
NETA: A NETwork Attacks Framework

Architecture and Usage

NESG - Network Engineering & Security Group

University of Granada, Spain

Generated on October 8, 2013

http://nesg.ugr.es/

Copyright (C) 2013 developed by NESG (Network Engineering and Security Group) members:

• Gabriel Maciá Fernández (gmacia@ugr.es)

• Leovigildo Sánchez Casado (sancale@ugr.es)

• Rafael A. Rodŕıguez Gómez (rodgom@ugr.es)

• Roberto Magán Carrión (rmagan@ugr.es)

• Pedro Garćıa Teodoro (pgteodor@ugr.es)

• José Camacho Páez (josecamacho@ugr.es)

• Jesús E. Dı́az Verdejo (jedv@ugr.es)

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Unported Li-
cense.

Contents

Contents . 1

1 Introduction . 2

1.1 What is NETA Framework? . 2

1.2 About the Documentation . 2

2 Architecture Overview . 3

2.1 Design Principles . 3

2.2 Architecture . 4

2.3 Folders Structure . 7

3 Implemented Attacks . 8

3.1 IP Dropping Attack . 8

3.2 IP Delay Attack . 9

3.3 Sinkhole Attack . 9

4 Using the Framework . 11

4.1 Installation of the NETA Framework . 11

4.2 Simulation Scenarios . 12

4.3 Create Your Own Simulation . 14

5 Writing Code for NETA . 16

5.1 Implementing New Attacks . 16

5.2 Implementing Simulation Scenarios . 19

Bibliography . 20

1

Chapter 1

Introduction

1.1 What is NETA Framework?

NETA is a framework for the simulation of communication networks attacks. It is built on top

of the INET framework and the OMNET++ simulator. NETA is intended to become an useful

framework for researchers focused on the network security field. Its flexible design is appropri-

ate for the implementation and evaluation of many types of attacks, doing it accurate for the

benchmarking of current defense solutions under same testing conditions or for the development

of new defense techniques.

NETA is based on INET framework, which provides precise implementations of many different

protocols in the computer networking protocol stack, as well as models for mobility, battery

consumption, channel errors, etc.

1.2 About the Documentation

The rest of this document is organized as follows. The general architecture of the NETA frame-

work is presented in Chapter 2, where the main components and the design rules are explained.

In Chapter 3, we describe the implemented attacks, specifying (i) its behavior, (ii) the parame-

ters used to manage them, and (iii) the modified modules related to them. Chapter 4 explains

how to use the framework: from its installation to the creation of simple simulation scenarios.

Finally, Chapter 5 exposes, step by step, the process to implement a new attack by following the

design rules of the present framework.

2

Chapter 2

Architecture Overview

This chapter describes the architecture of the NETA framework. NETA is based on the same

idea as OMNeT++, i.e., modules that communicate by message passing.

The general idea is to develop models in OMNET++ implemented as new nodes which can strike

attacks, attacker nodes. In order to do this, the attacks are managed by the so-called attack

controllers. These controllers manage one or more modules of a NETA framework attack node

by sending control messages. These messages are sent from attack controllers to specific modules

that implement a modified behavior for the attack. They are called hacked modules hereafter.

For implementing this modified behavior, these hacked modules are inherited or replicated from

INET modules and conveniently modified to obey the orders of attack controllers.

2.1 Design Principles

The design principles of the present framework follow two main rules:

Rule 1 Any base framework we use must not be modified, e.g., when using INET modules, they

should remain as the original one.

This rule is intended to facilitate the compatibility with future releases of INET and other im-

plementations. To accomplish this rule we just import the last version of INET framework and

we do not carry out any modification on it.

Rule 2 To modify the least possible the original code of the hacked modules.

3

Chapter 2. Architecture Overview 4

Obviously, in order to implement the desired attacks, it is necessary to modify the behaviour of

the modules that will become hacked modules. However, this rule is intended to minimize these

modifications as much as possible.

