
December 2009 Doc ID 16862 Rev 1 1/28

AN3123
Application note

Using the UART interfaces in the SPEAr embedded MPU family

Introduction
The SPEAr embedded MPU family is a family of configurable MPUs, based on the ARM926
CPU core. Each member of the SPEAr MPU family has one or more embedded ARM PL011
UARTs for asynchronous communications. This application note describes how to configure
the UART and transmit and receive data.

A Linux driver is available in the SPEAr Linux support package (LSP), refer to the SPEAR
Linux support package (LSP) user manual (UM0851) for a description of how to use this
driver.

Section 10 of this application note describes an OS independent hardware abstraction layer
(HAL) for the SPEAr UART which you can use as a starting point for developing your own
HAL code.

www.st.com

http://www.st.com

Contents AN3123

2/28 Doc ID 16862 Rev 1

Contents

1 Purpose and scope . 4

2 UART signals . 5

2.1 SPEAr600 . 5

2.2 SPEAr300 . 5

2.3 SPEAr310 . 6

2.4 SPEAr320 . 7

3 Clock source and frequency . 9

3.1 Clock related registers . 9

4 Changing the UART baud rate on the fly . 10

4.1 Baud rate related registers . 10

5 UART protocol flow control . 11

6 UART controller data flow . 12

6.1 UART data registers . 12

7 UART interrupts . 14

7.1 Interrupt Sources . 14

7.2 Interrupt types . 14

7.2.1 UARTRXINTR . 14

7.2.2 UARTTXINTR . 15

7.2.3 UARTRTINTR . 15

7.2.4 UARTMSINTR . 15

7.2.5 UARTEINTR . 15

7.2.6 UARTINTR . 15

7.3 Interrupt related registers . 16

8 DMA interface . 17

8.1 DMA operation . 17

8.2 DMA registers . 18

AN3123 Contents

Doc ID 16862 Rev 1 3/28

9 UART modem operation . 19

10 OS-independent SPEAr UART HAL . 21

10.1 SetBaseDevice() . 21

10.2 GetBaudDivisor() . 21

10.3 UART_Init() . 22

10.4 UART_Configure() . 22

10.5 UART_Transmit() . 23

10.6 UART_Receive() . 23

10.7 UART_Disable() . 24

10.8 UART_IsTxFIFOFull() . 24

10.9 UART_IsTxFIFOEmpty() . 24

10.10 UART_IsRxFIFOFull() . 24

10.11 UART_IsRxFIFOEmpty() . 24

10.12 UART_IntEnable() . 24

10.13 UART_IntDisable() . 25

10.14 UART_IntClear() . 25

10.15 UART_GetIntSrc() . 25

Appendix A Acronyms . 26

Revision history . 27

Purpose and scope AN3123

4/28 Doc ID 16862 Rev 1

1 Purpose and scope

UART is one of the most commonly used serial interface peripherals. It is also known as the
serial communications interface, or SCI. The most common use of the UART is to
communicate to a PC serial port using the RS-232 protocol.

RS-232 is a standard electrical interface for serial communications defined by the Electronic
Industries Association ("EIA").

Serial communications include most network devices, keyboards, mice, modems, and
terminals. When referring to serial devices or ports, they are either labeled as data
communications equipment ("DCE") or data terminal equipment ("DTE").

The UART can transmit and receive data serially. It is often necessary to regulate the flow of
data when transferring data between two serial interfaces. The first method is often called
"software" flow control and uses special characters to start (XON or DC1) or stop (XOFF or
DC3) the flow of data. The second method is called "hardware" flow control and uses the
RS-232 CTS and RTS signals instead of special characters. Because hardware flow control
uses a separate set of signals, it is much faster than software flow control which needs to
send or receive multiple bits of information to do the same thing.

AN3123 UART signals

Doc ID 16862 Rev 1 5/28

2 UART signals

SPEAr600 has 2 UARTs. SPEAr300, SPEAr310 and SPEAr320 have 1, 6 and 3 UARTs
respectively. The following tables list the UART pin connections and register base addresses
for each case.

2.1 SPEAr600

2.2 SPEAr300

Table 1. External pin connection on SPEAr600

Signal name Ball Direction Function Pin type

UART1_TXD AA19 Output
Serial Data Out

TTL output buffer

3.3 V capable, 4 mAUART2_TXD AA20 Output

UART1_RXD AB19 Input
Serial Data In

TTL input buffer

3.3 V tolerant, PDUART2_RXD AB20 Input

Table 2. Memory map on SPEAr600

Peripheral Start address End address

UART1 0xD000.0000 0xD007.FFFF

UART2 0xD008.0000 0xD00F.FFFF

Table 3. External pin connection

Signal Ball Direction Function Pin type

RX DATA D1 Input

Shared I/O

TTL output buffer
3.3 V capable,

up to 10 mA

TTL input buffer
3.3 V tolerant, PU/PD

TX DATA E4 Output

RTS B8

I/O

CTS A8

DTR D9

DSR B9

DCD A9

RI C9

Table 4. Memory map on SPEAr300

Peripheral Start address End address

UART 0xD000.0000 0xD007.FFFF

UART signals AN3123

6/28 Doc ID 16862 Rev 1

In SPEAr300, the device offers several different PL_GPIO sharing modes. Different
blocks/IPs are available in different configuration modes.

