Micropak 870C

An advanced simulator based development tool for
Toshiba TLCS-870/C microcontrollers

User manual

Document reference: Micropak 870C User manual v1.0 July 2001

i Micropak 870C User Manual

Copyright

Copyright 2001 AND Software Ltd., All rightsreserved. No part of this
publication may be reproduced, transmitted, stored in aretrieval system, or
translated into any language or computer language, in any form or by any
means, electronic, mechanical, optical, chemical, manual or otherwise,
without the prior written permission of AND Software Ltd., 4 Forest Drive,
Theydon Bois, Epping, Essex CM 16 7EY, England.

Disclaimer

AND Software Ltd. makes no representations or warranties with respect to
the contents hereof and specifically disclaims any implied warranties of
merchantibility or fitness for any particular purpose. Further, AND
Software Ltd. reserves the right to make changes from time to timein the
content hereof without obligation of AND Software Ltd. to notify any
person of such revision or changes.

Accuracy

AND Software Ltd. cannot guarantee the accuracy or functionality of the
simulator under any particular circumstance. Neither AND Software Ltd.
nor any of its agents shall beliablein any way for any losses incurred
wholly or partly as a consequence of any errors, omissions or assumptions
made in or by the simulator or its associated documentation.

AND SOFTWARE LTD
4 Forest Drive
Theydon Bois

Essex, CM16 7EY
England

Tel: +44 (0)1992 814655 » Fax: +44 (0)1992 813362
Email: AND@andsoftware.co.uk
Homepage: www.andsoftware.co.uk

Micropak 870C User Manual ii

Contents

About this guide

INTRODUCTION
The TLCS-870/C microcontroller family
Micropak 870C - An overview
TLCS 870/C devices supported by Micropak 870C

INSTALLATION
Theimportant files
Suggested directory structure
Running the SETUP utility
Run time links to the 870/C tool chain

FAST STARTUP GUIDE
Starting the Micropak 870C simulator
Setting up and debugging a new project
Opening an existing project
Common debugging features explained

TUTORIAL
The example application - stepper motor control
Setting up the test environment
Understanding the example
Executing the code - The PC indicator and cursor
Simulating button presses
Project context files
Using the script file
Checking the generated sequence
Tracking down the bug
Making corrections
Moving on

USER INTERFACE DETAILS
The Micropak 870C screen
Window elements
M enu operation
Menu function reference descriptions
Using dialog boxes

=

B
co0oww®© youunOl WRrkrPEF

BELLEBRER

seshn

(&3]
=

iii Micropak 870C User Manual

Thetool bar
Using the on-line help system

NAVIGATING PROJECT FILES
Project file overview
Opening a project
Files Window
Editing a project
Specifying project settings

USING THE EDITOR
Opening files
Syntax colouring
Mouse driven functions when editing
Editor options
Keyboard functions when editing
Locating and changing text
The implications of editing
Re-building the project

CONTROLLING EXECUTION
Overview
Execution possibilities
Resetting and viewing the processor clock
The program counter
The interval window
Debug options

TRACE OPTIONS
Trace Buffering
Controlling Tracing
Trace buffer displays
Restarting execution
Inactive trace buffer
Performance Analysis
Code Coverage

BREAKPOINTS
Setting breakpoints
The‘Type' field
The‘Location’ field
The ‘Expression/L-Value field

L&

o1
2BBBI

(o2}
NEN338833

d333

33839 RRRRIBE R8Y

Micropak 870C User Manual

The*Length’ field

The *Counter’ field

Adding abreakpoint

Viewing current breakpoints set ups
Setting breakpoints in the source window
Removing breakpoints
Enabling/disabling breakpoints

Script file facilities

PORT SIMULATION TECHNIQUES
Overview
Using script filesto control port conditions
Using script files to check port conditions
Pin numbering

VIEWING SIMULATED OBJECTS
Overview
Displaying RAM
Signal recording boxes
On-chip peripherals
Port views
Test panel displays

SOURCE DEBUGGING
Overview
Source Windows
Quick Watch
Watch
Locds
Call Stack
Registers
Browser

USING SCRIPT FILES
Overview
Script files - Purpose and uses
The script language
Script file variables
Script operators and expressions
Script file execution and control flow
Identitiesin script files
Script keywords

8888

102
104
104

111
111
111
112
113
114
114
115
115

117
117
117
119
120
121
123
127
128

Micropak 870C User Manual

Script file commands and functions - detailed descriptions 131

ABS 131
ACOS 131
AND 132
ASC 132
ASIN 132
ATAN 133
BREAKPOINT 133
CHR$ 135
CLOSE 135
CONNECT 135
Cos 136
DIM 136
EDIT 136
END 137
EQV 137
EVENT 137
EXP 139
FOR - TO - [STEP] 139
GETEDIT($) 140
GETFC 140
GETFS 140
GETrr 141
GETTIME 141
GETV 141
GLOBAL 142
GO 142
GOSUB 142
GOTO 143
IF - THEN - [ELSEIF] - [ELSE] - ENDIF 143
IMP 144
INPUT 144
LEFTS 144
LEN 145
LET 145
LOCAL 146
MID$ 146
NOT 147
OPEN 147
OR 148

Micropak 870C User Manual Vi

PEEK 148
PRINT 148
POKE 149
REM 149
REPEAT - UNTIL 150
RET URN 150
RIGHT$ 150
SETBITMAP 151
SETEDIT 151
SETFLAG 152
SETrr 152
SETR 152
SETV 153
SIN 153
SGN 154
SQR 154
STOP 154
TAN 154
TIMEOUT 155
XOR 155
KEYBOARD SUMMARY 157
Editing keys 157
Accelerator keys 157
APPENDIX A - SCRIPT FILE GRAMMAR 161
Definition 161
APPENDIX B - SCRIPT FILE EXAMPLE 169
INDEX 177

Vii

Micropak 870C User Manual

Micropak 870C User Manual viii

Preface

About this guide

This guide explains how to use the Micropak 870C simulator based
development tool.

Thefirst section, I ntroduction, provides arapid overview of the product and
itsintended uses.

The next section, I nstallation, explains the steps required to install
Micropak 870C onto your system.

The Fast Startup Guide provides concise instructions on using the simulator
for creating and debugging projects. This should be used to gain an
overview in using and controlling the tool.

The Tutorial section takes you through, step by step, a sample debugging
session and includes illustrations of some of the various ways the product
can be used and the facilitiesit offers.

User Interface Details isawide ranging section, covering the elements of
the Micropak 870C screen display, the operation of the menu system, the
tool bar and the other possibilities for controlling the simulation. This
section also describes the operation of the on-line help facility.

The next sections explain the fundamental facilitiesin more detail and
include Navigating and Editing Project Files, Controlling Execution,
Trace Buffering and Breakpoints.

The Port Simulation section gives important details of the approach adopted
for the simulation of port lines and discusses ways in which these can be
used to establish and test the interactions of the target firmware under test
with external hardware.

Micropak 870C enables the states of multiple aspects of the simulation to be
viewed and monitored, many whilst the simulated code is executing. These

facilities are explained in the Viewing Simulated Objects section of the user
guide.

Micropak 870C User Manual iX

The next section, Source Level Debugging, details the facilities offered to
support this activity. Source may be writtenin C, C-like language or
Assembler.

Thefinal section, Using Script Files, describesin detail the usage, scope
and flexibility of thein-built script file processor, which can significantly
increase the power of the test environment whilst also improving testing
productivity. Itisrecommended that this sectionis studied carefully before
planning adetailed testing or development programme, especially where

repetitive or regression testing is intended.

Appendices

There are two appendices.

Thefirst contains adefinition of the script file grammar.

The second appendix contains thescript file example used in thetutorial.
Thisillustrates how the script file mechanism can be used to extend the
simulation to mimic the behaviour of external hardware.

X Micropak 870C User Manual

Introduction The TLCS-870/C microcontroller family

Introduction

The TLCS-870/C microcontroller family

The TLCS-870/C family of devices are tailor-made for very specific,
high-volume applications and offer an extremely attractive
cost-performanceratio.

The family includes a variety of devices with differing on-chip peripheral
setsintended for differing application areas. All the devices feature an 8 bit
wide data RAM and an 8 bit wide program ROM area.

Micropak 870C - An overview

The ‘simulation engine’

Micropak 870C is an advanced simulator based tool for developing and
testing applications for the Toshiba TLCS-870/C family of microcontrollers.

The simulation includes the full CPU core and registers, on-chip peripherals
and /O ports, and is performed totally in software in the host PC - no
external hardwareisrequired.

Application code to be investigated can be loaded into the software
simulation and run, just asin hardware based environments.

Execution time assessments

The effective speed of the test code execution will vary with the speed of the
host PC and with other factors such as the detailed composition of the target
program. However, although the simulation does not therefore executein
real time, the execution time for each individual instruction is calculated and
totalled by the simulation engine, so that detailed time-critical code sections
can be assessed and detailed execution time measurements can be made.
Details of this execution time can be seen in the coverage window

Micropak 870C User Manual 1

Micropak 870C - An overview Introduction

Port simulation

The simulation allows an external ‘ Thevenin’ equivalent network,
consisting of asingle external voltage generator and a single external series
resistance, to be connected to each port line. Both the voltage and series
resistance can be controlled viathe user interface or the script file.
Extending the simulation in thisway allows you to investigate the
interaction of the firmware under test with external hardware components
such as switches, LEDs, etc. It also allows checks on the drive capabilities
of the ports, and the use of pull-ups and so on.

Using Micropak 870C in conjunction with OTP devices

Interactions with complex hardware peripherals are difficult to emulate with
the simulation alone, and in these situations one-time programmabl e devices
may offer arealistic low-cost development route. In these casesthe
structure and basic behaviour of the code under scrutiny can be developed in
the simulated environment, ready for subsequent trialsin one-time
programmable devices to confirm the correct operation of these more
complex interactions.

The user interface

The user interface of the product adheres to the accepted conventions for
Microsoft Windows applications, reducing to a minimum the overhead
associated with learning to control the facilities provided. Extensive useis
made of the graphical capabilities of the interface to provide a clear and
attractive display. The ability to make significant eventsin the target
system visibleis considered to be a strong feature of the product and can
boost debugging productivity considerably.

Anin-built editor isincluded to support program development during
debugging.

The program isintended to interact with the TLCS-870/C tool chain. This
provides automatic links for code re-building, and includes facilities which
allow the execution of the program to be monitored at source level.

2 Micropak 870C User Manual

Introduction TLCS-870/C devices supported by Micropak 870C

The script file processor

The product includes a powerful ‘script’ file processor which can monitor
and control eventsin the simulated target system according to control
‘programs’ written in the script language. Script filesuse a‘BASIC-like
syntax and can be used to mimic the behaviour of external devices or to set
up, run and check the results of repetitive or regression tests.

Using Micropak 870C in quality and other formal testing
regimes

In addition to its devel opment facilities, the simulator can also be used for
formal qualification or other quality testing. Powerful batch testing
facilities are included, simplifying the execution and documentation of
regression testing after product firmware changes.

TLCS-870/C devices supported by Micropak 870C

For alist of the TLCS-870/C family members currently supported by the
Micropak 870C simulator, please see the README file on the distribution
diskettes or contact your Toshiba representative. A list of supported devices
isalso given in the on-line help provided for the product.

Micropak 870C User Manual 3

TLCS-870/C devices supported by Micropak 870C Introduction

4 Micropak 870C User Manual

Installation The important files

Installation

This chapter explains the steps required to install the Micropak 870C
software, both in terms of running the SETUP facility provided on the
distribution diskette(s) and creating a suitable directory structure for your

project files.

The important files

Thefollowing files are supplied on the distribution diskette(s):

MP870C.EXE the main executablefile
MP870C.HLP the help file for the Micropak 870C
program

CPYOUTPT.EXE thisprogram is used to pipe output from
the compiler/linker to MP870C.EXE

CPYOUTPT.PIF this enables DOS programsto run in the
background (needed for re-building)

README.TXT this describes installation instructions and
the devices currently supported

Tutorial files for running the tutorial detailed in this user
manual

Note that you will also need the TLCS-870/C C compiler, C-like compiler
or assembler, in order to generate object code to run and test.

Suggested directory structure

The suggested directory structure groups all the Micropak 870C related files
under amain MP870C sub-directory but splits the Micropak 870C
executable and help files from the source code and other project specific
files.

Micropak 870C User Manual 5

Running the SETUP utility Installation

Although other directory structures are possible, care must be taken to
ensure that the run-time links to the compiler, linker and assembler from
Micropak 870C will operate correctly. The mechanisms used, and a
summary of the links which must be preserved, are described later in this
chapter under the heading ‘ Run time links to the 870 tool chain’.

The following default directory structure is used by Micropak 870C:

El DRIVE:\

Proaram Files\
Ej Micropak 870C\
_El BIN\
_E TUTORIAL\

_E PROJNAM1\

—m Other Projects

The BIN sub-directory contains all the executable files, with the exception
of the compiler executables. The TUTORIAL sub-directory contains all the
tutorial files. Notethat the tutorial files are not required for the normal
operation of Micropak 870C.

Project specific directories

The sub-directories such as PROINAM 1 and PROINAM?2 are intended to
hold project specific files, including the source files and the project batch
file, which is used by the project re-building function to make the project. It
isrecommended that these sub-directories are given meaningful names to
reflect the projects they represent, suchas METER or TIMER, etc.

Running the SETUP utility

The distribution diskette containsa‘ SETUP.EXE’ installation program
which is used to create an appropriate directory structure on the working
drive and copy all the necessary files from the distribution diskette into the
new directory structure.

6 Micropak 870C User Manual

Installation Run time links to the 870/C tool chain

The SETUP program must be run from within Microsoft Windows.

Run time links to the 870/C tool chain

Micropak 870C includes facilities for re-building and building complete
executabl e code from the source using the standard components of the
Toshiba 870 tool chain. These components are not installed as part of the
Micropak 870C set-up and must be installed separately. Locate thetoolsin
an appropriate directory (e.g. ‘ Toshiba') and edit the * Autoexec.bat’ fileto

add thisdirectory to the ‘path’ entry.

Micropak 870C User Manual 7

Run time links to the 870/C tool chain Installation

8 Micropak 870C User Manual

Fast Startup Guide Starting the Micropak 870C simulator

Fast Startup Guide

This section gives an overview of the major facilities of the Micropak 870C
simulator to enable the user to begin working with the tool.

Starting the Micropak 870C simulator

To start the Micropak 870C simulator locate the ‘ Micropak 870C’ group
window and double-click the ‘Micropak 870C’ program icon contained
within it:

Micropak 870C

Setting up and debugging a new project

The Micropak 870C simulator provides a complete environment for writing,
editing, assembling and testing your program. The environment for thisis
called the ‘Project’ and therefore thefirst step isto create anew ‘ Project’
using the following steps:

Create an appropriate directory for the project, either using ‘File
Manager’ or the DOS ‘md’ command.

Create anew project file by selecting ‘New’ from the ‘ Project’
menu.

Inthe ‘New Project’ dialog box, type the path and name of the
project batch file (or click the ‘Browse' button, locate the
project directory and specify the name of the batch file). Note
that the batch file must have a‘.bat’ extension. Select the
processor type from thelist.

Create the source files by selecting ‘New’ from the ‘File' menu.
Savethe sourcefiles by selecting ‘ Save As’ from the ‘ File'
menu.

Micropak 870C User Manual 9

Opening an existing project Fast Startup Guide

Source files can subsequently be edited by selecting Open’
from the ‘' File’ menu.

Invoke rebuilding of the source modulesto create arunnable
program by selecting ‘ Rebuild All” from the * Project’” menu.

Create a test environment for the project including RAM
displays, peripheral and port views, signal traces, setting
breakpoints and building customised test panels, as desired.

Debug the software using the various ‘ Debug’ options including
fast and slow run modes, setting the PC at a ROM address,
tracing, etc.

Opening an existing project

Once a project has been created the project environment can be re-invoked
at subsequent debugging sessions without the need to re-defineit. The
following steps should be used to open an existing project:

Select ‘Open’ from the ‘ Project’ menu.

Continue with debugging the code, editing and re-building as
necessary.

Common debugging features explained

How to set a breakpoint

Breakpoints can be set on program locations, memory read/writes and
peripheral read/writes. Breakpoints are set by selecting ‘ Breakpoints' from
the ‘Debug’ menu. Thereisalso atoolbar icon for setting or clearing a
breakpoint at the current cursor position.

10 Micropak 870C User Manual

Fast Startup Guide Common debugging features explained

How to start/stop execution

A set of execution control facilities are available from the * Debug’ menu.
Execution starts from the current program counter position. The ‘ Reset’
option, also available from the ‘ Debug’ menu, resets the simulated processor
or may be positioned anywhere in the code. Execution will terminate
according to the option selected, e.g. at the current cursor position, or at the
next instruction, or whenever a breakpoint isreached. A specific ‘stop’
instruction is also provided. All thesefacilities are available from the
‘Debug’ menu and as a collection of toolbar icons.

The time duration of an execution can be monitored using the ‘ Interval’
window, which is displayed by selecting ‘Interval’ from the *Window’
menu.

How to edit source programs

Any text file may be created and edited using the options available from the
‘File’ and ‘Edit’ menus. Syntax colouring of C source programs can be
applied if required so that, for example, comments and code are displayed in
different colours. All normal editing functions are available, including
‘Cut’, ‘Copy’, ‘Paste’, ‘“Undo’ and ‘Find’.

How to navigate files

The‘View’ menu option provides anumber of facilitiesto help traverse
active files, including jumping to a given line number. Bookmarks can be
set in afile allowing the user to rapidly move to pre-defined points within
their sourcefiles.

How to view data items

A RAM window can be displayed in order to view specified areas of RAM
by selecting ‘Device' from the ‘Window’ menu. Information about data
items can be temporarily viewed using the ‘ QuickWatch’ facility. Any data
item displayed using ‘ QuickWatch’ can be monitored throughout a
simulation session in the ‘Watch’ window by selecting‘ Add to Watch’ from
the ‘Quick Watch'.

Information about the current local variables can be displayed by selecting
‘Locals' from the ‘Window’ menu.

Micropak 870C User Manual 11

Common debugging features explained Fast Startup Guide

Information about the call stack can be displayed by selecting * Show Call
Stack’ from the *Debug’ menu.

How to display peripherals and ports

The simulation of device peripherals and ports can be viewed by selecting
the ‘Device’ from the *“Window’ menu then choosing from the displayed
list. One window will be displayed for each item selected.

Ports lines can also be displayed in signal windows. In thisinstance the port
values will be shown asa‘scope-like’ display. Thisfacility can be selected
by choosing ‘ Signal’ from the ‘Window’ menu to open asignal window and
selecting ‘ Signal Plots' from the * Trace’ menu.

How to build customised displays

Customised displays are built as test panels, where each panel can contain
one or moreitems. Thedisplay of these itemsis controlled through the
script file mechanism. In this case, the value of items such as script file
flags and buttons are displayed to show the results of script file events.
Bitmap images of components can be included within test panels to add
realism to the project testing. Test panels are defined by selecting ‘ New
Panel’ from the ‘File' menu.

How to create script files

Script files are created by selecting ‘ New’ from the ‘File' menu These are
text files containing ‘BASIC-like' commands to control execution and to
perform events at specified points during the execution. A full list of the
script file commands is given in the chapter entitled ‘ Using Script Files'.
Once ascript file has been created it must run to assume control.

The appropriate script options, available from the ‘ Test’ menu, are used to
perform these tasks. Tool bar icons also exist for starting and stopping
script file execution.

How to invoke tracing

A trace buffer is provided and can be switched on and off at random to
capture required sections of executing code. Thisisachieved by selecting
‘Debug’ from the ‘Options' menu and clicking the appropriate check box.

The buffer contents can be displayed using the ‘ Trace’ and ‘ Debug’ menu
options.

12 Micropak 870C User Manual

Fast Startup Guide Common debugging features explained

How to configure the environment

The ‘Options’ menu and the ‘View’ menu contain a number of items which
can be configured.

The *Options’ menu includes the following:

‘Debug’ options. Here you can select the run mode (‘ fast’ or
‘slow’), select trace buffering and enable signal output. Y ou
can also specify the size of the signal and trace buffers and the
maximum number or time duration of script file instructions to
be run for any one event.

‘Editor’ options. Hereyou can select the number of tab stops,
the size of the ‘undo’ buffer and enable/disable the scroll bars.

The *View’ menu includes the following:
Screen items. The tool and status bars can be turned on or off.

Syntax colouring. Syntax colouring available for editing source
files can be turned on or off.

How to set up automatic testing

Automatic testing can be achieved by writing one or more script files. Each
test must be planned in detail and the correct test panels built to show the
required output from the test.

How to obtain help

Anon-line help facility is provided and is accessible by using the ‘Help’
menu option or by pressing the F1 key.

Micropak 870C User Manual 13

Common debugging features explained Fast Startup Guide

14 Micropak 870C User Manual

Tutorial The example application - stepper motor control

Tutorial

This section detail s an example Micropak 870C session, giving illustrations
of the various ways in which the simulator can be used and the facilitiesit
offers.

The example application - stepper motor control

Thetarget code we use here isintended to control a stepper motor in
response to two simple push-button control switches. The hardware
environment isillustrated in this block diagram:

TMP86CH29N

sV drive buffers

P33
R=10K
P17 P32

_I'_START'

4l>_l
o P31
5V P30
R=10K [L
s 4 N—

P16

_I'_STOP‘
ov _l_

The simple stepper motor driver used as an example

A device will drive the 8 phases of a stepper motor via appropriate drive
buffers.

Drive control isto be by two simple push buttons, each of which iswired so
that operating the push button switches a port line between GND and Voo.
Port P1 pin 7 isused for the ‘START’ button and Port P1 pin 6 is used for
the ‘STOP' button. Theindividual motor phase coilsareto be driven by 4
pins from Port P3.

Micropak 870C User Manual 15

Setting up the test environment Tutorial

What the example firmware needs to do

The firmware must generate the appropriate series of stepper motor drive
signals.

It should also monitor the state of the push buttons to detect switch
operations and interpret these so that one button shall cause the stepper
drivesto start, and the other shall cause the motor to stop. Only new switch
presses should be actioned.

From the point of view of initialisation and preparation, the firmware will
need to activate the output buffers for the stepper outputs, and set up an on-
chip timer to trigger the timing of new phase drives. Wewill return for a
more detailed ook at the firmware later, but for the moment we must
consider what is required for the test environment and how this environment
is created using the Micropak 870C simulator.

Setting up the test environment

In order to exercise the controlling firmware it will be useful if we can set
up Micropak 870C to mimic the effect of the two switches, and to monitor
the phase drive outputs.

The switches and phase drives are the basic inputs and outputs of the
controller and are therefore the minimum we need for ‘black box’ testing.
However, it will probably also aid the debugging processif we can see the
activity of theinternal timer used for stepper phase timing and some of the
important program variables. We will then be able to see therelation
between the internal activity of the firmware under test and the actionsit
makes on external conditions.

Creating a new project

We start by creating a new project batch file for the firmware under test.
Select the menu options ‘ Project’, ‘New’, and then enter the name of the
project file in the New Project dialog box i.e.:

‘tutorial.bat’

At this point the processor to be simulated can be chosen from a selection
list. Y ou may however leave the default processor at thistime.

16 Micropak 870C User Manual

Tutorial Setting up the test environment

Editing the project file

The next stage isto edit the project file in order to specify the source files
for the project and the linker options. Y ou should therefore select the menu
option ‘Project’ ‘Edit’. Files can then be selected from thefilelist for
inclusion in the project. Each fileisincluded by making your selection and
then pressing the * Add’ button. The following files must be included:

1. stepper.c

2. 1086xx29.c
3. startup.asm
4. stepper.Icf

Once these files have been added to the project you should pressthe ‘ Close’
button.

Building the project

Now that the project contents has been specified you should instigate a
project rebuild to generate the target code. This can be done by selecting
the ‘Project’ ‘Rebuild All’ menu option or by using the following tool bar
icon:

H

The rebuild icon

Output from the build tool chain will be shown in the Output window.
When the re-building processis finished, the Output window should be
closed and you will then see the source code displayed in a source window.

