
i Micropak 870C User Manual

Micropak 870C

An advanced simulator based development tool for

Toshiba TLCS-870/C microcontrollers

User manual

Document reference: Micropak 870C User manual v1.0 July 2001

Micropak 870C User Manual ii

Copyright
Copyright 2001 AND Software Ltd., All rights reserved. No part of this
publication may be reproduced, transmitted, stored in a retrieval system, or
translated into any language or computer language, in any form or by any
means, electronic, mechanical, optical, chemical, manual or otherwise,
without the prior written permission of AND Software Ltd., 4 Forest Drive,
Theydon Bois, Epping, Essex CM16 7EY, England.

Disclaimer

AND Software Ltd. makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantibility or fitness for any particular purpose. Further, AND
Software Ltd. reserves the right to make changes from time to time in the
content hereof without obligation of AND Software Ltd. to notify any
person of such revision or changes.

Accuracy

AND Software Ltd. cannot guarantee the accuracy or functionality of the
simulator under any particular circumstance. Neither AND Software Ltd.
nor any of its agents shall be liable in any way for any losses incurred
wholly or partly as a consequence of any errors, omissions or assumptions
made in or by the simulator or its associated documentation.

AND SOFTWARE LTD
4 Forest Drive
Theydon Bois
Essex, CM16 7EY
England

Tel: +44 (0)1992 814655 • Fax: +44 (0)1992 813362
Email: AND@andsoftware.co.uk
Homepage: www.andsoftware.co.uk

iii Micropak 870C User Manual

Contents

About this guide ix
INTRODUCTION 1

The TLCS-870/C microcontroller family 1
Micropak 870C - An overview 1
TLCS-870/C devices supported by Micropak 870C 3

INSTALLATION 5
The important files 5
Suggested directory structure 5
Running the SETUP utility 6
Run time links to the 870/C tool chain 7

FAST STARTUP GUIDE 9
Starting the Micropak 870C simulator 9
Setting up and debugging a new project 9
Opening an existing project 10
Common debugging features explained 10

TUTORIAL 15
The example application - stepper motor control 15
Setting up the test environment 16
Understanding the example 27
Executing the code - The PC indicator and cursor 31
Simu lating button presses 34
Project context files 34
Using the script file 36
Checking the generated sequence 36
Tracking down the bug 36
Making corrections 39
Moving on 39

USER INTERFACE DETAILS 41
The Micropak 870C screen 41
Window elements 43
Menu operation 45
Menu function reference descriptions 46
Using dialog boxes 51

Micropak 870C User Manual iv

The tool bar 53
Using the on-line help system 54

NAVIGATING PROJECT FILES 57
Project file overview 57
Opening a project 59
Files Window 60
Editing a project 60
Specifying project settings 61

USING THE EDITOR 67
Opening files 67
Syntax colouring 68
Mouse driven functions when editing 69
Editor options 70
Keyboard functions when editing 70
Locating and changing text 71
The implications of editing 74
Re-building the project 74

CONTROLLING EXECUTION 77
Overview 77
Execution possibilities 77
Resetting and viewing the processor clock 79
The program counter 80
The interval window 80
Debug options 81

TRACE OPTIONS 83
Trace Buffering 83
Controlling Tracing 83
Trace buffer displays 84
Restarting execution 85
Inactive trace buffer 85
Performance Analysis 85
Code Coverage 86

BREAKPOINTS 87
Setting breakpoints 87
The ‘Type’ field 88
The ‘Location’ field 89
The ‘Expression/L-Value’ field 89

v Micropak 870C User Manual

The ‘Length’ field 90
The ‘Counter’ field 90
Adding a breakpoint 90
Viewing current breakpoints set ups 90
Setting breakpoints in the source window 91
Removing breakpoints 91
Enabling/disabling breakpoints 91
Script file facilities 92

PORT SIMULATION TECHNIQUES 93
Overview 93
Using script files to control port conditions 95
Using script files to check port conditions 96
Pin numbering 96

VIEWING SIMULATED OBJECTS 97
Overview 97
Displaying RAM 97
Signal recording boxes 98
On-chip peripherals 102
Port views 104
Test panel displays 104

SOURCE DEBUGGING 111
Overview 111
Source Windows 111
Quick Watch 112
Watch 113
Locals 114
Call Stack 114
Registers 115
Browser 115

USING SCRIPT FILES 117
Overview 117
Script files - Purpose and uses 117
The script language 119
Script file variables 120
Script operators and expressions 121
Script file execution and control flow 123
Identities in script files 127
Script keywords 128

Micropak 870C User Manual vi

Script file commands and functions - detailed descriptions 131
ABS 131
ACOS 131
AND 132
ASC 132
ASIN 132
ATAN 133
BREAKPOINT 133
CHR$ 135
CLOSE 135
CONNECT 135
COS 136
DIM 136
EDIT 136
END 137
EQV 137
EVENT 137
EXP 139
FOR - TO - [STEP] 139
GETEDIT($) 140
GETFC 140
GETFS 140
GETrr 141
GETTIME 141
GETV 141
GLOBAL 142
GO 142
GOSUB 142
GOTO 143
IF - THEN - [ELSEIF] - [ELSE] - ENDIF 143
IMP 144
INPUT 144
LEFT$ 144
LEN 145
LET 145
LOCAL 146
MID$ 146
NOT 147
OPEN 147
OR 148

vii Micropak 870C User Manual

PEEK 148
PRINT 148
POKE 149
REM 149
REPEAT - UNTIL 150
RETURN 150
RIGHT$ 150
SETBITMAP 151
SETEDIT 151
SETFLAG 152
SETrr 152
SETR 152
SETV 153
SIN 153
SGN 154
SQR 154
STOP 154
TAN 154
TIMEOUT 155
XOR 155

KEYBOARD SUMMARY 157
Editing keys 157
Accelerator keys 157

APPENDIX A - SCRIPT FILE GRAMMAR 161
Definition 161

APPENDIX B - SCRIPT FILE EXAMPLE 169

INDEX 177

Micropak 870C User Manual viii

Micropak 870C User Manual ix

Preface

About this guide

This guide explains how to use the Micropak 870C simulator based
development tool.

The first section, Introduction, provides a rapid overview of the product and
its intended uses.

The next section, Installation, explains the steps required to install
Micropak 870C onto your system.

The Fast Startup Guide provides concise instructions on using the simulator
for creating and debugging projects. This should be used to gain an
overview in using and controlling the tool.

The Tutorial section takes you through, step by step, a sample debugging
session and includes illustrations of some of the various ways the product
can be used and the facilities it offers.

User Interface Details is a wide ranging section, covering the elements of
the Micropak 870C screen display, the operation of the menu system, the
tool bar and the other possibilities for controlling the simulation. This
section also describes the operation of the on-line help facility.

The next sections explain the fundamental facilities in more detail and
include Navigating and Editing Project Files, Controlling Execution,
Trace Buffering and Breakpoints.

The Port Simulation section gives important details of the approach adopted
for the simulation of port lines and discusses ways in which these can be
used to establish and test the interactions of the target firmware under test
with external hardware.

Micropak 870C enables the states of multiple aspects of the simulation to be
viewed and monitored, many whilst the simulated code is executing. These
facilities are explained in the Viewing Simulated Objects section of the user
guide.

x Micropak 870C User Manual

The next section, Source Level Debugging, details the facilities offered to
support this activity. Source may be written in C, C-like language or
Assembler.

The final section, Using Script Files, describes in detail the usage, scope
and flexibility of the in-built script file processor, which can significantly
increase the power of the test environment whilst also improving testing
productivity. It is recommended that this section is studied carefully before
planning a detailed testing or development programme, especially where
repetitive or regression testing is intended.

Appendices

There are two appendices.

The first contains a definition of the script file grammar.

The second appendix contains the script file example used in the tutorial .
This illustrates how the script file mechanism can be used to extend the
simulation to mimic the behaviour of external hardware.

Introduction The TLCS-870/C microcontroller family

Micropak 870C User Manual 1

Introduction

The TLCS-870/C microcontroller family

The TLCS-870/C family of devices are tailor-made for very specific,
high-volume applications and offer an extremely attractive
cost-performance ratio.

The family includes a variety of devices with differing on-chip peripheral
sets intended for differing application areas. All the devices feature an 8 bit
wide data RAM and an 8 bit wide program ROM area.

Micropak 870C - An overview

The ‘simulation engine’

Micropak 870C is an advanced simulator based tool for developing and
testing applications for the Toshiba TLCS-870/C family of microcontrollers.

The simulation includes the full CPU core and registers, on-chip peripherals
and I/O ports, and is performed totally in software in the host PC - no
external hardware is required.

Application code to be investigated can be loaded into the software
simulation and run, just as in hardware based environments.

Execution time assessments

The effective speed of the test code execution will vary with the speed of the
host PC and with other factors such as the detailed composition of the target
program. However, although the simulation does not therefore execute in
real time, the execution time for each individual instruction is calculated and
totalled by the simulation engine, so that detailed time -critical code sections
can be assessed and detailed execution time measurements can be made.
Details of this execution time can be seen in the coverage window

Micropak 870C - An overview Introduction

2 Micropak 870C User Manual

Port simulation

The simulation allows an external ‘Thevenin’ equivalent network,
consisting of a single external voltage generator and a single external series
resistance, to be connected to each port line. Both the voltage and series
resistance can be controlled via the user interface or the script file.
Extending the simulation in this way allows you to investigate the
interaction of the firmware under test with external hardware components
such as switches, LEDs, etc. It also allows checks on the drive capabilities
of the ports, and the use of pull-ups and so on.

Using Micropak 870C in conjunction with OTP devices

Interactions with complex hardware peripherals are difficult to emulate with
the simulation alone, and in these situations one-time programmable devices
may offer a realistic low-cost development route. In these cases the
structure and basic behaviour of the code under scrutiny can be developed in
the simulated environment, ready for subsequent trials in one-time
programmable devices to confirm the correct operation of these more
complex interactions.

The user interface

The user interface of the product adheres to the accepted conventions for
Microsoft Windows applications, reducing to a minimum the overhead
associated with learning to control the facilities provided. Extensive use is
made of the graphical capabilities of the interface to provide a clear and
attractive display. The ability to make significant events in the target
system visible is considered to be a strong feature of the product and can
boost debugging productivity considerably.

An in-built editor is included to support program development during
debugging.

The program is intended to interact with the TLCS-870/C tool chain. This
provides automatic links for code re -building, and includes facilities which
allow the execution of the program to be monitored at source level.

Introduction TLCS-870/C devices supported by Micropak 870C

Micropak 870C User Manual 3

The script file processor

The product includes a powerful ‘script’ file processor which can monitor
and control events in the simulated target system according to control
‘programs’ written in the script language. Script files use a ‘BASIC-like’
syntax and can be used to mimic the behaviour of external devices or to set
up, run and check the results of repetitive or regression tests.

Using Micropak 870C in quality and other formal testing
regimes

In addition to its development facilities, the simulator can also be used for
formal qualification or other quality testing. Powerful batch testing
facilities are included, simplifying the execution and documentation of
regression testing after product firmware changes.

TLCS-870/C devices supported by Micropak 870C

For a list of the TLCS-870/C family members currently supported by the
Micropak 870C simulator, please see the README file on the distribution
diskettes or contact your Toshiba representative. A list of supported devices
is also given in the on-line help provided for the product.

TLCS-870/C devices supported by Micropak 870C Introduction

4 Micropak 870C User Manual

Installation The important files

Micropak 870C User Manual 5

Installation

This chapter explains the steps required to install the Micropak 870C
software, both in terms of running the SETUP facility provided on the
distribution diskette(s) and creating a suitable directory structure for your
project files.

The important files

The following files are supplied on the distribution diskette(s):

• MP870C.EXE the main executable file

• MP870C.HLP the help file for the Micropak 870C
program

• CPYOUTPT.EXE this program is used to pipe output from
the compiler/linker to MP870C.EXE

• CPYOUTPT.PIF this enables DOS programs to run in the
background (needed for re-building)

• README.TXT this describes installation instructions and
the devices currently supported

• Tutorial files for running the tutorial detailed in this user
manual

Note that you will also need the TLCS-870/C C compiler, C-like compiler
or assembler, in order to generate object code to run and test.

Suggested directory structure

The suggested directory structure groups all the Micropak 870C related files
under a main MP870C sub-directory but splits the Micropak 870C
executable and help files from the source code and other project specific
files.

Running the SETUP utility Installation

6 Micropak 870C User Manual

Although other directory structures are possible, care must be taken to
ensure that the run-time links to the compiler, linker and assembler from
Micropak 870C will operate correctly. The mechanisms used, and a
summary of the links which must be preserved, are described later in this
chapter under the heading ‘Run time links to the 870 tool chain’.

The following default directory structure is used by Micropak 870C:

 0 DRIVE:\

0 Program Files\

0

0
0

0

BIN\

PROJNAM1\

TUTORIAL\

Other Projects

0 Micropak 870C\

The BIN sub-directory contains all the executable files, with the exception
of the compiler executables. The TUTORIAL sub-directory contains all the
tutorial files. Note that the tutorial files are not required for the normal
operation of Micropak 870C.

Project specific directories

The sub-directories such as PROJNAM1 and PROJNAM2 are intended to
hold project specific files, including the source files and the project batch
file, which is used by the project re-building function to make the project. It
is recommended that these sub-directories are given meaningful names to
reflect the projects they represent, such as METER or TIMER, etc.

Running the SETUP utility

The distribution diskette contains a ‘SETUP.EXE’ installation program
which is used to create an appropriate directory structure on the working
drive and copy all the necessary files from the distribution diskette into the
new directory structure.

Installation Run time links to the 870/C tool chain

Micropak 870C User Manual 7

The SETUP program must be run from within Microsoft Windows.

Run time links to the 870/C tool chain

Micropak 870C includes facilities for re-building and building complete
executable code from the source using the standard components of the
Toshiba 870 tool chain. These components are not installed as part of the
Micropak 870C set-up and must be installed separately. Locate the tools in
an appropriate directory (e.g. ‘Toshiba’) and edit the ‘Autoexec.bat’ file to
add this directory to the ‘path’ entry.

Run time links to the 870/C tool chain Installation

8 Micropak 870C User Manual

Fast Startup Guide Starting the Micropak 870C simulator

Micropak 870C User Manual 9

Fast Startup Guide

This section gives an overview of the major facilities of the Micropak 870C
simulator to enable the user to begin working with the tool.

Starting the Micropak 870C simulator

To start the Micropak 870C simulator locate the ‘Micropak 870C’ group
window and double-click the ‘Micropak 870C’ program icon contained
within it:

Micropak 870C

Setting up and debugging a new project

The Micropak 870C simulator provides a complete environment for writing,
editing, assembling and testing your program. The environment for this is
called the ‘Project’ and therefore the first step is to create a new ‘Project’
using the following steps:

• Create an appropriate directory for the project, either using ‘File
Manager’ or the DOS ‘md’ command.

• Create a new project file by selecting ‘New’ from the ‘Project’
menu.

• In the ‘New Project’ dialog box, type the path and name of the
project batch file (or click the ‘Browse’ button, locate the
project directory and specify the name of the batch file). Note
that the batch file must have a ‘.bat’ extension. Select the
processor type from the list.

• Create the source files by selecting ‘New’ from the ‘File’ menu.
Save the source files by selecting ‘Save As’ from the ‘File’
menu.

Opening an existing project Fast Startup Guide

10 Micropak 870C User Manual

• Source files can subsequently be edited by selecting ‘Open’
from the ‘File’ menu.

• Invoke rebuilding of the source modules to create a runnable
program by selecting ‘Rebuild All’ from the ‘Project’ menu.

• Create a test environment for the project including RAM
displays, peripheral and port views, signal traces, setting
breakpoints and building customised test panels, as desired.

• Debug the software using the various ‘Debug’ options including
fast and slow run modes, setting the PC at a ROM address,
tracing, etc.

Opening an existing project

Once a project has been created the project environment can be re-invoked
at subsequent debugging sessions without the need to re-define it. The
following steps should be used to open an existing project:

• Select ‘Open’ from the ‘Project’ menu.

• Continue with debugging the code, editing and re-building as
necessary.

Common debugging features explained

How to set a breakpoint

Breakpoints can be set on program locations, memory read/writes and
peripheral read/writes. Breakpoints are set by selecting ‘Breakpoints’ from
the ‘Debug’ menu. There is also a toolbar icon for setting or clearing a
breakpoint at the current cursor position.

Fast Startup Guide Common debugging features explained

Micropak 870C User Manual 11

How to start/stop execution

A set of execution control facilities are available from the ‘Debug’ menu.
Execution starts from the current program counter position. The ‘Reset’
option, also available from the ‘Debug’ menu, resets the simulated processor
or may be positioned anywhere in the code. Execution will terminate
according to the option selected, e.g. at the current cursor position, or at the
next instruction, or whenever a breakpoint is reached. A specific ‘stop’
instruction is also provided. All these facilities are available from the
‘Debug’ menu and as a collection of toolbar icons.

The time duration of an execution can be monitored using the ‘Interval’
window, which is displayed by selecting ‘Interval’ from the ‘Window’
menu.

How to edit source programs

Any text file may be created and edited using the options available from the
‘File’ and ‘Edit’ menus. Syntax colouring of C source programs can be
applied if required so that, for example, comments and code are displayed in
different colours. All normal editing functions are available, including
‘Cut’, ‘Copy’, ‘Paste’, ‘Undo’ and ‘Find’.

How to navigate files

The ‘View’ menu option provides a number of facilities to help traverse
active files, including jumping to a given line number. Bookmarks can be
set in a file allowing the user to rapidly move to pre-defined points within
their source files.

How to view data items

A RAM window can be displayed in order to view specified areas of RAM
by selecting ‘Device’ from the ‘Window’ menu. Information about data
items can be temporarily viewed using the ‘QuickWatch’ facility. Any data
item displayed using ‘QuickWatch’ can be monitored throughout a
simulation session in the ‘Watch’ window by selecting ‘Add to Watch’ from
the ‘Quick Watch’.

Information about the current local variables can be displayed by selecting
‘Locals’ from the ‘Window’ menu.

Common debugging features explained Fast Startup Guide

12 Micropak 870C User Manual

Information about the call stack can be displayed by selecting ‘Show Call
Stack’ from the ‘Debug’ menu.

How to display peripherals and ports

The simulation of device peripherals and ports can be viewed by selecting
the ‘Device’ from the ‘Window’ menu then choosing from the displayed
list. One window will be displayed for each item selected.

Ports lines can also be displayed in signal windows. In this instance the port
values will be shown as a ‘scope-like’ display. This facility can be selected
by choosing ‘Signal’ from the ‘Window’ menu to open a signal window and
selecting ‘Signal Plots’ from the ‘Trace’ menu.

How to build customised displays

Customised displays are built as test panels, where each panel can contain
one or more items. The display of these items is controlled through the
script file mechanism. In this case, the value of items such as script file
flags and buttons are displayed to show the results of script file events.
Bitmap images of components can be included within test panels to add
realism to the project testing. Test panels are defined by selecting ‘New
Panel’ from the ‘File’ menu.

How to create script files

Script files are created by selecting ‘New’ from the ‘File’ menu These are
text files containing ‘BASIC-like’ commands to control execution and to
perform events at specified points during the execution. A full list of the
script file commands is given in the chapter entitled ‘Using Script Files’.
Once a script file has been created it must run to assume control.

The appropriate script options, available from the ‘Test’ menu, are used to
perform these tasks. Tool bar icons also exist for starting and stopping
script file execution.

How to invoke tracing

A trace buffer is provided and can be switched on and off at random to
capture required sections of executing code. This is achieved by selecting
‘Debug’ from the ‘Options’ menu and clicking the appropriate check box.

The buffer contents can be displayed using the ‘Trace’ and ‘Debug’ menu
options.

Fast Startup Guide Common debugging features explained

Micropak 870C User Manual 13

How to configure the environment

The ‘Options’ menu and the ‘View’ menu contain a number of items which
can be configured.

The ‘Options’ menu includes the following:

• ‘Debug’ options. Here you can select the run mode (‘fast’ or
‘slow’), select trace buffering and enable signal output. You
can also specify the size of the signal and trace buffers and the
maximum number or time duration of script file instructions to
be run for any one event.

• ‘Editor’ options. Here you can select the number of tab stops,
the size of the ‘undo’ buffer and enable/disable the scroll bars.

The ‘View’ menu includes the following:

• Screen items. The tool and status bars can be turned on or off.

• Syntax colouring. Syntax colouring available for editing source
files can be turned on or off.

How to set up automatic testing

Automatic testing can be achieved by writing one or more script files. Each
test must be planned in detail and the correct test panels built to show the
required output from the test.

How to obtain help

An on-line help facility is provided and is accessible by using the ‘Help’
menu option or by pressing the F1 key.

Common debugging features explained Fast Startup Guide

14 Micropak 870C User Manual

Tutorial The example application - stepper motor control

Micropak 870C User Manual 15

Tutorial

This section details an example Micropak 870C session, giving illustrations
of the various ways in which the simulator can be used and the facilities it
offers.

The example application - stepper motor control

The target code we use here is intended to control a stepper motor in
response to two simple push-button control switches. The hardware
environment is illustrated in this block diagram:

M

drive buffers

TMP86CH29N

P30

P31

P32

P33
P17

P16
'STOP'

'START'

R=10K

5V

0V

R=10K
5V

0V

0V

The simple stepper motor driver used as an example

A device will drive the 8 phases of a stepper motor via appropriate drive
buffers.

Drive control is to be by two simple push buttons, each of which is wired so
that operating the push button switches a port line between GND and VDD.
Port P1 pin 7 is used for the ‘START’ button and Port P1 pin 6 is used for
the ‘STOP’ button. The individual motor phase coils are to be driven by 4
pins from Port P3.