This has an effect on the above mentioned UART signals also. Not all SPEAR300 UART
signals in Table 3 are available in all configurations.

This is because for many applications UART is used in NULL modem mode and only
UART_RX & UART_TX are sufficient.

There are 13 possible UART configurations in SPEAr300 which can be selected by RAS
control register 2.

In configuration 1 & configuration 2, the UART with modem control lines is available.

In configurations 3 to 13, the UART without modem control lines is available (see Table 6).

Note: On PL_GPIO[3] and PL_GPIO[2] UART_RX and UART_TX are multiplexed with external
memory controller (FSMC) signals /E4 and /E3 respectively.

2.3 SPEAr310
In SPEAr310 the external pin connections of UART1 are the same as in SPEAr300.

You can configure the device to have either

● up to 6 UARTs without modem control lines or

● 1 UART with modem control lines.

Refer to Table 3.

Table 5. UART configurations for SPEAr300

Signal Configuration 1 Configuration 2 Configurations 3 to 13

PL_GPIO[42] UART_DTR UART_DTR -

PL_GPIO[41] UART_RI UART_RI -

PL_GPIO[40] UART_DSR UART_DSR -

PL_GPIO[39] UART_DCD UART_DCD -

PL_GPIO[38] UART_CTS UART_CTS -

PL_GPIO[37] UART_RTS UART_RTS -

PL_GPIO[3] UART_RX UART_RX UART_RX

PL_GPIO[2] UART_TX UART_TX UART_TX

AN3123 UART signals

Doc ID 16862 Rev 1 7/28

2.4 SPEAr320
In SPEAr320 the external pin connections of UART1 are the same as the UART in
SPEAr300. Refer to Table 3.

You can configure the device to have:

● up to 3 UARTs, 1 without modem control lines and 2 with modem control lines.

Table 6. UART configurations for SPEAr310

Signal Ball Alternate function RAS normal mode Pin type

PL_GPIO[44] A10 - UART5_TX

TTL output buffer

3.3 V capable,
up to 10 mA

TTL input buffer

3.3 V tolerant, PU/PD

PL_GPIO[43] E9 - UART5_RX

PL_GPIO[42] D9 UART0_DTR UART5_TX

PL_GPIO[41] C9 UART0_RI UART5_RX

PL_GPIO[40] B9 UART0_DSR UART4_TX

PL_GPIO[39] A9 UART0_DCD UART4_RX

PL_GPIO[38] A8 UART0_CTS UART3_TX

PL_GPIO[37] B8 UART0_RTS UART3_RX

PL_GPIO[3] D1 UART0_RX UART0_RX

PL_GPIO[2] E4 UART0_TX UART0_TX

PL_GPIO[1] E3 UART1_TX

PL_GPIO[0] F3 UART1_RX

Table 7. Memory map on SPEAr310

Peripheral Start address End address

UART1 0xD000.0000 0xD007.FFFF

UART2 0xB200.0000 0xB207.FFFF

UART3 0xB208.0000 0xB20F.FFFF

UART4 0xB210.0000 0xB217.FFFF

UART5 0xB218.0000 0xB21F.FFFF

UART6 0xB220.0000 0xB227.FFFF

Table 8. UART configurations for SPEAr320

Signal Ball Alternate
function

Config. 1 Config. 2 Config. 3 Config. 4

PL_GPIO[44] B10 UART1_DCD

PL_GPIO[44] A10 - UART1_DSR

PL_GPIO[43] E9 - UART1_RTS

UART signals AN3123

8/28 Doc ID 16862 Rev 1

PL_GPIO[42] D9 UART0_DTR

PL_GPIO[41] C9 UART0_RI

PL_GPIO[40] B9 UART0_DSR

PL_GPIO[39] A9 UART0_DCD

PL_GPIO[38] A8 UART0_CTS

PL_GPIO[37] B8 UART0_RTS

PL_GPIO[36] C8 UART1_CTS UART1_CTS

PL_GPIO[35] D8 UART1_DTR UART1_DTR

PL_GPIO[34] E8 UART1_RI UART1_RI

PL_GPIO[33] E7 UART1_DCD

PL_GPIO[32] D7 UART1_DSR

PL_GPIO[31] C7 UART1_RTS

PL_GPIO[29] A7 UART1_TX UART1_TX UART1_TX UART1_TX UART1_TX

PL_GPIO[28] A6 UART1_RX UART1_RX UART1_RX UART1_RX UART1_RX

PL_GPIO[3] D1 UART0_RX

PL_GPIO[2] E4 UART0_TX

PL_GPIO[1] E3 UART2_TX UART2_TX UART2_TX UART2_TX

PL_GPIO[0] F3 UART2_RX UART2_RX UART2_RX UART2_RX

Table 8. UART configurations for SPEAr320 (continued)