Displaying peripherals and data

Peripheral and dataitems for display may now be selected. To display the
internal timer therefore select ‘ Device' from the ‘Window’ menu to obtain a
list of the device windows available and select the ‘ Time Base Timer’'. The
illustration below shows the selection of the timer device.

Micropak 870C User Manual 17

Setting up the test environment Tutorial

Once opened any window may be moved, re-sized, maximised or minimised
asin any standard Windows application. The second illustration below
shows the timer window selected.

Here we are selecting awindow for display:

Device Window

Device: oK

Timing Generator ;l
Standby Contraller

Interrupt Contraller

Port P1

Port F2 Help
Port P3

Port P5

Fart PE

Part P7

Time Base Timer

W atchdog Timer

Divider Output

18-bit Timer/Counter 1

S-bit Timer/Counter 3

8-bit Timer/Counter 4

8-bit Timer/Counter 5 Ll

Cancel

dii

Using the menus to select a timer view item

Here is the resulting device window:

= TBT H=]E3

TETEM: Iﬁ

TETCE:

I fc /3388605 = I

The view item for a timer

Thiswindow shows the states and activity of the internal timer we will be
using. At thisstage, (i.e. before executing any program sections) thiswill
beinthe ‘reset’ condition.

18 Micropak 870C User Manual

Tutorial Setting up the test environment

Setting up the push buttons

Setting up the switch simulations requires a little more thought. Micropak
870C includes, for each port line, the ability to simulate a single (perfect)
external voltage generator in series with asingle external series resistance.
The voltage of the generator and the resistance of the series resistance can
both be changed as required whilst the simulation is running. Furthermore a
connection between the external circuitry and the port can be set or broken.
For more information about this facility see the |ater section on Port
simulation techniques.

For our purposes here, we can use this possibility to simulate the two
conditions of the switches by changing the voltage generator from Voo to
GND and vice versa. This can be seen asfollows:

R = 10K ohms

YOLTS = 5.0V
(VDD

it i R = 10K ahms
art line :
T
R=10K

portling —— VOLTS =0V
L kT = (GND}
oV

Minimising buttons - voltage changes

Micropak 870C User Manual 19

Setting up the test environment Tutorial

The following illustration shows the pin windows set up with required
values. To enter values you merely over-typein the relevant boxes. The
illustration shows the two connectionsin the Voo condition.

RIS =13+ P17 (.. M[=]FS

W |5— W |5—
Latch: |-|_ Latch: F

¥ Connect ¥ Connect
vik 5 || vite g
Rifohmk [rooon || Rifehm): [1ooo0

The port pin windows show and set pin conditions

Wewill start with the switchesin the Vop condition. Select ‘Pin’ from the
‘Window’ menu to display alist of al possible pins. Then select ‘P16’ and
‘P17' from the list to display these windows: now set the external network
components (Vi) and (Ri) of each pin with the values shown above. Finaly,
click on the Connect check boxes of each pin to make the connections.

Phase output drive displays
It will beinteresting to monitor the drive outputs in two ways.

Firstly, we can set up aview in which the state of the outputsis represented
asacircular pattern, as an analogue of the physical arrangement of the
associated coils within the motor itself.

Secondly we can use the Micropak 870C plot recording style of displaysin
Signals windows to show the detailed timing relationships between the
phased outputs.

20 Micropak 870C User Manual

Tutorial Setting up the test environment

Setting up atest panel of grouped items

Test panels containing groups of items for display can be specified. Firstly,
select ‘New Panel’ from the * File' menu to provide a new test panel in
which to work. Now select * Show Panel Palette’ from the ‘ Test’ menu to
enable theitems for the panel to be specified. A palette will be displayed
showing the items you can display. For thisexample we will select aflag
item for each of the individual Port P3 output lines. Thisisillustrated
below:

Individual phases - inverse video means active

Item types, either buttons, flags, text or edit boxes are selected from the
palette which is displayed when the edit mode is entered and these items can
be placed in the test panel by ‘clicking’ the mouse at the required positionin
the panel.

Y ou should select the ‘flags’ option by clicking the ‘flag’ radio button in the
Palette window. Y ou should then place four flags in the panel by moving
the mouse to four different places, clicking on each place to set down one
flag. The move option may then be selected to make any further
adjustments to the positions of the flags.

Thefinal task isto specify the properties of the flags. A propertiesdialog
box can either be selected from the ‘ Test’ menu or by double-clicking the
flag when ‘Move' is selected on the palette. The properties of each item
consist of aunique caption to be displayed and an identity which isused to
connect the item with script file control. Y ou should give the names
“phi_0" to “phi_3" as both the identity and the caption for each of the port
lines respectively.

Micropak 870C User Manual 21

Setting up the test environment Tutorial

The visual state of each item (either active colour or background colour) is
controlled by the actions of a script file which will need to beinvoked in
order for the test panel to be activated. The facilities provided by the script
language are described in alater section. However, for our purposes we
need to be aware that to use these facilitiesit is necessary to define atest
panel containing the items for display and to set up a script fileto define the
conditions for controlling the display of theitems. The propertiesdialog
box allows you to specify the coloursused in the display and the shapeto be
displayed. You may select different shapes or colours for the itemsto try
thisfacility yourself.

Using the editor to define a script file

In order for the itemsin the test panel to display the status of the portlines, a
script file needs to be written. Here we will use the editing facilities of
Micropak 870C to write asimple script file for this task:

P60% = pi n(60)
P61% = pi n(61)
P62% = pi n(62)
P63% = pi n(63)

on event (p60% run show
on event (p61% run show
on event (p62% run show
on event (p63% run show

event (p60% on
event (p61% on
event (p62% on
event (p63% on

show:
setflag "phi_0", getv(60)
setflag "phi _1", getv(61)
setflag "phi_2", getv(62)
setflag "phi_3", getv(63)
end

vV V VYV
NN
caoraa

A sample script file to input

22 Micropak 870C User Manual

Tutorial Setting up the test environment

Script files consist of one or more event handlers. Thefirst initialisation
event handler defines the conditions to be recognised and enables further
event handlers to perform the tasks required when the relevant conditions
are encountered during the simulation. In thisinstance our initialisation
handler consists of four condition statements testing a value to be true of
false, one for each of the phase output pins. The value tested is that
evaluated from the actual pins as read using the previously defined ‘ pin’
statements; the numbers (61, 62, 63, 64) correspond to real pin numberson
the device. All four condition statements are similar and define ‘ show’ as
the entry point of the handler to be used whenever the corresponding pin
voltage is changed. During theinitialisation, all four event conditions are
enabled thus thereafter any change in voltage on any of these pinse.g. pin
61, will trigger the event handler ‘show’. ‘show’ fetches simulated pin
voltages for all four pins and updates the test panel flag items called ‘phi_0’,
‘phi_1’ etc., to show the current pin conditions. NB To view the pin
numbers for specific pins select the * Show Pin Number’ option in the Pin
dialog box

The screen display above shows the contents of the script file to be created.
Y ou should create anew file by selecting the ‘New’ option from the ‘File’
menu. You can then enter the text directly using the normal edit facilities
and save the file when completed, giving the name:

PORT3.SCR

To see how the script file operates you must ensurethat the script file
window isactivated then run the script selecting ‘Run’ from the ‘ Test’
menu.

To check the operation of the script you can now enter some values directly
into Port P3 and you will seethetest panel display change according to the
values entered.

To do thisyou should open the Port P3 window by selecting ‘Device’ from
the ‘Window’ menu and choosing Port P3 from the list of devices. Firstly
set the PCR to all 1's (output). If you now enter valuesinto the ‘P’ box in
the window you should see the display in the test panel change. Entering
‘0110’ (binary for ‘6") will bring on two of the outputs and entering all ‘1's
(binary for ‘F") will bring all the outputsto the active conditions. What is
happening here is that these actions trigger the script event handler ‘ show’
which then updates the test panel.

Micropak 870C User Manual 23

Setting up the test environment Tutorial

We can now move on to an alternative possibility for displaying port
conditions.

Setting up a plot recording of the drive lines

Selecting ‘ Signals’ from the ‘Window’ menu will display an empty Signals
window. Y ou must now specify the items you wish to plot by choosing
‘Edit Signals’ from the ‘ Trace’ menu. Either pin signals or simple values
read from data variables may be plotted. The default type shown ispins.
Thelist of pins should be expanded and you should specify the individual
lines, P30 — P33, clicking the* Add’ button after each selection. The result
should be the inclusion of 4 Port P3 outputs within the one window. You
may also wish to include the two significant data variables, Count and
TimerTick. Toinclude these change the * Type' box to show L-Value and
enter the names of the data variables in the L-Value box.

I'n order for the Signals window to plot the lines during processor execution
we must enable the signal operation and ensure that the signal buffer is set
to asize capable of holding enough information for plot records. To do this
select * Debug’ from the *Options’ menu. A dialog box will appear, on
which you should click the * Signal Buffer Enabled’ check box and enter a
valueof ‘1’ (representing 1 second), as the size of the signal buffer.

24 Micropak 870C User Manual

Tutorial Setting up the test environment

The Signals window will initially appear empty. The plots are only drawn
asthe simulation progresses. Hereisan example of how the box might
appear later when you have run the firmware:

B Signals 1 !E[E

P30 [-D¥0): v0 =5000¥, v1 =5.000%_ dv = 0.000 ¥
5]
v
- P31 [-PWM3/~-PDD3/TC3): »0 = 0000 ¥, v1 = 0.000¥, dv = 0.000 *
v H
2 P32 [-PWM4/-PDD4/-PPG4/TC4): v0 =0.000 ¥, »1 = 0.000 ¥, dv =
M 0
P33 [-PWMG/-PDOG/-PPGG/TCE): v0 =5.000%_ 1 =5 000 ¥, dv =
N h
0
Ininterrupt: n0 =0_nl1 =0, dn =
1
0
MainLoopCount: nll =31, nl =31, dn=10
L
l:II
1280 1285 1290 L]
Time/ms: t0=1271s. 11 =1.27F1 5. dt=0.000 s, 1/dt =1/0 bl
4 [

Signals windows show the relative timing of signalsclearly. They can be
scrolled backwards to see the past changes. The amount of past detail that is
stored depends on the buffer size. For more information about using plot
records see the later section.

Micropak 870C User Manual 25

Setting up the test environment Tutorial

Loading the example firmware

The distribution disk contains the necessary source and other filesto see the
examplerunning. Assuming that you opted to install the tutorial, these files
will be in an appropriate directory on your system and you can load and run
the sample program. In thisinstance the files will have automatically been
loaded when you rebuilt the project and a source window displayed. If you
have minimised this window you should now restore:

0
]
»|F

~#% the main loop *~

do

{
~% check if button pressed =~
if (StartButtonPressed {))

##% are nov allowed to driwve the notor =~
StartMotor ():

<% === 1f the stop button hasz besn pressed *-
if (StopButtonPressed ())

% inform the rest of the code to =stop driwving
the notor *7
StopMotor ()

<% ha=z the TBT timer owverflowed? =~
if (TimerTick)

#% ye= 1t haz *®7

TimerTick = 0; % clear out the flag %~
if (Count)

{

x PN & a

A sample source file

The sourceisdisplayed asit isheld inthefile. That isall user comments
etc. areincluded inthedisplay. If the source contained in thefileis‘C’
code then the normal display will show only thiscode. Y ou can however
request a disassembly of the loaded executable code to be interleaved with
therelevant ‘ C’ source by selecting the ‘View' ‘ Show assembly’ menu
option.

The scroll bars, the cursor and PgUp, PgDn keys enable you also to scroll
forwards and backwards through the example source code. Use these
facilities to examine the example source code, and relateit to the
descriptions which follow. The ‘View’ menu has options for setting and
removing ‘Bookmarks' in the window and moving between the marks set.
Lines on which Bookmarks have been set are coloured.

26 Micropak 870C User Manual

Tutorial Understanding the example

Understanding the example
Timing

The main features of the system timing are shown below:

period counter’
underflows |
phase Countew

P33 [S I e I e N
R

P32

P []
]

P30

The timing of events in the example
The on-chip timer is used to generate aregular timing interrupt.

Thisinterrupt causes a period counter to be decremented. When this
counter reaches zero, anew phase pattern is driven to the motor circuitry
and the period counter is reloaded to time the next inter-phase gap.

Micropak 870C User Manual 27

Understanding the example Tutorial

Program flow

The flow chart which follows shows how the program is structured to

perform these various actions.

r_(set TimerTick flag j

TimerTick flag

(in tia lise
' wa itfortim erint.

)
——
)

(return flom inte rru pt]

scanbuttonsand
updatestepping flag

(decle mentcountea

yes

reload counter

—
—/

stepmotor

yes

(drive newphase)

Control flow in the example

28 Micropak 870C User Manual

Tutorial Understanding the example

After initialisation, control enters the main loop.

Each pass round the loop is synchronised to the timer interrupt by waiting at
the start of the loop until theflag ‘ TimerTick’ is set by the timer interrupt
handler.

The activities of the loop begin by scanning the ‘ start’ and * stop’ buttons
and setting or clearing the drive flag appropriately. Next, the period counter
is decremented and tested. When there are no more ticksin thisinterphase
period (i.e. the counter reaches 0) the counter is reloaded with the value of
the current period. Thedriveflag isthen tested to seeif the motor isin
operation. If itis, anew phase pattern is driven out to the motor.

‘C’ startup code

The code for this exampleiswrittenin ‘C’. The standard C compiler startup
code (assembler) isused to provide the ‘C’ environment initialisation. This
codeisrun at power on before control passesto the ‘main’ *C’ function.

The startup code begins at the label:

_startup
Initialisation

Theinitialisation functionisrun first. This sets up the program variablesto
appropriateinitial states and sets up theinterrupt controller and timer to
generate atimer interrupt at pre-set intervals. Program variable set up
includes setting the phase state to zero, and the counter, which counts down
to the next phase, set to the maximum value ready to start counting down.
The drive flag, indicating whether or not the motor is operational, is set to
TRUE.

Finally, interrupts are enabled, and control passes back to the main loop.

Main code

The code consists of acontinual loop. Firstly, when anew key pressis
detected, the motor is switched on or off accordingly. Then atest of the flag
set by the timer interrupt is made. When thisis detected, the switch lines
are scanned by appropriate routines one by one.

Micropak 870C User Manual 29

Understanding the example Tutorial

The period counter (‘ Count’) is decremented at each pass of the loop. When
it reaches zero, it is reloaded with the constant ‘Period’. Thedriveflagis
then tested to determine if the motor is operational, and aroutineis called to
drive new phase outputs. Control then returnsto the start of the loop.

do {
unsi gned char Tenp;

Il check if start button pressed

if (StartButtonPressed()) {
/1 are now allowed to drive the notor
StartMtor();

}

/] see if the stop button has been pressed
if (StopButtonPressed()) {
I/l informrest of the code to stop driving the notor

St opMot or () ;
}
// drive the notor if necessary
asnm(" di"); /1 disable interrupts first

Tenp = Ti ner Ti ck;
TimerTick = 0;

_asnm(" ei"); /1 now re-enabl e them
it (Tenp) {
if (Count > 0) {
Count- -; /1 decrement the counter

}

if (Count == 0) {
Count = Period; // setup counter for next phase
if (Stepping) {

Phase++;
if (Phase > 7) { /'l check for overflow
Phase = 0O;
}
Set Mot or Port () ; /1 drive the next phase
}
}
}
b
while (1); /1 loop for ever

The main line code

30 Micropak 870C User Manual

Tutorial Executing the code - The PC indicator and cursor

Processing functions

In the example, for clarity, the task is broken down into several functions.
They perform the following:

scanning for new button presses (one for each of the two
buttons).

getting a new phase into the motor drive outputs.
setting a new phase into the motor drive outputs.

These individual routines arerelatively straightforward and are not
specifically listed here. Y ou can inspect the source for these routines by
scrolling the code displayed in the source window.

Interrupt handler

Thetimer interrupt is kept as simple as possible. The only significant action
isthe setting of the flag which the main line code tests to detect the passage
of another interrupt period:

static void _ regbank(2) |ntTBT(void)

/1 report to the nain |oop that the interrupt has occurred
TinmerTick = 1;

The handler for the timer interrupt

Executing the code - The PC indicator and cursor

We are now ready to try executing the code. First of all, generate areset in
the system by selecting ‘ Reset’ from the ‘Debug’ menu. The PC will be set
to thefirst line of the real program and isshown by ayellow bar. Thiswill
beinthe assembler ‘C’ startup code source window at the label _startup.

Place the cursor in the ‘ stepper.c’ source window and scroll down through
the code. Moveto the start of the*C’ main function

Click on thefirst line of code after the function declaration i.e. the call to the
initialisation function. The cursor is set here.

Micropak 870C User Manual 31

Executing the code - The PC indicator and cursor Tutorial

Go to cursor

Y ou can now give the * Step to Cursor’ command to execute the program to
thispoint. Thiscommand can be given either by selecting ‘ Step to Cursor’
from the ‘ Debug’ menu or by clicking the appropriate tool bar icon:

The ‘Step to Cursor’ icon

When execution arrives at this point, you will notice the program counter
(PC) indication by the changed colour at thisline.

The source line, which corresponds to the current program counter position,
isshown in yellow. Because the program counter points to the next
instruction to be run, the yellow lineisthe one that is about to be run.

Single Stepping

It will beinteresting to watch the effects of the code on the view itemswe
have already set up. Single stepping gives you the opportunity to observe
these individual effects clearly, instruction by instruction.

Single stepping can be done by selecting ‘ Step Into’ from the ‘ Debug’ menu
or by clicking the appropriate tool bar icon:

!

The ‘Step Into’ icon

As execution proceeds you will see the yellow bar showing the current
program counter position gradually move through the routine.

Notice that because the program counter points to the next instruction to be
executed, the PC indication shows the actions that are about to be
performed, not the action that has just been carried out.

32 Micropak 870C User Manual

Tutorial Executing the code - The PC indicator and cursor

Animating the code - multi-stepping

Multiple stepping executes one step at atime, and displays the program
counter position after each instruction by moving the yellow bar. This
function, sometimes known as ‘animation’, shows execution moving
through the code, making program flow clear.

Animation can be started either by selecting ‘ Go’ from the * Debug’ menu or
by clicking the appropriate tool bar icon:

The ‘Go’ icon
Note, however, that because the whole screen display is updated, including
re-writing the source window and showing the program counter bar,
execution speed in ‘animation’ mode can become slow. When using this
mode of execution speed may be increased by minimising those windows
you are not interested in observing at thistime.

Fast debug mode

Having observed theindividual stages of initialisation we can now proceed
to run the code in the fast debug mode. In this mode, only the test panels
are updated during execution and therefore the speed of executionis
increased. Toinitiate this mode either select ‘ Fast’ from the ‘Mode’ field of
the *Debug Options’ dialog box, having selected the latter from the
‘Options’ menu, or click the appropriate tool bar icon:

The slow icon (A tortoise) The fast icon (A hare)

Running in fast mode should enable you to see the stepper drive activity asa
circulating effect in the test panel display.

Micropak 870C User Manual 33

Simulating button presses Tutorial

Simulating button presses

With the code running, we can now investigate the behaviour of the
firmware in response to button presses. For thisyou should return to the
slow debugging mode, so click on the debugging mode icon to return to
slow mode. The icon shown represents the current state, so you should click
onthe‘hare’ to show the ‘tortoise’.

Y ou can simulate the effect of a push-button operation by changing the
voltage generator from 5v to Ov. This mimics the effects of the switch
operation causing the voltage at that pin to fall, triggering the main loop to
detect a switch operation and stop the motor. To simulate the stop button
therefore you should restore or make active the P17 pin window and change
the voltage appropriately. To release the button you would change the
voltage back to 5v again, however, you should pause for a short while
between the operations to ensure that the switch sensing code sections are
run.

To start the motor again you should simulate a button press on pin P16. The
results of each button press should be seen in both the test panel display and
the plots recorded in the Signal's window.

Project context files

So far we have seen how to set up atest environment and use it to run our
target code. You may find it useful to save this environment in order to
re-instigate the test at alater stage. To save your panel file choose the ‘File'
‘Save As’ option. Thefile should be saved with the extension .PAN. The
context information including information on the windows and panels that
were open and their position may be saved through the ‘ Test’, ‘ Save As
menu option. You must give the test context a file name when saving it. If
you wish the context to be opened automatically when you open a project
you should give the file the same name as the project name. The extension
is.TST.

When we started the tutorial we did not open an existing project file, asthe
tutorial was described to create anew one. An example project file for the
tutorial is provided to go with the tutorial example:

stepper.bat

34 Micropak 870C User Manual

Tutorial Project context files

To invoke thisuse the ‘ Project’, *Open’ menu sequence. You will then see
apre-defined set of windows appear on the display. The next section
describes how test simulations may be made easier and faster by using script
files associated with the pre-defined project context file.

A new window displaying two ‘Window style’ buttons, labelled as‘STOP
and ' START’ will be seen. Theseitems are linked viathe script file to the
two button sensing pins.

Thisis how the new window will appear:

Stepper.pan =]

Start hutton

Start button is active

Stop button

Stop button is active

The test file reads in the test panel

Micropak 870C User Manual 35

Using the scriptfile Tutorial

Using the script file

Micropak 870C includes a‘script file' processor as described briefly in an
earlier section. Thisallowseventsin the simulated environment to be
controlled and monitored automatically according to details defined in the
script file. Script files are described more fully in alater section, but we
will illustrate their use here by providing a more convenient way of running
our test session.

The distribution disk contains a sample script file to go with the tutorial
example:

stepper.scr

To invoke this, select ‘Open’ from the *File’ menu. Thiswill display a
dialog box allowing the file to beloaded. Select or enter the name
(“ stepper.scr’) and the script file itself will appear in a‘text window’ .

To action the script in thefile, select the Script file window and then

use the menu option ‘Run Script’ from the ‘Test” menu to action thefile
commands. The results of any further simulation will then cause changes
to the display according to the events translated by the script file.

Clicking on the button items shown in the new test panel will toggle the
voltage switch on pins P16 and P17 to simulate the button press and release.

For more details see the later section on script files.

Checking the generated sequence

If you study the generated output phase signals carefully you may notice an
anomaly. In fact, the example program includes a bug, which resultsin one
of the patterns driven out to the port being incorrect and showing all the
lines being driven high together. Thiswill result in adisturbance to the
circulating pattern and can also be seen in the plot record display in the

Signals window.

Tracking down the bug

In order to find the problem we will set a breakpoint just after the code line
which sets new phase patternsinto the hardware.

36 Micropak 870C User Manual

Tutorial Tracking down the bug

Wewill also activate trace buffering so that we can *back-step’ from the
breakpoint, to see the code line which generates the incorrect pattern.

Firstly, we must stop our current execution. To do thisusethe*Alt-F5' key
or select ‘ Stop Debugging’ from the ‘ Debug’ menu.

Setting a breakpoint

Scroll through the code until you find the function called:
SetMotorPort

In thisroutine the line:
motor = GetMotorPortDriveForPhase();

isthe line which writes to the hardware drive port. Click on the code line
just after thisto set the cursor position. Thisline hastheinstruction:

return;

To set the breakpoint here click the ‘ Toggle Breakpoint’ icon:

The ‘Toggle Breakpoint’ icon

Lines on which breakpoints are set are shown in red. Clicking the
breakpoint icon toggles the breakpoint at the cursor position on or off.

Once we have set the breakpoint we need to turn on trace buffering so that
on reaching the breakpoint we will be able to step backwards and check the
previous program actions.

Activating trace buffering

To activate the trace buffer, select ‘Debug’ from the * Options’ menu and
click the ‘Enabled’ check box for the trace buffer. Micropak 870C allows
the size of the trace buffer to be adjusted, but the default size will be suitable
for us here.

Micropak 870C User Manual 37

Tracking down the bug Tutorial

Running to the breakpoint

Now we have set the breakpoint and activated the trace buffer we can run
the code again (the * Go/Stop’ icon is probably the easiest way). When the
breakpoint is reached execution is halted, a message appears and abeep is
heard.