To accomplish this rule we propose the following two options depending on the original code:

1. Inheritance and method overriding. If the method which needs to be modified in the original

class is defined as virtual, a new class which inherits from the father is created in NETA

framework structure. Next, the desired methods are overridden to include the attack’s

behavior.

2. Code replication. If the method which needs to be modified is NOT declared as virtual,

the original class is replicated in NETA framework structure and then the desired methods

are modified to include attack’s behavior.

If possible, the first option is preferred, inheritance and method overriding, because is the least

invasive option, and therefore, the best option to accomplish the second rule.

2.2 Architecture

In the following we describe the main components of an attack in our framework: (i) attack

controllers, (ii) control messages, and (iii) hacked modules.

Attack Controllers

The attack controllers are the modules which control the execution of the attack. They can be

directly configured in the .ini file and they have the following properties:

- attackType (string): name used to identify the attack. It should correspond with the tag

located in the NA <attackName>.ned file.

- active (bool): it indicates whether the attack is active in the simulation or not.

- startTime (double): the time at which the attack starts in the simulation.

- endTime (double): the time at which the attack ceases.

- Attack specific parameters: different configuration parameters depending on the spe-

cific attack functionalities.

Chapter 2. Architecture Overview 5

The processes carried out by an attack controller for attack Ai in an attacker node can be

summarized as:

1. To obtain the different hacked modules involved in the execution of attack Ai.

2. To activate those hacked modules in the attack node by sending, at start time, activation

messages which can contain configuration information.

3. To deactivate the hacked modules in the attack node by sending a deactivation message at

end time.

Control Messages

These messages are sent from attack controllers to the hacked modules involved in the attack

execution. They transmit the information necessary for the activation and deactivation of the

attacks. Additionally, these messages contain configuration information needed for the execution

of the attacks.

It is important to remark that control messages are sent directly to a hacked module. This is the

best option to accomplish the Rule 2 of our design principles: “To minimize the modifications to

the original code of hacked modules”.

Hacked Modules

These are the modules whose behavior is modified in order to strike an attack. For example, a

packet dropping attack usually requires a modification in the module that makes IP forwarding.

Therefore, the implementation of a dropping attack implies the modification of the NETA IPv4

module, which behaves as a hacked module.

Note that there exists only one hacked module per modified module, and not a hacked module

for every attack implementation. If two different attacks need to modify the same module, there

will only exist one hacked module for them. For instance, as it will be shown, both delay and

dropping attacks are related to the IPv4 module. Thus, a single hacked IPv4 module is needed

for the implementation of the two attacks. This design is aimed to improve the flexibility of

the framework, allowing the execution of more than one attack simultaneously, e.g., delay and

dropping attacks can be triggered by the same node only by including their attack controllers.

Chapter 2. Architecture Overview 6

Hacked modules must implement the handleMessageFromAttackController(cMessage ∗msg)

method, inherited from its father. This method receives a control message from the attack con-

troller which contains the necessary information to configure the specific attack.

Fig. 2.1 shows the differences between a normal (original) node and an attacker node. The normal

node is composed of simple and compound modules communicating among them. The attacker

node is composed of the same number of modules but now controller modules are added. In

addition, some of the modules are replaced by hacked modules, in order to allow the execution

of attack behaviours when triggered by attack controllers.

Figure 2.1: Scheme comparison between an original node and its attacker in NETA framework.

Fig. 2.2 shows an example of the modules which compose a normal node (AdhocHost) and

its corresponding attacker node (NA AttackerAdhocHost).

(a) Modules of AdhocHost node (b) Modules of NA AttackerAdhocHost node

Figure 2.2: Real comparison between an original AdhocHost and NA AttackerAdhocHost.

Chapter 2. Architecture Overview 7

Thus, the creation of an attacker node can be summarized as: (i) add to the associated .ned file

the controllers related to the attacks to be executed, (ii) create the associated control messages

and, (iii) substitute the modules needed by these attacks controllers for corresponding hacked

modules. This process will be further explained in Section 5.1.