Setting up the test environment Tutorial

16 Micropak 870C User Manual

What the example firmware needs to do

The firmware must generate the appropriate series of stepper motor drive
signals.

It should also monitor the state of the push buttons to detect switch
operations and interpret these so that one button shall cause the stepper
drives to start, and the other shall cause the motor to stop. Only new switch
presses should be actioned.

From the point of view of initialisation and preparation, the firmware will
need to activate the output buffers for the stepper outputs, and set up an on-
chip timer to trigger the timing of new phase drives. We will return for a
more detailed look at the firmware later, but for the moment we must
consider what is required for the test environment and how this environment
is created using the Micropak 870C simulator.

Setting up the test environment

In order to exercise the controlling firmware it will be useful if we can set
up Micropak 870C to mimic the effect of the two switches, and to monitor
the phase drive outputs.

The switches and phase drives are the basic inputs and outputs of the
controller and are therefore the minimum we need for ‘black box’ testing.
However, it will probably also aid the debugging process if we can see the
activity of the internal timer used for stepper phase timing and some of the
important program variables. We will then be able to see the relation
between the internal activity of the firmware under test and the actions it
makes on external conditions.

Creating a new project

We start by creating a new project batch file for the firmware under test.
Select the menu options ‘Project’, ‘New’, and then enter the name of the
project file in the New Project dialog box i.e.:

‘tutorial.bat’

At this point the processor to be simulated can be chosen from a selection
list. You may however leave the default processor at this time.

Tutorial Setting up the test environment

Micropak 870C User Manual 17

Editing the project file

The next stage is to edit the project file in order to specify the source files
for the project and the linker options. You should therefore select the menu
option ‘Project’ ‘Edit’. Files can then be selected from the file list for
inclusion in the project. Each file is included by making your selection and
then pressing the ‘Add’ button. The following files must be included:

1. stepper.c

2. io86xx29.c

3. startup.asm

4. stepper.lcf

Once these files have been added to the project you should press the ‘Close’
button.

Building the project

Now that the project contents has been specified you should instigate a
project rebuild to generate the target code. This can be done by selecting
the ‘Project’ ‘Rebuild All’ menu option or by using the following tool bar
icon:

The rebuild icon

Output from the build tool chain will be shown in the Output window.
When the re-building process is finished, the Output window should be
closed and you will then see the source code displayed in a source window.

Displaying peripherals and data

Peripheral and data items for display may now be selected. To display the
internal timer therefore select ‘Device’ from the ‘Window’ menu to obtain a
list of the device windows available and select the ‘Time Base Timer’. The
illustration below shows the selection of the timer device.

Setting up the test environment Tutorial

18 Micropak 870C User Manual

Once opened any window may be moved, re-sized, maximised or minimised
as in any standard Windows application. The second illustration below
shows the timer window selected.

Here we are selecting a window for display:

Using the menus to select a timer view item

Here is the resulting device window:

The view item for a timer

This window shows the states and activity of the internal timer we will be
using. At this stage, (i.e. before executing any program sections) this will
be in the ‘reset’ condition.

Tutorial Setting up the test environment

Micropak 870C User Manual 19

Setting up the push buttons

Setting up the switch simulations requires a little more thought. Micropak
870C includes, for each port line, the ability to simulate a single (perfect)
external voltage generator in series with a single external series resistance.
The voltage of the generator and the resistance of the series resistance can
both be changed as required whilst the simulation is running. Furthermore a
connection between the external circuitry and the port can be set or broken.
For more information about this facility see the later section on Port
simulation techniques.

For our purposes here, we can use this possibility to simulate the two
conditions of the switches by changing the voltage generator from VDD to
GND and vice versa. This can be seen as follows:

Minimising buttons - voltage changes

Setting up the test environment Tutorial

20 Micropak 870C User Manual

The following illustration shows the pin windows set up with required
values. To enter values you merely over-type in the relevant boxes. The
illustration shows the two connections in the VDD condition.

The port pin windows show and set pin conditions

We will start with the switches in the VDD condition. Select ‘Pin’ from the
‘Window’ menu to display a list of all possible pins. Then select ‘P16’ and
‘P17’ from the list to display these windows: now set the external network
components (Vi) and (Ri) of each pin with the values shown above. Finally,
click on the Connect check boxes of each pin to make the connections.

Phase output drive displays

It will be interesting to monitor the drive outputs in two ways.

Firstly, we can set up a view in which the state of the outputs is represented
as a circular pattern, as an analogue of the physical arrangement of the
associated coils within the motor itself.

Secondly we can use the Micropak 870C plot recording style of displays in
Signals windows to show the detailed timing relationships between the
phased outputs.

Tutorial Setting up the test environment

Micropak 870C User Manual 21

Setting up a test panel of grouped items

Test panels containing groups of items for display can be specified. Firstly,
select ‘New Panel’ from the ‘File’ menu to provide a new test panel in
which to work. Now select ‘Show Panel Palette’ from the ‘Test’ menu to
enable the items for the panel to be specified. A palette will be displayed
showing the items you can display. For this example we will select a flag
item for each of the individual Port P3 output lines. This is illustrated
below:

Individual phases - inverse video means active

Item types, either buttons, flags, text or edit boxes are selected from the
palette which is displayed when the edit mode is entered and these items can
be placed in the test panel by ‘clicking’ the mouse at the required position in
the panel.

You should select the ‘flags’ option by clicking the ‘flag’ radio button in the
Palette window. You should then place four flags in the panel by moving
the mouse to four different places, clicking on each place to set down one
flag. The move option may then be selected to make any further
adjustments to the positions of the flags.

The final task is to specify the properties of the flags. A properties dialog
box can either be selected from the ‘Test’ menu or by double-clicking the
flag when ‘Move’ is selected on the palette. The properties of each item
consist of a unique caption to be displayed and an identity which is used to
connect the item with script file control. You should give the names
“phi_0” to “phi_3” as both the identity and the caption for each of the port
lines respectively.

Setting up the test environment Tutorial

22 Micropak 870C User Manual

The visual state of each item (either active colour or background colour) is
controlled by the actions of a script file which will need to be invoked in
order for the test panel to be activated. The facilities provided by the script
language are described in a later section. However, for our purposes we
need to be aware that to use these facilities it is necessary to define a test
panel containing the items for display and to set up a script file to define the
conditions for controlling the display of the items. The properties dialog
box allows you to specify the colours used in the display and the shape to be
displayed. You may select different shapes or colours for the items to try
this facility yourself.

Using the editor to define a script file

In order for the items in the test panel to display the status of the port lines, a
script file needs to be written. Here we will use the editing facilities of
Micropak 870C to write a simple script file for this task:

P60% = pin(60)
P61% = pin(61)
P62% = pin(62)
P63% = pin(63)

on event(p60%) run show
on event(p61%) run show
on event(p62%) run show
on event(p63%) run show

event(p60%) on
event(p61%) on
event(p62%) on
event(p63%) on

show:
 setflag "phi_0", getv(60) > 2.5
 setflag "phi_1", getv(61) > 2.5
 setflag "phi_2", getv(62) > 2.5
 setflag "phi_3", getv(63) > 2.5
 end

A sample script file to input

Tutorial Setting up the test environment

Micropak 870C User Manual 23

Script files consist of one or more event handlers. The first initialisation
event handler defines the conditions to be recognised and enables further
event handlers to perform the tasks required when the relevant conditions
are encountered during the simulation. In this instance our initialisation
handler consists of four condition statements testing a value to be true of
false, one for each of the phase output pins. The value tested is that
evaluated from the actual pins as read using the previously defined ‘pin’
statements; the numbers (61, 62, 63, 64) correspond to real pin numbers on
the device. All four condition statements are similar and define ‘show’ as
the entry point of the handler to be used whenever the corresponding pin
voltage is changed. During the initialisation, all four event conditions are
enabled thus thereafter any change in voltage on any of these pins e.g. pin
61, will trigger the event handler ‘show’. ‘show’ fetches simulated pin
voltages for all four pins and updates the test panel flag items called ‘phi_0’,
‘phi_1’ etc., to show the current pin conditions. NB To view the pin
numbers for specific pins select the ‘Show Pin Number’ option in the Pin
dialog box

The screen display above shows the contents of the script file to be created.
You should create a new file by selecting the ‘New’ option from the ‘File’
menu. You can then enter the text directly using the normal edit facilities
and save the file when completed, giving the name:

PORT3.SCR

To see how the script file operates you must ensure that the script file
window is activated then run the script selecting ‘Run’ from the ‘Test’
menu.

To check the operation of the script you can now enter some values directly
into Port P3 and you will see the test panel display change according to the
values entered.

To do this you should open the Port P3 window by selecting ‘Device’ from
the ‘Window’ menu and choosing Port P3 from the list of devices. Firstly
set the PCR to all 1’s (output). If you now enter values into the ‘P’ box in
the window you should see the display in the test panel change. Entering
‘0110’ (binary for ‘6’) will bring on two of the outputs and entering all ‘1’s
(binary for ‘F’) will bring all the outputs to the active conditions. What is
happening here is that these actions trigger the script event handler ‘show’
which then updates the test panel.

Setting up the test environment Tutorial

24 Micropak 870C User Manual

We can now move on to an alternative possibility for displaying port
conditions.

Setting up a plot recording of the drive lines

Selecting ‘Signals’ from the ‘Window’ menu will display an empty Signals
window. You must now specify the items you wish to plot by choosing
‘Edit Signals’ from the ‘Trace’ menu. Either pin signals or simple values
read from data variables may be plotted. The default type shown is pins.
The list of pins should be expanded and you should specify the individual
lines, P30 – P33, clicking the ‘Add’ button after each selection. The result
should be the inclusion of 4 Port P3 outputs within the one window. You
may also wish to include the two significant data variables, Count and
TimerTick. To include these change the ‘Type’ box to show L-Value and
enter the names of the data variables in the L-Value box.

In order for the Signals window to plot the lines during processor execution
we must enable the signal operation and ensure that the signal buffer is set
to a size capable of holding enough information for plot records. To do this
select ‘Debug’ from the ‘Options’ menu. A dialog box will appear, on
which you should click the ‘Signal Buffer Enabled’ check box and enter a
value of ‘1’ (representing 1 second), as the size of the signal buffer.

Tutorial Setting up the test environment

Micropak 870C User Manual 25

The Signals window will initially appear empty. The plots are only drawn
as the simulation progresses. Here is an example of how the box might
appear later when you have run the firmware:

Signals windows show the relative timing of signals clearly. They can be
scrolled backwards to see the past changes. The amount of past detail that is
stored depends on the buffer size. For more information about using plot
records see the later section.

Setting up the test environment Tutorial

26 Micropak 870C User Manual

Loading the example firmware

The distribution disk contains the necessary source and other files to see the
example running. Assuming that you opted to install the tutorial, these files
will be in an appropriate directory on your system and you can load and run
the sample program. In this instance the files will have automatically been
loaded when you rebuilt the project and a source window displayed. If you
have minimised this window you should now restore:

A sample source file

The source is displayed as it is held in the file. That is all user comments
etc. are included in the display. If the source contained in the file is ‘C’
code then the normal display will show only this code. You can however
request a disassembly of the loaded executable code to be interleaved with
the relevant ‘C’ source by selecting the ‘View’ ‘Show assembly’ menu
option.

The scroll bars, the cursor and PgUp, PgDn keys enable you also to scroll
forwards and backwards through the example source code. Use these
facilities to examine the example source code, and relate it to the
descriptions which follow. The ‘View’ menu has options for setting and
removing ‘Bookmarks’ in the window and moving between the marks set.
Lines on which Bookmarks have been set are coloured.

Tutorial Understanding the example

Micropak 870C User Manual 27

Understanding the example

Timing

The main features of the system timing are shown below:

P33

P32

P31

P30

p e r i o d c o u n t e r

p h a s e c o u n t e r

u n d e r f l o w s

The timing of events in the example

The on-chip timer is used to generate a regular timing interrupt.

This interrupt causes a period counter to be decremented. When this
counter reaches zero, a new phase pattern is driven to the motor circuitry
and the period counter is reloaded to time the next inter-phase gap.

Understanding the example Tutorial

28 Micropak 870C User Manual

Program flow

The flow chart which follows shows how the program is structured to
perform these various actions.

re se t tim e r
in t

in itia lise set TimerTick flag

TimerTick flag

wa itfo rtim e r int.

sc a n bu tto ns a nd

d e c re m e n t c ounte r

c o unte r= 0

re lo a d co unte r

ye s

no

re turn fro m inte rrup t

ste p m o to r
no

d rive ne w pha se

ye s

upda te ste pp ing fla g

Control flow in the example

Tutorial Understanding the example

Micropak 870C User Manual 29

After initialisation, control enters the main loop.

Each pass round the loop is synchronised to the timer interrupt by waiting at
the start of the loop until the flag ‘TimerTick’ is set by the timer interrupt
handler.

The activities of the loop begin by scanning the ‘start’ and ‘stop’ buttons
and setting or clearing the drive flag appropriately. Next, the period counter
is decremented and tested. When there are no more ticks in this interphase
period (i.e. the counter reaches 0) the counter is reloaded with the value of
the current period. The drive flag is then tested to see if the motor is in
operation. If it is, a new phase pattern is driven out to the motor.

‘C’ startup code

The code for this example is written in ‘C’. The standard C compiler startup
code (assembler) is used to provide the ‘C’ environment initialisation. This
code is run at power on before control passes to the ‘main’ ‘C’ function.
The startup code begins at the label:

 _startup

Initialisation

The initialisation function is run first. This sets up the program variables to
appropriate initial states and sets up the interrupt controller and timer to
generate a timer interrupt at pre-set intervals. Program variable set up
includes setting the phase state to zero, and the counter, which counts down
to the next phase, set to the maximum value ready to start counting down.
The drive flag, indicating whether or not the motor is operational, is set to
TRUE.

Finally, interrupts are enabled, and control passes back to the main loop.

Main code

The code consists of a continual loop. Firstly, when a new key press is
detected, the motor is switched on or off accordingly. Then a test of the flag
set by the timer interrupt is made. When this is detected, the switch lines
are scanned by appropriate routines one by one.

Understanding the example Tutorial

30 Micropak 870C User Manual

The period counter (‘Count’) is decremented at each pass of the loop. When
it reaches zero, it is reloaded with the constant ‘Period’. The drive flag is
then tested to determine if the motor is operational, and a routine is called to
drive new phase outputs. Control then returns to the start of the loop.

do {
 unsigned char Temp;

 // check if start button pressed
 if (StartButtonPressed()) {
 // are now allowed to drive the motor
 StartMotor();
 }

 // see if the stop button has been pressed
 if (StopButtonPressed()) {
 // inform rest of the code to stop driving the motor
 StopMotor();
 }

 // drive the motor if necessary
 __asm(" di"); // disable interrupts first
 Temp = TimerTick;
 TimerTick = 0;
 __asm(" ei"); // now re-enable them
 if (Temp) {
 if (Count > 0) {
 Count--; // decrement the counter
 }
 if (Count == 0) {
 Count = Period; // setup counter for next phase
 if (Stepping) {
 Phase++;
 if (Phase > 7) { // check for overflow
 Phase = 0;
 }
 SetMotorPort(); // drive the next phase
 }
 }
 }
}
while (1); // loop for ever

The main line code

Tutorial Executing the code - The PC indicator and cursor

Micropak 870C User Manual 31

Processing functions

In the example, for clarity, the task is broken down into several functions.
They perform the following:

• scanning for new button presses (one for each of the two
buttons).

• getting a new phase into the motor drive outputs.

• setting a new phase into the motor drive outputs.

These individual routines are relatively straightforward and are not
specifically listed here. You can inspect the source for these routines by
scrolling the code displayed in the source window.

Interrupt handler

The timer interrupt is kept as simple as possible. The only significant action
is the setting of the flag which the main line code tests to detect the passage
of another interrupt period:

static void __regbank(2) IntTBT(void)
{
 // report to the main loop that the interrupt has occurred
 TimerTick = 1;
}

The handler for the timer interrupt

Executing the code - The PC indicator and cursor

We are now ready to try executing the code. First of all, generate a reset in
the system by selecting ‘Reset’ from the ‘Debug’ menu. The PC will be set
to the first line of the real program and is shown by a yellow bar. This will
be in the assembler ‘C’ startup code source window at the label _startup.

Place the cursor in the ‘stepper.c’ source window and scroll down through
the code. Move to the start of the ‘C’ main function

Click on the first line of code after the function declaration i.e. the call to the
initialisation function. The cursor is set here.

Executing the code - The PC indicator and cursor Tutorial

32 Micropak 870C User Manual

Go to cursor

You can now give the ‘Step to Cursor’ command to execute the program to
this point. This command can be given either by selecting ‘Step to Cursor’
from the ‘Debug’ menu or by clicking the appropriate tool bar icon:

The ‘Step to Cursor’ icon

When execution arrives at this point, you will notice the program counter
(PC) indication by the changed colour at this line.

The source line, which corresponds to the current program counter position,
is shown in yellow. Because the program counter points to the next
instruction to be run, the yellow line is the one that is about to be run.

Single Stepping

It will be interesting to watch the effects of the code on the view items we
have already set up. Single stepping gives you the opportunity to observe
these individual effects clearly, instruction by instruction.

Single stepping can be done by selecting ‘Step Into’ from the ‘Debug’ menu
or by clicking the appropriate tool bar icon:

The ‘Step Into’ icon

As execution proceeds you will see the yellow bar showing the current
program counter position gradually move through the routine.

Notice that because the program counter points to the next instruction to be
executed, the PC indication shows the actions that are about to be
performed, not the action that has just been carried out.

Tutorial Executing the code - The PC indicator and cursor

Micropak 870C User Manual 33

Animating the code - multi-stepping

Multiple stepping executes one step at a time, and displays the program
counter position after each instruction by moving the yellow bar. This
function, sometimes known as ‘animation’, shows execution moving
through the code, making program flow clear.

Animation can be started either by selecting ‘Go’ from the ‘Debug’ menu or
by clicking the appropriate tool bar icon:

The ‘Go’ icon

Note, however, that because the whole screen display is updated, including
re-writing the source window and showing the program counter bar,
execution speed in ‘animation’ mode can become slow. When using this
mode of execution speed may be increased by minimising those windows
you are not interested in observing at this time.

Fast debug mode

Having observed the individual stages of initialisation we can now proceed
to run the code in the fast debug mode. In this mode, only the test panels
are updated during execution and therefore the speed of execution is
increased. To initiate this mode either select ‘Fast’ from the ‘Mode’ field of
the ‘Debug Options’ dialog box, having selected the latter from the
‘Options’ menu, or click the appropriate tool bar icon:

The slow icon (A tortoise) The fast icon (A hare)

Running in fast mode should enable you to see the stepper drive activity as a
circulating effect in the test panel display.

Simulating button presses Tutorial

34 Micropak 870C User Manual

Simulating button presses

With the code running, we can now investigate the behaviour of the
firmware in response to button presses. For this you should return to the
slow debugging mode, so click on the debugging mode icon to return to
slow mode. The icon shown represents the current state, so you should click
on the ‘hare’ to show the ‘tortoise’.

You can simulate the effect of a push-button operation by changing the
voltage generator from 5v to 0v. This mimics the effects of the switch
operation causing the voltage at that pin to fall, triggering the main loop to
detect a switch operation and stop the motor. To simulate the stop button
therefore you should restore or make active the P17 pin window and change
the voltage appropriately. To release the button you would change the
voltage back to 5v again, however, you should pause for a short while
between the operations to ensure that the switch sensing code sections are
run.

To start the motor again you should simulate a button press on pin P16. The
results of each button press should be seen in both the test panel display and
the plots recorded in the Signals window.

Project context files

So far we have seen how to set up a test environment and use it to run our
target code. You may find it useful to save this environment in order to
re-instigate the test at a later stage. To save your panel file choose the ‘File’
‘Save As’ option. The file should be saved with the extension .PAN. The
context information including information on the windows and panels that
were open and their position may be saved through the ‘Test’, ‘Save As’
menu option. You must give the test context a file name when saving it. If
you wish the context to be opened automatically when you open a project
you should give the file the same name as the project name. The extension
is .TST.

When we started the tutorial we did not open an existing project file, as the
tutorial was described to create a new one. An example project file for the
tutorial is provided to go with the tutorial example:

stepper.bat

Tutorial Project context files

Micropak 870C User Manual 35

To invoke this use the ‘Project’, ‘Open’ menu sequence. You will then see
a pre-defined set of windows appear on the display. The next section
describes how test simulations may be made easier and faster by using script
files associated with the pre-defined project context file.

A new window displaying two ‘Window style’ buttons, labelled as ‘STOP’
and ‘START’ will be seen. These items are linked via the script file to the
two button sensing pins.

This is how the new window will appear:

The test file reads in the test panel

Using the script file Tutorial

36 Micropak 870C User Manual

Using the script file

Micropak 870C includes a ‘script file’ processor as described briefly in an
earlier section. This allows events in the simulated environment to be
controlled and monitored automatically according to details defined in the
script file. Script files are described more fully in a later section, but we
will illustrate their use here by providing a more convenient way of running
our test session.

The distribution disk contains a sample script file to go with the tutorial
example:

stepper.scr

To invoke this, select ‘Open’ from the ‘File’ menu. This will display a
dialog box allowing the file to be loaded. Select or enter the name
(‘stepper.scr’) and the script file itself will appear in a ‘text window’.

To action the script in the file, select the Script file window and then
use the menu option ‘Run Script’ from the ‘Test’ menu to action the file
commands. The results of any further simulation will then cause changes
to the display according to the events translated by the script file.

Clicking on the button items shown in the new test panel will toggle the
voltage switch on pins P16 and P17 to simulate the button press and release.

For more details see the later section on script files.