Y ou will notice that the yellow line indicating the PC marker is now on our
chosen instruction, and that a new pattern will just have been driven out.

Checking the individual drive patterns

Y ou should now restart the execution using the ‘ Go’ icon or by selecting
‘Go’ from the ‘Debug’ menu. Correct patterns should activate one output or
two outputs simultaneously. If the current state of the phase output.

shown in the panel window currently has all outputs activated, the
erroneous pattern must have been driven out. If the current pattern appears
correct (i.e. it has one or two outputs active), then you can run to the next
pattern by using the ‘Go’ icon again. Continue this process until the faulty
pattern hasjust been driven out.

At this stage we know that the pattern just output was wrong. Examining
the code shows that the pattern iswritten to the dataitem ‘motor’ from
valuesderived in a‘switch’ statement in ‘ GetM otor PortDriveFor Phase'.

The ‘switch’ statement contains each of the specific patterns written to the
dataitem *motor’. In order to know which of the ‘switch’ ‘cases’ set the
faulty pattern we need to know which lines were run just prior to the
hardware updating.

The ‘Back-step’ facility allows usto ‘turn the clock back’ and effectively
run the code in reverse, tracing the execution back up through the code.

To invoke thisfacility select ‘ Step Back Into’ from the ‘ Trace’ menu.
Using thisfacility you will find that the following statement was the villain:
case 3:

return OxOf;

38 Micropak 870C User Manual

Tutorial Making corrections

The pattern in question is specified here as a hexadecimal constant (0x0f)
and it can now be seen that this does indeed set all lines active. In fact this
value should be 0x06. Having located the bug we can now move on to see
how to make an appropriate correction.

Making corrections

To correct this bug you can use the source edit facilities of Micropak 870C
directly.

Position the cursor in the faulty line and make the correction using the
cursor keys and over-typing, etc. After editing you must then save thefile.

Re-running after corrections

You must now rebuild the project to ensure that the corrections are included
inthe simulation. To do thisselect ‘Rebuild All’ from the ‘ Project’ menu or
use thetool bar icon as described in an earlier paragraph..

The Toshibatool chain will be automatically invoked and a new executable
filewill be generated. Once the rebuild process has finished, the project
fileswill be re-loaded and a refreshed source window will be displayed.

Y ou should now be able to re-run the code (e.g. by clicking the ‘Go’ icon),
and this time the phase output sequence should be correct.

Moving on

Having been through this tutorial session you should have some idea of the
facilities which Micropak 870C offers, and how these can be used to good
advantage in your own testing or devel opment programme.

The later sections of this guide provide reference information covering all of
the various facilitiesin more detail.

Perhaps before leaving the tutorial set up, you might find it helpful to use
the context of the tutorial example to exp eriment with some of the other
facilities described in later sections. Here are some suggestions:

Step Over - to skip over, say, the button testing routines.

Micropak 870C User Manual 39

Moving on Tutorial

Step Out - single step into the * GetM otorPortDriveForPhase’
routine and then use the * Step Out’ function to run to the end of
thisroutine. Thisfacility is one of the most useful when
investigating code so it’ s beneficial to learn how to useit early
on.

Watch windows - Micropak 870C provides various ways of
viewing datavariables. Try adding some dataitems to a Watch
window to show the interphase counter (‘ Count’) and the tick
recording variable (‘' TimerTick’).

Trace buffering - enable the trace buffer for awhile, observe
the effect on speed, then use the ‘ Back-step’ facilities to watch
the code running in reverse. Note that the PCisshownin
green.

Port views - ports can be viewed multiple lines at atime.
Showing Port PO in this way would be a good example of the
use of thisfacility.

Breakpoints - use the ‘ Breakpoints' menu option to set a
breakpoint at the code line which deals with the * Start’ button
being detected as active, then run the code, activate the button
and see if the breakpoint is correctly reached.

Go and Go - set a‘Breakpoint’ at the code line which drivesa
new phase of the motor i.e. the function call to SetMotorPort.
Then select the Go and Go option from the Debug menu whilst
operating in ‘ Fast Mode'. The code will runin fast mode and
when it hits the specified breakpoint Micropak 870C will
update all windows before starting to run the code again. Take
note of the Signals window updates.

Sour ce editing - try some of the editor functions available on
the *Edit’ menu.

Y ou will probably find most of these functions can be invoked easily using
the menu system. However, if you need more explanation or information,
try the on-line help facility, or the later sections of this manual.

40 Micropak 870C User Manual

User Interface Details The Micropak 870C screen

User Interface Detalils

The Micropak 870C screen

When the Micropak 870C program is started the following window is
displayed:

Menu bar

For Help, press F1. [TMPBECH236F |/

Status bar /

Micropak 870C User Manual 41

The Micropak 870C screen User Interface Details

The main user interface elements are as follows:

Name

Description

Menu Bar

Menu

Tool Bar

Desktop

lcon

Window

Liststhe available menus, e.g.:
File Edit Y¥iew Project

When amenuis selected it lists the commands specific to that
menu, e.g.:

(AT Trace Options Wi
Go F5
Step Into FG

Step Over F7
Step Out Fa

Note that when a menu option is not availableit is displayed
‘greyed out’ and cannot be selected.

Thetool bar displaysanumber of buttonswhich provide quick
accessto some of the menu commandse.g.:

B]]
Thisisthe background area of the screen.

Thisdisplaysawindow in acompact form, e.g.:

=

Port PE

Thisdisplays source code, help information, simul ated objects
etc., e.q.;

TETEN: @’

TETCE:

ifchSBBEDB vl

42

Micropak 870C User Manual

User Interface Details Window elements

Name Description

Scroll Bars These change the position within afileor list, e.g.:

[«]] [+]

StatusBar This displaysinformation about your current session,
including processor type, position within afile, etc., e.g.:

I TMPEECH294F | | MUM | =

Window elements

Note that the example given hereis from Windows 3.1. Windows 95
elements which are different are shown as second alternativesin the table
following this screen.

Close box
Title bar _\ Maximise button

@

Minimise button

Vertical scroll bar N\

Border T~

[Horizontal scroll bar Scroll Button N\ __|

s
‘¥ Border

Micropak 870C User Manual 43

Window elements

User Interface Details

Name

Description

Window border

Window title

Close button

Minimise button

M aximise button

Restor e button

Scroll Up arrow

Scroll Down arrow

Page Up area
Page Down area

Scroll button

Used to sizethewindow by dragging with the mouse

Indicates the window contents. Also used for moving
thewindow by clicking and dragging

Closesthe window when double-clicked, e.g.:

Reduces the window to an icon when clicked, e.g.:

[=1

Enlarges the window to its maximum size when
clicked, e.q.:

=l

Restores the window to its original size when clicked
with the mouse, e.g.:

Click once with the mouseto scroll up onelineat a
time, e.g.:

[+
Click oncewith the mouseto scroll down onelineat a
time, e.g.:

Scrollsup one page at atimewhen clicked once
Scrollsdown one page at atimewhen clicked once

Indicatesthe relative position in thefile/list. Drag with
the mouse to change position in thefile/list

44

Micropak 870C User Manual

User Interface Details Menu operation

Menu operation

Menus can be invoked either by the appropriate keyboard actions or by
clicking with the mouse. Menu options are grouped under main headingsin

amenu bar located across the top of the window.

Clicking on one of the optionsin the menu bar will cause the appropriate
pull-down menu to be displayed, e.q.:

Hew Windowm
Lmcade

Tike

Arrange |oohs

Stack Souce windors

Iniereal

Signak

Pesformanie Andlpss
Welch

Locek

HRexisiens:

Ddpad

Ei=s

Bromser

[evica O
Bn... Cl+E

w1 Bhepresc

The options presented can then be selected by moving the mouse cursor to
the desired option and clicking again. Note that menu options which are not
relevant to the current operation are shown ‘greyed out’.

Sub-menu options normally have a single character underlined. If the
associated key is pressed whilst holding down the Alt key the appropriate
sub-menu will be displayed. This provides an alternative to using the mouse
to display the desired sub-menu.

In addition to this underlined character, some menu options also include a
short cut key or accelerator key which can be used to invoke afunction
directly. These are described to theright of the menu text, e.g.: using the
combination of the Ctrl and ‘D’ key will display the ‘ Device Window’.

Menu options which, when selected, display dialog boxes are shown with
‘... attheend of the option field, e.g.:

Open...

Micropak 870C User Manual 45

Menu function reference descriptions

User Interface Details

Menu function reference descriptions

Thefollowing tables show how the functions accessed viathe menu system

are grouped:
File Edit View Project Test
New Undo Line New Open
Open Redo Show Assembly Open Save As
Close Cut Show All Assembly |Add Files Run Script
Save Copy Next Error Close Stop Script
Save As Paste Previous Error Compile File Stop All Scripts
New Panel Delete Toggle Bookmark [Build Show Panel
Palette
Print Find Next Bookmark Rebuild All Hide Panel
Properties
Print Preview |Replace Previous Bookmark| Stop Build Panel Properties
Print Setup Read Only Clear All Configurations Panel Grid
Bookmarks Settings
Exit Toolbar Set Active Recent Tests
Configuration
Recent Files Status Bar Settings
Syntax Colouring |Recent Projects
Debug Trace Options Window Help
Go Go Back Debug New Window Micropak
Workbench
Step Into Step Back Into Editor Cascade Build Tools
Step Over Step Back Over Device Info Tile Device Info
Step Out Step Back Out Arrange Icons About Micropak

870C

Step to Cursor

Step Back to

Stack Source

Cursor Windows
Go and Go Clear Interval Interval
Stop Debugging | Edit Signals Signals
Reset Signals Zoom In Performance
Analysis
Set PC to Signals Zoom Out Watch
Cursor
Show Call : Locals
Stack Snap Signals
Breakpoints Clear Performance Registers
Analysis
QuickWatch Code Coverage Output
Clear Coverage Files
Browser
Device
Pin
46 Micropak 870C User Manual

User Interface Details Menu function reference descriptions

Menu : ‘File’

This group of menu options deals with file handling and printing, including
creating anew panel. Note that alist of the four most recently used filesis
maintained for convenience. The exit command for the Micropak 870C
program is also accessed from this menu.

Option Description

New Start anew file

Open... Open an existing file

Close Closeacurrently openfile

Save Update the disk copy of the current file

SaveAs... Writethe current fileto disk, optionally with adifferent name
New Pand Create anew test panel

Print... Print the current file

Print Preview See on screen how the current file will appear when printed
Print Setup... Review printing options

Exit Leavethe Micropak 870C program

Recent Files Open arecently accessed file

Menu : ‘Edit’

This group of menu options deals with the editing of files. Any text file
may be edited using these functions. If afile has not been opened prior to
editing, an ‘untitled’ file will be created which may be saved later. Seethe
‘Options’ menu for options relating to this menu.

Option Description

Undo Undo the most recent editing action

Redo Redo the most current editing action

Cut Removethe selected text and placein the clipboard
Copy Copy the selected text tothe clipboard

Paste Insert the current clipboard contents

Delete Delete the selected text from the current file or list
Find... Find astring of charactersinthe current file.
Replace... Find and replace astring of text with another

Read Only Mark thecurrent fileasread only

Micropak 870C User Manual 47

Menu function reference descriptions

User Interface Details

Menu : ‘View’

This menu deals with viewing the source text windows. Facilities are
provided to place bookmarksin the source

Option Description
Line Go to aline number
Show Assembly Toggle the current sourcefile between normal and mixed

Show All Assembly

Next Error
PreviousError
ToggleBookmark
Next Bookmark
PreviousBookmark

Clear All Bookmarks

Toolbar
StatusBar
Syntax Colouring

Menu : ‘Project’

source/assembly display

Toggle source files between normal and mixed
source/assembly display

Go to the source line containing the next error

Go to the sourceline containing the previous error
Turn bookmark on or off

Moveto the next bookmark

Moveto the previous bookmark

Clear all the defined bookmarks

Togglethetool bar on/off

Togglethestatusbar on/off

Enable or disable syntax colouring

This group of menu options deals with project-wide facilities. Thisincludes
project context files, script files and rebuilding the executable file. Seethe

‘Options’ menu for options relating to this menu.

Option Description

New... Create anew project file

Open... Open an existing project file

Add Files... Add fileslisted for the project

Close Closethe current project file

Compile File Compilean individual sourcefile

Build Compile changed files and link the object filesin the
current project

Rebuild All Rebuild aproject from scratch

Stop Build Stop the current project rebuild

Configurations
Set Configuration

Define build configurationsfor the project
Select the configuration to be used when building

48

Micropak 870C User Manual

User Interface Details Menu function reference descriptions

Settings Set up all setting for the project configuration
Recent Projects L oad arecently accessed project
Menu : ‘Test’

This group of menu options handles the test script files and the settings of
the test panel.

Option Description

Open... Open atest file

SaveAs... Savethe current window positions and debug optionsasa
new test file

Run Script Action commandsin the selected script file

Stop Script Stop execution of the selected script file

Stop All Scripts Stop execution of al script files

Show Panel Palette Display the panel palette, allowing you to add and edit
items

Panel Properties... Specify the properties of atest panel item

Panel Grid Settings... Specify thegrid settingsin the test panel window

Recent Tests Display the four most recently opened test files

Menu : ‘Debug’

This group of menu options controls the running of the program when
debugging. It contains various run modes and allows breakpoints to be set.
See the *Options' menu for options relating to this menu.

Option Description

Go Run thetarget processor

Step Into Runasingleinstruction

Step Over Run asingleinstruction or procedure
Step Out Run to areturn

Step to Cursor Run until the cursor position isreached
Goand Go Run until abreskpoint is reached and run again
Stop Debugging Halt the target processor

Reset Generate a‘reset’ in the target processor
Set PC to Cursor Set the PC tothe current cursor position
Show Call Stack... Display thecall stack dial og box

Micropak 870C User Manual 49

Menu function reference descriptions User Interface Details

Breakpoints... Set breakpoints
QuickWatch... Inspect the value of the selected variable

Menu: ‘Trace’

This group of menu options controls the trace buffer facilities and the signal
plot display facilities. This menu also includes the facility to clear the
interval window.

Option Description

Go Back Traceback to start of the buffer

Step Back Into Step back oneinstruction

Step Back O ver Step back oneinstruction or procedure

Step Back Out Step back to start of the procedure

Step Back to Cursor Step back to the current cursor position

Clear Interval Clear theinterval counter

Edit Signals... Add or edit plotsin the signal box

SignasZoom In Magnify the signal box

SignalsZoom Out Reducethe contents of the signal box trace

Snap Signals Snap the signal plot linesto nearest valuetransition
Clear Performace Clear the values shown in the performance analysis
Analysis window

Code Coverage Turn on the code coverage option

Clear Coverage Reset the code coverage information

Menu: ‘Options’

This group of menu options allows the user to specify options which control
other menu facilities.

Option Description

Debug... Change options for the debug menu including trace buffer
on/off setting

Editor... Specify the optionsfor the editor

Devicelnfo Specify thedirectory path for the processor data sheet.

50 Micropak 870C User Manual

User Interface Details

Using dialog boxes

Menu: ‘Window’

This group of menu options allows the user to specify new windows to be
displayed and rearrange existing windows.

Option Description

New Window Generateanew ‘copy’ of the current window

Cascade Arrange al the open windowsin a‘cascaded’ display

Tile Arrange al the open windows as‘tiles’

Arrangelcons Tidy thedisplay of theicons

Stack Source Arrange the open source windowsin aZ order

Windows

Interval Open anew Interval window

Signals Create a Signals window

PerformanceAnalysis Openthe Performance analysiswindow

W atch Open the Watch window

Locals Open the Localswindow

Registers Open the Registers window

Output Open the Output window

Files Opensthe File window

Browser Opens the Browser window

Device... Open anew device window including RAM and Ports

Pin... Open apinwindow

Menu: ‘Help’

This group of menu options gives the user access to the help facilities.

Option Description

Micropak Workbench Display help specific to Micropak 870C

Build Tools Display help ontherelated TLCS-870/C toolsincluding
error messages and option settings.

Devicelnfo Accesstechnical information about 870 devices

About Micropak 870C Display version and copyright information

Using dialog boxes

Dialog boxes are used to enter values and make selections. Menu options

which invoke dialog boxes are shown with ... adjacent to the menu text, e.g.:

Micropak 870C User Manual

Using dialog boxes User Interface Details

Open...

Examples of dialog boxes which are specific to Micropak 870C are shown
in the relevant section. Common dialog boxes such as those for opening
filesfollow standard conventions. An exampleisgiven here:

= Open File

File Hame: Directones:
| eiandsoftympB70%w1.0
mp870.exe ¥ = e +

[andsoft

[= mp870

B= vl
+
¥

List Files of Type: Drives:
All Files [~.7] 2] [= e msdos b 3]

In order to enter avalueinto afield within adialog box you will need to
click into the field using the mouse. The text cursor will then appear in this
field, indicating where the text you type will appear. The following keys
can be used within dialog boxes with their normal editing functions:

Key Function

Ins Togglein and out of insert mode

Del Delete the character to theright of the cursor
L eft, Right, Up or Non destructive cursor movement

Down Arrow

Tab Moveto the next field on the window
Backspace Deletethe character to theleft of the cursor
List boxes

These are special fieldswhich allow the selection of oneitem fromalist,
and incorporate an arrowed button alongside enabling you to ‘ pick and
choose’ from the displayed choices, e.g.:

Fast *
Slow

52 Micropak 870C User Manual

User Interface Details The tool bar

Radio buttons

Again, special fields, called ‘radio buttons’ require you choose between
several choices displayed on the screen by clicking with the mouse in the
circular areato theleft of thefield text, e.g.:

@K

 Insert Spaces

Check boxes

These fields enable you select or deselect an option by clicking the box with
the mouse, e.q.:

B Horizontal

Keyboard actions

Micropak 870C includes a set of pre-defined ‘ accelerator’ key functions.
These allow fast access to the most commonly used menu options. Where
key functions exist they are listed alongside the menu options. A full listing
of theseisgiveninthe ‘Keyboard Summary’ chapter of the manual.

The tool bar

Thetool bar provides aquick and easy way to access most frequently used
functions. The row of buttons, each with an icon representing the action
which will be performed when the button is clicked using the mouse.

The tool bar icons
Open Document ™ Step Over
Save Document Step Out

Cut Selected Text 7 Step to Cursor
to Clipboard
Bp! Copy Selected
Texty to Clipboard
]

Paste Contents Of

Clipboard

Reset the Processor

Set PC to Cursor

Micropak 870C User Manual 53

Using the on-line help system User Interface Details

Find Toggle Breakpoint
Compile File QuickWatch
e Build Clear Interval
bk Rebuild All Fast/Slow Debug
- Project Mode
Run/Stop Script Open Device
File @I Window
Go/Stop Open Pin Window
™ Step Into

Using the on-line help system

Micropak 870C includes an on-line context sensitive help facility which can
be invoked using any of the following methods:

Pressing the F1 function key
Using the Help pull-down menu
Pressing the Help button on the dialog boxes

The help system consists of an index of a set of topics. They are shown in
green. Topic names which are underlined show the user that alower level
sub-topic list will be displayed if thistopic is selected. Where atopicis not
underlined, the help system will display help text.

The user can select the topic required by clicking on a chosen topic name.
Sub-topics or related topics, aso shown in green, will be displayed as
relevant and the user may select these by clicking on the item displayed.

Searches on any topic may be invoked by the user by selecting the help
system search option. Searches are only available on indexed items, i.e.

topics. You cannot search the help text itself.

A history of the help requested is kept and can be shown by selecting the
History tool and the help requested may be back-tracked or printed.

54 Micropak 870C User Manual

User Interface Details Using the on-line help system

To exit from the help system you should select the close tool or exit option
from the help system file menu.

F1 function key

The F1 function key can be used to invoke help about any menu option or
menu item. The user must highlight the option or item required and then
press F1. The help system will then display help about the selected item.

Help on tools may also be invoked using the F1 key. Here the user must
select the tool required by pointing the mouse at the tool and hit F1 at the
sametime.

Help menu

The help system may be invoked by selecting any one of theitems on the
help menu. Anindex of topics relating to the menu item selected will then
be displayed. The user can then select the topic required.

If the search option is selected, the user will be prompted for the input of a
topic name. A selection list of topicswill be shown according to the
information input.

Help option

The help option in the dialog box or on the menus may be selected to
display help text about the item. Once displayed the help system remains

invoked and the user may then search on other or related topics.

Device Information

This menu item is activated when the focus is set on a pin or peripheral
window. Technical datafrom the standard Toshiba 870 data sheets held on
CD will then be displayed for the device item selected.

In order for the datato be displayed the CD must be resident in the CD
drive.

Micropak 870C User Manual 55

Using the on-line help system User Interface Details

56 Micropak 870C User Manual

Navigating Project Files Project file overview

Navigating Project Files

Project file overview

Micropak 870C requires filesto be organised by project. This section
describes the assumed file grouping and explains how Micropak 870C uses
the variousfilesinvolved.

Project files

There are anumber of files, each having a specific function, which
collectively constitute aproject. Thesefilesare asfollows:

.BAT Batch file used to control project rebuilding

.PRJ Project information file

.TST Window configuration details

.ABS File containing code and debugging information from

thecompiler/assembler

Projectsfiles areidentified by the *.BAT’ extension and are opened by
selecting ‘Open’ from the ‘ Project’ menu in order to set up atest
environment. Please be aware that opening the project file does not
automatically run script files. The source file will however be opened

automatically, ready for editing or actioning.

The project fileisatext file and can be edited directly. It can be used in one
of two ways.

Firstly, if the project is‘internal’ the batch file will contain just the text
‘REM MicroPak generated batch file - Do Not Modify.” Thiswill allow
Micropak 870C to handle all the project rebuilding, allowing the user to add
and delete source files and select from a comprehensive range of options. If
you intend to use this ‘internal’ project rebuilding facility then do not delete

or change the contents of thisfile.

Micropak 870C User Manual 57

Project file overview Navigating Project Files

The second way in which the project batch file may be used isfor ‘ externa’
project rebuilding. If thisoption isdesired, simply placein thisfileall the
commands required for the project rebuilding sequence. Note that Micropak
870C does not perform any checking of the contents of thisbatch file - it
will simply execute whatever commands are placed within it.

Source files are required for rebuilding

Micropak 870C does not require the original source filesin order to execute
code. However, it does require them in order to allow you to edit the source
and to subsequently rebuild the executable file. It also requires the source
file to enable debugging to take place.

Sourcefiles are text files and can be edited using the Micropak 870C editing
functions.

The processor information file

The processor information file must be present within the project
environment. It has the same name as the project but hasa.PRJfile
extension, e.g. ‘PROJECT1.PRJ . For both types of project (i.e. ‘internal’
and ‘external’) thisfile defines the processor type selected and the clock
frequencies. In addition, for internal projects, this file also contains details
of the source files and associated options.

The window configuration file

The window configuration file details your test environment in terms of
window position information, breakpoints, watch item names, etc. It avoids
the need to redefine your testing environment each time you start a new
testing session. Thefile has the same name asthe project but hasa.TST file
extension, e.g. ‘PROJECTL1.TST'.

The debug information file

This file, with a.ABS file extension, holds the code to be executed plus the
debug information which is output from the re-build tool chain. Thisfileis
created as aresult of the build process and normally uses the same name as
therest of the project, e.g. ‘PROJECT1.ABS'. Notethat if the project is
‘external’, an alternative file name may be used.

58 Micropak 870C User Manual

Navigating Project Files Opening a project

Opening a project

A project is opened by selecting ‘Open’ from the ‘ Project’ menu. A dialog
box similar to the following is displayed:

Paojech Open ﬂ E
Loakin: |_i.-‘w.|=|md-m:k j g ﬂ Em

Efelam:

Fils nams: | Cpan

Filss ol e [ProjectFilss * ba =] T

Browse through your drives and directories until the correct project batch
fileislocated, select it, then click the” OK’ button.