Signal Ball Alternate
function

Config. 1 Config. 2 Config. 3 Config. 4

Table 9. Memory map on SPEAr300

Peripheral Start address End address

UART1 0xD000.0000 0xD007.FFFF

UART2 0xA300.0000 0xA3FF.FFFF

UART3 0xA400.0000 0xA4FF.FFFF

AN3123 Clock source and frequency

Doc ID 16862 Rev 1 9/28

3 Clock source and frequency

The reference clock provided to the UART has a frequency ranging from 1.42 MHz to 542.72
MHz.

An auxiliary clock source can also be selected using the Auxiliary clock synthesizer
registers. These are a group of read / write registers in the Miscellaneous register block
which can be used to enable an auxiliary source clock for some of the SPEAR's internal
peripherals, including the UART. The clock synthesizer is a digital signal generator. It is used
to act as a fractional clock divider.

3.1 Clock related registers
● PERIPHERAL CLOCK CONFIGURE REGISTER is a R/W register used to select the

peripheral clock source. The uart_clksel bit in this register allows you selected the
UART clock source as follows:

– ‘0’ 48 MHz (default clock)

– ‘1’ UART Clock Synthesizer

Offset Value: 0x028.

● PERIP1_CLK_ENB REGISTER is a R/W register using to enable/disable the
peripheral.

– In SPEAr300, there is a single uart_clkenb bit which enables and disables the
UART-1 clock.

– In SPEAr600, there are 2 clock enable bits, uart1_clkenb and uart2_clkenb which
enable and disable the UART-1 and UART-2 clock, respectively.

 Offset Value: 0x02C.

Changing the UART baud rate on the fly AN3123

10/28 Doc ID 16862 Rev 1

4 Changing the UART baud rate on the fly

The baud rate and line control registers (UARTIBRD, UARTFBRD and UARTLCR_H) form a
single 30-bit wide register named UARTLCR, which is updated on a single write strobe
generated by a UARTLCR_H write. So, in order to change the baud rate of the UART on the
fly, you need to perform the following two steps:

1. Modify the contents of the UARTIBRD and UARTFBRD registers as per the required
baud rate.

2. Perform a dummy write to the UARTLCR_H register.

4.1 Baud rate related registers
● UART INTEGER BAUD RATE REGISTER (UARTIBRD) is a 16-bit RW register which

indicates the integer part of the baud rate divisor value.

Offset Value: ‘h024

● UART FRACTIONAL BAUD RATE REGISTER (UARTFBRD) is a 6-bit RW register
which indicates the fractional part of the baud rate divisor value.

Offset Value: ‘h028

● UART LINE CONTROL REGISTER (UARTLCR_H) is a 16-bit RW register which
accesses bits 29 to 22 of the UART bit rate and line control register UARTLCR.

Offset Value: ‘h02C

AN3123 UART protocol flow control

Doc ID 16862 Rev 1 11/28

5 UART protocol flow control

Flow control refers to the control of data flow between modems, or between the modem and
a computer. It handles the data in the FIFO buffer and starts and stops data flow between
the modems. Often, one modem may be sending data much faster than the other is able to
receive. Flow control allows the slower device to tell the faster device to pause and resume
data transmission.

There are two ways to handle flow control: hardware (RTS/CTS or DTR/DSR) and software
(Xon/Xoff or DC1/DC3):

● Hardware flow control is performed using the RTS and CTS signals. These signals may
be software controlled.

● Software flow control means sending an XOFF character to stop transmission, and
another character to start transmission.

The flow of data bytes in the cable between 2 serial ports is bi-directional so there are 2
different flows (and wires) to consider:

● Byte flow from the computer to the modem

● Byte flow from the modem to the computer.

HARDWARE FLOW CONTROL uses two dedicated "modem control" wires to send the
"stop" and "start" signals. Hardware flow control at the serial port works like this:

The two pins, RTS (Request to send) and CTS (Clear to send) are used. When the
computer is ready to receive data it asserts RTS by putting a positive voltage on the RTS pin
(meaning "Request To Send to me"). When the computer is not able to receive any more
bytes, it negates RTS by asserting negative voltage on the pin saying: "stop sending to me".
The RTS pin is connected by the serial cable to another pin on the modem, printer, terminal,
etc. This other pin's only function is to receive this signal. For a printer, another PC, or a
non-modem device, this “other” pin is usually a CTS pin so a "crossover" or "null modem"
cable is required. This cable connects the CTS pin at one end with the RTS pin at the other
end (two wires since each end of the cable has a CTS pin).

