WinDriver ™ USB User's
Manual

Version 10.2.0

Jungo Ltd.

WinDriver ™ USB User's Manual: Version 10.2.0
Copyright © Jungo Ltd. 2005-2010 All Rights Reserved.

Information in this document is subject to change without notice. The software described in this document is furnished under alicense
agreement. The software may be used, copied or distributed only in accordance with that agreement. No part of this publication

may be reproduced, stored in aretrieval system, or transmitted in any form or any means, electronically or mechanically, including
photocopying and recording for any purpose without the written permission of Jungo Ltd.

Brand and product names mentioned in this document are trademarks of their respective owners and are used here only for
identification purposes.

© Jungo Ltd. 2005-2010

Table of Contents

VYT g1 BT AVZ= G @Y = AV 1= 1
1.1, INtrodUCtioN tO WINDIIVESoooicveieetie et etee e etee e eatee e eate s s erae s sssee s ssbeeesbaeesnbeessnbeeeans 1
D2 = - ot (o U o 2

2 B I 0 T= O = = o T T S 2
1.2.2. The WINDIIVEr SOIULION ...ccuveeiiiie ittt erae e 2
TG T o T 111 o o 3
1.4, WINDIIVEr BENEFILS ..veiicieie ettt e e e e eaae s s eabeeebaeeeanes 3
1.5, WINDIIVEr ATCIRITECIUIEvveeiveeietee ettt ettt e et e b e s saae e e sab e e e ebaeesbaeesnreeas 4
1.6. What Platforms Does WIinDIiVEr SUPPOIL?cceeeerieerieeieseesesseeseesseeessseessessssseessens 5
1.7. Limitations of the Different Evaluation VErSIONScccoooceeeicieec i 5
1.8. How Do | Develop My Driver With WINDIIVEr?cccevvieieeseeee e 6
1.8.1. ON WiIiNAOWS @Nd LINUXccocuvieiiiiieiiieccreeceree e eeiree s svee s sve e s sbeessnresssnneesanns 6
1.8.2. ON WINAOWS CE ...ttt ettt e et e s sae e s b e e s ebaeesbe e e snnaneans 6
1.9. What Does the WinDriver TOOIKit INCIUAE?covvviieeeeeee e 6
1.9.1. WINDIIVEr MOAUIES ...ttt enae s e 7
RS T U1 1 1] (=S RRU 7
1.9.3. WinDriver's Specific Chipset SUPPOITccveeeveerice e 8
194, SAIMPIES ..ottt e st e et e sae e te e e e ae e teeneenreenreeneens 8
1.10. Can | Distribute the Driver Created With WINDIVEr?ooveeeceeecieeeceee e 9

2. Understanding DEVICE DIIVENSccciiiereeeeee e eiesee st sae e steeaessee e ae e teenaesseesseensesseenss 10
2.1. DEVICE DIIVES OVEIVIEW ...uveeecevieeeiieeetteecettee ettt e ettt e s s sbae s sbae s sbe s s sabesesabesesnbessansessnns 10
2.2. Classification of Drivers According to FUNCiONalityccccovvceeveeiesieeseece e 10

2.2.1. MONOITNIC DIIVELS ...oviieeeee ettt ettt seba s s be e e sbee e snree e e 10
2.2.2. LAYEIrEA DIIVEL'S ...oeeeeece ettt sttt te et e e aeenaesneesreennnnnens 11
2.2.3. MINIPOIt DIIVEL'S ...oveeieeece et e ettt sneesneenaesneenseeneennes 12
2.3. Classification of Drivers According to Operating SyStems.........ccvcveveeveeseereeeieeseeenees 14
A T T VAV Y I T V< SR 14
2.3.2. VXD DIIVELS ..eveeicetie ettt ettt e e e e et e e itee s aat e e sbaessbeeesabeessnbesssnreeesneeeens 14
2.3.3. UNIX DEVICE DIIVELS ..ottt e vt aes st sssaae s sba e s snbee e snbeessnree s 14
2.3.4. LINUX DEVICE DIIVEISoveeeittie ettt stee e etee e tee st s st s b s snee s sabe e s snresennes 14
2.4. The Entry POINt Of the DIIVELccveiecee ettt 15
2.5. Associating the Hardware With the DIIVESc.cccceevieiieceee e 15
2.6. Communicating With DIIVEX'Scciieiiiiese ettt 15

3. WINDIIVEr USB OVEIVIEWveeeieeie ettt ettee e stte s s etae e st e s sbae s ssbeessnbesssntesssnsessensessbeessnnenas 17
3.1 INrOAUCEION 10 USB ...ttt e et e e e ear e e e enre e enreas 17
3.2. WINDIIVEr USB BENEFITS ..ottt st saa s sba e e s 18
3.3, USB COMPONENLS ...oouviiiiiiieiiie ettt ettt st e st e st e ssse s s nnneesnseesnneeesnneeesnneeas 18
3.4, Data FIOW iN USB DEVICEScooveiecitieecitee ettt s et sbae s sbae s snbe e snbee s snree s enneas 19
3.5. USB Dala EXCNANGEeeeueeiiieieiiesieesie et e e see st ste et te e e sse e ssaesseeaesneensnennens 20
3.6. USB Data TranSfer TYPESueieeiueeierieerieseesteesteeeesteessesseesseessssseessesssessssssessssssesssesnsenns 21

G ST I @0 11 o I I =0 (= GRS 21
3.6.2. ISOCHIONOUS TTANSFENuveieitiee ettt s be e e sbe e s snbe e s enreeeenes 22
G G T 1= U oA I =115 22
N O N o 10 =15 = PR 23
3.7. USB CONFIQUIBLIONeeiueeieiieiieesieseeseesteseesteesteseesseessesseesseesessaesseessessaesseensessenssnenees 23
3.8. WINDIIVEN USB ...ttt ettt s e et e s s e aae s s eatessenbeesbsessbeeesnbeeesnbeneans 25

© Jungo Ltd. 2005-2010 iii

3.9. WINDriver USB AFChITECIUIE ..o 26

3.10. Which Drivers Can | Write with WinDriver USB? ... 27
4. INSAIING WINDIIVEL ...ttt sb bt e e e s b e nne e 28
4.1, SyStEM REQUITEIMENESeoiviitiriiriieiieieeeeie sttt sttt s e bbb st se e e e nnenneseeene e 28
4.1.1. Windows System REQUITEMENESccereeieerierieriesiesiesesese e 28
4.1.2. Windows CE System ReqUITEMENLScceouerrererierienesieseeeenee e sne s seeeaeas 28
4.1.3. Linux System REQUITEMENLScceeirieieieriesie sttt sre s 29

4.2. WIinDriver INStallation PrOCESScoeiiriiiiiiriereeeee et 29
4.2.1. Windows WinDriver Installation INStruCtionsccoceveeeeieenenenenesesie s 29
4.2.2. Windows CE WinDriver Installation INSIruCtionsccoeverereeiencnencneens 30
4.2.2.1. Installing WinDriver CE when Building New CE-Based Platforms....... 30

4.2.2.2. Installing WinDriver CE when Developing Applications for Windows

CE COMPULENS ...ttt n e s e r e nenneens 32

4.2.2.3. Windows CE Installation NOEEcccceeieeieiiiininereeeeeeeeeeie e 33

4.2.3. Linux WinDriver Installation INSIrUCtioNScooeiiiininieeieieese e 33
4.2.3.1. Preparing the System for INStallationccccoeieninieiieicneec e 33
4.2.3.2. INSEBIHELION ..o 34

4.2.3.3. Restricting Hardware ACCESS ON LiNUXccovveriirienininieeesesese e 36

4.3. Upgrading Y our INSAllEtioNcccceoeeieiinenneneeeeee e s 36
4.4. Checking Your INStallationccoceioiiiinieee e 37
4.4.1. Windows and Linux Installation Check ... 37
4.4.2. Windows CE Installation Check ..o 37

4.5. UNINSEAHIING WINDIIVES ..ot 37
4.5.1. Windows WinDriver Uninstall INStructionsccocvereeeienesene e 37
4.5.2. Linux WinDriver Uninstall INStrUCtionsSccooeriniiinineeeceeesese e 39
5. USING DIVENWWIZANT ...ttt n et b e 40
5.1 AN OVEIVIBIV ..ottt bbbt et bt e s e e e b e s b e nbesb e bt e se e e e e 40
5.2. DriverWizard WalKthrough ..o 41
5.2.1. Logging WINDriver APl CallS ..o 50
5.2.2. DriVErWizZard LOGOEScceierieriirierieeieieeesie ettt sne s sre s 50
5.2.3. AUtomatiC Code GENEIELIONccererereeieriesiesie et 50
5.2.3.1. Generating the COdeccoiiiiiririeeee e 50
5.2.3.2. The Generated USB C COUEcccooiiirieiirieeeese e 50

5.2.3.3. The Generated Visual Basic and Delphi Codecccooeveienenirienennne 51
5.2.3.4. The Generated C# and Visual Basic .NET Code.........cccoevvvrieeieeieniennenn 51

5.2.4. Compiling the Generated COEcccoiiierieieieeee s 51
5.2.4.1. Windows and Windows CE Compilationc.ccccevererierienencncneene. 51
5.2.4.2. LinuxX COMPITEIIONoueiuiieiiiieieieeie st 51

5.2.5. Bus Analyzer Integration — Ellisys Visual USBccccooiiniiieieiinccenc e 51
6. DEVEIOPING 8 DITVEL ...ttt e et bbb neene s 53
6.1. Using DriverWizard to Build 8 DeViCe DIIVEScccoviieieneiiiieeeeee e 53
6.2. Writing the Device Driver Without DriverWizardccoovinerieieniecienenenesenins 54
6.2.1. Include the Required WIiNDriver FIlES ... 54
6.2.2. WITE YOUI COUE ...ttt 55
6.2.3. Configure and Build YOUr COOEccccueirieieiiieieriesesesee e 55

6.3. Developing Your Driver on Windows CE Platformscoeveveeieieiencne e 55
6.4. Developing in Visual Basic and DEIPhicccoceeiiiiieiinieeeeeeee e 56
6.4.1. USING DIrIVEIWIZAIdcoviiiiiiiiiieeeeeee e 56

© Jungo Ltd. 2005-2010 iv

6.4.2. SAMPIES ...t e e nr e nne s 56

6.4.3. Creating YOUI DITVEYcociiiiiiiiieieiesese ettt 57

7. DEDUGUING DIIVELS ...ttt bbbt bt e e e nn et e benbeenesseeneas 58
7.1, USEr-MOOE DEDUGGING ..eveveeueeneeieniesiesiesiesieseeee st sse st b e s e ssesse st sse s ssesneennennas 58

7.2. DEDUG MONITOT ..ottt bbb e 58
7.2.1. The wddebug_ gui ULIITYocooiviiiiieeeeee e 58

7.2.1.1. Running wddebug_gui for a Renamed Driverccccovvinencnenene. 61

7.2.2. The wddebug ULHITYc.ooeeeeeeeeeeee s 61

7.2.2.1. Console-Mode wddebug EXECULIONccoererierinieieieeeseesesee e 61

7.2.2.2. Windows CE GUI wddebug EXeCutionccccceverenenenieniicncnenn 64

8. Enhanced Support for SPecific ChIPSELScoiiiriiee s 66
8L OVEIVIBIW ..ttt bbbttt e et b s bt b e e bt e st e se e e et e e e b e e anis 66

8.2. Developing a Driver Using the Enhanced Chipset SUPPOITcccooveienereneneseeeeene 66

O. USB TTANSIEIS ...ttt b et b et e e e e e e b e bt e bt b e bt e e e nn e e e nnennennens 67
0.1, OVEIVIBIW .ottt et bbbt st e e e e e e e b e s b bt e bt eb e e se e e e e e e e nnenreanis 67

9.2. USB CONtrol TIaNSFEIS ...cueeuieieieieite sttt 68
9.2.1. USB Control TransferS OVEIVIEWcccceeeeeieeiieriesiesiesesie s sesee e e e 68

9.2.1.1. Control Data EXCNaNGEccerererireieiineeeeeeeee s 68

9.2.1.2. More About the Control Transfer ... 68

9.2.1.3. The SEtup PaCKELcooiiieeeeese s 69

9.2.1.4. USB Setup Packet FOrmMatcccceieiiniiinineneeeeeeeeee e 69

9.2.1.5. Standard Device Request COUEScceueieerenereniereseeeeeeee s 70

9.2.1.6. Setup Packet EXAMPIEcooeieiieee e 70

9.2.2. Performing Control Transfers with WINDIiVErcooeirieiincienenceneene 71

9.2.2.1. Control Transfers with DriverWizardc.ccoceeeieieneneneneneeeeene 71

9.2.2.2. Control Transfers with WinDriver APl ... 73

9.3. Functional USB Data TranSFEr'Sccceieiirierinieieieseesie et 74
9.3.1. Functional USB Data Transfers OVEIVIEWcccccoerererinereeieeeeneeseesee e 74

9.3.2. Single BIOCKING TranSfarscocucoeeiiieiereesreee e 74

9.3.2.1. Performing Single Blocking Transfers with WinDrivercccceenene 74

9.3.3. Streaming Data TranNSFEN'Scooviieiirirereeeee e 74

9.3.3.1. Performing Streaming With WINDIIVErccccooiiiieienereeseeeeeeens 75

10. Dynamically Loading Y OUr DIIVESc.coiiiiiiiiinieieeee et 77
10.1. Why Do You Need a Dynamically Loadable Driver?ccoceveveneneneneneseeenes 77
10.2. Windows DynamicC Driver LOAOINGccccoereriririeieieieseese e 77
10.2.1. WINAOWS DIVEN TYPES ...cuveierieitirieeieeeee et sne e 77

10.2.2. The WAreg ULIHITY ..o.ooeeeeeeeceeeee e 77

10.2.2. 1. OVEIVIBIW ..ottt bbbt e et nn e r e 78

10.2.3. Dynamically Loading/Unloading windrvr6.sys INF Filescccocvvieeenne 79

10.3. Linux DynamicC Driver LOBOINGccooeririeieierieniesiesie st 80
10.4. Windows Mobile Dynamic Driver LOadingcccoeierenerenineneseeeeeeseesee e 80

11. DiStriDULING Y OUE DITVEL ..ottt 81
11.1. Getting a Valid License fOr WINDIIVEScccooeiiiirineneneseeee e 81
11.2. Windows Driver DiStriDULIONcooooiiiiiiiee e 81
11.2.1. Preparing the Distribution Packagecccooeriiirenineeieeesesese e 82

11.2.2. Installing Y our Driver on the Target COMPULESccceeieeiiereeneneneneneeienins 82

11.3. Windows CE Driver DiStribDULIONccooiiiiiiiieeeee e 85
11.3.1. Distribution to New Windows CE PlatfOormscccceoeeeieneneneneneseeeee, 85

© Jungo Ltd. 2005-2010 v

11.3.2. Distribution to Windows CE COMPULESScccererirerieriienierieseesie e 87

11.4. Linux Driver DIStriDULIONcccooiiiiiiiiieneeeeeeee e 88
11.4.1. KerNEl MOUUIESocuiiiieeieeeeeee e e 88
11.4.2. User-Mode Hardware Control Application/Shared Objects..........ccccceverenene 89
11.4.3. INSLAIEHON SCIIPLeiveeeeeeeeeere e 90

12. Driver Installation — AQVANCEA ISSUESccererieieieiiesiesie sttt 91

12.1. WINAOWS INF FIIES ...t 91
12.1.1. Why Should | Create an INF FIlE? ... 91
12.1.2. How Do | Install an INF File When No Driver EXiStS?.......ccccoovvvineneneenenn. 92
12.1.3. How Do | Replace an Existing Driver Using the INF File? ..o, 92

12.2. Renaming the WinDriver Kernel DIIVEScooceeieiirise e 93
12.2.1. Windows Driver RENAMINGcooeririeriirieieieieseese s s 9
12.2.2. LinuxX Driver RENAIMINGcccooiiiririneeieieieeseesie et sne e 96

12.3. Digital Driver Signing and Certification — Windows 7/Vista/Server 2008/Server

2003/XPI2000 ...ttt r b e bt a e e e r e re e ne e 97
12.3. 1. OVEIVIBIW ..ottt b bt ss e bt e et et b e nbenneens 97

12.3.1.1. Authenticode Driver SIQNELUIEcccoerirerenerieeieeeee e 98

12.3.1.2. WHQL Driver CertifiCationcccccoveevereereeieneseesie e 98

12.3.2. Driver Signing and Certification of WinDriver-Based Drivers...........c.coeu.... 99

12.3.2.1. WHQL DTM TESt NOLESooueiierieiieieieie et 100

12.4. Windows XP Embedded WinDriver COmpoNeNntcccceererierieeniereneseesieseeeens 101

A. 64-bit Operating SySteMS SUPPOITc.veverieieriisiirieee e sre e 103

A.1. Supported 64-bit ArChItECIUIESooiiiiiieieee e 103

A.2. Support for 32-Bit Applications on 64-Bit Windows and Linux Platforms 103

A.3. 64-bit and 32-Dit Dala TYPEScceeuiriririeieierierie sttt 104

B. WinDriver USB PC HOSt APl REFEIENCEooueiieiiieiereie e 105

B.1. WD _DIIVEINGITIEoueeiiiie ittt st be e sreeste e e sseenbeeneenns 105

B.2. WinDriver USB (WDU) Library OVEIVIEW ..o 106
B.2.1. Calling Sequence for WIinDriver USB ... 106
B.2.2. Upgrading from the WD_xxx USB APl to the WDU_XxX APIccccevenneee 109

B.3. USB User Callback FUNCLIONSccoiiiiiiiieieieeeee e 110
B.3.1. WDU_ATTACH_CALLBACK ..o 110
B.3.2. WDU_DETACH_CALLBACK ..ot 111
B.3.3. WDU_POWER_CHANGE_CALLBACKcoiiieererenerereeeeee e 112

B.4. USB FUNCLIONSc.ooitiiiiiiieeeee ettt 112
B.4. 1. WDU_INIT ot 113
B.4.2. WDU_SELINEITACEccceeieeeieeieceeiee ettt nne s 114
B.4.3. WDU_GEtDEVICEATAN ..ottt e 115
B.4.4. WDU_GetDeviceRegiStryPrOpertycccoeoerererenenieeeiesee s 115
B.4.5. WDU_GEDEVICEINTOeovieieieiesieeie sttt 117
B.4.6. WDU_PUIDEVICEINTO ..ottt 117
B.4.7. WDU_UNINIT ..ot 118
B.4.8. Single Blocking Transfer FUNCLIONSccoeiiiiiineineneeee e 119

B.4.8.1. WDU_TIaNSIEN ..o 119
B.4.8.2. WDU_HaTIaNSFerccoiiiiiieieieeee s 120
B.4.8.3. WDU_TransferDefaultPiPecccooeieienirenineeeeeeeeeese e 121
B.4.8.4. WDU_TransferBUIKcccooiiiiiiiieicsee e 122
B.4.8.5. WDU_TransferISOCNccceeiiiiiiieiecie et 122

© Jungo Ltd. 2005-2010 vi

B.4.8.6. WDU_TransferINterruPLcceveriririeieieiesesie e 123

B.4.9. Streaming Data Transfer FUNCLIONScccoeieiineninereeeeeeeeeese s 123
B.4.9.1. WDU_SIreamOPENccoeeivirieeiieiieieesie e 124
B.4.9.2. WDU_SIrEaMSLAITcocueiiiiiiieiieesiee et 125
B.4.9.3. WDU_SIreamREadccoeruiriiieieieriesie et 126
B.4.9.4. WDU_SIrEaMWIITEocueeieeiisiee ettt 127
B.4.9.5. WDU_StreamFIUShcooiiiiiieeeeeeeee e 128
B.4.9.6. WDU_SIreamMGELSIALUSccoeiveeieieieeniieeieesiee e seee e 129
B.4.9.7. WDU_SIrEaAMSIOPcovverueiiieiieienieesiesee e 130
B.4.9.8. WDU_SIreamMCIOSEcceeiiieiiiiesieeie sttt 131

B.4.10. WDU_RESELPIPEceeitiiiiitiiieeiieieee ettt 131

B.4.11. WDU_RESEIDEVICEc.eeiiieieieisiesiesieeieseeie et 132

B.4.12. WDU_SEleCtiVESUSPENGoouiiiiriiiieeiieieieie ettt 133

B.4.13. WDU_WaEKEUPocueiuiinieieieie sttt 134

B.4.14. WDU_GELANGIDScceeiiiiiiieiieieeeeeeee et 135

B.4.15. WDU_GELSIINGDESCccviiviriiriieiieieeieiesie ettt sre e 136

B.5. USB Data TYPEScoeitiiiiiiieriieit sttt nn e ne s 137

B.5.1. WD_DEVICE_REGISTRY_PROPERTY Enumerationcccccceeerieeinennns 137

B.5.2. USB SIUCIUIES ... 138
B.5.2.1. WDU_MATCH_TABLE SITUCLUrecocevirieieeieee e, 139
B.5.2.2. WDU_EVENT_TABLE SITUCIUIEcoooiiieiiiieseeeseeee e 140
B.5.2.3. WDU_DEVICE SIUCIUIEocoiiiiieiesienienieeieeeeee e 140
B.5.2.4. WDU_CONFIGURATION SIIUCIUIEccoeieiriiriieieeeiesee e 141
B.5.2.5. WDU_INTERFACE SITUCIUIEc.eoiiiiiiiierieseeiee e 141
B.5.2.6. WDU_ALTERNATE_SETTING Structurecccocevererienereneennn. 141
B.5.2.7. WDU_DEVICE_DESCRIPTOR SIUCTUIEcccovereirierierierienieeeeenes 142
B.5.2.8. WDU_CONFIGURATION_DESCRIPTOR Structurec.cccceeueee. 142
B.5.2.9. WDU_INTERFACE_DESCRIPTOR Structureccccoeevirenenennns 143
B.5.2.10. WDU_ENDPOINT_DESCRIPTOR Structurecccccoeevererenennns 143
B.5.2.11. WDU_PIPE_INFO SIrUCIUIEceeiuiiieieieie e 144

B.6. General WD _XXX FUNCHONSccoiiiiiieieeie ettt neas 144

B.6.1. Calling Sequence WinDriver — General USEccooeveienenineeeeesese e 144

B.6.2. WD _OPEN ..ottt e n e 145

TR A VAV Y= = o] o ST 146

B.6.4. WD _ClOSE ..ottt sttt b 147

B.6.5. WD _DEDUGooueiiiiei e 148

B.6.6. WD _DeEDUGATD ..ot 149

B.6.7. WD_DeDUGDUMP ...ttt e 150

B.6.8. WD _SIEED ...ttt ne 151

B.6.9. WD _LICENSE ...cuvieiieiieiiecie sttt sttt ste et e s e s e 152

B.7. User-Mode ULility FUNCLIONSccoouiiiiiiiiieieeeeeeee s 154

BL7.1. SEBE2SIT ...ttt 154

B.7.2. QBL_0OS TYPE ..o 155

B.7.3. TRrEAUSKAIT ... s 155

B.7.4. TRrEAOWAIT ..ot 156

B.7.5. OSEVENICIEALEcoiueiiiiiiiieerieet e 156

B.7.6. OSEVENICIOSEcoiiiiieieieieeieei ettt 157

B.7.7. OSEVENIWEIL ..ottt 157

© Jungo Ltd. 2005-2010 vii

B.7.8. OSEVENISIGNAL ..ot 158

B.7.9. OSEVENIRESEL ...ttt sttt e s et e e s s eab e e e e s eabe e e s e sabreeessanees 159

B.7.10. OSMULEXCIEALEcooievrieeiiee e e ettt e e s s s s bbbae e e e s e s s e e ssbbaaereeaseeas 159

B.7.11. OSMULEXCIOSEcuveiiiiiiiiie et e ettt eette e e e e e s ata e s s s ab e e e s e sabae e s s sbraeeesanns 160

B.7.12. OSMULEXLOCKcciiiviieiiiiiiii ettt eeeee e s e s s bt e e s s sabeee s s sabaee e s snraeeeeans 160

B.7.13. OSMULEXUNIOCKeeiiiiiiiieiiiieiee ettt st s s s eiaa e e s enaa e e s s snbaee s s snnrees 161

B.7.14. PrintDDgMESSAgEcoueiiiieiiesiisieeieeeeee et 161

B.7.15. WD _LOGSEAITooiueeieeieeie ettt st st sne e e sne e e 162

B.7.16. WD _LOGSIOP ...oveiiiiiiiieesieere et 163

B.7.17. WD _LOGQATA ..ottt sttt sne e 163

B.8. WINDIIVEr StAtUS COUEScoiiiiieiieiieieiee ettt e s eebree e s s sibae e s s ebbaea s s snreeeeaans 165
[0S 700 TR g 0o (U1 1o P 165

B.8.2. Status Codes Returned by WINDIIVEYcccoviiiiinenineeeeeeee e 165

B.8.3. Status Codes Returned by USBDcccoooiiiiiiinineesereeeeee e 166

C. Troubleshooting and SUPPOITcoeriiieieiee e 170
D. Evaluation VErsion LIMITAliONSccuueiiiiiiiie et eitee e e s v e s s s sbae e s s ssaaeessssrneasssanneas 171
D.1. Windows WinDriver Evaluation LImitationsccoveeiiiiiiee e 171

D.2. Windows CE WinDriver Evaluation LImitationscccceeieveieeiecieeee e 171

D.3. Linux WinDriver Evaluation LImItationScceeviiiieeieiciieiee e 171

E. PUrChaSiNg WINDIIVEDoouiiiiiiiiiitieeee ettt nesnesne e 173
F. Distributing Your Driver — Legal ISSUEScc.ooeiiiiiiiinieeeeeeeeee e 174
G. Additional DOCUMENTALIONveeeiiiriiieiiitiie e ceeree e eetre e e s e sbee e s s s ebbe e e s sebaeeessssbeeesssbraeessessreeess 175

© Jungo Ltd. 2005-2010 viii

List of Figures

1.1, WINDIIVEr ATCHITECIUIE ..ottt sttt bbb 4
2.1, MONOITNIC DITVEL'S ..ottt sttt sttt e bbb b e ens 11
A I V< g o B 4N OSSR 12
G TV 1 aTH oo B YU 13
3.1, USB ENUPOINS ...ecuveieeeiieeieeeesieeiesieesteetesseesteesesseesseessssseesseessessssssesssessesssesssesssssseensessesssennes 20
3.2, USB PIPES .ottt bbbttt bbb bttt n e bt 21
TG T B T Vo TS o] (] 24
3.4. WInDriver USB AIChITECIUIEccoiiiiiieieiesie sttt 27
5.1. Create or Open a WIiNDIIVEr PrOJECEocveieeiecee et 41
5.2, SEECE YOUI DBVICEoeoiiiiiieie ettt sa e bbb bbbt nn et sbe st 42
5.3. DriverWizard INF File INfOrmMationccooeieiiiininineeiesie e 43
5.4. DriverWizard Multi-Interface INF File Information — Specific Interfaceccccceceveenee. 44
5.5. DriverWizard Multi-Interface INF File Information — Composite Device.........ccccceeveeenen. 45
5.6. SElECt DEVICE INEITACEooueieieeieiee e bbb 47
5.7. USB CONIOl TIaNSFEIS ..ottt 47
o3RS T I = 0 (o T T o= S 48
IS IV G (= o T 1= 48
5.10. Code Generation OPLIONSccceieeiierireieeseesiesee st eseesee e e seeseesseesseeseesseensesnaesseeseeseesseenes 49
5.11. Ellisys Visual USB INEQrationccccecueieerieiieieeriesieseesieseesee e see e seesseesseeseseesseenees 52
7.1, Start DEDUG MONITOLeoieciecice ettt be et e sreenneennesneenseas 59
72D o 0o I o1 o o1 60
7.3. wddebug Windows CE Start LOG MESSAJEccceeeerreereeieseesieeeeseeseesseesseessesesssesssesenns 64
7.4. wddebug Windows CE StOP LOg MESSAQEcccueveriueeiieiesieeiesieesieesiesseesseeeesnee e eassseenes 65
9.1. USB Dal@ EXCNANGEeeeeeiieeieeiesiesieeeesteesiesstestee e eaessee e eseesseesesneesneenseansesseensessensseensenns 67
0.2, USB RE80 @N0 WHIILE ...ttt bbbt b 69
0.3, CUSIOM REGUESLoeeiiiiiiiiiiie sttt ettt st s b s e sas e e e sane e e ssn e e e nnneeeneeesnneeas 72
S (= o 1= £ 1 72
0.5, USB REQUESE LOQ ...uveiiiiiiiiiiiiesieresitie e siiee s sitee st s see s sse e ssee e sabe e saseessaneessaseeesnneessnnessnnnessnnns 73
B.1. WinDriver USB Calling SEOUENCEcccueieeriieieseesiesieseeseesaeseestessesseesseesssseessesssssseens 108
B.2. WINDIIiVEr USB SIUCIUIESocuiiiiiiiiiiiieiesiee sttt 139
B.3. WinDriver APl Calling SEQUENCEccccoiiiieiiesie e seesiesee s sie et ssee s sae e sseeaesneens 145

© Jungo Ltd. 2005-2010 ix

Chapter 1
WinDriver Overview

In this chapter you will explore the uses of WinDriver, and learn the basic steps of creating your
driver.

This manual outlines WinDriver's support for USB devices.

WinDriver also supports development for PCI / PCMCIA / CardBus/ ISA / EISA /
CompactPCI / PCl Express devices. For detailed information regarding WinDriver's support
for these buses, please refer to the WinDriver Product Line page on our web site (http://
www.jungo.com/st/windriver.html) and to the WinDriver PCI Manual, which is available
on-line at: http://www.jungo.com/st/support/support_windriver.html.

1.1 Introduction to WinDriver

WinDriver is adevelopment toolkit that dramatically ssimplifies the difficult task of creating
device drivers and hardware access applications. WinDriver includes awizard and code
generation features that automatically detect your hardware and generate the driver to access it
from your application. The driver and application you develop using WinDriver is source code
compatible across all supported operating systems [1.6]. The driver is binary compatible across
Windows 7/VistalServer 2008/Server 2003/X P/2000.

WinDriver provides a complete solution for creating high-performance drivers.

Don't let the size of this manual fool you. WinDriver makes developing device drivers an

easy task that takes hoursinstead of months. Most of this manual deals with the features that
WinDriver offers to the advanced user. However, most developers will find that reading this
chapter and glancing through the DriverWizard and function reference chaptersis all they need to
successfully write their driver.

WinDriver supports development for all USB chipsets. Enhanced support is offered for Cypress,
Microchip, Philips, Texas Instruments, Agere and Silicon Laboratories USB chipsets, as outlined
in Chapter 8 of the manual.

Visit Jungo's web site at http://www.jungo.com for the latest news about WinDriver and other
driver development tools that Jungo offers.

© Jungo Ltd. 2005-2010 1

http://www.jungo.com/st/windriver.html
http://www.jungo.com/st/windriver.html
http://www.jungo.com/st/support/support_windriver.html
http://www.jungo.com

WinDriver Overview

1.2 Background

1.2.1 The Challenge

In protected operating systems such as Windows and Linux, a programmer cannot access
hardware directly from the application level (user mode), where development work is usually
done. Hardware can only be accessed from within the operating system itself (kernel mode or
Ring-0), utilizing software modules called device drivers. In order to access a custom hardware
device from the application level, a programmer must do the following:

Learn the internals of the operating system he isworking on.

Learn how to write adevice driver.

Learn new tools for devel oping/debugging in kernel mode (WDK, ETK, DDI/DKI).
Write the kernel-mode device driver that does the basic hardware input/output.

Write the application in user mode that accesses the hardware through the device driver written
in kernel mode.

Repeat the first four steps for each new operating system on which the code should run.

1.2.2 The WinDriver Solution

Easy Development: WinDriver enables Windows, Windows CE, and Linux programmers

to create USB based device driversin an extremely short time. WinDriver allows you to
create your driver in the familiar user-mode environment, using MSDEV/Visual C/C++,
MSDEV .NET, Borland C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual
C++, MS Platform Builder C++, GCC, or any other appropriate compiler. Y ou do not need

to have any device driver knowledge, nor do you have to be familiar with operating system
internals, kernel programming, the WDK, ETK or DDI/DKI.

Cross Platform: The driver created with WinDriver will run on Windows 7/Vista/Server 2008/
Server 2003/XP/2000, Windows CE.NET, Windows Embedded CE v6.00, Windows Mobile
5.0/6.0, and Linux. In other words — write it once, run it on many platforms.

Friendly Wizards: DriverWizard (included) is agraphical diagnosticstool that lets you view
the device's resources and test the communication with the hardware with just afew mouse
clicks, before writing asingle line of code. Once the device is operating to your satisfaction,
DriverWizard creates the skeletal driver source code, giving access functionsto al the
resources on the hardware.

Kernel-Mode Performance: WinDriver's APl is optimized for performance.

© Jungo Ltd. 2005-2010 2

WinDriver Overview

1.3 Conclusion

Using WinDriver, a developer need only do the following to create an application that accesses
the custom hardware:

» Start DriverWizard and detect the hardware and its resources.
» Automatically generate the device driver code from within DriverWizard, or use one of
the WinDriver samples as the basis for the application (see Chapter 8 for an overview of

WinDriver's enhanced support for specific chipsets).

» Modify the user-mode application, as needed, using the generated/sample functions to
implement the desired functionality for your application.

Y our hardware access application will run on all the supported platforms [1.6] —just re-compile
the code for the target platform. The code is binary compatible across Windows 7/Vista/Server

2008/ Server 2003/XP/2000 platforms; there is no need to rebuild the code when porting it across
binary-compatible platforms.

1.4 WinDriver Benefits

» Easy user-mode driver development.
* Friendly DriverWizard allows hardware diagnostics without writing a single line of code.

» Automatically generates the driver code for the project in C, C#, Visual Basic .NET, Delphi
(Pascal) or Visual Basic.

» Supports any USB device, regardless of manufacturer.

» Enhanced support for Cypress, Microchip, Philips, Texas Instruments, Agere and Silicon
L aboratories chipsets frees the developer from the need to study the hardware's specification.

* Applications are binary compatible across Windows 7 / Vista/ Server 2008 / Server 2003 /
XP/2000.

» Applications are source code compatible across all supported operating systems — Windows 7/
Vista/Server 2008/Server 2003/XP/2000, Windows CE.NET, Windows Embedded CE v6.00,
Windows Mobile 5.0/6.0, and Linux.

» Can be used with common devel opment environments, including MSDEV /Visual C/C++,
MSDEV .NET, Borland C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual
C++, MS Platform Builder C++, GCC, or any other appropriate compiler.

* NoWDK, ETK, DDI or any system-level programming knowledge required.

» Supports multiple CPUs.

© Jungo Ltd. 2005-2010 3

WinDriver Overview

* Includes dynamic driver |oader.

» Comprehensive documentation and help files.

* Detailed examplesin C, C#, Visual Basic .NET, Delphi and Visual Basic 6.0.
* WHQL certifiable driver (Windows).

» Two months of free technical support.

* No run-time fees or royalties.

1.5 WinDriver Architecture

Your Application / DIl / Shared Object

Your Driver Code

A

Y

WinDriver .NET Wrapper API
(wdapi_dotnet DLL)

A

Y Y

High-level WinDriver API
(wdapi DLL / shared object)

A

Kernel Mode

Low-Level WinDriver API
(WinDriver Kernel Module -
windrvr6.sys/.dll/.o/ ko)

A

A
Your Hardware

D Components You Write
D WinDriver Components

ﬂ]] 0S Components

Figure 1.1 WinDriver Architecture

© Jungo Ltd. 2005-2010 4

WinDriver Overview

For hardware access, your application calls one of the WinDriver user-mode functions. The user-
mode function calls the WinDriver kernel, which accesses the hardware for you through the
native calls of the operating system.

1.6 What Platforms Does WinDriver Support?

WinDriver supports the following operating systems:
» Windows 7/Vista/Server 2008/Server 2003/X P/2000 — henceforth collectively: Windows

» Windows CE 4.x —5.x (Windows CE.NET), Windows Embedded CE v6.00, Windows Mobile
5.0/6.0 — henceforth collectively: Windows CE

e Linux

The same source code will run on all supported platforms — simply re-compile it for the target
platform. The source code is binary compatible across Windows 7/VistalServer 2008/Server
2003/XP/2000; WinDriver executables can be ported among the binary-compatible platforms
without re-compilation.

Even if your code is meant only for one of the supported operating systems, using WinDriver

will give you the flexibility to move your driver to another operating system in the future without
needing to change your code.

1.7 Limitations of the Different Evaluation
Versions

All the evaluation versions of the WinDriver USB Host toolkit are full featured. No functions
are limited or crippled in any way. The evaluation version of WinDriver varies from the registered
version in the following ways:

» Each time WinDriver is activated, an Unr egi st er ed message appears.

» When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

* IntheLinux and Windows CE versions, the driver will remain operational for 60 minutes, after
which time it must be restarted.

» The Windows evaluation version expires 30 days from the date of installation.

For more details please refer to appendix D.

© Jungo Ltd. 2005-2010 5

WinDriver Overview

1.8 How Do | Develop My Driver with
WinDriver?

1.8.1 On Windows and Linux

1. Start DriverWizard and use it to diagnose your hardware — see details in Chapter 5.

2. Let DriverWizard generate skeletal code for your driver, or use one of the WinDriver samples
asthe basis for your driver application (see Chapter [8] for details regarding WinDriver's
enhanced support for specific chipsets).