The appropriate source file (with a.C, .CL or .ASM extension) will be
loaded and displayed withinawindow on the ‘ desktop space’ of MP870.

Further files (such as other source files and script files) may be opened by
selecting ‘Open’ from the ‘File’ menu. The following window is displayed,
allowing you to select the file required:

Laak in: | 3 Alam cladk :J EI il EE‘
7SeglED.C €] SetslmmButionc
slamn.c €] SafTimaBitan c
1o lermTed ED e 8] TimChack.o
{5 Buticy 113 & Timarc
o] Buzzars
o] T
o] inEc
OnCAButan o
Fi= pame: ' Cpan
Fiesolbpe: |G | Cancal

Micropak 870C User Manual 59

Files Window Navigating Project Files

Files Window

The ‘Files’ window can be turned on by selecting ‘Files' from the
‘Windows menu. Thiswindow will show all source and header files
currently held for the project.

=3 Heeder Fies

Editing a project

MP870C includes the facility to allow you to add and remove entries from
thelist of files which comprise a project. To add filesto aproject the ‘ Add
Files' option isselected from the ‘ Project’ menu and window similar to the
following is displayed:

Add Files [2] x]
Loak in: |'S Alarm clock L‘ i‘ E_ =
|c] 7SegLED.c c] SetdlarmButton.c
(] alarm.c c] SetTimeButton.c
[¢] AlarmSetLED.e (€] TimCheck.c
[¢] Buttor 1.2 c] Timer.c
[¢] Buzzer.c
[e] INTC 2
[¢]ioB70.c
(6] OnCffButtan.c

File name: | Dpen I
Files of type: |C *.c Ll Cancel |

60 Micropak 870C User Manual

Navigating Project Files Specifying project settings

To add afileto thelist of fileswithin the project, click on the file names
required and select *Open’. The new file names including associated header
fileswill then be seen in the Files Window.

Toremove afilefromthelist of filesin the project select the file from the
File Window and pressthe ‘DELETE’ key.

Specifying project settings

For both internal and external projects there are a number of options which
you can specify, including processor type, build mode and command strings
for rebuilding the project. Any specific set of project options selected is
named as a particular configuration.

Setting up configurations

When ‘ Configurations' is selected from the ‘ Project menu the following
dialog box is displayed:

Configurations I

LConfigurations: Cloge

:[leb
Releaze Help

il

Remove

Each configuration is named and can then be changed as required. The
Release and Debug configurations are default configurations may be added
or removed at any time.

Selecting the Add option will cause the following dialog box to be
displayed.

Micropak 870C User Manual 61

Specifying project settings Navigating Project Files

Add Project Configuration |

Canfiguratian;
INEWD ebug

Cancel |
Copy zettings from:
!Del:uug ll Help |

The configuration to be added must be given anew name. Initial settings for
this new configuration must be taken from an existing configuration. The
settings may then be changed as required.

Selecting the active configuration

The settings and options defined for the active configuration will be those
used during any Build or Rebuild action. To set the current active
configuration select ‘ Set Active Configuration’ from the ‘ Project’” menu.
The following dialog box will be displayed:

Set Active Project Configuration |
Project configurations:
MHewDebug ﬂl
Help |

Changing the project settings

The change of the settings for a defined configuration select ‘ Settings’ from
the ‘Project’ menu. The following dialog box will be displayed:

62 Micropak 870C User Manual

Navigating Project Files Specifying project settings

]
oo MM =| | 5| | i sk | e |

= Source Flag
[#] i g Procedior
starbuge s =
E st IEES =
|E| e bl

T o

The *Processor’ list box contains the processor type for which the project is
being built. Note that thisis not required for the rebuilding process but for
creating the processor in the simulation. If the processor type is changed it
is necessary to reload or rebuild the project before the change will take
effect.

Options for the C Compiler, Assembler, Linker and Object converter are
specified by clicking the appropriate button to display a dialog box from
which the settings for the appropriate tool can be viewed and changed as
required. Asanexample, when the C Compiler button is pressed a dialog
box similar to the following is displayed:

Micropak 870C User Manual 63

Specifying project settings Navigating Project Files

Praject Sellinge
Settece o RTET-ROENIONE - || e £ Compier | agsemiter | Lk | Diies Coseseer |
<] Soacs Fiss LABOOGC | Commoe Custon I | Fimzer
] B e
5] stattup 2o F¥ iporess st iecieges | 4)
18] dopperc ™ Outpul versioe rumber [
—-&] depperkF I Foimat of rumesical espressiors: [H)

s datugoe) ntormanm 2 aesembe phaze (4]
I Select kani mode |4

Crente g bt fe o} |

Diprora
I-zg-u HDERUG 07

[k]| coeel | e |

The ‘ Setting for’ list box indicates the configuration for which the settings
are relevant. The list box will show by default the currently active
configuration. The settings for other configurations may be changed by

sel ecting the appropriate configuration from the list box

The ‘Options String’ is a non-editable text box which displays the options as
they would appear if entered at the DOS command line.

The ‘Category’ list box displays the categories relevant to the selected build
tool and the settings appropriate for the selected category are displayed in
the * Category Settings' window. From here you can specify the options
required, with the changes being automatically reflected in the ‘ Options
String’ text box. Note that the options will only take effect when the * OK’
button is pressed.

The ‘Reset’ button will reset the options selected for the tab to the default
settings.

External project options

When ‘Project’ is selected from the * Options’ menu (and the project is an
external type) the following dialog box is displayed:

64 Micropak 870C User Manual

Navigating Project Files Specifying project settings

Project Sallimngs:
ol
- 43| Sousce Fies
Froceasl
| THPEECADEM =
Tamget e

F:':Fm.am Fi=swHicwopak BAOC\Evamples\Stapper'walabs

Buad
I::"'Fw-:m Fizs"Hicrsk, G700 \Examplss Seppevalbst

[k]| coeel | e |

The‘Target Name' is the name of the debug or release executable file and
is, by default, assumed to be the batch file name with a.ABS extension.

The ‘Processor’ list box allows you to select the type of processor for which
the project is being built. Thisisnot required for the rebuild process but is
necessary for creating the processor for the simulation. If the processor type
is changed a project reload or rebuild is required before the change will take
effect.

The ‘ Settingsfor’ list box allows you to specify which configuration you are
specifying settings for,

Micropak 870C User Manual 65

Specifying project settings Navigating Project Files

66 Micropak 870C User Manual

Using the Editor Opening files

Using the Editor

Micropak 870C allows text files to be displayed and edited.

Opening files

The normal method for opening anew fileis by selecting ‘ Open’ from the
‘File’ menu. ‘Shortcut’ methods are also available using the accelerator
function keys or by clicking the following button on the tool bar:

The following dialog box is displayed:

File Opan E
ook [Hom oo =] & oo
& 7SealEC © 5] SatslarmBution.c
ﬂ al=m.c 2] SatTimaBution .«
6] AlarmEetlED e [B] TimChed o
6] Bution 1 ¢] Timar.c
8] Burzerc
0] INTC o
0] ind70.c
(o] CnCrifEution o
File nearne:] | Dpe=n I
Fils cftvpa: |G o) =] A |

L ocate the desired file by selecting the required drive and directory and
selecting from thelist of files. Notethat only files of a specific typewill be
displayed, according to the value selected from the ‘ List files of type’ field,

eg.

Filespecification Filetype

*C ‘C’ sourcefiles
.cl,.src ‘C-Like sourcefiles
*.mac Macro processor files

Micropak 870C User Manual 67

Syntax colouring

Using the Editor

*.app Preprocessor files

*.asm Assembler files

* h,*.inc Header files

* Ink, *.Icf Linker files

.h16,.h20 Intel hex files

* 516, *.524, * .s32 Motorola Sfiles

* cpl, st Listing files

*.map Map files

* bat Project files

*.ser Script files

* pan Pandl files

* All files

File defaults

In addition to the above file types the following extensions are assumed
defaults:

File extension Filetype

* bat Project batch file

* tst Project context files (not text files)

Syntax colouring

Asan aid to entering and colouring TLCS-870/C family source code a
syntax colouring facility is provided. This colours the various elements of

code asfollows:

Element Colour
Extended Keywords red
Keywords blue
Comments green
Dis-assembled code grey

Syntax colouring can be enabled by selecting ‘ Syntax Colouring’ from the
‘View’ menu. Note that syntax colouring isonly available for C source

files.

68

Micropak 870C User Manual

Using the Editor Mouse driven functions when editing

Mouse driven functions when editing

Thetext cursor can be set anywhere simply by clicking with the left mouse
button.

Selecting areas of text

Areas of text can be selected by dragging the text cursor from the beginning
of therequired areato the end of it. Text blocks selected in thisway will be
shown as white on black. Selected blocks of text are automatically copied
tothe‘find’ string whenever the ‘Find’ or ‘Replace’ dialog boxes are
opened.

The double-click

If the left mouse button is double-clicked whilst the text cursor is positioned
within aword, it will be selected and editing will now bein word mode.

The triple-click

If the left mouse button is triple-clicked whilst the text cursor is positioned
within aline, the text within that line will be selected and editing will
change automatically to line mode.

The shifted left hand click

If the left mouse button is clicked whilst the Shift key is pressed, the text
between the current text cursor position and the current mouse cursor
position will be selected.

When the editor isin word or line mode, the selected area of text will
include that previously selected by double-clicking or triple-clicking.

Editing possibilities
Once an area of text has been selected it can be:
Deleted (Del)
Removed from the file and placed in the clipboard (Cut)
Copied to the clipboard (Copy)
Pasted from the clipboard to another position (Paste)

Micropak 870C User Manual 69

Editor options Using the Editor

These functions can be invoked viathe ‘ Edit” menu or by using the
appropriate keyboard accelerator shortcuts.
Editor options

Editor options are set by selecting ‘ Editor’ from the ‘Options' menu. The
following dialog box is displayed:

= Editor Options
Tab Settings = | [Scroll Bars
Tab Stops: IEI |VE Hl:lrigonl;‘

- Keep Tabs <] Yertical
) Insert Spaces e

Undo Buffer Size [K Bytes): ICI

Thetab spacing can be changed to any number between 1 and 62. The
default number is 4 characters.

Cancel

dii

The horizontal and vertical scroll bars can be desel ected independently by
clicking the appropriate check box, e.g.:

E
B Yertical

The‘Undo’ buffer is used to store editor commands and associated text in
order to enable actions to be subsequently undone by the ‘Undo’ command.
The size of this buffer may be set between 0 Kbytes and 31 Kbytes.

Keyboard functions when editing

Basic text editing is performed by positioning the text cursor and using the
standard editing keys and functions as shown below. To position the text
cursor use the cursor keys or click with the left mouse button.

Key Function

Ins Toggle between insert and overwrite mode

Del Delete character to right of cursor or previously selected block
Backspace Delete character to | eft of cursor or entire block

70 Micropak 870C User Manual

Using the Editor Locating and changing text

Home Skip to beginning of line
End Skip to end of line

PgUp Move one page up

PgDn Move one pagedown

L eft Cursor one character | eft
Right Cursor one character right
Up Cursor one character up
Down Cursor one character down
Ctrl+Left Move oneword |eft
Ctrl+Right Move one word right
Ctrl+Up Scroll window up oneline
Ctrl+Down Scroll window down oneline
Ctrl+PgUp Scroll left one page
Ctrl+PgDn Scroll right one page
Ctrl+Home Skiptostart of file
Ctrl+End Skiptoend of file

Ctrl+A Redo

Ctrl+z Undo

Ctrl+X, Copy to clipboard and deletei.e. Cut
Shift+Del

Ctrl+C, Copy to clipboard i.e. Copy
Ctrl+Ins

Ctrl+V, Copy from clipboard i.e. Paste
Shift+ns

Ctrl+F Find

Ctrl+R Replace

Return Insert new line

Locating and changing text

Thefollowing facilities are available for locating and, optionally, changing
specific text within afile:

Facility Function

Find Locateaspecified string of characters

Replace L ocate a specified string of characters and optionally replace
it with adifferent string

Bookmarks Set, clear and move between markers set in the text

Micropak 870C User Manual 71

Locating and changing text Using the Editor

Find
Thisis selected from the *Edit’ menu. The following dialog box is
displayed:

Find What: | | | fimd Ben |

[Match Whole Word Only Direction |
[] Match Case O Up @ Down

Type the string of charactersto be located in the * Find What:’ field.

If the entire string is to be matched sdect the following check box:
[<]:Match Whole Word Onily:

If the case of the string of charactersisto be matched select the following
check box:

B4 Match Casze

The direction of the search within the file can be specified using the
following radio buttons:

Direction
’7(:} Up & Down

Replace

Thisis selected from the ‘ Edit’ menu. The following dialog box is
displayed:

72 Micropak 870C User Manual

Using the Editor Locating and changing text

Find What: || | Frend Mot I

Replace With: | | Honlane

Hopiaoe AR

[] Match Whole Word Only

Cancel
[] Match LCasze

Type the string of charactersto be located in the ‘ Find What:’ field. Type
the replacement string of charactersin the * Replace With:’ field.

If the entire string is to be matched select the following check box:

(<] {Match Whole Word Only:

If the case of the string of charactersisto be matched select the following
check box:

B4 Match Casze

To locate next instance of the string to be replaced click the following
button:

To replace the current occurrence of the character string and find the next
occurrence click the following button:

Beplace

To replace all occurrences of the character string click the following button:

Replace All

Bookmarks

To set abookmark, position the text cursor on the line to be marked and
select ‘' Toggle Bookmark’ from the ‘View’ menu. To subsequently remove
abookmark first locate it and then select the same menu option.

Micropak 870C User Manual 73

The implications of editing Using the Editor

To move to the next bookmark in the file select ‘ Next Bookmark’ from the
‘View’ menu.

To move to the previous bookmark in the file select * Previous Bookmark’
from the ‘View’ menu.

Note that these menu options have corresponding ‘ accelerator’ key
sequences.

To remove all bookmarksin the current file select ‘ Clear All Bookmarks'
from the ‘View’ menu.

The implications of editing

When any relevant source areas are edited, the relationship between the
object and source is altered and the object file no longer corresponds exactly
to the sourcefiles. Therefore, the compiler or other relevant tool should be
re-invoked to re-build the object file from the sourcefile.

Re-building the project

The C compiler, or assembler can be re-invoked to re-build the object file
from the sourcefile either by selecting the ‘Compile’ option from the
‘Project’ menu. The ‘Build or ‘Rebuild All’ options may also be selected
from the ‘ Project’ menu to cause a complete project build including the link
and object converting processes. Tools are available on the tool bar for the
build commands. Selecting ‘Build’ will cause only those files which have
changed to be re-compiled.

When the tool isre-invoked the re-build process will run and its output will
be displayed in the output window. Thiswill include any errors
encountered by the tool including compiler, assembler, linker and converter
errors.

When the process is compl ete, the output window should be examined for
errors before continuing. On closing the output window, Micropak 870C
will then read the new source and object files and redraw the display.

74 Micropak 870C User Manual

Using the Editor Re-building the project

Please note that the re-building process will operate on the disk stored
versions of the sourcefiles. If the editor has been used and the file not
stored amessage will be displayed asking if you wish the file to be stored.
Y ou may choose to store thefile or to continue the rebuild with the old file.

The re-build mechanism

This mechanism relies on the project batch file and a number of related files
being set up correctly, which is discussed in more detail in the ‘Navigating
Project Files' chapter of thisuser manual.

Correcting flagged errors

Any errorsfound are flagged. The*View’ menu lists ‘Next Error’ and
‘Previous Error’ menu items. Selecting these items enables you to locate
each error.

Double-clicking on an error in the output window will also take you to the
appropriate line in the source file.

Micropak 870C User Manual 75

Re-building the project Controlling Execution

76 Micropak 870C User Manual

Controlling Execution Overview

Controlling Execution

Overview

There are various ways in which the TLCS-870/C code loaded into the
simulated system can be executed, such as single step, multi-step and so on.
Before describing each of these in detail let us consider some general
aspects of execution, such as how to stop the processor when it is running
and the factors which affect execution speed and how they can be optimised.

Ceasing execution

Execution can always be interrupted by pressing the appropriate function
key, selecting ‘ Stop Debugging’ from the ‘ Debug’ menu or clicking the
following tool bar icon:

Optimising execution speed

Updating view items on-screen slows the simulation, as do complex
breakpoints. To get the optimum execution speed you should restrict the
view itemsthat are visible on-screen and reduce the number of active

breakpoints to aminimum.

Thefirst of these options can be achieved by ‘minimising’ any windows
which are not currently being monitored by clicking the respective minimise
button:

-]

Note that source windows may also be minimised.

Breakpoints can be reduced by disabling those which are not required for
the current test.

Execution possibilities

The code can be run in Micropak 870C in the following way:

Micropak 870C User Manual 77

Execution possibilities Controlling Execution

Go (i.e. run until breakpoint is reached)
Step into
Step over

Step to cursor

Step out
Each of the above has a corresponding icon on the tool bar:
Go: Step into: Step over: Step to Step out:
Cursor:

® T &

Simple execution and debugging modes

This option allows execution to continue until abreakpoint is reached, or
until execution is halted. Two modes of operation are possible: *Slow’ and
‘Fast’. The modeis specified by selecting ‘Debug’ from the * Options’
menu. The following dialog box is displayed:

= Debug Options
Mode: E [Trace Buffer — |

f (] Enable
Signal Update [s]: =
SOl Y pre
Increment [s): 1.e-006

Script File Commands — | [Signal Buffer

Maximum: [] Enabled
in Time (s): Size [s):

Select from ‘Slow’ or ‘Fast’ in the ‘Mode' field of this dialog box.

‘Slow’ mode will show you multi-step animation of the code, updating all
windows and showing the progression of the PC through the active source
window after each instruction is executed. ‘Fast’” mode will only update the
test panels and the animated PC will not be shown.

78 Micropak 870C User Manual

Controlling Execution Resetting and viewing the processor clock

The modes of operation may also be specified by clicking the mode icon on
the tool bar, which toggles between ‘ Fast’ and ‘ Slow’ modes:

‘Fast’” mode: ‘Slow’ mode:

Single stepping - Step into

Clicking the ‘ Single Step’ icon or pressing the appropriate function key will
cause the execution of the target code pointed to by the current PC.

Single stepping - Step over
Thisoption, similar to ‘ Step Into’, will execute one instruction or all

instructions within asingle procedure, if the statement pointed to by the PC
isacall to aprocedure.

Step out

Thiswill run to the first RET instruction which occurs with the stack at the
current level. Thisisprovided asafast way of running to the end of a
subroutine once the code in an area under investigation has been stepped
through. The stack level condition impliesit will ignore any function/
return combinations encountered on route.

Step to cursor

This allowsthe code to run until execution reaches the line in the source
window where the cursor is placed.

To usethisfunction, first set the cursor by clicking within the desired line.
The function can then be invoked by pressing the appropriate function key
or clicking the * Step Cursor’ icon on the toolbar.

Resetting and viewing the processor clock

The processor may be reset by selecting ‘ Reset’ from the ‘ Debug’ menu.
The following confirmation box will be displayed to ensure that the
processor is not reset accidentally:

Micropak 870C User Manual 79

The program counter Controlling Execution

= Micropak 870

9 Are yvou sure you want to reset?

A reset generated in thisway will set the processor back to aclock value of
‘0’ and all the normal processor actions expected at reset will occur.

The processor clock may be viewed in adevice window by selecting
‘Device’ from the *Window’ menu and choosing from the list.

The program counter

Micropak 870C keeps control of execution through the program counter
(PC). Thisisupdated whenever a statement isrun.

The current position of the PC is seen in the source window as ayellow bar.
It can also be viewed by selecting ‘Device' from the ‘Window’ menu and
clicking the ‘Program Counter’ option. The following window will be
displayed:

= H v || -

PC:

The PC can be set using this dialog box or by choosing ‘ Set PC to Cursor’
from the ‘ Debug’ menu, which sets the PC to the ROM address currently

being pointed to by the cursor.

The interval window

Aninterval window can be selected for display by selecting ‘Interval’ from
the ‘“Window’ menu. The following window is displayed:

80 Micropak 870C User Manual

Controlling Execution Debug options

e |nterval =] B3
Time [g): 0.000000,
Inz. Cycles:

Time [g]: 0.000000

Inz. Cycles:

Theinterval values will be incremented with each successive execution.

The interval value may be reset by selecting ‘ Clear Interval’ from the
‘Trace’ menu.

Debug options

A number of user configurable options are avail able by choosing ‘ Debug’
from the ‘Options’ menu. The following dialog box will be displayed:

= Debug Options
bt [Trace Buffer
Signal Update [s): [Enable:
Increment [s): 1.e-006 Size [s) |1 e-003

Script File Commands — | [Signal Buffer

Maximum: [] Enabled
in Time [s): Size [s):

Mode

Fast Thisrun mode allows simulation execution at full
speed. Only thetest panels are updated.

Slow When thisrun mode is selected all relevant windows

will be updated after each instruction is executed.
Signal window control

Signal Update(s) A value of simulated time in seconds may be input.
Thisvalue specifiesthetime interval between each
signal window update.

Micropak 870C User Manual 81

Debug options Controlling Execution

Increment(s) Again, avalue of simulated time in seconds may be
input. Thisvaluewill be used when thereis no activity
in the system and the CPU isin either HALT or STOP
mode. In thisinstance the value will be used to
increment the clock and thus accel eratethe simulation.

Script file commands

Thisfacility is provided to allow the simulator to trap script file loops. Two
parameters are used:

Maximum Here the user specifies the maximum number of script
instructionsto be executed inagiventime.

in-Time(s) The user specifiesthetimelimit.

If the number of commands executed within the time specified reaches the
maximum specified awarning is given.

Trace buffer control

Enabled Check box for enabling or disabling trace buffering.

Size(s) The user can specify the size of thetrace buffer which
isexpressed as simulated time, in seconds.

Signal buffer control
Enabled Check box for enabling or disabling signal capture.

Size(s) The user can specify the size of the signal buffer which
isexpressed assimulated time, in seconds.

82 Micropak 870C User Manual

Trace Options Trace Buffering

Trace Options

Trace Buffering

Micropak 870C includes atrace buffer. This records the significant aspects
of the target system after each instruction has been executed. When
execution ceases (such as when a breakpoint has been encountered) it can be
used to show how control reached the current point.

Note that operating with trace buffer active requires Micropak 870C to store
asignificant volume of data after each instruction and consequently slows
execution speed considerably.

Controlling Tracing

Tracing can be activated by selecting ‘Debug’ from the * Options’ menu.
Thefollowing dialog box will be displayed:

= Debug Options
Mode: E [Trace Buffer — |
Signal Update [2): |1 _e-003 U Buabic)
Increment [z): 1.e-006 See [s):

Script File Commands [~ Signal Buffer

Maximum: O Enabled
in Time [s]): Size [s):

Click the ‘Enabled’ check box to activate the trace facility:

Y ou can also specify the depth of the trace buffer in seconds by typing a
valueinto the*Size' field.

Micropak 870C User Manual 83

Trace buffer displays Trace Options

Trace buffer displays

Once a set of execution history information has been captured in the trace
buffer, Micropak 870C allows you to ‘roll-back’ the displaysin order to
show the information captured. This effectively reversesthe direction of
execution through the normal listing display.

For example, in this ‘roll-back’ display, single stepping causes the
previously executed line of code to be the active line rather than the
following line. The active lineisshown in green.

Invoking roll-back displays
The following roll-back displays are available from the ‘ Trace’ menu:
Go back (i.e. back to start of last execution)
Step back into
Step back over
Step out
Step back to cursor
Rolling back is limited by trace buffer size

Because ‘roll-back’ displays operate by interpreting the path through the
code recorded in the trace buffer, the display can not be ‘rolled back’ to
instructions executed earlier than the oldest recorded record in the trace
buffer. Once the beginning of the buffer is reached a message will be
displayed.

In practice the size of the trace buffer islimited and thisimplies alimit on
how far the trace buffer can be ‘rolled back’.