For the opposite direction of flow a similar scheme is used. For a non-modem, the RTS pin
sends the signal. Some non-modems may use other pins for flow control such as the DTR
pin instead of RTS.

SOFTWARE FLOW CONTROL uses the main receive and transmit data wires to send the
start and stop signals. It inserts the ASCII control characters DC1 (start) and DC3 (stop) into
the stream of data. Software flow control is slower than hardware flow control and it does not
allow the sending of binary data unless special precautions are taken. For example, you
need to be able to distinguish between an occurrence of a control code like DC3 when it
means a flow control stop and a DC3 that is part of the binary data payload.

UART controller data flow AN3123

12/28 Doc ID 16862 Rev 1

6 UART controller data flow

Figure 1. UART controller data flow

Figure 1 illustrates how data flows from user space down to the hardware interfaces and
flows back up.

The reading and writing processes use the HAL functions which are exposed to the user.
Then the corresponding APIs of the UART hardware layer are called for the transmission
and reception of data. The direction of transmission and reception are as shown in Figure 1.

6.1 UART data registers
SPEAr300

Base Address for UART: 0xD0000000

SPEAr600

Base Address for UART1: 0xD0000000

Base Address for UART2: 0xD0080000

Offset Value: ‘h000

UART hardware (ARM Primecell PL011)

UART hardware abstraction layer (HAL)

User exposed layer

User applications

Receive () Transmit ()

AN3123 UART controller data flow

Doc ID 16862 Rev 1 13/28

This is a 16-bit read/write register which contains data:

● In transmit mode, if FIFOs are enabled, data written to this location is pushed into the
transmit FIFO. If FIFOs are not enabled, data is stored in the transmitter holding
register.

● In receive mode, if FIFOs are enabled, the data byte and the 4-bit status (break, frame,
parity and overrun) is pushed into the 12-bit receive FIFO. If FIFOs are not enabled,
data byte and status are stored in the receiving holding register.

UART interrupts AN3123

14/28 Doc ID 16862 Rev 1

7 UART interrupts

UART generates individual maskable active HIGH interrupts. A combined interrupt output is
generated as an OR function of the individual interrupt requests and mapped on IRQ19 of
the vectored interrupt controller VIC in the case of SPEAr300, and on IRQ24 and IRQ25 in
the case of SPEAr600.

7.1 Interrupt Sources

7.2 Interrupt types

7.2.1 UARTRXINTR

This interrupt is asserted when one of the following events occurs:

● If the FIFOs are enabled (FEN bit set to ‘b1 in UARTLCR_H register) and the Receive
FIFO reaches the programmed trigger level (RXIFLSEL in UARTIFLS register). The
interrupt is then cleared by reading data from the Receive FIFO until it becomes less
than the trigger level, or by clearing the interrupt (writing a ‘b1 to the corresponding bit
of the UARTICR register).

● If the FIFOs are disabled and data is received thereby filling the location. The interrupt
is then cleared by performing a single read of the Receive FIFO, or by clearing the
interrupt (writing a ‘b1 to the corresponding bit of the UARTICR register).

Table 10. Interrupt sources

Name Source Combined
Outputs

UARTRXINTR Receive FIFO

UARTEINTR

(to Vectored
interrupt controller

VIC IRQ)

UARTTXINTR Transmit FIFO

UARTRTINTR Receive timeout in Receive FIFO

UARTRIINTR nUARTRI modem status line change

UARTCTSINTR nUARTCTS modem status line change

UARTDCDINTR nUARTDCS modem status line change

UARTDSRINTR nUARTDSR modem status line change

UARTOEINTR Overrun Error

UARTBEINTR Break Error (in reception)

UARTPEINTR Parity Error in the Received Character

UARTFEINTR Framing Error in Received Character

AN3123 UART interrupts

Doc ID 16862 Rev 1 15/28

7.2.2 UARTTXINTR

This interrupt is asserted when one of the following events occurs:

● If the FIFOs are enabled (FEN bit set to ‘b1 in UARTLCR_H register) and the Transmit
FIFO reaches the programmed trigger level (TXIFLSEL in UARTIFLS register). The
interrupt is then cleared by writing data to the Transmit FIFO until it becomes greater
than the trigger level, or by clearing the interrupt (writing a ‘b1 to the corresponding bit
of the UARTICR register).

● If the FIFOs are disabled and there is no data in the transmitter single location. The
interrupt is then cleared by performing a single write to the Transmit FIFO, or by
clearing the interrupt (writing a ‘b1 to the corresponding bit of the UARTICR register).