3. Modify the generated/sample code to suit your application's needs.

4. Run and debug your driver.

The code generated by DriverWizard is a diagnostics program that contains functions that
perform data transfers on the device's pipes, send requests to the control pipe, change the
active alternate setting, reset pipes, and more.

1.8.2 On Windows CE

1. Plug your hardware into a Windows host machine.
2. Diagnose your hardware using DriverWizard.
3. Let DriverWizard generate your driver's skeletal code.

4. Modify this code using eMbedded Visual C++ to meet your specific needs. If you are using
Platform Builder, activate it and insert the generated *.pbp into your workspace.

5. Test your driver on the target embedded Windows CE platorm.

1.9 What Does the WinDriver Toolkit Include?

A printed version of this manual

Two months of free technical support (Phone/Fax/Email)

WinDriver modules

The WinDriver CD
» Utilities

 Chipset support APIs

© Jungo Ltd. 2005-2010 6

WinDriver Overview

» Samplefiles

1.9.1 WinDriver Modules

* WinDriver (WinDriver/include) —the general purpose hardware access toolkit. The main files
here are:

» windrvr.h: Declarations and definitions of WinDriver's basic API.

» wdu_lib.h: Declarations and definitions of the WinDriver USB (WDU) library, which
provides convenient wrapper USB APIs.

» windrvr_int_thread.h: Declarations of convenient wrapper functions to simplify interrupt
handling.

» windrvr_events.h: Declarations of APIsfor handling and Plug-and-Play and power
management events.

* utils.h: Declarations of general utility functions.

» status strings.h: Declarations of API for converting WinDriver status codes to descriptive
error strings.

» DriverWizard (WinDriver/wizard/wdwizard) — a graphical application that diagnoses your
hardware and enables you to easily generate code for your driver (refer to Chapter 5 for
details).

» Debug Monitor — a debugging tool that collects information about your driver asit runs. This
tool is available both as afully graphical application —WinDriver/util/wddebug_gui —and
as a console-mode application — WinDriver /util/wddebug. The console-mode version also
supports GUI execution on Windows CE platforms that don't have a command-line prompt.
For details regarding the Debug Monitor, refer to section 7.2.

» WinDriver distribution package (WinDriver/redist) —the files you include in the driver
distribution to customers.

» This manual —the full WinDriver manual (this document), in different formats, can be found
under the WinDriver/docs directory.

1.9.2 Utilities

» usb_diag.exe (WinDriver/util/usb_diag.exe) — enables the user to view the resources of
connected USB devices and communicate with the devices — transfer data to/from the device,
set the active aternate setting, reset pipes, etc.

On Windows the program identifies all devices that have been registered to work with
WinDriver using an INF file. On the other supported operating systems the program identifies
all USB devices connected to the target platform.

© Jungo Ltd. 2005-2010 7

WinDriver Overview

pci_dump.exe (WinDriver/util/pci_dump.exe) — used to obtain a dump of the PCI
configuration registers of the installed PCI cards.

pci_scan.exe (WinDriver/util/pci_scan.exe) — used to obtain alist of the PCI cards installed
and the resources allocated for each card.

pcmcia_diag.exe (WinDriver/util/pcmcia_diag.exe) — used for reading/writing PCMCIA
attribute space, accessing PCMCIA 1/0 and memory ranges and handling PCM CIA interrupts.

pcmcia_scan.exe (WinDriver/util/pcmcia_scan.exe) — used to obtain alist of the PCMCIA
cards installed and the resources allocated for each card.

1.9.3 WinDriver's Specific Chipset Support

WinDriver provides custom wrapper APIs and sample code for major USB chipsets (see
Chapter 8), including for the following chipsets:

Cypress EZ-USB —WinDriver/cypress

Microchip PIC18F4550 — WinDriver/microchip/picl8f4550

Philips PDIUSBD12 — WinDriver/pdiusbd12

Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052 — WinDriver /ti
Agere USS2828 — WinDriver/agere.

Silicon Laboratories C8051F320 USB — WinDriver/silabs

1.9.4 Samples

In addition to the samples provided for specific chipsets [1.9.3], WinDriver includes a variety
of samples that demonstrate how to use WinDriver's APl to communicate with your device and
perform various driver tasks.

C samples: found under the WinDriver/samples directory.
These samples a so include the source code for the utilities listed above [1.9.2].

NET C# and Visua Basic .NET samples (Windows): found under the WinDriver\csharp.net
and WinDriver\vb.net directories (respectively).

Delphi (Pascal) samples (Windows) WinDriver\delphi\samples directory.

Visual Basic samples (Windows): found under the WinDriver\vb\samples directory.

© Jungo Ltd. 2005-2010 8

WinDriver Overview

1.10 Can | Distribute the Driver Created with
WinDriver?

Y es. WinDriver is purchased as a development toolkit, and any device driver created using
WinDriver may be distributed, royalties free, in as many copies as you wish. See the license
agreement at (WinDriver/docdlicense.pdf) for more details.

© Jungo Ltd. 2005-2010 9

Chapter 2
Understanding Device Drivers

This chapter provides you with ageneral introduction to device drivers and takes you through the
structural elements of adevice driver.

Using WinDriver, you do not need to familiarize yourself with the internal workings of
driver development. As explained in Chapter 1 of the manual, WinDriver enables you to
communicate with your hardware and develop adriver for your device from the user mode,
using only WinDriver's simple APIs, without any need for driver or kernel development
knowledge.

2.1 Device Driver Overview

Device drivers are the software segments that provides an interface between the operating system
and the specific hardware devices such as terminals, disks, tape drives, video cards and network
media. The device driver brings the device into and out of service, sets hardware parametersin the
device, transmits data from the kernel to the device, receives data from the device and passes it
back to the kernel, and handles device errors.

A driver actslike atranglator between the device and programs that use the device. Each device
has its own set of specialized commands that only its driver knows. In contrast, most programs
access devices by using generic commands. The driver, therefore, accepts generic commands
from a program and then translates them into specialized commands for the device.

2.2 Classification of Drivers According to
Functionality

There are numerous driver types, differing in their functionality. This subsection briefly describes
three of the most common driver types.

2.2.1 Monolithic Drivers

Monolithic drivers are device drivers that embody all the functionality needed to support a
hardware device. A monolithic driver is accessed by one or more user applications, and directly
drives a hardware device. The driver communicates with the application through I/O control
commands (IOCTLs) and drives the hardware using calls to the different WDK, ETK, DDI/DKI
functions,

© Jungo Ltd. 2005-2010 10

Understanding Device Drivers

Application
i User Mode
Kernel Maode
Diriver
HW

o

Figure2.1 Monolithic Drivers

Monolithic drivers are supported in all operating systems including all Windows platforms and all
Unix platforms.

2.2.2 Layered Drivers

Layered drivers are device drivers that are part of a stack of device drivers that together process
an 1/0 request. An example of alayered driver isadriver that intercepts cals to the disk and
encrypts/decrypts al data being transferred to/from the disk. In this example, a driver would be
hooked on to the top of the existing driver and would only do the encryption/decryption.

Layered drivers are sometimes also known asfilter drivers, and are supported in all operating
systems including all Windows platforms and all Unix platforms.

© Jungo Ltd. 2005-2010 11

Understanding Device Drivers

Application

Triver

'

HW

ol

Figure2.2 Layered Drivers

2.2.3 Miniport Drivers

A Miniport driver is an add-on to aclass driver that supports miniport drivers. It is used so the
miniport driver does not have to implement all of the functions required of a driver for that class.
The class driver provides the basic class functionality for the miniport driver.

A classdriver isadriver that supports a group of devices of common functionality, such as all
HID devices or al network devices.

Miniport drivers are also called miniclass drivers or minidrivers, and are supported in the
Windows NT (2000) family, namely Windows 7 / Vista/ Server 2008 / Server 2003/ XP /2000 /
NT 4.0.

© Jungo Ltd. 2005-2010 12

Understanding Device Drivers

Application

o N N

\ Miniport

Py
S MDIS Framework S
W‘Qﬁl’i@x}‘h}‘ﬂi’\‘\‘ﬁ?@

HW

ol

Figure2.3 Miniport Drivers

Windows 7/Vista/Server 2008/Server 2003/XP/2000/NT 4.0 provide several driver classes (called
ports) that handle the common functionality of their class. It isthen up to the user to add only the
functionality that has to do with the inner workings of the specific hardware. The NDIS miniport
driver is one example of such adriver. The NDIS miniport framework is used to create network
driversthat hook up to NT's communication stacks, and are therefore accessible to common
communication calls used by applications. The Windows NT kernel provides drivers for the
various communication stacks and other code that is common to communication cards. Due to
the NDIS framework, the network card devel oper does not have to write al of this code, only the

Uszer Mode

Kerel Mode

code that is specific to the network card he is developing.

© Jungo Ltd. 2005-2010

13

Understanding Device Drivers

2.3 Classification of Drivers According to
Operating Systems

2.3.1 WDM Drivers

WDM (Windows Driver Model) drivers are kernel-mode drivers within the Windows NT and
Windows 98 operating system families. The Windows NT family includes Windows 7/Vista/
Server 2008/Server 2003/XP/2000/NT 4.0, and the Windows 98 family includes Windows 98 and
Windows Me.

WDM works by channeling some of the work of the device driver into portions of the code that
are integrated into the operating system. These portions of code handle all of the low-level buffer
management, including DMA and Plug-and-Play (Pnp) device enumeration.

WDM drivers are PnP drivers that support power management protocols, and include monolithic
drivers, layered drivers and miniport drivers.

2.3.2 VxD Drivers

VXD drivers are Windows 95/98/Me Virtual Device Drivers, often called VxDs because the file
names end with the .vxd extension. VXD drivers are typically monolithic in nature. They provide
direct access to hardware and privileged operating system functions. VXD drivers can be stacked
or layered in any fashion, but the driver structure itself does not impose any layering.

2.3.3 Unix Device Drivers

In the classic Unix driver model, devices belong to one of three categories: character (char)
devices, block devices and network devices. Drivers that implement these devices are
correspondingly known as char drivers, block drivers or network drivers. Under Unix, drivers
are code units linked into the kernel that run in privileged kernel mode. Generally, driver code
runs on behalf of a user-mode application. Access to Unix drivers from user-mode applicationsis
provided viathe file system. In other words, devices appear to the applications as special device
filesthat can be opened.

Unix device drivers are either layered or monolithic drivers. A monolithic driver can be perceived
as aone-layer layered driver.

2.3.4 Linux Device Drivers

Linux device drivers are based on the classic Unix device driver model [2.3.3]. In addition, Linux
introduces some new characteristics.

Under Linux, a block device can be accessed like a character device, asin Unix, but also has a
block-oriented interface that isinvisible to the user or application.

© Jungo Ltd. 2005-2010 14

Understanding Device Drivers

Traditionally, under Unix, device drivers are linked with the kernel, and the system is brought
down and restarted after installing a new driver. Linux introduces the concept of a dynamically
loadable driver called amodule. Linux modules can be loaded or removed dynamically without
requiring the system to be shut down. A Linux driver can be written so that it is statically linked
or written in amodular form that alows it to be dynamically loaded. This makes Linux memory
usage very efficient because modules can be written to probe for their own hardware and unload
themselvesif they cannot find the hardware they are looking for.

Like Unix device drivers, Linux device drivers are either layered or monolithic drivers.

2.4 The Entry Point of the Driver

Every device driver must have one main entry point, like the mai n() function in a C console
application. Thisentry pointiscaled Dri ver Ent ry() in Windowsandi ni t _nodul e() in
Linux. When the operating system loads the device driver, this driver entry procedure is called.

There is some global initiaization that every driver needs to perform only once when

it isloaded for thefirst time. This global initialization is the responsibility of the

Driver Entry()/i ni t _nodul e() routine. The entry function also registers which driver
callbacks will be called by the operating system. These driver callbacks are operating system
reguests for services from the driver. In Windows, these callbacks are called dispatch routines,
and in Linux they are called file operations. Each registered callback is called by the operating
system as aresult of some criteria, such as disconnection of hardware, for example.

2.5 Associating the Hardware with the Driver

Operating systems differ in the ways they associate a device with a specific driver.

In Windows, the hardware—driver association is performed viaan INF file, which registers the
device to work with the driver. This association is performed before the Dr i ver Ent r y() routine
iscaled. The operating system recognizes the device, checks its database to identify which INF
fileis associated with the device, and according to the INF file, calls the driver's entry point.

In Linux, the hardware—driver association is defined in the driver'si ni t _nodul e() routine.
This routine includes a callback that indicates which hardware the driver is designated to handle.
The operating system calls the driver's entry point, based on the definition in the code.

2.6 Communicating with Drivers

Communication between a user-mode application and the driver that drives the hardware,
isimplemented differently for each operating system, using the the custom OS Application
Programming Interfaces (APIs).

On Windows, Windows CE, and Linux, the application can use the OS file-access APl to open
ahandle to the driver (e.g., using the Windows Cr eat eFi | e() function or using the Linux
open() function), and then read and write from/to the device by passing the handle to the relevant

© Jungo Ltd. 2005-2010 15

Understanding Device Drivers

OS file-access functions (e.g., the Windows ReadFi | e() and Wi t eFi | e() functions, or the
Linux read() and w i t e() functions).

The application sends requests to the driver vial/O control (IOCTL) calls, using the custom OS
APIs provided for this purpose (e.g., the Windows Devi cel oCont r ol () function, or the Linux
i oct | () function).

The data passed between the driver and the application viathe IOCTL callsis encapsulated using
custom OS mechanisms. For example, on Windows the data is passed via an 1/0 Request Packet
(IRP) structure, and is encapsulated by the I/O Manager.

© Jungo Ltd. 2005-2010 16

Chapter 3
WinDriver USB Overview

This chapter explores the basic characteristics of the Universal Serial Bus (USB) and introduces
WinDriver USB's features and architecture.

The references to the WinDriver USB toolkit in this chapter relate to the standard
WinDriver USB toolkit for development of USB host drivers.

3.1 Introduction to USB

USB (Universal Serial Bus) isan industry standard extension to the PC architecture for

attaching peripherals to the computer. It was originally developed in 1995 by leading PC and
telecommunication industry companies, such as Intel, Compag, Microsoft and NEC. USB was
developed to meet several needs, among them the needs for an inexpensive and widespread
connectivity solution for peripheralsin general and for computer telephony integration in
particular, an easy-to-use and flexible method of reconfiguring the PC, and a solution for adding a
large number of external peripherals. The USB standard meets these needs.

The USB specification allows for the connection of a maximum of 127 peripheral devices
(including hubs) to the system, either on the same port or on different ports.

USB also supports Plug-and-Play installation and hot swapping. The USB 1.1 standard supports
both isochronous and asynchronous data transfers and has dual speed data transfer: 1.5 Mb/s
(megabits per second) for low-speed USB devices and 12 Mb/sfor high-speed USB devices
(much faster than the original serial port). Cables connecting the device to the PC can be up to
five meters (16.4 feet) long. USB includes built-in power distribution for low power devices and
can provide limited power (up to 500 mA of current) to devices attached on the bus.

The USB 2.0 standard supports a signalling rate of 480 Mb/s, known as 'high-speed’, which is 40
times faster than the USB 1.1 full-speed transfer rate.

USB 2.0 isfully forward- and backward-compatible with USB 1.1 and uses existing cables and
connectors.

USB 2.0 supports connections with PC peripherals that provide expanded functionality and
require wider bandwidth. In addition, it can handle alarger number of peripherals simultaneously.
USB 2.0 enhances the user's experience of many applications, including interactive gaming,
broadband Internet access, desktop and Web publishing, Internet services and conferencing.

Because of its benefits (described also in section 3.2 below), USB is currently enjoying broad
market acceptance.

© Jungo Ltd. 2005-2010 17

WinDriver USB Overview

3.2 WinDriver USB Benefits

This section describes the main benefits of the USB standard and the WinDriver USB toolkit,
which supports this standard:

External connection, maximizing ease of use

Self identifying peripheral s supporting automatic mapping of function to driver and
configuration

Dynamically attachable and re-configurable peripherals

Suitable for device bandwidths ranging from a few Kb/s to hundreds of Mb/s

Supports isochronous as well as asynchronous transfer types over the same set of wires
Supports simultaneous operation of many devices (multiple connections)

Supports a data transfer rate of up to 480 Mb/s (high-speed) for USB 2.0 (for the operating
systems that officialy support this standard) and up to 12 Mb/s (full-speed) for USB 1.1

Guaranteed bandwidth and low latencies; appropriate for telephony, audio, etc. (isochronous
transfer may use amost the entire bus bandwidth)

Flexibility: supports a wide range of packet sizes and awide range of data transfer rates

Robustness: built-in error handling mechanism and dynamic insertion and removal of devices
with no delay observed by the user

Synergy with PC industry; Uses commodity technologies

Optimized for integration in peripheral and host hardware

L ow-cost implementation, therefore suitable for development of low-cost peripherals
Low-cost cables and connectors

Built-in power management and distribution

Specific library support for custom USB HID devices

3.3 USB Components

The Universal Serial Bus (USB) consists of the following primary components:

USB Host: The USB host platform is where the USB host controller isinstalled and where the
client software/device driver runs. The USB Host Controller is the interface between the host
and the USB peripherals. The host is responsible for detecting the insertion and removal of

© Jungo Ltd. 2005-2010 18

WinDriver USB Overview

USB devices, managing the control and data flow between the host and the devices, providing
power to attached devices and more.

* USB Hub: A USB device that allows multiple USB devicesto attach to asingle USB port on
aUSB host. Hubs on the back plane of the hosts are called root hubs. Other hubs are called
external hubs.

* USB Function: A USB device that can transmit or receive data or control information over the
bus and that provides afunction. A function istypically implemented as a separate peripheral
device that plugsinto aport on ahub using a cable. However, it is also possible to create a
compound device, which is a physical package that implements multiple functions and an
embedded hub with asingle USB cable. A compound device appears to the host as a hub with
one or more non-removable USB devices, which may have ports to support the connection of
external devices.

3.4 Data Flow in USB Devices

During the operation of a USB device, the host can initiate aflow of data between the client
software and the device.

Data can be transferred between the host and only one device at atime (peer to peer
communication). However, two hosts cannot communicate directly, nor can two USB devices
(with the exception of On-The-Go (OTG) devices, where one device acts as the master (host) and
the other asthe slave.)

The data on the USB bus is transferred via pipes that run between software memory buffers on the
host and endpoints on the device.

Data flow on the USB busis half-duplex, i.e., data can be transmitted only in one direction at a
given time.

An endpoint isauniquely identifiable entity on a USB device, which is the source or terminus of
the data that flows from or to the device. Each USB device, logical or physical, has a collection of
independent endpoints. The three USB speeds (low, full and high) all support one bi-directional
control endpoint (endpoint zero) and 15 unidirectional endpoints. Each unidirectional endpoint
can be used for either inbound or outbound transfers, so theoretically there are 30 supported
endpoints.

Each endpoint has the following attributes: bus access frequency, bandwidth requirement,
endpoint number, error handling mechanism, maximum packet size that can be transmitted or
received, transfer type and direction (into or out of the device).

© Jungo Ltd. 2005-2010 19

WinDriver USB Overview

Endpoints
e e ——————
e —————
________________ Memory Hosts
USB - ¥ Buffers

Device v
o S ————— >

N

h

b
Y
A
kY
A
Y .
v Data Pipes/
— 7 Data Transfer

Figure3.1 USB Endpoints

A pipeisalogical component that represents an association between an endpoint on the USB
device and software on the host. Datais moved to and from a device through a pipe. A pipe can
be either a stream pipe or a message pipe, depending on the type of data transfer used in the pipe.
Stream pipes handle interrupt, bulk and isochronous transfers, while message pipes support the
control transfer type. The different USB transfer types are discussed below [3.6].

3.5 USB Data Exchange

The USB standard supports two kinds of data exchange between a host and a device: functional
data exchange and control exchange.

» Functional Data Exchangeis used to move data to and from the device. There are three types
of USB data transfers: Bulk, Interrupt and I sochronous .

» Control Exchangeis used to determine device identification and configuration requirements
and to configure a device, and can also be used for other device-specific purposes, including
control of other pipes on the device.

Control exchange takes place via a control pipe, mainly the default Pipe O, which always
exists. The control transfer consists of a setup stage (in which a setup packet is sent from the
host to the device), an optional data stage and a status stage.

© Jungo Ltd. 2005-2010 20

WinDriver USB Overview

Figure 3.2 below depicts a USB device with one bi-directional control pipe (endpoint) and two
functional datatransfer pipes (endpoints), as identified by WinDriver's DriverWizard utility
(discussed in Chapter 5).

Fle Iooks ‘View Project Help

@EQE-J -'19/%1

Active Projects & x|

J Cypress Semiconductar Corp, - Product I0: 1003 ‘ 4

[Cypress Semiconductor Carp, - Product 1D: 1003

(= Interface 0
Alternate Setting 0
a1

2 pips 582 Buk

3 pips 06 Buk

Information Panel 8 X

Log | Output || Description

Figure3.2 USB Pipes

More information on how to implement the control transfer by sending setup packets can be
found in section 9.2.

3.6 USB Data Transfer Types

The USB device (function) communicates with the host by transferring data through a pipe
between a memory buffer on the host and an endpoint on the device. USB supports four different
transfer types. A typeis selected for a specific endpoint according to the requirements of the
device and the software. The transfer type of a specific endpoint is determined in the endpoint
descriptor.

The USB specification provides for the following data transfer types.

3.6.1 Control Transfer

Control Transfer is mainly intended to support configuration, command and status operations
between the software on the host and the device.

Thistransfer type is used for low-, full- and high-speed devices.

Each USB device has at least one control pipe (default pipe), which provides access to the
configuration, status and control information.

© Jungo Ltd. 2005-2010 21

WinDriver USB Overview

Control transfer is bursty, non-periodic communication.
The control pipeis bi-directiona —i.e., data can flow in both directions.

Control transfer has arobust error detection, recovery and retransmission mechanism and retries
are made without the involvement of the driver.

The maximum packet size for control endpoints can be only 8 bytes for low-speed devices; 8, 16,
32, or 64 bytes for full-speed devices; and only 64 bytes for high-speed devices.

For more in-depth information regarding USB control transfers and their implementation, refer to
section 9.2 of the manual.

3.6.2 Isochronous Transfer

Isochronous Transfer is most commonly used for time-dependent information, such as multimedia
streams and telephony.

This transfer type can be used by full-speed and high-speed devices, but not by low-speed
devices.

Isochronous transfer is periodic and continuous.

The isochronous pipeis unidirectiona, i.e., acertain endpoint can either transmit or receive
information. Bi-directional isochronous communication requires two isochronous pipes, onein
each direction.

USB guarantees the isochronous transfer access to the USB bandwidth (i.e., it reserves the
required amount of bytes of the USB frame) with bounded latency, and guarantees the data
transfer rate through the pipe, unless there is less data transmitted.

Since timeliness is more important than correctnessin this type of transfer, no retries are made in
case of error in the data transfer. However, the data receiver can determine that an error occurred
on the bus.

3.6.3 Interrupt Transfer

Interrupt Transfer isintended for devices that send and receive small amounts of data infrequently
or in an asynchronous time frame.

This transfer type can be used for low-, full- and high-speed devices.

Interrupt transfer type guarantees a maximum service period and that delivery will be re-
attempted in the next period if there is an error on the bus.

Theinterrupt pipe, like the isochronous pipe, is unidirectional and periodical.

The maximum packet size for interrupt endpoints can be 8 bytes or less for low-speed devices; 64
bytes or less for full-speed devices, and 1,024 bytes or less for high-speed devices.

© Jungo Ltd. 2005-2010 22

WinDriver USB Overview

3.6.4 Bulk Transfer

Bulk Transfer istypically used for devices that transfer large amounts of non-time sensitive data,
and that can use any available bandwidth, such as printers and scanners.

This transfer type can be used by full-speed and high-speed devices, but not by |ow-speed
devices.

Bulk transfer is non-periodic, large packet, bursty communication.

Bulk transfer allows access to the bus on an "as-available" basis, guarantees the data transfer but
not the latency, and provides an error check mechanism with retries attempts. If part of the USB
bandwidth is not being used for other transfers, the system will useit for bulk transfer.

Like the other stream pipes (isochronous and interrupt), the bulk pipe is also unidirectional, so bi-
directional transfers require two endpoints.

The maximum packet size for bulk endpoints can be 8, 16, 32, or 64 bytes for full-speed devices,
and 512 bytes for high-speed devices.

3.7 USB Configuration

Before the USB function (or functions, in a compound device) can be operated, the device

must be configured. The host does the configuring by acquiring the configuration information
from the USB device. USB devices report their attributes by descriptors. A descriptor isthe
defined structure and format in which the datais transferred. A complete description of the USB
descriptors can be found in Chapter 9 of the USB Specification (see http://www.usb.org for the
full specification).

It is best to view the USB descriptors as a hierarchical structure with four levels:

The Device level

The Configuration level

The Interface level (thislevel may include an optional
sub-level called Alternate Setting)

The Endpoint level

There is only one device descriptor for each USB device. Each device has one or more
configurations, each configuration has one or more interfaces, and each interface has zero or more
endpoints, as demonstrated in Figure 3.3 below.

© Jungo Ltd. 2005-2010 23

http://www.usb.org

WinDriver USB Overview

Device Descriptor

Configuration Descriptor Configuration Descriptor |
Interface Descriptor Interface Descriptor
Endpoint Endpoint
Descriptor Descriptor |,

Figure 3.3 Device Descriptors

Device Level: The device descriptor includes general information about the USB device, i.e.,
global information for all of the device configurations. The device descriptor identifies, among
other things, the device class (HID device, hub, locator device, etc.), subclass, protocol code,
vendor ID, device ID and more. Each USB device has one device descriptor.

Configuration Level: A USB device has one or more configuration descriptors. Each
descriptor identifies the number of interfaces grouped in the configuration and the power
attributes of the configuration (such as self-powered, remote wakeup, maximum power
consumption and more). Only one configuration can be loaded at a given time. For example,
an ISDN adapter might have two different configurations, one that presentsit with asingle
interface of 128 Kb/s and a second that presents it with two interfaces of 64 Kb/s each.

Interface Level: Theinterface isarelated set of endpoints that present a specific functionality
or feature of the device. Each interface may operate independently. The interface descriptor
describes the number of the interface, the number of endpoints used by this interface

and the interface-specific class, subclass and protocol values when the interface operates
independently.

In addition, an interface may have alter nate settings. The alternate settings allow the endpoints
or their characteristics to be varied after the deviceis configured.

Endpoint Level: The lowest level isthe endpoint descriptor, which provides the host with
information regarding the endpoint's data transfer type and maximum packet size. For
isochronous endpoints, the maximum packet size is used to reserve the required bus time for
the datatransfer —i.e., the bandwidth. Other endpoint attributes are its bus access frequency,
endpoint number, error handling mechanism and direction. The same endpoint can have
different properties (and consequently different uses) in different alternate settings.

Seems complicated? Not at al! WinDriver automates the USB configuration process. The
included DriverWizard utility [5] and USB diagnostics application scan the USB bus, detect all
USB devices and their configurations, interfaces, aternate settings and endpoints, and enable you
to pick the desired configuration before starting driver development.

© Jungo Ltd. 2005-2010 24

WinDriver USB Overview

WinDriver identifies the endpoint transfer type as determined in the endpoint descriptor. The
driver created with WinDriver contains all configuration information acquired at this early stage.

3.8 WinDriver USB

WinDriver USB enables devel opers to quickly develop high-performance drivers for USB-based
devices without having to learn the USB specifications and operating system internals, or use
the operating system development kits. For example, Windows drivers can be devel oped without
using the Windows Driver Kit (WDK) or learning the Windows Driver Model (WDM).

The driver code devel oped with WinDriver USB is binary compatible across the supported
Windows platforms — Windows 7/VistalServer 2008/Server 2003/X P/2000 — and source code
compatible across all supported operating systems —Windows 7/Vista/Server 2008/Server 2003/
XP/2000, Windows CE.NET, Windows Embedded CE v6.00, Windows Mobile 5.0/6.0, and
Linux. For an up-to-date list of supported operating systems, visit Jungo's web site at: http://
WWW.jungo.com.

WinDriver USB is ageneric tool kit that supports al USB devices from al vendors and with all
types of configurations.

WinDriver USB encapsulates the USB specification and architecture, letting you focus on your
application logic. WinDriver USB features the graphical DriverWizard utility [5], which enables
you to easily detect your hardware, view its configuration information, and test it, before writing
asingle line of code: DriverWizard first lets you choose the desired configuration, interface

and alternate setting combination, using a friendly graphical user interface. After detecting and
configuring your USB device, you can proceed to test the communication with the device —
perform data transfers on the pipes, send control requests, reset the pipes, etc. —in order to ensure
that all your hardware resources function as expected.

After your hardware is diagnosed, you can use DriverWizard to automatically generate your
device driver source codein C, C#, Visua Basic .NET, Delphi or Visual Basic. WinDriver USB
provides user-mode APIs, which you can call from within your application in order to implement
the communication with your device. The WinDriver USB API includes USB-unique operations
such asreset of a pipe or adevice. The generated DriverWizard code implements a diagnostics
application, which demonstrates how to use WinDriver's USB API to drive your specific device.
In order to use the application you just need to compile and run it. Y ou can jump-start your
development cycle by using this application as your skeletal driver and then modifying the code,
as needed, to implement the desired driver functionality for your specific device.

DriverWizard also automates the creation of an INF file that registers your device to work with
WinDriver, which is an essential step in order to correctly identify and handle USB devices
using WinDriver. For an explanation on why you need to create an INF file for your USB device,
refer to section 12.1.1 of the manual. For detailed information on creation of INF fileswith
DriverWizard, refer to section 5.2 (see specifically step 3).

With WinDriver USB, al development is done in the user mode, using familiar devel opment

and debugging tools and your favorite compiler (such as MSDEV/Visua C/C++, MSDEV .NET,
Borland C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visua C++, MS Platform
Builder C++, or GCC).

© Jungo Ltd. 2005-2010 25

http://www.jungo.com
http://www.jungo.com

WinDriver USB Overview

For more information regarding implementation of USB transfers with WinDriver, refer to
Chapter 9 of the manual.

3.9 WinDriver USB Architecture

To access your hardware, your application calls the WinDriver kernel module using functions
from the WinDriver USB API. The high-level functions utilize the low-level functions, which

use |OCTLs to enable communication between the WinDriver kernel module and your user-
mode application. The WinDriver kernel module accesses your USB device resources through the
native operating system calls.

There are two layers responsible for abstracting the USB device to the USB device driver. The
upper layer isthe USB Driver (USBD) layer, which includes the USB Hub Driver and the USB
Core Driver. The lower level isthe Host Controller Driver (HCD) layer. The division of duties
between the HCD and USBD layersis not defined and is operating system dependent. Both the
HCD and USBD are software interfaces and components of the operating system, where the HCD
layer represents alower level of abstraction.

The HCD isthe software layer that provides an abstraction of the host controller hardware, while
the USBD provides an abstraction of the USB device and the data transfer between the host
software and the function of the USB device.

The USBD communicates with its clients (the specific device driver, for example) through

the USB Driver Interface (USBDI). At the lower level, the Core Driver and USB Hub Driver
implement the hardware access and data transfer by communicating with the HCD using the Host
Controller Driver Interface (HCDI).

The USB Hub Driver isresponsible for identifying the addition and removal of devicesfrom a
particular hub. When the Hub Driver receives asignal that a device was attached or detached, it
uses additional host software and the USB Core Driver to recognize and configure the device. The
software implementing the configuration can include the hub driver, the device driver, and other
software.

WinDriver USB abstracts the configuration procedure and hardware access described above

for the developer. With WinDriver's USB API, developers can perform al the hardware-

related operations without having to master the lower-level implementation for supporting these
operations.

© Jungo Ltd. 2005-2010 26

WinDriver USB Overview

D Components You Write -
Your Application/DIlfShared Object

D WinDriver Components *
|I| 0OS Components

Your Driver Code

[.

WinDriver .NET wrapper API
(wdapi_dotnet)

A

4 Y

High-level WinDriver API
(wdapi DLL / shared object)

Kernel Mode

Low-Level WinDriver API
(WinDriver Kernel Module -
windrvré.sys/.dll/.o/.ko)

U
[=3]
L

Host Controller Driver (HCD)

EHOI Briver M—Ic DfiMer q:‘- o

DR
_______________________7/"¥ _______ Hardware
DERER)

Figure 3.4 WinDriver USB Architecture

3.10 Which Drivers Can | Write with
WinDriver USB?

Almost all monolithic drivers (drivers that need to access specific USB devices) can be written
with WinDriver USB. In cases where a standard driver isrequired, e.g., NDIS driver, SCSI driver,
Display driver, USB to Serial port drivers, USB layered drivers, etc., use KernelDriver USB (also
from Jungo).

For quicker development time, select WinDriver USB over Kernel Driver USB whenever possible.

© Jungo Ltd. 2005-2010 27

Chapter 4
Installing WinDriver

This chapter takes you through the process of installing WinDriver on your development
platform, and shows you how to verify that your WinDriver is properly installed. The last section
discusses the uninstall procedure. To find out how to install the driver you create on target
platforms, refer to Chapter 11.

4.1 System Requirements

4.1.1 Windows System Requirements

* Any x86 32-bit or 64-bit (x64: AMD64 or Intel EM64T) processor
* Any development environment supporting C, .NET, VB or Delphi
* Windows 2000 requires SP4

* Windows XP requires SP2

4.1.2 Windows CE System Requirements

* Anx86/MIPS/ARM Windows CE 4.x — 5.x (Windows CE.NET) or Windows Embedded CE
v6.00 target platform
or:
an ARMV 4l Windows Mobile 5.0/6.0 target platform

» Windows 7/VistalServer 2008/Server 2003/X P/2000 host devel opment platform

» For Windows CE 4.x —5.0: Microsoft eMbedded Visual C++ with a corresponding target SDK
OR Microsoft Platform Builder with a corresponding BSP (Board Support Package) for the
target platform

For Windows Embedded CE 6.0: Microsoft Visual Studio (MSDEV) .NET with the Windows
CE 6.0 plugin

For Windows M obile: Microsoft Visual Studio (MSDEV) .NET 2005/2008

© Jungo Ltd. 2005-2010 28

Installing WinDriver

4.1.3 Linux System Requirements

» Any 32-bit x86 processor with aLinux 2.4.x or 2.6.x kernel
or:
Any 64-bit x86 AMDG64 or Intel EM64T (x86_64) processor with aLinux 2.4.x or 2.6.x kernel

Jungo strives to support new Linux kernel versions as close as possible to their release.
To find out the latest supported kernel version, refer to the WinDriver release notes
(found online at http://www.jungo.com/st/wdver.html).

* A GCC compiler

The version of the GCC compiler should match the compiler version used for building
the running Linux kernel.

* Any 32-bit or 64-bit devel opment environment (depending on your target configuration)
supporting C for user mode

» On your development PC: glibc2.3.x

* libstdc++.s0.5 —required for running GUI WinDriver applications (e.g., DriverWizard [5];
Debug Monitor [7.2])

4.2 WinDriver Installation Process

The WinDriver CD contains all versions of WinDriver for the supported operating systems.

The CD'sroot directory contains the Windows 7 / Vista/ Server 2008 / Server 2003 / XP / 2000
version. Theinstallation of this version will begin automatically when you insert the CD into the
CD drive on your Windows development machine. The other versions of WinDriver are located
in <OS> sub-directories (for example: Linux; Wince).

4.2.1 Windows WinDriver Installation Instructions

; Driver installation on Windows requires administrator privileges.

1. Insert the WinDriver CD into your CD-ROM drive, or double-click the downloaded
installation file— WD1020.EXE — and follow the install ation instructions.

When using the installation CD, wait a few seconds for the installation to begin
automatically. If this does not happen, double-click the file WD1020.EXE in the CD,
and click the Install WinDriver button.

2. At the end of the installation, you may be prompted to reboot your computer.

© Jungo Ltd. 2005-2010 29

http://www.jungo.com/st/wdver.html

Installing WinDriver

« The WinDriver installation definesaWD_BASEDI R environment variable, which is set to
point to the location of your WinDriver directory, as selected during the installation. This
variable is used during the DriverWizard [5] code generation — it determines the default
directory for saving your generated code and is used in the include paths of the generated
project/make files.

« If theinstallation fails with an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY _LOCAL_MACHI NE\ SOFTWARE
\' M crosof t\ Wndows\ Cur r ent Ver si on. Thisregistry key isrequired by
Windows Plug-and-Play in order to properly install drivers using INF files. If the
RunOnce key ismissing, create it; then try installing the INF file again.

Thefollowing stepsarefor registered usersonly:

To register your copy of WinDriver with the license you received from Jungo, follow these steps:
3. Start DriverWizard: Start | Programs | WinDriver | DriverWizard.

4. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

5. Click the Activate L icense button.

6. To register source code that you developed during the evaluation period, refer to the
documentation of VDU _I ni t () [B.4.1].

4.2.2 Windows CE WinDriver Installation
Instructions

4.2.2.1 Installing WinDriver CE when Building New CE-
Based Platforms

» Thefollowing instructions apply to platform devel opers who build Windows CE kernel
images using Windows CE Platform Builder or using MSDEV 2005/2008 with the
Windows CE 6.0 plugin. The instructions use the notation "Windows CE | DE' to refer to
either of these platforms.