2.3 Folders Structure

The folders of NETA framework have a specific structure which is described in the following. It

must be noted that only the specific folders of this framework are mentioned, excluding those in

common with INET:

netattacks/doc/

This folder contains the documentation of the NETA framework, automatically generated

by Doxygen. Click on the index.html file to access the whole documentation.

netattacks/resources/

This folder contains additional resources required for NETA framework to work properly.

Specifically, it includes different patches that must be applied.

netattacks/simulations/

. simpleAttackScenarios: this folder contains the sample simulation scenarios provided to

demonstrate the performance of the implemented attacks.

netattacks/src/

. attacks: in this folder are located the attack controllers and the control messages used by

these controllers to communicate with the associated hacked modules.

. common: this folder contains different utilities, like the log module, etc.

. hackedmodules: here they are the modified modules whose behavior triggers the imple-

mented attacks, i.e., the hacked modules.

. nodes: in this folder can be found the new hosts which are created as slight modifications

of the existing ones in INET framework. They have their corresponding hacked modules,

as shown in Fig. 2.2.

Chapter 3

Implemented Attacks

This chapter exposes the attacks implemented for the NETA framework. In the subsequent

sections, for every implemented attack we describe: (i) the behavior of the attack, (ii) the pa-

rameters which can be modified to configure the attack, and (iii) the hacked modules related to

the attack.

It must be noted that every implemented attack has the following common parameters which

were explained in Section 2.2: attackType, active, startTime and endTime.

3.1 IP Dropping Attack

In the IP dropping attack, nodes exhibiting this behavior intentionally drop, with a certain

probability, received IP data packets instead of forwarding them, disrupting the normal network

operation. Depending on the application, it can turn the network much slower due to the

existence of retransmissions, make the nodes waste much more energy resources, etc. The main

parameter of our implementation of the dropping attack is:

• droppingAttackProbability (double): the probability of dropping a packet, defined be-

tween 0 and 1. By default, it is set to 0 which makes the attacker node to behave normally

(no dropping at all).

The original module that has to be modified to strike the dropping attack is IPv4. With our

naming convention the hacked module is renamed as NA IPv4.

8

Chapter 3. Implemented Attacks 9

3.2 IP Delay Attack

In this attack, a malicious node delays IP data packets for a certain amount of time. This

can affect different QoS parameters (end-to-end delay, jitter, etc.), resulting in a poor network

performance. The list of parameters in our implementation of the delay attack is:

• delayAttackProbability (double): the probability of delaying a data packet, defined

between 0 and 1. By default, it is set to 0 which implies a normal behavior for the attacker

node (no extra delay for any packet).

• delayAttackValue (double): the specific delay time applied to the packet. Note that this

parameter could be specified by a statistical distribution. For this reason, it is defined

as volatile, i.e., it is modified every time it is accessed. By default, it follows a normal

distribution with mean 1 second and standard deviation of 0.1 seconds.

The original module that has to be modified to strike the delay attack is also IPv4. Thus, the

hacked module is the same as before, NA IPv4.

3.3 Sinkhole Attack

In a sinkhole attack, a malicious node sends fake routing information, claiming that it has an

optimum route and causing other nodes to route data packets through itself. Here, the attacker

forge routing replies (RREP) to attract traffic. The list of parameters of sinkhole attack is:

• sinkholeAttackProbability (double): the probability of answering a RREQ message with

a fake route reply (RREP), defined between 0 and 1. By default it is set to 0 which implies

the normal behavior of AODV protocol.

• sinkOnlyWhenRouteInTable (bool): if set to true, the sinkhole only sends fake RREP to

requests for those that the attacker node has a valid route, i.e., routes existing in its routing

table. Otherwise (false value), the node sends fake RREP to any RREQ message arriving, even

if it does not know a valid route.

• seqnoAdded (double): the fake sequence number generated by the attacker node. It is

added to the sequence number observed in the request. It can be different each time, if it

is specified as an statistical distribution. By default, it follows a uniform distribution with

values between 20 and 30.

Chapter 3. Implemented Attacks 10

• numHops (int): the fake number of hops returned by the attacker. By default, it is set to

1, indicating that the attacker reaches the end of the communication in only one hop. It

can also follow a given statistic distribution.