The depth of the trace buffer is specified on the ‘ Debug Options’ dialog box,
accessible from the ‘Options' menu.

Stepping forward through the buffer

When execution has been rolled back, it is then possible to step forward
again through the buffer until the end of the buffer is reached.

84 Micropak 870C User Manual

Trace Options Restarting execution

Any one of the options on the * Debug’ menu for controlling execution may
be used for thistask. The PC bar will continue to be shown in green whilst
the buffer is being traversed. Once the end of the buffer has been reached a
message will be displayed and the PC bar will revert to yellow.

Restarting execution

In order to restart real execution the trace buffer display must be at the end
position. If thetrace buffer is not at the end position you should issue a
‘Go’ command to step through the buffer to the end and then instigate the
required execution.

Inactive trace buffer

If the trace buffer isinactive, no roll back will be possible. Under these
conditions the menu and tool bar items associated with rolling back through
the trace buffer information will be ‘greyed out’.

Performance Analysis

Whenever Micropak is executing atrace is kept of the path of execution
through function calls. This trace can be displayed at any time by selecting
‘Performance Analysis' from the ‘Window’ menu.

-
lobal Functioos =
BE9T4 B5.21%9 20048 2B FED main
piodula: 10SEHRZS o
2
podule: starcup
Module shappar o
43 0.0itL 41 0.041 Get¥otorPo
182RT 15187 Lig4e 12.30 CatSwiichB
T4 0.07L 2 0.040 Imitialisel
6 0.0 36 0.03¢ Initimlime’
1] o.ooo L1} 0.000 IntCraney
0 0.o0o 0 0.000 IxtDanmt
11485 11.010 L1495 11.010 IntTET
BEIT4 B5.213 Z0048 FB TED waln
0 0.000 0 0.000 SatMotorPoc
27245 26,095 L6A3S 16.171 StartBubtm
40 0.03g 40 0.0J8 Starthator
2E96T 26 R19 LeR21 16 .121 StopPuttonts
20 0.019 20 0.019 StopMotor off
- | _rJJ

Micropak 870C User Manual 85

Code Coverage Trace Options

Performance Analysis Data

Each function islisted within the code coverage window and for each
function two sets of figures are listed. Each set shows an execution time and
the percentage of thistime against the total execution time.

The leftmost set gives the data for the function named including all
dependent functions. The rightmost set gives the data execution within the
function named alone.

Clearing Performance Analysis Data

The dataisautomatically cleared whenever a processor reset is
encountered. The datawill not be cleared between different execution
requests.

Y ou should select ‘ Clear Performance Analysis' from the Trace menuin
order to force the datato zero.

Code Coverage

Executed code may be viewed in the source window. All code executed is
coloured grey. The execution coverage area can therefore be seen. To use
this the Code Coverage option must be activated by selecting ‘ Code
Coverage' fromthe ‘ Trace’ menu. Selecting the option again wil deselect
Code Coverage.

Clearing Code Coverage

The datais automatically cleared whenever a processor reset is
encountered. The datawill not be cleared between different execution
requests.

Y ou should select ‘ Clear Code Coverage’ from the Trace menu in order to
force the datato zero.

86 Micropak 870C User Manual

Breakpoints Setting breakpoints

Breakpoints

Setting breakpoints

Selecting the ‘ Breakpoints' option from the ‘ Debug’ menu will cause the
following dialog box to be displayed:

Type: |B|eak at Location |£I
Location: | 41 | | Cancel I
Expression: | |
Lenath: l:l

Counter: l:l

Breakpoints:

+ 01" {ANSORTASTARTUP.ASM.} 41 hdd:

izabis

Clear All I

This dialog box is used to add, remove, enable or disable breakpoints.

Breakpointsin Micropak 870C are based on the idea of the value of an item
(location or ‘variable’) in the simulated system matching, according to a
known relationship, anominated value. This can be thought of as
BOOLEAN expression - if the expression eval uates to true the breakpoint
condition has occurred, and when it evaluatesto false it has not.

Thefieldsin the upper part of the dialog box aid the construction of suitable
breakpoint definitions, whilst the lower section of the window shows alist

of currently defined breakpoints in a shorthand form.

The example shown in the dialog box is of abreakpoint set on a source
instruction to be met after one occurrence. In more detail the elements are:

Micropak 870C User Manual 87

The ‘Type’ field Breakpoints

Element Explanation

+ Breakpoint enabled (disabled breakpoints are shown
with ‘-"). Thisiscontrolled using adialog box button.

0/1 Breakpoint will be reached after one occurrence. This
isinput by the user in the‘ Counter’ box.

A:\sor fistartup.asm The breakpoint is set on alocation in the given source
file.

41 The breakpoint is set to monitor ROM locations. The

ROM locations are specified asthoserelating to agiven
linein agiven sourcefile

The‘Type' box will show aselection list of possible
breakpoint monitor types and the required typeis
selected by theuser.

Further details of the possibilities allowed in each box are given in the
following sections.

The ‘Type’ field
Thisfield allows the selection of a number of breakpoint types, these being:

Break at location

Micropak 870C allows execution breakpoints to be set on a memory
location specified in the ‘Location’ edit box.

Break at location if expression is true

An expression specified in the ‘ Expression’ edit box is checked when the
PC reaches the location specified in the ‘ Location’ edit box. If the
expression evaluates to a non-zero value then the breakpoint is considered to
have been reached.

Break at location if I-value has changed

An |-value, or dataitem may be specified in the ' Expression’ edit box. This
dataitem is checked when the PC reaches the location specified in the
‘Location’ edit box. If the dataitem has changed in any way since the |ast
execute command was given then the breakpoint is considered to have been
reached.

88 Micropak 870C User Manual

Breakpoints The ‘Location’ field

Break when expression is true

If the expression specified in the ' Expression’ edit box evaluates to a non-
zero value then theis considered to have been reached.

Break when I-value has changed

If the I-value (dataitem) specified in the ‘ Expression’ edit box has changed
in any way since the last execute command was given then the breakpoint is

considered to have been reached.

The ‘Location’ field

This edit box is only enabled for the ‘Break at location’, ‘ Break at location

if expressionistrue’ and ‘Break at location if |-value has changed’'. Various
formats for this edit box are permitted. A number indicates an absolute
ROM address and can be specified in either decimal, hexadecimal (preceded
by ‘Ox’ or ‘0X") or octal (preceded by ‘0’). The alphabetic digitsfor
hexadecimal numbers can bein either lower or upper case. If anumber is
prefixed with aperiod (*.") then it is assumed to be the line number of the
active sourcefile. Other files can be referenced by prefixing the line

number with the filename and apling (‘!").

The ‘Expression/L-Value’ field

This edit box is enabled for al breakpoint types except the ‘ Break at
location’ type. The text associated with it changes depending upon the
breakpoint type selected. If a‘Break at location if expression true' or
‘Break when expressionistrue’ breakpoint is selected then the text is
‘Expression’. If a‘Break at location if [-value has changed’ or a‘Break
when |-value has changed’ breakpoint is selected then the text is a dataitem.
Only static dataitems are allowed and they must be entered by symbolic
name.

The edit box accepts alimited C syntax for specifying expressions as
follows:-

Item value or operator

Identifier Any static variable name allowed

Micropak 870C User Manual 89

The ‘Length’ field Breakpoints

Constant Any integer value
And expression &

Equality expression == |=

Relational expression <><=p>=

Unary expression -

The ‘Length’ field

This edit box is enabled for the ‘ Break at location if |-value has changed’
and ‘Break when | -value has changed’ breakpoints. It givesthe number of
objects defined in |-value which are to be interrogated for changes. The
default lengthis‘1" and this should only normally be increased if the |-value
makes reference to an array of objects.

The ‘Counter’ field

This edit box is used to specify the number of times that the breakpoint isto
be met beforeit is considered to have been ‘hit'. The default valueis ‘1'.

Adding a breakpoint

The breakpoint details must be specified by filling out the relevant edit
boxes as described in the previous sections. Once this has been completed
the*Add’ button should be selected. The breakpoint detailswill then be
transferred to the lower section of the ‘Breakpoints' dialog box.

Viewing current breakpoints set ups

The ‘Breakpoints' dialog box shows alist of current breakpoints and their
status. Thislistis scrollable and one can see all breakpoints set. Clicking
on any one of the breakpoints displayed will transfer all the details to the
fieldsin the upper part of the box enabling the detail of the breakpoint to be
easily checked.

90 Micropak 870C User Manual

Breakpoints Setting breakpoints in the source window

Setting breakpoints in the source window

Execution breakpoints on a single address may be set directly when
displaying the source window. This may be achieved by moving the cursor
to therequired line in the window and clicking the * Toggle Breakpoint’ icon

to set the breakpoint.

Set a breakpoint by using this icon

The source window will show the line on which the breakpoint isset in red.
Note that the F10 key may also be used for this function.

Removing breakpoints

To remove a breakpoint, the dialog box should be activated and the
breakpoint to be removed selected from the list. On selection the details of
the breakpoint will be transferred to the individual boxes so that the user can
verify hisselection. The ‘Delete’ button in the dialog box should then be
clicked and the breakpoint detailswill be removed from thelist.

For single location breakpoints which can be seeninred in thelisting
window, the ‘ Toggle Breakpoint’ icon can be clicked. If the cursor is
positioned on the breakpoint and the button clicked the breakpoint will be
removed.

Enabling/disabling breakpoints

Individual breakpoints may be temporarily disabled and then re-enabled at
any time using the dialog box. The required breakpoint should be selected
and the ‘ Disable/Enable’ button clicked accordingly. The current status of
each breakpoint is denoted by ‘+' (enabled) or ‘-’ (disabled) in the
breakpoint list box.

Micropak 870C User Manual 91

Script file facilities Breakpoints

Script file facilities

Actionsin script files can be controlled and triggered either by event
triggers or by script file breakpoints.

Breakpoints may be set to correspond with breakpoints set within the
simulation. The script language contains a‘ breakpoint’ function which
allows the user to specify each of the breakpoint conditions described above.

Further event triggers can be specified through the script language * add’
command. Here, triggers can be set to cause an event on:

Test panel input
Port activity
Time-out

When ascript file breakpoint or event trigger is reached the action routine
referred to will be triggered and execution of the target code suspended until
the actions have been processed.

92 Micropak 870C User Manual

Port Simulation Techniques Overview

Port Simulation Techniques

Overview

The simulation includes, for each port line, an internal and an external

‘Thevenin’ equivalent network, each of which consists of asingle voltage
generator and asingle seriesresistance. Theinternal network is provided
and controlled by the simulation in accordance with the internally set port

controlling conditions such as the state of the port data registers, etc.

For the external network both the voltage and series resistance can be
controlled viathe user interface or the script file.

Extending the simulation in thisway allows the interaction of the firmware
under test with external hardware elements such as switches, LEDs, etc., to
be investigated, allows checks on the drive capabilities of the ports and the
use of pull-ups, etc.

Pin and port windows

The Micropak 870C simulation includes all the significant pins of the target
processor. It is possibleto invoke awindow for any additional pin. In
addition, it is possible to show summaries of the pin information grouped as

ports. These port views show the logical values at the port.

= G-« lll=]| PortP1 |=]|=
P: 00000000 P: 00000000

PCR: (gpoooooo | i PCR: (oooooooo

Grouped pin information for a port

Both pin and port views can be updated by overtyping the displayed fields.

Micropak 870C User Manual 93

Overview Port Simulation Techniques

An external voltage/resistance network for every pin

An external voltage/resistance network is simulated for every pin. The
external ‘Thevenin' network is automatically controlled by the simulation
and consists of asingle resistance and a single voltage source.

The voltage and the resistance values are specified by the user and can be
changed if desired whilst the target codeis running. Furthermore, the
network may also be connected or disconnected from the pin by toggling the
‘connect’ box in the pin window.

T [T
T] | KL —
Latch: @ Latch: E

[] Connect & Connect
Vive s Vive [s
it o)

A network is provided for each pin
Assumed port characteristics

The assumed characteristics of the port hardware are asfollows:

Item Assumed value
Pull-up value 70k ohms

Top CMOS 570 ohms
driver

Bottom CMOS 250 ohms
driver

Bottom high 50 ohms
current CMOS

driver

Using these networks

Including a simulation of these simpleinternal and external networks for
each pin allows checks on the behaviour of the internal port hardware.

94 Micropak 870C User Manual

Port Simulation Techniques Using script files to control port conditions

Consider, as an example, acaseinwhich aparticular port line was intended
in adesign to be used as a permanent input, sensing the value being fed to it
by a standard CMOS buffer. In thiscaseit would be sensible to mimic the
external CMOS buffer driver by setting the resistance value to the output
impedance of the buffer (say 100 ohms) and then specifying the data
conditionsinto the pin by setting the voltage of the voltage generator to
VCCor O (forlogin*‘1 or ‘0O respectively).

Using the simulated network in thisway allows the firmware under test to
check the programming of the port. Assuming that the port line was
correctly programmed as an input, the voltage at the port input would follow
closely therail to rail changes made in the voltage generator setting.
However, if there was a bug inthe firmware under test, such that the internal
NMOS buffer on thisline was inadvertently activated, the voltage shown for
the pin would deviate significantly from the expected values, highlighting
the drive contention and drawing attention to the bug.

Using script files to control port conditions

Script files can be used to set port conditions using the statements:
connect, setr and setv

Each of these statements are described bel ow:
connect <pin>,<on/off>

This connects or disconnects the external network, depending on the single
parameter given (0 = disconnect, non-zero = connect). Disconnection is
similar in effect to setting the series resistance to an infinite value.

setr <pin>,<resistance>

The setr statement takes two parameters, the first defining the pin and the
second the seriesresistance directly in ohms.

setv <pin>,<volts>

This statement controls the external voltage generator associated with the
pin, using a parameter which defines the desired value directly in volts.

Micropak 870C User Manual 95

Using script files to check port conditions Port Simulation Techniques

Hereis an example sequence of statements which would connect an external
voltage source of 3.6 voltsto pin port 2.1 viaa series resistance of 47 k
ohms:

setv 19,3.6: rem 3.6 volts
setr 19,47000 : remviaad47k R
connect 19,1 : rem connect the external network

Note that the script file facilities provide a flexible mechanism which allows
the parameters of the network to be changed intelligently to provide, for

example, sinusoidal input voltages or switched loads or pull-ups.

Using script files to check port conditions
The current voltage at any pinis availableto script file programs viathe
getv expression:

getv(<pin>)

This takes the port pin number as a single parameter and returns the pin
voltagein volts.

Thus, for example, if the pin were to be used to drive a CMOS gate, which
was regarded as having afixed login threshold of 2.1 volts, the script file
could derive the effective logic value as follows:

let CMOS_VALUE=(getv(19) >=2.1)

For more details on using script files, see the associated section.

Pin numbering

The pin numbers used in these script statements correspond to the real pin
numbers on the standard package for the simulated device.

96 Micropak 870C User Manual

Viewing Simulated Objects Overview

Viewing Simulated Objects

Overview

Micropak 870C provides a number of device windows which allows the
states and activities of simulated objects to be viewed and monitored. These
windows are updated whilst the simulation is running in slow mode or at the
end of execution if running in fast mode. Micropak 870C also provides
‘Test Panel’ facilities to enable users to customise the way in which they
wish to view items.

Displaying RAM
The RAM window

The basic memo ry view facility is composed of an array of valuesheld in a
RAM window. It isdisplayed by selecting ‘ Device' from the ‘Window’
menu then choosing ‘ Random Access Memory’ from thelist. The following
window will be displayed:

0 1 2 3 4 5 6 |1
0040 |m 00 00 00 00 00 00
N 00 00 00 00 00 00
0060 | o0 00 00 00 00 00 00
o070 | oo 00 00 00 00 00 00
o080 | oo 00 00 00 00 00 00
000 | oo 00 00 00 00 00 00

+

«| | -+

The window may be sized to include the RAM addresses required. Where
the RAM addresses are not consecutive, this can be accommodated by
opening multiple RAM windows.

Micropak 870C User Manual 97

Signal recording boxes Viewing Simulated Objects

Customised memory views

Test panel windows can be used to show customised views of memory
locations. These panels provide agood ‘application’ view of memory, as
they allow location data to be output in aform specified by the user as
applicable for the task. RAM may be displayed directly or may, for
example, be shown translated into text as decimal numbersto mimic an
application display. Further information about test panelsis given later in
this section.

Signal recording boxes

What is a signal recording box?

Micropak 870C allows display of pin values as time-based plots. These are
shown in ‘signal recording boxes and resemble oscilloscope traces. Hereis

an example:

E Signals 1 =] E3
P03: v0 = 0.000 ¥. ¥l = 0.000 V. dv = 0.000 ¥ =

v

o eeew m s s

PO2: vl = 5.000 ¥, vl = 5.000 ¥, dv = 0.000 ¥

e ee—

P01: v0 = 0.000 ¥, v1 = 0.000 ¥. dv = 0.000 ¥

PO0: w0 = 0.000 ¥, ¥v1 = 0.000 ¥, dv = 0.000 ¥

B N .

TimerTick: n0=1.nl1 =1.dn=10

JUULLLLOOUU LU ESOULLLARERL O AT

Count: nl =2 nl=2 dn=0

-
Mo = o0 o v oo on

=l

405 410
Time/ms: t0 =393.4 ms, t1 = 393 4 mz, dt = 0.000 s, 1/dt = 1/0 i

98 Micropak 870C User Manual

Viewing Simulated Objects Signal recording boxes

Example signals box
Setting up a signal box

To set up asignal box you must first select ‘ Signals' from the * Window’
menu. An empty signal box window will be displayed. Itemsto be plotted
in the window can then be added by selecting ‘ Edit Signals' from the
‘Trace’ menu.

The following dialog box is displayed:

Edit Signals E
—X-Axis Type: Close
Pin: Cancel |
—¥-Auis P77 (HSO) | Help |
. . L-¥alue:
Height [pixels]): | |
Upper Bound: Signals:
Lower Bound: 1.2% Add
~ Pin Options Disable |
¥ y = (Wdd + GND] / 2 line
i __Dolete |
[y = GND line
— Other Options
[¥ v = O line
¥ Shade Signals Clear All |
Type

Signals can be plotted for pins or data memory. The selection can be made
through the type box.

Pin selection

The pinsto be included within any one signal window can be selected from
alist of valid pins. Thislist will be activated only if the pin type has be
selected.

Micropak 870C User Manual 99

Signal recording boxes Viewing Simulated Objects

Memory selection

Dataitems or bits may be selected from the memory type box. Symbolic
names may be given for datalocations. These may be chosen from a
selection list. A module name selection list allows the user to specify the
module in which relevant symbols are declared. Alternatively an absolute
address may be given. Bit addresses should be given with a period
separating the address and the bit number e.g. 70.1. If alength is specified
for a dataitem the value plotted will then be taken from the whole memory
range.

The signal list

Once an item selection has been made, clicking the * Add’ button will cause
theitemto belisted in the‘Signals' list. One plot linewill beincluded
within the window for every item shown in the ‘ Signals’ list.

Axes and scales

The scale of both the X and Y axesfor the signal plot can be set by the user.
The X axisisscaled in pixels per second and the Y axisin pixels per volt.
Minimum and maximum values can also be specified for the Y axis, in
volts.

Pin Options

Three check boxes are provided so that the user can specify marker lines
they wish to be included in the signal window for pin plots. The following
options are available:

(Vdd + GND)/2 Thisisset at the cross-over point
between logical values 0 and 1.

GND Thisis set at the ground voltage.

Vdd Thisis set at the power supply voltage.

100 Micropak 870C User Manual

Viewing Simulated Objects Signal recording boxes

Other Options

Two check boxes are provided for users to specify options they wish to
include on pin and memory signals. These are asfollows:-

Oline A marker line is set at zero volts.

Shade signals Shading between the baseline and the
plot lineisincluded

Removing plot lines

Individual plot lines can be removed from the window by selecting the
signal from the ‘Signals’ list and then clicking the ‘ Delete’ button. To
remove al plot lines click the ‘Clear All’ button.

Enabling/disabling plot lines

Individual plot lines can be temporarily disabled and then re-enabled. This
isachieved by selecting the plot line from the ‘ Signals' list then clicking the
‘Enable’ or ‘Disable’ buttons as appropriate.

The signal buffer must be enabled

The signal window will only be updated with information once the target
code has been executed, so initially the window will be devoid of signal
information. Furthermore, as updating the signal window slowsthe
execution speed, a check box is provided on the * Debug Options' window
(displayed by selecting ‘ Debug’ from the ‘ Options’ menu) allowing you to
enable/disable the signal buffer:

= Debug Options
Mode: E [Trace Buffer

Signal Update (s): (1 ¢-003 L] Enabled Cancel
Increment [s): 1.e-006 Size [s): |1.e-003

Script File Commands ™ | [Signal Buffer

Mazimum: | Enabled
in Time [s): 1.e-003 Size [s) |1_e-002

Micropak 870C User Manual 101

On-chip peripherals Viewing Simulated Objects

Note that this dialog box also allows you to specify the size of the signal
buffer which can hold historical information about the plots and the
frequency of the window updating. Further details on thisare giveninthe
section on Debug options.

Viewing the results - zooming and snapping

Once the signal information has been generated the window will be updated
with the results. The window is scrollable so that the historical information
held in the signal buffer can be viewed.

Y ou can also use the * Signal Zoom In’ option from the ‘ Trace’ menu to
obtain a more detailed ook at any specific part of the signal generated. A
‘Signal Zoom Out’ menu option is also provided if only an overview is
required.

Each time* Signal Zoom In’ or ‘ Signal Zoom Out’ are selected the scale of
the display is changed by a factor of two. The maximum and minimum
scales are one million pixels per second and one pixel per second. The size
of the signal buffer isnot linked to thisscale. If ascaleis selected in which
part of the display exceeds the size of the buffer, ablank signal will result.

If you choose * Snap Signals', the signal window display will show the
nearest point at which the value of theitem changed. Note that this may be
aposition either forward or backward in the signal buffer.

On-chip peripherals

All significant on-chip peripherals have associated view boxes. These can
be viewed by selecting ‘ Device' from the ‘Window’ which displays alist of
all valid devices for the chosen processor.

102 Micropak 870C User Manual

Viewing Simulated Objects On-chip peripherals

Device:

General Purpose Regizters
Random Access Memory
Program Status Word
Program Counter

Stack Pointer

Clock Generator
Standby Controller
Interrupt Controller
Watchdog Timer

Port PO

Port P1

Port P2

Port PG

Port P7

e

Cancel

Divider.l]utput *

Double-clicking aentry in thelist displays the selected device window, e.g.:

TBTEHN: IEI
TBTCK:
ezt |

The device window shows, in information fields, all state and numerical
information relevant to the device. The fieldswithin the device window can
be overtyped or changed using selection list optionsif specific conditions
arerequired. If necessary, this can be done whilst the simulation is running.

Device Information

Thetypes of devices available and the details associated with each are
processor dependent. Therefore, the data sheets for the particular processor
being used should be consulted for the relevant information about the
devices and their constituent parts. Toshiba provide thisinformation on CD
and this data can be accessed directly from Micropak 870C using the
‘Device Information’ option from the ‘Help’ menu. To select device
information, the focus must be set on the appropriate device window.

Micropak 870C User Manual 103

Port views Viewing Simulated Objects

Port views

Port lines may be viewed individually as pins or in summary as a port
window.

A port lineis selected by double-clicking from the list displayed when the
‘Pin’ option is chosen from the ‘“Window’ menu. The pin window shows
the effective voltage on the pin and allows the specification of an external

network to be connected to the pin.

To display a complete port, select ‘Device' from the ‘Window’ menu then
double-click the required device from thelist, e.g.:

= D () - || &

v
Latch: |E|

] Connect

o

| o

Port views give the pin values of each individual pin.

The chapter on ‘ Port simulation techniques’ givers further information.

Test panel displays

What are test panels?

Test panel displays allow you to draw together a set of items, all related to a
particular test set-up, to form a display which is particularly convenient for
the tests to be carried out.