» Werecommend that you read Microsoft's documentation and understand the Windows
CE and device driver integration procedure before you perform the installation.

1. Modify the project registry file to add an entry for your target device:

* If you select to use the WinDriver component (refer to step 2), modify WinDriver
\samples\wince instal\<TARGET_CPU>\WinDriver.reg (e.g., WinDriver\samples
\wince_instalNARMV4I\WinDriver .reg).

» Otherwise, modify WinDriver\samples\wince_install\project_wd.reg.

© Jungo Ltd. 2005-2010 30

Installing WinDriver

2. You can smplify the driver integration into your Windows CE platform by following the
procedure described in this step before the Sysgen platform compilation stage.

Note:

» The procedure described in this step is relevant only for devel opers who use Windows CE
4.x-5.x with Platform Builder.
Developers who use Windows CE 6.x with MSDEV 2005/2008 should skip to the next
step (refer to step 3).

 This procedure provides a convenient method for integrating WinDriver into your
Windows CE platform. If you select not to use this method, you will need to perform the
manual integration steps described in step 4 below, after the Sysgen stage.

» The procedure described in this step also adds the WinDriver kernel module
(windrvr6.dIl) to your OSimage. Thisis anecessary step if you want the WinDriver CE
kernel file (windrvr6.dll) to be a permanent part of the Windows CE image (NK.BIN),
which isthe case if you select to transfer the file to your target platform using a floppy
disk. However, if you prefer to have the file windrvr 6.dll loaded on demand viathe
CESH/PPSH services, you need to perform the manual integration method described in
step 4 instead of performing the procedure described in the present step.

a. Run the Windows CE IDE and open your platform.

b. From the File menu select Manage Catalog Items.... and then click the Import... button
and select the WinDriver .cec file from the relevant WinDriver\samples\wince install
\<TARGET_CPU> directory (e.g., WinDriver\samples\wince_instalNlARMV4I). This
will add aWinDriver component to the Platform Builder Catalog.

c. Inthe Catalog view, right-click the mouse on the WinDriver Component node in the
Third Party tree and select Add to OS design.

3. Compile your Windows CE platform (Sysgen stage).

4. If you did not perform the procedure described in step 2 above, perform the following steps
after the Sysgen stage in order to manually integrate the driver into your platform. Note: If
you followed the procedure described in step 2, skip this step and go directly to step 5.

a. Run the Windows CE IDE and open your platform.

b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file—WinDriver\redist\<sTARGET_CPU\windrvr6.dll
—tothe% FLATRELEASEDIR% sub-directory on the target development platform
(should be the current directory in the new command window).

d. Append the contents of the project_wd.reg file in the WinDriver\samples
\wince _install directory to the project.reg fileinthe% FLATRELEASEDIR% sub-
directory.

© Jungo Ltd. 2005-2010 31

Installing WinDriver

e. Append the contents of the project_wd.bib filein the WinDriver\samples
\wince _install directory to the project.bib fileinthe% FLATRELEASEDIR% sub-
directory.

This step isonly necessary if you want the WinDriver CE kernel file (windrvr6.dll) to
be a permanent part of the Windows CE image (NK.BIN), which isthe case if you select
to transfer the file to your target platform using afloppy disk. If you prefer to have the
filewindrvr6.dll loaded on demand via the CESH/PPSH services, you do not need to
carry out this step until you build a permanent kernel.

5. Select Make Run-Time Image from the Build menu and name the new image NK.BIN.

6. Download your new kernel to the target platform and initialize it either by selecting
Download/Initialize from the Target menu or by using a floppy disk.

7. Restart your target CE platform. The WinDriver CE kernel will automatically load.

8. Compile and run the sample programs to make sure that WinDriver CE isloaded and is
functioning correctly (see section 4.4.2, which describes how to check your installation).

4.2.2.2 Installing WinDriver CE when Developing
Applications for Windows CE Computers

Unless otherwise specified, "Windows CE' references in this section include al supported
Windows CE platforms, including Windows Mobile.

The following instructions apply to driver developers who do not build the Windows CE kernel,
but only download their drivers, built using Microsoft eMbedded Visual C++ (Windows CE 4.x
—5.X) or MSDEV .NET 2005/2008 (Windows Mobile or Windows CE 6.x) to a ready-made
Windows CE platform:

1. Insert the WinDriver CD into your Windows host CD drive.
2. Exit the automatic installation.

3. Copy WinDriver's kernel module —windrvr 6.dll —from the WinDriver\redist\WINCE
\<TARGET_CPU> directory on the Windows host development PC to the Windows
directory on your target Windows CE platform.

4. Add WinDriver to the list of device drivers Windows CE |oads on boot:

* Modify the registry according to the entries documented in the file WinDriver\samples
\wince_install\project_wd.reg. This can be done using the Windows CE Pocket Registry
Editor on the hand-held CE computer or by using the Remote CE Registry Editor Tool
supplied with MS eMbedded Visual C++ (Windows CE 4.x —5.X) / MSDEV .NET
2005/2008 (Windows Mobile or Windows CE 6.x). Note that in order to use the Remote

© Jungo Ltd. 2005-2010 32

Installing WinDriver

CE Registry Editor tool you will need to have Windows CE Services installed on your
Windows host platform.

» On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be reloaded
after boot. To load WinDriver on the target Windows Mobile platform every timethe OSis
started, copy the WinDriver\redist\Windows Mobile 5 ARMV4l\wdreg.exe utility to
the Windows\StartUp directory on the target PC.

5. Restart your target CE computer. The WinDriver CE kernel will automatically load. Y ou will
have to do awarm reset rather than just suspend/resume (use the reset or power button on
your target CE compulte).

6. Compile and run the sample programs to make sure that WinDriver CE isloaded and is
functioning correctly (see section 4.4, which describes how to check your installation).

4.2.2.3 Windows CE Installation Note

The WinDriver installation on the host Windows 7 / Vista/ Server 2008 / Server 2003/ XP/
2000 PC definesaWD_BASEDI R environment variable, which is set to point to the location of
your WinDriver directory, as selected during the installation. This variable is used during the
DriverWizard [5] code generation — it determines the default directory for saving your generated
code and is used in the include paths of the generated project/make files.

Note that if you install the WinDriver Windows 7 / Vista/ Server 2008 / Server 2003 / XP / 2000

toolkit on the same host PC, the installation will override the value of the WD_BASEDI R variable
from the Windows CE installation.

4.2.3 Linux WinDriver Installation Instructions

4.2.3.1 Preparing the System for Installation

In Linux, kernel modules must be compiled with the same header files that the kernel itself was
compiled with. Since WinDriver installs kernel modules, it must compile with the header files of
the Linux kernel during the installation process.

Therefore, before you install WinDriver for Linux, verify that the Linux source code and thefile
versions.h areinstalled on your machine:

Install the Linux ker nel sour ce code:

» If you haveyet toinstall Linux, install it, including the kernel source code, by following the
instructions for your Linux distribution.

* If Linux isaready installed on your machine, check whether the Linux source code was
installed. Y ou can do this by looking for 'linux' in the /usr/src directory. If the source code

© Jungo Ltd. 2005-2010 33

Installing WinDriver

isnot installed, either install it, or reinstall Linux with the source code, by following the
instructions for your Linux distribution.

Install version.h:

» Thefileversion.h is created when you first compile the Linux kernel source code. Some
distributions provide a compiled kernel without the file ver sion.h. Look under /usr/src/linux/
include/linux to seeif you have thisfile. If you do not, please follow these steps:

1. Become super user:
$ su

2. Change directory to the Linux source directory:
cd /usr/src/linux

3. Type:
make xconfig

4. Save the configuration by choosing Save and Exit.

5. Type:
make dep

To run GUI WinDriver applications (e.g., DriverWizard [5]; Debug Monitor [7.2]) you must also
have version 5.0 of the libstdc++ library —libstdc++.s0.5. If you do not have thisfile, install it
from the relevant RPM in your Linux distribution (e.g., compat-libstdct++).

Before proceeding with the installation, you must also make sure that you have alinux symbolic
link. If you do not, create one by typing

/usr/src$ In -s <target kernel >/1inux

For example, for the Linux 2.4 kernel type

fusr/src$ In -s linux-2.4/ 1inux

4.2.3.2 Installation

1. Insert the WinDriver CD into your Linux machine's CD drive or copy the downloaded file to
your preferred directory.

2. Change directory to your preferred installation directory, for example to your home directory:
$ cd ~

3. Extract the WinDriver distribution file— WD1020L N.tgz:
$ tar xvzf /<file | ocation> WD1020LN.tgz

For example:

e FromaCD:
$ tar xvzf /mmt/cdrom LI NUX/ WD1020LN. t gz

© Jungo Ltd. 2005-2010 34

Installing WinDriver

» From adownloaded file:
$ tar xvzf /home/user name/ WD1020LN. t gz

4. Change directory to your WinDriver redist directory (the tar automatically creates a
WinDriver directory):
$ cd <WnDriver directory path>/redist

5. Install WinDriver:

a <WnbDriver directory>/redist$

./ configure

The configur e script creates a makefile based on your specific running kernel.

Y ou may run the configur e script based on another kernel source you have
installed, by adding theflag - - wi t h- ker nel - sour ce=<pat h> to the
configure script. The <path> isthe full path to the kernel source directory, e.g., /
usr/src/linux.

If the Linux kernel isversion 2.6.26 or higher, configur e generates makefiles that
use kbui | d to compile the kernel modules. Y ou can force the use of kbuild on
earlier versions of Linux, by passing the - - enabl e- kbui | d flag to configure.

b. <WnDriver directory>/redist$ nake

c. Become super user:
<WnDriver directory>/redist$ su

d. Install the driver:
<WnDriver directory>/redist# make install

6. Create asymbolic link so that you can easily launch the DriverWizard GUI:
$1In-s <path to WnDriver>/w zard/ wdwi zard/ usr/bi n/ wdwi zard

7. Change the read and execute permissions on the file wdwizar d so that ordinary users can
access this program.

8. Change the user and group IDs and give read/write permissions to the device file /dev/
windrvr 6 depending on how you wish to allow users to access hardware through the device.
If you are using aLinux 2.6.x kernel that has the udev file system, change the permissions
by modifying your /etc/udev/per missions.d/50-udev.per missions file. For example, add the
following line to provide read and write permissions:
W ndrvr 6: root:root: 0666 Otherwise, usethe chnod command, for example:
chnod 666 /dev/w ndrvr6

9. Defineanew WD_BASEDI R environment variable and set it to point to the location of your
WinDriver directory, as selected during the installation. This variable is used in the make and
source files of the WinDriver samples and generated DriverWizard [5] code, and is also used
to determine the default directory for saving your generated DriverWizard projects. If you do

© Jungo Ltd. 2005-2010 35

Installing WinDriver

not define this variable you will be instructed to do so when attempting to build the sample/
generated code using the WinDriver makefiles.

10. You can now start using WinDriver to access your hardware and generate your driver code!

Use the WinDriver/util/wdreg script to load the WinDriver kernel module [10.3].

\'_ r-l,."

Thefollowing stepsarefor registered usersonly:

To register your copy of WinDriver with the license you received from Jungo, follow these steps:

11. Start DriverWizard:
$ <path to WnDriver>/w zard/ wdwi zard

12. Select the Register WinDriver option from the File menu, and insert the license string you
received from Jungo.

13. Click the Activate License button.

14. To register source code that you developed during the evaluation period, refer to the
documentation of WDU | ni t () [B.4.1].

4.2.3.3 Restricting Hardware Access on Linux

@ Since /dev/windrvr 6 gives direct hardware access to user programs, it may compromise
kernel stability on multi-user Linux systems. Please restrict access to DriverWizard and the
devicefile /dev/windrvr6 to trusted users.

For security reasons the WinDriver installation script does not automatically perform the
steps of changing the permissions on /dev/windrvr 6 and the DriverWizard application
(wdwizard).

4.3 Upgrading Your Installation

To upgrade to anew version of WinDriver on Windows, follow the steps outlined in section 4.2.1,
which illustrate the process of installing WinDriver for Windows 7/Vista/Server 2008/Server
2003/XP/2000. Y ou can either choose to overwrite the existing installation or install to a separate
directory.

After installation, start DriverWizard and enter the new license string, if you have received one.
This completes the upgrade of WinDriver.

To upgrade your source code, pass the new license string as a parameter to WDU_| ni t () [B.4.1]
(ortoWD_Li cense(), when using the old WD_UsbXXX() APIs).

The procedure for upgrading your installation on other operating systems is the same as the one
described above. Please check the respective installation sections for installation details.

© Jungo Ltd. 2005-2010 36

Installing WinDriver

4.4 Checking Your Installation

4.4.1 Windows and Linux Installation Check

1. Start DriverWizard — <path to WinDriver >/wizar d/wdwizard. On Windows you can also
run DriverWizard from the Start menu: Start | Programs | WinDriver | DriverWizard.

2. If you are aregisterd user, make sure that your WinDriver licenseisregistered (refer to
section 4.2, which explains how to install WinDriver and register your license).
If you are an evaluation version user, you do not need to register alicense.

4.4.2 Windows CE Installation Check

1. Copy the console-mode Debug Monitor utility — WinDriver\util\wddebug
\<TARGET_CPU>\wddebug.exe —from the host Windows machine to a directory on your
target Windows CE device.

2. Run the Debug Monitor with the st at us command on the target device:
wddebug. exe st at us
If the windriver installation was successful, the application will display information regarding
the Debug Monitor version and current status, the running WinDriver kernel module, and
general system information.

4.5 Uninstalling WinDriver

This section will help you to uninstall either the evaluation or registered version of WinDriver.

4.5.1 Windows WinDriver Uninstall Instructions

* You can select to use the graphical wdreg_gui.exe utility instead of wdr eg.exe.

» wdreg.exe and wdreg_gui.exe are found in the WinDriver\util directory (see Chapter 10
for details regarding these utilities).

1. Close any open WinDriver applications, including DriverWizard, the Debug Monitor, and
user-specific applications.

2. Uninstall all Plug-and-Play devices (USB/PCI/PCMCIA) that have been registered with
WinDriver viaan INF file:

» Uninstall the device using the wdr eg utility:
wdreg -inf <path to the INF file> uninstall

* Verify that no INF files that register your device(s) with WinDriver's kernel module
(windrvr6.sys) are found in the % windir %\inf directory.

© Jungo Ltd. 2005-2010 37

Installing WinDriver

3. Uninstall WinDriver:

* On thedevelopment PC, on which you installed the WinDriver toolkit:
Run Start | WinDriver | Uninstall , OR run the uninstall.exe utility from the WinDriver
installation directory.

The uninstall will stop and unload the WinDriver kernel module (windrvr 6.sys); delete the
copy of the windrvr6.inf file from the % windir %\inf directory; delete WinDriver from
Windows Start menu; delete the WinDriver installation directory (except for files that
you added to this directory); and delete the shortcut icons to the DriverWizard and Debug
Monitor utilities from the Desktop.

* On atarget PC, on which you installed the WinDriver kernel module (windrvr 6.sys), but
not the entire WinDriver toolkit:
Use the wdr eg utility to stop and unload the driver:
wdreg -inf <path to windrvr6.inf> uninstall

When running this command, windr vr 6.sys should reside in the same directory as
windrvr6.inf.

"
1

(On the development PC, the relevant wdr eg uninstall command is executed for you by the
uninstall utility).

* If you attempt to uninstall WinDriver while there are open handles to the WinDriver
service (windrvr 6.sys or your renamed driver [12.2], or there are connected and
enabled Plug-and-Play devicesthat are registered to work with this service, wdreg
will fail to uninstall the driver. This ensures that you do not uninstall the driver while
it is being used.

» You can check if the WinDriver kernel module isloaded by running the Debug
Monitor utility (WinDriver\util\wddebug_gui.exe) [7.2]. When the driver is|oaded,
the Debug Monitor log displays driver and OS information; otherwise, it displays a
relevant error message. On the development PC, the uninstall command will delete
the Debug Monitor executables; to use this utility after the uninstallation, create a
copy of wddebug_gui.exe before performing the uninstall procedure.

4. If windrvr6.sys was successfully unloaded, erase the following files (if they exist):

% windir % \system32\driver s\windrvr6.sys

% windir % \inf\windrvr 6.inf

% windir % \system32\wdapi1020.dll

% windir % \sysW OW 64\wdapi1020.dIl (Windows x64)

5. Reboot the computer.

© Jungo Ltd. 2005-2010 38

Installing WinDriver

4.5.2 Linux WinDriver Uninstall Instructions

The following commands must be executed with root privileges.

1. Verify that the WinDriver driver modules are not being used by another program:

» View thelist of modules and the programs using each of them:
[# [sbin/lsnod

* |dentify any applications and modules that are using the WinDriver driver modules. (By
default, WinDriver module names begin with windrvr 6).

» Close any applications that are using the WinDriver driver modules.

» Unload any modules that are using the WinDriver driver modules:
[# [sbin/ nodprobe -r <nodul e_nane>

2. Unload the WinDriver driver modules:
[# [sbin/ nodprobe -r windrvr6

3. If you arenot using aLinux 2.6.x kernel that supports the udev file system, remove the old
device node in the /dev directory:
[# rm-f /dev/w ndrvr6

4. Removethefile .windriver.rc from the /etc directory:
[# rm-f /etc/.windriver.rc

5. Removethefile .windriver.rc from $HOME:
[# rm-f $HOVE/ . wi ndriver.rc

6. If you created a symbolic link to DriverWizard, remove the link using the command
[# rm-f [usr/bin/wdw zard

7. Remove the WinDriver installation directory using the command
[# rm-rf ~/WnDriver

8. Remove the WinDriver shared object file, if it exists:
/usr/lib/libwdapi1020.s0 (32-bit x86) /
/usr/lib64/libwdapi1020.s0 (64-bit x86).

© Jungo Ltd. 2005-2010 39

Chapter 5
Using DriverWizard

This chapter describes WinDriver DriverWizard's hardware diagnostics and driver code
generation capabilities.

5.1 An Overview

DriverWizard (included in the WinDriver toolkit) is a GUI-based diagnostics and driver
generation tool that allows you to write to and read from the hardware, before writing asingle
line of code. The hardware is diagnosed through a Graphical User Interface — the device's
configuration and pipes information is displayed, data can be transferred on the pipes, the pipes
can be reset, etc.

Once the device is operating to your satisfaction, DriverWizard creates the skeletal driver source
code, with functions to access your hardware's resources.

If you are developing adriver for adevice that is based on one of the enhanced-support USB
chipsets (The Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas
Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon

L aboratories C8051F320), we recommend that you read Chapter 8, which explains WinDriver's
enhanced support for specific chipsets, before starting your driver development.

DriverWizard can be used to diagnose your hardware and can generate an INF file for your
hardware on Windows.

Avoid using DriverWizard to generate code for a device based on one of the supported USB
chipsets[8], as DriverWizard generates generic code which will have to be modified according
to the specific functionality of the device in question. Preferably, use the complete source code
libraries and sample applications (supplied in the package) tailored to the various USB chipsets.

DriverWizard is an excellent tool for two major phases in your HW/Driver development:

» Hardware diagnostics: After the hardware has been built, attach your device to a USB port on
your machine, and use DriverWizard to verify that the hardware is performing as expected.

» Code generation: Once you are ready to build your code, let DriverWizard generate your
driver code for you.

The code generated by DriverWizard is composed of the following elements:

» Library functionsfor accessing each element of your device's resources (memory ranges, 1/0
ranges, registers and interrupts).

© Jungo Ltd. 2005-2010 40

Using DriverWizard

» A 32-bit diagnostics program in console mode with which you can diagnose your device.
This application utilizes the special library functions described above. Use this diagnostics
program as your skeletal device driver.

» A project workspace/solution that you can use to automatically load all of the project

information and files into your development environment.
For Linux, DriverWizard generates the required makefile.

5.2 DriverWizard Walkthrough

To use DriverWizard:

1. Attach your hardwareto the computer:
Attach your device to a USB port on your computer.

2. Run DriverWizard and select your device:
a. Start DriverWizard — <path to WinDriver >/wizar d/wdwizard. On Windows you

can also run DriverWizard from the Start menu: Start | Programs | WinDriver |
DriverWizard.

6 On Windows 7 and Vistayou must run DriverWizard as administrator.

b. Click New host driver project to start anew project, or Open an existing project to
open a saved session.

Choose Your Project

JUNGO

WinDriver-

= * The World Standard in Driver Development

Bife

Mew hosk driver project | | Open an existing project

Cancel

Figure5.1 Createor Open aWinDriver Project

c. Select your Device from the list of devices detected by DriverWizard.

© Jungo Ltd. 2005-2010 41

Using DriverWizard

Select Your Device

Please select your device From the detected devices below, or choose "ISA card” for non Plug and Play cards.

Type Description Wendar [Refresh devices list 1
PCL: PCI Yirual Device [el]
15A: 154 Device 1S4 Device
1S54: Parallel Port 154 Device [Uninstall .INF fils]
PCL: SiS - SiS648MX Host-to-PCI Bridge =1=)

= PCI SiS - SiS760 Wirtual PCI o PCI Bridge (AGP) SiS
PCI: ATI - 01541014 Rage P/ Mobility AGP 2x ATI

PCIL: SiS - SiS964 LPC Bridge SiS
PCL: SiS - 5iS5513 PCI IDE Controller SIS
PCL: SiS - SiS7012 PCI Audio Acceleratar Sis
FCI: SiS - Si55371 USE Host Controller =11
PCL: SIS - SIS5571 USE Host Confraller Sig
PCI: SIS - SIS5571 USE Host Controller SIS

= PCI Sis - 5i5
£ Sericonductor Corp, - Product ID: 1003 C
PCI: SiS - Si5900 Fast Ethernet/Home Networking Cirlr j=1=1
PCL: Realtek - RTLE139A/B/C Fast Ethernet Adapter Realtek

PCI: PLX - PCI 9656RDK-Lite PCI Rapid Developrent Kit for P, PLX

7002 USE 2.0 Enhanced Host Confroller Si5
_ C

iconductor Corp,

Device Description:

Hardware ID: Yendor 04b4, Product 1003
Driver: WinDriverd
"hat_test_(4bd_1003"

Figure5.2 Select Your Device

3. Generate an INF filefor DriverWizard:
On Windows 7/Vista/Server 2008/Server 2003/XP/2000, the driver for Plug-and-Play
devices (such as USB) isinstalled by installing an INF file for the device. DriverWizard
enables you to generate an INF file that registers your device to work with WinDriver (i.e.,
with the windrvr 6.sys driver). The INF file generated by DriverWizard should later be
distributed to your customers who are using Windows 7 / Vista/ Server 2008 / Server 2003 /
XP /2000, and installed on their PCs.

The INF file that you generate in this step is also designed to enable DriverWizard to
diagnose Plug-and-Play devices on Windows 7 / Vista/ Server 2008 / Server 2003 /
XP/2000. Additional information concerning the need for an INF file is provided in
section 12.1.1.
If you do not need to generate an INF file, skip this step and proceed to the next one.
To generate the INF file with DriverWizard, follow the steps below:
a Inthe Select Your Device screen, click the Generate .INF file button or click Next .
b. DriverWizard will display information detected for your device —Vendor 1D, Product

ID, Device Class, manufacturer name and device name — and allow you to modify this
information.

© Jungo Ltd. 2005-2010 42

Using DriverWizard

Enter Information for IME File

Plzase fill in the information below For vour device.

This inFarrmation will be incorporated inko the INF File,
which WinDriver will generate Far vour device.

The infarmation you specify will appear in the
Device Manager after the installation of the IMF File,

vendor ID: | 0404 Device ID: | 1003 |

Manufacturer name: |Cy|:uress Semiconduckor Corp, |

Device name: | DEYICE |

Device Class: OTHER V|

WinDriver's unique Class,

IJse this option for a non-skandard tyvpe of device,
WinDriver will set a new Class tvpe For vour device,

Suppart Message Signaled Interrupts (MILIMSI-x)
futamatically inskall the IMNF File,

Maote: This will replace any existing driver wou may have For vour device,

I Mexk l l Zancel

Figure 5.3 DriverWizard INF File Information

c. For multiple-interface USB devices, you can select to generate an INF file either for the
composite device or for a specific interface.

* When selecting to generate an INF file for a specific interface of a multi-interface

USB device the INF information dialogue will indicate for which interface the INF file
is generated.

© Jungo Ltd. 2005-2010 43

Using DriverWizard

Enter Information for IMF File

Flease Fill in the information below For your device.

This information will be incorporated inko the IMF file,
which WinDriver will generate for vour device.

The infarmation vou specify will appear in the
Device Manager after the installation of the INF File,

Vendor ID: | 059d9 Device ID: | 0020
Manufacturer name: | KRF Tech, Lkd

Device name: |DEYICE

This is a multi-interface device.

(%) Generate INF file For the root device itself

(") Generate INF file For the Following device interfaces

Interface 0

Device Class: O THER w
WinDriver's unique Class,

IJse this option for a non-standard kbype of device,
WinDriver will sek a new Class bype Far yaur device,

Support Message Signaled Inkerrupks (MSIIMSI-E)
Automatically install the INF File,

Maote: This will replace any existing driver vou may have for vour device.,

hexk H Cancel]

Figure5.4 DriverWizard Multi-Interface INF File Information — Specific
Interface

» When selecting to generate an INF file for a composite device of a multi-interface
USB device, the INF information dial ogue provides you with the option to either
generate an INF file for the root device itself, or generate an INF file for specific
interfaces, which you can select from the dialogue.

© Jungo Ltd. 2005-2010 44

Using DriverWizard

Selecting to generate an INF file for the root device will enable you to handle multiple
active interfaces simultaneously.

Enter Information for IMF File

Flease Fill in the information below For your device.

This information will be incorporated inko the IMF file,
which WinDriver will generate for vour device.

The infarmation vou specify will appear in the
Device Manager after the installation of the INF File,

Vendor ID: | 059d9 Device ID: | 0020
Manufacturer name: | KRF Tech, Lkd

Device name: |DEYICE

This is a multi-interface device.

(%) Generate INF file For the root device itself

(") Generate INF file For the Following device interfaces

Interface 2 Interface 0

Device Class: ZTHER W

WinDriver's unique Class,

IJse this option for a non-standard kbype of device,
WinDriver will sek a new Class bype Far yaur device,

Support Message Signaled Inkerrupks (MSIIMSI-E)
Automatically install the INF File,

Maote: This will replace any existing driver vou may have for vour device.,

Mt l ’ Cancel

Figure5.5 DriverWizard Multi-Interface INF File Information — Composite
Device

d. When you are done, click Next and choose the directory in which you wish to store the
generated INF file. DriverWizard will then automatically generate the INF file for you.

© Jungo Ltd. 2005-2010 45

Using DriverWizard

Y ou can choose to automatically install the INF file by checking the Automatically
Install the INF file option in the DriverWizard's INF generation dialogue.

If the automatic INF file installation fails, DriverWizard will notify you and provide
manual installation instructions (refer also the manual INF file installation instructionsin
section 12.1).

e. When the INF file installation completes, select and open your device from the list in the
Select Your Device screen.

4. Uninstall the INF file of your device:
Y ou can use the Uninstall option to uninstall the INF file of your device. Once you uninstall
the INF file, the device will no longer be registered to work with the windrvr 6.sys, and the
INF file will be deleted from the Windows root directory. If you do not need to uninstall an
INF file, skip thisstep and proceed to the next one.

a. Inthe Select Your Device screen, click the Uninstall .| NF file button.
b. Select the INF file to be removed.
5. Select thedesired alter nate setting:
DriverWizard detects all the device's supported alternate settings and displays them, as
demonstrated in Figure 5.6 below.
Select the desired alter nate setting from the displayed list.

DriverWizard will display the pipesinformation for the selected alternate setting.

For USB devices with only one aternate setting configured, DriverWizard
automatically selects the detected alternate setting and therefore the Select Device
I nterface dialogue will not be displayed.

6. Diagnose your device:
Before writing your device driver, it isimportant to make sure your hardware is working as
expected. Use DriverWizard to diagnose your hardware. All of your activity will be logged in
the DriverWizard log so that you may later analyze your tests:

a. Test your USB device's pipes: DriverWizard shows the pipes detected for the selected
alternate setting. To perform USB data transfers on the pipes, follow these steps:

© Jungo Ltd. 2005-2010 46

Using DriverWizard

& DriverWizard EHEE\

fle Inoks View Froject Help

L AN Yy

Active Prajects & x|

ing 2: Kumber of Endpoints 2

| Cypross Samiconductor Corp. - Product I0: 1003 | ¢

) Cypress Semiconductor Corp, - Froduct 10: 1003
- Tnkerface 0 .

Alternate Setting O RipsitamellEin=liype

a1
2 ppemE2 Buk dection: in, packst size: 512

as

Alternats setting & 3 ppenis Buk drection: aut, packet size: 512

Read | Write
Tnformation Panel A X

tog | output | Deseription

Figure5.6 Select Device Interface
i. Select the desired pipe.
ii. For acontrol pipe (abidirectional pipe), click Read / Write. A new dialogue will

appear, alowing you to select a standard USB request or define a custom request, as
demonstrated in 5.7.

@ Pipe 0 - Control

Setup Packet Write to pipe data (Hex:
|Custom requesk _v|

Type Request wialue windex wlength

o o |oooo [o |0 |

10000 00 00 00 00 00 00 |

Ackion
[‘rite bo Pipe I Read From Pipe
[Clear l [Save Write Data]

Pipe ko File [File ko Pipe]

Trace USE transaction in Ellisys Wisual USE

Figure5.7 USB Control Transfers

When you select one of the available standard USB requests, the setup packet
information for the selected request is automatically filled and the request
description is displayed in the Request Description box.

© Jungo Ltd. 2005-2010 47

Using DriverWizard

For a custom request, you are required to enter the setup packet information and
write data (if exists) yourself. The size of the setup packet should be eight bytes and
it should be defined using little endian byte ordering. The setup packet information
should conform to the USB specification parameters (bnmRequest Type,
bRequest ,wal ue, W ndex, wLengt h).

More detailed information on the standard USB requests, on how to
~— implement the control transfer and how to send setup packets can be found in
section 9.2.

iii. For an input pipe (moves data from device to host) click Listen to Pipe. To
successfully accomplish this operation with devices other than HID, you need to
first verify that the device sends data to the host. If no datais sent after listening for
ashort period of time, DriverWizard will notify you that the Transfer Failed.

To stop reading, click Stop Listen to Pipe.

Alternate Setting 2: Mumber of Endpoints 2

@@]

Pipe Name Pipe Type Information

1 pipe 0x0 Conkrol direction: in & out, packet size: 64

direction: in, packet size: 512

3 pipe 0x6 Bulk. direction: out, packet size: 512

l Listen ko Pipe h Reset Pipe l

Figure5.8 Listen to Pipe

iv. For an output pipe (moves data from host to device), click Writeto Pipe. A new
dialogue box will appear asking you to enter the datato write. The DriverWizard log
will contain the result of the operation.

#) Alternate Setting 2 . @ Write To Pipe @
termate Setting 2: Numbes of Endpoints 2 ‘Write to pipe data (Hex):
DE AD BE AF
Ppe Name Pipe Type: Informaton

1 ppe0d Control drection: in &out, packet sae: 64

2 poe0x82 Buk drection: in, packet size: 512

o b |
Action
I Write to Pipe] i File to Pipe I
[Clear] [Save Write Data]

Figure5.9 Writeto Pipe

© Jungo Ltd. 2005-2010 48

Using DriverWizard

V. You can reset input and output pipes by pressing the Reset Pipe button for the
selected pipe.

7. Generatethe skeletal driver code:

a. Select to generate code either viathe Gener ate Code toolbar icon or from the Project |
Generate Code menu.

b. In the Select Code Generation Options dialogue box that will appear, choose the code
language and development environment(s) for the generated code and select Next to
generate the code.

Select Code Generation Options

In which language do vou want your code to be generated?

Generate project makefile For;:

[] ™5 Developer Studio 6,5

[] s Developer Studio \MET 2003

[] s Developer Studio .NET 2005 {for X86)

[] s Developer Studio .MET 2005 {for AMDE4)

[] Ms Developer Studio .NET 2005 {for Windows Mabile 5)
[] s Developer Studio .NET 2005 {for X56)

[] M3 Developer Studio .NET 2005 {for AMDE4)

[] Ms Develaper Studio .NET 2005 {For Windaws Mabile 5)
[] Microsaft eMbdedded Visual C++ - For CE

[] Microsaft Platfarm Builder C++ - For CE

[Borlad C++ Buider 3

[] Borlad C++ Builder 4 - &

[Linux Makefile

IDE ko Invaoke:

Mone hd

Figure5.10 Code Generation Options
c. Save your project (if required) and click OK to open your development environment
with the generated driver.
d. Close DriverWizard.
8. Compileand run the generated code:

» Usethis code as a starting point for your device driver. Modify where needed to perform
your driver's specific functionality.

* The source code DriverWizard creates can be compiled with any 32-bit compiler, and will
run on all supported platforms without modification.

© Jungo Ltd. 2005-2010 49

Using DriverWizard

For detailed compilation instructions, refer to section 5.2.4.

5.2.1 Logging WinDriver API Calls

Y ou have the option to log all the WinDriver API calls using DriverWizard, with the API calls
input and output parameters. Y ou can select this option by selecting the Log API calls option
from the T ools menu or by clicking on the Log API calls toolbar icon in DriverWizard's opening
window.

5.2.2 DriverWizard Logger

The wizard logger is the empty window that opens along with the Device Resour ces dialogue
box when you open a new project. The logger keeps track of all of the input and output during the
diagnostics stage, so that you may analyze your device's physical performance at alater time. You
can save the log for future reference. When saving the project, your log is saved as well. Each log
is associated with one project.

5.2.3 Automatic Code Generation

After you have finished diagnosing your device and have ensured that it runs according to your
specifications, you are ready to write your driver.

5.2.3.1 Generating the Code

Generate code by selecting this option either via DriverWizard's Gener ate Code toolbar icon
or from the wizard's Proj ect | Generate Code menu. DriverWizard will generate the source
code for your driver, and place it along with the project file (xxx.wdp, where "xxx" is the
project name). The files are saved in adirectory DriverWizard creates for every development
environment and operating system selected in the code generation dialogue box.

5.2.3.2 The Generated USB C Code

In the source code directory you now have a new xxx_diag.c source file (where xxx is the name
you selected for your DriverWizard project). This file implements a diagnostic USB application,
which demonstrates how to use WinDriver's USB API to locate and communicate with your
USB device(s), including detection of Plug-and-Play events (device insertion/removal, etc.),
performing read/write transfers on the pipes, resetting the pipes and changing the device's active
alternate setting.

The generated application supports handling of multiple identical USB devices.

© Jungo Ltd. 2005-2010 50

Using DriverWizard

5.2.3.3 The Generated Visual Basic and Delphi Code

The generated DriverWizard Visual Basic and Delphi code includes similar functions and
provides similar functionality as the generated C code described in section 5.2.3.2.

The generated Delphi code implements a console application (like the C code), w hile the Visual
Basic code implements a GUI application.

5.2.3.4 The Generated C# and Visual Basic .NET Code

The generated DriverWizard C# and Visual Basic .NET code provides similar functionality as
the generated C code [5.2.3.2], but from a GUI .NET program.

5.2.4 Compiling the Generated Code

5.2.4.1 Windows and Windows CE Compilation

As explained above, on Windows you can select to generate project and workspace/solution files
for any of the supported integrated development environments (IDEs) — MSDEV/Visual C++ 5/6,
MSDEV .NET 2003/2005/2008, Borland C++ Builder, Visual Basic 6.0, Borland Delphi, MS
eMbedded Visual C++ or MS Platform Builder — and you can also select to automatically invoke
your selected IDE from the wizard. Y ou can then proceed to immediately build and run the code
from your IDE.

Y ou can also build the generated code from any other IDE that supports the selected code
language and target OS. Simply create a new project file for your selected IDE, then add the
generated source filesto your project and compile and run the code.

» For Windows 7/Vista/Server 2008/Server 2003/XP/2000, the generated IDE files are
located under an x86 directory —for 32-bit projects, or amd64 directory — for 64-bit
projects.

» For Windows CE, note that the generated Windows M obile code is targeted at the
Windows Mobile 5.0/6.0 ARMV4I SDK.

5.2.4.2 Linux Compilation

Use the makefile that was created for you by DriverWizard in order to build the generated code
using your favorite compiler, preferably GCC.

5.2.5 Bus Analyzer Integration — Ellisys Visual USB

DriverWizard provides native support for the Ellisys Explorer 200 USB analyzer on Windows XP
and higher (32-bit only). This support enables you to:

© Jungo Ltd. 2005-2010 51

Using DriverWizard

* Initiate USB traffic capture directly from DriverWizard.

» Capture discrete control transfers.

To capture USB traffic:

1. Select Tools| Start USB Analyzer Captureto start capturing USB data.

2. Tofinish the data capture, select Tools | Stop USB Analyzer Capture.

A dialogue box will appear notifying you where DriverWizard stored the analyzer trace.

Click Yesto run Ellisyss Visua Anayzer with the captured data.

To capture a discrete control trasfer check the Trace USB transaction in Ellisys Visual USB

check box in the control transfers dialogue box.