Checking the generated sequence

If you study the generated output phase signals carefully you may notice an
anomaly. In fact, the example program includes a bug, which results in one
of the patterns driven out to the port being incorrect and showing all the
lines being driven high together. This will result in a disturbance to the
circulating pattern and can also be seen in the plot record display in the
Signals window.

Tracking down the bug

In order to find the problem we will set a breakpoint just after the code line
which sets new phase patterns into the hardware.

Tutorial Tracking down the bug

Micropak 870C User Manual 37

We will also activate trace buffering so that we can ‘back-step’ from the
breakpoint, to see the code line which generates the incorrect pattern.

Firstly, we must stop our current execution. To do this use the ‘Alt-F5’ key
or select ‘Stop Debugging’ from the ‘Debug’ menu.

Setting a breakpoint

Scroll through the code until you find the function called:

SetMotorPort

In this routine the line:

motor = GetMotorPortDriveForPhase();

is the line which writes to the hardware drive port. Click on the code line
just after this to set the cursor position. This line has the instruction:

return;

To set the breakpoint here click the ‘Toggle Breakpoint’ icon:

The ‘Toggle Breakpoint’ icon

Lines on which breakpoints are set are shown in red. Clicking the
breakpoint icon toggles the breakpoint at the cursor position on or off.

Once we have set the breakpoint we need to turn on trace buffering so that
on reaching the breakpoint we will be able to step backwards and check the
previous program actions.

Activating trace buffering

To activate the trace buffer, select ‘Debug’ from the ‘Options’ menu and
click the ‘Enabled’ check box for the trace buffer. Micropak 870C allows
the size of the trace buffer to be adjusted, but the default size will be suitable
for us here.

Tracking down the bug Tutorial

38 Micropak 870C User Manual

Running to the breakpoint

Now we have set the breakpoint and activated the trace buffer we can run
the code again (the ‘Go/Stop’ icon is probably the easiest way). When the
breakpoint is reached execution is halted, a message appears and a beep is
heard.

You will notice that the yello w line indicating the PC marker is now on our
chosen instruction, and that a new pattern will just have been driven out.

Checking the individual drive patterns

You should now restart the execution using the ‘Go’ icon or by selecting
‘Go’ from the ‘Debug’ menu. Correct patterns should activate one output or
two outputs simultaneously. If the current state of the phase output.

 shown in the panel window currently has all outputs activated, the
erroneous pattern must have been driven out. If the current pattern appears
correct (i.e. it has one or two outputs active), then you can run to the next
pattern by using the ‘Go’ icon again. Continue this process until the faulty
pattern has just been driven out.

At this stage we know that the pattern just output was wrong. Examining
the code shows that the pattern is written to the data item ‘motor’ from
values derived in a ‘switch’ statement in ‘GetMotorPortDriveForPhase’.

The ‘switch’ statement contains each of the specific patterns written to the
data item ‘motor’. In order to know which of the ‘switch’ ‘cases’ set the
faulty pattern we need to know which lines were run just prior to the
hardware updating.

The ‘Back-step’ facility allows us to ‘turn the clock back’ and effectively
run the code in reverse, tracing the execution back up through the code.

To invoke this facility select ‘Step Back Into’ from the ‘Trace’ menu.

Using this facility you will find that the following statement was the villain:

case 3:

return 0x0f;

Tutorial Making corrections

Micropak 870C User Manual 39

The pattern in question is specified here as a hexadecimal constant (0x0f)
and it can now be seen that this does indeed set all lines active. In fact this
value should be 0x06. Having located the bug we can now move on to see
how to make an appropriate correction.

Making corrections

To correct this bug you can use the source edit facilities of Micropak 870C
directly.

Position the cursor in the faulty line and make the correction using the
cursor keys and over-typing, etc. After editing you must then save the file.

Re-running after corrections

You must now rebuild the project to ensure that the corrections are included
in the simulation. To do this select ‘Rebuild All’ from the ‘Project’ menu or
use the tool bar icon as described in an earlier paragraph..

The Toshiba tool chain will be automatically invoked and a new executable
file will be generated. Once the rebuild process has finished, the project
files will be re-loaded and a refreshed source window will be displayed.

You should now be able to re -run the code (e.g. by clicking the ‘Go’ icon),
and this time the phase output sequence should be correct.

Moving on

Having been through this tutorial session you should have some idea of the
facilities which Micropak 870C offers, and how these can be used to good
advantage in your own testing or development programme.

The later sections of this guide provide reference information covering all of
the various facilities in more detail.

Perhaps before leaving the tutorial set up, you might find it helpful to use
the context of the tutorial example to exp eriment with some of the other
facilities described in later sections. Here are some suggestions:

• Step Over - to skip over, say, the button testing routines.

Moving on Tutorial

40 Micropak 870C User Manual

• Step Out - single step into the ‘GetMotorPortDriveForPhase’
routine and then use the ‘Step Out’ function to run to the end of
this routine. This facility is one of the most useful when
investigating code so it’s beneficial to learn how to use it early
on.

• Watch windows - Micropak 870C provides various ways of
viewing data variables. Try adding some data items to a Watch
window to show the interphase counter (‘Count’) and the tick
recording variable (‘TimerTick’).

• Trace buffering - enable the trace buffer for a while, observe
the effect on speed, then use the ‘Back-step’ facilities to watch
the code running in reverse. Note that the PC is shown in
green.

• Port views - ports can be viewed multiple lines at a time.
Showing Port P0 in this way would be a good example of the
use of this facility.

• Breakpoints - use the ‘Breakpoints’ menu option to set a
breakpoint at the code line which deals with the ‘Start’ button
being detected as active, then run the code, activate the button
and see if the breakpoint is correctly reached.

• Go and Go - set a ‘Breakpoint’ at the code line which drives a
new phase of the motor i.e. the function call to SetMotorPort.
Then select the Go and Go option from the Debug menu whilst
operating in ‘Fast Mode’. The code will run in fast mode and
when it hits the specified breakpoint Micropak 870C will
update all windows before starting to run the code again. Take
note of the Signals window updates.

• Source editing - try some of the editor functions available on
the ‘Edit’ menu.

You will probably find most of these functions can be invoked easily using
the menu system. However, if you need more explanation or information,
try the on-line help facility, or the later sections of this manual.

User Interface Details The Micropak 870C screen

Micropak 870C User Manual 41

User Interface Details

The Micropak 870C screen

When the Micropak 870C program is started the following window is
displayed:

Menu bar

 Tool bar

Status bar

The Micropak 870C screen User Interface Details

42 Micropak 870C User Manual

The main user interface elements are as follows:

Name Description

Menu Bar Lists the available menus, e.g.:

Menu When a menu is selected it lists the commands specific to that
menu, e.g.:

Note that when a menu option is not available it is displayed
‘greyed out’ and cannot be selected.

Tool Bar The tool bar displays a number of buttons which provide quick
access to some of the menu commands e.g.:

Desktop This is the background area of the screen.

Icon This displays a window in a compact form, e.g.:

Window This displays source code, help information, simulated objects
etc., e.g.:

User Interface Details Window elements

Micropak 870C User Manual 43

Name Description

Scroll Bars These change the position within a file or list, e.g.:

Status Bar This displays information about your current session,
including processor type, position within a file, etc., e.g.:

Window elements

Note that the example given here is from Windows 3.1. Windows 95
elements which are different are shown as second alternatives in the table
following this screen.

Close box
Title bar

Minimise button

Maximise button

Border

Horizontal scroll bar

Vertical scroll bar

Scroll Button

Border

Window elements User Interface Details

44 Micropak 870C User Manual

Name Description

Window border Used to size the window by dragging with the mouse

Window title Indicates the window contents. Also used for moving
the window by clicking and dragging

Close button Closes the window when double-clicked, e.g.:

Minimise button Reduces the window to an icon when clicked, e.g.:

Maximise button Enlarges the window to its maximum size when
clicked, e.g.:

Restore button Restores the window to its original size when clicked
with the mouse, e.g.:

Scroll Up arrow Click once with the mouse to scroll up one line at a
time, e.g.:

Scroll Down arrow Click once with the mouse to scroll down one line at a
time, e.g.:

Page Up area Scrolls up one page at a time when clicked once

Page Down area Scrolls down one page at a time when clicked once

Scroll button Indicates the relative position in the file/list. Drag with
the mouse to change position in the file/list

User Interface Details Menu operation

Micropak 870C User Manual 45

Menu operation

Menus can be invoked either by the appropriate keyboard actions or by
clicking with the mouse. Menu options are grouped under main headings in
a menu bar located across the top of the window.

Clicking on one of the options in the menu bar will cause the appropriate
pull-down menu to be displayed, e.g.:

The options presented can then be selected by moving the mouse cursor to
the desired option and clicking again. Note that menu options which are not
relevant to the current operation are shown ‘greyed out’.

Sub-menu options normally have a single character underlined. If the
associated key is pressed whilst holding down the Alt key the appropriate
sub-menu will be displayed. This provides an alternative to using the mouse
to display the desired sub-menu.

In addition to this underlined character, some menu options also include a
short cut key or accelerator key which can be used to invoke a function
directly. These are described to the right of the menu text, e.g.: using the
combination of the Ctrl and ‘D’ key will display the ‘Device Window’.

Menu options which, when selected, display dialog boxes are shown with
‘...’ at the end of the option field, e.g.:

Menu function reference descriptions User Interface Details

46 Micropak 870C User Manual

Menu function reference descriptions

The following tables show how the functions accessed via the menu system
are grouped:

File Edit View Project Test
New Undo Line New Open
Open Redo Show Assembly Open Save As
Close Cut Show All Assembly Add Files Run Script
Save Copy Next Error Close Stop Script
Save As Paste Previous Error Compile File Stop All Scripts
New Panel Delete Toggle Bookmark Build Show Panel

Palette
Print Find Next Bookmark Rebuild All Hide Panel

Properties
Print Preview Replace Previous Bookmark Stop Build Panel Properties
Print Setup Read Only Clear All

Bookmarks
Configurations Panel Grid

Settings
Exit Toolbar Set Active

Configuration
Recent Tests

Recent Files Status Bar Settings
 Syntax Colouring Recent Projects

Debug Trace Options Window Help
Go Go Back Debug New Window Micropak

Workbench
Step Into Step Back Into Editor Cascade Build Tools
Step Over Step Back Over Device Info Tile Device Info
Step Out Step Back Out Arrange Icons About Micropak

870C
Step to Cursor Step Back to

Cursor
 Stack Source

Windows

Go and Go Clear Interval Interval
Stop Debugging Edit Signals Signals
Reset Signals Zoom In Performance

Analysis

Set PC to
Cursor

Signals Zoom Out Watch

Show Call
Stack

Snap Signals Locals

Breakpoints Clear Performance

Analysis

 Registers

QuickWatch Code Coverage Output
 Clear Coverage Files
 Browser
 Device
 Pin

User Interface Details Menu function reference descriptions

Micropak 870C User Manual 47

Menu : ‘File’

This group of menu options deals with file handling and printing, including
creating a new panel. Note that a list of the four most recently used files is
maintained for convenience. The exit command for the Micropak 870C
program is also accessed from this menu.

Option Description

New Start a new file
Open... Open an existing file
Close Close a currently open file
Save Update the disk copy of the current file
Save As... Write the current file to disk, optionally with a different name
New Panel Create a new test panel
Print... Print the current file
Print Preview See on screen how the current file will appear when printed
Print Setup... Review printing options
Exit Leave the Micropak 870C program
Recent Files Open a recently accessed file

Menu : ‘Edit’

This group of menu options deals with the editing of files. Any text file
may be edited using these functions. If a file has not been opened prior to
editing, an ‘untitled’ file will be created which may be saved later. See the
‘Options’ menu for options relating to this menu.

Option Description
Undo Undo the most recent editing action
Redo Redo the most current editing action
Cut Remove the selected text and place in the clipboard
Copy Copy the selected text to the clipboard
Paste Insert the current clipboard contents
Delete Delete the selected text from the current file or list
Find… Find a string of characters in the current file.
Replace… Find and replace a string of text with another
Read Only Mark the current file as read only

Menu function reference descriptions User Interface Details

48 Micropak 870C User Manual

Menu : ‘View’

This menu deals with viewing the source text windows. Facilities are
provided to place bookmarks in the source

Option Description

Line Go to a line number
Show Assembly Toggle the current source file between normal and mixed

source/assembly display
Show All Assembly Toggle source files between normal and mixed

source/assembly display
Next Error Go to the source line containing the next error
Previous Error Go to the source line containing the previous error
Toggle Bookmark Turn bookmark on or off
Next Bookmark Move to the next bookmark
Previous Bookmark Move to the previous bookmark
Clear All Bookmarks Clear all the defined bookmarks
Toolbar Toggle the toolbar on/off
Status Bar Toggle the status bar on/off
Syntax Colouring Enable or disable syntax colouring

Menu : ‘Project’

This group of menu options deals with project-wide facilities. This includes
project context files, script files and rebuilding the executable file. See the
‘Options’ menu for options relating to this menu.

Option Description

New… Create a new project file
Open… Open an existing project file
Add Files… Add files listed for the project
Close Close the current project file
Compile File Compile an individual source file
Build Compile changed files and link the object files in the

current project
Rebuild All Rebuild a project from scratch
Stop Build Stop the current project rebuild

Configurations Define build configurations for the project
Set Configuration Select the configuration to be used when building

User Interface Details Menu function reference descriptions

Micropak 870C User Manual 49

Settings Set up all setting for the project configuration
Recent Projects Load a recently accessed project

Menu : ‘Test’

This group of menu options handles the test script files and the settings of
the test panel.

Option Description

Open… Open a test file
Save As… Save the current window positions and debug options as a

new test file
Run Script Action commands in the selected script file
Stop Script Stop execution of the selected script file
Stop All Scripts Stop execution of all script files
Show Panel Palette Display the panel palette, allowing you to add and edit

items
Panel Properties… Specify the properties of a test panel item
Panel Grid Settings… Specify the grid settings in the test panel window
Recent Tests Display the four most recently opened test files

Menu : ‘Debug’

This group of menu options controls the running of the program when
debugging. It contains various run mo des and allows breakpoints to be set.
See the ‘Options’ menu for options relating to this menu.

Option Description
Go Run the target processor
Step Into Run a single instruction
Step Over Run a single instruction or procedure
Step Out Run to a return
Step to Cursor Run until the cursor position is reached
Go and Go Run until a breakpoint is reached and run again
Stop Debugging Halt the target processor
Reset Generate a ‘reset’ in the target processor
Set PC to Cursor Set the PC to the current cursor position
Show Call Stack… Display the call stack dialog box

Menu function reference descriptions User Interface Details

50 Micropak 870C User Manual

Breakpoints… Set breakpoints
QuickWatch… Inspect the value of the selected variable

Menu: ‘Trace’

This group of menu options controls the trace buffer facilities and the signal
plot display facilities. This menu also includes the facility to clear the
interval window.

Option Description

Go Back Trace back to start of the buffer
Step Back Into Step back one instruction
Step Back O ver Step back one instruction or procedure
Step Back Out Step back to start of the procedure
Step Back to Cursor Step back to the current cursor position
Clear Interval Clear the interval counter
Edit Signals… Add or edit plots in the signal box
Signals Zoom In Magnify the signal box
Signals Zoom Out Reduce the contents of the signal box trace
Snap Signals Snap the signal plot lines to nearest value transition
Clear Performace
Analysis

Clear the values shown in the performance analysis
window

Code Coverage Turn on the code coverage option
Clear Coverage Reset the code coverage information

Menu: ‘Options’

This group of menu options allows the user to specify options which control
other menu facilities.

Option Description

Debug… Change options for the debug menu including trace buffer
on/off setting

Editor… Specify the options for the editor
Device Info Specify the directory path for the processor data sheet.

User Interface Details Using dialog boxes

Micropak 870C User Manual 51

Menu: ‘Window’

This group of menu options allows the user to specify new windows to be
displayed and rearrange existing windows.

Option Description

New Window Generate a new ‘copy’ of the current window
Cascade Arrange all the open windows in a ‘cascaded’ display
Tile Arrange all the open windows as ‘tiles’
Arrange Icons Tidy the display of the icons

Stack Source
Windows

Arrange the open source windows in a Z order

Interval Open a new Interval window
Signals Create a Signals window
Performance Analysis Open the Performance analysis window
Watch Open the Watch window
Locals Open the Locals window

Registers Open the Registers window
Output Open the Output window
Files Opens the File window
Browser Opens the Browser window
Device… Open a new device window including RAM and Ports
Pin… Open a pin window

Menu: ‘Help’

This group of menu options gives the user access to the help facilities.

Option Description
Micropak Workbench Display help specific to Micropak 870C
Build Tools Display help on the related TLCS-870/C tools including

error messages and option settings.
Device Info Access technical information about 870 devices
About Micropak 870C Display version and copyright information

Using dialog boxes

Dialog boxes are used to enter values and make selections. Menu options
which invoke dialog boxes are shown with ... adjacent to the menu text, e.g.:

Using dialog boxes User Interface Details

52 Micropak 870C User Manual

Examples of dialog boxes which are specific to Micropak 870C are shown
in the relevant section. Common dialog boxes such as those for opening
files follow standard conventions. An example is given here:

In order to enter a value into a field within a dialog box you will need to
click into the field using the mouse. The text cursor will then appear in this
field, indicating where the text you type will appear. The following keys
can be used within dialog boxes with their normal editing functions:

Key Function
Ins Toggle in and out of insert mode
Del Delete the character to the right of the cursor
Left, Right, Up or
Down Arrow

Non destructive cursor movement

Tab Move to the next field on the window
Backspace Delete the character to the left of the cursor

List boxes

These are special fields which allow the selection of one item from a list,
and incorporate an arrowed button alongside enabling you to ‘pick and
choose’ from the displayed choices, e.g.:

User Interface Details The tool bar

Micropak 870C User Manual 53

Radio buttons

Again, special fields, called ‘radio buttons’ require you choose between
several choices displayed on the screen by clicking with the mouse in the
circular area to the left of the field text, e.g.:

Check boxes

These fields enable you select or deselect an option by clicking the box with
the mouse, e.g.:

Keyboard actions

Micropak 870C includes a set of pre-defined ‘accelerator’ key functions.
These allow fast access to the most commonly used menu options. Where
key functions exist they are listed alongside the menu options. A full listing
of these is given in the ‘Keyboard Summary’ chapter of the manual.

The tool bar

The tool bar provides a quick and easy way to access most frequently used
functions. The row of buttons, each with an icon representing the action
which will be perfo rmed when the button is clicked using the mouse.

The tool bar icons

Open Document

Step Over

Save Document

Step Out

Cut Selected Text
to Clipboard

Step to Cursor

Copy Selected
Text to Clipboard

Reset the Processor

Paste Contents Of
Clipboard

Set PC to Cursor

Using the on-line help system User Interface Details

54 Micropak 870C User Manual

Find

Toggle Breakpoint
at Cursor

Compile File

QuickWatch

Build

Clear Interval

Rebuild All
Project

Fast/Slow Debug
Mode

Run/Stop Script
File

Open Device
Window

Go/Stop

Open Pin Window

Step Into

Using the on-line help system

Micropak 870C includes an on-line context sensitive help facility which can
be invoked using any of the following methods:

• Pressing the F1 function key

• Using the Help pull-down menu

• Pressing the Help button on the dialog boxes

The help system consists of an index of a set of topics. They are shown in
green. Topic names which are underlined show the user that a lower level
sub-topic list will be displayed if this topic is selected. Where a topic is not
underlined, the help system will display help text.

The user can select the topic required by clicking on a chosen topic name.
Sub-topics or related topics , also shown in green, will be displayed as
relevant and the user may select these by clicking on the item displayed.

Searches on any topic may be invoked by the user by selecting the help
system search option. Searches are only available on indexed items, i.e.
topics. You cannot search the help text itself.

A history of the help requested is kept and can be shown by selecting the
History tool and the help requested may be back-tracked or printed.

User Interface Details Using the on-line help system

Micropak 870C User Manual 55

To exit from the help system you should select the close tool or exit option
from the help system file menu.

F1 function key

The F1 function key can be used to invoke help about any menu option or
menu item. The user must highlight the option or item required and then
press F1. The help system will then display help about the selected item.

Help on tools may also be invoked using the F1 key. Here the user must
select the tool required by pointing the mouse at the tool and hit F1 at the
same time.

Help menu

The help system may be invoked by selecting any one of the items on the
help menu. An index of topics relating to the menu item selected will then
be displayed. The user can then select the topic required.

If the search option is selected, the user will be prompted for the input of a
topic name. A selection list of topics will be shown according to the
information input.

Help option

The help option in the dialog box or on the menus may be selected to
display help text about the item. Once displayed the help system remains
invoked and the user may then search on other or related topics.

Device Information

This menu item is activated when the focus is set on a pin or peripheral
window. Technical data from the standard Toshiba 870 data sheets held on
CD will then be displayed for the device item selected.

In order for the data to be displayed the CD must be resident in the CD
drive.

Using the on-line help system User Interface Details

56 Micropak 870C User Manual

Navigating Project Files Project file overview

Micropak 870C User Manual 57

Navigating Project Files

Project file overview

Micropak 870C requires files to be organised by project. This section
describes the assumed file grouping and explains how Micropak 870C uses
the various files involved.

Project files

There are a number of files, each having a specific function, which
collectively constitute a project. These files are as follows:

.BAT Batch file used to control project rebuilding

.PRJ Project information file

.TST Window configuration details

.ABS File containing code and debugging information from
the compiler/assembler

Projects files are identified by the ‘.BAT’ extension and are opened by
selecting ‘Open’ from the ‘Project’ menu in order to set up a test
environment. Please be aware that opening the project file does not
automatically run script files. The source file will however be opened
automatically, ready for editing or actioning.

The project file is a text file and can be edited directly. It can be used in one
of two ways.