7.2.3 UARTRTINTR

This interrupt is asserted when the Receive FIFO is not empty, and no further data is
received over a 32-bit period. The interrupt is then cleared either when the Receive FIFO
becomes empty through reading all the data (or by reading the holding register), or by
clearing the interrupt (writing a ‘b1 to the corresponding bit of the UARTICR register).

7.2.4 UARTMSINTR

It represents the modem status interrupt that is a combined interrupt of the four individual
modem status lines (nUARTRI, nUARTCTS, nUARTDCS and nUARTDSR). This interrupt is
then asserted if any of the modem status lines change.

7.2.5 UARTEINTR

This error interrupt is triggered when there is an error in the reception of the data. The
interrupt can be caused by a number of different error conditions, such as overrun, break,
parity and framing.

7.2.6 UARTINTR

It is the OR logical function of all the individual masked interrupt sources. That is, this
interrupt is asserted if any of the individual interrupts are asserted and enabled.

UART interrupts AN3123

16/28 Doc ID 16862 Rev 1

7.3 Interrupt related registers
These are the registers which are used for handling interrupts:

● INTERRUPT FIFO LEVEL SELECT REGISTER is a 16-bit read-write register. This
register defines the FIFO level at which the UARTTXINTR and UARTRXINTR interrupts
are triggered.

Offset Value: ‘h034

● INTERRUPT MASK SET/CLEAR REGISTER allows masking and clearing of each
UART interrupt source. Reading from this 16 bit read/write register gives the current
value of the mask on relevant interrupt.

Offset Value: ‘h038

● RAW INTERRUPT STATUS REGISTER is a read-only register. This register gives the
current raw status value of the corresponding interrupt.

Offset Value: ‘h03C

● INTERRUPT CLEAR REGISTER is 16 bit write only register. Writing logic 1 to the
relevant bit clears the corresponding interrupt.

Offset Value: ‘h044

● MASKED INTERRUPT STATUS REGISTER is a 16 bit read-only register which gives
current masked status value of the corresponding interrupt.

Offset Value: ‘h040

AN3123 DMA interface

Doc ID 16862 Rev 1 17/28

8 DMA interface

DMA allows devices to transfer data without subjecting the processor to a heavy overhead.
Otherwise, the processor would have to copy each piece of data from the source to the
destination, making it unavailable for other tasks.

SPEAr300 and SPEAr600 provide an ARM PrimeCell® DMA controller (DMAC) able to
service up to 8 independent DMA channels for serial data transfers between single source
and destination (for example, memory-to-memory, memory-to-peripheral, peripheral-to-
memory, and peripheral-to-peripheral).

The UART provides a DMA Interface for connecting to a DMA controller. The DMA operation
of the UART is controlled through the UART DMA control register. When the UART is in
FIFO disabled mode (where both FIFOs act like a one-byte holding register), only DMA
single transfer mode can operate, since only one character can be transferred to or from the
FIFO at any time.

● For transmit:

DMA transfers data from a source address to the transmit FIFO. When the transmit
FIFO is full, then DMA goes into wait state. Then, the UART transmits the data from the
transmit FIFO to the destination address. When there is at least one empty location in
the transmit FIFO then DMA comes out of wait state and again starts transferring data
to the transmit FIFO. In transmit mode, one character consists of up to 8 bits.

● For receive:

DMA transfers data from the receive FIFO to the address where the data received is to
be stored. The reception process with DMA occurs when the receive FIFO contains at
least one character. When the receive FIFO is empty, then DMA goes into wait state
until there is at least one character in the receive FIFO for the reception process to
occur. In receive mode, one character consists of up to 12 bits.

The burst transfer and single transfer request signals are not mutually exclusive, so
they can both be asserted at the same time. For example, when there is more data than
the watermark level in the receive FIFO, the burst transfer request and the single
transfer request are asserted. When the amount of data left in the receive FIFO is less
than the watermark level, only the single request is asserted. This is useful for
situations where the number of characters left to be received in the stream is less than
a burst.

8.1 DMA operation
First of all, the DMA clock is enabled. In transmission, the TX interrupt is enabled. Then,
DMA is enabled by the DMACConfiguration register. Setting the relevant bit in the
DMACIntTCClear register or in the DMACIntErrClr register, respectively, clears the interrupt
request. The DMA channel to be used is selected, corresponding to which the registers of
that channel are configured. For example, channel 0 is selected, then the DMACC0SrcAddr
register contains the source address of the data which is to be transmitted.
DMACC0DestAddr register contains the address of TX FIFO.

In reception, the RX interrupt is enabled. Then DMA is enabled and all the pending
interrupts on DMA are cleared. For channel 0, the DMACC0SrcAddr contains the address of
RX FIFO and DMACC0DestAddr contains the address where the data is to be received.