Setup Packet

:Cus_l_:u;um requesk 'vli
Tvpe Reguest wiialue windex wLength
nln] 0 aoaa] 0

| UELI0 I G DL L

Ackion

i Write to Pipe I Fead From Pipe

I Clear] ’ Save Write Data J
l Pipe to File] [File ko Pipe J
Trace IJSE transaction in Ellisys Yisual USE

Write bo pipe data [Hex):

Figureb5.11 EllisysVisual USB Integration

© Jungo Ltd. 2005-2010 52

Chapter 6
Developing a Driver

This chapter takes you through the WinDriver driver development cycle.

If your deviceis based on one of the chipsets for which WinDriver provides enhanced
support (The Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12;
Texas Instruments TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828;
Silicon Laboratories C8051F320), read the following overview and then skip straight to
Chapter 8.

6.1 Using DriverWizard to Build a Device
Driver

» Use DriverWizard to diagnose your device: View the device's configuration information,
transfer data on the device's pipes, send standard requests to the control pipe and reset the
pipes. Verify that your device operates as expected.

» Use DriverWizard to generate skeletal code for your devicein C, C#, Visual Basic .NET,
Delphi or Visual Basic. For more information about DriverWizard, refer to Chapter 5.

* |f you are using one of the specific chipsets for which WinDriver offers enhanced support (The
Cypress EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas Instruments
TUSB3410, TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon Laboratories
C8051F320), we recommend that you use the specific sample code provided for your chip as
your skeletal driver code. For more details regarding WinDriver's enhanced support for specific
chipsets, refer to Chapter 8.

* Useany C/.NET / Delphi / Visual Basic compiler (such as MSDEV/Visua C/C++,
MSDEV .NET, Borland C++ Builder, Borland Delphi, Visual Basic 6.0, MS eMbedded Visual
C++, MS Platform Builder C++, GCC, etc.) to compile the skeletal driver you need.

» For Linux, use any compilation environment, preferably GCC, to build your code.

» Thatisall you need to do in order to create your user-mode driver.

Please see Appendix B for a detailed description of WinDriver's USB API.

For more information regarding implementation of USB transfers with WinDriver, refer to
Chapter 9 of the manual.

© Jungo Ltd. 2005-2010 53

Developing a Driver

6.2 Writing the Device Driver Without
DriverWizard

There may be times when you choose to write your driver directly, without using DriverWizard.
In such cases, either follow the steps outlined in this section to create a new driver project, or use
one of the WinDriver samples, which most closely resembles your target driver, and modify the
sample to suit your specific requirements.

6.2.1 Include the Required WinDriver Files

1. Include the relevant WinDriver header filesin your driver project.
All header files are found under the WinDriver/include directory.

All WinDriver projects require the windrvr.h header file.
When using the WDU_xxx WinDriver USB API [B.2], include the wdu_lib.h header file;
(thisfile already includes windrvr.h).

Include any other header file that provides APIs that you wish to use from your code (e.g.,
filesfrom the WinDriver/samples/shar ed directory, which provide convenient diagnostics
functions.)

2. Include the relevant header files from your source code: For example, to usethe USB API
from the wdu_lib.h header file, add the following line to the code:

#i nclude "wdu_lib. h"
3. Link your code with the WDAPI library (Windows) / shared object (Linux):

» For Windows 7/Vista/Server 2008/Server 2003/XP/2000: WinDriver\lib\<CPU>
\wdapi1020.lib or wdapi1020 borland.lib (for Borland C++ Builder), where the <CPU>
directory is either x86 (32-bit binaries for x86 platforms), amd64 (64-bit binaries for x64
platforms) or amd64\x86 (32-bit binaries for x64 platforms[A.2]

» For Windows CE: WinDriver\lib\WINCE\<CPU>\wdapi1020.lib

* For Linux: From the WinDriver/lib directory — libwdapi1020.s0 or libwdapi1020 32.so
(for 32-bit applications targeted at 64-bit platforms)
Note: When using libwdapi1020 32.so, first create a copy of thisfilein adifferent
directory and rename it to libwdapi1020.s0, then link your code with the renamed
file[A.2].

Y ou can aso include the library's source files in your project instead of linking the project
with the library. The C source files are located under the WinDriver/src/wdapi directory.

When linking your project with the WDAPI library/shared object, you will need to
distribute this binary with your driver.

For Windows, get wdapi1020.dll / wdapi1020_32.dIl (for 32-bit applications targeted
at 64-bit platforms) from the WinDriver\redist directory.

© Jungo Ltd. 2005-2010 54

Developing a Driver

For Linux, get libwdapi1020.so / libwdapi1020_32.so (for 32-bit applications targeted
at 64-hit platforms) from the WinDriver/lib directory.

Note: On Windows and Linux, when using the DL L/shared object file for 32-bit applications
on 64-bit platforms (wdapi1020_32.dll / libwdapil020_32.s0), rename the copy of thefilein
the distribution package, by removing the _32 portion [A.2].

For detailed distribution instructions, refer to Chapter 11.

4. Add any other WinDriver source files that implement API that you which to use in your code
(e.g., filesfrom the WinDriver/samples/shared directory.)

6.2.2 Write Your Code

1. Call WDU_I ni t () [B.4.1] at the beginning of your program to initialize WinDriver for your
USB device, and wait for the device-attach callback. The relevant device information will be
provided in the attach callback.

2. Once the attach callback is received, you can start using one of the
WDU_Tr ansf er () [B.4.8.1] functions family to send and receive data.

3. Tofinish, call WbU_Uni ni t () [B.4.7] to unregister from the device.

6.2.3 Configure and Build Your Code

After including the required files and writing your code, make sure that the required build flags
and environment variables are set, then build your code.

Before building your code, verify that the WD_BASEDI R environment variableis set to the
location of the of the WinDriver installation directory.

On Windows, Windows CE, and Linux you can define the WD_BASEDI R environment
variable globally — as explained in Chapter 4: For Windows — refer to the Windows
WD_BASEDIR note in section 4.2.1; for Windows CE — refer to section 4.2.2.3; for Linux:
refer to section 4.2.3.2, step 9.

6.3 Developing Your Driver on Windows CE
Platforms

In order to register your USB device to work with WinDriver, you can perform one of two of the
following:

e Cal WDU _Init() [B.4.1] before the device is plugged into the CE system. OR

* You can add the following entry to the registry (can be added to your platform.regfile):
[HKEY_LOCAL_MACHI NE\ DRI VERS\ USB\ Loadd i ent s\ <I D>\ Def aul t\ Def aul t\ VDR :

© Jungo Ltd. 2005-2010 55

Developing a Driver

"DLL"="wi ndrvr6.dl "

<ID> consists of your vendor ID and product 1D, separated by an underscore character: <MY
VENDOR | D>_<MY PRODUCT | D>.

Insert your device specific information to this key. The key registers your device with
Windows CE Plug-and-Play (USB driver) and enables identification of the device during boot.
Y ou can refer to the registry after calling WDU_Init() and then this key will exist. From that
moment the device will be recognized by CE. If your device has a persistent registry, this
addition will remain until you remove it.

For more information, refer to the Microsoft Development Network (MSDN) Library, under
the USB Driver Registry Settings section.

The following registry example shows how to register your device with the PCI bus driver (can be
added to your platform.regfile).

[HKEY_LOCAL_MACHI NE\ Dri ver s\ Bui | t I n\ PCI\ Tenpl at e\ MyCar d]
"Cl ass" =dwor d: 04

"Subd ass" =dwor d: 01

" Progl F'=dwor d: 00

"Vendor | D'=nul ti _sz:"1234","1234"

"DevicelD'=nul ti _sz:"1111","2222"

For more information, refer to MSDN Library, under PCI Bus Driver Registry Settings section.

6.4 Developing in Visual Basic and Delphi

The entire WinDriver API can be used when developing driversin Visual Basic and Delphi.

6.4.1 Using DriverWizard

DriverWizard can be used to diagnose your hardware and verify that it is working properly before
you start coding. Y ou can then proceed to automatically generate source code with thewizard in a
variety of languages, including Delphi and Visual Basic. For more information, refer to Chapter 5
and Section 6.4.3 below.

6.4.2 Samples

Samplesfor drivers written using the WinDriver APl in Delphi or Visua Basic can be found in:
1. WinDriver\delphi\samples
2. WinDriver\vb\samples

Use these samples as a starting point for your own driver.

© Jungo Ltd. 2005-2010 56

Developing a Driver

6.4.3 Creating your Driver

The method of development in Visual Basic is the same as the method in C using the automatic
code generation feature of DriverWizard.

Y our work process should be as follows:

» Use DriverWizard to easily diagnose your hardware.
» Verify that it isworking properly.

» Generate your driver code.

* Integrate the driver into your application.

* You may find it useful to use the WinDriver samplesto get to know the WinDriver APl and as
your skeletal driver code.

© Jungo Ltd. 2005-2010 57

Chapter 7
Debugging Drivers

The following sections describe how to debug your hardware-access application code.

7.1 User-Mode Debugging

» Since WinDriver is accessed from the user mode, we recommend that you first debug your
code using your standard debugging software.

» The Debug Monitor utility [7.2] logs debug messages from WinDriver's kernel-mode and user-
mode APIs. You can also use WinDriver APIs to send your own debug messages to the Debug
Monitor log.

» Use DriverWizard to validate your device's USB configuration and test the communication
with the device.

7.2 Debug Monitor

Debug Monitor is a powerful graphical- and console-mode tool for monitoring al activities
handled by the WinDriver kernel.
Y ou can use thistool to monitor how each command sent to the kernel is executed.

In addition, WinDriver enables you to print your own debug messages to the Debug Monitor,
using the WD_DebugAdd() function [B.6.6] or the high-level Pri nt DbgMessage()
function [B.7.14].

The Debug Monitor comesin two versions:

» wddebug_gui [7.2.1] —a GUI version for Windows 7/Vista/Server 2008/Server 2003/XP/2000
and Linux.

» wddebug [7.2.2] —aconsole-mode version for Windows, Windows CE, and Linux; on
Windows CE, wddebug aso supports GUI execution.

Both Debug Monitor versions are provided in the WinDriver/util directory.

7.2.1 The wddebug_gui Utility

wddebug_gui isafully graphical (GUI) version of the Debug Monitor utility for Windows 7/
Vista/Server 2008/Server 2003/XP/2000 and Linux.

© Jungo Ltd. 2005-2010 58

Debugging Drivers

1. Run the Debug Monitor using either of the following methods:
* Run WinDriver/util/wddebug_gui.
* Run the Debug Monitor from DriverWizard's T ools menu.

e OnWindows, run Start | Programs | WinDriver | Debug Monitor.

B WinDriver Debug Monitor
Fil= Edit Wiew Help

B <\

WinDriver Debug Manitor v32.01,

Running 'WinDriver »3.01 Jungo {c) 1997 - 2007 Build Date: Jun 10 2007 X6 3Zbit 5¥5 13:48:53
051 Windows MT 5.1 Build 0.0,2600 Service Pack 2

Time: Sun 10, Jun 15:50:33 2007

Figure7.1 Start Debug Monitor

2. Set the Debug Monitor's status, trace level and debug sections information from the Debug
Options dialogue, which is activated either from the Debug Monitor's View | Debug Options
menu or the Debug Options toolbar button.

© Jungo Ltd. 2005-2010 59

Debugging Drivers

Debug Options

Seckion
Lo PrP
Memary kernel Plugin
Status R Miscellaneous
| on | - License
PCMCIA
| QFF | ISA Prip Card Registration
LISE Kernel Driver
M4 Events

Al Sections

Lewvel

() Errar () Warn () Info (%) Trace

[] send debug messages to the operating system kernel debugger

| Ik, | | Zancel

Figure 7.2 Debug Options
» Status— Set trace on or off.
* Section — Choose what part of the WinDriver APl you would like to monitor.

USB developers should select the USB section.

.,) Choose carefully those sections that you would like to monitor. Checking more
- options than necessary could result in an overflow of information, making it harder
for you to locate your problem.

» Level — Choose the level of messages you want to see for the resources defined.
» Error isthelowest trace level, resulting in minimum output to the screen.

» Traceisthe highest trace level, displaying every operation the WinDriver kernel
performs.

© Jungo Ltd. 2005-2010 60

Debugging Drivers

» Send debug messages to the operating system kernel debugger —

Select this option to send the debug messages received from the WinDriver kernel module
to an external kernel debugger, in addition to the Debug Monitor.

On Windows 7 and Vista, the first time that you enable this option you will need to
restart the PC.

A free Windows kernel debugger, WinDbg, is distributed with the Windows Driver
- Kit (WDK) and is part of the Debugging Tools for Windows package, distributed via
the Microsoft web site.

3. Once you have defined what you want to trace and on what level, click OK to close the
Debug Options window.

4. Activate your application (step-by-step or in one run).
5. Watch the Debug Monitor log (or the kernel debugger log, if enabled) for errors or any
unexpected messages.
7.2.1.1 Running wddebug_gui for a Renamed Driver

By default, wddebug_gui logs messages from the default WinDriver kernel module —
windrvr6.sys.o/.ko. However, you can also use wddebug_gui to log debug messages from a
renamed version of thisdriver [12.2], by running wddebug_gui from the command line with the
dri ver _name option: wddebug_gui <dri ver _nane>.

The driver name should be set to the name of the driver file without the file's extension;

I e.g., windrvr 6, not windrvr 6.sys (on Windows) or windrvr 6.0 (on Linux).

For example, if you have renamed the default windrvr 6.sys driver on Windows to
my_driver.sys, you can log messages from your driver by running the Debug Monitor using the
following command: wddebug_gui ny_dri ver

7.2.2 The wddebug Utility

7.2.2.1 Console-Mode wddebug Execution

The wddebug version of the Debug Monitor utility can be executed as a console-mode
application on all supported operating systems: Windows, Windows CE, and Linux. To use the
console-mode Debug Monitor version, run WinDriver/util/wddebug in the manner explained
below.

For console-mode execution on Windows CE, start a command window (CM D.EXE) on
the Windows CE target, and then run the program WDDEBUG.EXE inside this shell.
Y ou can aso execute wddebug viathe Windows CE GUI, as explained in section 7.2.2.2.

© Jungo Ltd. 2005-2010 61

Debugging Drivers

wddebug console-mode usage

wddebug [<driver_name>] [<command>] [<Ievel >]
[<sections>]

The wddebug arguments must be provided in the order in which they appear in the usage
statement above.

e <dri ver _name>: The name of the driver to which to apply the command.

The driver name should be set to the name of the WinDriver kernel module —windrvr6, or a
renamed version of thisdriver (refer to the explanation in section 12.2).

The driver name should be set to the name of the driver file without the fil€'s extension;
for example, windrvr 6, not windrvr 6.sys (on Windows) or windrvr 6.0 (on Linux).

» <command>: The Debug Monitor command to execute:
» Activation commands:
* on: Turn the Debug Monitor on.
» of f : Turn the Debug Monitor off.

» dbg_on : Redirect the debug messages from the Debug Monitor to a kernel debugger and
turn the Debug Monitor on (if it was not already turned on).

On Windows 7 and Vista, the first time that you enable this option you will need to
restart the PC.

» dbg_of f : Stop redirecting debug messages from the Debug Monitor to a kernel
debugger.

Theon and dbg_on commands can be run together with the <l evel > and
<sect i ons> options, described below.

"
1

dunp: Continuously display ('dump’) debug information, until the user selects to stop.

st at us: Display information regarding the running <dr i ver _nane> driver, the current
Debug Monitor status — including the active debug level and sections (when the Debug
Monitor is on) —and the size of the debug messages buffer.

hel p : Display usage instructions.

None: Y ou can run wddebug with no arguments, including no command. On platforms other
than Windows CE, thisis equivalent to running wddebug hel p. On Windows CE, running
wddebug with no arguments activates the utility's Windows CE GUI version, as explained
in section 7.2.2.2.

© Jungo Ltd. 2005-2010 62

Debugging Drivers

The following options are applicable only to the on and dbg_on commands:

<| evel >: The debug trace level to set. The level can be set to either of the following flags:
ERROR, WARN, | NFOor TRACE, where ERROR is the lowest trace level and TRACE isthe
highest level (displays all messages).

The default debug trace level is ERROR.

<sect i ons>: The debug sections to set. The debug sections determine what part of the
WinDriver APl you would like to monitor.

For afull list of all supported debug sections, run wddebug help to view the utility's usage
instructions.
The default debug sections flag isALL — sets all the supported debug sections.

Usage Sequence

To log messages using wddebug, use this sequence:

Turn on the Debug Monitor by running wddebug with either the on command, or thedbg_on
command — which redirects the debug messages to a kernel debugger before turning on the
Debug Monitor.

You can usethel evel and/or sect i ons flagsto set the debug level and/or sections for the
log. If these options are not explicitly set, the default values will be used.

Y ou can a'so log messages from arenamed WinDriver driver by preceding the command with
the name of the driver (seethe<dr i ver _name> option above). The default driver nameis
windrvr6.

Run wddebug with the dunp command to begin dumping debug messages to the command
prompt. Y ou can turn off the display of the debug messages, at any time, by following the
instructions displayed in the command prompt.

Run applications that use the driver, and view the debug messages as they are being logged to
the command prompt/the kernel debugger.

Y ou can run wddebug with the st at us command, at any time while the Debug Monitor is
on, to view the current debug level and sections, as well asinformation regarding the running
<driver _name> kernel module.

Youcanusedbg_on anddbg_of f totoggle the redirection of debug messagesto akernel
debugger at any time while the Debug Monitor is on.

When you are ready, turn off the Debug Monitor by running wddebug with the of f command.

Y ou can aso run wddebug with the st at us command while the Debug Monitor is turned
off, to view information regarding the running <driver _name> driver.

EXAMPLE

© Jungo Ltd. 2005-2010 63

Debugging Drivers

The following is an example of atypical wddebug usage sequence. Since no <dr i ver _nane>
is set, the commands are applied to the default driver —windrvr6.

» Turn the Debug Monitor on with the highest trace level for al sections:
wddebug on TRACE ALL

Note: Thisisthe sameasrunning' wddebug on TRACE' , since ALL isthe default debug
sections option.

» Dump the debug messages continuously, until the user selects to stop:
wddebug dunp

» Usethedriver and view the debug messages in the command prompt.

» Turn the Debug Monitor off:
wddebug of f

» Display usage instructions:
wddebug hel p Asexplained above, on all platforms other than Windows CE, thisis
equivalent to running wddebug with no arguments.

7.2.2.2 Windows CE GUI wddebug Execution

On Windows CE, you can also log debug messages by running wddebug without any arguments.
This method is designed to enable debug logging on Windows CE platforms that do not have a
command-line prompt. On such platforms, you can activate debug logging by double-clicking
the wddebug executable; thisis equivalent to running the application with no arguments from a
command-line prompt.

When executing wddebug without arguments, the user isinformed, viaa GUI message box,
that log messages will be stored in a predetermined log file — wdlog.txt in the root Windows CE
directory — and is given the option to cancel or continue.

=,

rwd debug

1 Press Ok to start logging debug messages,
\r) The messages will be saved to wdlog.tit in the root Windows CE directory.

O Cancel

Figure 7.3 wddebug Windows CE Start Log M essage

If the user selects to continue, debug logging isturned on with atrace level of TRACE and debug
sections AL L, and the Debug Monitor begins dumping debug messages to the wdlog.txt log
file. The user can stop the logging and turn off debug logging, at any time, via a dedicated GUI

message box.

© Jungo Ltd. 2005-2010 64

Debugging Drivers

5

y Press OK to stop logging

luddehug

Figure 7.4 wddebug Windows CE Stop L og M essage

© Jungo Ltd. 2005-2010 65

Chapter 8
Enhanced Support for Specific

Chipsets

8.1 Overview

In addition to the standard WinDriver API and the DriverWizard code generation capabilities
described in this manual, which support development of drivers for any USB device, WinDriver
offers enhanced support for specific USB chipsets. The enhanced support includes custom AP
and sample diagnostics code, which are designed specifically for these chipsets.

WinDriver's enhanced support is currently available for the following chipsets: The Cypress
EZ-USB family; Microchip PIC18F4550; Philips PDIUSBD12; Texas Instruments TUSB3410,
TUSB3210, TUSB2136 and TUSB5052; Agere USS2828; Silicon Laboratories C8051F320.

8.2 Developing a Driver Using the Enhanced
Chipset Support

When developing adriver for a device based on one of the enhanced-support chipsets[8.1], you
can use WinDriver's chipset-set specific support by following these steps:

1. Locate the sample diagnostics program for your device under the WinDriver/chip_vendor/
chip_namedirectory.

Most of the sample diagnostics program names are derived from the sampl€'s main purpose
(e.g., download_sample for afirmware download sample) and their source code can be
found directly under the specific chip_name directory.

2. Run the custom diagnostics program to diagnose your device and familiarize yourself with
the options provided by the sample program.

3. Use the source code of the diagnostics program as your skeletal device driver and modify the
code, as needed, to suit your specific development needs. When modifying the code, you can
utilize the custom WinDriver API for your specific chip. The custom APl istypically found
under the WinDriver/chip_vendor/lib directory.

© Jungo Ltd. 2005-2010 66

Chapter 9
USB Transfers

9.1 Overview

This chapter provides detailed information regarding implementation of USB transfers using
WinDriver.

As explained in section 3.5, the USB standard supports two kinds of data exchange between the
host and the device — control exchange and functional data exchange.
The WinDriver APIs enable you to implement both control and functional data transfers.

Figure 9.1 demonstrates how a device's pipes are displayed in the DriverWizard utility, which
enables you to perform transfers from a GUI environment.

Alternate Setting 2: Number of Endpoints 2

Pipe Name Pipe Type Information

CI‘(}:::;?OF;]F!B 1 pipe 0x0 Control direction: in & out, packet size: 64

i . b4 pipe 0x62 m direction; in, packet size: 512
Functional Pipes
(Bulk / Interrupt / 3 pipe 06 Bulk direction: out, packet size: 512

Isochronous)

Figure 9.1 USB Data Exchange

Section 9.2 below provides detailed information regarding USB control transfers and how they
can be implemented using WinDriver.

Section 9.3 describes the functional data transfer implementation options provided by WinDriver.

© Jungo Ltd. 2005-2010 67

USB Transfers

9.2 USB Control Transfers

9.2.1 USB Control Transfers Overview

9.2.1.1 Control Data Exchange

USB control exchange is used to determine device identification and configuration requirements
and to configure a device, and can also be used for other device-specific purposes, including
control of other pipes on the device.

Control exchange takes place via a control pipe, mainly the default Pipe O, which always exists.
The control transfer consists of a setup stage (in which a setup packet is sent from the host to the
device), an optional data stage and a status stage.

9.2.1.2 More About the Control Transfer

The control transaction always begins with a setup stage. The setup stage is followed by zero or
more control data transactions (data stage) that carry the specific information for the requested
operation, and finally a status transaction completes the control transfer by returning the status to
the host.

During the setup stage, an 8-byte setup packet is used to transmit information to the control
endpoint of the device. The setup packet's format is defined by the USB specification.

A control transfer can be aread transaction or awrite transaction. In aread transaction the setup
packet indicates the characteristics and amount of data to be read from the device. In awrite
transaction the setup packet contains the command sent (written) to the device and the number of
control data bytes that will be sent to the device in the data stage.

Refer to Figure 9.2 (taken from the USB specification) for a sequence of read and write
transactions.

'(in)" indicates data flow from the device to the host.

'(out)" indicates data flow from the host to the device.

© Jungo Ltd. 2005-2010 68

USB Transfers

setup Liata Stage
Stage {Opticnal) Status
l-'"‘lll\'\-
Conirol ! e ™y !
Write SETUP DATE [ouf) DaTA (ouf) DATA (ouf) Status (@)
Setup Drata Stage
Stage (Ofﬁﬂlﬂl] Status
s T I et
Conirol
Fead SETUF DATA (iri) DATA (irj) DATA (in) Sthas (ouf|
Setup Status
stage
.~—"k'—1 f_»'n_i
Neo-data SETITP Status (@)
Conirol

Figure 9.2 USB Read and Write

9.2.1.3 The Setup Packet

The setup packets (combined with the control data stage and the status stage) are used to
configure and send commands to the device. Chapter 9 of the USB specification defines standard
device requests. USB requests such as these are sent from the host to the device, using setup
packets. The USB deviceisrequired to respond properly to these requests. In addition, each
vendor may define device-specific setup packets to perform device-specific operations. The
standard setup packets (standard USB device requests) are detailed below. The vendor's device-
specific setup packets are detailed in the vendor's data book for each USB device.

9.2.1.4 USB Setup Packet Format

The table below shows the format of the USB setup packet. For more information, please refer to
the USB specification at http://www.usb.org.

Byte | Field Description
0 | bmRequest Type | Bit 7: Request direction (O=Host to device — Out, 1=Device to host —
In).

Bits 5-6: Request type (O=standard, 1=class, 2=vendor, 3=reserved).
Bits 0-4: Recipient (O=device, 1=interface, 2=endpoint,3=other).

1 | bRequest The actual request (see the Standard Device Request Codes
table[9.2.1.5].
2 | wVaueL A word-size value that varies according to the request. For example,

in the CLEAR_FEATURE request the value is used to select the
feature, in the GET_DESCRI PTOR reguest the value indicates
the descriptor type and in the SET_ ADDRESS request the value
contains the device address.

© Jungo Ltd. 2005-2010 69

http://www.usb.org

USB Transfers

Byte | Field Description

3 |wVaueH The upper byte of the Val ue word.
4 | windexL A word-size value that varies according to the request. Theindex is
generally used to specify an endpoint or an interface.
wlndexH The upper byte of the | ndex word.
wLengthL A word-size value that indicates the number of bytes to be

transferred if there is a data stage.

7 | wLengthH The upper byte of the Lengt h word.

9.2.1.5 Standard Device Request Codes

The table below shows the standard device request codes.

bRequest Value
GET_STATUS 0
CLEAR _FEATURE
Reserved for future use
SET _FEATURE
Reserved for future use
SET_ADDRESS
GET_DESCRIPTOR
SET_DESCRIPTOR
GET_CONFIGURATION
SET_CONFIGURATION
GET_INTERFACE
SET INTERFACE
SYNCH_FRAME

O |0 | N || WIN|PF

=Y
o

=
=

=
N

9.2.1.6 Setup Packet Example

This example of a standard USB device request illustrates the setup packet format and its fields.
The setup packet isin Hex format.

The following setup packet is for a control read transaction that retrieves the device descriptor
from the USB device. The device descriptor includes information such as USB standard revision,
vendor ID and product ID.

GET_DESCRIPTOR (Device) Setup Packet

80 | 06 | 00| 01 | OO |00 | 12 | 0O

© Jungo Ltd. 2005-2010 70

USB Transfers

Setup packet meaning:

Byte | Field Value | Description
0 |BmRequest Type | 80 | 8h=1000b

bit 7=1 -> direction of datais from device to host.
Oh=0000b

bits 0..1=00 -> the recipient is the device.

1 | bRequest 06 | The Requestis GET_DESCRIPTOR.
2 |wVauelL 00
3 |wVaueH 01 | Thedescriptor typeis device (values defined in USB spec).
4 | windexL 00 | Theindex isnot relevant in this setup packet since thereis
only one device descriptor.
windexH 00
wLengthL 12 | Length of the datato be retrieved: 18(12h) bytes (thisisthe
length of the device descriptor).
7 | wLengthH 00

In response, the device sends the device descriptor data. A device descriptor of Cypress EZ-USB
Integrated Circuit is provided as an example:

Byte No. 0 1 2 3 4 5 6 7 8 9 | 10
Content 12 | 01 | 00 | O1 | ff ff ff | 40 | 47 | 05 | 80

ByteNo. | 11 | 12 | 13 | 14 | 15 | 16 | 17
Content 00O | 01 | OO | OO | OO | OO | 01

Asdefined in the USB specification, byte O indicates the length of the descriptor, bytes 2-3
contain the USB specification release number, byte 7 is the maximum packet size for endpoint 00,
bytes 8-9 are the Vendor ID, bytes 10-11 are the Product 1D, etc.

9.2.2 Performing Control Transfers with WinDriver
WinDriver allows you to easily send and receive control transfers on Pipe00, while using
DriverWizard to test your device. Y ou can either use the API generated by DriverWizard [5] for

your hardware, or directly call the WinDriver WDU_Tr ansf er () [B.4.8.1] function from within
your application.

9.2.2.1 Control Transfers with DriverWizard
1. Choose Pipe 0x0 and click the Read / Write button.

2. You can either enter a custom setup packet, or use a standard USB request.

© Jungo Ltd. 2005-2010 71

USB Transfers

» For acustom request: enter the required setup packet fields. For awrite transaction that
includes a data stage, enter the datain the Write to pipe data (Hex) field. Click Read
From Pipe or Write To Pipe according to the required transaction (see Figure 9.3).

7] Pipe 0 - Control

Setup Packet ‘rite to pipe data (Hesx):
|Custu:um request _Vl
Type Requesk wialue windesx wlength
oo [loooo | o o |
|00 00 00 00 00 00 00 00 |
Ackion
[Write to Pipe l Read from Pipe
[Clear] [Save Wrike Data]
Pipe ko File [File to Pipe]
Trace IUSE transaction in Ellisys Visual USE

Figure9.3 Custom Request

» For astandard USB request: select a USB request from the requests list, which includes
requests such as GET_DESCRIPTOR CONFIGURATION, GET_DESCRIPTOR
DEVICE, GET_STATUSDEVICE, etc. (see Figure 9.4). The description of the selected
request will be displayed in the Request Description box on the right hand of the dialogue
window.

(7] Pipe 0 - Control

Setup Packet Write to pipe data (Hex):

Custom request

GET_DESCRIFTOR. - CONFIGLIRATION
GET_DESCRIPTOR - DEVICE
GET_DESCRIPTOR. - STRING
GET_STATLS - DEVICE

GET_STATLIS - EMDPOINT
GET_STATLIS - INTERFACE

Action

I Write to Pipe l Read from Fipe

[Clear] [Save Write Data]
Fipe to File [File to Pipe]

Trace USB transaction in Elisys Visual USE

Figure 9.4 RequestsList

© Jungo Ltd. 2005-2010 72

USB Transfers

3. Theresults of the transfer, such as the data that was read or arelevant error, are displayed in
Driver Wizard's L og window.
Figure 9.5 below shows the contents of the L og window after a successful
GET_DESCRIPTOR DEVICE request.

Information Panel

12010002 000000 40840403 1000000102 |.vvere @i
0001

log | Output | Description

Figure 9.5 USB Request L og

9.2.2.2 Control Transfers with WinDriver API

To perform aread or write transaction on the control pipe, you can either use the API generated
by DriverWizard for your hardware, or directly call the WinDriver WDU_Tr ansf er () [B.4.8.1]
function from within your application.

Fill the setup packet inthe BYTE Set upPacket [8] array and call these functions to send
setup packets on Pipe00 and to retrieve control and status data from the device.

» Thefollowing sample demonstrates how to fill the Set upPacket [8] variable with a
CGET_DESCRI PTOR setup packet:

set upPacket[0] = 0x80; /* BrRequst Type */

set upPacket [6]
set upPacket [7]

set upPacket[1] = 0x6; /* bRequest [O0x6 == GET_DESCRI PTOR] */

set upPacket[2] = O; /* wval ue */

set upPacket[3] = Ox1; /* wval ue [Descriptor Type: Ox1 == DEVICE] */
set upPacket[4] = O; /* w ndex */

set upPacket[5] = O; /* w ndex */

0x12; /* wLength [Size for the returned buffer] */

0; /* wiLength */

» Thefollowing sample demonstrates how to send a setup packet to the control pipe (a GET
instruction; the device will return the information requested in the pBuf f er variable):

WDU_Tr ansf er Def aul t Pi pe(hDev, TRUE, 0, pBuffer, dwSize,
bytes_transferred, &setupPacket[0], 10000);

» Thefollowing sample demonstrates how to send a setup packet to the control pipe (a SET
instruction):

WDU_Tr ansf er Def aul t Pi pe(hDev, FALSE, 0, NULL, O,
bytes_transferred, &setupPacket[0], 10000);

For further information regarding WDU_Tr ansf er Def aul t Pi pe(), refer to section B.4.8.3.
For further information regarding WDU_Tr ansf er (), refer to section B.4.8.1.

© Jungo Ltd. 2005-2010 73

USB Transfers

9.3 Functional USB Data Transfers

9.3.1 Functional USB Data Transfers Overview

Functional USB data exchange is used to move data to and from the device. There are three
types of USB data transfers: Bulk, Interrupt and Isochronous , which are described in detail in
sections 3.6.2—3.6.4 of the manual.

Functional USB data transfers can be implemented using two alternative methods:. single
blocking transfers and streaming transfers, both supported by WinDriver, as explained in the
following sections. The generated DriverWizard USB code [5.2.3] and the generic WinDriver/
util/usb_diag.exe utility [1.9.2] (source code located under the WinDriver/samples/usb_diag
directory) enable the user to select which type of transfer to perform.

9.3.2 Single Blocking Transfers

In the single blocking USB data transfer scheme, blocks of data are synchronously transferred
(hence —"blocking") between the host and the device, per request from the host (hence —"single"
transfers).

9.3.2.1 Performing Single Blocking Transfers with
WinDriver

WinDriver's\WDU_Tr ansf er () function, and the WDU_Tr ansf er Bul k(),

WDU_Tr ansf er | soch(),and WDU_Tr ansf er | nt er r upt () convenience functions — all
described in section B.4.8 of the manual — enable you to easily impelment single blocking USB
data transfers.

Y ou can aso perform single blocking transfers using the DriverWizard utility (which uses the
WDU_Tr ansf er () function), as demonstrated in section 5.2 of the manual.

9.3.3 Streaming Data Transfers

In the streaming USB data transfer scheme, data is continuously streamed between the host and
the device, using internal buffers allocated by the host driver —"streams”.

Stream transfers allow for a sequential data flow between the host and the device, and can be used
to reduce single blocking transfer overhead, which may occur as aresult of multiple function calls
and context switches between user and kernel modes. Thisis especially relevant for devices with
small data buffers, which might, for example, overwrite data before the host is able to read it, due
to agap in the data flow between the host and device.

© Jungo Ltd. 2005-2010 74

USB Transfers

9.3.3.1 Performing Streaming with WinDriver

WinDriver'sWDU_St r eamXXX() functions, described in section B.4.9 of the manual, enable you
to impelment USB streaming data transfers. Note: These functions are currently supported on
Windows and Windows CE.

To begin performing stream transfers, call the WDU_St r eanOpen() function [B.4.9.1]. When
thisfunction is called, WinDriver creates a new stream object for the specified data pipe. Y ou
can open a stream for any pipe except for the control pipe (Pipe 0). The stream's data transfer
direction — read/write —is derived from the direction of its pipe.

WinDriver supports both blocking and non-blocking stream transfers. The open function's

f Bl ocki ng parameter indicates which type of transfer to perform (see explanation below).
Streams that perform blocking transfers will henceforth be referred to as "blocking streams’, and
streams that perform non-blocking transfers will be referred to as "non-blocking streams”.

The function's AWRX Tx Ti meout parameter indicates the desired timeout period for transfers
between the stream and the device.

After opening astream, call WDU_St r eantSt ar t () [B.4.9.2] to begin data transfers between the
stream's data buffer and the device.

In the case of aread stream, the driver will constantly read data from the device into the

stream's buffer, in blocks of a pre-defined size (as set in the dwRx Si ze parameter of the
WDU_St r eamOpen() function [B.4.9.1]. In the case of awrite stream, the driver will constantly
check for datain the stream's data buffer and write any data that is found to the device.

To read data from aread stream to the user-mode host application, call

WDU_St r eanRead() [B.4.9.3].

In case of ablocking stream, the read function blocks until the entire amount of data requested by
the application is transferred from the stream to the application, or until the stream'’s attempt to
read data from the device times out.

In the case of anon-blocking stream, the function transfers to the application as much of the
requested data as possible, subject to the amount of data currently available in the stream's data
buffer, and returns immediately.

To write data from the user-mode host application to a write the stream, call

WDU_StreamWi t e() [B.4.94].

In case of ablocking stream, the function blocks until the entire data is written to the stream, or
until the stream's attempt to write data to the device times out.

In the case of a non-blocking stream, the function writes as much of the write data as currently
possible to the stream, and returns immediately.

For both blocking and non-blocking transfers, the read/write function returns the amount of bytes
actually transferred between the stream and the calling application within an output parameter —
*pdwByt esRead [B.4.9.3] / * pdwByt esWi tt en [B.4.94].

Y ou can flush an active stream at any time by calling the WDU_St r eant| ush()

function [B.4.9.5], which writes the entire contents of the stream'’s data buffer to the device (for a
write stream), and blocks until all pending I/O for the stream is handled.

Y ou can flush both blocking and non-blocking streams.

© Jungo Ltd. 2005-2010 75

USB Transfers

You can call WDU_St r eantGet St at us() [B.4.9.6] for any open stream in order to get the
stream's current status information.

To stop the data streaming between an active stream and the device, call

WDU_St r eantst op() [B.4.9.7]. In the case of awrite stream, the function flushes the stream —
i.e., writes its contents to the device — before stopping it.

An open stream can be stopped and restarted at any time until it is closed.

To close an open stream, call WDU_St r eantCl ose() [B.4.9.8].

The function stops the stream, including flushing its data to the device (in the case of awrite
stream), before closing it.

Note: Each call to WDU_St r eanOpen() must have a matching call to WDU_St r eantCl ose()
later on in the code in order to perform the necessary cleanup.