The display can be set up to show the states and contents of items such as
port conditions, memory states and script file variables. It provides users
with a convenient ‘front panel’ through which tests can be controlled and

their results monitored. An exampleis shown below:

104 Micropak 870C User Manual

Viewing Simulated Objects Test panel displays

‘ Stepper.pan S]

Start button l f

| Start button is active

Stop button I

| Stop button is active

Test panels allow compact views to be built up which keep related objects
together inthe display. They alow, for example, the states of the port lines
associated with the keysin akey scanning routine to be displayedin a
format which can accept key presses.

The resulting input facilities and display can be particularly clear and
convenient when debugging, for example, the key scanning module of an
application.

Test panel options

Options available from the ‘File’ menu and ‘ Test’ menu allow test panelsto
be created and edited.

Menu Panel Option

File New Panel. Select thisoptionto create anew panel.

File Open. Select this option to open an existing panel.

Test Show Panel Palette. Thisoptionisavailablewhena
panel isopen and displaysthe pal ette window.

Test Panel Properties. Select thisoption to specify or
change the properties associated with an item.

Test Panel Grid Settings. Use this option to change the grid

settingsfor the panel and turn ‘snap to grid’ on or off.

Micropak 870C User Manual 105

Test panel displays Viewing Simulated Objects

Itemsin each panel can be added to the panel and subsegquently moved,
edited or deleted. Each item has a set of properties associated with it (e.g. a
caption to describe theitem). These properties can be changed by selecting
the * Panel Properties’ option from the*Test” menu. To aid the user when
aligning itemsin panelsagrid isdisplayed. The ‘Grid Settings' dialog box,
displayed when the ‘ Panel Grid Settings' option is chosen from the ‘ Test’
menu, can be used to turn the grid on or off.

Setting up a test panel

To set up atest panel select ‘New Panel’ from the ' File' menu. An empty
panel window will appear, e.g.:

ﬁvl‘

Items can then be added to the panel using the palette:

The tasks allowed using the pal ette are described bel ow:

Move

This option allows defined items to be moved in the test panel using the
mouse. Also, if adouble-click is performed when the mouse is positioned
on an item, the ‘ Properties’ dialog box for that item will be displayed.

106 Micropak 870C User Manual

Viewing Simulated Objects Test panel displays

Flag

The ‘Flag’ option specifies atest panel flag item which can take one of two
values (‘0 or ‘1'). With default properties, the shape of the flag will be
rectangular and the condition of the flag will be shown in inverse video (i.e.
active) if it hasthevalue‘1’. The display of the flag can be customised with
properties options so that:-

Colours may be selected to both for background and for the caption text.

Different colours may be chosen to differentiate between active and
inactive states. to be shown in different colours when active and
inactive.

Different shapes may be selected for each flag.

The state of the flag is controlled by eventsin the script file and can, for
example, be set to represent the state of aport line.

Bitmap

This option operatesin asimilar way to the ‘Flag’ option however the item
displayed is a bitmap image file rather than a simple shape. With default
properties set a simple rectangle is shown. This can be replaced by an actual
bitmap image using the test panel properties or from specific script file
instruction.

Bitmap Froperties E

ID: [BiTMaP? ~|

oK I
Eile name: Cancel |

I\,Push Buthan',Push button Fiound Display

Help
¥ Stretch to fit

Browse... |

The bitmap file name must be entered together with the option the fit the
bitmap within the area marked on the test panel.

Micropak 870C User Manual 107

Test panel displays Viewing Simulated Objects

I'n this way bitmap images may be used for example to represent the two
positions of atoggle switch. The switch may initially set up to display the
off bit map and the script file mechanism may then be used at the
appropriate time to change the image to the on position.

Button

The ‘Button’ option allows button event inputs to be entered by the user.
The buttons are displayed in normal video and the mouse may be used to
click on the button. The displayed button will then be set to show its
‘pushed’ state. When the button isreleased, an event associated with the
button presswill then be generated. This mechanism allows users to control
eventsin script files. For example, abutton event may be used to trigger a
script file event which will set the conditions required for asimulated real
button pressin the hardware.

Text box

This option allows text to be displayed in atest panel. This enablesthe user
to annotate test panels, making testing easier.

Edit box

This option allows text to be entered into the test panel and text output to be
shown in the test panel. This mechanism allows the user to input text and
numbers which may be required to trigger eventsin the script file. Output
generated by events occurring in the firmware may also be shown, for
example, displaying the contents of alocation when a breakpoint is reached
inthefirmware. The script file can be set up to monitor the breakpoint and
trigger an event which will display the required locations when this occurs.

Properties

Each item in atest panel has a number of properties associated with it,
which may be specified or changed using the ‘ Panel Properties’ menu
option or by double-clicking on the item after the ‘Move' option in the test
panel edit palette has been selected.

An example of the Flag Properties dialog box is given below. Please note
that the Shape and Colour property options are not included for Text and
Button items.

108 Micropak 870C User Manual

Viewing Simulated Objects Test panel displays

Flag Properties]|
DRFIAG] -] [ok]
Caption: [FLAG1 | Cancel |
Shape: [Rectangle = Help |

~ Colour

Items:

Active Background

Active Text

Inactive Background
Inactive Text

Border

L HEEL N
5 1§ Wi

|

The properties which can be specified are given below:

Property M eaning

Identity The ‘Identity’ property allowstheitem to be linked to statements
giveninthescript file. For example, the script file will usethe
‘Identity’ to test panel flag valueswhen actioning events.

Caption Theitem ‘Caption’ allowsthe user to give theitem a caption which
isdisplayed in thetest panel.

Shape The shape of flag item.

Colour The colours of the components of theflag items

FileName Thenameof abitmapimagefile

Stretch to Option to specify that a specified bitmap image should be stretched

Fit to fit into adefined areaon atest panel

Micropak 870C User Manual 109

Test panel displays Viewing Simulated Objects

110 Micropak 870C User Manual

Source Debugging Overview

Source Debugging

Overview

There are several facilities provided by Micropak 870C to aid source
debugging. Thesefacilities are asfollows:

Quick Watch. Displays snapshot information about a selected
object or structure.

Watch. Displays constantly updated information about objects.

Locals. Displays constantly updated information about local
variables currently in scope.

Call Stack. Displaysthe current call stack.
Registers. Displays constantly updated register contents.
Browser Shows all function names and source file names.

With the exception of * QuickWatch’ any combination of these functions
may be run simultaneously in atest environment. Each of these facilitiesis
described in this section.

Source Windows

MP870C allows you to open one or more views of the source code you are
debugging. Thisallowsyou to watch the progress of execution through
different parts of you code and also allows you to edit the code held in
different modules directly.

Whenever codeis executing in ‘ Slow Mode’ the yellow PC bar will track
the execution of code in a source window. The PC bar will move between
any open source windows. If anew window is required to show the PC bar,
MP870C will automatically open it and display it on top of the previously
activated source window.

Micropak 870C User Manual 111

Quick Watch Source Debugging

The current window focus may be set by the user either into a source
window or into any of the non-source windows. If thefocusissetina
source window, MP870C will automatically change the current window
focus between open source windows so that the focus or active source
window is changed when the PC changes. If the focusisnot set in a source
window, the focus will not be changed. MP870C will however place the
source window currently showing the PC on the top of any ‘Z’ ordered
source windows open, so that the user may view the currently executing

source.

To tidy the display the use may choose ‘ Stack Source Windows' from the
Windows menu. Thiswill place all open source windowsin aZ order with
the active window on top.

Y ou may edit any of the source windows, however please note that changes
to the source code will not become effective until a project rebuild is made.

Quick Watch

The purpose of the ‘ Quick Watch' facility isto enable you to quickly
inspect avariable or type. Thisisachieved by moving the cursor into the
variable nameto be interrogated then selecting ‘ QuickWatch’ from the

‘Debug’ menu or clicking the ‘ QuickWatch’ tool bar icon:

When selected, awindow displaying information about the selected item is
displayed:

= Quicky/atch

Cloze

g
Bedife

Add to Watch

112 Micropak 870C User Manual

Source Debugging Watch

To expand an object which refersto a structure such as a pointer, click the
‘Zoom'’ button.

If the variableis of simple type it may be modified by clicking the ‘Modify’
button. The *‘Modify Variable' dialog box will be displayed which allows a
new value for the variable to be input.

If you wish to subsequently monitor an item on an ongoing basis, the * Add
to Watch’ button may be clicked to transfer theitem to the * Watch’ window
and simultaneously close the ‘ QuickWatch’ window.

Note that the variable being inspected must be in scope.

Watch

Thisfacility allows the ongoing viewing of items while they are being
constantly updated by the executing program. It is selected by either
choosing ‘Watch' from the ‘Window’ menu or by clicking the‘Add to
Watch’ button from the * QuickWatch’ menu.

In either case awindow similar to the following is displayed:

= Watch ﬂ -
temp = 0 '~=x00'

«[T +

Any itemstransferred from the ‘ QuickWatch’ facility will be displayed at
the top of this window.

Adding items to the ‘Watch’ window
Further items can be added to the * Watch’ window in one of two ways:

By transferring other items from * QuickWatch’ dialog box.

Micropak 870C User Manual 113

Locals Source Debugging

By typing the name of the item to be monitored.

This latter method is accomplished by clicking the edit cursor into the next
empty line on the ‘“Watch’ window (i.e. either thefirst line of the display
area or the blank line below the last item already displayed) and pressing the
‘Enter’ key. Thetext ischecked and if itisavalid item, the valueis
displayed and updated accordingly. If theitemisinvalid the text
‘<undefined>* will be displayed adjacent to it.

Locals

The‘Local’ function displays constantly updated information about local
variables currently in scope. When selected thisfacility will continuously
update the ‘Locals’ window, both with the variablesin scope and their
respective values.

Note that, in addition to displaying the variable name and its current value,
the variable typeisalso shown.

The‘Locals’ window is displayed by selecting ‘Locals' from the ‘ Window’
menu:

|E Locals B

[HL+0005]+wvoid #pData = 0=0126
[HL+0007] unsigned int size = 2
[HL+0009] un=signed int nobj = 10
[HL+000BE]+int (#*Compare)() = O=xc092
[HL-0001]+char =*p 0=0136 "3"
[HL-0003]+char *gq 0=0130 "8"

«[+

Call Stack

Thiswindow, when selected, displaysthe function call stack of the current
program. To view the call stack select ‘ Show Call Stack’ from the ‘ Debug’
menu. A window similar to the following is displayed:

114 Micropak 870C User Manual

Source Debugging Registers

= Call Stack
-

The most recently called function is displayed at the top of the window and
the oldest function is displayed at the bottom. The currently active function
is highlighted which allows you to assess the local variables which can be
accessed from the stack frame for debugging.

From this window you can go to the source file required by clicking the *Go
to’ button. If the highlighted function isthe most recently called the cursor
will be placed in the source file at the current PC position. For other
functions the cursor will be placed in the sourcefile at the point at which
control returns to the function.

Registers

The contents of the registers can be monitored by selecting ‘ Registers' from
the ‘“Window’ menu. A window similar to the following is displayed:

AP Reagisters M=l E3

ooon BC = ffff DE cl7a HL = 0101
=136 I¥Y = 0000 SP 0638

ZF=DCF=1HF=DSF=1‘.TF=EIv|
L

o

Browser

Browser information showing function names and all modules are displayed
in thiswindow. Clicking on any item will automatically open the source file
and place the cursor over any specific function selected.

Micropak 870C User Manual 115

Browser Source Debugging

Eg Browszer !EI E

=23 Modules
ioBER=2S.c
STARTUP.ASH
STEFFER.C

116 Micropak 870C User Manual

Using Script Files Overview

Using Script Files

Overview

Micropak 870C can process sets of commands contained in script files.
These commands can set or check conditionsin the simulated system and
can be used to run tests automatically or to mimic the behaviour of external
hardware.

The command format resembles a simple high level language such as
BASIC. Thefunctionswhich are provided are chosen to simplify the
selection of predefined tests or the simulation of external eventsor items.

Test panels may be used both to display the results of the script processing
events and passinput, via user action, to the script processing function.

Script files - Purpose and uses

Script files allow usersto extend and customise the simulation facilities and
in particular to:

Extend the simulation by providing automatic handling of
external events. The script file facilities allow the behaviour of
external hardware and other devices to be simulated
automatically.

Set up semi -automatic control of testing sessions. Thisallowsthe
running of repetitive or regression tests semi-automatically, by
setting up RAM data, running code sessions and checking results.

Test panels and their relation to script files

Test panels are used to provide a user defined, and application specific, user
interface to the program under test via script files facilities. They allow, for
example, port lines to be controlled by simple ‘ point and shoot’ actions
whilst the target code is running.

Micropak 870C User Manual 117

Script files - Purpose and uses Using Script Files

Examples of script file and test panel uses

The flexibility and power of the script file and test panel combinations allow
them to be used in many differing ways, for example:

Simulating the rel ationship between triac devices and a delayed
thermistor reading in a heater control application, using test
panelsto display the drive, critical temperatures and effective
power applied. Script files could be used to model the changesin
performance and relations between the peripheral elements
associated with arange of mains voltages or thermal
characteristics. They could also show the average main voltage at
switching points- allowing the accuracy of zero-cross switching
algorithmsto be assessed.

Simulating a DC motor. The script file could be used to relate
acceleration to drive signals and rel ate speed to back-emf, etc.,
building up to an accurate model of a physical motor.

Simulating custom LCDs with simple test pattern flags.

Modelling membrane keypads or other switch inputs, including
switch bounce and other non-ideal characteristics.

Generating serial bit streams such as asynchronous data at
differing baud ratesto test firmware implemented UART
decoding.

Simulating the performance of firmware implemented ADCs by
modelling the functions of external comparators/ RC networks,
etc.

Checking zero cross timing handling by generating arange of
waveforms or mixtures of waveforms on the associated pins, etc.

Modelling the known characteristics of real sensors (such as pulse
generating flow sensors). Test panelswould allow the user to set
and display flow rates, whilst the script files could convert thisto
apulsetrain at an appropriate frequency.

Simulating inertia of stepper motors, therefore detecting
conditions where the firmware ramps the drive speed too quickly.

118

Micropak 870C User Manual

Using Script Files The script language

It can be seen that the applicability of the test panel and script file
combination is very wideranging. Itis particularly advantageous in that
extensive testing can be performed in the simulated environment before any
hardware is ready, or when the consequence of generating incorrect control
signalsin the real environment would be undesirable. The environment is
also very suitable for theoretical and repeatable testing, allowing, for
example, one control algorithm to be tested against another in standard
conditions.

Module testing is an activity for which the simulated environment isideal,
allowing datatests to be set up easily, and run semi-automatically under the
control of an appropriate test panel.

The script language

The grammar and syntax

Hereisasummary of the main features of the script file grammar and
syntax. For afull, formal definition in modified Backus-Naur Form, see the
script file syntax shown as an Appendix.

Hereisan informed, narrative description of the grammar and syntax:
Statements and lines
Script files are made up of statements.

Statements must end with aterminator which can be either a
normal end of line (i.e. line feed or carriage return/line feed pair),
or acolon character, ‘:’

Null statements (such as blank lines) are allowed

Most statements follow asimple logical format, which isvery
similar to BASIC

Hereis an example of asingle line statement:
let SignalVolts = sin(TimeBase)

Hereis another example showing two statements on asingle line, separated
by the*:" character:

letA=B+C : letD=D*E

Micropak 870C User Manual 119

Script file variables Using Script Files

Elements of script file statements

Script statements are composed from a number of different elements. These

are asfollows:

Keywords Identify statement types (such as'if’, ‘ poke’, ‘goto’,
etc.), built-in functions (such as‘sin’, ‘cos , ‘atan’, etc.)
and qualifiers (such as ‘button’, ‘pin’, ‘edit’). Notethat
keywords must bein lower case.

Variables Identify user datavariables. Examplesinclude
‘MyVar', ‘SignaVolts, ‘timebase’ and
‘StartButtonld$’. Variables can beintegers, real or
strings.

Operators These allow variables and functionsto be combined
where necessary to form expressions, such as* Scale*
cos(timebase)’, wherethe ‘*’ isthe multiplication
operator.

These elements are described in more detail in the sections which follow.

Note on comment delimiters

The ‘rem’ statement allows the insertion of comments. Becauseitisa
statement it must be preceded by aterminator to separate it from any other
preceding statements on the same line.

The apostrophe character, ', can be used anywhere on alineto introduce a
comment and does not need a preceding terminator.

In both cases the comment is considered to last until the next end of line and
comments can therefore include ‘:’ characters.

Script file variables

Internal script file variables are required in order to control and action
events. Thetable below liststhe type of variables available:

Type Description

Integer Holdsinteger values. Thevariable nameis suffixed
with the ‘%’ character (e.g. ‘ count%’).

120 Micropak 870C User Manual

Using Script Files Script operators and expressions

Resal Holdsfloating point values (e.g. ‘value').

String Holds string values. The variable nameis suffixed with
the'$’ character (e.g. ‘name$’).
Variable identifiers
The following set of rulesis applied to variables:
Variables are named by the user
They need not be declared before use
There is no significant limit on the length of variable identifiers
They cannot be reserved words.

The Micropak 870C script file processor is case-insensitive, so, for example,
‘SIGNAL’ and ‘signal’ will be treated as the same variable.

Examples of variables

Name Notes

SignalVoltage A real (i.e. floating point) becauseit hasno ‘%’ or ‘$'
suffix.

ButtonName$ A string (hasa‘$’ suffix).

SignalVolts% Aninteger (i.e. a32-bit signed number) becauseit hasa
‘%' suffix.

Numeric type conversions

Like BASIC, the script facilities provide automatic type conversion, as and
when appropriate, between Real and Integer values. These types can be
mixed in numeric expressions and built-in functions, such as ‘ abs(<numeric
expression>)’ or ‘ cos(<numeric expression>)’, can be called with either type
or amixed numeric expression as a parameter.

Script operators and expressions

Hereisaninformal list of the various operators supported by the script file
processor when evaluating expressions. A formal definition of the full
syntax of the script language isin the Appendix.

Micropak 870C User Manual 121

Script operators and expressions Using Script Files

Item Purpose

* Muultiplication operator

/ Division operator

> Relational greater than operator

>= Relational greater than or equal to operator
< Relational lessthan operator

<= Relational lessthan or equal to operator

= Relational equal operator

<> Relational not equal operator

+ Addition operator

- Arithmetic negation operator and subtraction operator
N Exponentiation operator (raiseto the power)
and Logical and operator

eqv Logical equivalence operator

imp Logical implication operator

not Logical complement operator

or Logical inclusive-or operator

xor Logical exclusive-or operator

Script operator precedence and associativity

Operator Description Precedence Associativity

A raiseto power 0 left

- unary minus 1 right

* multiplication 2 left

/ division 2 left

+ addition 3 left

- subtraction 3 left

122 Micropak 870C User Manual

Using Script Files Script file execution and control flow

> greater than 4 left
>= greater than or equal 4 left
< lessthan 4 left
<= lessthan or equal 4 left
= equal 4 left
< not equal 4 left
not logical not 5 right
and logical and 6 left
or logical or 7 left
xor logical exclusive-or 8 left
imp logical implication 9 left
eqv logical equivalence 10 left

Example expressions

let A=B + C*D + Param * Power : rem real numbers
let A$ = NICK$ + NAMES$: rem string concatenation

Note - String Expressions

For string expressions, ‘+’ (concatenation) isthe only supported operator.

Script file execution and control flow

Files built from statements

Script files are divided into executabl e statements.

Micropak 870C User Manual 123

Script file execution and control flow Using Script Files

Events start script execution from labelled entry points

Within ascript file labels show entry points at which the script file actions
can commence. |n operation, the execution of the commands in the script
fileistriggered by ‘events’. These events can be user key strokes, script file
breakpoints, or the passage of simulated real-time in the target system.

When a nominated event occurs, execution of the script file commandsis
started at the labelled entry point associated with that event.

Control flow

Execution normally follows sequentially from the first statement to the next
statement in the file, however, control transfers using ‘ goto label’ and
‘gosub label’ statements are possible.

Execution always begins at alabelled entry point and continues until an
‘end’ statement isreached. If the Micropak 870C simulation was executing
code when the originating event occurs, it is suspended whilst any script file
segment is still running.

When all segments have run to completion, the simulator execution is
resumed.

More on script file events

Script files can be driven by events. An event trigger must first be set up to
drive an event. There arefive different types of trigger, these being
‘breakpoint’, ‘button’, ‘edit’, ‘pin’ and ‘timeout’. Each event, and how to
set up itstrigger, is described in the subsequent pages.

All event handlers have asimilar format. A simple code skeleton would
look something like this:

event:
commands...
end

Thelabel ‘event’ isthelabel associated with the event trigger. The ‘end’
command goes at the end of any other commands in the event handler. This
indicates that the event has finished.

124 Micropak 870C User Manual

Using Script Files Script file execution and control flow

Breakpoint events

These events occur when breakpoint conditions, similar to the ones that can
be defined in the ‘ Breakpoints' dialog box, are met. These breakpoints are
not, however, displayed in the dialog box nor do they stop execution of the
simulator. Instead, they cause a section of the script fileto berun. The
simulator can be stopped from here, if necessary, by executing a‘ stop’
command.

Breakpoint event example

The following piece of code sets up alocation breakpoint event trigger at
the address of the function call to SetMotorPort. Thisison line 197 inthe
file“main.c”. Thelocation breakpoint is hit whenever the PC reaches this
location (indicated by the value ‘1’ for the count argument). The script file
code at label “breaklabel” isrun when thisoccurs. Theinteger variable
‘bpl%’ holds the event number for the breakpoint. Thisisused when the

breakpoint is no longer needed and can be del eted.
bp1% = breakpoint(0, "main.c!197","", 0, 1)

The following code will action the breakpoint event trigger ‘bpl%’:
on event(bpl1%) run breaklabel
on event(bpl %) on

For more information refer to the descriptions for the ‘on event’ and ‘ event’
commands and the ‘ breakpoint()’ function.

Button events
These occur when buttons are pressed and released in test panels.

Button event example

The following piece of code sets up a button event trigger within atest panel
with ID ‘start’. Note that atest panel containing such a button need not
exist when the script fileisrun. Thisisbecause the links between the script
file and the button are only made when the instruction itself is run.

start% = button("start")
Identifies the button ‘ start’ with the variable start%.

on event(start%) run startlabel

Micropak 870C User Manual 125

Script file execution and control flow Using Script Files

event(start%) on
Edit events

These occur when edit boxes in test panels are modified and then lose their
input focus. Notethat if ascript file updates an edit box through an edit
command then any modificationswill be lost.

Edit event example

The following piece of code sets up an edit box event trigger on an edit box
within atest panel with ID ‘duration’. Note that atest panel containing such
abutton need not exist when the script fileisrun. Thisis because the links
between the script file and the button are made only when the instruction
itself isrun.

a% = edit("name")

Returns a string holding the contents of the test panel edit box with identity
“name”.

on event(a%) run durationlabel

event(a%) on
Pin events
These occur when there isavoltage change at apin.
Pin event example

The following piece of code setsup apin event trigger on apininthe
processor. ‘SCK%' isan integer variable defining the pin number of the
serial clock (SCK) pin.

a% = pin(SCK%)
on event(a%) run event
event(a%) on
Timeout events and timeout event example

The following piece of code sets up atimeout event trigger. The event will
occur after “TIME” seconds has elapsed in simulated time. In the example

given, “TIME” isareal variable:

126 Micropak 870C User Manual

Using Script Files Identities in script files

time% = timeout(TIME)
on event(time%) run timelabel

event(time%) on

Identities in script files

There are numerous script commands and functions that make references to
objectsin test panels: the commands are ‘ setedit’, ‘ setflag’; the functions are
‘button()’, ‘edit()’, ‘ getedit()’ and ‘ getedit$()’ .

Objectsin test panels are referenced through identities. These are strings
which identify and name test panel objects. Inthe commands and functions
these are given as simple string expressions.

Linksto test panel objects are made at run time. Therefore, when a script
fileisexecuted it isonly necessary for the test panel object to exist if a
command to which it is referenced is encountered. If by mistake an object
does not exist then an error message is displayed.