DMA interface AN3123

18/28 Doc ID 16862 Rev 1

8.2 DMA registers
● UART DMA control register is a 16-bit read/write register. The bits of this register

enable and disable the DMA for the transmit and receive FIFOs. It also changes the
DMA request outputs when an UART error interrupt is asserted.

Offset Value: ‘h048

● DMACConfiguration register is a RW register which is used to configure the
operation of the DMAC. It enables the DMAC.

Offset Value: 0x030

● DMACIntTCClear (interrupt terminal count clear) register is a WO register which is
used to clear a terminal count interrupt request.

Offset Value: 0x008

● DMACIntErrClr (interrupt error clear) REGISTER is a WO register which is used to
clear an error interrupt request.

Offset Value: 0x010

● DMACCnSrcAddr (channel n source address) register is a RW register which
contains the current source address of the data to be transferred over the n-th DMA
channel.

Offset Value: 0x100 + (n · 0x020)

● DMACCnDestAddr (channel n destination address) register is a RW register which
contains the current destination address of the data to be transferred over the n-th DMA
channel.

Offset Value: 0x104 + (n · 0x020)

● DMACCnLLI (channel n linked list item) register is a RW register which contains the
address of the next Linked List Item (LLI). If next LLI is 0, then the current LLI is last in
the chain, and the DMA channel is disabled after all DMA transfers associated with it
are completed.

Offset Value: 0x108 + (n · 0x020)

● DMACCnControl REGISTER is a RW register which contains control information
about the DMA channel n, such as transfer size, burst size and transfer width.

Offset Value: 0x10C + (n · 0x020)

● DMACCnConfiguration REGISTER is a RW register which is used to configure the
relevant DMA channel.

Offset Value: 0x110 + (n · 0x020)

AN3123 UART modem operation

Doc ID 16862 Rev 1 19/28

9 UART modem operation

The UART can support both data terminal equipment (DTE) and data communication
equipment (DCE) modes of operation. Table 11 gives a description of the signals in each
mode.

Two dedicated "modem control" wires are used in hardware flow control to send the "stop"
and "start" signals. When the computer is ready to receive data it asserts RTS by putting a
positive voltage on the RTS pin. When the computer is not able to receive any more bytes, it
negates RTS by asserting a negative voltage on the pin. The RTS pin is connected by the
serial cable to another pin on the modem. This other pin's only function is to receive this
signal.

This "other" pin will be the modem's RTS pin. For a modem, a straight-thru cable is used.

For the opposite direction of flow a similar scheme is used. The CTS pin is used to send the
flow control signal to the CTS pin on the PC.

Thus modems and non-modems have the roles of their RTS and CTS pins interchanged.

RS-232 hardware handshaking has been specified in terms of communication between
Data Terminal Equipment (DTE) and Data Communications Equipment (DCE).

Most RS-232 connections use 9-pin DSUB connectors. A DTE uses a male connector and a
DCE uses a female connector.

Table 11. Modem input/output signals in DTE and DCE modes

Signal
Description

DTE DCE

nUARTCTS Clear to Send Request to Send

nUARTDSR Data Set Ready Data Terminal Ready

nUARTDCD Data Carrier Detect -

nUARTRI Ring Indicator -

nUARTRTS Request to Send Clear to Send

nUARTDTR Data Terminal ready Data Set Ready

nUARTOUT1 - Data Carrier Detect

nUARTOUT2 - Ring Indicator

UART modem operation AN3123

20/28 Doc ID 16862 Rev 1

Figure 2. DTE to DCE connection

Figure 3. DTE to DTE connection

1

2

3

4

5

6

7

8

9

DSR input
RXD input
RTS output
TXD output
CTS input
DTR output

GND

1

2

3

4

5

6

7

8

9

DSR
RXD
RTS
TXD
CTS
DTR

GND

DTE to DCE RS-232 cable

DSUB9 female to DSUB9 male connector

Data Terminal Equipment

DSUB9 male connector

1

2

3

4

5

6

7

8

9

DSR output
RXD output
RTS input
TXD input
CTS output
DTR input

GND

Data Communication Equipment

DSUB9 female connector

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

DSR input
RXD input
RTS output
TXD output
CTS input
DTR output

GND

1

2

3

4

5

6

7

8

9

DSR
RXD
RTS
TXD
CTS
DTR

GND

5

4

3

2

1

9

8

7

6

GND

DTR
CTS
TXD
RTS
RXD

DSR

5

4

3

2

1

9

8

7

6

GND

DTR output
CTS input
TXD output
RTS output
RXD input
DSR input

Data Terminal Equipment

DSUB9 male connector

DTE to DTE RS-232 null modem cable

DSUB9 female to DSUB9 female connector

Data Terminal Equipment

DSUB9 male connector

AN3123 OS-independent SPEAr UART HAL

Doc ID 16862 Rev 1 21/28

10 OS-independent SPEAr UART HAL

This section describes an OS independent hardware abstraction layer (HAL) for the SPEAr
UART which you can use as a starting point for developing your own HAL code.