© Jungo Ltd. 2005-2010 76

Chapter 10
Dynamically Loading Your Driver

10.1 Why Do You Need a Dynamically
Loadable Driver?

When adding a new driver, you may be required to reboot the system in order for it to load your
new driver into the system. WinDriver is adynamically loadable driver, which enables your
customersto start your application immediately after installing it, without the need for reboot.

To successfully unload your driver, make sure that there are no open handles to the
WinDriver service (windrvr6.sys or your renamed driver (refer to section 12.2), and that
there are no connected and enabled Plug-and-Play devices that are registered with this
service.

10.2 Windows Dynamic Driver Loading

10.2.1 Windows Driver Types
Windows drivers can be implemented as either of the following types:

 WDM (Windows Driver Model) drivers: Files with the extension *.sys on Windows 7/Vistal
Server 2008/Server 2003/XP/2000/M e/98 (e.g., windrvr 6.sys).
WDM drivers areinstalled viathe installation of an INF file (see below).

* Non-WDM / Legacy drivers. These include drivers for non-Plug-and-Play Windows operating
systems (Windows NT 4.0) and files with the extension *.vxd on Windows 98/Me.

The WinDriver Windows kernel module —windrvr6.sys—isafully WDM driver, which can be
installed using the wdr eg utility, as explained in the following sections.

10.2.2 The wdreg Utility

WinDriver provides a utility for dynamically loading and unloading your driver, which replaces
the slower manual process using Windows' Device Manager (which can still be used for the
device INF). This utility is provided in two forms: wdreg and wdreg_gui. Both versions can be
found in the WinDriver\util directory, can be run from the command line, and provide the same
functionality. The differenceisthat wdreg_gui displays installation messages graphically, while
wdr eg displays them in console mode.

© Jungo Ltd. 2005-2010 77

Dynamically Loading Your Driver

This section describes the use of wdreg/ wdreg_gui on Windows operating systems.

1. wdreg is dependent on the Driver Install Frameworks APl (DIFXAPI) DLL —
difxapi.dll, unless when run with the - conpat option (described below). difxapi.dll
is provided under the WinDriver\util directory.

2. The explanations and examples below refer to wdr eg, but any references to wdreg can
be replaced with wdreg_gui.

10.2.2.1 Overview

This section explains how to use the wdr eg utility to install the WDM windrvr6.sys driver on
Windows, or to install INF files that register USB devices to work with this driver on Windows
7/VistalServer 2008/Server 2003/X P/2000.

™, You can rename the windrvr 6.sys kernel module and modify your device INF fileto
register with your renamed driver, as explained in section 12.2.1. To install your modified
INF files using wdr eg, simply replace any references to windrvr 6 below with the name of
your new driver.

Usage: Thewdreg utility can be used in two ways as demonstrated below:

1. wdreg -inf <filename> [-silent] [-log <logfile>]
[install | uninstall | enable | disable]

2. wdreg -rescan <enunerator> [-silent] [-log <logfile>]

* OPTIONS
wdr eg supports several basic OPTIONS from which you can choose one, some, or none:

* -inf — The path of the INF file to be dynamically installed.

* -rescan <enumer ator> — Rescan enumerator (ROOT, USB, etc.) for hardware changes.
Only one enumerator can be specified.

 -silent — Suppress display of all messages (optional).
» -log <logfile> — Log all messages to the specified file (optional).

» -compat — Usethetraditional SetupDi API instead of the newer Driver Install Frameworks
API (DIFXAPI).

* ACTIONS
wdr eg supports several basic ACTIONS:

* install —Installsthe INF file, copies the relevant files to their target locations, and
dynamically loads the driver specified in the INF file name by replacing the older version (if
needed).

© Jungo Ltd. 2005-2010 78

Dynamically Loading Your Driver

» preinstall Pre-installsthe INF file for a non-present device.

 uninstall — Removes your driver from the registry so that it will not load on next boot (see
note below).

» enable— Enablesyour driver.

+ disable— Disablesyour driver, i.e., dynamically unloadsit, but the driver will reload after
system boot (see note below).

To successfully disable/uninstall your driver, make sure that there are no open handles to
the WinDriver service (windrvr6.sys or your renamed driver (refer to section 12.2), and
that there are no connected and enabled Plug-and-Play devicesthat are registered with this
service.

10.2.3 Dynamically Loading/Unloading
windrvr6é.sys INF Files

When using WinDriver, you develop a user-mode application that controls and accesses your
hardware by using the generic windrvr6.sys driver (WinDriver's kernel module). Therefore, you
might want to dynamically load and unload the driver windrvr 6.sys —which you can do using
wdreg.

In addition, in WDM -compatible operating systems, you also need to dynamically load INF files
for your Plug-and-Play devices. wdreg enables you to do so automatically on Windows 7/Vista/
Server 2008/Server 2003/X P/2000.

This section includes wdr eg usage examples, which are based on the detailed description of

wdr eg contained in the previous section.

» To start windrvr6.sys on Windows 7/Vista/Server 2008/Server 2003/X P/2000:
wdreg -inf <path to windrvr6.inf> install
This command loads windrvr 6.inf and starts the windr vr 6.sys service.

» Toload an INF file named device.inf, located in the c:\tmp directory:
wdreg -inf c:\tnp\device.inf install

You canreplacethei nst al | option in the example above with pr ei nst al | to pre-install
the device INF file for adevice that is not currently connected to the PC.

If theinstallation failswith an ERROR_FI LE_NOT _FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY LOCAL_MACHI NE\ SOFTWARE

\' M crosof t\ Wndows\ Cur r ent Ver si on. Thisregistry key isrequired by Windows
Plug-and-Play in order to properly install driversusing INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

To unload the driver/INF file, use the same commands, but smply replacei nst al | inthe
examples above withuni nst al | .

© Jungo Ltd. 2005-2010 79

Dynamically Loading Your Driver

10.3 Linux Dynamic Driver Loading

The following commands must be executed with root privileges.

* Todynamicaly load WinDriver, run the following command:
<path to wdreg> wi ndrvr6

* Todynamicaly unload WinDriver, run the following command:
/ sbi n/ nodprobe -r w ndrvr6.

wdreg is provided in the WinDriver/util directory.

- Toautomatically load WinDriver on each boot, add the following to the target Linux boot

7 file (fetc/rc.dirclocal):
<path to wdreg> w ndrvr6

10.4 Windows Mobile Dynamic Driver
Loading

The WinDriver\redist\Windows_Mobile 5 ARMV4l\wdreg.exe utility can be used for loading
the WinDriver kernel module (windrvr 6.dll) on a Windows Mobile platform.

On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be reloaded
after boot. To load WinDriver on the target Windows Mobile platform every timethe OSis
started, copy the wdreg.exe utility to the Windows\StartUp directory on the target PC.

LN

The source code of the Windows Mobile wdreg.exe utility is available under the WinDriver
\samples\wince_install\wdreg directory on the development PC.

© Jungo Ltd. 2005-2010 80

Chapter 11
Distributing Your Driver

» Read this chapter in the final stages of driver development. It will guide you in preparing
U your driver for distribution.

11.1 Getting a Valid License for WinDriver

To purchase aWinDriver license, complete the WinDriver/docs/or der .pdf order form and fax or
email it to Jungo. Complete details are included on the order form. Alternatively, you can order
WinDriver on-line. For more details, visit our web site: http://www.jungo.com.

In order to install the registered version of WinDriver and to activate driver code that you
have developed during the evaluation period on the development machine, please follow the
installation instructions found in section 4.2 above.

11.2 Windows Driver Distribution

 All references to wdr eg in this section can be replaced with wdreg_gui, which offers
the same functionality as wdreg but displays GUI messages instead of console-mode

messages.

* If you have renamed the WinDriver kernel module (windrvr6.sys), as explained in
section 12.2, replace the relevant windrvr 6 references with the name of your driver,
and replace references to the WinDriver\redist directory with the path to the directory
that contains your modified installation files. For example, when using the generated
DriverWizard renamed driver filesfor your driver project, as explained in section 12.2.1,
you can replace references to the WinDriver\redist directory with referencesto the
generated xxx_installation\redist directory (where xxx is the name of your generated
driver project).

* If you have created new INF and/or catalog files for your driver, replace the referencesto
the original WinDriver INF files and/or to the wd1020.cat catal og file with the names of
your new files (see information in sections 12.2.1 and 12.3.2 regarding renaming of the
original files).

* If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare a separate driver installation package for each platform. The required files for
each package are located within the WinDriver installation directory for the respective
platform.

© Jungo Ltd. 2005-2010 81

http://www.jungo.com

Distributing Your Driver

Distributing the driver you created is a multi-step process. First, create a distribution package that
includes all the files required for the installation of the driver on the target computer. Second,
install the driver on the target machine. Thisinvolves installing windrvr 6.sys and windrvr 6.inf,
and installing the specific INF file for your device.

Finally, you need to install and execute the hardware control application that you devel oped with
WinDriver. These steps can be performed using wdr eg utility.

11.2.1 Preparing the Distribution Package

Y our distribution package should include the following files:

 Your hardware control application/DLL.

* windrvr6.sys.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

* windrvr6.inf.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

* wd1020.cat.
Get thisfile from the WinDriver\redist directory of the WinDriver package.

» wdapi1020.dll (for distribution of 32-bit binariesto 32-bit target platforms or for distribution
of 64-bit binariesto 64-bit platforms) or wdapi1020 32.dll (for distribution of 32-bit binaries
to 64-bit platforms[A.2].

Get thisfile from the WinDriver\redist directory of the WinDriver package.

« difxapi.dll (required by the wdreg.exe utility [10.2.2]).
Get thisfile from the WinDriver\util directory of the WinDriver package.

* AnINFfilefor your device.
Y ou can generate this file with DriverWizard, as explained in section 5.2.

11.2.2 Installing Your Driver on the Target
Computer

Driver installation on Windows requires administrator privileges.

Follow the instructions below in the order specified to properly install your driver on the target
computer:

* Preliminary Steps:

» Tosuccessfully install your driver, make sure that there are no open handlesto the
WinDriver service (windrvr6.sys or your renamed driver (refer to section 12.2), and
that there are no connected and enabled Plug-and-Play devices that are registered with

© Jungo Ltd. 2005-2010 82

Distributing Your Driver

this service. Thisisrelevant, for example, when upgrading the version of the driver (for
WinDriver v6.0.0 and above; earlier versions used a different module name). If the serviceis
being used, attempts to install the new driver using wdreg will fail.

Y ou can disable or uninstall connected devices from the Device Manager (Properties |
Disable/Uninstall) or using wdr eg, or otherwise physically disconnect the device(s) from
the PC.

* On Windows 2000, remove any INF file(s) previously installed for your device (such as
files created with an earlier version of WinDriver) from the % windir %\inf directory before
installing the new INF file that you created for the device. Thiswill prevent Windows from
automatically detecting and installing an obsolete file. Y ou can search the INF directory for
the device's vendor ID and device/product 1D to locate the file(s) associated with the device.

e |nstall WinDriver'skernel module:

1. Copy windrvr6.sys, windrvr6.inf, and wd1020.cat to the same directory.

wd1020.cat contains the driver's Authenticode digital signature. To maintain the
signature's validity this file must be found in the same installation directory as the
windrvr6.inf file. If you select to distribute the catalog and INF files in different
directories, or make any changes to these files or to any other files referred to by the
catalog file (such as windrvr6.sys), you will need to do either of the following:

» Create anew catalog file and re-sign the driver using thisfile.

» Comment-out or remove the following line in the windrvr 6.inf file:
Cat al ogFi | e=wd1020. cat
and do not include the catalog file in your driver distribution. However, note that
this option invalidates the driver's digital signature.

For more information regarding driver digital signing and certification and the
signing of your WinDriver-based driver, refer to section 12.3 of the manual.

2. Usethe utility wdreg to install WinDriver's kernel module on the target computer:
wdreg -inf <path to windrvr6.inf> install

For example, if windrvr6.inf and windrvr6.sys arein the d:\MyDevice directory on the
target computer, the command should be:
wdreg -inf d:\MyDevice\w ndrvr6.inf install

Y ou can find the executable of wdreg in the WinDriver package under the WinDriver\util
directory. For ageneral description of this utility and its usage, please refer to Chapter 10.

, * wdregisdependent on the difxapi.dil DLL.

» wdregisaninteractive utility. If it fails, it will display a message instructing the
user how to overcome the problem. In some cases the user may be asked to reboot
the compulter.

© Jungo Ltd. 2005-2010 83

Distributing Your Driver

@ When distributing your driver, take care not to overwrite a newer version of

windrvr 6.sys with an older version of the file in Windows drivers directory
(Yowindir % \system32\drivers). Y ou should configure your installation program (if
you are using one) or your INF file so that the installer automatically compares the
time stamp on these two files and does not overwrite a newer version with an older
one.

 Install theINF filefor your device (registering your Plug-and-Play device with
windrvr6.sys):

Run the utility wdreg with thei nst al | command to automatically install the INF file and
update Windows Device Manager:
wdreg -inf <path to your INF file> install

Y ou can also use the wdreg utility'spr ei nst al | command to pre-install an INF file for a
device that is not currently connected to the PC:
wdreg -inf <path to your INF file> preinstall

"
1

« OnWindows 2000, if another INF file was previoudly installed for the device,
which registered the device to work with the Plug-and-Play driver used in earlier
versions of WinDriver remove any INF file(s) for the device from the % windir %
\inf directory before installing the new INF file that you created. Thiswill prevent
Windows from automatically detecting and installing an obsolete file. Y ou can search
the INF directory for the device's vendor 1D and device/product ID to locate the file(s)
associated with the device.

« |If theinstallation fails with an ERROR_FI LE_NOT_FOUND error, inspect the
Windows registry to seeif the RunOnce key existsin HKEY_ _LOCAL_NMACHI NE
\ SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on. Thisregistry key is
required by Windows Plug-and-Play in order to properly install driversusing INF files.
If the RunOnce key ismissing, create it; then try installing the INF file again.

« Install wdapi1020.dll:
If your hardware control application/DLL uses wdapi1020.dll (asisthe case for the sample
and generated DriverWizard WinDriver projects), copy this DLL to the target's % windir %
\system32 directory.
If you are distributing a 32-bit application/DLL to atarget 64-bit platform [A.2], rename
wdapi1020_32.dIl in your distribution package to wdapi1020.dll, and copy the renamed file to
the target's % windir % \sysW OW 64 directory.

If you attempt to write a 32-bit installation program that installs a 64-bit program, and
therefore copies the 64-bit wdapi1020.dll DLL to the % windir % \system32 directory,
you may find that the file is actually copied to the 32-bit % windir % \sysw OW 64
directory. The reason for thisis that Windows x64 platforms trans ate references to 64-
bit directories from 32-bit commands into references to 32-bit directories. Y ou can avoid
the problem by using 64-bit commands to perform the necessary installation steps from

© Jungo Ltd. 2005-2010 84

Distributing Your Driver

your 32-bit installation program. The system64.exe program, provided in the WinDriver
\redist directory of the Windows x64 WinDriver distributions, enables you to do this.

« Install your hardware control application/DLL: Copy your hardware control application/
DLL to thetarget and run it!

11.3 Windows CE Driver Distribution

11.3.1 Distribution to New Windows CE Platforms

The following instructions apply to platform developers who build Windows CE kernel
images using Windows CE Platform Builder or using MSDEV 2005/2008 with the
Windows CE 6.0 plugin. The instructions use the notation 'Windows CE I DE' to refer to
either of these platforms.

To distribute the driver you developed with WinDriver to a new target Windows CE platform,
follow these steps.

1. Modify the project registry file to add an entry for your target device:

* If you select to use the WinDriver component (refer to step 2), modify WinDriver
\samples\wince_instal\<TARGET_CPU>\WinDriver.reg (e.g., WinDriver\samples
\wince_instalNARMV4I\WinDriver .reg).

» Otherwise, modify WinDriver\samples\wince_install\project_wd.reg.

2. You can smplify the driver integration into your Windows CE platform by following the
procedure described in this step before the Sysgen platform compilation stage.

Note:

» The procedure described in this step is relevant only for devel opers who use Windows CE
4.x-5.x with Platform Builder.
Developers who use Windows CE 6.x with MSDEV 2005/2008 should skip to the next
step (refer to step 3).

» This procedure provides a convenient method for integrating WinDriver into your
Windows CE platform. If you select not to use this method, you will need to perform the
manual integration steps described in step 4 below, after the Sysgen stage.

» The procedure described in this step also adds the WinDriver kernel module
(windrvr6.dll) to your OSimage. Thisis a necessary step if you want the WinDriver CE
kerndl file (windrvr6.dll) to be a permanent part of the Windows CE image (NK.BIN),
which isthe case if you select to transfer the file to your target platform using a floppy
disk. However, if you prefer to have the file windrvr 6.dll loaded on demand viathe
CESH/PPSH services, you need to perform the manual integration method described in
step 4 instead of performing the procedure described in the present step.

© Jungo Ltd. 2005-2010 85

Distributing Your Driver

a. Run the Windows CE IDE and open your platform.

b. From the File menu select Manage Catalog Items.... and then click the Import... button
and select the WinDriver .cec file from the relevant WinDriver\samples\wince install
\<TARGET_CPU> directory (e.g., WinDriver\samples\wince_instalNlARMV4I). This
will add aWinDriver component to the Platform Builder Catalog.

c. Inthe Catalog view, right-click the mouse on the WinDriver Component node in the
Third Party tree and select Add to OS design.

3. Compile your Windows CE platform (Sysgen stage).

4. If you did not perform the procedure described in step 2 above, perform the following steps
after the Sysgen stage in order to manually integrate the driver into your platform. Note: If
you followed the procedure described in step 2, skip this step and go directly to step 5.

a. Run the Windows CE IDE and open your platform.
b. Select Open Release Directory from the Build menu.

c. Copy the WinDriver CE kernel file—WinDriver\redist\<sTARGET_CPU\windrvr6.dll
—tothe% FLATRELEASEDIR% sub-directory on the target development platform
(should be the current directory in the new command window).

d. Append the contents of the project_wd.reg file in the WinDriver\samples
\wince _install directory to the project.reg fileinthe% FLATRELEASEDIR% sub-
directory.

e. Append the contents of the project_wd.bib filein the WinDriver\samples
\wince _install directory to the project.bib fileinthe% FLATRELEASEDIR% sub-
directory.

This step is only necessary if you want the WinDriver CE kernel file (windrvr6.dll) to
be a permanent part of the Windows CE image (NK.BIN), which isthe case if you select
to transfer the file to your target platform using a floppy disk. If you prefer to have the
filewindrvr6.dll loaded on demand via the CESH/PPSH services, you do not need to
carry out this step until you build a permanent kernel.

5. Select Make Run-Time Image from the Build menu and name the new image NK.BIN.

6. Download your new kernel to the target platform and initialize it either by selecting
Download/I nitialize from the Tar get menu or by using a floppy disk.

7. Restart your target CE platform. The WinDriver CE kernel will automatically load.
8. Install your hardware control application/DLL on the target.

If your hardware control application/DLL uses wdapi1020.dll (asisthe case for the sample
and generated DriverWizard WinDriver projects), also copy thisDLL from the WinDriver

© Jungo Ltd. 2005-2010 86

Distributing Your Driver

\redist\WINCE\<TARGET _CPU> directory on the Windows host development PC to the
target's Windows directory.

11.3.2 Distribution to Windows CE Computers

Unless otherwise specified, 'Windows CE' referencesin this section include all supported
Windows CE platforms, including Windows Mobile.

1. Copy WinDriver's kernel module —windrvr6.dll —from the WinDriver\redist\WINCE
\<TARGET _CPU> directory on the Windows host development PC to the Windows
directory on your target Windows CE platform.

2. Add WinDriver to the list of device drivers Windows CE loads on boot:

» Modify the registry according to the entries documented in the file WinDriver\samples
\wince _install\project_wd.reg. This can be done using the Windows CE Pocket Registry
Editor on the hand-held CE computer or by using the Remote CE Registry Editor Tool
supplied with MS eMbedded Visual C++ (Windows CE 4.x —5.x) / MSDEV .NET
2005/2008 (Windows Mobile or Windows CE 6.x). Note that in order to use the Remote
CE Registry Editor tool you will need to have Windows CE Servicesinstalled on your
Windows host platform.

* On Windows Mobile the operating system's security scheme prevents the loading of
unsigned drivers at boot time, therefore the WinDriver kernel module has to be reloaded
after boot. To load WinDriver on the target Windows Mobile platform every time the OSis
started, copy the WinDriver\redist\Windows Mobile 5 ARMV4l\wdreg.exe utility to
the Windows\StartUp directory on the target PC.

3. Restart your target CE computer. The WinDriver CE kernel will automatically load. Y ou will
have to do awarm reset rather than just suspend/resume (use the reset or power button on
your target CE computer).

4. Install your hardware control application/DLL on the target.
If your hardware control application/DLL uses wdapi1020.dll (asisthe case for the sample
and generated DriverWizard WinDriver projects), also copy thisDLL from the WinDriver
\redist\WINCE\<TARGET _CPU> directory on the development PC to the target's
Windows directory.

© Jungo Ltd. 2005-2010 87

Distributing Your Driver

11.4 Linux Driver Distribution

» TheLinux kernel is continuously under development and kernel data structures are

subject to frequent changes. To support such a dynamic development environment and
still have kernel stability, the Linux kernel developers decided that kernel modules

must be compiled with header filesidentical to those with which the kernel itself was
compiled. They enforce this by including a version number in the kernel header files that
is checked against the version number encoded into the kernel. Thisforces Linux driver
developers to facilitate recompilation of their driver based on the target system's kernel
version.

If you have renamed the WinDriver driver modules (windrvr6.0/.ko and
windrvr6_usb.o/.ko), as explained in section 12.2, replace windr vr 6 references with
your new driver name, and replace references to the WinDriver redist, lib and include
directories with the path to your copy of the relevant directory. For example, when using
the generated DriverWizard renamed driver files for your driver project, as explained

in section 12.2.2, you can replace references to the WinDriver/redist directory with
references to the generated xxx_installation/redist directory (where xxx is the name of
your generated driver project).

If you wish to distribute drivers for both 32-bit and 64-bit target platforms, you must
prepare a separate driver installation package for each platform. The required files for
each package are located within the WinDriver installation directory for the respective
platform.

11.4.1 Kernel Modules

WinDriver uses two kernel modules: the main WinDriver driver module, which implements the
WinDriver APl —windrvr6.0/.ko —and a driver module that implements the USB functionality
—windrvr6_ush.o/.ko. Since these are kernel modules, they must be recompiled for every kernel
version on which they are loaded.

To facilitate recompilation, we supply the following components, which are all provided under
the WinDriver/redist directory, unless specified otherwise. Y ou need to distribute these
components along with your driver source/object code.

windrvr_gcc v2.a, windrvr_gcc_v3.aand windrvr_gcc v3 regparm.a: compiled object
code for the WinDriver kernel module. windrvr_gcc v2.aisused for kernels compiled

with GCC v2.x.x, and windrvr_gcc _v3.aisused for kernels compiled with GCC v3.x.X.
windrvr_gcc v3 regparm.ais used for kernels compiled with GCC v3.x.x with the regparm

linux_wrappers.c/h: wrapper library source code files that bind the WinDriver kernel module
to the Linux kernel.

linux_common.h, windrvr.h, wd_ver.h, windrvr_usb.h, and wdusb_interface.h: header
filesrequired for building the WinDriver kernel module on the target.

© Jungo Ltd. 2005-2010 88

Distributing Your Driver

» wdusb_linux.c: used by WinDriver to utilize the USB stack.

» configure: aconfiguration script that creates makefile from makefile.in and runs
configurewd and configure.usb (see below).

If the Linux kernel isversion 2.6.26 or higher, configur e generates makefiles that use
kbui | d to compile the kernel modules. Y ou can force the use of kbuild on earlier
versions of Linux, by passing the - - enabl e- kbui | d flag to configure. Thefiles that
use kbui | d include .kbuild in their names.

 configurewd: aconfiguration script that creates makefile.wd[.kbuild] from
makefilewd[.kbuild].in.

 configure.ush: a configuration script that creates makefile.usb[.kbuild] from
makefile.usb[.kbuild].in.

* makefilein: atemplate for the main WinDriver makefile, which compiles and installs
WinDriver by making makefilewd[.kbuild] and makefile.usb[.kbuild].

» makefilewd.in: atemplate for a makefile that compiles and installs the main WinDriver kernel
module.

» makefilewd.kbuild.in: atemplate for a makefile that compiles the main WinDriver kernel
module using kbui | d, and then installs the module.

» makefile.usb.in: atemplate for a makefile that compiles and installs the USB kernel module
(windrvr6_usb.o/.ko).

» makefile.usb.kbuild.in: atemplate for a makefile that compiles the USB kernel module using
kbui | d, and then installs the module.

e setup_inst_dir: ascript to install your driver modules.

» wdreg (provided under the WinDriver/util directory): a script to load the WinDriver kernel
driver modules (see section 10.3).
Note: The setup_inst_dir script uses wdr eg to load the driver modules.

11.4.2 User-Mode Hardware Control Application/
Shared Objects

Copy the hardware control application/shared object that you created with WinDriver to the
target.

If your hardware control application/shared object uses libwdapi1020.so (asis the case for the
sample and generated DriverWizard WinDriver projects), copy this file from the WinDriver/lib
directory on the devel opment machine to the target's library directory —/usr/lib for 32-bit x86
targets, or /usr/lib64 for 64-bit x86 targets.

© Jungo Ltd. 2005-2010 89

Distributing Your Driver

If you are distributing a 32-bit application/shared object to atarget 64-bit platform [A.2] — copy
libwdapi1020 32.so from the WinDriver/lib directory to your distribution package, rename the
copy to libwdapi1020.s0, and copy the renamed file to the target's /usr/lib directory.

Since your hardware control application/shared object does not have to be matched against the
kernel version number, you are free to distribute it as binary code (if you wish to protect your
source code from unauthorized copying) or as source code. Note that under the license agreement
with Jungo you may not distribute the source code of the libwdapi1020.s0 shared object.

@ If you select to distribute your source code, make sure you do not distribute your WinDriver
license string, which is used in the code.

11.4.3 Installation Script

We suggest that you supply an installation shell script to automate the build and installation
processes on the target.

© Jungo Ltd. 2005-2010 90

Chapter 12
Driver Installation — Advanced

Issues

12.1 Windows INF Files

Device information (INF) files are text files that provide information used by the Plug-and-Play
mechanism on Windows 7 / Vista/ Server 2008 / Server 2003/ XP/ 2000/ Me/ 98 to install
software that supports a given hardware device. INF files are required for hardware that identifies
itself, such as USB and PCI. An INF file includes all necessary information about a device and
the files to be installed. When hardware manufacturers introduce new products, they must create
INF filesto explicitly define the resources and files required for each class of device.

In some cases, the INF file for your specific device is supplied by the operating system. In
other cases, you will need to create an INF file for your device. WinDriver's DriverWizard can
generate a specific INF file for your device. The INF fileis used to notify the operating system
that WinDriver now handles the selected device.

For USB devices, you will not be able to access the device with WinDriver (either from
DriverWizard or from the code) without first registering the device to work with windrvr 6.sys.
Thisisdone by installing an INF file for the device. DriverWizard will offer to automatically
generate the INF file for your device.

Y ou can use DriverWizard to generate the INF file on the development machine — as explained

in 5.2 of the manual — and then install the INF file on any machine to which you distribute the
driver, as explained in the following sections.

12.1.1 Why Should | Create an INF File?

* To bind the WinDriver kernel module to a specific USB device.
» Tooverride the existing driver (if any).

» To enable WinDriver applications and DriverWizard to access a USB device.

© Jungo Ltd. 2005-2010 91

Driver Installation — Advanced Issues

12.1.2 How Do | Install an INF File When No Driver
Exists?

Y ou must have administrative privilegesin order to install an INF file.

Y ou can use the wdreg utility with thei nst al | command to automatically install the INF file:
wdreg -inf <path to the INF file> install
(For more information, refer to 10.2.2 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to section 5.2).

It isalso possible to install the INF file manually, using either of the following methods:

* Windows Found New Hardware Wizard: Thiswizard is activated when the deviceis plugged
inor, if the device was already connected, when scanning for hardware changes from the
Device Manager.

* Windows Add/Remove Har dware Wizar d: Right-click the mouse on My Computer, select
Properties, choose the Har dwar e tab and click on Hardware Wizard....

* Windows Upgrade Device Driver Wizard: Locate the devicein the Device Manager devices
list and select the Update Driver ... option from the right-click mouse menu or from the Device
Manager's Action menu.

In al the manual installation methods above you will need to point Windows to the location of the
relevant INF file during the installation.

We recommend using the wdr eg utility to install the INF file automatically, instead of installing it
manually.

If theinstallation failswith an ERROR_FI LE_NOT _FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL_MACHI NE\ SOFTWARE

\' M cr osof t\ Wndows\ Curr ent Ver si on. Thisregistry key isrequired by Windows
Plug-and-Play in order to properly install driversusing INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

12.1.3 How Do | Replace an Existing Driver Using
the INF File?

; Youmust have administrative privilegesin order to replace adriver.

1. On Windows 2000, if you wish to upgrade the driver for USB devices that have been
registered to work with earlier versions of WinDriver, we recommend that you first delete
from the Windows INF directory (\windir\inf) any previous INF files for the device, to

© Jungo Ltd. 2005-2010 92

Driver Installation — Advanced Issues

prevent Windows from installing an old INF file in place of the new file that you created.
Look for files containing your device's vendor and device IDs and del ete them.

. Install your INF file:

Y ou can use the wdreg utility with thei nst al | command to automatically install the INF
file

wdreg -inf <path to INF file> install

(For more information, refer to 10.2.2 of the manual.)

On the development PC, you can have the INF file automatically installed when selecting to
generate the INF file with DriverWizard, by checking the Automatically Install the INF file
option in the DriverWizard's INF generation window (refer to section 5.2).

It isalso possibleto install the INF file manually, using either of the following methods:

* Windows Found New Hardware Wizard: Thiswizard is activated when the deviceis
plugged in or, if the device was already connected, when scanning for hardware changes
from the Device Manager.

* Windows Add/Remove Hardwar e Wizard: Right-click on My Computer, select
Properties, choose the Har dwar e tab and click on Hardware Wizard....

» Windows Upgrade Device Driver Wizard: Locate the device in the Device M anager
deviceslist and select the Update Driver ... option from the right-click mouse menu or
from the Device Manager's Action menu.

In the manual installation methods above you will need to point Windows to the location of
the relevant INF file during the installation. If the installation wizard offersto install an INF
file other than the one you have generated, select I nstall one of the other drivers and choose
your specific INF file from the list.

We recommend using the wdr eg utility to install the INF file automatically, instead of
installing it manually.

If the installation fails with an ERROR_FI LE_NOT_FOUND error, inspect the Windows
registry to seeif the RunOnce key existsin HKEY_LOCAL _MACHI NE\ SOFTWARE

\ M cr osof t\ Wndows\ Curr ent Ver si on. Thisregistry key is required by Windows
Plug-and-Play in order to properly install drivers using INF files. If the RunOnce key is
missing, create it; then try installing the INF file again.

12.2 Renaming the WinDriver Kernel Driver

The WinDriver APIs are implemented within the WinDriver kernel driver module
(windrvr6.sys/.dll/.ol.ko — depending on the OS), which provides the main driver functionality
and enables you to code your specific driver logic from the user mode [1.5].

On Windows and Linux you can change the name of the WinDriver kernel module to your
preferred driver name, and then distribute the renamed driver instead of default kernel module

© Jungo Ltd. 2005-2010 93

Driver Installation — Advanced Issues

—windrvr6.sys.0/.ko. The following sections explain how to rename the driver for each of the
supported operating systems.

% A renamed WinDriver kernel driver can be installed on the same machine as the original

kernel module.
Y ou can aso install multiple renamed WinDriver drivers on the same machine,
simultaneously.

Le 3)

Try to give your driver aunique name in order to avoid a potenial conflict with other drivers
on the target machine on which your driver will be installed.

12.2.1 Windows Driver Renaming

DriverWizard automates most of the work of renaming the Windows WinDriver kernel driver —
windrvr6.sys.

Renaming the signed windrvr 6.sys driver nullifiesits signature. In such cases you

can select either to sign your new driver, or to distribute an unsigned driver. For more
information on driver signing and certification refer to 12.3. For guidelines for signing and
certifying your renamed driver, refer to section 12.3.2.

References to xxx in this section should be replaced with the name of your generated

‘-’ DriverWizard driver project.

To rename your Windows WinDriver kernel driver, follow these steps:

1

Use the DriverWizard utility to generate driver code for your hardware on Windows (refer
to section 5.2, step 7), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

 redist directory:

» xxx.sys—Your new driver, which is actually arenamed copy of the windrvr 6.sys
driver. Note: The properties of the generated driver file (such asthefile's version,
company name, etc.) are identical to the properties of the original windrvr6.sysdriver.
Y ou can rebuild the driver with new properties using the files from the generated
xXX_installation sys directory, as explained below.

o xxx_driver.inf — A modified version of the windrvr6.inf file, which will be used to
install your new xxx.sys driver.
Y ou can make additional modificationsto thisfile, if you wish —namely, changing the
string definitions and/or comments in thefile.

» xxx_device.inf — A modified version of the standard generated DriverWizard INF file
for your device, which registers your device with your driver (Xxx.sys).
Y ou can make additional modifications to thisfile, if you wish, such as changing the
manufacturer or driver provider strings.

© Jungo Ltd. 2005-2010 94

Driver Installation — Advanced Issues

» wdapi1020.dll — A copy of the WinDriver API DLL. The DLL iscopied herein order to
simplify the driver distribution, allowing you to use the generated xxx\r edist directory
as the main installation directory for your driver, instead of the origina WinDriver
\redist directory.

» gysdirectory: Thisdirectory contains files for advanced users, who wish to change the
properties of their driver file.
Note: Changing the file's properties requires rebuilding of the driver module using the
Windows Driver Kit (WDK).
To modify the properties of your xxx.sys driver file:

1. Verify that the WDK isinstalled on your development PC, or elsewhere on its
network, and set the BASEDIR environment variable to point to the WDK installation
directory.

2. Modify the xxx.rc resources file in the generated sys directory in order to set different
driver file properties.

3. Rebuild the driver by running the following command:
ddk_rmake <0OS> <build node (free/checked)>
For example, to build arelease version of the driver for Windows XP:
ddk_make wi nxp free
Note: The ddk_make.bat utility is provided under the WinDriver\util directory,
and should be automatically identified by Windows when running the installation
command.

After rebuilding the xxx.sys driver, copy the new driver file to the generated
xxx_installation\redist directory.

2. Verify that your user-mode application callsthe WD_Dr i ver Nane() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications aready include
acall to this function, but with the default driver name (windrvr6), so all you needtodois
replace the driver name that is passed to the function in the code with your new driver name.

3. Verify that your user-mode driver project is built with the
WD DRI VER _NAME CHANGE preprocessor flag (e.g., - DAD_DRI VER_NAME CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

4. Install your new driver by following the instructionsin section 11.2 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution.

© Jungo Ltd. 2005-2010 95

Driver Installation — Advanced Issues

12.2.2 Linux Driver Renaming

DriverWizard automates most of the work of renaming the Linux WinDriver kernel driver —
windrvr 6.0/ .ko.

When renaming windrvr 6.0/.ko, the windrvr6_usb.o/.ko WinDriver USB Linux GPL
driver is automatically renamed to <new driver name>_usb.o/.ko.

"
1

, References to xxx in this section should be replaced with the name of your generated
' Driverwizard driver project.

To rename your Linux WinDriver kernel driver, follow these steps:

1. Usethe DriverWizard utility to generate driver code for your hardware on Linux (refer to
section 5.2, step 7), using your preferred driver name (xxx) as the name of the generated
driver project. The generated project directory (xxx) will include an xxx_installation
directory with the following files and directories:

 redist directory: Thisdirectory contains copies of the files from the original WinDriver/
redist installation directory, but with the required modifications for building your
xxX.0/.ko driver instead of windrvr6.0/.ko.

* lib and include directories: Copies of the library and include directories from the original
WinDriver distribution. These copies are created since the supported Linux WinDriver
kernel driver build method relies on the existence of these directories directly under the
same parent directory astheredist directory.

2. Verify that your user-mode application callsthe WD_Dr i ver Name() function [B.1] with
your new driver name before calling any other WinDriver function.
Note that the sample and generated DriverWizard WinDriver applications aready include
acall to this function, but with the default driver name (windrvr6), so all you needto do is
replace the driver name that is passed to the function in the code with your new driver name.

3. Verify that your user-mode driver project is built with the
WD DRI VER_NANME_CHANGE preprocessor flag (- DWD_DRI VER _NANME _CHANGE).
Note: The sample and generated DriverWizard WinDriver kernel projects/makefiles already
set this preprocessor flag by default.

4. Install your new driver by following the instructions in section 11.4 of the manual, using the
modified files from the generated xxx_installation directory instead of the installation files
from the original WinDriver distribution.

As part of the installation, build your new kernel driver module(s) by following the
instructions in section 11.4.1, using the files from your new installation directory.

© Jungo Ltd. 2005-2010 96

Driver Installation — Advanced Issues

12.3 Digital Driver Signing and Certification
— Windows 7/Vista/Server 2008/Server 2003/
XP/2000

12.3.1 Overview

Before distributing your driver, you can digitally sign and/or certify it, either by submitting it to
the Microsoft Windows Logo Program, for certification and signature, or by having the driver
Authenticode signed.