Firstly, if the project is ‘internal’ the batch file will contain just the text
‘REM MicroPak generated batch file - Do Not Modify.’ This will allow
Micropak 870C to handle all the project rebuilding, allowing the user to add
and delete source files and select from a comprehensive range of options. If
you intend to use this ‘internal’ project rebuilding facility then do not delete
or change the contents of this file.

Project file overview Navigating Project Files

58 Micropak 870C User Manual

The second way in which the project batch file may be used is for ‘external’
project rebuilding. If this option is desired, simply place in this file all the
commands required for the project rebuilding sequence. Note that Micropak
870C does not perform any checking of the contents of this batch file - it
will simply execute whatever commands are placed within it.

Source files are required for rebuilding

Micropak 870C does not require the original source files in order to execute
code. However, it does require them in order to allow you to edit the source
and to subsequently rebuild the executable file. It also requires the source
file to enable debugging to take place.

Source files are text files and can be edited using the Micropak 870C editing
functions.

The processor information file

The processor information file must be present within the project
environment. It has the same name as the project but has a .PRJ file
extension, e.g. ‘PROJECT1.PRJ’. For both types of project (i.e. ‘internal’
and ‘external’) this file defines the processor type selected and the clock
frequencies. In addition, for internal projects, this file also contains details
of the source files and associated options.

The window configuration file

The window configuration file details your test environment in terms of
window position information, breakpoints, watch item names, etc. It avoids
the need to redefine your testing environment each time you start a new
testing session. The file has the same name as the project but has a .TST file
extension, e.g. ‘PROJECT1.TST’.

The debug information file

This file, with a .ABS file extension, holds the code to be executed plus the
debug information which is output from the re -build tool chain. This file is
created as a result of the build process and normally uses the same name as
the rest of the project, e.g. ‘PROJECT1.ABS’. Note that if the project is
‘external’, an alternative file name may be used.

Navigating Project Files Opening a project

Micropak 870C User Manual 59

Opening a project

A project is opened by selecting ‘Open’ from the ‘Project’ menu. A dialog
box similar to the following is displayed:

Browse through your drives and directories until the correct project batch
file is located, select it, then click the ’OK’ button.

The appropriate source file (with a .C, .CL or .ASM extension) will be
loaded and displayed within a window on the ‘desktop space’ of MP870.

Further files (such as other source files and script files) may be opened by
selecting ‘Open’ from the ‘File’ menu. The following window is displayed,
allowing you to select the file required:

Files Window Navigating Project Files

60 Micropak 870C User Manual

Files Window

The ‘Files’ window can be turned on by selecting ‘Files’ from the
‘Windows’ menu. This window will show all source and header files
currently held for the project.

Editing a project

MP870C includes the facility to allow you to add and remove entries from
the list of files which comprise a project. To add files to a project the ‘Add
Files’ option is selected from the ‘Project’ menu and window similar to the
following is displayed:

Navigating Project Files Specifying project settings

Micropak 870C User Manual 61

To add a file to the list of files within the project, click on the file names
required and select ‘Open’. The new file names including associated header
files will then be seen in the Files Window.

To remove a file from the list of files in the project select the file from the
File Window and press the ‘DELETE’ key.

Specifying project settings

For both internal and external projects there are a number of options which
you can specify, including processor type, build mode and command strings
for rebuilding the project. Any specific set of project options selected is
named as a particular configuration.

Setting up configurations

When ‘Configurations’ is selected from the ‘Project menu the following
dialog box is displayed:

Each configuration is named and can then be changed as required. The
Release and Debug configurations are default configurations may be added
or removed at any time.

Selecting the Add option will cause the following dialog box to be
displayed.

Specifying project settings Navigating Project Files

62 Micropak 870C User Manual

The configuration to be added must be given a new name. Initial settings for
this new configuration must be taken from an existing configuration. The
settings may then be changed as required.

Selecting the active configuration

The settings and options defined for the active configuration will be those
used during any Build or Rebuild action. To set the current active
configuration select ‘Set Active Configuration’ from the ‘Project’ menu.
The following dialog box will be displayed:

Changing the project settings

The change of the settings for a defined configuration select ‘Settings’ from
the ‘Project’ menu. The following dialog box will be displayed:

Navigating Project Files Specifying project settings

Micropak 870C User Manual 63

The ‘Processor’ list box contains the processor type for which the project is
being built. Note that this is not required for the rebuilding process but for
creating the processor in the simulation. If the processor type is changed it
is necessary to reload or rebuild the project before the change will take
effect.

Options for the C Compiler, Assembler, Linker and Object converter are
specified by clicking the appropriate button to display a dialog box from
which the settings for the appropriate tool can be viewed and changed as
required. As an example, when the C Compiler button is pressed a dialog
box similar to the following is displayed:

Specifying project settings Navigating Project Files

64 Micropak 870C User Manual

The ‘Setting for’ list box indicates the configuration for which the settings
are relevant. The list box will show by default the currently active
configuration. The settings for other configurations may be changed by
selecting the appropriate configuration from the list box

The ‘Options String’ is a non-editable text box which displays the options as
they would appear if entered at the DOS command line.

The ‘Category’ list box displays the categories relevant to the selected build
tool and the settings appropriate for the selected category are displayed in
the ‘Category Settings’ window. From here you can specify the options
required, with the changes being automatically reflected in the ‘Options
String’ text box. Note that the options will only take effect when the ‘OK’
button is pressed.

The ‘Reset’ button will reset the options selected for the tab to the default
settings.

External project options

When ‘Project’ is selected from the ‘Options’ menu (and the project is an
external type) the following dialog box is displayed:

Navigating Project Files Specifying project settings

Micropak 870C User Manual 65

The ‘Target Name’ is the name of the debug or release executable file and
is, by default, assumed to be the batch file name with a .ABS extension.

The ‘Processor’ list box allows you to select the type of processor for which
the project is being built. This is not required for the rebuild process but is
necessary for creating the processor for the simulation. If the processor type
is changed a project reload or rebuild is required before the change will take
effect.

The ‘Settings for’ list box allows you to specify which configuration you are
specifying settings for,

Specifying project settings Navigating Project Files

66 Micropak 870C User Manual

Using the Editor Opening files

Micropak 870C User Manual 67

Using the Editor

Micropak 870C allows text files to be displayed and edited.

Opening files

The normal method for opening a new file is by selecting ‘Open’ from the
‘File’ menu. ‘Shortcut’ methods are also available using the accelerator
function keys or by clicking the following button on the tool bar:

The following dialog box is displayed:

Locate the desired file by selecting the required drive and directory and
selecting from the list of files. Note that only files of a specific type will be
displayed, according to the value selected from the ‘List files of type’ field,
e.g.:

File specification File type

*.c ‘C’ source files
*.cl, *.src ‘C-Like’ source files
*.mac Macro processor files

Syntax colouring Using the Editor

68 Micropak 870C User Manual

*.app Preprocessor files
*.asm
*.h, * .inc

*.lnk, *.lcf

.h16,.h20
*.s16, *.s24, *.s32

Assembler files
Header files

Linker files

Intel hex files
Motorola S files

*.cpl, .lst
*.map

Listing files
Map files

*.bat Project files
*.scr Script files
*.pan Panel files
. All files

File defaults

In addition to the above file types the following extensions are assumed
defaults:

File extension File type

*.bat Project batch file
*.tst Project context files (not text files)

Syntax colouring

As an aid to entering and colouring TLCS-870/C family source code a
syntax colouring facility is provided. This colours the various elements of
code as follows:

Element Colour

Extended Keywords red
Keywords blue
Comments green
Dis -assembled code grey

Syntax colouring can be enabled by selecting ‘Syntax Colouring’ from the
‘View’ menu. Note that syntax colouring is only available for C source
files.

Using the Editor Mouse driven functions when editing

Micropak 870C User Manual 69

Mouse driven functions when editing

The text cursor can be set anywhere simply by clicking with the left mouse
button.

Selecting areas of text

Areas of text can be selected by dragging the text cursor from the beginning
of the required area to the end of it. Text blocks selected in this way will be
shown as white on black. Selected blocks of text are automatically copied
to the ‘find’ string whenever the ‘Find’ or ‘Replace’ dialog boxes are
opened.

The double-click

If the left mouse button is double-clicked whilst the text cursor is positioned
within a word, it will be selected and editing will now be in word mode.

The triple-click

If the left mouse button is triple-clicked whilst the text cursor is positioned
within a line, the text within that line will be selected and editing will
change automatically to line mode.

The shifted left hand click

If the left mouse button is clicked whilst the Shift key is pressed, the text
between the current text cursor position and the current mouse cursor
position will be selected.

When the editor is in word or line mode, the selected area of text will
include that previously selected by double-clicking or triple -clicking.

Editing possibilities

Once an area of text has been selected it can be:

• Deleted (Del)

• Removed from the file and placed in the clipboard (Cut)

• Copied to the clipboard (Copy)

• Pasted from the clipboard to another position (Paste)

Editor options Using the Editor

70 Micropak 870C User Manual

These functions can be invoked via the ‘Edit’ menu or by using the
appropriate keyboard accelerator shortcuts.

Editor options

Editor options are set by selecting ‘Editor’ from the ‘Options’ menu. The
following dialog box is displayed:

The tab spacing can be changed to any number between 1 and 62. The
default number is 4 characters.

The horizontal and vertical scroll bars can be deselected independently by
clicking the appropriate check box, e.g.:

The ‘Undo’ buffer is used to store editor commands and associated text in
order to enable actions to be subsequently undone by the ‘Undo’ command.
The size of this buffer may be set between 0 Kbytes and 31 Kbytes.

Keyboard functions when editing

Basic text editing is performed by positioning the text cursor and using the
standard editing keys and functions as shown below. To position the text
cursor use the cursor keys or click with the left mouse button.

Key Function
Ins Toggle between insert and overwrite mode
Del Delete character to right of cursor or previously selected block
Backspace Delete character to left of cursor or entire block

Using the Editor Locating and changing text

Micropak 870C User Manual 71

Home Skip to beginning of line
End Skip to end of line
PgUp Move one page up
PgDn Move one page down
Left Cursor one character left
Right Cursor one character right
Up Cursor one character up
Down Cursor one character down
Ctrl+Left Move one word left
Ctrl+Right Move one word right
Ctrl+Up Scroll window up one line
Ctrl+Down Scroll window down one line
Ctrl+PgUp Scroll left one page
Ctrl+PgDn Scroll right one page
Ctrl+Home Skip to start of file
Ctrl+End Skip to end of file
Ctrl+A Redo
Ctrl+Z Undo
Ctrl+X,
Shift+Del

Copy to clipboard and delete i.e. Cut

Ctrl+C,
Ctrl+Ins

Copy to clipboard i.e. Copy

Ctrl+V,
Shift+Ins

Copy from clipboard i.e. Paste

Ctrl+F Find
Ctrl+R Replace
Return Insert new line

Locating and changing text

The following facilities are available for locating and, optionally, changing
specific text within a file:

Facility Function

Find Locate a specified string of characters
Replace Locate a specified string of characters and optionally replace

it with a different string
Bookmarks Set, clear and move between markers set in the text

Locating and changing text Using the Editor

72 Micropak 870C User Manual

Find

This is selected from the ‘Edit’ menu. The following dialog box is
displayed:

Type the string of characters to be located in the ‘Find What:’ field.

If the entire string is to be matched select the following check box:

If the case of the string of characters is to be matched select the following
check box:

The direction of the search within the file can be specified using the
following radio buttons:

Replace

This is selected from the ‘Edit’ menu. The following dialog box is
displayed:

Using the Editor Locating and changing text

Micropak 870C User Manual 73

Type the string of characters to be located in the ‘Find What:’ field. Type
the replacement string of characters in the ‘Replace With:’ field.

If the entire string is to be matched select the following check box:

If the case of the string of characters is to be matched select the following
check box:

To locate next instance of the string to be replaced click the following
button:

To replace the current occurrence of the character string and find the next
occurrence click the following button:

To replace all occurrences of the character string click the following button:

.

Bookmarks

To set a bookmark, position the text cursor on the line to be marked and
select ‘Toggle Bookmark’ from the ‘View’ menu. To subsequently remove
a bookmark first locate it and then select the same menu option.

The implications of editing Using the Editor

74 Micropak 870C User Manual

To move to the next bookmark in the file select ‘Next Bookmark’ from the
‘View’ menu.

To move to the previous bookmark in the file select ‘Previous Bookmark’
from the ‘View’ menu.

Note that these menu options have corresponding ‘accelerator’ key
sequences.

To remove all bookmarks in the current file select ‘Clear All Bookmarks’
from the ‘View’ menu.

The implications of editing

When any relevant source areas are edited, the relationship between the
object and source is altered and the object file no longer corresponds exactly
to the source files. Therefore, the compiler or other relevant tool should be
re-invoked to re-build the object file from the source file.

Re-building the project

The C compiler, or assembler can be re-invoked to re-build the object file
from the source file either by selecting the ‘Compile’ option from the
‘Project’ menu. The ‘Build’or ‘Rebuild All’ options may also be selected
from the ‘Project’ menu to cause a complete project build including the link
and object converting processes. Tools are available on the tool bar for the
build commands. Selecting ‘Build’ will cause only those files which have
changed to be re-compiled.

When the tool is re-invoked the re-build process will run and its output will
be displayed in the output window. This will include any errors
encountered by the tool including compiler, assembler, linker and converter
errors.

When the process is complete, the output window should be examined for
errors before continuing. On closing the output window, Micropak 870C
will then read the new source and object files and redraw the display.

Using the Editor Re-building the project

Micropak 870C User Manual 75

Please note that the re-building process will operate on the disk stored
versions of the source files. If the editor has been used and the file not
stored a message will be displayed asking if you wish the file to be stored.
You may choose to store the file or to continue the rebuild with the old file.

The re-build mechanism

This mechanism relies on the project batch file and a number of related files
being set up correctly, which is discussed in more detail in the ‘Navigating
Project Files’ chapter of this user manual.

Correcting flagged errors

Any errors found are flagged. The ‘View’ menu lists ‘Next Error’ and
‘Previous Error’ menu items. Selecting these items enables you to locate
each error.

Double-clicking on an error in the output window will also take you to the
appropriate line in the source file.

Re-building the project Controlling Execution

76 Micropak 870C User Manual

Controlling Execution Overview

Micropak 870C User Manual 77

Controlling Execution

Overview

There are various ways in which the TLCS-870/C code loaded into the
simulated system can be executed, such as single step, multi-step and so on.
Before describing each of these in detail let us consider some general
aspects of execution, such as how to stop the processor when it is running
and the factors which affect execution speed and how they can be optimised.

Ceasing execution

Execution can always be interrupted by pressing the appropriate function
key, selecting ‘Stop Debugging’ from the ‘Debug’ menu or clicking the
following tool bar icon:

Optimising execution speed

Updating view items on-screen slows the simulation, as do complex
breakpoints. To get the optimum execution speed you should restrict the
view items that are visible on-screen and reduce the number of active
breakpoints to a minimum.

The first of these options can be achieved by ‘minimising’ any windows
which are not currently being monitored by clicking the respective minimise
button:

Note that source windows may also be minimised.

Breakpoints can be reduced by disabling those which are not required for
the current test.

Execution possibilities

The code can be run in Micropak 870C in the following way:

Execution possibilities Controlling Execution

78 Micropak 870C User Manual

• Go (i.e. run until breakpoint is reached)

• Step into

• Step over

• Step to cursor

• Step out

Each of the above has a corresponding icon on the tool bar:

Go: Step into: Step over: Step to
cursor:

Step out:

Simple execution and debugging modes

This option allows execution to continue until a breakpoint is reached, or
until execution is halted. Two modes of operation are possible: ‘Slow’ and
‘Fast’. The mode is specified by selecting ‘Debug’ from the ‘Options’
menu. The following dialog box is displayed:

Select from ‘Slow’ or ‘Fast’ in the ‘Mode’ field of this dialog box.

‘Slow’ mode will show you multi-step animation of the code, updating all
windows and showing the progression of the PC through the active source
window after each instruction is executed. ‘Fast’ mode will only update the
test panels and the animated PC will not be shown.

Controlling Execution Resetting and viewing the processor clock

Micropak 870C User Manual 79

The modes of operation may also be specified by clicking the mode icon on
the tool bar, which toggles between ‘Fast’ and ‘Slow’ modes:

‘Fast’ mode: ‘Slow’ mode:

Single stepping - Step into

Clicking the ‘Single Step’ icon or pressing the appropriate function key will
cause the execution of the target code pointed to by the current PC.

Single stepping - Step over

This option, similar to ‘Step Into’, will execute one instruction or all
instructions within a single procedure, if the statement pointed to by the PC
is a call to a procedure.

Step out

This will run to the first RET instruction which occurs with the stack at the
current level. This is provided as a fast way of running to the end of a
subroutine once the code in an area under investigation has been stepped
through. The stack level condition implies it will ignore any function/
return combinations encountered on route.

Step to cursor

This allows the code to run until execution reaches the line in the source
window where the cursor is placed.

To use this function, first set the cursor by clicking within the desired line.
The function can then be invoked by pressing the appropriate function key
or clicking the ‘Step Cursor’ icon on the toolbar.

Resetting and viewing the processor clock

The processor may be reset by selecting ‘Reset’ from the ‘Debug’ menu.
The following confirmation box will be displayed to ensure that the
processor is not reset accidentally:

The program counter Controlling Execution

80 Micropak 870C User Manual

A reset generated in this way will set the processor back to a clock value of
‘0’ and all the normal processor actions expected at reset will occur.

The processor clock may be viewed in a device window by selecting
‘Device’ from the ‘Window’ menu and choosing from the list.

The program counter

Micropak 870C keeps control of execution through the program counter
(PC). This is updated whenever a statement is run.

The current position of the PC is seen in the source window as a yellow bar.
It can also be viewed by selecting ‘Device’ from the ‘Window’ menu and
clicking the ‘Program Counter’ option. The following window will be
displayed:

The PC can be set using this dialog box or by choosing ‘Set PC to Cursor’
from the ‘Debug’ menu, which sets the PC to the ROM address currently
being pointed to by the cursor.

The interval window

An interval window can be selected for display by selecting ‘Interval’ from
the ‘Window’ menu. The following window is displayed:

Controlling Execution Debug options

Micropak 870C User Manual 81

The interval values will be incremented with each successive execution.

The interval value may be reset by selecting ‘Clear Interval’ from the
‘Trace’ menu.

Debug options

A number of user configurable options are available by choosing ‘Debug’
from the ‘Options’ menu. The following dialog box will be displayed:

Mode
Fast This run mode allows simulation execution at full

speed. Only the test panels are updated.

Slow When this run mode is selected all relevant windows
will be updated after each instruction is executed.

Signal window control

Signal Update(s) A value of simulated time in seconds may be input.
This value specifies the time interval between each
signal window update.

Debug options Controlling Execution

82 Micropak 870C User Manual

Increment(s) Again, a value of simulated time in seconds may be
input. This value will be used when there is no activity
in the system and the CPU is in either HALT or STOP
mode. In this instance the value will be used to
increment the c lock and thus accelerate the simulation.

Script file commands

This facility is provided to allow the simulator to trap script file loops. Two
parameters are used:

Maximum Here the user specifies the maximum number of script
instructions to be executed in a given time.

in-Time(s) The user specifies the time limit.

If the number of commands executed within the time specified reaches the
maximum specified a warning is given.

Trace buffer control

Enabled Check box for enabling or disabling trace buffering.

Size(s) The user can specify the size of the trace buffer which
is expressed as simulated time, in seconds.

Signal buffer control
Enabled Check box for enabling or disabling signal capture.

Size(s) The user can specify the size of the signal buffer which

is expressed as simulated time, in seconds.

Trace Options Trace Buffering

Micropak 870C User Manual 83

Trace Options

Trace Buffering

Micropak 870C includes a trace buffer. This records the significant aspects
of the target system after each instruction has been executed. When
execution ceases (such as when a breakpoint has been encountered) it can be
used to show how control reached the current point.

Note that operating with trace buffer active requires Micropak 870C to store
a significant volume of data after each instruction and consequently slows
execution speed considerably.

Controlling Tracing

Tracing can be activated by selecting ‘Debug’ from the ‘Options’ menu.
The following dialog box will be displayed:

Click the ‘Enabled’ check box to activate the trace facility:

You can also specify the depth of the trace buffer in seconds by typing a
value into the ‘Size’ field.

Trace buffer displays Trace Options

84 Micropak 870C User Manual

Trace buffer displays

Once a set of execution history information has been captured in the trace
buffer, Micropak 870C allows you to ‘roll-back’ the displays in order to
show the information captured. This effectively reverses the direction of
execution through the normal listing display.

For example, in this ‘roll-back’ display, single stepping causes the
previously executed line of code to be the active line rather than the
following line. The active line is shown in green.

Invoking roll-back displays

The following roll-back displays are available from the ‘Trace’ menu:

• Go back (i.e. back to start of last execution)

• Step back into

• Step back over

• Step out

• Step back to cursor

Rolling back is limited by trace buffer size

Because ‘roll-back’ displays operate by interpreting the path through the
code recorded in the trace buffer, the display can not be ‘rolled back’ to
instructions executed earlier than the oldest recorded record in the trace
buffer. Once the beginning of the buffer is reached a message will be
displayed.

In practice the size of the trace buffer is limited and this implies a limit on
how far the trace buffer can be ‘rolled back’.

The depth of the trace buffer is specified on the ‘Debug Options’ dialog box,
accessible from the ‘Options’ menu.

Stepping forward through the buffer

When execution has been rolled back, it is then possible to step forward
again through the buffer until the end of the buffer is reached.

Trace Options Restarting execution

Micropak 870C User Manual 85

Any one of the options on the ‘Debug’ menu for controlling execution may
be used for this task. The PC bar will continue to be shown in green whilst
the buffer is being traversed. Once the end of the buffer has been reached a
message will be displayed and the PC bar will revert to yellow.

