clicking on the pixel at column 164 and row 217 and

clicking on the “Select Region Object at Location of Last Left Mouse Click” button.

Again se the “Label Region” button to label this area as “dark shawl.”

You have now exercised most of the features of HSegViewer for labeling an image.

However, there are other features of HSegViewer we have not visited yet. The “Initial

Segmentation Level” text box allows you to set the initial segmentation level that is

displayed (defaulted to 0) when you select a new region class or object for highlighting.

The “Refocus on Selected Region” button centers all image panels on the pixel selected

with the “Select Region Class at Location of Last Left Mouse Click” button or “Select

Region Object at Location of Last Left Mouse Click” button. The text box between the

“Select Next Finer Segmentation” and “Select Next Coarser Segmentation” buttons not

only displays the currently highlighted hierarchical segmentation level, but entering a

valid hierarchical segmentation level into this text box will jump you to that hierarchical

level.

We now come to the set of buttons under the “Display Options” label. We have already

visited the “RGB Image” and “Current Class Labels” buttons. The “Segmentation Classes

Slice” button provides a pseudo colored rendition of the region class segmentation at the

currently selected hierarchical level. Similarly, the “Segmentation Objects Slice” button

provides a pseudo colored rendition of the region object segmentation at the currently

selected hierarchical level. The “Region Mean Image” button provides a view of the

region mean image. The “Hierarchical Boundary Map” button provides a boundary map

of the image segmentation, where the darker image boundaries correspond to boundaries

that persist up to the highest hierarchical levels, while the lighter image boundaries

correspond to boundaries that disappear at lower hierarchical levels. Finally, the “Region

Class (Object) Boundary Pixel Ratio Image” displays this ratio for each region class

(object).

At the bottom of the display panels the cursor location (column, row) is displayed. The

pixel value is also displayed on the “Segmentation Slice View Image,” “Current Class

Labels Image,” and “Hierarchical Boundary Map” display panels. The pixel value on the

“Hierarchical Boundary Map” display panel corresponds to the last hierarchical level at

which the boundary still exists.

You may save whatever is displayed in any of the image display panels (except for the

reference file displays) to a PNG format file by selecting “Save PNG Image” from the

“Actions” menu. You will be prompted to specify an output file name with a file chooser.

Finally, the large table at the bottom of the HSegViewer main panel gives the available

information about the selected region, at all hierarchical levels.

To exit the HSegViewer program, click on the “Program Action” menu on the

HSegViewer main panel and select “Quit” from the menu. (You could also click on the

red X in the top right corner of the panel.)

You can exit HSegViewer and restart it where you left off by renaming the

“label_out.raw” and “ascii_out.txt” (default names) files (I often use the file names

RHSeg User’s Manual Version 1.59

54

“label_in.raw” and “ascii_in.txt”), and selecting them as the “Input Class Label Map

File” and the “Input ASCII Class Labels Name File,” respectively, in the parameter input

file.

If you have reference files (such as ground truth) in “PNG” format files, you can use

them as a reference files (Input Reference File 1 or Input Reference File 2) by specifying

them as “Input Reference” files in the parameter input panel on startup.

Notes on viewing 3-D data with HSegViewer

HSegViewer cannot currently render 3-D data in three dimensions. One can display and

interact only with selected 2-D planes of 3-D hierarchical segmentation results.

Assume that you have a single band 3-D image with 256 columns, 256 rows and 172

slices (this corresponds to an actual 3-D brain scan image that has been processed with

rhseg_3d). By default, HSegViewer looks at the 256 column by 256 row 2-D image plane

at the 0th slice. You can change the slice viewed by changing the value in the text box to

the right of the label "For 3-D data, view the 2-D Representation of ". For example, you

can change from viewing the 0th slice to viewing the 86th slice.

Once you specify the desired slice for viewing, click on the "Program Actions" pull-down

menu at the top left of the panel and select "Run Program." You can now do everything

you learned in the 2-D tutorial on this 2-D plane of the 3-D image data.

To view from a different perspective you can select "Quit Program" from the "Program

Control" pull-down menu at the top left of the Viewer panel and then select "OK" on the

"Confirm Quit" panel. The "Parameter Input" panel then reappears. To the right of the

Label "For 3-D data, view the 2-D Representation of" you can select "row" or "column"

instead of "slice". For example, select "row" and then specify row index 128 (for the 2-D

rendition along the middle row). Again select "Run Program" from the "Program

Control" menu. You can now see and interact with the data and hierarchical segmentation

results from this new perspective.

RHSeg User’s Manual Version 1.59

55

Chapter 6: HSegLearn Tutorial

Overview

This chapter provides a tutorial on the HSegLearn program.

HSegLearn Tutorial

The “HSegLearn” program is designed to be a computer-interactive tool for labeling

image regions that are representations of a specific category of land cover. HSegLearn

uses the output from the HSeg or RHSeg programs as a basis for defining similar image

regions. HSegLearn can be used by an analyst to label sets of regions (as defined by

HSeg or RHSeg) as “positive” or “negative” examples of the sought for category of land

cover. The HSegLearn program automatically searches the hierarchical segmentation for

HSeg or RHSeg for the coarsest level of segmentation at which selected positive example

regions do not conflict with negative example regions and labels the image accordingly.