Some Windows operating systems, such as Windows XP and below, do not require installed
driversto be digitally signed or certified. There are, however, advantages to getting your driver
digitally signed or fully certified, including the following:

 Driver installation on systems where installing unsigned drivers has been blocked

» Avoiding warnings during driver installation

* Full pre-installation of INF files [12.1] on Windows XP and higher

64-bit versions of Windows Vista and higher require Kernel-Mode Code Signing (KMCS) of
software that loads in kernel mode. This has the following implications for WinDriver-based

drivers:

» Driversthat areinstalled viaan INF file must be distributed together with a signed catalog file
(see detailsin section 12.3.2).

» Driversthat are not installed using an INF file must contain an embedded driver signature.

During driver development, you can configure Windows to temporarily alow the
installation of unsigned drivers.

For more information about digital driver signing and certification, see

 Driver Signing Requirements for Windows:
http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx.

» The Introduction to Code Sgning topic in the Microsoft Development Network (MSDN)
documentation.

* Digital Signatures for Kernel Modules on Systems Running Windows Vista and higher:
http://www.microsoft.com/whdc/winlogo/drvsign/kmsi gning.mspx.
This white paper contains information about kernel-mode code signing, test signing, and
disabling signature enforcement during devel opment.

© Jungo Ltd. 2005-2010 97

http://www.microsoft.com/whdc/winlogo/drvsign/drvsign.mspx
http://www.microsoft.com/whdc/winlogo/drvsign/kmsigning.mspx

Driver Installation — Advanced Issues

12.3.1.1 Authenticode Driver Signature

The Microsoft Authenticode mechanism verifies the authenticity of driver's provider. It allows
driver developers to include information about themselves and their code with their programs
through the use of digital signatures, and informs users of the driver that the driver's publisher is
participating in an infrastructure of trusted entities.

The Authenticode signature does not, however, guarantee the code's safety or functionality.

The WinDriver\redist\windrvr6.sys driver has an Authenticode digital signature.

12.3.1.2 WHQL Driver Certification

Microsoft's Windows Logo Program — http://www.microsoft.com/whdc/winlogo/default.mspx
—lays out procedures for submitting hardware and software modules, including drivers, for
Microsoft quality assurance tests. Passing the tests qualifies the hardware/software for Microsoft
certification, which verifies both the driver provider's authenticity and the driver's safety and
functionality.

Device drivers should be submitted for certification together with the hardware that they drive.
The driver and hardware are submitted to Microsoft's Windows Hardware Quality Labs (WHQL)
testing in order to receive digital signature and certification. This procedure verifies both the
driver's provider and its behavior.

#% Jungo's professional services unit provides a complete WHQL pre-certification service for
' Jungo-based drivers. Professional engineers efficiently perform all the required testsin the
Jungo WHQL test lab, relieving customers of the expense and stress of in-house testing.
Jungo prepares a WHQL submission package containing the test results, and deliversthe
package to the customer, ready for submission to Microsoft.
For more information, refer to http://www.jungo.com/st/whql_certification.html.

For detailed information regarding the WHQL certification process, refer to the following
Microsoft web pages:

* WHQL home page:
http://www.microsoft.com/whdc/whql/default.mspx

» WHQL Policies page:
http://www.microsoft.com/whdc/whql/policies/default. mspx

* Windows Quality Online Services (Winqual) home page:
https://winqual .microsoft.com/

* Winqual help:
https://winqual.microsoft.com/Help/

* WHQL tests, procedures and forms download page:
http://www.microsoft.com/whdc/whgl/WHQL dwn.mspx

* Windows Driver Kit (WDK):

© Jungo Ltd. 2005-2010 98

http://www.microsoft.com/whdc/winlogo/default.mspx
http://www.jungo.com/st/whql_certification.html
http://www.microsoft.com/whdc/whql/default.mspx
http://www.microsoft.com/whdc/whql/policies/default.mspx
https://winqual.microsoft.com/
https://winqual.microsoft.com/Help/
http://www.microsoft.com/whdc/whql/WHQLdwn.mspx

Driver Installation — Advanced Issues

http://www.microsoft.com/whdc/devtool s‘wdk/default.mspx

* Driver Test Manager (DTM):
http://www.microsoft.com/whdc/DevT ool SWDK/DTM.mspx

; Note: Some of the links require Windows Internet Explorer.

12.3.2 Driver Signing and Certification of
WinDriver-Based Drivers

Asindicated above [12.3.1.1], The WinDriver\redist\windrvr 6.sys driver has an Authenticode
signature. Since WinDriver's kernel module (windrvr 6.sys) is ageneric driver, which can be used
asadriver for different types of hardware devices, it cannot be submitted as a stand-alone driver
for WHQL certification. However, once you have used WinDriver to develop a Windows 7 /
Vista/ Server 2008 / Server 2003 / XP/ 2000 driver for your selected hardware, you can submit
both the hardware and driver for Microsoft WHQL certification, as explained below.

The driver certification and signature procedures — either via Authenticode or WHQL — require
the creation of a catalog file for the driver. Thisfileis asort of hash, which describes other files.
The signed windrvr 6.sys driver is provided with a matching catalog file — WinDriver\redist
\wd1020.cat. Thisfileisassigned to the Cat al ogFi | e entry in the windrvr 6.inf file (provided
aswell intheredist directory). Thisentry is used to inform Windows of the driver's signature and
the relevant catalog file during the driver'sinstallation.

When the name, contents, or even the date of the files described in adriver's catalog fileis
modified, the catalog file, and consequently the driver signature associated with it, become
invalid. Therefore, if you select to rename the windrvr 6.sys driver [12.2] and/or the related
windrvr6.inf file, the wd1020.cat catalog file and the related driver signature will become
invalid.

In addition, when using WinDriver to develop adriver for your Plug-and-Play device, you
normally also create a device-specific INF file that registers your device to work with the
windrvr6.sys driver module (or arenamed version of thisdriver). Since thisINF fileis created
at your site, for your specific hardware, it is not referenced from the wd1020.cat catalog file and
cannot be signed by Jungo a priori.

When renaming windrvr 6.sys and/or creating a device-specific INF file for your device, you
have two alternative options regarding your driver's digital signing:

» Donot digitally sign your driver. If you select this option, remove or comment-out the
reference to the wd1020.cat file from the windrvr6.inf file (or your renamed version of this
file).

» Submit your driver for WHQL certification or have it Authenticode signed.
Note that while renaming WinDriver\redist\windrvr 6.sys nullifies the driver's digital
signature, the driver is still WHQL-compliant and can therefore be submitted for WHQL
testing.

© Jungo Ltd. 2005-2010 99

http://www.microsoft.com/whdc/devtools/wdk/default.mspx
http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

Driver Installation — Advanced Issues

To digitally sign/certify your driver, follow these steps:

» Create anew catalog file for your driver, as explained in Microsoft's WHQL documentation.
The new file should reference both windrvr 6.sys (or your renamed driver) and any INF files
used in your driver'sinstallation.

» Assign the name of your new catalog file to the Cat al ogFi | e entry in your driver's
INF file(s). (You can either change the Cat al ogFi | e entry in thewindrvr6.inf fileto
refer to your new catalog file, and add a similar entry in your device-specific INF file; or
incorporate both windrvr 6.inf and your device INF fileinto asingle INF file that contains
such aCat al ogFi | e entry).

* If you wish to submit your driver for WHQL certification, refer to the additional guidelines
insection 12.3.2.1.

 Submit your driver for WHQL certification or for an Authenticode signature.

Note that many WinDriver customers have already successfully digitally signed and certified
their WinDriver-based drivers.

12.3.2.1 WHQL DTM Test Notes

Asindicated in the WHQL documentation, before submitting the driver for testing you need to
download Microsoft's Driver Test Manager (DTM) (http://www.microsoft.com/whdc/DevTools/
WDK/DTM.mspx) and run the relevant tests for your hardware/software. After you have verified
that you can successfully passthe DTM tests, create the required logs package and proceed
according to Microsoft's documentation.

When running the DTM tests, note the following:

» The DTM test class for WinDriver-based drivers should be Unclassified — Universal Device.

» TheDriver Verifier test isapplied to al unsigned drivers found on the test machine. It is
therefore important to try and minimize the number of unsigned driversinstalled on the test PC

(apart from the test driver —windrvr 6.sys).

» The USB Selective Suspend test requires that the depth of the under-test USB device in the
USB devicestreeis at least one external hub and no more than two external hubs deep.

» The ACPI Stresstest requires that the ACPI settings in the BIOS support the S3 power state.
» Verify that the/ PAE switch is added to the boot flagsin the PC's boot.ini file.
» Before submitting the file for certification you need to create a new catalog file, which lists

your driver and specific INF file(s), and refer to this catalog file from your INF file(s), as
explained above [12.3.2].

© Jungo Ltd. 2005-2010 100

http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx
http://www.microsoft.com/whdc/DevTools/WDK/DTM.mspx

Driver Installation — Advanced Issues

12.4 Windows XP Embedded WinDriver
Component

When creating a Windows X P Embedded image using the Target Designer tool from Microsoft's
Windows Embedded Studio, you can select the components that you wish to add to your image.
The added components will be installed automatically during the first boot on the Windows XP
Embedded target on which the image is loaded.

To automatically install the required WinDriver files — such as the windrvr 6.inf file and the
WinDriver kernel driver that it installs (windrvr 6.sys), your device INF file, and the WinDriver
API DLL (wdapi1020.dll) —on Windows X P Embedded platforms, you can create arelevant
WinDriver component and add it to your Windows X P Embedded image.

WinDriver simplifies thistask for you by providing you with a ready-made component:
WinDriver\redist\xp_embedded\wd_component\windriver.sd.

To use the provided component, follow the steps below.

The provided windriver.sld component relies on the existence of awd_files directory
in the same directory that holds the component. Therefore, do not rename the provided
WinDriver\redist\xp_embedded\wd_component\wd_files directory or modify its
contents, unless instructed to so in the following guidelines.

1. Modify the dev.inf file:
The windriver.sd component depends on the existence of adev.inf filein thewd_files
directory. The WinDriver installation on your development Windows platform contains a
generic WinDriver\redist\xp_embedded\wd_component\wd_files\dev.inf file. Use either
of the following methods to modify this file to suit your device:

* Modify the generic dev.inf file to describe your device. At the very least, you must modify
thetemplate [Devi ceLi st] entry and insert your device's hardware type and vendor

and product IDs. For example, for adevice with vendor ID 0x1234 and product ID

0x5678:
"ny_dev_usb"=Install, USB\VID 1234\ &PI D 5678

OR:

» Create an INF file for your device using DriverWizard (refer to section 5.2, step 3) and
name it dev.inf, or use an INF file from one of WinDriver's enhanced-support chipsets[8]
that suits your card and rename it to dev.inf. Then copy your dev.inf device INF file to the
WinDriver\redist\xp_embedded\wd _component\wd_files directory.

2. Add the WinDriver component to the Windows Embedded Component Database:
1. Open the Windows Embedded Component Database Manager (DBMgr).
2. Click Import.

3. Select the WinDriver component —

© Jungo Ltd. 2005-2010 101

Driver Installation — Advanced Issues

WinDriver\redist\xp_embedded\wd_component\windriver.sld —asthe SLD file and
click Import.

3. Add the WinDriver component to your Windows XP Embedded image:
1. Open your project in the Target Designer.
2. Double-click the WinDriver component to add it to your project.
Note: If you already have an earlier version of the WinDriver component in your
project's components list, right-click this component and select Upgrade.

3. Run adependency check and build your image.

After following these steps, WinDriver will automatically be installed during the first boot on the
target Windows XP Embedded platform on which your image is loaded.

If you have selected to rename the WinDriver kernel module [12.2], you will not be able
to use the provided windriver.sld component. Y ou can build your own component for the
renamed driver, or use the wdreg utility to install the driver on the target Windows XP
Embedded platform, as explained in the manual.

© Jungo Ltd. 2005-2010 102

Appendix A
64-bit Operating Systems
Support

A.1l Supported 64-bit Architectures

WinDriver supports the following 64-bit platforms:

e Linux AMD®64 or Intel EM64T (x86_64)
For afull list of the Linux platforms supported by WinDriver, refer to section 4.1.3.

» Windows AMDG64 or Intel EM64T (x64).
For afull list of the Windows platforms supported by WinDriver, refer to section 4.1.1.

A.2 Support for 32-Bit Applications on 64-Bit
Windows and Linux Platforms

By default, applications created using the 64-bit versions of WinDriver are 64-bit applications.
Such applications are more efficient than 32-bit applications. However, you can also use the 64-
bit WinDriver versions to create 32-bit applications that will run on the supported Windows and
Linux 64-bit platforms[A.1].

In the following documentation, <WD64> signifies the path to a 64-bit WinDriver
installation directory for your target operating system, and <WD32> signifies the path to a
32-bit WinDriver installation directory for the same operating system.

To create a 32-bit application for 64-bit Windows or Linux platforms, using the 64-bit version of
WinDriver, do the following:

1. Create aWinDriver application, as outlined in this manual (e.g., by generating code with
DriverWizard, or using one of the WinDriver samples).

2. Build the application with an appropriate 32-bit compiler for your target OS, using the
following configuration:

* Add aKERNEL_64BI T preprocessor definition to your project or makefile.

In the makefiles, the definition is added using the - Dflag: - DKERNEL_64BI T.

The sample and wizard-generated Linux makefiles and Windows MSDEYV projects, in the
64-bit WinDriver toolkit, already add this definition.

© Jungo Ltd. 2005-2010 103

* Link the application with the specific version of the WinDriver API library/
shared object for 32-bit applications executed on 64-bit platforms — <WD64>\lib
\amd64\x86\wdapi 1020.lib on Windows <W D64>/lib/libwdapi1020 32.s0 on Linux.

On Linux, the installation of the 64-bit WinDriver toolkit on the development machine
creates alibwdapi1020.so symbolic link in the /usr/lib directory —which links to
<WD64>/lib/libwdapi1020_32.so —and in the /usr/lib64 directory — which links to
<WD64>/lib/libwdapi1020.s0 (the 64-bit version of this shared object).

The sample and wizard-generated WinDriver makefiles rely on these symbolic links to link
with the appropriate shared object, depending on whether the code is compiled using a 32-
bit or 64-bit compiler.

On Windows, the sample and wizard-generated MSDEV projects are defined to

link with wdapi1020.lib (seethe Addi t i onal Dependenci es), but the linker

library path refers to the 64-bit library file in the <WD64>\lib\amd64 directory (see
Addi tional Li braryDi rect ori es); when using such a project to compile a 32-bit
application for 64-bit platforms, add \x86 to the library path in order to link the code with
<WD64>\lib\amd64\x86\wdapi1020.lib.

» When distributing your application to target 64-bit platforms, you need to provide
with it the WinDriver API DLL/shared object for 32-bit applications executed on
64-bit platforms — <WD64>\r edist\wdapi1020_32.dll on Windows <WD64>/lib/
libwdapil020 32.so on Linux. Before distributing this file, rename the copy of thefile
in your distribution package by removing the _32 portion. The installation on the target
should copy the renamed DL L/shared object to the relevant OS directory — \windir
\sysWOW 64 on Windows or /usr/lib on Linux. All other distribution files are the same
as for any other 64-bit WinDriver driver distribution, as detailed in chapter 11.

» An application created using the method described in this section will not work on 32-bit
platforms. A WinDriver application for 32-bit platforms needs to be compiled without the
KERNEL _64BI T definition; it needs to be linked with the standard 32-bit version of the
WinDriver AP library/shared object from the 32-bit WinDriver installation (<WD32>
\lib\x86\wdapi1020.lib on Windows / <WD32>/lib/libwdapi1020.s0 on Linux); and
it should be distributed with the standard 32-bit WinDriver APl DLL/shared object
(WD32>\r edist\wdapi 1020.dIl on Windows / <W D32>/lib/libwdapi1020.s0 on Linux)
and any other required 32-bit distribution file, as outlined in Chapter 11.

A.3 64-bit and 32-bit Data Types

In general, DWORD is unsigned long. While any 32-bit compiler treats this type as 32 bits wide,
64-bit compilers treat thistype differently. With Windows 64-bit compilers the size of thistype
isstill 32 bits. However, with UNIX 64-bit compilers (e.g., GCC) the size of thistype is 64 bits.
In order to avoid compiler dependency issues, use the UINT32 and UINT64 cross-platform types
when you want to refer to a 32-bit or 64-bit address, respectively.

© Jungo Ltd. 2005-2010 104

Appendix B
WinDriver USB PC Host API

Reference

This function reference is C oriented. The WinDriver .NET, Visua Basic and Delphi APIs
have been implemented as closely as possible to the C APIs, therefore .NET, VB and

Delphi programmers can aso use this reference to better understand the WinDriver APIs for
their selected development language. For the exact API implementation and usage examples
for your selected language, refer to the WinDriver .NET/VB/Delphi source code.

B.1 WD_DriverName

PURPOSE

* Sets the name of the WinDriver kernel module, which will be used by the calling application.

The default driver name, which isused if the function is not called, iswindrvr6.

This function must be called once, and only once, from the beginning of your application,
before calling any other WinDriver function (including WD_Qpen() / WDU_I ni t ()), as
demonstrated in the sample and generated DriverWizard WinDriver applications, which
include a call to this function with the default driver name —windrvr 6.

On Windows and Linux, if you select to modify the name of the WinDriver kernel module
(windrvr6.sys/.0/.ko), as explained in section 12.2, you must ensure that your application calls
WD _Dri ver Name() with your new driver name.

In order to usethe WD_Dr i ver Nane() function, your user-mode driver project must be built
with WD_DRI VER_NAME_CHANCE preprocessor flag (e.g.: - DWD_DRI VER_NAME_CHANGE
—for Visual Studio and gcc).

The sample and generated DriverWizard Windows and Linux WinDriver projects/makefiles
already set this preprocessor flag.

PROTOTYPE

const char* DLLCALLCONV WD Driver Nane(const char* sName);

PARAMETERS
Name Type I nput/Output
sName const char* Input

© Jungo Ltd. 2005-2010 105

DESCRIPTION

Name Description
sName The name of the WinDriver kernel module to be used by the
application.

NOTE: The driver name should be indicated without the driver
file's extension. For example, use windrvr 6, not windrvr 6.sys or
windrvr6.0.

RETURN VALUE

Returns the selected driver name on success; returns NULL on failure (e.g., if the function is
called twice from the same application)long.

REMARKS

» The ability to rename the WinDriver kernel module is supported on Windows and Linux, as
explained in section 12.2.
On Windows CE, aways call the WD _Dr i ver Nane() function with the default WinDriver
kernel module name —windrvr 6 — or refrain from calling the function altogether.

B.2 WinDriver USB (WDU) Library Overview

This section provides a general overview of WinDriver's USB Library (WDU), including:
» Anoutline of the WDU_xxx API calling sequence — see section B.2.1.

* Instructions for upgrading code devel oped with the previous WinDriver USB API, used in
version 5.22 and earlier, to use the improved WDU_xxx APl — see section B.2.2.
If you do not need to upgrade USB driver code developed with an older version of WinDriver,
simply skip this section.

The WDU library'sinterfaceis found in the WinDriver/include/wdu_lib.h and WinDriver/
include/windrvr.h header files, which should be included from any source file that calls the
WDU API. (wdu_lib.h already includes windrvr.h).

B.2.1 Calling Sequence for WinDriver USB

The WinDriver WDU_xxx USB API is designed to support event-driven transfers between your
user-mode USB application and USB devices. Thisisin contrast to earlier versions, in which
USB devices were initialized and controlled using a specific sequence of function calls.

Y ou can implement the three user callback functions specified in the next section:
WDU_ATTACH_CALLBACK[B.3.1], WU _DETACH CALLBACK[B.3.2] and

© Jungo Ltd. 2005-2010 106

WU _POWNER CHANGE_CALLBACK [B.3.3] (at the very least WDU_ATTACH_CALLBACK).
These functions are used to notify your application when arelevant system event occurs, such as
the attaching or detaching of a USB device. For best performance, minimal processing should be
done in these functions.

Your application calls\WDU _| ni t () [B.4.1] and provides the criteria according to which the
system identifies adevice asrelevant or irrelevant. The WDU_I ni t () function must also pass
pointers to the user callback functions.

Y our application then simply waits to receive a notification of an event. Upon receipt of such a
notification, processing continues. Y our application may make use of any functions defined in the
high- or low-level APIsbelow. The high-level functions, provided for your convenience, make
use of the low-level functions, which in turn use IOCTLSs to enable communication between the
WinDriver kernel module and your user-mode application.

When exiting, your application calls \WDU_Uni ni t () [B.4.7] to stop listening to devices
matching the given criteria and to unregister the notification callbacks for these devices.

The following figure depicts the calling sequence described above. Each vertical line represents a
function or process. Each horizontal arrow represents asignal or request, drawn from the initiator
to the recipient. Time progresses from top to bottom.

© Jungo Ltd. 2005-2010 107

time maind attach() detachi) WinDriver

WD Init()

Matify the user of currently attached devices

Signal Attach

_______________ attach0 *]
USE Device
Attach
Motify the user of the attsch of the new device
Signal Attach
_______________ attach0 '
WDl _Setinterface] 2
WU _Tranger) 2
[main{) may |nitiate other requests to WinDriver] 2
USE Device
Detach

Motify the user of the
detached device

Signal Detach

device_detach()

WOU_Uninit()

TIf the WO _ACKNOWLEDGE flag was setin the call to YWD _Init(), the attach()
callback should return TRUE to accept control of the device or FALSE othenwise.

2 Only possible if the attach() callback returned TRUE.

FigureB.1 WinDriver USB Calling Sequence

The following piece of meta-code can serve as a framework for your user-mode application's
code:

attach()
{

if this is ny device
/*
Set the desired alternate setting
Signal main() about the attachment of this device
*/

return TRUE;
el se
return FALSE;

}

det ach()
{

signal main() about the detachment of this device

© Jungo Ltd. 2005-2010 108

}

mai n()

{
WU Init(...);

while (...)
{

/[* wait for new devices */

[* issue transfers */

}

VDU_Uni ni t () ;

B.2.2 Upgrading from the WD_xxx USB API to the
WDU_xxx API

The WinDriver WDU_xxx USB AP, provided beginning with version 6.00, is designed to
support event-driven transfers between your user-mode USB application and USB devices. This
isin contrast to earlier versions, in which USB devices wereinitialized and controlled using a
specific sequence of function calls.

As aresult of this change, you will need to modify your USB applications that were designed to
interface with earlier versions of WinDriver to ensure that they will work with WinDriver v6.X
on all supported platforms and not only on Microsoft Windows. Y ou will have to reorganize your
application's code so that it conforms with the framework illustrated by the piece of meta-code
provided in section B.2.1.

In addition, the functions that collectively define the USB API have been changed. The new
functions, described in the next few sections, provide an improved interface between user-mode
USB applications and the WinDriver kernel module. Note that the new functions receive their
parameters directly, unlike the old functions, which received their parameters using a structure.

The table below lists the legacy functions in the left column and indicates in the right column
which function or functions replace(s) each of the legacy functions. Use thistable to quickly
determine which new functions to use in your new code.

Problem Solution

High Level API
This function... has been replaced by...
WD _Open() WDU | ni t () [B.4.1]
WD Ver si on()
WD UsbScanDevi ce()

© Jungo Ltd. 2005-2010 109

Problem

Solution

WD UsbDevi ceRegi ster ()

WDU_Set I nterface() [B.4.2]

WD _UsbGet Confi gurati on()

WDU_Get Devi cel nf o() [B.4.5]

WD _UsbDevi ceUnr egi st er ()

WDU_Uni ni t () [B.4.7]

Low Level API

Thisfunction...

has been replaced by...

WD UsbTr ansf er ()

WDU_Tr ansfer () [B.4.8.1]

WDU_Tr ansf er Def aul t Pi pe() [B.4.8.3]
WDU_Tr ansf er Bul k() [B.4.8.4]

WDU _Tr ansferl soch() [B.4.8.5]

WDU Transferlnterrupt()[B.4.8.6]

USB_TRANSFER_HALT option

WDU Hal t Tr ansf er () [B.4.8.2]

WD _UsbReset Pi pe()

WDU_Reset Pi pe() [B.4.10]

WD UsbReset Devi ce()
WD _UsbReset Devi ceEx()

WDU_Reset Devi ce() [B.4.11]

B.3 USB User Callback Functions

B.3.1 WDU_ATTACH_CALLBACK

PURPOSE

* WinDriver calsthis function when anew device, matching the given criteria, is attached,

provided it is not yet controlled by another driver.
This callback is called once for each matching interface.

PROTOTYPE

t ypedef BOOL (DLLCALLCONV *WDU ATTACH_CALLBACK) (

WDU_DEVI CE_HANDLE hDevi ce,
WDU_DEVI CE *pDevi cel nf o,
PVA D pUser Dat a) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
pDevicelnfo WDU_DEVICE* Input
pUserData PVOID Input
DESCRIPTION

© Jungo Ltd. 2005-2010

110

Name Description

hDevice A unique identifier for the device/interface

pDevicelnfo Pointer to a USB device information structure [B.5.2.3]; Valid until the
end of the function

pUserData Pointer to user-mode data for the callback, as passed to

VDU | ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

RETURN VALUE

If the WD_ ACKNOWLEDGE flag was set in the call to WDU_| ni t () [B.4.1] (within the

dwOpt i ons parameter), the callback function should check if it wantsto control the device, and
if so return TRUE (otherwise — return FALSE).

If the WD_ ACKNOWLEDGE flag was not set in the call to WDU _I ni t (), then the return value of
the callback function isinsignificant.

B.3.2 WDU_DETACH_CALLBACK

PURPOSE

» WinDriver calls this function when a controlled device has been detached from the system.

PROTOTYPE

t ypedef void (DLLCALLCONV *WDU DETACH CALLBACK) (
WDU_DEVI CE_HANDLE hDevi ce,
PVA D pUser Dat a) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pUserData PVOID Input
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface
pUserData Pointer to user-mode data for the callback, as passed to
VDU | ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

© Jungo Ltd. 2005-2010 111

RETURN VALUE

None

B.3.3 WDU_POWER_CHANGE_CALLBACK

PURPOSE

» WinDriver calls this function when a controlled device has changed its power settings.

PROTOTYPE

t ypedef BOOL (DLLCALLCONV *WDU POWER CHANGE CALLBACK) (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPower St at e,
PVA D pUser Dat a) ;

PARAMETERS
Name Type I nput/Output
dwPowerState DWORD Input
pUserData PVOID I nput
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface
dwPowerState Number of the power state selected
pUserData Pointer to user-mode data for the callback, as passed to
VDU | ni t () [B.4.1] within the event table parameter
(pEvent Tabl e- >pUser Dat a)

RETURN VALUE

TRUE/ FALSE. Currently there is no significance to the return value.

REMARKS

» Thiscallback is supported only in Windows operating systems, starting from Windows 2000.

B.4 USB Functions

The functions described in this section are declared in the

© Jungo Ltd. 2005-2010 112

WinDriver/include/wdu_lib.h header file.

B.4.1 WDU_lInit

PURPOSE

* Starts listening to devices matching input criteria and registers notification callbacks for these

devices.

PROTOTYPE

DWORD VDU | ni t (

WDU_ DRI VER HANDLE *phDri ver,
WDU_MATCH TABLE *pMat chTabl es,
DWORD dwhNumivat chTabl es,
WDU_EVENT_TABLE *pEvent Tabl e,
const char *sLi cense,

DWORD dwOpt i ons) ;

PARAMETERS
Name Type I nput/Output
phDriver WDU_DRIVER _HANDLE * Output
pMatchTables WDU_MATCH_TABLE* Input
dwNumMatchTables | DWORD Input
pEventTable WDU_EVENT_TABLE* Input
sLicense const char* Input
dwOptions DWORD Input
DESCRIPTION
Name Description
phDriver Handle to the registration of events & criteria
pMatchTables Array of match tables[B.5.2.1] defining the devices criteria
dwNumMatchTables | Number of elementsin pMatchTables
pEventTable Pointer to an event table structure [B.5.2.2], which holds the
addresses of the user-mode device status change notification callback
functions [B.3] and the data to pass to the callbacks
sLicense WinDriver's license string
dwOptions Canbezeroor:

* WD ACKNOWLEDGE — the user can seize control over the device
when returning value in WDU_ATTACH_CALLBACK [B.3.1]

© Jungo Ltd. 2005-2010

113

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.2 WDU_SetInterface

PURPOSE

» Sets the aternate setting for the specified interface.

PROTOTYPE

DWORD WDU_Set | nt er f ace(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwi nt er f aceNum
DWORD dwAl t er nat eSetti ng);

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwlnterfaceNum DWORD Input
dwA IternateSetting DWORD Input
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface

dwlinterfaceNum

The interface's number

dwA lternateSetting

The desired alternate setting value

RETURN VALUE

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

REMARKS

* OnWindows CE — as opposed to Windows 7/VistalServer 2008/Server 2003/XP/2000 —
WDU_Set | nt er f ace() attemptsto open al the pipes of the specified alternate setting,
even if not all pipes are currently required. The reason for thisisthat Windows CE limits
the total number of pipes that can be opened simultaneously on a device, to 16 (see http://
msdn.microsoft.com/en-ug/library/ms919318.aspx). By opening all the pipes, the driver ensures
that the pipes will be available for use, when needed.

© Jungo Ltd. 2005-2010

114

http://msdn.microsoft.com/en-us/library/ms919318.aspx
http://msdn.microsoft.com/en-us/library/ms919318.aspx

The pipes are opened using the Windows CE USB host controller driver's

LPOPEN_PI PE callback. On some Mobile devices, the call to this callback fails, causing
WDU_Set | nt er f ace() to fail aswell. To resolve such problems, upgrade the device's USB
host controller driver.

B.4.3 WDU_GetDeviceAddr

PURPOSE

* Gets the USB address for a given device.

PROTOTYPE

DWORD WDU_Get Devi ceAddr (
WDU_DEVI CE_HANDLE hDevi ce,
ULONG *pAddr ess) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pAddress ULONG Output
DESCRIPTION
Name Description
hDevice A unigue identifier for a device/interface
pAddress A pointer to the address number returned by the function

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

REMARKS

» Thisfunction is supported only on Windows 2000 and higher.

B.4.4 WDU_GetDeviceRegistryProperty

PURPOSE

* Gets the specified registry property of agiven USB device.

© Jungo Ltd. 2005-2010 115

PROTOTYPE

DWORD DLLCALLCONV WDU_Get Devi ceRegi stryProperty(
WDU_DEVI CE_HANDLE hDevi ce,
PVA D pBuffer,
PDWORD pdwsSi ze,
WD _DEVI CE_REG STRY_PROPERTY property);

PARAMETERS

Name Type I nput/Output

hDevice WDU_DEVICE_HANDLE Input

pBuffer PVOID Output

pdwSize PDWORD I nput/Output

property WD_DEVICE_REGISTRY_PROPERTY Input

DESCRIPTION

Name Description

hDevice A unique identifier of the device/interface

pBuffer Pointer to a user allocated buffer to be filled with the requested registry
property. The function will fill the buffer only if the buffer size, as
indicated in the input value of the pdwSi ze parameter, is sufficient —
i.e. >= the property's size, asreturned viapdwSi ze.
pBuf f er can be set to NULL when using the function only to retrieve
the size of the registry property (see pdwSi ze).

pdwSize Asinput, points to avalue indicating the size of the user-supplied
buffer (pBuf f er); if pBuf f er issetto NULL, theinput value of this
parameter isignored.
As output, points to a value indicating the required buffer size for
storing the registry property.

property The ID of the registry property to be retrieved — see the description of
theWD_DEVI CE_REG STRY_PROPERTY enumeration [B.5.1].
Note: String registry properties arein WCHAR format.

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

REMARKS

* When the size of the provided user buffer (pBuf f er) —* pdwSi ze (input) —is not sufficient
to hold the requested registry property, the function returns\VWD_| NVALI D_PARAMETER.

© Jungo Ltd. 2005-2010 116

» Thisfunction is supported only on Windows 2000 and higher.

B.4.5 WDU_GetDevicelnfo

PURPOSE
* Gets configuration information from a device, including all the device descriptors.

NOTE: The caller to thisfunction is responsible for calling WDU_Put Devi cel nf o() [B.4.6] in
order to freethe * ppDevi cel nf o pointer returned by the function.

PROTOTYPE

DWORD WDU_Get Devi cel nf o
WDU_DEVI CE_HANDLE hDevi ce,
WDU_DEVI CE **ppDevi cel nf o) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
ppDevicelnfo WDU_DEVICE** Output
DESCRIPTION
Name Description
hDevice A unique identifier for a device/interface
ppDevicelnfo Pointer to pointer to a USB device information structure [B.5.2.3]

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.6 WDU_PutDevicelnfo

PURPOSE

* Receives adevice information pointer, allocated with a previous
WDU_Cet Devi cel nf o() [B.4.5] cal, in order to perform the necessary cleanup.

PROTOTYPE

© Jungo Ltd. 2005-2010 117

voi d WDU_Put Devi cel nf o(WDU_DEVI CE *pDevi cel nf o) ;

PARAMETERS
‘ Name ’ Type ‘ I nput/Output ‘
' pDevicelnfo | WDU_DEVICE* | Input |
DESCRIPTION
Name Description
pDevicelnfo Pointer to a USB device information structure [B.5.2.3], as returned by
apreviouscal to WDU_Get Devi cel nf o() [B.4.5]

RETURN VALUE

None

B.4.7 WDU_Uninit

PURPOSE

* Stops listening to devices matching a given criteria and unregisters the notification callbacks for
these devices.

PROTOTYPE

voi d WDU_Uni ni t (\WDU_DRI VER_HANDLE hDri ver);

PARAMETERS
‘ Name ’ Type ‘ I nput/Output ‘
| hDriver | WDU_DRIVER_HANDLE | Input |
DESCRIPTION

Name Description

hDriver Handle to the registration received from WDU_| ni t () [B.4.1]

RETURN VALUE

None

© Jungo Ltd. 2005-2010 118

B.4.8 Single Blocking Transfer Functions

This section describes WinDriver's single blocking data transfer functions.
For more information, refer to 9.3.2 of the manual.

B.4.8.1 WDU_Transfer

PURPOSE

e Transfers data to or from a device.

PROTOTYPE

DWORD WDU_Tr ansf er (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,
DWORD dwOpt i ons,
PVA D pBuffer,
DWORD dwBuf fer Si ze,
PDWORD pdwByt esTr ansferred,
PBYTE pSet upPacket,
DWORD dwTi meout) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE HANDLE I nput
dwPipeNum DWORD Input
fRead DWORD Input
dwOptions DWORD Input
pBuffer PVOID Input
dwBufferSize DWORD Input
pdwBytesTransferred | PDWORD Output
pSetupPacket PBYTE Input
dwTimeout DWORD Input
DESCRIPTION
Name Description
hDevice A unigue identifier for the device/interface received from
WDU I nit()[B.4.1]
dwPipeNum The number of the pipe through which the datais transferred

© Jungo Ltd. 2005-2010 119

Name Description

fRead TRUE for read, FALSE for write
dwOptions A bit-mask, which can consist of a combination of any of the following
flags:

* USB_| SOCH_NOASAP — For isochronous data transfers. Setting this
option instructs the lower USB stack driver (usbd.sys) to use a preset
frame number (instead of the next available frame) while performing
the data transfer. Use thisflag if you notice unused frames during the
transfer, on low-speed or full-speed devices (USB 1.1 only) and only
on Windows (excluding Windows CE).

* USB_| SOCH_RESET — Resets the isochronous pipe before the

data transfer. It aso resets the pipe after minor errors, consequently
allowing to transfer to continue.

* USB_| SOCH _FULL_PACKETS_ONLY — Prevents transfers of less
than the packet size on isochronous pipes.

« USB_BULK_| NT_URB_SI ZE_OVERRI DE_128K —Limitsthe size
of the USB Request Block (URB) to 128K B.

pBuffer Address of the data buffer

dwBufferSize Number of bytesto transfer. The buffer size isnot limited to the
device's maximum packet size; therefore, you can use larger buffers
by setting the buffer size to amultiple of the maximum packet size.
Use large buffers to reduce the number of context switches and thereby
improve performance.

pdwBytesTransferred | Number of bytes actually transferred

pSetupPacket An 8-byte packet to transfer to control pipes

dwTimeout Maximum time, in milliseconds (ms), to complete atransfer.
A value of zero indicates no timeout (infinite wait).

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

REMARKS
» Theresolution of the timeout (the dwTi meout parameter) is according to the operating system

scheduler'stime slot. For example, in Windows the timeout's resolution is 10 milliseconds
(ms).

B.4.8.2 WDU_HaltTransfer

PURPOSE

« Halts the transfer on the specified pipe (only one simultaneous transfer per pipeis alowed by
WinDriver).

© Jungo Ltd. 2005-2010 120

PROTOTYPE

DWORD WDU_Hal t Tr ansf er (
WDU_DEVI CE_HANDLE hDevi ce,

DWORD dwPi peNum) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
dwPipeNum DWORD Input
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface
dwPipeNum The number of the pipe

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.8.3 WDU_TransferDefaultPipe

PURPOSE

* Transfers data to or from a device through the default pipe.

PROTOTYPE

DWORD WDU_Tr ansf er Def aul t Pi pe(
WDU _DEVI CE_HANDLE hDevi ce,

DWORD f Read,
DWORD dwOpt i ons,
PVA D pBuffer,

DWORD dwBuf f er Si ze,
PDWORD pdwByt esTr ansferred,
PBYTE pSet upPacket ,

DWORD dwTi meout) ;

PARAMETERS

See parameters of WDU_Tr ansf er () [B.4.8.1].
Note that dwPi peNumis not a parameter of this function.