Restarting execution

In order to restart real execution the trace buffer display must be at the end
position. If the trace buffer is not at the end position you should issue a
‘Go’ command to step through the buffer to the end and then instigate the
required execution.

Inactive trace buffer

If the trace buffer is inactive, no roll back will be possible. Under these
conditions the menu and tool bar items associated with rolling back through
the trace buffer information will be ‘greyed out’.

Performance Analysis

Whenever Micropak is executing a trace is kept of the path of execution
through function calls. This trace can be displayed at any time by selecting
‘Performance Analysis’ from the ‘Window’ menu.

Code Coverage Trace Options

86 Micropak 870C User Manual

Performance Analysis Data

Each function is listed within the code coverage window and for each
function two sets of figures are listed. Each set shows an execution time and
the percentage of this time against the total execution time.

The leftmost set gives the data for the function named including all
dependent functions. The rightmost set gives the data execution within the
function named alone.

Clearing Performance Analysis Data

The data is automatically cleared whenever a processor reset is
encountered. The data will not be cleared between different execution
requests.

You should select ‘Clear Performance Analysis’ from the Trace menu in
order to force the data to zero.

Code Coverage

Executed code may be viewed in the source window. All code executed is
coloured grey. The execution coverage area can therefore be seen. To use
this the Code Coverage option must be activated by selecting ‘Code
Coverage’ from the ‘Trace’ menu. Selecting the option again wil deselect
Code Coverage.

Clearing Code Coverage

The data is automatically cleared whenever a processor reset is
encountered. The data will not be cleared between different execution
requests.

You should select ‘Clear Code Coverage’ from the Trace menu in order to
force the data to zero.

Breakpoints Setting breakpoints

Micropak 870C User Manual 87

Breakpoints

Setting breakpoints

Selecting the ‘Breakpoints’ option from the ‘Debug’ menu will cause the
following dialog box to be displayed:

This dialog box is used to add, remove, enable or disable breakpoints.

Breakpoints in Micropak 870C are based on the idea of the value of an item
(location or ‘variable’) in the simulated system matching, according to a
known relationship, a nominated value. This can be thought of as
BOOLEAN expression - if the expression evaluates to true the breakpoint
condition has occurred, and when it evaluates to false it has not.

The fields in the upper part of the dialog box aid the construction of suitable
breakpoint definitions, whilst the lower section of the window shows a list
of currently defined breakpoints in a shorthand form.

The example shown in the dialog box is of a breakpoint set on a source
instruction to be met after one occurrence. In more detail the elements are:

The ‘Type’ field Breakpoints

88 Micropak 870C User Manual

Element Explanation

+ Breakpoint enabled (disabled breakpoints are shown
with ‘-’). This is controlled using a dialog box button.

0/1 Breakpoint will be reached after one occurrence. This
is input by the user in the ‘Counter’ box.

A:\sort\startup.asm The breakpoint is set on a location in the given source
file.

41 The breakpoint is set to monitor ROM locations. The
ROM locations are specified as those relating to a given
line in a given source file

 The ‘Type’ box will show a selection list of possible
breakpoint monitor types and the required type is
selected by the user.

Further details of the possibilities allowed in each box are given in the
following sections.

The ‘Type’ field

This field allows the selection of a number of breakpoint types, these being:

Break at location

Micropak 870C allows execution breakpoints to be set on a memory
location specified in the ‘Location’ edit box.

Break at location if expression is true

An expression specified in the ‘Expression’ edit box is checked when the
PC reaches the location specified in the ‘Location’ edit box. If the
expression evaluates to a non-zero value then the breakpoint is considered to
have been reached.

Break at location if l-value has changed

An l-value, or data item may be specified in the ‘Expression’ edit box. This
data item is checked when the PC reaches the location specified in the
‘Location’ edit box. If the data item has changed in any way since the last
execute command was given then the breakpoint is considered to have been
reached.

Breakpoints The ‘Location’ field

Micropak 870C User Manual 89

Break when expression is true

If the expression specified in the ‘Expression’ edit box evaluates to a non-
zero value then the is considered to have been reached.

Break when l-value has changed

If the l-value (data item) specified in the ‘Expression’ edit box has changed
in any way since the last execute command was given then the breakpoint is
considered to have been reached.

The ‘Location’ field

This edit box is only enabled for the ‘Break at location’, ‘Break at location
if expression is true’ and ‘Break at location if l-value has changed’. Various
formats for this edit box are permitted. A number indicates an absolute
ROM address and can be specified in either decimal, hexadecimal (preceded
by ‘0x’ or ‘0X’) or octal (preceded by ‘0’). The alphabetic digits for
hexadecimal numbers can be in either lower or upper case. If a number is
prefixed with a period (‘.’) then it is assumed to be the line number of the
active source file. Other files can be referenced by prefixing the line
number with the filename and a pling (‘!’).

The ‘Expression/L-Value’ field

This edit box is enabled for all breakpoint types except the ‘Break at
location’ type. The text associated with it changes depending upon the
breakpoint type selected. If a ‘Break at location if expression true’ or
‘Break when expression is true’ breakpoint is selected then the text is
‘Expression’. If a ‘Break at location if l-value has changed’ or a ‘Break
when l-value has changed’ breakpoint is selected then the text is a data item.
Only static data items are allowed and they must be entered by symbolic
name.

The edit box accepts a limited C syntax for specifying expressions as
follows:-

Item value or operator

Identifier Any static variable name allowed

The ‘Length’ field Breakpoints

90 Micropak 870C User Manual

Constant Any integer value

And expression &

Equality expression == ,!=

Relational expression <.> <=,>=

Unary expression -

The ‘Length’ field

This edit box is enabled for the ‘Break at location if l-value has changed’
and ‘Break when l-value has changed’ breakpoints. It gives the number of
objects defined in l-value which are to be interrogated for changes. The
default length is ‘1’ and this should only normally be increased if the l-value
makes reference to an array of objects.

The ‘Counter’ field

This edit box is used to specify the number of times that the breakpoint is to
be met before it is considered to have been ‘hit’. The default value is ‘1’.

Adding a breakpoint

The breakpoint details must be specified by filling out the relevant edit
boxes as described in the previous sections. Once this has been completed
the ‘Add’ button should be selected. The breakpoint details will then be
transferred to the lower section of the ‘Breakpoints’ dialog box.

Viewing current breakpoints set ups

The ‘Breakpoints’ dialog box shows a list of current breakpoints and their
status. This list is scrollable and one can see all breakpoints set. Clicking
on any one of the breakpoints displayed will transfer all the details to the
fields in the upper part of the box enabling the detail of the breakpoint to be
easily checked.

Breakpoints Setting breakpoints in the source window

Micropak 870C User Manual 91

Setting breakpoints in the source window

Execution breakpoints on a single address may be set directly when
displaying the source window. This may be achieved by moving the cursor
to the required line in the window and clicking the ‘Toggle Breakpoint’ icon
to set the breakpoint.

Set a breakpoint by using this icon

The source window will show the line on which the breakpoint is set in red.
Note that the F10 key may also be used for this function.

Removing breakpoints

To remove a breakpoint, the dialog box should be activated and the
breakpoint to be removed selected from the list. On selection the details of
the breakpoint will be transferred to the individual boxes so that the user can
verify his selection. The ‘Delete’ button in the dialog box should then be
clicked and the breakpoint details will be removed from the list.

For single location breakpoints which can be seen in red in the listing
window, the ‘Toggle Breakpoint’ icon can be clicked. If the cursor is
positioned on the breakpoint and the button clicked the breakpoint will be
removed.

Enabling/disabling breakpoints

Individual breakpoints may be temporarily disabled and then re-enabled at
any time using the dialog box. The required breakpoint should be selected
and the ‘Disable/Enable’ button clicked accordingly. The current status of
each breakpoint is denoted by ‘+’ (enabled) or ‘-’ (disabled) in the
breakpoint list box.

Script file facilities Breakpoints

92 Micropak 870C User Manual

Script file facilities

Actions in script files can be controlled and triggered either by event
triggers or by script file breakpoints.

Breakpoints may be set to correspond with breakpoints set within the
simulation. The script language contains a ‘breakpoint’ function which
allows the user to specify each of the breakpoint conditions described above.

Further event triggers can be specified through the script language ‘add’
command. Here, triggers can be set to cause an event on:

• Test panel input

• Port activity

• Time -out

When a script file breakpoint or event trigger is reached the action routine
referred to will be triggered and execution of the target code suspended until
the actions have been processed.

Port Simulation Techniques Overview

Micropak 870C User Manual 93

Port Simulation Techniques

Overview

The simulation includes, for each port line, an internal and an external
‘Thevenin’ equivalent network, each of which consists of a single voltage
generator and a single series resistance. The internal network is provided
and controlled by the simulation in accordance with the internally set port
controlling conditions such as the state of the port data registers, etc.

For the external network both the voltage and series resistance can be
controlled via the user interface or the script file.

Extending the simulation in this way allows the interaction of the firmware
under test with external hardware elements such as switches, LEDs, etc., to
be investigated, allows checks on the drive capabilities of the ports and the
use of pull-ups, etc.

Pin and port windows

The Micropak 870C simulation includes all the significant pins of the target
processor. It is possible to invoke a window for any additional pin. In
addition, it is possible to show summaries of the pin information grouped as
ports. These port views show the logical values at the port.

Grouped pin information for a port

Both pin and port views can be updated by overtyping the displayed fields.

Overview Port Simulation Techniques

94 Micropak 870C User Manual

An external voltage/resistance network for every pin

An external voltage/resistance network is simulated for every pin. The
external ‘Thevenin’ network is automatically controlled by the simulation
and consists of a single resistance and a single voltage source.

The voltage and the resistance values are specified by the user and can be
changed if desired whilst the target code is running. Furthermore, the
network may also be connected or disconnected from the pin by toggling the
‘connect’ box in the pin window.

A network is provided for each pin

Assumed port characteristics

The assumed characteristics of the port hardware are as follows:

Item Assumed value
Pull-up value 70k ohms

Top CMOS
driver

570 ohms

Bottom CMOS
driver

250 ohms

Bottom high
current CMOS
driver

50 ohms

Using these networks

Including a simulation of these simple internal and external networks for
each pin allows checks on the behaviour of the internal port hardware.

Port Simulation Techniques Using script files to control port conditions

Micropak 870C User Manual 95

Consider, as an example, a case in which a particular port line was intended
in a design to be used as a permanent input, sensing the value being fed to it
by a standard CMOS buffer. In this case it would be sensible to mimic the
external CMOS buffer driver by setting the resistance value to the output
impedance of the buffer (say 100 ohms) and then specifying the data
conditions into the pin by setting the voltage of the voltage generator to
VCC or 0 (for login ‘1’ or ‘0’ respectively).

Using the simulated network in this way allows the firmware under test to
check the programming of the port. Assuming that the port line was
correctly programmed as an input, the voltage at the port input would follow
closely the rail to rail changes made in the voltage generator setting.
However, if there was a bug in the firmware under test, such that the internal
NMOS buffer on this line was inadvertently activated, the voltage shown for
the pin would deviate significantly from the expected values, highlighting
the drive contention and drawing attention to the bug.

Using script files to control port conditions

Script files can be used to set port conditions using the statements:

connect, setr and setv

Each of these statements are described below:

connect <pin>,<on/off>

This connects or disconnects the external network, depending on the single
parameter given (0 = disconnect, non-zero = connect). Disconnection is
similar in effect to setting the series resistance to an infinite value.

setr <pin>,<resistance>

The setr statement takes two parameters, the first defining the pin and the
second the series resistance directly in ohms.

setv <pin>,<volts>

This statement controls the external voltage generator associated with the
pin, using a parameter which defines the desired value directly in volts.

Using script files to check port conditions Port Simulation Techniques

96 Micropak 870C User Manual

Here is an example sequence of statements which would connect an external
voltage source of 3.6 volts to pin port 2.1 via a series resistance of 47 k
ohms:

setv 19,3.6 : rem 3.6 volts

setr 19,47000 : rem via a 47 k R

connect 19,1 : rem connect the external network

Note that the script file facilities provide a flexible mechanism which allows
the parameters of the network to be changed intelligently to provide, for
example, sinusoidal input voltages or switched loads or pull-ups.

Using script files to check port conditions

The current voltage at any pin is available to script file programs via the
getv expression:

getv(<pin>)

This takes the port pin number as a single parameter and returns the pin
voltage in volts.

Thus, for example, if the pin were to be used to drive a CMOS gate, which
was regarded as having a fixed login threshold of 2.1 volts, the script file
could derive the effective logic value as follows:

let CMOS_VALUE=(getv(19) >= 2.1)

For more details on using script files, see the associated section.

Pin numbering

The pin numbers used in these script statements correspond to the real pin
numbers on the standard package for the simulated device.

Viewing Simulated Objects Overview

Micropak 870C User Manual 97

Viewing Simulated Objects

Overview

Micropak 870C provides a number of device windows which allows the
states and activities of simulated objects to be viewed and monitored. These
windows are updated whilst the simulation is running in slow mode or at the
end of execution if running in fast mode. Micropak 870C also provides
‘Test Panel’ facilities to enable users to customise the way in which they
wish to view items.

Displaying RAM

The RAM window

The basic memo ry view facility is composed of an array of values held in a
RAM window. It is displayed by selecting ‘Device’ from the ‘Window’
menu then choosing ‘Random Access Memory’ from the list. The following
window will be displayed:

The window may be sized to include the RAM addresses required. Where
the RAM addresses are not consecutive, this can be accommodated by
opening multiple RAM windows.

Signal recording boxes Viewing Simulated Objects

98 Micropak 870C User Manual

Customised memory views

Test panel windows can be used to show customised views of memory
locations. These panels provide a good ‘application’ view of memory, as
they allow location data to be output in a form specified by the user as
applicable for the task. RAM may be displayed directly or may, for
example, be shown translated into text as decimal numbers to mimic an
application display. Further information about test panels is given later in
this section.

Signal recording boxes

What is a signal recording box?

Micropak 870C allows display of pin values as time-based plots. These are
shown in ‘signal recording boxes’ and resemble oscilloscope traces. Here is
an example:

Viewing Simulated Objects Signal recording boxes

Micropak 870C User Manual 99

Example signals box

Setting up a signal box

To set up a signal box you must first select ‘Signals’ from the ‘Window’
menu. An empty signal box window will be displayed. Items to be plotted
in the window can then be added by selecting ‘Edit Signals’ from the
‘Trace’ menu.

The following dialog box is displayed:

Type

Signals can be plotted for pins or data memory. The selection can be made
through the type box.

Pin selection

The pins to be included within any one signal window can be selected from
a list of valid pins. This list will be activated only if the pin type has be
selected.

Signal recording boxes Viewing Simulated Objects

100 Micropak 870C User Manual

Memory selection

Data items or bits may be selected from the memory type box. Symbolic
names may be given for data locations. These may be chosen from a
selection list. A module name selection list allows the user to specify the
module in which relevant symbols are declared. Alternatively an absolute
address may be given. Bit addresses should be given with a period
separating the address and the bit number e.g. 70.1. If a length is specified
for a data item the value plotted will then be taken fro m the whole memory
range.

The signal list

Once an item selection has been made, clicking the ‘Add’ button will cause
the item to be listed in the ‘Signals’ list. One plot line will be included
within the window for every item shown in the ‘Signals’ list.

Axes and scales

The scale of both the X and Y axes for the signal plot can be set by the user.
The X axis is scaled in pixels per second and the Y axis in pixels per volt.
Minimum and maximum values can also be specified for the Y axis, in
volts.

Pin Options

Three check boxes are provided so that the user can specify marker lines
they wish to be included in the signal window for pin plots. The following
options are available:

(Vdd + GND)/2 This is set at the cross-over point
between logical values 0 and 1.

GND This is set at the ground voltage.

Vdd This is set at the power supply voltage.

Viewing Simulated Objects Signal recording boxes

Micropak 870C User Manual 101

Other Options

Two check boxes are provided for users to specify options they wish to
include on pin and memory signals. These are as follows:-

0 line A marker line is set at zero volts.

Shade signals Shading between the baseline and the
plot line is included

Removing plot lines

Individual plot lines can be removed from the window by selecting the
signal from the ‘Signals’ list and then clicking the ‘Delete’ button. To
remove all plot lines click the ‘Clear All’ button.

Enabling/disabling plot lines

Individual plot lines can be temporarily disabled and then re-enabled. This
is achieved by selecting the plot line from the ‘Signals’ list then clicking the
‘Enable’ or ‘Disable’ buttons as appropriate.

The signal buffer must be enabled

The signal window will only be updated with information once the target
code has been executed, so initially the window will be devoid of signal
information. Furthermore, as updating the signal window slows the
execution speed, a check box is provided on the ‘Debug Options’ window
(displayed by selecting ‘Debug’ from the ‘Options’ menu) allowing you to
enable/disable the signal buffer:

On-chip peripherals Viewing Simulated Objects

102 Micropak 870C User Manual

 Note that this dialog box also allows you to specify the size of the signal
buffer which can hold historical information about the plots and the
frequency of the window updating. Further details on this are given in the
section on Debug options.

Viewing the results - zooming and snapping

Once the signal information has been generated the window will be updated
with the results. The window is scrollable so that the historical information
held in the signal buffer can be viewed.

You can also use the ‘Signal Zoom In’ option from the ‘Trace’ menu to
obtain a more detailed look at any specific part of the signal generated. A
‘Signal Zoom Out’ menu option is also provided if only an overview is
required.

Each time ‘Signal Zoom In’ or ‘Signal Zoom Out’ are selected the scale of
the display is changed by a factor of two. The maximum and minimum
scales are one million pixels per second and one pixel per second. The size
of the signal buffer is not linked to this scale. If a scale is selected in which
part of the display exceeds the size of the buffer, a blank signal will result.

If you choose ‘Snap Signals’, the signal window display will show the
nearest point at which the value of the item changed. Note that this may be
a position either forward or backward in the signal buffer.

On-chip peripherals

All significant on-chip peripherals have associated view boxes. These can
be viewed by selecting ‘Device’ from the ‘Window’ which displays a list of
all valid devices for the chosen processor.

Viewing Simulated Objects On-chip peripherals

Micropak 870C User Manual 103

Double-clicking a entry in the list displays the selected device window, e.g.:

The device window shows, in information fields, all state and numerical
information relevant to the device. The fields within the device window can
be overtyped or changed using selection list options if specific conditions
are required. If necessary, this can be done whilst the simulation is running.

Device Information

The types of devices available and the details associated with each are
processor dependent. Therefore, the data sheets for the particular processor
being used should be consulted for the relevant information about the
devices and their constituent parts. Toshiba provide this information on CD
and this data can be accessed directly from Micropak 870C using the
‘Device Information’ option from the ‘Help’ menu. To select device
information, the focus must be set on the appropriate device window.

Port views Viewing Simulated Objects

104 Micropak 870C User Manual

Port views

Port lines may be viewed individually as pins or in summary as a port
window.

A port line is selected by double-clicking from the list displayed when the
‘Pin’ option is chosen from the ‘Window’ menu. The pin window shows
the effective voltage on the pin and allows the specification of an external
network to be connected to the pin.

To display a complete port, select ‘Device’ from the ‘Window’ menu then
double-click the required device from the list, e.g.:

Port views give the pin values of each individual pin.

The chapter on ‘Port simulation techniques’ givers further information.

Test panel displays

What are test panels?

Test panel displays allow you to draw together a set of items, all related to a
particular test set-up, to form a display which is particularly convenient for
the tests to be carried out.

The display can be set up to show the states and contents of items such as
port conditions, memory states and script file variables. It provides users
with a convenient ‘front panel’ through which tests can be controlled and
their results monitored. An example is shown below:

Viewing Simulated Objects Test panel displays

Micropak 870C User Manual 105

Test panels allow compact views to be built up which keep related objects
together in the display. They allow, for exa mple, the states of the port lines
associated with the keys in a key scanning routine to be displayed in a
format which can accept key presses.

The resulting input facilities and display can be particularly clear and
convenient when debugging, for example, the key scanning module of an
application.

Test panel options

Options available from the ‘File’ menu and ‘Test’ menu allow test panels to
be created and edited.

Menu Panel Option

File New Panel. Select this option to create a new panel.
File Open. Select this option to open an existing panel.
Test Show Panel Palette. This option is available when a

panel is open and displays the palette window.
Test Panel Properties. Select this option to specify or

change the properties associated with an item.
Test Panel Grid Settings. Use this option to change the grid

settings for the panel and turn ‘snap to grid’ on or off.

Test panel displays Viewing Simulated Objects

106 Micropak 870C User Manual

Items in each panel can be added to the panel and subsequently moved,
edited or deleted. Each item has a set of properties associated with it (e.g. a
caption to describe the item). These properties can be changed by selecting
the ‘Panel Properties’ option from the ‘Test’ menu. To aid the user when
aligning items in panels a grid is displayed. The ‘Grid Settings’ dialog box,
displayed when the ‘Panel Grid Settings’ option is chosen from the ‘Test’
menu, can be used to turn the grid on or off.

Setting up a test panel

To set up a test panel select ‘New Panel’ from the ‘File’ menu. An empty
panel window will appear, e.g.:

Items can then be added to the panel using the palette:

The tasks allowed using the palette are described below:

Move

This option allows defined items to be moved in the test panel using the
mouse. Also, if a double-click is performed when the mouse is positioned
on an item, the ‘Properties’ dialog box for that item will be displayed.

Viewing Simulated Objects Test panel displays

Micropak 870C User Manual 107

Flag

The ‘Flag’ option specifies a test panel flag item which can take one of two
values (‘0’ or ‘1’). With default properties, the shape of the flag will be
rectangular and the condition of the flag will be shown in inverse video (i.e.
active) if it has the value ‘1’. The display of the flag can be customised with
properties options so that:-

• Colours may be selected to both for background and for the caption text.