An object in atest panel which can be referenced from a script file has an
identity (ID) associated with it. When an object is created in atest panel it
isgiven adefault identity. Thiscan be re-defined by displaying the
properties dialog box for that object, and modifying the text in the ID edit
box. Itisrecommended that IDs are customised for each object.

Example
start% = button("start")

I dentifies the button “start” with the variable start%.
on event(start%) run startlabel
event(start%) on

These commands add a button event trigger and turn it on. When the test
panel button with identity ‘start’ is pressed (and then released) it will cause

the script code at label ‘ startlabel’ to be executed.

event(start%) kill

Micropak 870C User Manual 127

Script keywords Using Script Files

Deletes the button event trigger fro m the button in the test panel with
identity ‘start’. Thisin effect kills off the event trigger which was added in
the first example.

setedit "duration", 4

Sets the contents of the test panel edit box with identity ‘duration’ to*4’.
Note that the second argument to the edit command can be an expression of
type integer, real or string.

setflag "pulse”, 1

Setsthe test panel flag with identity “pulse” to the highlighted state. The
second argument to the flag command is anumeric expression. Theflagis
highlighted when the expression evaluates to any value other than zero.

a% = getedit("duration")

Returns the numeric value of the test panel edit box , ‘duration’. It returnsa
real argument. In the example above it istype converted to an integer.

a$ = getedit$("name")
Returns the string value of the test panel edit box with identity ‘name’.
a% = edit("duration")
on event(a%) run durationlabel
event(a%) on

Adds an edit box trigger. When the test panel edit box with identity
‘duration’ is modified and the input focus lost, the code at | abel
‘durationlabel’ will be executed. Notethat if ascript file updates the edit
box through the edit command then any modifications will be lost.

event(a%) off

Turns off the edit box event trigger but does not remove it from the edit box.

Script keywords

These keywords define script statements, qualifiers and built-in script
functions. They are described more fully in the following sections.

128 Micropak 870C User Manual

Using Script Files Script keywords

For aformal definition of the full syntax of the script language, seethe
script file formal syntax description given as an Appendix.

Item Purpose

abs Script function - returnsthe absol ute val ue of anumeric expression.

acos Script function - returnsthe arc cosine of anumeric expression.

asc Script function - returns ASCI| value of acharacter.

asin Script function - returnsthe arc sine of anumeric expression.

atan Script function - returnsthe arc tangent of anumeric expression.

breakpoint Script function - creates abreakpoint event.Returns an event number.

button Script function - creates atest panel button event.Returns an event
number.

chr$ Script function - returnsascii character of agiven numeric value

close Close afile stream.

connect Script statement - connects/disconnectsThevenin network to pin.

cos Built-in script function - returns the cosine of anumeric expression.

dim Dimension statement to set dimensionsfor ascript array.

edit Script function - creates atest panel edit box event. Returns an event
number.

else Used with ‘if’.

elseif Used with ‘if’.

end Script statement - specifiesthe end of an event.

endif Used with ‘if’.

event Script statement - provides control for breakpoint trigger events.

event on Turnsonabreakpoint trigger events.

event off Turnsoff abreakpoint trigger event.

event kill Delete abreakpoint trigger event.

exit Exit from the script file.

exp Built-in script function - returns the value of an exponential function
with ‘e asitsbase.

for Script statement - specifiesthestart of afor loop in the script file.

getedit Script function - allows datato be returned from, atest panel edit
box. Returnsavaluefrom atest panel edit box.

getedit$ Built-in script function - returns strings from atest panel edit box.

getfc Built-in script function - returnsthe main clock value.

Item Purpose

getfs Built-in script function - returns the system clock value.

getrr Built-in script function - returnsregister value eg
PC,HL,IY,SPWA,IX.

gettime Built-in script function - returns the simulationtime.

getv Built-in script function - returns (gets) the voltage value at apin.

global Script function - returnsthe value of aglobal C variable.

Micropak 870C User Manual 129

Script keywords Using Script Files

go Script statement - startsthe execution of the target code.

gosub Script statement - performs an event in the script file as asubroutine
and returns here on encountering areturn or an end statement.

Goto Script statement - transfers script control to the label specified asthe
destination.

If Script statement - conditional statement allows the behaviour of the
script file to be adapted automatically to actions and states that occur
inthetarget system.

input Script statement for inputting datafrom afile.

Left$ Script function - returnsthe left n characters of astring.

Len Script function - returnsthelength of astring.

Let Script statement - assignment.

Local Script function - returnsthevalue of alocal C variable.

Mid$ Script function - returnsthe middle part of astring.

Next Used with ‘for’.

On event Script statement - conditional statement to allow parts of script files

run to berun conditionally.

Open Script statement for opening afile.

Peek Built-in script function - returns avalue from target memory.

Poke Script statement - putsavalueto target memory.

Pin Statement qualifier, used with ‘add’ and ‘ delete’.

Print Script statement for writing datato afile.

Rem Script statement - introduces acomment.

Repeat Script statement - used with ‘until’ for control loops.

Return Script statement - specifiesthe end of ascript file subroutine.

Right$ Script function - returnstheright part of astring.

Setbitmap Script statement - specifiesabitmap file to be displayed

setedit Script statement - allows datato be output to atest panel edit box.

Setflag Script statement - allows datato be output to atest panel flag box.

Setrr Script statement - setsthetarget register to agiven value eg
PC,HL,IY,IX,SPWA

Setr Script statement - setsthe resistance value for the external Thevenin
network of apin.

Setv Script statement - setsthe voltage generator valuefor the external
Thevenin network of apin.

Item Purpose

sin Built-in script function - returnsthe sine of anumeric expression.

sgn Built-in script function - returnsthe sign of anumeric expression.

sqr Built-in script function - returns the square root of anumeric
expression.

step Used with ‘for’ statement to define the loop increment.

stop Script statement - stopsthe execution of thetarget code.

tan Built-in script function - returns the tangent of anumeric expression.

130 Micropak 870C User Manual

Using Script Files Script file commands and functions - detailed descriptions

then Usedin‘if’ statements.
timeout Script function - creates atimeout event. Returnsan event number.
until Used with ‘repeat’.

Note that some script operators are also reserved words (e.g. and, xor, etc.).

Script file commands and functions - detailed
descriptions

This section describes the various script file commands and functionsin
detail. They are given in alphabetical order.

ABS

Script file function. Returnsthe absolute value of anumeric expression.
Format
abs(<value>)

value input parameter (numeric expression)
Example

a=abs(-1.6) 'would return 1.6

ACOS

Script file function. Returnsthe arc cosine (inradians) of anumeric
expression.

Format

acos(<value>)

value input parameter (numeric expression)
Example

a=acos(1) 'would return 0

Micropak 870C User Manual 131

AND Using Script Files

AND

Logical and operator. The and operator performs a bitwise operation on two
integer operands.

The truth table for the operator is:

X Y X and Y
1 1 1

1 0 0

0 1 0

0 0 0
Example

a% =b% and c%

ASC

Script file function. Returns the ASCII value associated with a character.
Format

asc(<char>)

char input parameter (character)

Example

a% =asc("A") 'would return 65

ASIN

Script file function. Returnsthe arc sine (in radians) of anumeric
expression.

Format

asin(<value>)

132 Micropak 870C User Manual

Using Script Files ATAN

value input parameter (numeric expression)
Example

a=asin(l) 'would return pi/2

ATAN

Script file function. Returnsthe arc tangent (in radians) of a numeric
expression.

Format

atan(<value>)

value input parameter (numeric expression)

Example

a =atan(1) 'would return pi/ 4

BREAKPOINT
Thisisafunction which allows the details of breakpointsto be set in script
files.

Breakpoints set inthisway act as event triggers. The specification of
breakpointsin this function allow a similar range of optionsto those
provided by the user breakpoint facility in the simulator (which is accessed
viathe Breakpoints dialog box).

When the breakpoint is reached the event handler associated with the
breakpoint will be triggered.

The value returned by the function is an event number which identifies the
breakpoint event. Thisshould be stored for use later on when the event is
no longer needed, and can be deleted.

Format
breakpoint(<type>, <location>, <expression>, <length>, <count>)
type Breakpoint-type

0 - location reached

Micropak 870C User Manual 133

BREAKPOINT Using Script Files

1 - location reached and given expression true

2 - location reached and given expression changed

3 - expression true 4
- expression changed

location A program |ocation or address.

A numeric ROM address may be given. A
source line number of the active source file may be given
prefixed witha*.’ A
filenamefollowed by a‘!” and then aline number may be
given.

expression Any L-Valueexpression may begiven.

length The length of the datain the expression may be given.

Counter Aninteger expression or value specifying the number of
times the break condition should be reached before an
eventistriggered.

Examples

Thisfirst example creates alocation breakpoint event. The condition to
trigger the event will be alocation condition occurring (1) times, when the
PC reaches line 100 in the source file "coreb.c”. Note that the expression
and length fields contain dummy values ("* and 0). For thistype of
breakpoint they are not used. The breakpoint event number is stored in
bpl% for use later on when the event needs to have alabel associated with
it, be turned on, off or deleted (seethe EVENT statement).

bp1% = breakpoint(1, "coreb.c!100","", 0, 1)

This second exampl e creates an I-val ue changed breakpoint event. The
condition to trigger the event isamodification to thel-value "myvar". Since
myvar is not an array we specify 1inthe length field. Had it been, then we
could have specified 1, 2... up to the number of elementsin the array. The
count field is set to 1, which means that we want the event to occur every
timethel-value is modified.

bp2% = breakpoint(1,"", "myvar", 1, 1)

Again, the breakpoint event number is stored, thistimein bp2%, for use
|ater on.

134 Micropak 870C User Manual

Using Script Files CHR$

CHR$

Script file function. Returns the ASCII character associated with a numeric
value

Format

chr$(<value>)

value input parameter (nurreric expression)
Example

a$ =chr$(65) 'would return "A"

CLOSE

Close afile.

Format

close [#] <file-number>

file-number avalid file number (numeric expression) as obtained from
the open statement.
Example
close #1
CONNECT

Connects/disconnects Thevenin network to apin.

Format

connect <pin-number>, <connect, disconnect>

pin-number avalid pin number (numeric expression)

connect, disconnect vaue 1 or 0to show connected or disconnected (numeric
expression)

Micropak 870C User Manual 135

COSs Using Script Files

Example

connect startpin%, 1

COS

Script file function. Returnsthe cosine of a numeric expression (in radians).
Format

cos(<value>)

value input parameter (numeric expression)

Example

a=cos(2*3.1415926 / 6) 'would return (approximately) 0.5

DIM

Script file declaration. Declares the dimensions of a script variable array.
Format
dim <variable>(<dimension>{, <dimension>...})
variable the array variable
dimension adimension of thearray.
Example
dim display$(10) 'would dimension an array of 10 strings
The statement to access elementsin the array is:

name$ = display$(3)

EDIT

Specifiesthat a breakpoint trigger event isto be set on atest panel edit box.
Thisisafunction which returns an event trigger number.

136 Micropak 870C User Manual

Using Script Files END

Format
edit(<identity>)
identity name of atest panel edit box
Example
flagvar % = edit("DISP")
on event(flagvar%) run toggle

event(flagvar%) on

END

Specifiesthe end of an event. Control will flow through eventsin the script
file until thiscommand is reached.

Example

end

EQV

Logical equivalence operator. This operator performs a bitwise operation
on two integer operands. Thetruth table for the operator is:

X Y X eqv Y
1 1 1

1 0 0

0 1 0

0 0 1
Example

a% =b% eqv c%
EVENT

Allows event triggers to be turned on or off or deleted.

Micropak 870C User Manual 137

EVENT Using Script Files

Event trigger actions are specified by setting the value from an event
function to ascript file variable. The script file variableis then used to
specify the event. The possible event functions are breakpoint, button, edit,
pin and timeout. Y ou should refer to the relevant section of this manual for
details of the functions.

The action routine to be run when the event occursis specified by the ON
EVENT statement.

Both the button and edit formats below refer to objectsin test panels. A
button event is triggered when atest panel button is pressed and then
released. An edit event istriggered when an edit box in atest panel is
modified, and the edit box then loses the input focus. Note that if a script
file updates the edit box then any modificationswill belost. The pin format
refersto the pin on the processor. A pin event istriggered whenever thereis
avoltage change at the pin in question.

Format
event(<identity>) <status>
identity theidentity of the event ascript filevariable
status on - turntheevent on
off - turn the event of f
kill - removethe event
Examples
timer% =timeout(0.5)
on event(timer%) run toggle
event(timer%) on
press% = button ("start")
on event(press%) run toggle

event(press%) on

138 Micropak 870C User Manual

Using Script Files EXP

EXP

Script file function. Returns the value of an exponential function with ‘e’ as
its base.

Format

exp(<value>)

value input parameter (numeric expression)
Example

a=-exp(2) 'would return ‘e’ raised to the power 2

FOR - TO - [STEP]

Specifiesthe start of afor loop in the script file. Thisallows commandsin a
script file to be repeated a specified number of times.

Format

for <control> = <start> to <end> [step <increment>]

control an internal variable which will be incremented each time around the
loop

start the starting value to be set (numeric expression)

end an ending value against which the contents of the control variable

will be checked. When the control variable value matches the end
value, thefor loop will be terminated (numeric expression)

increment anoptional step increment to be added to the control variable
(numeric expression)

Example
for count% =0to 10

for count% = start% to end% step 2

Micropak 870C User Manual 139

GETEDIT($) Using Script Files

GETEDIT($)

Script file function. Allows data and strings to be returned from atest panel
edit box.

Format
getedit(<identity>)
getedit$(<identity>)
identity input parameter (string expression)
Example
a$ = getedit$("string")

GETFC

Read the frequency of the main system clock.

This statement may not be used on its own but must be used as an
expression within other statements.

Format
getfc()
Example

clock = getfc()

GETFS

Read the frequency of the sub-system clock. This statement may not be
used on its own but must be used as an expression within other statements.

Format
getfs()
Example

subclock = getfs()

140 Micropak 870C User Manual

Using Script Files GETrr

GETrr

Read the current value of the specified register. This statement may not be
used on its own but must be used as an expression within other
statements.Valid registers are PC,SP,HL,I X, 1Y WA

Format
getpc()
Example
reg% = gethl()

GETTIME

Obtain the currently held simulation time. Thistimeisexpressed in
seconds. This statement may not be used on its own but must be used as an
expression within other statements.

Format
gettime()
Example

simtime = gettime()

GETV

Read the voltage on apin. Thevoltageread is expressed in volts.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

getv(<pin-number>)

pin-number avalid pin number (numeric expression)
Example

setv startpin%, getv(Gnd%)

Micropak 870C User Manual 141

GLOBAL Using Script Files

VOLTS =getv(9)

GLOBAL

Returns the value of aglobal variable in the program under simulation. The
I-value given must resolve to asimple type, either an integer or floating
point value. If it doesnot, or thel-valueisinvalid then zero is returned.

Y ou can use the C dereference operator *, or the member access operators .

and ->, when specifying the |-value.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

global(<l-value>)

I-value the global variable to retrieve (numeric expression)
Example

a% = global("myvar")

GO

Starts the execution of the target code. There are no parameters.

Example

go

GOSuUB

Perform an event in the script file as a subroutine and return here on
encountering areturn statement or an end statement.

Format
gosub <label>
label the label of the event to be performed

142 Micropak 870C User Manual

Using Script Files GOTO

Example

gosub show

GOTO

Transfers control to the label specified.
Format

goto <label>

label thelabel of the destination
Example

goto show

IF - THEN - [ELSEIF] - [ELSE] - ENDIF

A conditional statement which assesses the value of an expression and
performs a set of statementsif the condition isfound to be true.

Optionally, adifferent block of statements may be performed if the
expression is not found to be true. Statement blocks are terminated by the
EL SEIF, ELSE or the ENDIF, whichever is appropriate.

Format

if <expression> then <statement block> { elseif <statement block>} [else
<statement block>] endif

expression which can be evaluated to true or fal se (numeric expression)

statement oneor more statementsin ablock. Theblock isterminated by either
block elseif, elseor endif

Example
if getv(drivli%) < threshold then
setflag "MOTOR1", 0

elseif

Micropak 870C User Manual 143

IMP Using Script Files

setflag "MOTOR1", 1

endif

IMP

Logical implication operator which performs a bitwise operation on two
integer operands. Thetruthtableisasfollows:

X Y XimpY
1 1 1

1 0 0

0 1 1

0 0 1
Example

a% =b% imp c%

INPUT

Obtains avaue from afile.

Format

input #<file>, <item>[, <item>...]

file number of thefile as given on open
item name of ascript filevariable
Example

input #1, drivli%

LEFTS$

Script file function. Returns string value which is the left part of the given
string.

144 Micropak 870C User Manual

Using Script Files LEN

Format
left$(<string>, <length>)

string input parameter (ASCI| string)
length length of thereturned string
Example

name$ = left$("Henry Bloggs", 5) 'would return "Henry"

LEN

Script file function. Returns a numeric value which is the length of agiven
string.

Format
len(<string>)
string input parameter (ascii string)
Example
length% = len("Henry Bloggs") 'would return 12

LET

Assignsavalueto an internal script file variable. The LET isoptional.
Format

[let] <item> = <value>

item name of ascript file variable (string expression)
value input parameter (numeric expression)
Example

let drivli%e =9

Micropak 870C User Manual 145

LOCAL Using Script Files

LOCAL

Returnsthe value of alocal variablein the program under simulation. The
I-value given must resolve to a simple type, either an integer or floating
point value. If it doesnot, or thel-valueisinvalid then zero isreturned.

Y ou can use the C dereference operator *, or the member access operators .
and ->, when specifying the [-value.

This statement may not be used on its own but must be used as an
expression within other statements.

Format

local(<l-value>)

I-value thelocal variableto retrieve (numeric expression)
Example

a% =local("myvar")

MID$

Script file function. Returns string value which is the middle part of the
given string.

Format
mid$(<string>, <start>, <length>)

string input parameter (ASCI| string)

start input parameter start positionin the string
length length of thereturned string

Example

name$ = mid$("Henry James Bloggs", 7, 5) 'would return
"James"

146 Micropak 870C User Manual

Using Script Files NOT

NOT

Logical not operator which performs a bitwise operation on an integer
operand.

Thetruth table for this operator is as follows:

X not X
1 0

0 1
Example

a% =not a%

OPEN

Open afile for capturing data or inputting data.
Format

open <file-name> [for <mode>] [access <access>] [<lock>] as
[#] <expression>

file-name name of thefileto be opened
mode for mode type whichisoneof :-

append input
output

access read [write] write

lock shared lock
read [write] lock
write

expression numerical expression between 1 and 255 to identify thefile
Example
open "serdata.txt" for input access read as #1

open "testl.txt" for append access write as #2

Micropak 870C User Manual 147

OR Using Script Files

OR

Logical or operator which performs a bitwise operation on two integer
operands. Thetruth tableisasfollows:

X Y XorY
1 1 1
1 0 1
0 1 1
0 0 0
Example
a% =h% or c%
PEEK
Function which gets avalue from target memory.
Format
peek(<memory>)
memory address of memory location (numeric expression)
Example

count% = peek(100)

PRINT

Obtains avalue from afile.

Format

print #<file>, <item>[{,|;} <item>...]

file number of thefile asgiven on open

item name of ascript file variable (string expression)

148 Micropak 870C User Manual

Using Script Files POKE

Example
print #1, drivl%

POKE

Writes avalue to target memory.
Format

poke <memory>, <value>

memory address of memory location (numeric expression)
value valueto be output (numeric expression)
Example

poke 100, 4
REM

Comment statement in ascript file. This statement can be followed by any
textual information. It may be used on an individual line or on lines
containing a statement:

Example
rem Highlight the flags showing the phases of the stepper

Note on comment delimiters

The rem statement allows the insertion of comments. Becauseitisa
statement, it must be preceded by aterminator to separate it from any other
preceding statements on the same line.

The apostrophe character ' can be used anywhere on alineto introduce a
comment and does not need a preceding terminator.

In both cases the comment is considered to last until the next end of line,
and comments can thereforeinclude ‘:’ characters.

Micropak 870C User Manual 149

REPEAT - UNTIL Using Script Files

REPEAT - UNTIL

A repeat control loop in which anumber of statements are repeatedly
performed until the expression given evaluates to true.

Format

repeat <statement block> until <expression>

statement block one or more statementsin ablock. The block isterminated
by until
expression expression which can be evaluated to true or false (numeric
expression)
Example
repeat

v = getv(driv1%)

until v =threshold

RETURN

Specifiesthe end of a script file subroutine. This statement takes no
parameters.

Format
return
Example
show:
setflag "on", 1

return

RIGHT$

Script file function. Returns string value which is the rightmost part of the
given string.

150 Micropak 870C User Manual

Using Script Files SETBITMAP

Format

right$(<string>, <length>)

string input parameter (ASCI| string)

start input parameter start positionin the string
Example

name$ =right$("Henry James Bloggs", 6) 'would return
|IB|Oggsll

SETBITMAP

Specifies the name of abitmap file to be displayed and displays theimagein
the testpanel.

Format

setbitmap <filename>, <data>

identity name of atest panel bitmap item (string expression)
filename name of abitmap image file (string expression)
fit flag flag 0/1 to show whether or not theimage should be stretched to fit

the defined spaceinthetest panel or displayed at actual size.
Example
setbitmap “POWER”,"pushbutton.omp", 1

SETEDIT

Allows datato be output to atest panel edit box.
Format

setedit <identity>, <data>

identity name of atest panel edit box (string expression)

data datato be output. Datamust be 0 or 1 (numeric expression)

Micropak 870C User Manual 151

SETFLAG Using Script Files

Example
setedit "DISPLAY", 0

SETFLAG

Allows data to be output to atest panel flag.
Format

flag <identity>, <data>

identity name of atest panel flag box (string expression)
data datato be output. Datamust be 0 or 1 (numeric expression)
Example

setflag "STOPACT", 0

SETrr

Sets up the value in the specified register

This command may be used to set up any register pair including
PC,SP,IX,1Y WA HL.

Format
setrr <value>
value valid rom address for the processor (numeric expression) or
any other valuevalid for the specific register.
Example
setpc 100
setix Of
SETR

Sets up the value of the external resistance on apin.

152 Micropak 870C User Manual

Using Script Files SETV

Format
setr <pin-number>, <value>
pin-number avalid pin number (numeric expression)
value resistance value to be set, expressed in ohms (numeric expression)
Example
setr startpin%, 10000
setr 9, 10000

SETV

Sets up the value of the external voltage on apin.
Format

setv <pin-number>, <value>

pin-number avalid pin number (numeric expression)
value voltage value, expressed in volts (numeric expression)
Example

setv startpin%, getv(Gnd%)

setv 9,5
SIN
Script file function. Returns the sine of a numeric expression (in radians).
Format
sin(<value>)
value input parameter (numeric expression)
Example

a =sin(3.1415926 / 6) 'would return (approximately) 0.5

Micropak 870C User Manual 153

SGN Using Script Files

SGN

Script file function. Returnsthe sign of anumeric expression.

If the expression is negative then -1 isreturned. If the expression is positive
then 1isreturned and if it is equal to zero then O isreturned.

Format

sgn(<vaue>)

value input parameter (numeric expression)
Example

a% =sgn(-10) 'would return -1

SOR

Script file function. Returns the square root of a numeric expression. The
expression must be positive.

Format

sgr(<vaue>)

value input parameter (numeric expression)
Example

a=sqr(13) 'would return 3.605...

STOP

Stops the target code execution. There are no parameters.

Example

stop

TAN

Script file function. Retums the tangent of a numeric expression (in
radians).

154 Micropak 870C User Manual

Using Script Files TIMEOUT

Format
tan(<value>)
value input parameter (numeric expression)
Example
a=tan(3.1415926 / 4) 'would return (approximately) 0.01371

TIMEOUT

Specifies atime-out value which will be monitored to trigger events when
thetime-out expires. Thisfacility allows the testing of time-dependent
routinesin the target code.