DESCRIPTION

See description of WDU_Tr ansf er () [B.4.8.1].

© Jungo Ltd. 2005-2010

121

RETURN VALUE
ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.8.4 WDU_TransferBulk

PURPOSE

» Performs bulk data transfer to or from a device.

PROTOTYPE

DWORD WDU_Tr ansf er Bul k(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,

DWORD dwOpt i ons,

PVA D pBuffer,

DWORD dwBuf fer Si ze,

PDWORD pdwByt esTr ansferred,
DWORD dwTi neout) ;

PARAMETERS

See parameters of WDU_Tr ansf er () [B.4.8.1].

Note that pSet upPacket isnot aparameter of this function.
DESCRIPTION

See description of WDU_Tr ansf er () [B.4.8.1].

RETURN VALUE
ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.8.5 WDU_Transferlsoch

PURPOSE

 Performs isochronous data transfer to or from a device.

PROTOTYPE

DWORD WDU_Tr ansf er | soch(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,

DWORD dwOpt i ons,

PVA D pBuffer,

DWORD dwBuf fer Si ze,

PDWORD pdwByt esTr ansf err ed,

© Jungo Ltd. 2005-2010 122

DWORD dwTi neout) ;

PARAMETERS

See parameters of WDU_Tr ansf er () [B.4.8.1].

Note that pSet upPacket isnot aparameter of this function.
DESCRIPTION

See description of WDU_Tr ansf er () [B.4.8.1].

RETURN VALUE
Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

B.4.8.6 WDU_TransferInterrupt

PURPOSE

* Performs interrupt data transfer to or from a device.

PROTOTYPE

DWORD WDU_Transfer| nt errupt (
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwPi peNum
DWORD f Read,
DWORD dwOpt i ons,
PVO D pBuffer,
DWORD dwBuf f er Si ze,

PDWORD pdwByt esTr ansferred,
DWORD dwTi meout) ;

PARAMETERS

See parameters of WDU_Tr ansf er () [B.4.8.1].
Note that pSet upPacket isnot aparameter of this function.

DESCRIPTION
See description of WDU_Tr ansf er () [B.4.8.1].

RETURN VALUE
ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9 Streaming Data Transfer Functions

This section describes WinDriver's streaming data transfer functions.

© Jungo Ltd. 2005-2010 123

For a detailed explanation regarding stream transfers and their implementation with Windriver,
refer to 9.3.3 of the manual.

.. d The streaming APIs are currently supported on Windows and Windows CE.

B.4.9.1 WDU_StreamOpen

PURPOSE

*» Opens a new stream for the specified pipe.
A stream can be associated with any pipe except for the control pipe (Pipe 0). The stream’s data
transfer direction — read/write —is derived from the direction of its pipe.

PROTOTYPE

DWORD DLLCALLCONV WDU_St r eanOpen(
WDU_DEVI CE_HANDLE hDevi ce,

DWORD dwPi peNum

DWORD dwBuf f er Si ze,

DWORD dwRxSi ze,
BOOL f Bl ocki ng,
DWORD dwOpt i ons,

DWORD dwRXTxTi neout ,
WDU_STREAM HANDLE *phStream;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE HANDLE Input
dwPipeNum DWORD Input
dwBufferSize DWORD Input
dwRxSize DWORD Input
fBlocking BOOL Input
dwOptions DWORD Input
dwRXTxTimeout DWORD Input
phStream WDU_STREAM_HANDLE* Output
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface
dwPipeNum The number of the pipe for which to open the stream
dwBuUfferSize The size, in bytes, of the stream's data buffer

© Jungo Ltd. 2005-2010

124

Name

Description

dwRxSize

The size, in bytes, of the data blocks that the stream reads from the
device. This parameter isrelevant only for read streams, and must
not exceed the value of the dwBuf f er Si ze parameter. Note: When
setting the USB_STREAM MAX_TRANSFER_SI ZE_OVERWRI TE
dwOpt i ons flag, thisis aso the maximum transfer size.

fBlocking

» TRUE for a blocking stream, which performs blocked 1/O;
» FAL SE for anon-blocking stream, which performs non-blocking 1/0.
For additional information, refer to 9.3.3.1.

dwOptions

A bit-mask, which can consists of a combination of any of the
following flags:

* USB | SOCH_NQASAP — For isochronous data transfers. Setting this
option instructs the lower USB stack driver (usbd.sys) to use a preset
frame number (instead of the next available frame) while performing
the data transfer. Use thisflag if you notice unused frames during the
transfer, on low- or full-speed USB 1.1 devices. Thisflag is applicable
only on Windows, and isignored on Windows CE.

* USB_| SOCH _FULL_PACKETS_ONLY — Prevents transfers of less
than the packet size on isochronous pipes.

« USB_BULK | NT_URB_SI ZE OVERRI DE_128K-—Limitsthe size
of the USB Request Block (URB) to 128KB.

Thisflag is applicable only on Windows.

* USB_STREAM OVERWRI TE_BUFFER _WHEN_FULL —When there
IS not enough free space in aread stream's data buffer to complete the
transfer, overwrite old data in the buffer. Thisflag is applicable only to
read streams.

» USB_STREAM MAX TRANSFER S| ZE OVERRI DE — Overrides
the default maximum transfer size with the dwRxSi ze transfer size,
on Windows CE. Note that setting alarge dwRxSi ze value when
using thisflag, may cause the transfers to fail due to host controller
l[imitations.

Thisflag is applicable only to read streams on Windows CE.

dwRXTxTimeout

Maximum time, in milliseconds (ms), for the completion of a data
transfer between the stream and the device.
A value of zero indicates no timeout (infinite wait).

phStream

Pointer to aunique identifier for the stream, to be returned by the
function and passed to the other WDU_St r eanmXXX() functions

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.2 WDU_StreamStart

PURPOSE

© Jungo Ltd. 2005-2010

125

* Startsa stream, i.e. starts transfers between the stream and the device.
Data will be transferred according to the stream's direction — read/write.

PROTOTYPE

DWORD DLLCALLCONV WDU_Streanftart (
WDU_STREAM HANDLE hStrean ;

PARAMETERS
Name Type I nput/Output
hStream WDU_STREAM_HANDLE Input

DESCRIPTION

‘ Name ’ Description ‘
hStream A unique identifier for the stream, as returned by

WDU_St r eantOpen()

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.3 WDU_StreamRead

PURPOSE
 Reads data from aread stream to the application.

For ablocking stream (f Bl ocki ng=TRUE —see WDU_St r eanOpen()), the call to this function
is blocked until the specified amount of data (byt es) isread, or until the stream'’s attempt to
read from the device times out (i.e. the timeout period for transfers between the stream and the
device, as set in the dWRX Tx Ti meout WDU_St r eanOpen() parameter [B.4.9.1], expires).

For anon-blocking stream (f Bl ocki ng=FALSE), the function transfers to the application as
much of the requested data as possible, subject to the amount of data currently available in the
stream'’s data buffer, and returnsimmediately.

For both blocking and non-blocking transfers, the function returns the amount of bytes that were
actually read from the stream within the pdwByt esRead parameter.

PROTOTYPE

DWORD DLLCALLCONV WDU_St r eanRead(

© Jungo Ltd. 2005-2010 126

HANDLE hSt r eam

PVA D pBuffer,

DWORD byt es,

DWORD * pdwByt esRead) ;

PARAMETERS
Name Type I nput/Output
hStream WDU_STREAM_HANDLE Input
pBuffer PVOID Output
bytes DWORD Input
pdwBytesRead DWORD* Output
DESCRIPTION
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()
pBuffer Pointer to a data buffer to be filled with the data read from the stream
bytes Number of bytesto read from the stream
pdwBytesRead Pointer to a value indicating the number of bytes actualy read from the
stream

RETURN VALUE

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.4 WDU_StreamWrite

PURPOSE
* Writes data from the applciation to awrite stream.

For ablocking stream (f Bl ocki ng=TRUE —see WDU_St r eanOpen()), the call to this function
is blocked until the entire data is written to the stream, or until the stream'’s attempt to write to the
device times out (i.e. the timeout period for transfers between the stream and the device, as set in
the dWRXTxTi nmeout WDU_St r eanOpen() parameter [B.4.9.1], expires).

For anon-blocking stream (f Bl ocki ng=FALSE), the function writes as much data as currently
possible to the stream's data buffer, and returns immediately.

For both blocking and non-blocking transfers, the function returns the amount of bytes that were
actually written to the stream within the pdwByt esW i t t en parameter.

© Jungo Ltd. 2005-2010 127

PROTOTYPE

DWORD DLLCALLCONV WDU_StreamNi t e(

HANDLE hStream

const PVA D pBuffer,

DWORD byt es,

DWORD *pdwByt esWitten);

PARAMETERS
Name Type I nput/Output
hStream WDU_STREAM_HANDLE Input
pBuffer const PVOID Input
bytes DWORD Input
pdwBYytesWritten DWORD* Output
DESCRIPTION
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()
pBuffer Pointer to a data buffer containing the data to write to the stream
bytes Number of bytesto write to the stream
pdwBytesWritten Pointer to a value indicating the number of bytes actually written to the

stream

RETURN VALUE

Returns WD _STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.5 WDU_StreamFlush

PURPOSE

» Flushes awrite stream, i.e. writes the entire contents of the stream'’s data buffer to the device.
* Blocks until the completion of all pending I/0O on the stream.

| d This function can be called for both blocking and non-blocking streams.

PROTOTYPE

© Jungo Ltd. 2005-2010

128

DWORD DLLCALLCONV WDU_St r eant! ush(
WDU_STREAM HANDLE hStrean;

PARAMETERS
‘ Name ’ Type ‘ I nput/Output ‘
| hStream | WDU_STREAM_HANDLE | Input |
DESCRIPTION
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

RETURN VALUE

Returns\WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.9.6 WDU_StreamGetStatus

PURPOSE

e Returns a stream's current status.

PROTOTYPE

DWORD DLLCALLCONV WDU_St r eantzet St at us(
WDU_STREAM HANDLE hStream
BOOL *pflsRunni ng,
DWORD * pdwiast Error,
DWORD * pdwByt esl nBuf fer);

PARAMETERS
Name Type I nput/Output
hStream WDU_STREAM_HANDLE Input
pflsRunning BOOL* Output
pdwL astError DWORD* Output
pdwBytesInBuffer DWORD* Output
DESCRIPTION

© Jungo Ltd. 2005-2010 129

Name Description

hStream A uniqueidentifier for the stream, as returned by
WDU_St r eanOpen()
pflsRunning Pointer to a value indicating the stream'’s current state:

* TRUE — the stream is currently running
* FALSE —the stream is currently stopped

pdwL astError Pointer to the last error associated with the stream.
Note: Calling the function also resets the stream's last error.

pdwBytesInBuffer Pointer to the current bytes count in the stream's data buffer

RETURN VALUE

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

B.4.9.7 WDU_StreamStop

PURPOSE

* Stops an active stream, i.e. stops transfers between the stream and the device.
In the case of awrite stream, the function flushes the stream —i.e. writes its contents to the device
— before stopping it.

PROTOTYPE

DWORD DLLCALLCONV WDU_St r eanst op(
WDU_STREAM HANDLE hStrean) ;

PARAMETERS
Name Type I nput/Output
hStream WDU_STREAM_HANDLE Input
DESCRIPTION
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

RETURN VALUE

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005-2010 130

B.4.9.8 WDU_StreamClose

PURPOSE

* Closes an open stream.

The function stops the stream, including flushing its data to the device (in the case of awrite

stream), before closing it.

PROTOTYPE

DWORD DLLCALLCONV WDU_St r eantCl ose(
WDU_STREAM HANDLE hStreamn ;

PARAMETERS
Name Type I nput/Output
hStream WDU_STREAM_HANDLE Input
DESCRIPTION
Name Description
hStream A unique identifier for the stream, as returned by
WDU_St r eanOpen()

RETURN VALUE

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

B.4.10 WDU _

PURPOSE

ResetPipe

* Resets a pipe by clearing both the halt condition on the host side of the pipe and the stall
condition on the endpoint. This function is applicable for all pipes except pipe00.

PROTOTYPE

DWORD WDU_Reset Pi pe(

WDU_DEVI CE_HANDLE hDevi ce,

DWORD dwPi peNum) ;

PARAMETERS

© Jungo Ltd. 2005-2010

131

Name Type I nput/Output

hDevice WDU_DEVICE_HANDLE Input

dwPipeNum DWORD Input
DESCRIPTION

Name Description

hDevice A unique identifier for the device/interface

dwPipeNum The pipe's number

RETURN VALUE

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

REMARKS

» Thisfunction should be used if apipeis halted, in order to clear the halt.

B.4.11 WDU_ResetDevice

PURPOSE

» Resets adevice.

PROTOTYPE

DWORD WDU_Reset Devi ce(
WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwOpt i ons) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwOptions DWORD Input
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface.

© Jungo Ltd. 2005-2010 132

Name Description

dwOptions Can be either zero or:

* WD _USB HARD_ RESET - reset the device eveniif it isnot disabled.
After using thisoption it is advised to set the interface device using
WDU_Set | nterface() [B.4.2).

* W USB CYCLE_PORT — simulate unplugging and replugging of
the device, prompting the operating system to re-enumerate the device
without resetting it.

This option is supported only on Windows XP and higher.

RETURN VALUE
ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

REMARKS

» WDU_Reset Devi ce() issupported only on Windows and Windows CE, beginning with
Windows CE 5.0.
The WD _USB_CYCLE_PORT option is supported on Windows XP and higher.

» The function issues arequest from the Windows USB driver to reset a hub port, provided the
Windows USB driver supports this feature.

B.4.12 WDU_SelectiveSuspend

PURPOSE

» Submits a request to suspend a given device (selective suspend), or cancels a previous suspend
request.

PROTOTYPE

DWORD DLLCALLCONV WDU_Sel ect i veSuspend(

WDU_DEVI CE_HANDLE hDevi ce,
DWORD dwOpt i ons) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE I nput
dwOptions DWORD Input
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface.

© Jungo Ltd. 2005-2010 133

Name

Description

dwOptions

Can be set to either of the following

WDU_ SELECTI VE_SUSPEND_ OPTI ONS values:

* WOU_SELECTI VE_SUSPEND_SUBM T — submit a request to
suspend the device.

* WOU_SELECTI VE_SUSPEND_CANCEL — cancel a previous request
to suspend the device.

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].
If the device is busy when a suspend request is submitted

(dwOpt i ons=WDU_SELECTI VE_SUSPEND_ SUBM T), the function returns
WD_OPERATI ON_FAI LED.

REMARKS

« WDU_Sel ect i veSuspend() is supported on Windows XP and higher.

B.4.13 WDU_Wakeup

PURPOSE

* Enables/Disables the wakeup feature.

PROTOTYPE

DWORD WDU_Wakeup(

WDU_DEVI CE_HANDLE hDevi ce,

DWORD dwOpt i ons) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
dwOptions DWORD Input
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface
dwOptions Can be either:
« WDU_WAKEUP_ENABLE — enable wakeup
OR:

« \WDU WAKEUP_DI SABLE — disable wakeup

© Jungo Ltd. 2005-2010

134

RETURN VALUE
ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.4.14 WDU_GetLangIDs

PURPOSE

» Reads alist of supported language | Ds and/or the number of supported language IDs from a
device.

PROTOTYPE

DWORD DLLCALLCONV WDU_Get Langl Ds(
WDU_DEVI CE_HANDLE hDevi ce,
PBYTE pbNunSupport edLangl Ds,
WDU_LANG D *pLangl Ds,

BYTE bNuniangl Ds);

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
pbNumSupportedLanglDs | PBYTE Output
pLanglDs WDU_LANGID* Output
bNumLangIDs BYTE Input
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface

pbNumSupportedLanglDs | Parameter to receive number of supported language I1Ds

pLanglDs Array of language IDs. If bNunmiLangl Ds is not zero the function
will fill this array with the supported language IDs for the device.

bNumLangIDs Number of IDsin the pLanglDs array

RETURN VALUE

Returns\WWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

REMARKS

» If dwNunLangl Ds is zero the function will return only the number of supported language IDs
(inpbNunstuppor t edLangl Ds) but will not update the language IDs array (pLangl Ds

© Jungo Ltd. 2005-2010 135

) with the actual IDs. For thisusage pLangl Ds can be NULL (sinceit is not referenced) but
pbNunSupport edLangl Ds must not be NULL.

* pbNunBupport edLangl Ds can be NULL if the user only wantsto receive the list of
supported language 1Ds and not the number of supported IDs.
In this case bNuniangl Ds cannot be zero and pLangl Ds cannot be NULL.

* If the device does not support any language I Ds the function will return success. The caller
should therefore check the value of * pbNunSuppor t edLangl Ds after the function returns.

 If thesize of thepLangl Ds array (bNunLangl Ds) is smaller than the number of IDs
supported by the device (* pbNunmSuppor t edLangl Ds), the function will read and return
only thefirst bNurmLangl Ds supported language IDs.

B.4.15 WDU_GetStringDesc

PURPOSE

* Reads a string descriptor from a device by string index.

PROTOTYPE

DWORD DLLCALLCONV WDU_Get St ri ngDesc(
WDU_DEVI CE_HANDLE hDevi ce,

BYTE bStr | ndex,
PBYTE pbBuf,
DWORD dwBuf Si ze,

WDU_LANG D | angl D,
PDWORD pdwDescSi ze) ;

PARAMETERS
Name Type I nput/Output
hDevice WDU_DEVICE_HANDLE Input
bStrindex BYTE Input
pbBuf PBYTE Output
dwBuUfSize DWORD Input
langlD WDU_LANGID Input
pdwDescSize PDWORD Output
DESCRIPTION
Name Description
hDevice A unique identifier for the device/interface

© Jungo Ltd. 2005-2010

136

Name Description

bStrindex The index of the string descriptor to read

pbBuf Pointer to a buffer to be filled with the string descriptor

dwBuUfSize The size of the pbBuf buffer, in bytes

langlD The language 1D to be used in the get string descriptor request. If
this parameter is 0, the request will use the first supported language 1D
returned by the device.

pdwDescSize An optional DWORD pointer to be filled with the size of the string
descriptor read from the device.
If NULL, the size of the string descriptor will not be returned.

RETURN VALUE
ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

REMARKS

 |f thesize of the pbBuf buffer is smaller than the size of the string descriptor
(dwBuf Si ze* pdwDescSi ze), the returned descriptor will be truncated to the provided
buffer size (dwBuf Si ze).

B.5 USB Data Types

The types described in this section are declared in the WinDriver/include/windrvr .h header file,
unless otherwise specified in the documentation.

B.5.1 WD DEVICE REGISTRY_PROPERTY
Enumeration

Enumeration of device registry property identifiers.
String properties are returned in NULL-terminated WCHAR array format.

., For more information regarding the properties described in this enumaration, refer to the
G description of the Windows | 0Get Devi cePr oper t y() function'sDevi cePr operty
parameter in the Microsoft Devel opment Network (M SDN) documentation.

Enum Value Description
WdDevicePropertyDeviceDescription Device description
WdDevicePropertyHardwarel D The device's hardware IDs
WdDevicePropertyCompatiblel Ds The device's compatible IDs
WdDevicePropertyBootConfiguration The hardware resources assigned to the
device by the firmware, in raw dataform

© Jungo Ltd. 2005-2010 137

Enum Value

Description

WdDevicePropertyBootConfigurationTranslated

The hardware resources assigned to the
device by the firmware, in translated form

WdDevicePropertyClassName The name of the device's setup class, in text
format
WdDevicePropertyClassGuid The GUID for the device's setup class (string

format)

WdDevicePropertyDriverkKeyName

The name of the driver-specific registry key

WdDevicePropertyManufacturer

Device manufacturer string

WdDevicePropertyFriendlyName

Friendly device name (typically defined by
the class installer), which can be used to
distinguish between two similar devices

WdDevicePropertyL ocationlnformation

Information about the device's Location on
the bus (string format).

The interpertation of thisinformation is bus-
specific.

WdDevicePropertyPhysical DeviceObjectName

The name of the Physical Device Object
(PDO) for the device

WdDevicePropertyBusTypeGuid

The GUID for the bus to which the deviceis
connected

WdDevicePropertylL egacyBusType

The bustype (e.g., PCIBus or PCMCIABuUS)

WdDevicePropertyBusNumber

The legacy bus number of the bus to which
the device is connected

WdDevicePropertyEnumeratorName

The name of the device's enumerator (e.g.
"PCI" or "root")

WdDevicePropertyAddress

The device's bus address.
The interpertation of this addressis bus-
specific.

WdDevicePropertyUINumber

A number associated with the device that
can be displayed in the user interface

WdDevicePropertylnstall State

The device'sinstallation state

WdDevicePropertyRemoval Policy

The device's current removal policy
(Windows XP and later)

B.5.2 USB Structures

The following figure depicts the structure hierarchy used by WinDriver's USB API. The arrays
situated in each level of the hierarchy may contain more elements than are depicted in the
diagram. Arrows are used to represent pointers. In the interest of clarity, only one structure at
each level of the hierarchy is depicted in full detail (with all of its elements listed and pointers
from it pictured).

© Jungo Ltd. 2005-2010 138

WDU DEVICE
* Descriptor

" Pipe0

=" pConfigs

=" pactiveConfig

pte s s mse- ® == 2" pActivelnterface

.I (]

.I]

N L] 1

ot 1

B seseeeeans .

. L] |]

' h 4

':-I\» WL CONFIGURATION WDU CONFIGURATION WD CONFIGURATION
R * Descriptor

. " dwhumlinterfaces

R R |-+ pinterfaces

lI

I.

I!

, - TSsTTEEsTEEEsEEESEE ST []

] []

' Y

1 WoU INTERFACE WDU INTERFACE wWou INTERFACE
R R [e r— pAlternateSettings

1 o dwhumaltSettings

’ =" pActivedltSetting

] 1

a 1

[] 1

. eeeemmwww

1 r

: y

» WO AL TERMATE SETTING WDU ALTERNATE SETTING | |WDU ALTERMATE SETTING

* Descriptor
= " pEndpointDescriptors
=" pPipes

-» WDU ENDPOINT DESCRIPTOR L
* blLength * o dwhumber
* pDescriptorType *
* bEndpoint&ddress T otype
* bmAttributes * direction
* wiMaxPacketSize * binterval
* blnterval

WDU PIPE INFO

dwhaximumPFacketSize

FigureB.2 WinDriver USB Structures

B.5.2.1 WDU _MATCH_TABLE Structure

USB match table structure.

(*) For al field members, if valueis set to zero — match all.

Field Type Description

wVendorld WORD Required USB Vendor ID to detect, as assigned by USB-IF
(*)

wProductld WORD Required USB Product 1D to detect, as assigned by the
product manufacturer (*)

© Jungo Ltd. 2005-2010

139

Field Type Description

bDeviceClass BYTE The device's class code, as assigned by USB-IF (*)
bDeviceSubClass BYTE The device's sub-class code, as assigned by USB-IF (*)
blnterfaceClass BYTE The interface's class code, as assigned by USB-IF (*)
binterfaceSubClass | BYTE The interface's sub-class code, as assigned by USB-IF (*)
binterfaceProtocol | BYTE The interface's protocol code, as assigned by USB-IF (*)

B.5.2.2 WDU_

USB events table structure.
This structure is declared in the WinDriver/include/wdu_lib.h header file.

EVENT_TABLE Structure

Field

Type

Description

pfDeviceAttach

WDU_ATTACH_CALLBACK

Will be called by WinDriver
when adeviceis attached

pfDeviceDetach

WDU_DETACH_CALLBACK

Will be called by WinDriver
when adeviceis detached

pfPowerChange | WDU_POWER_CHANGE_CALLBACK | Will be called by WinDriver
when thereisachangein a
device's power state

pUserData PVOID Pointer to user-mode data to be

passed to the callbacks

B.5.2.3 WDU_DEVICE Structure

USB device information structure.

Field Type Description

Descriptor WDU_DEVICE_DESCRIPTOR Device descriptor information
structure [B.5.2.7]

Pipe0 WDU_PIPE_INFO Pipe information structure [B.5.2.11]
for the device's default pipe (Pipe 0)

pConfigs WDU_CONFIGURATION* Pointer to the device's configuration

information structure [B.5.2.4]

pActiveConfig

WDU_CONFIGURATION*

Pointer to a configuration information
structure [B.5.2.4] for the device's
active configuration

pActivelnterface

WDU_INTERFACE*
[WD_USB_MAX_INTERFACES]

Array of pointersto interface
information structures [B.5.2.5] for
the device's active interfaces

© Jungo Ltd. 2005-2010

140

B.5.2.4 WDU_ CONFIGURATION Structure

Configuration information structure.

Field Type

Description

Descriptor WDU_CONFIGURATION_DESCRIPTOR | Configuration

descriptor information
structure [B.5.2.8]

dwNumlnterfaces DWORD

Number of interfaces
supported by this
configuration

plnterfaces WDU_INTERFACE*

Pointer to the beginning

of an array of

interface information
structures [B.5.2.5] for the
configuration's interfaces

B.5.2.5 WDU_INTERFACE Structure

Interface information structure.

Field Type

Description

pAlternateSettings | WDU_ALTERNATE_SETTING*

Pointer to the beginning of an array
of alternate setting information
structures [B.5.2.6] for the
interface's alternate settings

dwNumAlItSettings | DWORD

Number of alternate settings
supported by thisinterface

pActiveAltSetting | WDU_ALTERNATE_SETTING*

Pointer to an alternate setting
information structure [B.5.2.6]
for the interface's active aternate
Setting

B.5.2.6 WDU_ALTERNATE_SETTING Structure

Alternate setting information structure.

Field Type Description

Descriptor WDU_INTERFACE_DESCRIPTOR Interface descriptor
information
structure [B.5.2.9]

© Jungo Ltd. 2005-2010

Field Type

Description

pEndpointDescriptors | WDU_ENDPOINT_DESCRIPTOR*

Pointer to the beginning

of an array of endpoint
descriptor information
structures [B.5.2.10] for the
alternate setting's endpoints

pPipes WDU_PIPE_INFO*

Pointer to the beginning of
an array of pipe information
structures [B.5.2.11] for the
alternate setting's pipes

B.5.2.7 WDU_DEVICE_DESCRIPTOR Structure

USB device descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor (18 bytes)

bDescriptorType UCHAR | Device descriptor (0x01)

bcdUSB USHORT | Number of the USB specification with which the device
complies

bDeviceClass UCHAR | Thedevice's class

bDeviceSubClass UCHAR | The device's sub-class

bDeviceProtocol UCHAR | The device's protocol

bM axPacketSize0 UCHAR | Maximum size of transferred packets

idVendor USHORT | Vendor ID, as assigned by USB-IF

idProduct USHORT | Product ID, as assigned by the product manufacturer

bcdDevice USHORT | Device release number

iManufacturer UCHAR | Index of manufacturer string descriptor

iProduct UCHAR | Index of product string descriptor

iSerialNumber UCHAR | Index of serial number string descriptor

bNumConfigurations | UCHAR | Number of possible configurations

B.5.2.8 WDU_CONFIGURATION_DESCRIPTOR Structure

USB configuration descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor

© Jungo Ltd. 2005-2010 142

Field Type Description
bDescriptorType UCHAR | Configuration descriptor (0x02)
wTotalLength USHORT | Total length, in bytes, of data returned
bNumlnterfaces UCHAR | Number of interfaces
bConfigurationValue | UCHAR | Configuration number
iConfiguration UCHAR | Index of string descriptor that describes this configuration
bmAttributes UCHAR | Power settings for this configuration:
* D6 — self-powered
» D5 —remote wakeup (allows device to wake up the host)
MaxPower UCHAR | Maximum power consumption for this configuration, in
2mA units

B.5.2.9 WDU_INTERFACE_DESCRIPTOR Structure

USB interface descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor (9 bytes)
bDescriptorType UCHAR | Interface descriptor (0x04)

binterfaceNumber | UCHAR | Interface number

bAlternateSetting UCHAR | Alternate setting number

bNumEndpoints UCHAR | Number of endpoints used by thisinterface

bl nterfaceClass UCHAR | Theinterface's class code, as assigned by USB-IF
binterfaceSubClass | UCHAR | Theinterface's sub-class code, as assigned by USB-IF
binterfaceProtocol | UCHAR | Theinterface's protocol code, as assigned by USB-IF
ilnterface UCHAR | Index of string descriptor that describes this interface

B.5.2.10 WDU_ENDPOINT_DESCRIPTOR Structure

USB endpoint descriptor information structure.

Field Type Description

bLength UCHAR | Size, in bytes, of the descriptor (7 bytes)
bDescriptorType UCHAR | Endpoint descriptor (0x05)

bEndpointAddress | UCHAR | Endpoint address. Use bits 0—3 for endpoint number, set

bits 4-6 to zero (0), and set bit 7 to zero (0) for outbound
data and to one (1) for inbound data (ignored for control
endpoints).

© Jungo Ltd. 2005-2010

143

Field Type

Description

bmAttributes UCHAR

Specifies the transfer type for this endpoint (control,
interrupt, isochronous or bulk). See the USB specification for
further information.

wM axPacketSize USHORT

Maximum size of packets this endpoint can send or receive

binterval UCHAR

Interval, in frame counts, for polling endpoint data transfers.
Ignored for bulk and control endpoints.

Must equal 1 for isochronous endpoints.

May range from 1 to 255 for interrupt endpoints.

B.5.2.11 WDU_PIPE_

USB pipe information structure.

INFO Structure

Field Type Description

dwNumber DWORD | Pipe number; Zero for default pipe

dwMaximumPacketSize | DWORD | Maximum size of packets that can be transferred using
this pipe

type DWORD | Transfer type for this pipe

direction DWORD | Direction of the transfer:
*USB DI R I Nor USB_DI R_QUT for isochronous,
bulk or interrupt pipes.
*«USB DI R_|I N_QUT for control pipes.

dwlinterval DWORD | Interval in milliseconds.

Relevant only to interrupt pipes.

B.6 General WD _xxx Functions

B.6.1 Calling Sequence WinDriver — General Use

Thefollowing isatypical calling sequence for the WinDriver API.

© Jungo Ltd. 2005-2010

144

WD_Open()

!

WD_Version()

h 4

WinDriver's Hardware
Access API

General WinDriver API:

PrintDbgMessage() ;
WD_DebugAdd() ;
WD_Sleep() ;
WD_Logoo()

WD _Close()

FigureB.3 WinDriver API Calling Sequence

* Werecommend calling the WinDriver function WD_Ver si on() [B.6.3] after calling
WD _Open() [B.6.2] and before calling any other WinDriver function. Its purposeisto
return the WinDriver kernel module version number, thus providing the means to verify
that your application is version compatible with the WinDriver kernel module.

* WD _DebugAdd() [B.6.6] and WD_SI eep() [B.6.8] can be called anywhere after

WD_Open()

B.6.2 WD_Open

PURPOSE

* Opens a handle to access the WinDriver kernel module. The handle is used by all WinDriver
APIs, and therefore must be called before any other WinDriver AP is called.

PROTOTYPE

HANDLE WD _Open(voi d) ;

RETURN VALUE

The handle to the WinDriver kernel module.

If device could not be opened, returns | NVALI D_HANDLE VAL UE.

© Jungo Ltd. 2005-2010

145

REMARKS

* If you are aregistered user, please refer to the documentation of WD_Li cense() [B.6.9] for an

example of how to register your WinDriver license.

EXAMPLE

HANDLE hWD;
hWD = WD_Qpen() ;

if (hWD == | NVALI D_HANDLE_VALUE)
{

}

printf("Cannot open WnDriver device\n");

B.6.3 WD_Version

PURPOSE

* Returns the version number of the WinDriver kernel module currently running.

PROTOTYPE

DWORD WD _Ver si on(
HANDLE hW\D,
WD _VERSI ON *pVer) ;

PARAMETERS
Name Type I nput/Output
hwD HANDLE I nput
pVer WD_VERSION*
o dwVer DWORD Output
*cVer CHARJ[128] Output
DESCRIPTION
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD _Open() [B.6.2]
pVer Pointer to a WinDriver version information structure:
s dwVer The version number
e cVer Version information string.
The version string's size is limited to 128 characters (including the
NULL terminator character).

© Jungo Ltd. 2005-2010 146

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE

WD_VERSI ON ver ;

BZERQ(ver) ;

WD Ver si on(hWD, &ver);
printf("%\n", ver.cVer);
if (ver.dwer < WD _VER)

{
}

printf("Error -

incorrect WnDriver version\n");

B.6.4 WD _Close

PURPOSE

* Closes the access to the WinDriver kernel module.

PROTOTYPE

voi d WD_Cl ose(HANDLE hWD) ;

PARAMETERS
Name Type I nput/Output
hwD HANDLE Input
DESCRIPTION
‘ Name ’ Description
hwD Handle to WinDriver's kernel-mode driver as received from

RETURN VALUE

None

REMARKS

» Thisfunction must be called when you finish using WinDriver kernel module.

EXAMPLE

WD Open() [B.6.2]

© Jungo Ltd. 2005-2010

147

WD Cl ose(hWD) ;

B.6.5 WD_Debug

PURPOSE

» Sets debugging level for collecting debug messages.

PROTOTYPE

DWORD WD_Debug(
HANDLE hWD,

WD _DEBUG * pDebug) ;

PARAMETERS

Name Type I nput/Output

hwD HANDLE Input

pDebug WD _DEBUG* Input

e dwCmd DWORD Input

* dwLevel DWORD Input

* dwSection DWORD Input

» dwLevelMessageBox | DWORD Input

» dwBufferSize DWORD Input

DESCRIPTION

Name Description

hwD Handle to WinDriver's kernel-mode driver as received from
WD _Open() [B.6.2]

pDebug Pointer to a debug information structure:

e dwCmd Debug command: Set filter, Clear buffer, etc.
For more details please refer to DEBUG_COMVAND in windrvr .h.

 dwlLeve Used for dwCnd=DEBUG_SET_FI LTER. Sets the debugging level
to collect: Error, Warning, Info, Trace.
For more details please refer to DEBUG _LEVEL inwindrvr.h.

* dwSection Used for dwCnd=DEBUG_SET_FI LTER. Setsthe sectionsto
collect: 1/0, Memory, Interrupt, etc. Use S_ALL for all.
For more details please refer to DEBUG_SECTI ONin windrvr .h.

» dwLevelMessageBox | Used for dwCmd=DEBUG_SET_FI LTER. Sets the debugging level
to print in a message box.
For more details please refer to DEBUG_LEVEL in windrvr.h.

© Jungo Ltd. 2005-2010

148

Name Description

kerndl.

» dwBufferSize Used for dwCnd=DEBUG_SET_BUFFER. The size of buffer in the

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE
WD_DEBUG dbg;

BZERQ(dbg) ;

dbg. dwCmd = DEBUG SET_FI LTER;
dbg. dwiLevel = D_ERROR;

dbg. dwSection = S _ALL;

dbg. dwLevel MessageBox = D_ERROR;

WD_Debug(hWD, &dbg) ;

B.6.6 WD_DebugAdd

PURPOSE

* Sends debug messages to the debug log. Used by the driver code.

PROTOTYPE

DWORD WD _DebugAdd(
HANDLE hWD,
WD_DEBUG _ADD *pDat a) ;

PARAMETERS
Name Type I nput/Output
hwD HANDLE I nput
pData WD_DEBUG_ADD*
 dwlLeve DWORD Input
* dwSection DWORD Input
* pcBuffer CHAR[256] Input
DESCRIPTION
Name Description
hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]

© Jungo Ltd. 2005-2010 149

Name Description

pData Pointer to an additional debug information structure:
* dwLevel Assigns the level in the Debug Monitor, in which the datawill be
declared.

If dwLevel iszero, D_ERRORwill be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.

* dwSection Assigns the section in the Debug Monitor, in which the datawill be
declared.

If dwSecti oniszero, S M SC section will be declared.

For more details please refer to DEBUG_SECTI ONin windrvr.h.

* pcBuffer The string to copy into the message |og.

RETURN VALUE
ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE

WD_DEBUG_ADD add;

BZERQ(add) ;

add. dwLevel = D _WARN;

add. dwSection = S_M SC

sprintf(add. pcBuffer, "This nessage will be displayed in "
"the Debug Mnitor\n");

WD_DebugAdd(hWD, &add);

B.6.7 WD_DebugDump

PURPOSE

* Retrieves debug messages buffer.

PROTOTYPE

DWORD WD_DebugDunp(
HANDLE hWD,
WD_DEBUG_DUMP * pDebugDunp) ;

PARAMETERS
Name Type I nput/Output
hwD HANDLE Input
pDebug WD_DEBUG_DUMP* I nput
* pcBuffer PCHAR I nput/Output

© Jungo Ltd. 2005-2010 150

Name Type I nput/Output

* dwSize DWORD Input
DESCRIPTION

Name Description

hwD Handle to WinDriver's kernel-mode driver as received from

WD Open() [B.6.2]

pDebugDump Pointer to a debug dump information structure:

* pcBuffer Buffer to receive debug messages

dwSize Size of buffer in bytes

RETURN VALUE

Returns\WD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

EXAMPLE

char buffer[1024];
WD_DEBUG DUMP dunp;
dunp. pcBuf f er =buf f er;

dunp. dwSi ze = si zeof (buffer);
WD _DebugDunp(hWD, &dunp) ;

B.6.8 WD_Sleep

PURPOSE

* Delays execution for a specific duration of time.