• Different colours may be chosen to differentiate between active and
inactive states. to be shown in different colours when active and
inactive.

• Different shapes may be selected for each flag.

The state of the flag is controlled by events in the script file and can, for
example, be set to represent the state of a port line.

Bitmap

This option operates in a similar way to the ‘Flag’ option however the item
displayed is a bitmap image file rather than a simple shape. With default
properties set a simple rectangle is shown. This can be replaced by an actual
bitmap image using the test panel properties or from specific script file
instruction.

The bitmap file name must be entered together with the option the fit the
bitmap within the area marked on the test panel.

Test panel displays Viewing Simulated Objects

108 Micropak 870C User Manual

In this way bitmap images may be used for example to represent the two
positions of a toggle switch. The switch may initially set up to display the
off bit map and the script file mechanism may then be used at the
appropriate time to change the image to the on position.

Button

The ‘Button’ option allows button event inputs to be entered by the user.
The buttons are displayed in normal video and the mouse may be used to
click on the button. The displayed button will then be set to show its
‘pushed’ state. When the button is released, an event associated with the
button press will then be generated. This mechanism allows users to control
events in script files. For example, a button event may be used to trigger a
script file event which will set the conditions required for a simulated real
button press in the hardware.

Text box

This option allows text to be displayed in a test panel. This enables the user
to annotate test panels, making testing easier.

Edit box

This option allows text to be entered into the test panel and text output to be
shown in the test panel. This mechanism allows the user to input text and
numbers which may be required to trigger events in the script file. Output
generated by events occurring in the firmware may also be shown, for
example, displaying the contents of a location when a breakpoint is reached
in the firmware. The script file can be set up to monitor the breakpoint and
trigger an event which will display the required locations when this occurs.

Properties

Each item in a test panel has a number of properties associated with it,
which may be specified or changed using the ‘Panel Properties’ menu
option or by double-clicking on the item after the ‘Move’ option in the test
panel edit palette has been selected.

An example of the Flag Properties dialog box is given below. Please note
that the Shape and Colour property options are not included for Text and
Button items.

Viewing Simulated Objects Test panel displays

Micropak 870C User Manual 109

The properties which can be specified are given below:

Property Meaning

Identity The ‘Identity’ property allows the item to be linked to statements
given in the script file. For example, the script file will use the
‘Identity’ to test panel flag values when actioning events.

Caption The item ‘Caption’ allows the user to give the item a caption which
is displayed in the test panel.

Shape The shape of flag item.

Colour The colours of the components of the flag items

File Name The name of a bitmap image file

Stretch to
Fit

Option to specify that a specified bitmap image should be stretched
to fit into a defined area on a test panel

Test panel displays Viewing Simulated Objects

110 Micropak 870C User Manual

Source Debugging Overview

Micropak 870C User Manual 111

Source Debugging

Overview

There are several facilities provided by Micropak 870C to aid source
debugging. These facilities are as follows:

• Quick Watch. Displays snapshot information about a selected
object or structure.

• Watch. Displays constantly updated information about objects.

• Locals. Displays constantly updated information about local
variables currently in scope.

• Call Stack. Displays the current call stack.

• Registers. Displays constantly updated register contents.

• Browser Shows all function names and source file names.

With the exception of ‘QuickWatch’ any combination of these functions
may be run simultaneously in a test environment. Each of these facilities is
described in this section.

Source Windows

MP870C allows you to open one or more views of the source code you are
debugging. This allows you to watch the progress of execution through
different parts of you code and also allows you to edit the code held in
different modules directly.

Whenever code is executing in ‘Slow Mode’ the yellow PC bar will track
the execution of code in a source window. The PC bar will move between
any open source windows. If a new window is required to show the PC bar,
MP870C will automatically open it and display it on top of the previously
activated source window.

Quick Watch Source Debugging

112 Micropak 870C User Manual

The current window focus may be set by the user either into a source
window or into any of the non-source windows. If the focus is set in a
source window, MP870C will automatically change the current window
focus between open source windows so that the focus or active source
window is changed when the PC changes. If the focus is not set in a source
window, the focus will not be changed. MP870C will however place the
source window currently showing the PC on the top of any ‘Z’ ordered
source windows open, so that the user may view the currently executing
source.

To tidy the display the use may choose ‘Stack Source Windows’ from the
Windows menu. This will place all open source windows in a Z order with
the active window on top.

You may edit any of the source windows, however please note that changes
to the source code will not become effective until a project rebuild is made.

Quick Watch

The purpose of the ‘Quick Watch’ facility is to enable you to quickly
inspect a variable or type. This is achieved by moving the cursor into the
variable name to be interrogated then selecting ‘QuickWatch’ from the
‘Debug’ menu or clicking the ‘QuickWatch’ tool bar icon:

When selected, a window displaying information about the selected item is
displayed:

Source Debugging Watch

Micropak 870C User Manual 113

To expand an object which refers to a structure such as a pointer, click the
‘Zoom’ button.

If the variable is of simple type it may be modified by clicking the ‘Modify’
button. The ‘Modify Variable’ dialog box will be displayed which allows a
new value for the variable to be input.

If you wish to subsequently monitor an item on an ongoing basis, the ‘Add
to Watch’ button may be clicked to transfer the item to the ‘Watch’ window
and simultaneously close the ‘QuickWatch’ window.

Note that the variable being inspected must be in scope.

Watch

This facility allows the ongoing viewing of items while they are being
constantly updated by the executing program. It is selected by either
choosing ‘Watch’ from the ‘Window’ menu or by clicking the ‘Add to
Watch’ button from the ‘QuickWatch’ menu.

In either case a window similar to the following is displayed:

Any items transferred from the ‘QuickWatch’ facility will be displayed at
the top of this window.

Adding items to the ‘Watch’ window

Further items can be added to the ‘Watch’ window in one of two ways:

• By transferring other items from ‘QuickWatch’ dialog box.

Locals Source Debugging

114 Micropak 870C User Manual

• By typing the name of the item to be monitored.

This latter method is accomplished by clicking the edit cursor into the next
empty line on the ‘Watch’ window (i.e. either the first line of the display
area or the blank line below the last item already displayed) and pressing the
‘Enter’ key. The text is checked and if it is a valid item, the value is
displayed and updated accordingly. If the item is invalid the text
‘<undefined>‘ will be displayed adjacent to it.

Locals

The ‘Local’ function displays constantly updated information about local
variables currently in scope. When selected this facility will continuously
update the ‘Locals’ window, both with the variables in scope and their
respective values.

Note that, in addition to displaying the variable name and its current value,
the variable type is also shown.

The ‘Locals’ window is displayed by selecting ‘Locals’ from the ‘Window’
menu:

Call Stack

This window, when selected, displays the function call stack of the current
program. To view the call stack select ‘Show Call Stack’ from the ‘Debug’
menu. A window similar to the following is displayed:

Source Debugging Registers

Micropak 870C User Manual 115

The most recently called function is displayed at the top of the window and
the oldest function is displayed at the bottom. The currently active function
is highlighted which allows you to assess the local variables which can be
accessed from the stack frame for debugging.

From this window you can go to the source file required by clicking the ‘Go
to’ button. If the highlighted function is the most recently called the cursor
will be placed in the source file at the current PC position. For other
functions the cursor will be placed in the source file at the point at which
control returns to the function.

Registers

The contents of the registers can be monitored by selecting ‘Registers’ from
the ‘Window’ menu. A window similar to the following is displayed:

Browser

Browser information showing function names and all modules are displayed
in this window. Clicking on any item will automatically open the source file
and place the cursor over any specific function selected.

Browser Source Debugging

116 Micropak 870C User Manual

Using Script Files Overview

Micropak 870C User Manual 117

Using Script Files

Overview

Micropak 870C can process sets of commands contained in script files.
These commands can set or check conditions in the simulated system and
can be used to run tests automatically or to mimic the behaviour of external
hardware.

The command format resembles a simple high level language such as
BASIC. The functions which are provided are chosen to simplify the
selection of predefined tests or the simulation of external events or items.

Test panels may be used both to display the results of the script processing
events and pass input, via user action, to the script processing function.

Script files - Purpose and uses

Script files allow users to extend and customise the simulation facilities and
in particular to:

• Extend the simulation by providing automatic handling of
external events. The script file facilities allow the behaviour of
external hardware and other devices to be simulated
automatically.

• Set up semi -automatic control of testing sessions. This allows the
running of repetitive or regression tests semi-automatically, by
setting up RAM data, running code sessions and checking results.

Test panels and their relation to script files

Test panels are used to provide a user defined, and application specific, user
interface to the program under test via script files facilities. They allow, for
example, port lines to be controlled by simple ‘point and shoot’ actions
whilst the target code is running.

Script files - Purpose and uses Using Script Files

118 Micropak 870C User Manual

Examples of script file and test panel uses

The flexibility and power of the script file and test panel combinations allow
them to be used in many differing ways, for example:

• Simulating the relationship between triac devices and a delayed
thermistor reading in a heater control application, using test
panels to display the drive, critical temperatures and effective
power applied. Script files could be used to model the changes in
performance and relations between the peripheral elements
associated with a range of mains voltages or thermal
characteristics. They could also show the average main voltage at
switching points - allowing the accuracy of zero-cross switching
algorithms to be assessed.

• Simulating a DC motor. The script file could be used to relate
acceleration to drive signals and relate speed to back-emf, etc.,
building up to an accurate model of a physical motor.

• Simulating custom LCDs with simple test pattern flags.

• Modelling membrane keypads or other switch inputs, including
switch bounce and other non-ideal characteristics.

• Generating serial bit streams such as asynchronous data at
differing baud rates to test firmware implemented UART
decoding.

• Simulating the performance of firmware implemented ADCs by
modelling the functions of external comparators/ RC networks,
etc.

• Checking zero cross timing handling by generating a range of
waveforms or mixtures of waveforms on the associated pins, etc.

• Modelling the known characteristics of real sensors (such as pulse
generating flow sensors). Test panels would allow the user to set
and display flow rates, whilst the script files could convert this to
a pulse train at an appropriate frequency.

• Simulating inertia of stepper motors, therefore detecting
conditions where the firmware ramps the drive speed too quickly.

Using Script Files The script language

Micropak 870C User Manual 119

It can be seen that the applicability of the test panel and script file
combination is very wide ranging. It is particularly advantageous in that
extensive testing can be performed in the simulated environment before any
hardware is ready, or when the consequence of generating incorrect control
signals in the real environment would be undesirable. The environment is
also very suitable for theoretical and repeatable testing, allowing, for
example, one control algorithm to be tested against another in standard
conditions.

Module testing is an activity for which the simulated environment is ideal,
allowing data tests to be set up easily, and run semi-automatically under the
control of an appropriate test panel.

The script language

The grammar and syntax

Here is a summary of the main features of the script file grammar and
syntax. For a full, formal definition in modified Backus-Naur Form, see the
script file syntax shown as an Appendix.

Here is an informed, narrative description of the grammar and syntax:

Statements and lines

Script files are made up of statements.

• Statements must end with a terminator which can be either a
normal end of line (i.e. line feed or carriage return/line feed pair),
or a colon character, ‘:’

• Null statements (such as blank lines) are allowed

• Most statements follow a simple logical format, which is very
similar to BASIC

Here is an example of a single line statement:

let SignalVolts = sin(TimeBase)

Here is another example showing two statements on a single line, separated
by the ‘:’ character:

let A = B + C : let D = D * E

Script file variables Using Script Files

120 Micropak 870C User Manual

Elements of script file statements

Script statements are composed from a number of different elements. These
are as follows:

Keywords Identify statement types (such as ‘if’, ‘poke’, ‘goto’,
etc.), built-in functions (such as ‘sin’, ‘cos’, ‘atan’, etc.)
and qualifiers (such as ‘button’, ‘pin’, ‘edit’). Note that
keywords must be in lower case.

Variables Identify user data variables. Examples include
‘MyVar’, ‘SignalVolts’, ‘timebase’ and
‘StartButtonId$’. Variables can be integers, real or
strings.

Operators These allow variables and functions to be combined
where necessary to form expressions, such as ‘Scale *
cos(timebase)’, where the ‘*’ is the multiplication
operator.

These elements are described in more detail in the sections which follow.

Note on comment delimiters

The ‘rem’ statement allows the insertion of comments. Because it is a
statement it must be preceded by a terminator to separate it from any other
preceding statements on the same line.

The apostrophe character, ', can be used anywhere on a line to introduce a
comment and does not need a preceding terminator.

In both cases the comment is considered to last until the next end of line and
comments can therefore include ‘:’ characters.

Script file variables

Internal script file variables are required in order to control and action
events. The table below lists the type of variables available:

Type Description
Integer Holds integer values. The variable name is suffixed

with the ‘%’ character (e.g. ‘count%’).

Using Script Files Script operators and expressions

Micropak 870C User Manual 121

Real Holds floating point values (e.g. ‘value’).

String Holds string values. The variable name is suffixed with
the ‘$’ character (e.g. ‘name$’).

Variable identifiers

The following set of rules is applied to variables:

• Variables are named by the user

• They need not be declared before use

• There is no significant limit on the length of variable identifiers

• They cannot be reserved words.

The Micropak 870C script file processor is case-insensitive, so, for example,
‘SIGNAL’ and ‘signal’ will be treated as the same variable.

Examples of variables
Name Notes

SignalVoltage A real (i.e. floating point) because it has no ‘%’ or ‘$’
suffix.

ButtonName$ A string (has a ‘$’ suffix).

SignalVolts% An integer (i.e. a 32-bit signed number) because it has a
‘%’ suffix.

Numeric type conversions

Like BASIC, the script facilities provide automatic type conversion, as and
when appropriate, between Real and Integer values. These types can be
mixed in numeric expressions and built-in functions, such as ‘abs(<numeric
expression>)’ or ‘cos(<numeric expression>)’, can be called with either type
or a mixed numeric expression as a parameter.

Script operators and expressions

Here is an informal list of the various operators supported by the script file
processor when evaluating expressions. A formal definition of the full
syntax of the script language is in the Appendix.

Script operators and expressions Using Script Files

122 Micropak 870C User Manual

Item Purpose

* Multiplication operator

/ Division operator

> Relational greater than operator

>= Relational greater than or equal to operator

< Relational less than operator

<= Relational less than or equal to operator

= Relational equal operator

<> Relational not equal operator

+ Addition operator

- Arithmetic negation operator and subtraction operator

^ Exponentiation operator (raise to the power)

and Logical and operator

eqv Logical equivalence operator

imp Logical implication operator

not Logical complement operator

or Logical inclusive-or operator

xor Logical exclusive-or operator

Script operator precedence and associativity

Operator Description Precedence Associativity

^ raise to power 0 left

- unary minus 1 right

* multiplication 2 left

/ division 2 left

+ addition 3 left

- subtraction 3 left

Using Script Files Script file execution and control flow

Micropak 870C User Manual 123

> greater than 4 left

>= greater than or equal 4 left

< less than 4 left

<= less than or equal 4 left

= equal 4 left

<> not equal 4 left

not logical not 5 right

and logical and 6 left

or logical or 7 left

xor logical exclusive-or 8 left

imp logical implication 9 left

eqv logical equivalence 10 left

Example expressions

let A = B + C * D + Param ^ Power : rem real numbers
let A$ = NICK$ + NAME$: rem string concatenation

Note - String Expressions

For string expressions, ‘+’ (concatenation) is the only supported operator.

Script file execution and control flow

Files built from statements

Script files are divided into executable statements.

Script file execution and control flow Using Script Files

124 Micropak 870C User Manual

Events start script execution from labelled entry points

Within a script file labels show entry points at which the script file actions
can commence. In operation, the execution of the commands in the script
file is triggered by ‘events’. These events can be user key strokes, script file
breakpoints, or the passage of simulated real-time in the target system.
When a nominated event occurs, execution of the script file commands is
started at the labelled entry point associated with that event.

Control flow

Execution normally follows sequentially from the first statement to the next
statement in the file, however, control transfers using ‘goto label’ and
‘gosub label’ statements are possible.

Execution always begins at a labelled entry point and continues until an
‘end’ statement is reached. If the Micropak 870C simulation was executing
code when the originating event occurs, it is suspended whilst any script file
segment is still running.

When all segments have run to completion, the simulator execution is
resumed.

More on script file events

Script files can be driven by events. An event trigger must first be set up to
drive an event. There are five different types of trigger, these being
‘breakpoint’, ‘button’, ‘edit’, ‘pin’ and ‘timeout’. Each event, and how to
set up its trigger, is described in the subsequent pages.

All event handlers have a similar format. A simple code skeleton would
look something like this:

event:
commands...
end

The label ‘event’ is the label associated with the event trigger. The ‘end’
command goes at the end of any other commands in the event handler. This
indicates that the event has finished.

Using Script Files Script file execution and control flow

Micropak 870C User Manual 125

Breakpoint events

These events occur when breakpoint conditions, s imilar to the ones that can
be defined in the ‘Breakpoints’ dialog box, are met. These breakpoints are
not, however, displayed in the dialog box nor do they stop execution of the
simulator. Instead, they cause a section of the script file to be run. The
simulator can be stopped from here, if necessary, by executing a ‘stop’
command.

Breakpoint event example

The following piece of code sets up a location breakpoint event trigger at
the address of the function call to SetMotorPort. This is on line 197 in the
file “main.c”. The location breakpoint is hit whenever the PC reaches this
location (indicated by the value ‘1’ for the count argument). The script file
code at label “breaklabel” is run when this occurs. The integer variable
‘bp1%’ holds the event number for the breakpoint. This is used when the
breakpoint is no longer needed and can be deleted.

bp1% = breakpoint(0, "main.c!197", "", 0, 1)

The following code will action the breakpoint event trigger ‘bp1%’:

on event(bp1%) run breaklabel

on event(bp1 %) on

For more information refer to the descriptions for the ‘on event’ and ‘event’
commands and the ‘breakpoint()’ function.

Button events

These occur when buttons are pressed and released in test panels.

Button event example

The following piece of code sets up a button event trigger within a test panel
with ID ‘start’. Note that a test panel containing such a button need not
exist when the script file is run. This is because the links between the script
file and the button are only made when the instruction itself is run.

start% = button("start")

Identifies the button ‘start’ with the variable start%.

on event(start%) run startlabel

Script file execution and control flow Using Script Files

126 Micropak 870C User Manual

event(start%) on

Edit events

These occur when edit boxes in test panels are modified and then lose their
input focus. Note that if a script file updates an edit box through an edit
command then any modifications will be lost.

Edit event example

The following piece of code sets up an edit box event trigger on an edit box
within a test panel with ID ‘duration’. Note that a test panel containing such
a button need not exist when the script file is run. This is because the links
between the script file and the button are made only when the instruction
itself is run.

a% = edit("name")

Returns a string holding the contents of the test panel edit box with identity
“name”.

on event(a%) run durationlabel

event(a%) on

Pin events

These occur when there is a voltage change at a pin.

Pin event example

The following piece of code sets up a pin event trigger on a pin in the
processor. ‘SCK%’ is an integer variable defining the pin number of the
serial clock (SCK) pin.

a% = pin(SCK%)

on event(a%) run event

event(a%) on

Timeout events and timeout event example

The following piece of code sets up a timeout event trigger. The event will
occur after “TIME” seconds has elapsed in simulated time. In the example
given, “TIME” is a real variable:

Using Script Files Identities in script files

Micropak 870C User Manual 127

time% = timeout(TIME)

on event(time%) run timelabel

event(time%) on

Identities in script files

There are numerous script commands and functions that make references to
objects in test panels: the commands are ‘setedit’, ‘setflag’; the functions are
‘button()’, ‘edit()’, ‘getedit()’ and ‘getedit$()’.

Objects in test panels are referenced through identities. These are strings
which identify and name test panel objects. In the commands and functions
these are given as simple string expressions.

Links to test panel objects are made at run time. Therefore, when a script
file is executed it is only necessary for the test panel object to exist if a
command to which it is referenced is encountered. If by mistake an object
does not exist then an error message is displayed.

An object in a test panel which can be referenced from a script file has an
identity (ID) associated with it. When an object is created in a test panel it
is given a default identity. This can be re-defined by displaying the
properties dialog box for that object, and modifying the text in the ID edit
box. It is recommended that IDs are customised for each object.

Example

start% = button("start")

Identifies the button “start” with the variable start%.

on event(start%) run startlabel

event(start%) on

These commands add a button event trigger and turn it on. When the test
panel button with identity ‘start’ is pressed (and then released) it will cause
the script code at label ‘startlabel’ to be executed.

event(start%) kill

Script keywords Using Script Files

128 Micropak 870C User Manual

Deletes the button event trigger fro m the button in the test panel with
identity ‘start’. This in effect kills off the event trigger which was added in
the first example.

setedit "duration", 4

Sets the contents of the test panel edit box with identity ‘duration’ to ‘4’.
Note that the second argument to the edit command can be an expression of
type integer, real or string.

setflag "pulse", 1

Sets the test panel flag with identity “pulse” to the highlighted state. The
second argument to the flag command is a numeric expression. The flag is
highlighted when the expression evaluates to any value other than zero.

a% = getedit("duration")

Returns the numeric value of the test panel edit box , ‘duration’. It returns a
real argument. In the example above it is type converted to an integer.

a$ = getedit$("name")

Returns the string value of the test panel edit box with identity ‘name’.

a% = edit("duration")

on event(a%) run durationlabel

event(a%) on

Adds an edit box trigger. When the test panel edit box with identity
‘duration’ is modified and the input focus lost, the code at label
‘durationlabel’ will be executed. Note that if a script file updates the edit
box through the edit command then any modifications will be lost.

event(a%) off

Turns off the edit box event trigger but does not remove it from the edit box.

Script keywords

These keywords define script statements, qualifiers and built-in script
functions. They are described more fully in the following sections.