The original module that has to be modified to strike the sinkhole attack is AODVUU. With our

naming convention the hacked module is renamed as NA AODVUU.

Table 3.1 shows a brief summary about the different attacks implemented, as well as its param-

eters and hacked modules associated.

Attack Name Parameters Hacked Modules
IP Dropping droppingAttackProbability (double) IPv4 → NA IPv4
IP Delay delayAttackProbability (double)

delayAttackValue (double)
IPv4 → NA IPv4

Sinkhole sinkholeAttackProbability (double)
sinkOnlyWhenRouteInTable (bool)
seqnoAdded (double)
numHops (int)

AODVUU → NA AODVUU

Table 3.1: Summary of the different implemented attacks.

Chapter 4

Using the Framework

4.1 Installation of the NETA Framework

NETA framework is built on top of OMNeT++ [1], an object-oriented, modular, discrete event

library, primarily for building network simulators. Besides, NETA is based on INET framework.

In order to install NETA, you must follow the instructions presented below:

1. Install OMNeT++: download the OMNeT++ source code from http://omnetpp.org.

Make sure you select your platform-specific archive. Copy the OMNeT++ archive to the

directory where you want to install it and extract it. More precise details about the

OMNeT++ installation process, as prerequisites, environment variables and so on, can be

found in the Install Guide [2].

2. Import INET 2.1.0: download INET 2.1.0 from http://inet.omnetpp.org/ [3]. Im-

port it as a new project into your workspace (File > Import > General > Existing

Projects into Workspace) and choose the option Select archive file.

3. Fix the INET bug 632: copy and override the ManetRoutingBase.cc file located into

the NETA framework folder ‘resources/patch/INET 21/’, to the folder located into the

INET project previously imported ‘/inet/src/networklayer/manetrouting/base/’.

4. Build INET project: right-click on the project present in the Workspace and select

Build Project.

5. Import NETA framework: download the last version of the NETA framework from

http://nesg.ugr.es/ [4]. Import it proceeding in a similar way to the process followed

with INET.

11

http://omnetpp.org
http://inet.omnetpp.org/
http://dev.omnetpp.org/bugs/view.php?id=632
http://nesg.ugr.es/

Chapter 4. Using the Framework 12

6. Reference INET framework: make sure that NETA has INET project as project ref-

erence (Project > Properties > Project References). Also, the ‘MANET Routing’

project feature must be selected (Project > Project Features).

7. Build NETA framework: right-click on the project and select Build Project.

After this process we extremely recommend you to execute one of the simple simulation scenarios

located under the ‘simulations/SimpleAttackScenarios’ folder in order to make sure that

everything is working correctly. NETA framework has been tested with the indicated versions of

OMNeT++ and INET, the last stable versions when this document was written.

4.2 Simulation Scenarios

The NETA framework provides a group of sample scenarios: simpleAttackScenarios with a clear

purpose. These simulations are focused on proving the proper attack behavior, as well as on

showing the attack capacities in a simple scenario.

In the same way that occurs with any OMNeT++ project, the parameters control the simulation

execution. Its value can be assigned in either the NED files or the configuration file (.ini) and

are used to customize the simulation behavior. There exist three simulation scenarios one for

each implemented attack. In the following we briefly describe their main characteristics.

SimpleDroppingAttackScenario

This scenario is intended to show how a dropper behaves. The scenario is composed of 3 nodes:

2 normal NA AdhocHost and 1 NA AttackerAdhocHost. They are placed in a line configuration,

being the attacker node in the middle. The attack-specific parameters make the attack to start

dropping IP data packets at 0 s and to stop dropping at 20 s. Besides, the dropping probability

is set to 0.5, i.e., the attacker drops half of the packets going through it. A screenshot of this

simulation can be seen in Fig. 4.1.

SimpleDelayAttackScenario

This scenario shows how the delay attack works. As in the previous scenario, there are 3 nodes

placed in a line configuration: 2 normal NA AdhocHost and 1 NA AttackerAdhocHost, being the

latter located in the middle. The attack-specific parameters make the attack to start delaying

IP data packets at 0 s and to stop dropping at 20 s. Besides, the delaying probability is set to

Chapter 4. Using the Framework 13

Figure 4.1: Screenshot of simple dropping attack scenario.