10.1 SetBaseDevice()
This API sets the base address of the UART.

static t_UARTError SetBaseDevice(volatile u32 *SPEAR_UART_APB_BASE,
struct spear_uart_config *dev)

● UARTId: Identify the UART device

If the UARTId is UART0 or UART1, then it is a valid input for it otherwise it is said to be an
invalid UART ID.

10.2 GetBaudDivisor()
This function returns the integer and fractional values of the baud rate divisor.

static u32 GetBaudDivisor(t_UARTBaudRate BaudRate, u32
*IntegralVal)

● BaudRate: Baud rate to be configured

● IntegralVal - Baud rate divisor's integral value

Baud rate is a constant value & can be selected from the table given below

 :

Table 12. Baud rate values

Option Value

BAUD110 110

BAUD300 300

BAUD1200 1200

BAUD2400 2400

BAUD4800 4800

BAUD9600 9600

BAUD19200 19200

BAUD38400 38400

BAUD57600 57600

BAUD115200 115200

BAUD230400 230400

BAUD460800 460800

OS-independent SPEAr UART HAL AN3123

22/28 Doc ID 16862 Rev 1

10.3 UART_Init()
This routine is used to initialize the UART. This function sets the default settings and enables
the UART.

t_UARTError UART_Init(struct spear_uart **uart_device, t_UARTId
UARTId)

This function sets the default settings as shown in the example below:

struct spear_uart_config *dev;

dev->FIFOStatus = FIFO_ENABLE;

 dev->BaudRate = BAUD115200;

 dev->WordLength = DATA8;

 dev->StopBitSelect = STOP1;

 dev->ParitySelect = PARITY_DISABLE;

 dev->TxWatermarkLevel = OneByTwo;

 dev->RxWatermarkLevel = OneByTwo;

 dev->TxEnable = TRUE;

 dev->RxEnable = TRUE;

dev->UARTId = UARTId;

10.4 UART_Configure()
This function is used to configure a UART device. It first disables the UART, then finds the
integral and fractional baud rate and configures the line control register, control register and
various interrupt registers, etc. and finally enables the UART.

t_UARTError UART_Configure(struct spear_uart_config *dev)

● UARTId: Identify the UART device

● Config: Configuration information

The configuration information is selected as follows:

● ParitySelect: If it is already zero, this means that odd parity is selected. If EVEN then
even parity is selected, otherwise invalid parity is selected.

● WordLength: Its value can be chosen from the table given below:

Table 13. WordLength values

Option Value

DATA8 WORD_LENGTH_8

DATA7 WORD_LENGTH_7

DATA6 WORD_LENGTH_6

DATA5 Already zero

AN3123 OS-independent SPEAr UART HAL

Doc ID 16862 Rev 1 23/28

Apart from the above table, if any other option is given then it is an invalid word length
option.

● StopBitSelect: If it is already zero then OneStopBit. If it is equal to STOP2 then two stop
bits otherwise invalid stop bit select.

● FIFOStatus: Its valid inputs are FIFO_Enable or FIFO_Disable (already zero),
otherwise it is a case of invalid FIFO status.

● TxWatermarkLevel: The interrupt FIFO level is already set to 1/8

● RxWatermarkLevel: The Interrupt FIFO Level is already set to 1/8

10.5 UART_Transmit()
This API allows to start transmit a given number of characters. It writes character by
character.

t_UARTError UART_Transmit(struct spear_uart_config *dev, u32
NumOfCharToTx, char *Buffer)

● NumOfCharToTx: This is the number of characters to be transmitted

● Buffer: This is the pointer to the characters to be transmitted

10.6 UART_Receive()
This routine is used to start receiving a given number of characters. It reads character by
character.

Table 14. TxWatermarkLevel values

Option Value

OneByEight -

OneByFour TX_FIFO_TRIG_1BY4

OneByTwo TX_FIFO_TRIG_1BY2

ThreeByFour TX_FIFO_TRIG_3BY4

SevenByEight TX_FIFO_TRIG_7BY8

Table 15. RxWatermarkLevel values

Option Value

OneByEight -

OneByFour RX_FIFO_TRIG_1BY4

OneByTwo RX_FIFO_TRIG_1BY2

ThreeByFour RX_FIFO_TRIG_3BY4

SevenByEight RX_FIFO_TRIG_7BY8

OS-independent SPEAr UART HAL AN3123

24/28 Doc ID 16862 Rev 1

t_UARTError UART_Receive(struct spear_uart_config *dev, u32
NumOfCharToRx, char *Buffer, u32 *NumOfCharRx, t_UARTRxError
*RxError)

● NumOfCharToRx: This is the number of characters to be received

● Buffer: This is the pointer to the buffer where the data is stored

● NumOfCharRx: This is the number of characters received before error is encountered

● RxError: This is the status of error occurred during the reception- framing, parity, break,
overrun or no error.