Format

timeout(<value>)

value value of thetime-out in seconds (numeric expression)
Example

time% =timeout(0.010)

XOR

Logical exclusive-or operator which performs a bitwise operation on two
integer operands. The truth tableis asfollows:

X Y X xor 'Y
1 1 0

1 0 1

0 1 1

0 0 0
Example

a% = b% xor c%

Micropak 870C User Manual 155

XOR Using Script Files

156 Micropak 870C User Manual

Keyboard Summary Editing keys

Keyboard Summary

Editing keys

A complete list of the keys available for the editing function is given in the
chapter ‘Using the Editor’.

Accelerator keys

Hereisasummary of the ‘accelerator’ keys used to provide fast access to
commonly used menu options:;

File menu

Ctrl+N New file

Ctrl+O Openfile

Ctrl+S Savefile

Edit menu

Ctrl+zZ Undo

Ctrl+A Redo

Ctrl+X Cut

Ctrl+C Copy

Ctrl+V Paste

Ctrl+F Find

Ctrl+R Replace

View menu

F4 Next Error
Shift+F4 Previous Error
Ctrl+F2 Toggle Bookmark
F2 Next Bookmark
Shift+F2 Previous Bookmark

Micropak 870C User Manual 157

Accelerator keys

Keyboard Summary

Project menu

Ctrl+F3 Compile File
Shift+F3 Build

Alt+F3 Rebuild All

Test menu

Ctrl+P Run Script
Ctrl+Q Stop Script
Debug menu

F5 Go

F6 Step Into

F7 Step Over

F8 Step Out

F9 Step to Cursor
Ctrl+F5 Go and Go
Alt+F5 Stop Debugging
Ctrl+F9 Set PC to Cursor
Ctri+T Call Stack
Ctrl+U QuickWatch
Ctrl+B Bresakpoints
Trace menu

Shift+F5 Go (roll) Back
Shift+F6 Step Back Into
Shift+F7 Step Back Over
Shift+F8 Step Back Out
Shift+F9 Step Back to Cursor
Ctrl+l Signals Zoom In
Ctrl+J Signals Zoom Out
Ctrl+K Snap Signals

158 Micropak 870C User Manual

Keyboard Summary Accelerator keys

Window menu

Ctrl+D Device Window
Ctrl+E Pin Window

Breakpoint function
F10 Toggle Breakpoint

Micropak 870C User Manual 159

Accelerator keys Appendix A - Script file grammar

160 Micropak 870C User Manual

Appendix A - Script file grammar Definition

Appendix A - Script file
grammar

Definition

This appendix shows the complete grammar of the script file language. It
encompasses a compl ete definition of the language of the script processor.

It is shown in modified Backus-Naur form. Nonterminal symbols and
certain tokens are shown in italics. Keywords, and other tokens are shown
in afixed width, typewriter font. Note that keywords, can be given in both
upper and lower case, or amixture of the two. For the sake of clarity, all
keywords are shown herein upper case. The subscript opt denotes that the
symbol, either nonterminal or token, is optional.

interpreter-unit :
| abelgy statementqy newline
|abelop statement yy

Statements

statement :
close-statement
connect -statement
dim-statement
el se-statement
el seif-statement
end-statement
endif-statement
event-statement
for-statement
go-statement
gosub-statement
goto-statement
if-statement
input-statement
| et-statement
next-statement

Micropak 870C User Manual 161

Definition

Appendix A - Script file grammar

on-statement
open-statement
poke-statement
print-statement
repeat-statement
return-statement
setedit-statement
setflag-statement
setrr-statement
setr-statement
setsp-statement
setv-statement
stop-statement
until -statement

close-statement :
CLOSE close-listgy

close-list :
close-list, #qp expression
#opt EXPression
connect-statement :
CONNECT expression, expression

dim-statement :
DI Midentifier (dimist)
dimlist:
dimlist, expression
expression

else-statement :
ELSE

elseif-statement :
ELSEI F expression THEN

end-statement :
END

endif-statement :
ENDI F

event-statement :

162

Micropak 870C User Manual

Appendix A - Script file grammar Definition

EVENT (expression) event-action

event-action :

ON

OFF

KI LL
for-statement :

FORidentifier = expression TOexpression stepop
step :

STEP expression
go-statement :

GO
gosub-statement :

GOSUB label
goto-statement :

GOTOlabel
if-statement :

| F expression THEN

input-statement :
I NPUT # expression, input-list

input-list :
input-list, identifier
identifier
|et-statement :
LETy identifier = expression
next-statement :

NEXT next-list oy
next-list :

next-list, identifier

identifier
on-statement :

ONEVENT (expression) RUNIlabel

open-statement :
OPEN expression modegp: acCessypt 10CKpt AS #q €XPression
length gy

Micropak 870C User Manual 163

Definition

Appendix A - Script file grammar

mode :

FOR mode-type
mode-type:

APPEND

Bl NARY

I NPUT

OUTPUT

RANDOM
access:

ACCESS access-type
access-type:

READWRI TEy

WRI TE
lock :

SHARED

LOCK READVARI TEgpt

LOCKWRI TE
length :

LEN = expression
poke-statement :

POKE expression, expression
print-statement :

PRI NT # expression, print-listyy
print-list :

print-list ; expressiongy

print-list, expressiongy

EXPr €sSi Oy

repeat-statement :
REPEAT

return-statement :
RETURN

setedit-statement :
SETEDI T expression, expression

setflag-statement :

164

Micropak 870C User Manual

Appendix A - Script file grammar Definition

SETFLAGexpression, expression

setrr-statement :
SETI X expression

SETIY expression
SETHL expression
SETPC expression
SETSP expression
SETWA expression

setr-statement :
SETRexpression, expression

setsp-statement
SETSP expression

setv-statement :
SETV expression, expression

stop-statement :
STOP

until -statement :
UNTI L expression

Expressions

expression :
eqv-expression

eqv-expression :
eqv-expression EQV imp-expression
imp-expression

imp-expression :
imp-expression | MP xor-expression
XOr-expression

Xor-expression :
xor-expression XOR or-expression
or-expression

or-expression :
or-expression OR and-expression

Micropak 870C User Manual 165

Definition Appendix A - Script file grammar

and-expression

and-expression :
and-expression AND not-expression
not-expression

not-expression :
NOT not-expression
relational -expression

relational-expression :

relational-expression > additive-expression
relational -expression >= additive-expression
relational-expression < additive-expression
relational -expression <= additive-expression
relational -expression = additive-expression
relational -expression <> additive-expression
additive-expression

additive-expression :
additive-expression + multiplicative-expression
additive-expression - multiplicative-expression
multiplicative-expression

multiplicative-expression :
multiplicative-expression * uminus-expression
multiplicative-expression/ uminus-expression
uminus-expression

uminus-expression :
- uminus-expression
power-expression

power -expression :
power-expression * unary-expression
unary-expression

unary-expression :
identifier
identifier (index-list)
real-constant
integer -constant
string-constant
ABS (expression)

166 Micropak 870C User Manual

Appendix A - Script file grammar Definition

ACOS (expression)

ASC (expression)

ASI N(expression)

ATAN (expression)

BREAKPOI NT (expression, expression, expression,
expression, expression)

BUTTON (expression)

CHR$ (expression)

COS (' expression)

EDI T (expression)

EXP (expression)

GETEDI T (expression)

GETEDI T$ (expression)

GETFC()

GETFS ()

GETI X ()

GETIY ()

GETHL ()

GETPC()

GETSP ()

GETWA ()

GETTI ME()

GETV (expression)

GLOBAL (expression)

LEFTS (expression, expression)

LEN(expression)

LOCAL (expression)

M D$ (expression, expression mid-lengthyy)

PEEK (expression)

Pl N(expression)

Rl GHT$ (expression, expression)

SI N(expression)

SGN (' expression)

SQR (' expression)

TAN (expression)

TI MEQUT (expression)

(expression)

Micropak 870C User Manual 167

Definition

Appendix A - Script file grammar

index-list :
expression, index-list
index-list

mid-length :
, expression

168

Micropak 870C User Manual

Appendix B - Script file example Definition

Appendix B - Script file
example

R R R R Rk R R

* Fle: stepper.scr
'* Desc:
'* File for denonstration of the MP870/C sinul ator.

HEEESS

HEESEEEEESS

"* This integer variable determ nes whether script file

'* breakpoints shoul d be denmonstrated. Note that the

'* breakpoints will stop the execution of the program and
* will require you to select the Go command from the Debug
* menu to start things going again.

IR R R R R R R S S S S SRR RS R R R R R R R RS SRS R R R R R EEEEEEEEEEESE]

1

1

denonst at ebr eakpoi nts% = 0

IR R R R R R R R R R S S S S SRS R R R R R R R R R R R R RS S S E S E S EEE R R EEEEEEEEEEEESE]

'"* Allocate vars to pin nunbers. By allocating variabl es
"* with pin nunbers, nmakes the script file easier to
'* under st and.

U S R R R R R R R R R R SRR S SR RS S S EEEEEE SRR R RERERREEEEEEEEEEEEEE RS

drivl% = 61

"the stepper nmotor drive lines

driv2%= 62

driv3%= 63

driv4d% = 64

Vdd% = 5

"the power supply lines

Ghd% =1

startpin%= 27 "the
|'i nes which the real

Micropak 870C User Manual 169

Definition Appendix B - Script file example

st oppi n% = 26
'switches are connected to

IR R R R R R R R R RS S S S SRS R SRR R R R R RS SRS SRS SRS R R EEEEEEEEEEEEEEESE]

'* Set voltages on pins and nake connecti ons.

IR R EEEEE RS S S S SRR SRR R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES]

setv startpin% getv(Vvdd® ' both

swi tches made inactive
setv stoppin% getv(Vdd% ' (hi gh)
setr startpin% 10000 'resi stance

= 10K

setr stoppin% 10000

connect startpin% 1 "allow the
script fileto

connect stoppin% 1

'change the |ines

USSR R R R EEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEE RS

'* Assign button IDs to run pieces of script files. So if a
'"* putton is pressed in a test panel the rel event script

'* commands are processed.

'* STARTBUTTON and STOPBUTTON are the ids given to the panel
'* putton. actstart and actstop are the labels for the

'"* script file functions.

AR R R R

start.event % = button(" STARTBUTTON')
on event(start.event% run actstart
event(start.event% on

st op. event % = but t on(" STOPBUTTON")
on event (stop.event% run actstop
event (stop. event% on

R R R R kR R R R

'

* Any changes to voltage on the notor drive lines will call
* the appropriate script routine.

R R R R kR R R

'

170 Micropak 870C User Manual

Appendix B - Script file example Definition

drivl. event% = pin(drivl® ‘pin 9
on event(drivl.event% run showl
event (drivl. event% on

driv2.event% = pin(driv2y "pin 10
on event(driv2.event% run show?
event (driv2.event% on

driv3.event% = pin(driv3% "pin 11
on event (driv3.event% run show3
event (driv3.event% on

drivd.event% = pin(driv4® "pin 12
on event(driv4.event% run show4
event (driv4. event% on

USSR R R R EEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEE RS

"* The follow ng section of script code is to produce a
'* breakpoint which has to be hit 5 tinmes before it stops
'* execution and warns the user in the dial og box of the
'* test panel.

AR R R R S T

i f denonst at ebr eakpoi nts%t hen
bpcount% = 5 "set up initial count

"

bcbr k. event % = br eakpoi nt (0, " st epper. c! 351", ,

0, 1)

'set up the
bp, which when

'the
program counter is

"about to
hit set_phase_7,

"the script
code at pcbrk

"is called

on event (bcbrk. event% run pcbrk

Micropak 870C User Manual 171

Definition Appendix B - Script file example

event (bcbrk.event% on
endi f

IR R R R R R R R R RS S S S SRS R SRR R R R R RS SRS SRS SRS R R EEEEEEEEEEEEEEESE]

1

* The foll owing breakpoint is one set up for data in which
"* it will check that when PortO is witten to (w) that a

* phase can be seen on the port, (ie Port 0 <> 0). If PortO
* could not be witten to correctly then it will give the

* error in the edit dialog box.

LR EEEEEEEEE S S SRS RS RS E R R EEEEEREREEEEEEEEEEEEEEEEEEEEEEEEEEEEEES

i f denonst at ebr eakpoi nts%t hen
portbbrk. event % = breakpoint(3, "", "I10OP0 >= 0",

on event (portbbrk.event% run portbbrk
event (portbbrk. event% on
endi f

USSR R R R EEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEE RS

1

* |f the user changes the power supply change the switching
'* threshol d.

Thkkhkkhkkhkkhkkhkkhkhkhkkhkhkhkhkhkkhkkhkhkhkhkhkhkhkhkhkhkkhkkhkkhkkhkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkhkkkkkkkkkkkkk*k*x*%

vdd. event % = pi n(Vdd%)
on event(vdd.event% run adjthes
event (vdd. event% on

gnd. event % = pi n(Ghd%
on event(gnd.event% run adjthes
event (gnd. event% on

adj t hes:

threshold = (getv(Vdd% + getv(Gd%) / 2

go ‘start the instruction
decoder

end "end of processing

R R R R kR R R

172 Micropak 870C User Manual

Appendix B - Script file example Definition

'* The followi ng script routine is called when the program
'* hits the set_phase_7 breakpoint.

T hkhkkhkkhkhkhkhkhkhkhkhhkhkhkhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhkhkhkhhkhkhkkxxkx %

pcbrk:
bpcount % = bpcount%- 1 ' decr enent
bp count
if bpcount% = 0 then ' check the count
stop "if 0 stop

execution of

‘instructions, initialise
bpcount% = 5 'count back to 5

"report to the user that

"the bp has been hit
setedit "Dl ALOG', "Breakpoint hit"
endi f
end
"end of this routine

AR R R R S T

1

* This is a another way to find the bug in the tutorial
'* program

Thhkhkhkhkhkhkhhhhhdhdhhhkdkhhhhhhhdhddhhhhhdhdddhdhdhkdkddxdhhkhhkhkdkdkdddrrrrxxx

port bbrk:
val ue% = peek(0)
if value% = 15 then
setedit "D ALOG', "Wote OFH to port 0"
stop
endi f
end

R R R R kR R R R
* H ghlight the flags showing the phases of the stepper

'* notor.

'* MOTORL, MOTOR2, MOTOR3 and MOTOR4 are the ids of the

Micropak 870C User Manual 173

Definition

Appendix B - Script file example

'* flags in the panel.

oWl

A value of 1, highlights the flag, a
turn the highlighting of the flag (segnent) off.

IR R R R R R R R R RS S S S SRS R SRR R R R R RS SRS SRS SRS R R EEEEEEEEEEEEEEESE]

showl:

show2:

showg:

show4:

if getv(drivl®

setfl ag
el se

setfl ag
endi f
end

if getv(driv29

setfl ag
el se

setfl ag
endi f
end

if getv(driv3®

setfl ag
el se

setfl ag
endi f
end

if getv(driv4®

setfl ag
el se

setfl ag
endi f
end

< threshold then
"MOTCR1", O

"MOTOR1", 1

< threshold then
"MOTOR2", O

"MOTOR2", 1

< threshold then
"MOTOR3", O

"MOTOR3", 1

< threshold then
"MOTCR4", O

"MOTOR4", 1

R R R R kR R R R

'* Script code called when the Start button is pressed.
'* Checks that the I/Oline is inactive (H GH).

174

Micropak 870C User Manual

Appendix B - Script file example Definition

'* |f inactive nakes the line active. Shows the new status.
'* After 0.010 seconds (10ms) runs script code to deactivate
'* 1/Oline

RS EEEE SRR RS EE R EEE RS SRR R EEEEEEEEEEEEEERESEEEEESE]

actstart:
if getv(startpin% > threshold then
setv startpin% getv(Gid%
setflag "STARTACT", 1

inactstart.event% = tineout (0. 010) ' 10ms
on event(inactstart.event% run inactstart
event (i nactstart.event% on

endi f

end

RS EEEEE S EEEEEEEEEEREEREEREEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEE]

'* Code to deactivate I/O 1line and show the new status.

USSR R R R EEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEE RS

inactstart:
setv startpin% getv(Vvdd®
setflag "STARTACT", O

event (i nactstart.event®% Kkill
end

R S S R Sk R S S

'* Script code called when the Stop button is pressed.

R S S R Sk R S S

act st op:
if getv(stoppin% > threshold then
setv stoppi n% getv(Gd%
setflag "STOPACT", 1

i nact st op. event % = ti meout (0. 010) ' 10ns
on event (i nact stop. event% run inactstop
event (i nact st op. event% on

Micropak 870C User Manual 175

Definition Appendix B - Script file example

endi f
end
i nact st op:
setv stoppi n% getv(Vdd%
setflag "STCPACT", O

event (i nactstop. event% kill
end

RS SRR S S SR SRR EEEREE R SRR SRR R R R R EEREEEEEEEEEEEEEEEEEEEEEEE RS

"* End of script file.

USSR R R R EEEEEEEEEREEREEEEEEEEEEEEEEEEEEEEREEREEEEEEEEEEEEEEEEE]

176 Micropak 870C User Manual

INDEX Definition

INDEX

location field, 88
A removing, 91
script file facilities, 92
setting, 91
typefield, 87
viewing current set ups, 89
Breakpoints, ix, 10, 11, 36, 37, 40,
49, 50, 58, 83, 158

accelerator keys, 53, 67, 157
breakpoints, 159
Debug menu, 158
Edit menu, 157
File menu, 157
Project menu, 157

Test menu, 157 C
Trace menu, 158
View menu, 157 call stack, 114
Window menu, 159 check boxes, 52
code coverage, 1, 85
B code coverage, clearing, 86

controlling execution, 77

batch file, 57, 58 customised memory views, 98

breakpoint, 36, 37

breakpoints, 77, 87 D
accelerator key, 159
break at location, 87 Debug
break at location if expression is breakpoints, 87
true, 87 fast mode, 33, 77, 80
break at location if |-value has options, 77, 80, 84
changed, 88 reset, 79
break when expressionistrue, 88 slow mode, 33, 77, 78, 80
break when |-value has changed, debug information file, 58
88 Debug menu, 31, 46, 49, 79, 87, 158
counter field, 89 go, 32, 37
disabling, 91 show call stack, 114
enabling, 91 debug mode, 33
example, 89 deviceinformation, 103
expression/l-value field, 88 dialog boxes, 51
length field, 89 directory structure, 5

Micropak 870C User Manual 177

Definition

INDEX

E

Edit menu, 46, 47, 157
editing aproject, 60
editor

keyboard functions, 70

locating and changing text, 71

options, 69
enabling signal buffer, 99
exectution time, 86
execution

ceasing, 77

controlling, 77

go, 77

optimising speed, 77

restarting, 85

step into, 77

step out, 77

step over, 77

step to cursor, 77
external project options

build mode, 64

debug build, 64

processor, 64

release build, 64

target name, 64
external projects, 57

F

file defaults, 67
File menu, 46, 47, 105, 157
open, 67

H

Help, 54
Help menu, 46, 51, 54

inactivetrace buffer, 85
installation, 5
internal project options, 61
Assembler, 63
build, 63
C compiler, 63
category, 63
C-Like compiler, 63
Linker, 63
options string, 63
internal projects, 57
interval, 80
interval window, 80

K
keyboard summary, 157

L

list boxes, 52

locals, 112, 114

locating and changing text
find, 71

locating and finding text
replace, 72

M

menu operation, 45

O

on-chip peripherals, 102
opening aproject, 59
opening files, 67
Options

Debug, 77
Options menu, 46, 50

178

Micropak 870C User Manual

INDEX

Definition

debug, 77, 80, 83, 84
editor, 69

P

pin and port windows, 93
pin numbering, 95
plot lines
disabling, 99
enabling, 99
removing, 99
port
script files, 94, 95
views, 93, 104
windows, 93
port simul ation techniques, 93
processor information file, 58
program counter, 78, 79
indicator, 31
project, 34
batch file, 57, 58
debug information file, 58
edit, 60
external, 61, 64
internal, 61
open, 59
processor information file, 58
source files, 58
window configuration file, 58
project files, 57
external, 57
internal, 57
Project menu, 46, 48, 74, 157
execute, 35
pull-up control, 95

Q

quick watch, 111
add to watch, 112

modify variable, 112
zoom, 112

R

radio buttons, 52
RAM
customised memory views, 98
window, 97
re-building the project, 74
registers, 115
roll-back displays, 84
go back, 84
step back into, 84
step back over, 84
step back to cursor, 84
step out, 84
runtimelinks, 5, 7

S

script file, 22, 104
commands, 82
events, 123
execution and control flow, 123
script file variables, 120
script files, 23, 35
breakpoints, 92
examplesof uses, 118
identities, 127
port, 94, 95
purpose and uses, 117
test panels, 117
script language
breakpoints, 125
button events, 125
comment delimiters, 120
edit events, 126
elements of statements, 120
grammar and syntax, 119

Micropak 870C User Manual

179

Definition

INDEX

keywords, 128
operator precedence and

IF-THEN -[EL SEIF]-[ELSE]-
ENDIF, 143

associativity, 122 IMP, 144

operatorsand expressions, 121 INPUT, 144
pin events, 126 LEFTS, 144
statements and lines, 119 LEN, 145
timeout events, 126 LET, 145

script language commands and LOCAL, 146
functions MID$, 146
ABS, 131 NOT, 147
ACOS, 131 OPEN, 147
AND, 132 OR, 148
ASC, 132 PEEK, 148
ASIN, 132 POKE, 149
ATAN, 133 PRINT, 148
BREAKPOINT, 133 REM, 149
CHR$, 135 REPEAT-UNTIL, 150
CLOSE, 135 RETURN, 150
CONNECT, 135 RIGHT$, 150
COs, 136 SETBITMAP, 151
DIM, 136 SETEDIT, 151
EDIT, 136 SETFLAG, 152
END, 137 SETPC, 152
EQV, 137 SETR, 152
EVENT, 137 SETV, 153
EXP, 139 SGN, 154
FOR-TO-[STEP], 139 SIN, 153
GETEDIT, 140 SQR, 154
GETEDITS$, 140 STOP, 154
GETFC, 140 TAN, 154
GETFS, 140 TIMEOUT, 155
GETPC, 141 XOR, 155
GETTIME, 141 setup, 5, 6
GETV, 141 signal, 24
GLOBAL, 142 buffer, 99
GO, 142 recording box, 98
GOSUB, 142 zoom in, 102
GOTO, 143 zoom out, 102

signal buffer
180 Micropak 870C User Manual

INDEX

Definition

control, 82
signal plots, 24
signal recording box
axes and scales, 99
disabling plot lines, 99
enabling buffer, 99
enabling plot lines, 99
markers and shading, 99
pin selection, 99
removing plot lines, 99
setting up, 98
viewing the results, 102
Signal window
control, 82
source debugging, 111
call stack, 111
locals, 111
quick watch, 111
registers, 111
watch, 111
source files, 58
step
multi, 32, 77
single, 32, 77, 84
Step Into, 32, 77, 78
Step Out, 78
Step Over, 77, 78
Step to Cursor, 31, 77, 78
syntax colouring, 68

T

Test menu, 46, 49, 50, 105, 157
test panel, 21, 104

button, 106

edit box, 108

flag, 106

move, 106

options, 105

properties, 108
setting up, 105
text box, 106
test panels
examplesof uses, 118
tracebuffer
control, 82
inactive, 85
trace buffering, 37, 83
Trace menu, 24, 46, 158
roll-back displays, 84

U

user interface, 41
desktop, 42
icon, 42
keyboard, 53
menu, 42
menu bar, 42
menu operation, 45
scroll bars, 43
status bar, 43
tool bar, 42
toolbar, 53
window, 42
window elements, 43

\Y,

View menu, 46, 48, 157
viewing simulated objects, 97

w

watch, 112

adding items, 112
window

interval, 80
window configuration file, 58

Micropak 870C User Manual

181

Definition INDEX

window elements, 43 device, 97, 104
Window menu, 24, 46, 51, 80, 159 registers, 115

182 Micropak 870C User Manual