1 and the delay time follows a normal distribution, with mean 0.02 s and standard deviation of

0.001 s, i.e., the attacker delays every packet going through it approximately 0.02 s.

SimpleSinkholeAttackScenario

This folder includes two different scenarios which demonstrate how the sinkhole attack works

under two circumstances: whether the attacker knows the route to the destination or not

(SimpleSinkholeRoute and SimpleSinkholeNoRoute respectively). In both scenarios the sink-

hole node fakes the sequence number by adding a value between 50 and 60, and fakes the number

of hops to 1.

Figure 4.2: Screenshot of SimpleSinkholeRoute attack scenario.

In the SimpleSinkholeRoute scenario (Fig. 4.2) there are 5 nodes: 4 normal NA AdhocHost and

1 NA AttackerAdhocHost. First, nodeA communicates with nodeD through the attacker be-

tween 0 and 1 s. Some time later, when the attacker already knows the route to nodeD, nodeB

Chapter 4. Using the Framework 14

Figure 4.3: Screenshot of SimpleSinkholeNoRoute attack scenario.

also requests communication with nodeD. Even though nodeC knows a one-hop route, nodeB will

choose the attacker as next hop, because of its fake reply.

Fig. 4.3 shows the SimpleSinkholeNoRoute scenario, also with 4 NA AdhocHost nodes and 1

NA AttackerAdhocHost. Here, nodeA tries to communicate with nodeD through nodeB. However

the attacker sends a fake reply even though it does not know the route to the destination and

therefore it is choosed as next hop by nodeA.

4.3 Create Your Own Simulation

If you want to implement your own simulation scenario you should follow similarly to any new

OMNeT++ simulation:

1. NED file: create a NED file containing the network components, i.e., normal and

attacker nodes, network configurator, etc.

2. Configuration file (.ini): specify in this file the parameters of your simulation.

Chapter 4. Using the Framework 15

3. Output folder: we recommend you to locate the simulation in a new folder inside

netattacks/simulations.

To analyze the obtained results from the simulations you can use the OMNeT++ IDE. This IDE

provides a rich environment for analyzing the outputs of simulations. Output files are plain text

files which make easy to process them with programming tools like Python, Matlab and Perl,

among others.

Finally, it is possible that you need to use new attacks that are not yet implemented. For these

situations, in Section 5.1 we deeply describe the process for implementing a new attack from

scratch, following the design principles of this framework.

Chapter 5

Writing Code for NETA

5.1 Implementing New Attacks

This guide briefly presents the different steps to be followed in order to implement a new attack

in the NETA Framework. As a naming convention, all the names for files and classes start by

the prefix NA .

Assuming that we want to implement an attack called example, the steps which must be followed

are described below.

Attack Controllers: src/attacks/controllers/

1. Create a new folder /exampleAttack and inside it create the class NA ExampleAttack

by creating the associated files (.ned, .h and .cc).

2. In the NA Attack.ned file, add the new attack in the attackType enum list.

3. Modify NA ExampleAttack.ned conveniently:

• Inherit the module from the NA Attack module:

simple NA ExampleAttack extends NA Attack

• Add the tag:

@class (NA ExampleAttack)

• Set the attackType parameter to the name of the attack:

attackType = "example"

16

Chapter 5. Writing Code for NETA 17

• Add the attack-specific parameters to configure the attack from the .ini files.

4. Modify NA ExampleAttack.h conveniently:

• Inherit the new class from NA Attack:

class NA ExampleAttack: public NA Attack {

• Add the method:

cMessage ∗generateAttackMessage(const char∗ msg)

5. Modify NA ExampleAttack.cc conveniently:

• Add the statement:

Define Module (NA ExampleAttack);

• Implement, as done in NA DroppingAttack.cc, the method:

cMessage ∗generateAttackMessage(const char∗ msg)

including the proper NA ExampleAttackMessage m message.