10.7 UART_Disable()
This function is used to disable the UART. It stops the transmission or reception process
after transferring the current byte.

t_UARTError UART_Disable(struct spear_uart_config *dev)

● UARTId: identify the UART device

10.8 UART_IsTxFIFOFull()
This API is used to check whether the Tx FIFO is full.

t_bool UART_IsTxFIFOFull(struct spear_uart_config *dev)

10.9 UART_IsTxFIFOEmpty()
This function is used to check whether the Tx FIFO is empty.

t_bool UART_IsTxFIFOEmpty(struct spear_uart_config *dev)

10.10 UART_IsRxFIFOFull()
This function is used to check whether the Rx FIFO is full.

t_bool UART_IsRxFIFOFull(struct spear_uart_config *dev)

10.11 UART_IsRxFIFOEmpty()
This function is used to check whether the Rx FIFO is empty.

t_bool UART_IsRxFIFOEmpty(struct spear_uart_config *dev)

10.12 UART_IntEnable()
This API is used to enable the interrupt on the specified UART device.

t_UARTError UART_IntEnable(struct spear_uart_config *dev,
t_UARTIntType IntType)

● IntType: identify the interrupt type

AN3123 OS-independent SPEAr UART HAL

Doc ID 16862 Rev 1 25/28

All the interrupts required to be enabled should be ORed first and then passed into this
argument.

10.13 UART_IntDisable()
This routine disables the interrupt on the specified UART.

t_UARTError UART_IntDisable(struct spear_uart_config *dev,
t_UARTIntType IntType)

● IntType: identify the interrupt type

All the interrupts required to be disabled should be ORed first and then passed into this
argument.

10.14 UART_IntClear()
This function clears the interrupt of the specified UART.

t_UARTError UART_IntClear(struct spear_uart_config *dev,
t_UARTIntType IntType)

● IntType: identify the interrupt type

All the interrupts required to be cleared should be ORed first and then passed into this
argument.

10.15 UART_GetIntSrc()
This routine is used to get the source of the interrupt.

u32 UART_GetIntSrc(struct spear_uart_config *dev)

● UARTId: identify the UART device

Acronyms AN3123

26/28 Doc ID 16862 Rev 1

Appendix A Acronyms

Table 16. List of acronyms

Acronym Definition

ARM Advanced RISC machine

SPEAr Structured processor enhanced architecture

SoC System-on-chip

AMBA ARM microcontroller bus architecture

APB Advanced peripheral bus

RI Ring indicator

DCD Data carrier detect

DSR Data set ready

CTS Clear to send

RTS Request to send

DTR Data transmit ready

LBE Loop back enable

RXIM Receive interrupt mask

TXIM Transmit interrupt mask

FEN FIFO enable

BRK Send break

DMA Direct memory access

AN3123 Revision history

Doc ID 16862 Rev 1 27/28

Revision history

Table 17. Document revision history

Date Revision Changes

15-Dec- 2009 1 Initial release

AN3123

28/28 Doc ID 16862 Rev 1

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	Contents
	1 Purpose and scope
	2 UART signals
	2.1 SPEAr600
	2.2 SPEAr300
	2.3 SPEAr310
	2.4 SPEAr320

	3 Clock source and frequency
	3.1 Clock related registers

	4 Changing the UART baud rate on the fly
	4.1 Baud rate related registers

	5 UART protocol flow control
	6 UART controller data flow
	6.1 UART data registers

	7 UART interrupts
	7.1 Interrupt Sources
	7.2 Interrupt types
	7.2.1 UARTRXINTR
	7.2.2 UARTTXINTR
	7.2.3 UARTRTINTR
	7.2.4 UARTMSINTR
	7.2.5 UARTEINTR
	7.2.6 UARTINTR

	7.3 Interrupt related registers

	8 DMA interface
	8.1 DMA operation
	8.2 DMA registers

	9 UART modem operation
	10 OS-independent SPEAr UART HAL
	10.1 SetBaseDevice()
	10.2 GetBaudDivisor()
	10.3 UART_Init()
	10.4 UART_Configure()
	10.5 UART_Transmit()
	10.6 UART_Receive()
	10.7 UART_Disable()
	10.8 UART_IsTxFIFOFull()
	10.9 UART_IsTxFIFOEmpty()
	10.10 UART_IsRxFIFOFull()
	10.11 UART_IsRxFIFOEmpty()
	10.12 UART_IntEnable()
	10.13 UART_IntDisable()
	10.14 UART_IntClear()
	10.15 UART_GetIntSrc()