The negative example regions are always defined at the finest level of segmentation

detail.

To use the HSegLearn navigate to the directory containing the output from the HSeg or

RHSeg program and type “hseglearn” (no quotes). After doing so you should see a

Graphical User Interface (GUI) panel looking similar to that shown in Figure 1.

Figure 1. HSegLearn’s initial parameter input GUI.

To select the HSeg/RHSeg output parameter file, perform a left mouse click on the box

containing “(Select File)” below the label “HSeg/RHSeg Output Parameter File (oparam)

for Input to HSegLearn:”, and then select the appropriate file ending with “.oparam”. The

GUI panel will now grow to provide additional input options as shown in Figure 2.

Next you should specify the Red, Green and Blue display bands by entering in the

appropriate numbers in the provided text boxes. The values 2, 1, and 0 are appropriate for

our initial test images. If you have a reference image you would like to use, you can

select it by left button clicking on the check box to the left of the label “Input Reference

Image File:” and left button clicking on the text box that then appears below this label.

You can also similarly select a georeferenced panchromatic image to use as a higher

resolution reference image.

The optional “Input ASCII Examples List File:” is not normally used for an initial run of

HSegLearn. Its purpose is to provide the list of positive and negative example regions

from a previous run of HSegLearn (to pick up where you left off).

RHSeg User’s Manual Version 1.59

56

Figure 2. HSegLearn’s second parameter input GUI panel.

You can now run the HSegLearn program by selecting “Run Program” from the

“Program Actions” menu at the top left of the HSegLearn second parameter input GUI

panel. You will then see the main HSegLearn GUI as shown in Figure 3.

Figure 3. HSegLearn’s main GUI panel.

The next thing you should do is left button click on the “RGB Image” and “Current

Region Labels” buttons and situate the resulting display panels comfortably on your

computer screen. For an initial run of HSegLearn, the “Current Regions Labels” display

panel will be blank (entirely black).

You may now explore the RGB Image of your image data set by manipulating the scroll

bars on the right and bottom edges of the RGB Image display panel. You may also pan

around the image scene by performing left mouse button clicks on the thumbnail image at

the upper left corner of the display panel. Also, if you perform a left mouse button click

on a pixel you will notice that the arrow cursor turns into a crosshair when you hold

down the left mouse button, and a “cloned” cursor appears in the same location on the

RHSeg User’s Manual Version 1.59

57

“Current Region Labels” display. In addition, the (col,row) locations, (R,G,B) values and

(UTM_X,UTM_Y) coordinates of the selected pixel location with appear at the bottom of

the display panel.

In order to select a region of area for submission as positive or negative examples of your

target land cover type, you must first highlight it. The “Actions” menu on each of the

display panels provide two modes for selecting regions for highlighting, namely

“Highlight by Circling an Area of Interest” and “Highlight by Clicking on a Region

Object.”

In the “Highlight by Clicking on a Region Object” mode, region classes associated with

the selected region objects are highlighted each time you perform a left mouse button

click on a pixel in a region object. You may highlight multiple region classes while in

this mode of operation. You can turn off this mode by selecting “Turn off Highlight by

Clicking” from the “Actions” menu on any display panel. Turning off the highlight by

clicking mode will allow you again view the (col,row) locations, (R,G,B) values and

(UTM_X,UTM_Y) coordinates of the selected pixel locations without highlighting

additional region classes.

The second mode for highlighting region classes is by drawing a circle (with the left

mouse button held down) that contains a positive or negative example of your target land

cover type in either of the image display panels. You can go in to this mode of operation

by selecting the option “Highlight by Circling an Area Region of Interest” from the

“Actions” menu on either of the display panels. You will see that the trace of the circle is

drawn on each display panel as you draw it. A few moments after you complete drawing

your circle, will see that the full extent of all region classes that your circled area

contained are highlighted in white in the “Current Region Labels” display panel.

You may highlight as many regions as you like of a particular cover type using either

mode of operation before you “Select” or “Submit” the highlighted region classes as

either negative or positive examples of your cover type of interest. After you highlight at

least one region class, HSegLearn’s main GUI panel will appear as in Figure 4.

Figure 4. HSegLearn’s main GUI Panel after highlighting as least one region class.

RHSeg User’s Manual Version 1.59

58

If you made a mistake and highlighted region classes that are both positive and negative

examples of your cover type of interest, you can clear all highlighted regions and start the

highlighting process over by selecting the “Clear all Highlight Regions” button. If you

are satisfied that all of your highlighted regions classes are either positive or negative

examples of your cover type of interest, you may either “Select” or “Submit” the

highlighted regions as either positive or negative examples by selecting the appropriate

button on HSegLearn’s main GUI panel.

The difference between “selecting” and “submitting” is that selecting just places the

selected region classes in a queue for later submission, while submitting causes hseglearn

to actually process the selected region classes as positive or negative examples, as

indicated (more on this later). When region classes are “selected” as either positive or

negative examples, HSegLearn will determine the class label identity of each region class

contained in the highlighted area and then highlight in yellow the spatial extent of all of

these region classes.