Using Script Files Script keywords

Micropak 870C User Manual 129

For a formal definition of the full syntax of the script language, see the
script file formal syntax description given as an Appendix.

Item Purpose

abs Script function - returns the absolute value of a numeric expression.
acos Script function - returns the arc cosine of a numeric expression.
asc Script function - returns ASCII value of a character.
asin Script function - returns the arc sine of a numeric expression.
atan Script function - returns the arc tangent of a numeric expression.
breakpoint Script function - creates a breakpoint event.Returns an event number.
button Script function - creates a test panel button event.Returns an event

number.
chr$ Script function - returns ascii character of a given numeric value
close Close a file stream.
connect Script statement - connects/disconnects Thevenin network to pin.
cos Built-in script function - returns the cosine of a numeric expression.
dim Dimension statement to set dimensions for a script array.
edit Script function - creates a test panel edit box event. Returns an event

number.
else Used with ‘if’.
elseif Used with ‘if’.
end Script statement - specifies the end of an event.
endif Used with ‘if’.
event
event on
event off
event kill

Script statement - provides control for breakpoint trigger events.
Turns on a breakpoint trigger events.
Turns off a breakpoint trigger event.
Delete a breakpoint trigger event.

exit Exit from the script file.
exp Built-in script function - returns the value of an exponential function

with ‘e’ as its base.
for Script statement - specifies the start o f a for loop in the script file.
getedit Script function - allows data to be returned from, a test panel edit

box. Returns a value from a test panel edit box.
getedit$ Built-in script function - returns strings from a test panel edit box.
getfc Built-in script function - returns the main clock value.

Item Purpose

getfs Built-in script function - returns the system clock value.
getrr Built-in script function - returns register value eg

PC,HL,IY,SP,WA,IX.
gettime Built-in script function - returns the simulation time.
getv Built-in script function - returns (gets) the voltage value at a pin.
global Script function - returns the value of a global C variable.

Script keywords Using Script Files

130 Micropak 870C User Manual

go Script statement - starts the execution of the target code.
gosub Script statement - performs an event in the script file as a subroutine

and returns here on encountering a return or an end statement.
Goto Script statement - transfers script control to the label specified as the

destination.
If Script statement - conditional statement allows the behaviour of the

script file to be adapted automatically to actions and states that occur
in the target system.

input Script statement for inputting data from a file.
Left$ Script function - returns the left n characters of a string.
Len Script function - returns the length of a string.
Let Script statement - assignment.
Local Script function - returns the value of a local C variable.
Mid$ Script function - returns the middle part of a string.
Next Used with ‘for’.
On event
run

Script statement - conditional statement to allow parts of script files
to be run conditionally.

Open Script statement for opening a file.
Peek Built-in script function - returns a value from target memory.
Poke Script statement - puts a value to target memory.
Pin Statement qualifier, used with ‘add’ and ‘delete’.
Print Script statement for writing data to a file.
Rem Script statement - introduces a comment.
Repeat Script statement - used with ‘until’ for control loops.
Return Script statement - specifies the end of a script file subroutine.
Right$ Script function - returns the right part of a string.
Setbitmap Script statement - specifies a bitmap file to be displayed
setedit Script statement - allows data to be output to a test panel edit box.
Setflag Scrip t statement - allows data to be output to a test panel flag box.
Setrr Script statement - sets the target register to a given value eg

PC,HL,IY,IX,SP,WA
Setr Script statement - sets the resistance value for the external Thevenin

network of a pin.
Setv Script statement - sets the voltage generator value for the external

Thevenin network of a pin.

Item Purpose

sin Built-in script function - returns the sine of a numeric expression.
sgn Built-in script function - returns the sign of a numeric expression.
sqr Built-in script function - returns the square root of a numeric

expression.
step Used with ‘for’ statement to define the loop increment.
stop Script statement - stops the execution of the target code.
tan Built-in script function - returns the tangent of a numeric expression.

Using Script Files Script file commands and functions - detailed descriptions

Micropak 870C User Manual 131

then Used in ‘if’ statements.
timeout Script function - creates a timeout event. Returns an event number.
until Used with ‘repeat’.

Note that some script operators are also reserved words (e.g. and, xor, etc.).

Script file commands and functions - detailed
descriptions

This section describes the various script file commands and functions in
detail. They are given in alphabetical order.

ABS

Script file function. Returns the absolute value of a numeric expression.

Format

abs(<value>)

value input parameter (numeric expression)

Example

a = abs(-1.6) 'would return 1.6

ACOS

Script file function. Returns the arc cosine (in radians) of a numeric
expression.

Format

acos(<value>)

value input parameter (numeric expression)

Example

a = acos(1) 'would return 0

AND Using Script Files

132 Micropak 870C User Manual

AND

Logical and operator. The and operator performs a bitwise operation on two
integer operands.

The truth table for the operator is:

X Y X and Y

1 1 1

1 0 0

0 1 0

0 0 0

Example

a% = b% and c%

ASC

Script file function. Returns the ASCII value associated with a character.

Format

asc(<char>)

char input parameter (character)

Example

a% = asc("A") 'would return 65

ASIN

Script file function. Returns the arc sine (in radians) of a numeric
expression.

Format

asin(<value>)

Using Script Files ATAN

Micropak 870C User Manual 133

value input parameter (numeric expression)

Example

a = asin(1) 'would return pi / 2

ATAN

Script file function. Returns the arc tangent (in radians) of a numeric
expression.

Format

atan(<value>)

value input parameter (numeric expression)

Example

a = atan(1) 'would return pi / 4

BREAKPOINT

This is a function which allows the details of breakpoints to be set in script
files.

Breakpoints set in this way act as event triggers. The specification of
breakpoints in this function allow a similar range of options to those
provided by the user breakpoint facility in the simulator (which is accessed
via the Breakpoints dialog box).

When the breakpoint is reached the event handler associated with the
breakpoint will be triggered.

The value returned by the function is an event number which identifies the
breakpoint event. This should be stored for use later on when the event is
no longer needed, and can be deleted.

Format

breakpoint(<type>, <location>, <expression>, <length>, <count>)

type Breakpoint-type

0 - location reached
1 - location reached and given expression true

BREAKPOINT Using Script Files

134 Micropak 870C User Manual

1 - location reached and given expression true
2 - location reached and given expression changed
3 - expression true 4
- expression changed

location A program location or address.

A numeric ROM address may be given. A
source line number of the active source file may be given
prefixed with a ‘.’ A
file name followed by a ‘!’ and then a line number may be
given.

expression Any L-Value expression may be given.

length The length of the data in the expression may be given.

Counter An integer expression or value specifying the number of
times the break condition should be reached before an
event is triggered.

Examples

This first example creates a location breakpoint event. The condition to
trigger the event will be a location condition occurring (1) times, when the
PC reaches line 100 in the source file "coreb.c". Note that the expression
and length fields contain dummy values ("" and 0). For this type of
breakpoint they are not used. The breakpoint event number is stored in
bp1% for use later on when the event needs to have a label associated with
it, be turned on, off or deleted (see the EVENT statement).

bp1% = breakpoint(1, "coreb.c!100", "", 0, 1)

This second example creates an l-value changed breakpoint event. The
condition to trigger the event is a modification to the l-value "myvar". Since
myvar is not an array we specify 1 in the length field. Had it been, then we
could have specified 1, 2… up to the number of elements in the array. The
count field is set to 1, which means that we want the event to occur every
time the l-value is modified.

bp2% = breakpoint(1, "", "myvar", 1, 1)

Again, the breakpoint event number is stored, this time in bp2%, for use
later on.

Using Script Files CHR$

Micropak 870C User Manual 135

CHR$

Script file function. Returns the ASCII character associated with a numeric
value

Format

chr$(<value>)

value input parameter (numeric expression)

Example

a$ = chr$(65) 'would return "A"

CLOSE

Close a file.

Format

close [#]<file-number>

file-number a valid file number (numeric expression) as obtained from
the open statement.

Example

close #1

CONNECT

Connects/disconnects Thevenin network to a pin.

Format

connect <pin-number>, <connect, disconnect>

pin-number a valid pin number (numeric expression)

connect, disconnect value 1 or 0 to show connected or disconnected (numeric
expression)

COS Using Script Files

136 Micropak 870C User Manual

Example

connect startpin%, 1

COS

Script file function. Returns the cosine of a numeric expression (in radians).

Format

cos(<value>)

value input parameter (numeric expression)

Example

a = cos(2 * 3.1415926 / 6) 'would return (approximately) 0.5

DIM

Script file declaration. Declares the dimensions of a script variable array.

Format

dim <variable>(<dimension>{, <dimension>…})

variable the array variable

dimension a dimension of the array.

Example

dim display$(10) 'would dimension an array of 10 strings

The statement to access elements in the array is:

name$ = display$(3)

EDIT

Specifies that a breakpoint trigger event is to be set on a test panel edit box.
This is a function which returns an event trigger number.

Using Script Files END

Micropak 870C User Manual 137

Format

edit(<identity>)

identity name of a test panel edit box

Example

flagvar% = edit("DISP")

on event(flagvar%) run toggle

event(flagvar%) on

END

Specifies the end of an event. Control will flow through events in the script
file until this command is reached.

Example

end

EQV

Logical equivalence operator. This operator performs a bitwise operation
on two integer operands. The truth table for the operator is:

X Y X eqv Y
1 1 1

1 0 0

0 1 0

0 0 1

Example

a% = b% eqv c%

EVENT

Allows event triggers to be turned on or off or deleted.

EVENT Using Script Files

138 Micropak 870C User Manual

Event trigger actions are specified by setting the value from an event
function to a script file variable. The script file variable is then used to
specify the event. The possible event functions are breakpoint, button, edit,
pin and timeout. You should refer to the relevant section of this manual for
details of the functions.

The action routine to be run when the event occurs is specified by the ON
EVENT statement.

Both the button and edit formats below refer to objects in test panels. A
button event is triggered when a test panel button is pressed and then
released. An edit event is triggered when an edit box in a test panel is
modified, and the edit box then loses the input focus. Note that if a script
file updates the edit box then any modifications will be lost. The pin format
refers to the pin on the processor. A pin event is triggered whenever there is
a voltage change at the pin in question.

Format

event(<identity>) <status>

identity the identity of the event a script file variable

status on - turn the event on

off - turn the event off

kill - remove the event

Examples

timer% = timeout(0.5)

on event(timer%) run toggle

event(timer%) on

press% = button ("start")

on event(press%) run toggle

event(press%) on

Using Script Files EXP

Micropak 870C User Manual 139

EXP

Script file function. Returns the value of an exponential function with ‘e’ as
its base.

Format

exp(<value>)

value input parameter (numeric expression)

Example

a = exp(2) 'would return ‘e’ raised to the power 2

FOR - TO - [STEP]

Specifies the start of a for loop in the script file. This allows commands in a
script file to be repeated a specified number of times.

Format

for <control> = <start> to <end> [step <increment>]

control an internal variable which will be incremented each time around the
loop

start the starting value to be set (numeric expression)

end an ending value against which the contents of the control variable
will be checked. When the control variable value matches the end
value, the for loop will be terminated (numeric expression)

increment an optional step increment to be added to the control variable
(numeric expression)

Example

for count% = 0 to 10

for count% = start% to end% step 2

GETEDIT($) Using Script Files

140 Micropak 870C User Manual

GETEDIT($)

Script file function. Allows data and strings to be returned from a test panel
edit box.

Format

getedit(<identity>)

getedit$(<identity>)

identity input parameter (string expression)

Example

a$ = getedit$("string")

GETFC

Read the frequency of the main system clock.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

getfc()

Example

clock = getfc()

GETFS

Read the frequency of the sub-system clock. This statement may not be
used on its own but must be used as an expression within other statements.

Format

getfs()

Example

subclock = getfs()

Using Script Files GETrr

Micropak 870C User Manual 141

GETrr

Read the current value of the specified register. This statement may not be
used on its own but must be used as an expression within other
statements.Valid registers are PC,SP,HL,IX,IY,WA

Format

getpc()

Example

reg% = gethl()

GETTIME

Obtain the currently held simulation time. This time is expressed in
seconds. This statement may not be used on its own but must be used as an
expression within other statements.

Format

gettime()

Example

simtime = gettime()

GETV

Read the voltage on a pin. The voltage read is expressed in volts.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

getv(<pin-number>)

pin-number a valid pin number (numeric expression)

Example

setv startpin%, getv(Gnd%)

GLOBAL Using Script Files

142 Micropak 870C User Manual

VOLTS = getv(9)

GLOBAL

Returns the value of a global variable in the program under simulation. The
l-value given must resolve to a simple type, either an integer or floating
point value. If it does not, or the l-value is invalid then zero is returned.
You can use the C dereference operator *, or the member access operators .
and ->, when specifying the l-value.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

global(<l-value>)

l-value the global variable to retrieve (numeric expression)

Example

a% = global("myvar")

GO

Starts the execution of the target code. There are no parameters.

Example

go

GOSUB

Perform an event in the script file as a subroutine and return here on
encountering a return statement or an end statement.

Format

gosub <label>

label the label of the event to be performed

Using Script Files GOTO

Micropak 870C User Manual 143

Example

gosub show

GOTO

Transfers control to the label specified.

Format

goto <label>

label the label of the destination

Example

goto show

IF - THEN - [ELSEIF] - [ELSE] - ENDIF

A conditional statement which assesses the value of an expression and
performs a set of statements if the condition is found to be true.

Optionally, a different block of statements may be performed if the
expression is not found to be true. Statement blocks are terminated by the
ELSEIF, ELSE or the ENDIF, whichever is appropriate.

Format

if <expression> then <statement block> {elseif <statement block>} [else
<statement block>] endif

expression which can be evaluated to true or false (numeric expression)

statement
block

one or more statements in a block. The block is terminated by either
elseif, else or endif

Example

if getv(driv1%) < threshold then

setflag "MOTOR1", 0

elseif

IMP Using Script Files

144 Micropak 870C User Manual

setflag "MOTOR1", 1

endif

IMP

Logical implication operator which performs a bitwise operation on two
integer operands. The truth table is as follows:

X Y X imp Y
1 1 1

1 0 0

0 1 1

0 0 1

Example

a% = b% imp c%

INPUT

Obtains a value from a file.

Format

input #<file>, <item>[, <item>…]

file number of the file as given on open

item name of a script file variable

Example

input #1, driv1%

LEFT$

Script file function. Returns string value which is the left part of the given
string.

Using Script Files LEN

Micropak 870C User Manual 145

Format

left$(<string>, <length>)

string input parameter (ASCII string)

length length of the returned string

Example

name$ = left$("Henry Bloggs", 5) 'would return "Henry"

LEN

Script file function. Returns a numeric value which is the length of a given
string.

Format

len(<string>)

string input parameter (ascii string)

Example

length% = len("Henry Bloggs") 'would return 12

LET

Assigns a value to an internal script file variable. The LET is optional.

Format

[let] <item> = <value>

item name of a script file variable (string expression)

value input parameter (numeric expression)

Example

let driv1% = 9

LOCAL Using Script Files

146 Micropak 870C User Manual

LOCAL

Returns the value of a local variable in the program under simulation. The
l-value given must resolve to a simple type, either an integer or floating
point value. If it does not, or the l-value is invalid then zero is returned.
You can use the C dereference operator *, or the member access operators .
and ->, when specifying the l-value.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

local(<l-value>)

l-value the local variable to retrieve (numeric expression)

Example

a% = local("myvar")

MID$

Script file function. Returns string value which is the middle part of the
given string.

Format

mid$(<string>, <start>, <length>)

string input parameter (ASCII string)

start input parameter start position in the string

length length of the returned string

Example

name$ = mid$("Henry James Bloggs", 7, 5) 'would return
"James"

Using Script Files NOT

Micropak 870C User Manual 147

NOT

Logical not operator which performs a bitwise operation on an integer
operand.

The truth table for this operator is as follows:

X not X
1 0

0 1

Example

a% = not a%

OPEN

Open a file for capturing data or inputting data.

Format

open <file-name> [for <mode>] [access <access>] [<lock>] as
[#]<expression>

file-name name of the file to be opened

mode for mode type which is one of :-

append input
output

access read [write] write

lock shared lock
read [write] lock
write

expression numerical expression between 1 and 255 to identify the file

Example

open "serdata.txt" for input access read as #1

open "test1.txt" for append access write as #2

OR Using Script Files

148 Micropak 870C User Manual

OR

Logical or operator which performs a bitwise operation on two integer
operands. The truth table is as follows:

X Y X or Y
1 1 1

1 0 1

0 1 1

0 0 0

Example

a% = b% or c%

PEEK

Function which gets a value from target memory.

Format

peek(<memory>)

memory address of memory location (numeric expression)

Example

count% = peek(100)

PRINT

Obtains a value from a file.

Format

print #<file>, <item>[{,|;} <item>…]

file number of the file as given on open

item name of a script file variable (string expression)

Using Script Files POKE

Micropak 870C User Manual 149

Example

print #1, driv1%

POKE

Writes a value to target memory.

Format

poke <memory>, <value>

memory address of memory location (numeric expression)

value value to be output (numeric expression)

Example

poke 100, 4

REM

Comment statement in a script file. This statement can be followed by any
textual information. It may be used on an individual line or on lines
containing a statement:

Example

rem Highlight the flags showing the phases of the stepper

Note on comment delimiters

The rem statement allows the insertion of comments. Because it is a
statement, it must be preceded by a terminator to separate it from any other
preceding statements on the same line.

The apostrophe character ' can be used anywhere on a line to introduce a
comment and does not need a preceding terminator.

In both cases the comment is considered to last until the next end of line,
and comments can therefore include ‘:’ characters.

REPEAT - UNTIL Using Script Files

150 Micropak 870C User Manual

REPEAT - UNTIL

A repeat control loop in which a number of statements are repeatedly
performed until the expression given evaluates to true.

Format

repeat <statement block> until <expression>

statement block one or more statements in a block. The block is terminated
by until

expression expression which can be evaluated to true or false (numeric
expression)

Example

repeat

v = getv(driv1%)

until v = threshold

RETURN

Specifies the end of a script file subroutine. This statement takes no
parameters.

Format

return

Example

show:

setflag "on", 1

return

RIGHT$

Script file function. Returns string value which is the rightmost part of the
given string.

Using Script Files SETBITMAP

Micropak 870C User Manual 151

Format

right$(<string>, <length>)

string input parameter (ASCII string)

start input parameter start position in the string

Example

name$ = right$("Henry James Bloggs", 6) 'would return
"Bloggs"

SETBITMAP

Specifies the name of a bitmap file to be displayed and displays the image in
the testpanel.

Format

setbitmap <filename>, <data>

identity name of a test panel bitmap item (string expression)

filename name of a bitmap image file (string expression)

fit flag flag 0/1 to show whether or not the image should be stretched to fit
the defined space in the test panel or displayed at actual size.

Example

setbitmap “POWER”,"pushbutton.bmp", 1

SETEDIT

Allows data to be output to a test panel edit box.

Format

setedit <identity>, <data>

identity name of a test panel edit box (string expression)

data data to be output. Data must be 0 or 1 (numeric expression)

SETFLAG Using Script Files

152 Micropak 870C User Manual

Example

setedit "DISPLAY", 0

SETFLAG

Allows data to be output to a test panel flag.

Format

flag <identity>, <data>

identity name of a test panel flag box (string expression)

data data to be output. Data must be 0 or 1 (numeric expression)

Example

setflag "STOPACT", 0

SETrr

Sets up the value in the specified register

This command may be used to set up any register pair including
PC,SP,IX,IY,WA,HL.

Format

setrr <value>

value valid rom address for the processor (numeric expression) or
any other value valid for the specific register.

Example

setpc 100

setix 0f

SETR

Sets up the value of the external resistance on a pin.

Using Script Files SETV

Micropak 870C User Manual 153

Format

setr <pin-number>, <value>

pin-number a valid pin number (numeric expression)

value resistance value to be set, expressed in ohms (numeric expression)

Example

setr startpin%, 10000

setr 9, 10000

SETV

Sets up the value of the external voltage on a pin.

Format

setv <pin-number>, <value>

pin-number a valid pin number (numeric expression)

value voltage value, expressed in volts (numeric expression)

Example

setv startpin%, getv(Gnd%)

setv 9, 5

SIN

Script file function. Returns the sine of a numeric expression (in radians).

Format

sin(<value>)

value input parameter (numeric expression)

Example

a = sin(3.1415926 / 6) 'would return (approximately) 0.5

SGN Using Script Files

154 Micropak 870C User Manual

SGN

Script file function. Returns the sign of a numeric expression.

If the expression is negative then -1 is returned. If the expression is positive
then 1 is returned and if it is equal to zero then 0 is returned.

Format

sgn(<value>)

value input parameter (numeric expression)

Example

a% = sgn(-10) 'would return -1

SQR

Script file function. Returns the square root of a numeric expression. The
expression must be positive.

Format

sqr(<value>)

value input parameter (numeric expression)

Example

a = sqr(13) 'would return 3.605...

STOP

Stops the target code execution. There are no parameters.

Example

stop

TAN

Script file function. Returns the tangent of a numeric expression (in
radians).

Using Script Files TIMEOUT

Micropak 870C User Manual 155

Format

tan(<value>)

value input parameter (numeric expression)

Example

a = tan(3.1415926 / 4) 'would return (approximately) 0.01371

TIMEOUT

Specifies a time -out value which will be monitored to trigger events when
the time -out expires. This facility allows the testing of time-dependent
routines in the target code.

Format

timeout(<value>)

value value of the time-out in seconds (numeric expression)

Example

time% = timeout(0.010)

XOR

Logical exclusive-or operator which performs a bitwise operation on two
integer operands. The truth table is as follows:

X Y X xor Y
1 1 0

1 0 1

0 1 1

0 0 0

Example

a% = b% xor c%

XOR Using Script Files

156 Micropak 870C User Manual

Keyboard Summary Editing keys

Micropak 870C User Manual 157

Keyboard Summary

Editing keys

A complete list of the keys available for the editing function is given in the
chapter ‘Using the Editor’.