Control Messages: src/attacks/controlmessages/

1. Create a new folder /exampleAttack and inside it create the activation/deactivation

message NA ExampleMessage.msg.

2. Modify NA ExampleMessage.msg to include the attack-specific parameters.

3. After building the project, a new class NA ExampleMessage m (.h and .cc) is auto-

matically generated.

Hacked Modules: src/hackedmodules/

Every attack implementation needs a preliminary phase of study in order to identify which

modules should be modified for the considered attack.

1. Identify those INET modules to be modified. Let’s call them base modules.

2. Check, for every base module, if there is a hacked module already defined, i.e., another

attack’s implementation is already using these module:

Chapter 5. Writing Code for NETA 18

• If YES: take the code for that hacked module.

• If NO: study if it is possible to override the original code. Check if the methods

that you need to modify are defined as virtual in the base module.

– If YES: create an inherited class NA HackedModule from the base modules

and locate the associated files (.ned, .h and .cc) under src/hackedModules,

creating the same directories structure as the base module has in INET.

– If NO: Make a copy of the base module files under src/hackedModules, cre-

ating the same directories structure as the base module has in INET.

3. Modify NA HackedModule.ned conveniently:

• If the hacked module inherits from a base module, extend:

simple NA HackedModule extends BaseModule

• Add the tag:

@example

4. Modify NA HackedModule.h conveniently:

• Add the #include for the activation/deactivation message:

#include ‘‘NA ExampleMessage m’’

• Add the method for handling the messages coming from the attack controller:

void handleMessageFromAttackController(cMessage ∗msg)

• Add the flag for controling the attack execution:

bool exampleAttackIsActive

• Add the necessary variables and methods for implementing the attack.

5. Modify NA HackedModule.cc conveniently:

• Add the statement:

Define Module (NA HackedModule)

• Implement the method:

void handleMessageFromAttackController(cMessage ∗msg)

Don’t forget the Enter Method() statement (see example in NA IPv4 module).

• Implement the attack.

Chapter 5. Writing Code for NETA 19

5.2 Implementing Simulation Scenarios

To create an example simulation for the attack you should follow these steps:

1. Modify the attacker node:

• Insert the exampleAttack controller in the NA AttackerAdhocHost node located

in src/nodes.

• Substitute the base modules in the NA AttackerAdhocHost node by the corre-

sponding hacked modules.

2. Modify the simulation environment:

• Create a new folder /SimpleExampleAttackScenario and locate it in the folder

/simulations/simpleAttackScenarios. Inside it create a new simulation ex-

ample to include your attack.

Don’t forget to clearly comment the new section for the configuration of the

exampleAttack.

Bibliography

[1] OMNeT++ User Manual, v. 4.3. http://www.omnetpp.org/doc/omnetpp/Manual.pdf. [On-

line; accessed June 2013].

[2] OMNeT++ Installation Guide, v. 4.3. http://omnetpp.org/doc/omnetpp/InstallGuide.pdf.

[Online; accessed June 2013].

[3] Inet 2.1.0 for OMNeT++ 4.2/4.3. http://inet.omnetpp.org/index.php?n=Main.Download.

[Online; accessed June 2013].

[4] NETA Framework, v. 1.0.0. http://nesg.ugr.es/index.php/en/neta. [Online; accessed June

2013].

20

http://www.omnetpp.org/doc/omnetpp/Manual.pdf
http://omnetpp.org/doc/omnetpp/InstallGuide.pdf
http://inet.omnetpp.org/index.php?n=Main.Download
http://nesg.ugr.es/index.php/en/neta

	Contents
	Introduction
	What is NETA Framework?
	About the Documentation

	Architecture Overview
	Design Principles
	Architecture
	Folders Structure

	Implemented Attacks
	IP Dropping Attack
	IP Delay Attack
	Sinkhole Attack

	Using the Framework
	Installation of the NETA Framework
	Simulation Scenarios
	Create Your Own Simulation

	Writing Code for NETA
	Implementing New Attacks
	Implementing Simulation Scenarios

	Bibliography