PROTOTYPE

DWORD WD_SI eep(
HANDLE hW\D,
WD _SLEEP *pSl eep) ;

PARAMETERS
Name Type I nput/Output
hwD HANDLE Input
pSleep WD_SLEEP*
 dwMicroSeconds DWORD Input
* dwOptions DWORD Input

© Jungo Ltd. 2005-2010 151

DESCRIPTION

Name Description

hwD Handle to WinDriver's kernel-mode driver as received from
WD Open() [B.6.2]

pSleep Pointer to a sleep information structure:

 dwMicroSeconds Sleep time in microseconds — 1/1,000,000 of a second.

* dwOptions A bit-mask, which can be set to either of the following:

e Zero (0) —Busy Seep (default)

OR:

* SLEEP_NON_BUSY — Delay execution without consuming CPU
resources. (Not relevant for under 17,000 micro seconds. L ess accurate

than busy sleep).

RETURN VALUE

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

REMARKS

» Example usage: to access slow response hardware.

EXAMPLE
WD_Sl eep sl p;

BZER((sl p) ;

sl p. dwM croSeconds = 200;

WD_SI eep(hWD, &sl p);

B.6.9 WD License

PURPOSE

* Transfers the license string to the WinDriver kernel module and returns information regarding
the license type of the specified license string.

"
1

When using the WDU USB APIs [B.2] your WinDriver license registration is done viathe

call toWDU _I ni t () [B.4.1], so you do not need to call WD_Li cense() directly from your

code.

PROTOTYPE

DWORD WD _Li cense(
HANDLE hWD,

WD LI CENSE *pLi cense);

© Jungo Ltd. 2005-2010

152

PARAMETERS

Name Type I nput/Output
hwD HANDLE Input
pLicense WD_LICENSE*

* cLicense CHARJ] Input

* dwLicense DWORD Output

* dwLicense2 DWORD Output

DESCRIPTION

Name Description

hwD Handle to WinDriver's kernel-mode driver as received from
WD_Open() [B.6.2]

pLicense Pointer to a WinDriver license information structure:

e cLicense A buffer to contain the license string that isto be transferred to the
WinDriver kernel module. If an empty string is transferred, then
WinDriver kernel module returns the current license type to the
parameter dwLi cense.

* dwLicense Returns the license type of the specified license string (cLi cnese).
Thereturn value is a bit-mask of license flags, defined as an enum in
windrvr.h. Zero signifiesan invalid license string. Additional flags for
determining the license type are returned in dwLi cense?2, if needed.

* dwLicense2 Returns additional flags for determining the license type, if

dwLi cense cannot hold al the relevant information (otherwise —
Zero)

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

REMARKS

» When using aregistered version, this function must be called before any other WinDriver AP
call, apart from VWD_Open() [B.6.2], in order to register the license from the code.

EXAMPLE

Example usage: Add registration routine to your application:
DWORD Regi ster W nDri ver ()

{

HANDLE hWD;
WD _LI CENSE i c;

DWORD dwSt at us = WD_| NVALI D_HANDLE;

© Jungo Ltd. 2005-2010

153

hWo = WD _Qpen();
i f (hWD! =l NVALI D_HANDLE_VALUE)
{
BZERO(l i c) ;
/* Replace the following string with your license string: */
strcpy(lic.cLicense, "12345abcdel2345. ConpanyNane") ;
dwSt atus = WD _Li cense(hWD, &lic);
WD _Cl ose(hV\D) ;
}

return dwsStat us;

B.7 User-Mode Utility Functions

This section describes a number of user-mode utility functions you will find useful for
implementing various tasks. These utility functions are multi-platform, implemented on all
operating systems supported by WinDriver.

B.7.1 Stat2Str

PURPOSE

* Retrieves the status string that corresponds to a status code.

PROTOTYPE

const char *Stat2Str(DWORD dwsSt at us) ;

PARAMETERS
Name Type I nput/Output
dwStatus DWORD Input
DESCRIPTION
Name Description
* dwStatus A numeric status code

RETURN VALUE

Returns the verbal status description (string) that corresponds to the specified numeric status code.

REMARKS

See section B.8 for acomplete list of status codes and strings.

© Jungo Ltd. 2005-2010 154

B.7.2 get os type

PURPOSE

* Retrieves the type of the operating system.

PROTOTYPE

OS_TYPE get _os_type(void);

RETURN VALUE

Returns the type of the operating system.
If the operating system type is not detected, returns OS_CAN_NOT _DETECT.

B.7.3 ThreadStart

PURPOSE

* Creates athread.

PROTOTYPE

DWORD ThreadStart (
HANDLE *phThr ead,
HANDLER_FUNC pFunc,

voi d *pDat a) ;

PARAMETERS

Name Type I nput/Output

phThread HANDLE* Output

pFunc typedef void (*HANDLER_FUNC)(Input

void *pData);

pData VOID* I nput
DESCRIPTION

Name Description

phThread Returns the handle to the created thread

pFunc Starting address of the code that the new thread is to execute. (The

handler's prototype — HANDLER FUNC —is defined in utils.h).

© Jungo Ltd. 2005-2010 155

Name Description

pData Pointer to the data to be passed to the new thread

RETURN VALUE

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

B.7.4 ThreadWait

PURPOSE

» Waits for athread to exit.

PROTOTYPE

voi d Thr eadWi t (HANDLE hThr ead) ;

PARAMETERS
Name Type I nput/Output
hThread HANDLE Input
DESCRIPTION
Name Description
hThread The handle to the thread whose completion is awaited

RETURN VALUE

None

B.7.5 OsEventCreate

PURPOSE

* Creates an event object.

PROTOTYPE

DWORD OsEvent Cr eat e(HANDLE *phGsEvent) ;

PARAMETERS

© Jungo Ltd. 2005-2010 156

Name Type I nput/Output
phOsEvent HANDLE* Output
DESCRIPTION
Name Description
phOsEvent The pointer to avariable that receives a handle to the newly created
event object

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.6 OsEventClose

PURPOSE

* Closes a handle to an event object.

PROTOTYPE

voi d OGsEvent O ose(HANDLE hCsEvent);

PARAMETERS
Name Type I nput/Output
hOsEvent HANDLE Input
DESCRIPTION
Name Description
hOsEvent The handle to the event object to be closed

RETURN VALUE

None

B.7.7 OsEventWait

PURPOSE

» Waits until a specified event object isin the signaled state or the time-out interval elapses.

© Jungo Ltd. 2005-2010 157

PROTOTYPE

DWORD GsEvent Wi t (
HANDLE hOsEvent,

DWORD dwSecTi neout) ;

PARAMETERS

Name Type I nput/Output

hOsEvent HANDLE I nput

dwSecTimeout DWORD Input
DESCRIPTION

Name Description

hOsEvent The handle to the event object

dwSecTimeout Time-out interval of the event, in seconds.

For an infinite wait, set the timeout to | NFI NI TE.

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.8 OsEventSignal

PURPOSE

* Sets the specified event object to the signaled state.

PROTOTYPE

DWORD OsEvent Si gnal (HANDLE hGsEvent) ;

PARAMETERS
Name Type I nput/Output
hOsEvent HANDLE Input
DESCRIPTION
Name Description
hOsEvent The handle to the event object

© Jungo Ltd. 2005-2010

158

RETURN VALUE

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.9 OsEventReset

PURPOSE

* Resets the specified event object to the non-signaled state.

PROTOTYPE

DWORD OsEvent Reset (HANDLE hGsEvent) ;

PARAMETERS
Name Type I nput/Output
hOsEvent HANDLE Input
DESCRIPTION
Name Description
hOsEvent The handle to the event object

RETURN VALUE

Returns\WD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.10 OsMutexCreate

PURPOSE

* Creates a mutex object.

PROTOTYPE

DWORD OGsMut exCr eat e(HANDLE * phQsMut ex) ;

PARAMETERS
Name Type I nput/Output
phOsM utex HANDLE* Output

© Jungo Ltd. 2005-2010 159

DESCRIPTION

‘ Name ’ Description
phOsMutex The pointer to a variable that receives a handle to the newly created
mutex object

RETURN VALUE

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.11 OsMutexClose

PURPOSE

* Closes a handle to a mutex object.

PROTOTYPE

voi d OsMut exCl ose(HANDLE hGsMut ex) ;

PARAMETERS
Name Type I nput/Output
hOsM utex HANDLE I nput
DESCRIPTION
Name Description
hOsMutex The handle to the mutex object to be closed

RETURN VALUE

None

B.7.12 OsMutexLock

PURPOSE

* Locks the specified mutex object.

PROTOTYPE

DWORD OGsMut exLock(HANDLE hQsMut ex) ;

© Jungo Ltd. 2005-2010 160

PARAMETERS

‘ Name ’ Type ‘ I nput/Output ‘
 hOsMutex ' HANDLE | Input |
DESCRIPTION

Name Description

hOsM utex The handle to the mutex object to be locked

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.13 OsMutexUnlock

PURPOSE

* Releases (unlocks) alocked mutex object.

PROTOTYPE

DWORD GsMut exUnl ock(HANDLE hGsMut ex) ;

PARAMETERS
Name Type I nput/Output
hOsMutex HANDLE Input
DESCRIPTION
Name Description
hOsMutex The handle to the mutex object to be unlocked

RETURN VALUE

ReturnsWD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

B.7.14 PrintDbgMessage

PURPOSE

© Jungo Ltd. 2005-2010

161

* Sends debug messages to the Debug Monitor.

PROTOTYPE

voi d Print DbgMessage(
DWORD dwievel ,
DWORD dwSect i on,

const char *format

[, argunent]...);
PARAMETERS
Name Type I nput/Output
dwLevel DWORD Input
dwSection DWORD Input
format const char* Input
argument I nput
DESCRIPTION
Name Description
dwLevel Assignsthe level in the Debug Monitor, in which the datawill be
declared. If zero, D_ERROR will be declared.
For more details please refer to DEBUG_LEVEL in windrvr.h.
dwSection Assigns the section in the Debug Monitor, in which the data will be
declared. If zero, S M SCwill be declared.
For more details please refer to DEBUG_SECTION in windrvr.h.
format Format-control string
argument Optional arguments, limited to 256 bytes

RETURN VALUE

None

B.7.15 WD _LogStart

PURPOSE

* Opensalogfile.

PROTOTYPE

DWORD WD LogStart (

const char *sFil eNane,

© Jungo Ltd. 2005-2010

162

const char *shbde);

PARAMETERS

Name Type I nput/Output
skileName const char* Input

sMode const char* Input
DESCRIPTION

Name Description

skileName Name of log file to be opened

sMode Type of access permitted.

For example, NULL or w opens an empty file for writing, and if the
given file exists, its contents are destroyed;
aopensafilefor writing at the end of thefile (i.e., append).

RETURN VALUE

Returns\WWD_STATUS _SUCCESS (0) on success, or an appropriate error code otherwise [B.g].

REMARKS

* Oncealogfileisopened, all API callsarelogged in thisfile.
Y ou may add your own printouts to the log file by calling WD_LogAdd() [B.7.17].

B.7.16 WD _LogStop

PURPOSE

* Closesalogfile.

PROTOTYPE

VO D WD _LogSt op(voi d);

RETURN VALUE

None

B.7.17 WD_LogAdd

PURPOSE

© Jungo Ltd. 2005-2010

163

» Adds user printoutsinto log file.

PROTOTYPE

VO D DLLCALLCONV WD _LogAdd(
const char *sFor mat

[, argunent]...);

PARAMETERS

Name Type I nput/Output
sFormat const char* Input
argument I nput
DESCRIPTION

Name Description

sFormat Format-control string

argument Optional format arguments

RETURN VALUE

Returns WD_STATUS SUCCESS (0) on success, or an appropriate error code otherwise [B.8].

© Jungo Ltd. 2005-2010

164

B.8 WinDriver Status Codes

B.8.1 Introduction

Most of the WinDriver functions return a status code, where zero (WD_STATUS _SUCCESS)
means success and a non-zero value means failure.

The St at 2St r () functions can be used to retrieve the status description string for a given status

code. The status codes and their descriptive strings are listed below.

B.8.2 Status Codes Returned by WinDriver

Status Code

Description

WD_STATUS _SUCCESS

Success

WD_STATUS_INVALID_WD_HANDLE

Invalid WinDriver handle

WD_WINDRIVER_STATUS ERROR

Error

WD_INVALID_HANDLE

Invalid handle

WD_INVALID_PIPE_NUMBER

Invalid pipe number

WD_READ WRITE_CONFLICT

Conflict between read and write operations

WD_ZERO PACKET_SIZE

Packet sizeis zero

WD_INSUFFICIENT_RESOURCES

Insufficient resources

WD_UNKNOWN_PIPE_TYPE

Unknown pipe type

WD_SYSTEM_INTERNAL_ERROR

Internal system error

WD_DATA_MISMATCH

Data mismatch

WD_NO_LICENSE

No valid license

WD_NOT_IMPLEMENTED

Function not implemented

WD_FAILED_ENABLING_INTERRUPT

Failed enabling interrupt

WD_INTERRUPT_NOT_ENABLED

Interrupt not enabled

WD_RESOURCE_OVERLAP

Resource overlap

WD_DEVICE_NOT_FOUND

Device not found

WD_WRONG_UNIQUE ID

Wrong unique ID

WD_OPERATION_ALREADY_ DONE

Operation already done

WD_USB_DESCRIPTOR_ERROR

USB descriptor error

WD_SET_CONFIGURATION_FAILED

Set configuration operation failed

WD_CANT_OBTAIN_PDO

Cannot obtain PDO

WD_TIME_OUT_EXPIRED

Timeout expired

WD_IRP_CANCELED

IRP operation cancelled

© Jungo Ltd. 2005-2010

165

Status Code

Description

WD_FAILED_USER MAPPING

Failed to map in user space

WD_FAILED_KERNEL_MAPPING

Failed to map in kernel space

WD_NO_RESOURCES ON_DEVICE

No resources on the device

WD_NO_EVENTS

No events

WD_INVALID_PARAMETER

Invalid parameter

WD_INCORRECT_VERSION

Incorrect WinDriver version installed

WD_TRY_AGAIN Try again
WD_INVALID_IOCTL Received an invalid IOCTL
WD_OPERATION_FAILED Operation failed

WD_INVALID_32BIT_APP

Received an invalid 32-bit IOCTL

WD_TOO MANY_HANDLES

No room to add handle

WD_NO DEVICE_OBJECT

Driver not installed

B.8.3 Status Codes Returned by USBD

The following WinDriver status codes comply with USBD XXX status codes returned by the

USB stack drivers.
Status Code Description
USBD Satus Types
WD_USBD_STATUS SUCCESS USBD: Success
WD_USBD_STATUS PENDING USBD: Operation pending
WD_USBD_STATUS ERROR USBD: Error
WD _USBD _STATUS HALTED USBD: Halted

USBD Satus Codes (NOTE: The status codes consist of one of the status types above and an
error code, i.e., OXXYYYYYYYL, where X=status type and YYYYYYY=error code. The same
error codes may also appear with one of the other status types as well.)

status type.)

HC (Host Controller) Satus Codes (NOTE: These usethe WD_USBD_STATUS HALTED

WD_USBD_STATUS CRC

HC status: CRC

WD_USBD_STATUS BTSTUFF

HC status: Bit stuffing

WD_USBD_STATUS DATA_TOGGLE_MISMATCH

HC status: Data toggle mismatch

WD_USBD_STATUS STALL_PID

HC status: PID stall

WD_USBD_STATUS DEV_NOT_RESPONDING

HC status: Device not responding

WD_USBD_STATUS PID_CHECK_FAILURE

HC status; PID check failed

WD_USBD_STATUS UNEXPECTED_PID

HC status: Unexpected PID

© Jungo Ltd. 2005-2010

166

Status Code

Description

WD_USBD_STATUS DATA_OVERRUN

HC status: Data overrun

WD_USBD_STATUS DATA_UNDERRUN

HC status: Data underrun

WD_USBD_STATUS RESERVED1

HC status: Reservedl

WD_USBD_STATUS RESERVED?2

HC status: Reserved?2

WD_USBD_STATUS BUFFER_OVERRUN

HC status: Buffer overrun

WD_USBD_STATUS BUFFER_UNDERRUN

HC status: Buffer Underrun

WD_USBD_STATUS NOT_ACCESSED

HC status: Not accessed

WD_USBD_STATUS FIFO

HC status: FIFO

For Windows only:

WD_USBD_STATUS XACT_ERROR

HC status: The host controller has
set the Transaction Error (XactErr)
bit in the transfer descriptor's
status field

WD_USBD_STATUS BABBLE DETECTED

HC status: Babble detected

WD_USBD_STATUS DATA_BUFFER ERROR

HC status:; Data buffer error

For Windows CE only:

WD_USBD_STATUS ISOCH

USBD: Isochronous transfer failed

WD_USBD_STATUS NOT_COMPLETE

USBD: Transfer not completed

WD_USBD_STATUS CLIENT BUFFER

USBD: Cannot write to buffer

For all platforms:

WD_USBD_STATUS_CANCELED

USBD: Transfer cancelled

stalled:

Returned by HCD (Host Controller Driver) if a transfer is submitted to an endpoint that is

WD_USBD_STATUS ENDPOINT_HALTED

HCD: Transfer submitted to stalled
endpoint

Software Status Codes (NOTE: Only the error bit is set):

WD_USBD_STATUS NO_MEMORY

USBD: Out of memory

WD_USBD_STATUS INVALID URB_FUNCTION

USBD: Invalid URB function

WD_USBD_STATUS INVALID PARAMETER

USBD: Invalid parameter

outstanding transfers:

Returned if client driver attempts to close an endpoint/interface or configuration with

WD_USBD_STATUS ERROR BUSY

USBD: Attempted to close
endpoint/interface/configuration
with outstanding transfer

© Jungo Ltd. 2005-2010 167

Status Code

‘ Description

Returned by USBD if it cannot complete a URB request. Typically thiswill be returned in the
URB status field (when the IRP is completed) with amore specific error code. The IRP status
codes are indicated in WinDriver's Debug Monitor tool (wddebug_gui / wddebug):

WD_USBD_STATUS REQUEST FAILED

USBD: URB request failed

WD_USBD_STATUS INVALID_PIPE_ HANDLE

USBD: Invalid pipe handle

Returned when there is not enough bandwidth available to open arequested endpoint:

WD_USBD_STATUS NO _BANDWIDTH

USBD: Not enough bandwidth for
endpoint

Generic HC (Host Controller) error:

WD_USBD_STATUS INTERNAL_HC_ERROR

USBD: Host controller error

bit not set:

Returned when a short packet terminates the transfer, i.e., USBD_SHORT_TRANSFER_OK

WD_USBD_STATUS ERROR_SHORT_ TRANSFER

USBD: Transfer terminated with
short packet

the current USB frame (NOTE: The stall bit is set):

Returned if the requested start frame is not within USBD_ISO_START_FRAME_RANGE of

WD_USBD_STATUS BAD_START FRAME

USBD: Start frame outside range

with an error:

Returned by HCD (Host Controller Driver) if all packetsin an isochronous transfer complete

WD_USBD_STATUS ISOCH_REQUEST FAILED

HCD: Isochronous transfer
completed with error

by another driver:

Returned by USBD if the frame length control for a given HC (Host Controller) is already taken

WD_USBD_STATUS FRAME_CONTROL_OWNED

USBD: Frame length control
aready taken

modify the HC frame length:

Returned by USBD if the caller does not own frame length control and attempts to release or

WD_USBD_STATUS FRAME_CONTROL_NOT _
OWNED

USBD: Attempted operation on
frame length control not owned by
caller

Additional software error codes added for USB 2.0 (for Windows only):

WD_USBD_STATUS NOT_SUPPORTED

USBD: API not supported/
implemented

WD_USBD_STATUS INAVLID_CONFIGURATION
DESCRIPTOR

USBD: Invalid configuration
descriptor

WD_USBD_STATUS_INSUFFICIENT_RESOURCES

USBD: Insufficient resources

WD_USBD_STATUS SET_CONFIG_FAILED

USBD: Set configuration failed

WD_USBD_STATUS BUFFER TOO SMALL

USBD: Buffer too small

© Jungo Ltd. 2005-2010 168

Status Code

Description

WD_USBD_STATUS INTERFACE_NOT_FOUND

USBD: Interface not found

WD_USBD_STATUS INAVLID _PIPE_FLAGS

USBD: Invalid pipe flags

WD_USBD_STATUS TIMEOUT

USBD: Timeout

WD_USBD_STATUS DEVICE_GONE

USBD: Device gone

WD_USBD_STATUS STATUS NOT_MAPPED

USBD: Status not mapped

Extended isochronous error codes returned by USBD.

These errors appear in the packet status field of an isochronous transfer:

WD_USBD_STATUS 1SO_NOT_ACCESSED BY_HW

USBD: The controller did not
access the TD associated with this
packet

WD_USBD_STATUS 1SO_TD_ERROR

USBD: Controller reported an
error inthe TD

WD_USBD_STATUS 1SO_NA_LATE_USBPORT

USBD: The packet was submitted
in time by the client but failed to
reach the miniport in time

WD_USBD_STATUS 1SO NOT_ACCESSED LATE

USBD: The packet was not sent
because the client submitted it too
|ate to transmit

© Jungo Ltd. 2005-2010 169

Appendix C
Troubleshooting and Support

Please refer to http://www.jungo.com/st/support/support_windriver.html for additional resources
for developers, including:

» Technical documents
* FAQs
* Samples

* Quick start guides

© Jungo Ltd. 2005-2010 170

http://www.jungo.com/st/support/support_windriver.html

Appendix D
Evaluation Version Limitations

D.1 Windows WinDriver Evaluation
Limitations

» Each time WinDriver is activated, an Unregister ed message appears.

» When using DriverWizard, a dialogue box with a message stating that an evaluation version is
being run appears on every interaction with the hardware.

* DriverWizard [5]:
» Eachtime DriverWizard is activated, an Unr egi st er ed message appears.

» An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

» WinDriver will function for only 30 days after the original installation.

D.2 Windows CE WinDriver Evaluation
Limitations

» Each time WinDriver is activated, an Unregister ed message appears.
» The WinDriver CE Kernel (windrvr6.dll) will operate for no more than 60 minutes at a time.

» DriverWizard [5] (used on ahost Windows 7 / Vista/ Server 2008 / Server 2003 / XP/ 2000
PC):

» Eachtime DriverWizard is activated, an Unr egi st er ed message appears.

* An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

D.3 Linux WinDriver Evaluation Limitations

» Each time WinDriver is activated, an Unr egister ed message appears.

* DriverWizard [5]:

© Jungo Ltd. 2005-2010 171

» Each time DriverWizard is activated, an Unr egi st er ed message appears.

* An evaluation message is displayed on every interaction with the hardware using
DriverWizard.

» WinDriver's kernel module will work for no more than 60 minutes at atime. To continue
working, the WinDriver kernel module must be reloaded (unload and load the module) using
the following commands:

; Thefollowing commands must be executed with root privileges.

To unload:
/ sbi n/ nodprobe -r w ndrvr6

To load:
<path to wdreg> w ndrvr6

wdreg isprovided in the WinDriver/util directory.

© Jungo Ltd. 2005-2010 172

Appendix E
Purchasing WinDriver

Fill in the order form found in Start | WinDriver | Order Form on your Windows start menu,
and send it to Jungo viaemail, fax or mail (see details below).

Y our WinDriver package will be sent to you via courier or registered mail. The WinDriver license
string will be emailed to you immediately.

Email Web Site
Sales/ Information: sales@jungo.com http://www.jungo.com
License Registration: wd_license@jungo.com

Phone Fax
Worldwide: +972 74 721 2121 Worldwide: +972 74 721 2122
USA (toll free): +1 877 514 0537 USA (toll free): +1 877 514 0538

France (toll free): +33 800 908 062

Mailing Address

Jungo Ltd.

1 Hamachshev St.
P.O. Box 8493
Netanya 42504
Israel

© Jungo Ltd. 2005-2010 173

mailto:sales@jungo.com
http://www.jungo.com
mailto:wd_license@jungo.com

Appendix F
Distributing Your Driver — Legal

Issues

WinDriver islicensed per-seat. The WinDriver license alows one developer on a single computer
to develop an unlimited number of device drivers, and to freely distribute the created drivers
without royalties, as outlined in the license agreement in the WinDriver/docg/license.pdf file.

© Jungo Ltd. 2005-2010 174

Appendix G
Additional Documentation

Updated Manuals

The most updated WinDriver user manuals can be found on Jungo's site at:
http://www.jungo.com/st/support/support_windriver.html.

Version History

If you wish to view WinDriver version history, refer to the WinDriver Release Notes: http://
www.jungo.com/st/wdver.html. The release notesinclude alist of the new features, enhancements
and fixes that have been added in each WinDriver version.

Technical Documents

For additional information, refer to the WinDriver Technical Documents database:
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html.

This database includes detailed descriptions of WinDriver's features, utilities and APIs and their
correct usage, troubleshooting of common problems, useful tips and answers to frequently asked
questions.

© Jungo Ltd. 2005-2010 175

http://www.jungo.com/st/support/support_windriver.html
http://www.jungo.com/st/wdver.html
http://www.jungo.com/st/wdver.html
http://www.jungo.com/st/support/tech_docs_indexes/main_index.html

	WinDriver™ USB User's Manual
	Table of Contents
	List of Figures
	Chapter 1. WinDriver Overview
	1.1 Introduction to WinDriver
	1.2 Background
	1.2.1 The Challenge
	1.2.2 The WinDriver Solution

	1.3 Conclusion
	1.4 WinDriver Benefits
	1.5 WinDriver Architecture
	1.6 What Platforms Does WinDriver Support?
	1.7 Limitations of the Different Evaluation Versions
	1.8 How Do I Develop My Driver with WinDriver?
	1.8.1 On Windows and Linux
	1.8.2 On Windows CE

	1.9 What Does the WinDriver Toolkit Include?
	1.9.1 WinDriver Modules
	1.9.2 Utilities
	1.9.3 WinDriver's Specific Chipset Support
	1.9.4 Samples

	1.10 Can I Distribute the Driver Created with WinDriver?

	Chapter 2. Understanding Device Drivers
	2.1 Device Driver Overview
	2.2 Classification of Drivers According to Functionality
	2.2.1 Monolithic Drivers
	2.2.2 Layered Drivers
	2.2.3 Miniport Drivers

	2.3 Classification of Drivers According to Operating Systems
	2.3.1 WDM Drivers
	2.3.2 VxD Drivers
	2.3.3 Unix Device Drivers
	2.3.4 Linux Device Drivers

	2.4 The Entry Point of the Driver
	2.5 Associating the Hardware with the Driver
	2.6 Communicating with Drivers

	Chapter 3. WinDriver USB Overview
	3.1 Introduction to USB
	3.2 WinDriver USB Benefits
	3.3 USB Components
	3.4 Data Flow in USB Devices
	3.5 USB Data Exchange
	3.6 USB Data Transfer Types
	3.6.1 Control Transfer
	3.6.2 Isochronous Transfer
	3.6.3 Interrupt Transfer
	3.6.4 Bulk Transfer

	3.7 USB Configuration
	3.8 WinDriver USB
	3.9 WinDriver USB Architecture
	3.10 Which Drivers Can I Write with WinDriver USB?

	Chapter 4. Installing WinDriver
	4.1 System Requirements
	4.1.1 Windows System Requirements
	4.1.2 Windows CE System Requirements
	4.1.3 Linux System Requirements

	4.2 WinDriver Installation Process
	4.2.1 Windows WinDriver Installation Instructions
	4.2.2 Windows CE WinDriver Installation Instructions
	4.2.2.1 Installing WinDriver CE when Building New CE-Based Platforms
	4.2.2.2 Installing WinDriver CE when Developing Applications for Windows CE Computers
	4.2.2.3 Windows CE Installation Note

	4.2.3 Linux WinDriver Installation Instructions
	4.2.3.1 Preparing the System for Installation
	4.2.3.2 Installation
	4.2.3.3 Restricting Hardware Access on Linux

	4.3 Upgrading Your Installation
	4.4 Checking Your Installation
	4.4.1 Windows and Linux Installation Check
	4.4.2 Windows CE Installation Check

	4.5 Uninstalling WinDriver
	4.5.1 Windows WinDriver Uninstall Instructions
	4.5.2 Linux WinDriver Uninstall Instructions

	Chapter 5. Using DriverWizard
	5.1 An Overview
	5.2 DriverWizard Walkthrough
	5.2.1 Logging WinDriver API Calls
	5.2.2 DriverWizard Logger
	5.2.3 Automatic Code Generation
	5.2.3.1 Generating the Code
	5.2.3.2 The Generated USB C Code
	5.2.3.3 The Generated Visual Basic and Delphi Code
	5.2.3.4 The Generated C# and Visual Basic .NET Code

	5.2.4 Compiling the Generated Code
	5.2.4.1 Windows and Windows CE Compilation
	5.2.4.2 Linux Compilation

	5.2.5 Bus Analyzer Integration – Ellisys Visual USB

	Chapter 6. Developing a Driver
	6.1 Using DriverWizard to Build a Device Driver
	6.2 Writing the Device Driver Without DriverWizard
	6.2.1 Include the Required WinDriver Files
	6.2.2 Write Your Code
	6.2.3 Configure and Build Your Code

	6.3 Developing Your Driver on Windows CE Platforms
	6.4 Developing in Visual Basic and Delphi
	6.4.1 Using DriverWizard
	6.4.2 Samples
	6.4.3 Creating your Driver

	Chapter 7. Debugging Drivers
	7.1 User-Mode Debugging
	7.2 Debug Monitor
	7.2.1 The wddebug_gui Utility
	7.2.1.1 Running wddebug_gui for a Renamed Driver

	7.2.2 The wddebug Utility
	7.2.2.1 Console-Mode wddebug Execution
	7.2.2.2 Windows CE GUI wddebug Execution

	Chapter 8. Enhanced Support for Specific Chipsets
	8.1 Overview
	8.2 Developing a Driver Using the Enhanced Chipset Support

	Chapter 9. USB Transfers
	9.1 Overview
	9.2 USB Control Transfers
	9.2.1 USB Control Transfers Overview
	9.2.1.1 Control Data Exchange
	9.2.1.2 More About the Control Transfer
	9.2.1.3 The Setup Packet
	9.2.1.4 USB Setup Packet Format
	9.2.1.5 Standard Device Request Codes
	9.2.1.6 Setup Packet Example

	9.2.2 Performing Control Transfers with WinDriver
	9.2.2.1 Control Transfers with DriverWizard
	9.2.2.2 Control Transfers with WinDriver API

	9.3 Functional USB Data Transfers
	9.3.1 Functional USB Data Transfers Overview
	9.3.2 Single Blocking Transfers
	9.3.2.1 Performing Single Blocking Transfers with WinDriver

	9.3.3 Streaming Data Transfers
	9.3.3.1 Performing Streaming with WinDriver

	Chapter 10. Dynamically Loading Your Driver
	10.1 Why Do You Need a Dynamically Loadable Driver?
	10.2 Windows Dynamic Driver Loading
	10.2.1 Windows Driver Types
	10.2.2 The wdreg Utility
	10.2.2.1 Overview

	10.2.3 Dynamically Loading/Unloading windrvr6.sys INF Files

	10.3 Linux Dynamic Driver Loading
	10.4 Windows Mobile Dynamic Driver Loading

	Chapter 11. Distributing Your Driver
	11.1 Getting a Valid License for WinDriver
	11.2 Windows Driver Distribution
	11.2.1 Preparing the Distribution Package
	11.2.2 Installing Your Driver on the Target Computer

	11.3 Windows CE Driver Distribution
	11.3.1 Distribution to New Windows CE Platforms
	11.3.2 Distribution to Windows CE Computers

	11.4 Linux Driver Distribution
	11.4.1 Kernel Modules
	11.4.2 User-Mode Hardware Control Application/Shared Objects
	11.4.3 Installation Script

	Chapter 12. Driver Installation – Advanced Issues
	12.1 Windows INF Files
	12.1.1 Why Should I Create an INF File?
	12.1.2 How Do I Install an INF File When No Driver Exists?
	12.1.3 How Do I Replace an Existing Driver Using the INF File?

	12.2 Renaming the WinDriver Kernel Driver
	12.2.1 Windows Driver Renaming
	12.2.2 Linux Driver Renaming

	12.3 Digital Driver Signing and Certification – Windows 7/Vista/Server 2008/Server 2003/XP/2000
	12.3.1 Overview
	12.3.1.1 Authenticode Driver Signature
	12.3.1.2 WHQL Driver Certification

	12.3.2 Driver Signing and Certification of WinDriver-Based Drivers
	12.3.2.1 WHQL DTM Test Notes

	12.4 Windows XP Embedded WinDriver Component

	Appendix A. 64-bit Operating Systems Support
	A.1 Supported 64-bit Architectures
	A.2 Support for 32-Bit Applications on 64-Bit Windows and Linux Platforms
	A.3 64-bit and 32-bit Data Types

	Appendix B. WinDriver USB PC Host API Reference
	B.1 WD_DriverName
	B.2 WinDriver USB (WDU) Library Overview
	B.2.1 Calling Sequence for WinDriver USB
	B.2.2 Upgrading from the WD_xxx USB API to the WDU_xxx API

	B.3 USB User Callback Functions
	B.3.1 WDU_ATTACH_CALLBACK
	B.3.2 WDU_DETACH_CALLBACK
	B.3.3 WDU_POWER_CHANGE_CALLBACK

	B.4 USB Functions
	B.4.1 WDU_Init
	B.4.2 WDU_SetInterface
	B.4.3 WDU_GetDeviceAddr
	B.4.4 WDU_GetDeviceRegistryProperty
	B.4.5 WDU_GetDeviceInfo
	B.4.6 WDU_PutDeviceInfo
	B.4.7 WDU_Uninit
	B.4.8 Single Blocking Transfer Functions
	B.4.8.1 WDU_Transfer
	B.4.8.2 WDU_HaltTransfer
	B.4.8.3 WDU_TransferDefaultPipe
	B.4.8.4 WDU_TransferBulk
	B.4.8.5 WDU_TransferIsoch
	B.4.8.6 WDU_TransferInterrupt

	B.4.9 Streaming Data Transfer Functions
	B.4.9.1 WDU_StreamOpen
	B.4.9.2 WDU_StreamStart
	B.4.9.3 WDU_StreamRead
	B.4.9.4 WDU_StreamWrite
	B.4.9.5 WDU_StreamFlush
	B.4.9.6 WDU_StreamGetStatus
	B.4.9.7 WDU_StreamStop
	B.4.9.8 WDU_StreamClose

	B.4.10 WDU_ResetPipe
	B.4.11 WDU_ResetDevice
	B.4.12 WDU_SelectiveSuspend
	B.4.13 WDU_Wakeup
	B.4.14 WDU_GetLangIDs
	B.4.15 WDU_GetStringDesc

	B.5 USB Data Types
	B.5.1 WD_DEVICE_REGISTRY_PROPERTY Enumeration
	B.5.2 USB Structures
	B.5.2.1 WDU_MATCH_TABLE Structure
	B.5.2.2 WDU_EVENT_TABLE Structure
	B.5.2.3 WDU_DEVICE Structure
	B.5.2.4 WDU_CONFIGURATION Structure
	B.5.2.5 WDU_INTERFACE Structure
	B.5.2.6 WDU_ALTERNATE_SETTING Structure
	B.5.2.7 WDU_DEVICE_DESCRIPTOR Structure
	B.5.2.8 WDU_CONFIGURATION_DESCRIPTOR Structure
	B.5.2.9 WDU_INTERFACE_DESCRIPTOR Structure
	B.5.2.10 WDU_ENDPOINT_DESCRIPTOR Structure
	B.5.2.11 WDU_PIPE_INFO Structure

	B.6 General WD_xxx Functions
	B.6.1 Calling Sequence WinDriver – General Use
	B.6.2 WD_Open
	B.6.3 WD_Version
	B.6.4 WD_Close
	B.6.5 WD_Debug
	B.6.6 WD_DebugAdd
	B.6.7 WD_DebugDump
	B.6.8 WD_Sleep
	B.6.9 WD_License

	B.7 User-Mode Utility Functions
	B.7.1 Stat2Str
	B.7.2 get_os_type
	B.7.3 ThreadStart
	B.7.4 ThreadWait
	B.7.5 OsEventCreate
	B.7.6 OsEventClose
	B.7.7 OsEventWait
	B.7.8 OsEventSignal
	B.7.9 OsEventReset
	B.7.10 OsMutexCreate
	B.7.11 OsMutexClose
	B.7.12 OsMutexLock
	B.7.13 OsMutexUnlock
	B.7.14 PrintDbgMessage
	B.7.15 WD_LogStart
	B.7.16 WD_LogStop
	B.7.17 WD_LogAdd

	B.8 WinDriver Status Codes
	B.8.1 Introduction
	B.8.2 Status Codes Returned by WinDriver
	B.8.3 Status Codes Returned by USBD

	Appendix C. Troubleshooting and Support
	Appendix D. Evaluation Version Limitations
	D.1 Windows WinDriver Evaluation Limitations
	D.2 Windows CE WinDriver Evaluation Limitations
	D.3 Linux WinDriver Evaluation Limitations

	Appendix E. Purchasing WinDriver
	Appendix F. Distributing Your Driver – Legal Issues
	Appendix G. Additional Documentation