Accelerator keys

Here is a summary of the ‘accelerator’ keys used to provide fast access to
commonly used menu options:

File menu
Ctrl+N New file
Ctrl+O Open file
Ctrl+S Save file

Edit menu

Ctrl+Z Undo
Ctrl+A Redo
Ctrl+X Cut
Ctrl+C Copy
Ctrl+V Paste
Ctrl+F Find
Ctrl+R Replace

View menu

F4 Next Error
Shift+F4 Previous Error
Ctrl+F2 Toggle Bookmark
F2 Next Bookmark
Shift+F2 Previous Bookmark

Accelerator keys Keyboard Summary

158 Micropak 870C User Manual

Project menu
Ctrl+F3 Compile File
Shift+F3 Build
Alt+F3 Rebuild All

Test menu
Ctrl+P Run Script
Ctrl+Q Stop Script

Debug menu

F5 Go
F6 Step Into
F7 Step Over
F8 Step Out
F9 Step to Cursor

Ctrl+F5 Go and Go
Alt+F5 Stop Debugging
Ctrl+F9 Set PC to Cursor
Ctrl+T Call Stack
Ctrl+U QuickWatch
Ctrl+B Breakpoints

Trace menu
Shift+F5 Go (roll) Back
Shift+F6 Step Back Into
Shift+F7 Step Back Over
Shift+F8 Step Back Out
Shift+F9 Step Back to Cursor
Ctrl+I Signals Zoom In
Ctrl+J Signals Zoom Out

Ctrl+K Snap Signals

Keyboard Summary Accelerator keys

Micropak 870C User Manual 159

Window menu

Ctrl+D Device Window
Ctrl+E Pin Window

Breakpoint function
F10 Toggle Breakpoint

Accelerator keys Appendix A - Script file grammar

160 Micropak 870C User Manual

Appendix A - Script file grammar Definition

Micropak 870C User Manual 161

Appendix A - Script file
grammar

Definition

This appendix shows the complete grammar of the script file language. It
encompasses a complete definition of the language of the script processor.

It is shown in modified Backus-Naur form. Nonterminal symbols and
certain tokens are shown in italics. Keywords, and other tokens are shown
in a fixed width, typewriter font. Note that keywords, can be given in both
upper and lower case, or a mixture of the two. For the sake of clarity, all
keywords are shown here in upper case. The subscript opt denotes that the
symbol, either nonterminal or token, is optional.

interpreter-unit :
 labelopt statementopt newline
 labelopt statementopt :

Statements

statement :
 close-statement
 connect-statement
 dim-statement
 else-statement
 elseif-statement
 end-statement
 endif-statement
 event-statement
 for-statement
 go-statement
 gosub-statement
 goto-statement
 if-statement
 input-statement
 let-statement
 next-statement

Definition Appendix A - Script file grammar

162 Micropak 870C User Manual

 on-statement
 open-statement
 poke-statement
 print-statement
 repeat-statement
 return-statement
 setedit-statement
 setflag-statement
 setrr-statement
 setr-statement
 setsp-statement
 setv-statement
 stop-statement
 until-statement

close-statement :
 CLOSE close-listopt

close-list :
 close-list , #opt expression
 #opt expression

connect-statement :
 CONNECT expression , expression

dim-statement :
 DIM identifier (dim-list)

dim-list :
 dim-list , expression
 expression

else-statement :
 ELSE

elseif-statement :
 ELSEIF expression THEN

end-statement :
 END

endif-statement :
 ENDIF

event-statement :

Appendix A - Script file grammar Definition

Micropak 870C User Manual 163

 EVENT (expression) event-action

event-action :
 ON
 OFF
 KILL

for-statement :
 FOR identifier = expression TO expression stepopt

step :
 STEP expression

go-statement :
 GO

gosub-statement :
 GOSUB label

goto-statement :
 GOTO label

if-statement :
 IF expression THEN

input-statement :
 INPUT # expression , input-list

input-list :
 input-list , identifier
 identifier

let-statement :
 LETopt identifier = expression
next-statement :
 NEXT next-listopt

next-list :
 next-list , identifier
 identifier

on-statement :
 ON EVENT (expression) RUN label

open-statement :
OPEN expression modeopt accessopt lockopt AS #opt expression

lengthopt

Definition Appendix A - Script file grammar

164 Micropak 870C User Manual

mode :
 FOR mode-type

mode-type :
 APPEND
 BINARY
 INPUT
 OUTPUT
 RANDOM

access :
 ACCESS access-type

access-type :
 READ WRITEopt
 WRITE

lock :
 SHARED
 LOCK READ WRITEopt
 LOCK WRITE

length :
 LEN = expression

poke-statement :
 POKE expression , expression

print-statement :
 PRINT # expression , print-listopt

print-list :
 print-list ; expressionopt
 print-list , expressionopt
 expressionopt

repeat-statement :
 REPEAT

return-statement :
 RETURN

setedit-statement :
 SETEDIT expression , expression

setflag-statement :

Appendix A - Script file grammar Definition

Micropak 870C User Manual 165

 SETFLAG expression , expression

setrr-statement :
SETIX expression

SETIY expression

SETHL expression

SETPC expression

SETSP expression

SETWA expression

setr-statement :
 SETR expression , expression

setsp-statement :
 SETSP expression

setv-statement :
 SETV expression , expression

stop-statement :
 STOP

until-statement :
 UNTIL expression

Expressions
expression :
 eqv-expression

eqv-expression :
 eqv-expression EQV imp-expression
 imp-expression

imp-expression :
 imp-expression IMP xor-expression
 xor-expression

xor-expression :
 xor-expression XOR or-expression
 or-expression

or-expression :
 or-expression OR and-expression

Definition Appendix A - Script file grammar

166 Micropak 870C User Manual

 and-expression

and-expression :
 and-expression AND not-expression
 not-expression

not-expression :
 NOT not-expression
 relational-expression

relational-expression :
 relational-expression > additive-expression
 relational-expression >= additive-expression
 relational-expression < additive-expression
 relational-expression <= additive-expression
 relational-expression = additive-expression
 relational-expression <> additive-expression
 additive-expression

additive-expression :
 additive-expression + multiplicative-expression
 additive-expression - multiplicative-expression
 multiplicative-expression

multiplicative-expression :
 multiplicative-expression * uminus-expression
 multiplicative-expression / uminus-expression
 uminus-expression

uminus-expression :
 - uminus-expression
 power-expression

power-expression :
 power-expression ^ unary-expression
 unary-expression

unary-expression :
 identifier
 identifier (index-list)
 real-constant
 integer-constant
 string-constant
 ABS (expression)

Appendix A - Script file grammar Definition

Micropak 870C User Manual 167

 ACOS (expression)
 ASC (expression)
 ASIN (expression)
 ATAN (expression)

BREAKPOINT (expression , expression , expression ,
expression , expression)

 BUTTON (expression)
 CHR$ (expression)
 COS (expression)
 EDIT (expression)
 EXP (expression)
 GETEDIT (expression)
 GETEDIT$ (expression)
 GETFC ()
 GETFS ()

GETIX ()
GETIY ()
GETHL ()
GETPC ()

 GETSP ()
GETWA ()

 GETTIME ()
 GETV (expression)
 GLOBAL (expression)
 LEFT$ (expression , expression)
 LEN (expression)
 LOCAL (expression)
 MID$ (expression , expression mid-lengthopt)
 PEEK (expression)
 PIN (expression)
 RIGHT$ (expression , expression)
 SIN (expression)
 SGN (expression)
 SQR (expression)
 TAN (expression)
 TIMEOUT (expression)
 (expression)

Definition Appendix A - Script file grammar

168 Micropak 870C User Manual

index-list :
 expression , index-list
 index-list

mid-length :
 , expression

Appendix B - Script file example Definition

Micropak 870C User Manual 169

Appendix B - Script file
example

'**
'* File: stepper.scr
'* Desc:
'* File for demonstration of the MP870/C simulator.
'**

'**
'* This integer variable determines whether script file
'* breakpoints should be demonstrated. Note that the
'* breakpoints will stop the execution of the program, and
'* will require you to select the Go command from the Debug
'* menu to start things going again.
'**

 demonstatebreakpoints% = 0

'**
'* Allocate vars to pin numbers. By allocating variables
'* with pin numbers, makes the script file easier to
'* understand.
'**

 driv1% = 61
 'the stepper motor drive lines
 driv2% = 62
 driv3% = 63
 driv4% = 64
 Vdd% = 5
 'the power supply lines
 Gnd% = 1
 startpin% = 27 'the
lines which the real

Definition Appendix B - Script file example

170 Micropak 870C User Manual

 stoppin% = 26
 'switches are connected to

'**
'* Set voltages on pins and make connections.
'**

 setv startpin%, getv(Vdd%) 'both
switches made inactive
 setv stoppin%, getv(Vdd%) '(high)
 setr startpin%, 10000 'resistance
= 10K
 setr stoppin%, 10000
 connect startpin%, 1 'allow the
script file to
 connect stoppin%, 1
 'change the lines

'**
'* Assign button IDs to run pieces of script files. So if a
'* button is pressed in a test panel the relevent script
'* commands are processed.
'* STARTBUTTON and STOPBUTTON are the ids given to the panel
'* button. actstart and actstop are the labels for the
'* script file functions.
'**

 start.event% = button("STARTBUTTON")
 on event(start.event%) run actstart
 event(start.event%) on

 stop.event% = button("STOPBUTTON")
 on event(stop.event%) run actstop
 event(stop.event%) on

'**
'* Any changes to voltage on the motor drive lines will call
'* the appropriate script routine.
'**

Appendix B - Script file example Definition

Micropak 870C User Manual 171

 driv1.event% = pin(driv1%) 'pin 9
 on event(driv1.event%) run show1
 event(driv1.event%) on

 driv2.event% = pin(driv2%) 'pin 10
 on event(driv2.event%) run show2
 event(driv2.event%) on

 driv3.event% = pin(driv3%) 'pin 11
 on event(driv3.event%) run show3
 event(driv3.event%) on

 driv4.event% = pin(driv4%) 'pin 12
 on event(driv4.event%) run show4
 event(driv4.event%) on

'**
'* The following section of script code is to produce a
'* breakpoint which has to be hit 5 times before it stops
'* execution and warns the user in the dialog box of the
'* test panel.
'**

 if demonstatebreakpoints% then
 bpcount% = 5 'set up initial count

 bcbrk.event% = breakpoint(0,"stepper.c!351", "",
0, 1)
 'set up the
bp, which when
 'the
program counter is
 'about to
hit set_phase_7,
 'the script
code at pcbrk
 'is called
 on event(bcbrk.event%) run pcbrk

Definition Appendix B - Script file example

172 Micropak 870C User Manual

 event(bcbrk.event%) on
 endif

'**
'* The following breakpoint is one set up for data in which
'* it will check that when Port0 is written to (w) that a
'* phase can be seen on the port, (ie Port 0 <> 0). If Port0
'* could not be written to correctly then it will give the
'* error in the edit dialog box.
'**

 if demonstatebreakpoints% then
 portbbrk.event% = breakpoint(3, "", "IOP0 >= 0",
0, 1)
 on event(portbbrk.event%) run portbbrk
 event(portbbrk.event%) on
 endif

'**
'* If the user changes the power supply change the switching
'* threshold.
'**

 vdd.event% = pin(Vdd%)
 on event(vdd.event%) run adjthes
 event(vdd.event%) on

 gnd.event% = pin(Gnd%)
 on event(gnd.event%) run adjthes
 event(gnd.event%) on

adjthes:
 threshold = (getv(Vdd%) + getv(Gnd%)) / 2
 go 'start the instruction
decoder

 end 'end of processing

'**

Appendix B - Script file example Definition

Micropak 870C User Manual 173

'* The following script routine is called when the program
'* hits the set_phase_7 breakpoint.
'**

pcbrk:
 bpcount% = bpcount% - 1 'decrement
bp count
 if bpcount% = 0 then 'check the count
 stop 'if 0 stop
execution of

 'instructions, initialise
 bpcount% = 5 'count back to 5

 'report to the user that

 'the bp has been hit
 setedit "DIALOG", "Breakpoint hit"
 endif
 end
 'end of this routine

'**
'* This is a another way to find the bug in the tutorial
'* program.
'**

portbbrk:
 value% = peek(0)
 if value% = 15 then
 setedit "DIALOG", "Wrote 0FH to port 0"
 stop
 endif
 end

'**
'* Highlight the flags showing the phases of the stepper
'* motor.
'* MOTOR1, MOTOR2, MOTOR3 and MOTOR4 are the ids of the

Definition Appendix B - Script file example

174 Micropak 870C User Manual

'* flags in the panel. A value of 1, highlights the flag, a
'* 0 will turn the highlighting of the flag (segment) off.
'**

show1:
 if getv(driv1%) < threshold then
 setflag "MOTOR1", 0
 else
 setflag "MOTOR1", 1
 endif
 end

show2:
 if getv(driv2%) < threshold then
 setflag "MOTOR2", 0
 else
 setflag "MOTOR2", 1
 endif
 end

show3:
 if getv(driv3%) < threshold then
 setflag "MOTOR3", 0
 else
 setflag "MOTOR3", 1
 endif
 end

show4:
 if getv(driv4%) < threshold then
 setflag "MOTOR4", 0
 else
 setflag "MOTOR4", 1
 endif
 end

'**
'* Script code called when the Start button is pressed.
'* Checks that the I/O line is inactive (HIGH).

Appendix B - Script file example Definition

Micropak 870C User Manual 175

'* If inactive makes the line active. Shows the new status.
'* After 0.010 seconds (10ms) runs script code to deactivate
'* I/O line
'**

actstart:
 if getv(startpin%) > threshold then
 setv startpin%, getv(Gnd%)
 setflag "STARTACT", 1

 inactstart.event% = timeout(0.010) '10ms
 on event(inactstart.event%) run inactstart
 event(inactstart.event%) on
 endif
 end

'**
'* Code to deactivate I/O line and show the new status.
'**

inactstart:
 setv startpin%, getv(Vdd%)
 setflag "STARTACT", 0

 event(inactstart.event%) kill
 end

'**
'* Script code called when the Stop button is pressed.
'**

actstop:
 if getv(stoppin%) > threshold then
 setv stoppin%, getv(Gnd%)
 setflag "STOPACT", 1

 inactstop.event% = timeout(0.010) '10ms
 on event(inactstop.event%) run inactstop
 event(inactstop.event%) on

Definition Appendix B - Script file example

176 Micropak 870C User Manual

 endif
 end

inactstop:
 setv stoppin%, getv(Vdd%)
 setflag "STOPACT", 0

 event(inactstop.event%) kill
 end

'**
'* End of script file.
'**

INDEX Definition

Micropak 870C User Manual 177

INDEX

A
accelerator keys, 53, 67, 157

breakpoints, 159
Debug menu, 158
Edit menu, 157
File menu, 157
Project menu, 157
Test menu, 157
Trace menu, 158
View menu, 157
Window menu, 159

B
batch file, 57, 58
breakpoint, 36, 37
breakpoints, 77, 87

accelerator key, 159
break at location, 87
break at location if expression is

true, 87
break at location if l-value has

changed, 88
break when expression is true, 88
break when l-value has changed,

88
counter field, 89
disabling, 91
enabling, 91
example, 89
expression/l-value field, 88
length field, 89

location field, 88
removing, 91
script file facilities, 92
setting, 91
type field, 87
viewing current set ups, 89

Breakpoints, ix, 10, 11, 36, 37, 40,
49, 50, 58, 83, 158

C
call stack, 114
check boxes, 52
code coverage, 1, 85
code coverage, clearing, 86
controlling execution, 77
customised memory views, 98

D
Debug

breakpoints, 87
fast mode, 33, 77, 80
options, 77, 80, 84
reset, 79
slow mode, 33, 77, 78, 80

debug information file, 58
Debug menu, 31, 46, 49, 79, 87, 158

go, 32, 37
show call stack, 114

debug mode, 33
device information, 103
dialog boxes, 51
directory structure, 5

Definition INDEX

178 Micropak 870C User Manual

E
Edit menu, 46, 47, 157
editing a project, 60
editor

keyboard functions, 70
locating and changing text, 71
options, 69

enabling signal buffer, 99
exectution time, 86
execution

ceasing, 77
controlling, 77
go, 77
optimising speed, 77
restarting, 85
step into, 77
step out, 77
step over, 77
step to cursor, 77

external project options
build mode, 64
debug build, 64
processor, 64
release build, 64
target name, 64

external projects, 57

F
file defaults, 67
File menu, 46, 47, 105, 157

open, 67

H
Help, 54
Help menu, 46, 51, 54

I
inactive trace buffer, 85
installation, 5
internal project options, 61

Assembler, 63
build, 63
C compiler, 63
category, 63
C-Like compiler, 63
Linker, 63
options string, 63

internal projects, 57
interval, 80
interval window, 80

K
keyboard summary, 157

L
list boxes, 52
locals, 112, 114
locating and changing text

find, 71
locating and finding text

replace, 72

M
menu operation, 45

O
on-chip peripherals, 102
opening a project, 59
opening files, 67
Options

Debug, 77
Options menu, 46, 50

INDEX Definition

Micropak 870C User Manual 179

debug, 77, 80, 83, 84
editor, 69

P
pin and port windows, 93
pin numbering, 95
plot lines

disabling, 99
enabling, 99
removing, 99

port
script files, 94, 95
views, 93, 104
windows, 93

port simulation techniques, 93
processor information file, 58
program counter, 78, 79

indicator, 31
project, 34

batch file, 57, 58
debug information file, 58
edit, 60
external, 61, 64
internal, 61
open, 59
processor information file, 58
source files, 58
window configuration file, 58

project files, 57
external, 57
internal, 57

Project menu, 46, 48, 74, 157
execute, 35

pull-up control, 95

Q
quick watch, 111

add to watch, 112

modify variable, 112
zoom, 112

R
radio buttons, 52
RAM

customised memory views, 98
window, 97

re-building the project, 74
registers, 115
roll-back displays, 84

go back, 84
step back into, 84
step back over, 84
step back to cursor, 84
step out, 84

run time links, 5, 7

S
script file, 22, 104

commands, 82
events, 123
execution and control flow, 123

script file variables, 120
script files, 23, 35

breakpoints, 92
examples of uses, 118
identities, 127
port, 94, 95
purpose and uses, 117
test panels, 117

script language
breakpoints, 125
button events, 125
comment delimiters, 120
edit events, 126
elements of statements, 120
grammar and syntax, 119

Definition INDEX

180 Micropak 870C User Manual

keywords, 128
operator precedence and

associativity, 122
operators and expressions, 121
pin events, 126
statements and lines, 119
timeout events, 126

script language commands and
functions
ABS, 131
ACOS, 131
AND, 132
ASC, 132
ASIN, 132
ATAN, 133
BREAKPOINT, 133
CHR$, 135
CLOSE, 135
CONNECT, 135
COS, 136
DIM, 136
EDIT, 136
END, 137
EQV, 137
EVENT, 137
EXP, 139
FOR-TO-[STEP], 139
GETEDIT, 140
GETEDIT$, 140
GETFC, 140
GETFS, 140
GETPC, 141
GETTIME, 141
GETV, 141
GLOBAL, 142
GO, 142
GOSUB, 142
GOTO, 143

IF-THEN-[ELSEIF]-[ELSE]-
ENDIF, 143

IMP, 144
INPUT, 144
LEFT$, 144
LEN, 145
LET, 145
LOCAL, 146
MID$, 146
NOT, 147
OPEN, 147
OR, 148
PEEK, 148
POKE, 149
PRINT, 148
REM, 149
REPEAT-UNTIL, 150
RETURN, 150
RIGHT$, 150
SETBITMAP, 151
SETEDIT, 151
SETFLAG, 152
SETPC, 152
SETR, 152
SETV, 153
SGN, 154
SIN, 153
SQR, 154
STOP, 154
TAN, 154
TIMEOUT, 155
XOR, 155

setup, 5, 6
signal, 24

buffer, 99
recording box, 98
zoom in, 102
zoom out, 102

signal buffer

INDEX Definition

Micropak 870C User Manual 181

control, 82
signal plots, 24
signal recording box

axes and scales, 99
disabling plot lines, 99
enabling buffer, 99
enabling plot lines, 99
markers and shading, 99
pin selection, 99
removing plot lines, 99
setting up, 98
viewing the results, 102

Signal window
control, 82

source debugging, 111
call stack, 111
locals, 111
quick watch, 111
registers, 111
watch, 111

source files, 58
step

multi, 32, 77
single, 32, 77, 84

Step Into, 32, 77, 78
Step Out, 78
Step Over, 77, 78
Step to Cursor, 31, 77, 78
syntax colouring, 68

T
Test menu, 46, 49, 50, 105, 157
test panel, 21, 104

button, 106
edit box, 108
flag, 106
move, 106
options, 105

properties, 108
setting up, 105
text box, 106

test panels
examples of uses, 118

trace buffer
control, 82
inactive, 85

trace buffering, 37, 83
Trace menu, 24, 46, 158

roll-back displays, 84

U
user interface, 41

desktop, 42
icon, 42
keyboard, 53
menu, 42
menu bar, 42
menu operation, 45
scroll bars, 43
status bar, 43
tool bar, 42
toolbar, 53
window, 42
window elements, 43

V
View menu, 46, 48, 157
viewing simulated objects, 97

W
watch, 112

adding items, 112
window

interval, 80
window configuration file, 58

Definition INDEX

182 Micropak 870C User Manual

window elements, 43
Window menu, 24, 46, 51, 80, 159

device, 97, 104
registers, 115