HSegLearn’s main GUI panel will appear as in Figure 5 after at least one region class is

selected as either a positive or negative example.

Figure 5. HSegLean’s main GUI panel after selecting highlighted region classes as

positive or negative examples.

As seen in Figure 5, after selecting highlighted areas as either positive or negative

examples, HSegLearn’s main GUI panel will modify itself to provide the option of

submitting the selected positive and/or negative examples. The panel also rescinds the

options to select highlighted regions (because no regions are now highlighted), but still

makes available the option to highlight regions classes by choosing a highlight mode for

the display panel actions menu.

Note that you could have skipped the “selecting” step and could have “submitted” your

region classes instead without first “selecting” them. However, you may find it

convenient to initially highlight and select several positive example region classes and

then highlight and select several negative example region classes before submitting the

selected positive and/or negative examples to the HSegLearn program for processing.

RHSeg User’s Manual Version 1.59

59

Clicking on the “Submit Selected Positive and/or Negative Example(s)” button will

submit the region class positive and negative examples that are currently stored in the

positive and/or negative examples queue(s).

As noted earlier, submitting positive or negative examples is different than just selecting

them. The spatial extent of all selected region classes, positive or negative, is simply

colored yellow on the Current Region Labels display panel. The spatial extent is the area

covered by the region class at the finest (most detailed) level of the HSeg/RHSeg

segmentation hierarchy.

When a negative example region class is submitted to the HSegLearn program, it is

recorded in the “examples_out.txt” file and highlighted in red in the Current Region

Labels display panel. As with a selected region class, the spatial extent for a negative

example region class is the area covered by the region class at the finest (most detailed)

level of the HSeg/RHSeg segmentation hierarchy.

When a positive example region class is submitted to the HSegLearn program, it is

recorded in the “examples_out.txt” file and highlighted in green in the Current Region

Labels display panel. Unlike as done for a negative example region class, the spatial

extent for a positive example region class is the area covered by the region class at the

coarsest (least detailed) level of the HSeg/RHSeg segmentation hierarchy that does not

conflict with a previously specified negative labeling in the Current Region Labels

display panel.

Once you have submitted a set of selected region classes to HSegLearn, HSegLearn’s

main GUI panel will appear as shown in Figure 6. This version of HSegLearn’s main

GUI panel provides an option for undoing the last submit of positive and/or negative

examples.

Figure 6. HSegLean’s main GUI panel after submitting a set of selected or highlighted

region classes as positive or negative examples.

If you notice a location in the Current Region Labels display that is colored green

(positive example), but should not be a positive example, you may click on that location

and submit it as a negative example.

RHSeg User’s Manual Version 1.59

60

If it is a case of the region class in question being labeled at too coarse a level from the

HSeg/RHSeg segmentation hierarchy, HSegLearn will color the selected region class as

red, and then readjust the display of the mislabeled region class to display a spatial extent

from a finer level from the segmentation hierarchy such that is does not conflict with the

new submitted negative example.

If it is a case of the region class in question being labeled is already labeled at the finest

level from the HSeg/RHSeg segmentation hierarchy, HSegLearn will color the selected

region class as blue, which signifies that this particular region class labeling is

ambiguous.

If you notice a location in the Current Region Labels display that is colored red (negative

example), but should not be a negative example, you may click on that location and

submit it as a positive example. In this case, HSegLearn will color the selected region

class as blue, which signifies that this particular region class labeling is ambiguous.

You may change a region class labeling from ambiguous (blue) to either a positive

(green) or negative (red) labeling by highlighting the region (left mouse click on an

image location in this particular region) and submitting it as either a positive or negative

example region.

You may save the current display shown in the Current Region Labels panel as either a

“png” or “tif” image by selecting “Save PNG Image” or “Save Image Data” from the

“Actions” menu of the Current Region Labels panel. You may also zoom in or zoom out

both display panels by selecting “Zoom In” or “Zoom Out” from the “Actions” menu of

either display panel.

You may also re-center the display panels at the location of the last region selected for

highlighting by clicking on the “Refocus Displays at location of last Highlighted Region”

button on the HSegLearn main GUI panel.

To exit the program, select “Quit” from the “Program Actions” menu on the HSegLearn

main GUI panel.

The HSegLearn stores all the submitted positive and negative example region classes

(plus the region classes that end up being labeled ambiguous) in a file with the default

name of “examples_out.txt”. You may start up the HSegLearn program at the point that

you previously exited the HSegLearn program in the following manner. I recommend

renaming the “examples_out.txt” file from the previous run of HSegLearn to

“examples_in.txt.” Then restart HSegLearn as previously described, with the additional

step of selecting the “examples_in.txt” file as the optional “Input ASCII Examples List

File.” HSegLearn will then go through the process of first submitting the ambiguous

example region classes, then the negative example region classes, and then the positive

example region classes. In doing so, HSegLearn will drop out positive example region

classes that are redundant with previously submitted positive example region classes.

