**F1** 

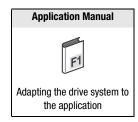
# **CDE/CDB/ CDF3000** Application Manual

Positioning drive systems 2 A to 170 A (CDE) 375 W to 90 kW (CDB) 470 W (CDF)

Adapting the drive system to the application






EN

With the delivery (depending on scope of delivery)

#### **Overview of documentation**

| Operation manual |
|------------------|
| D                |

Quick and easy initial commissioning

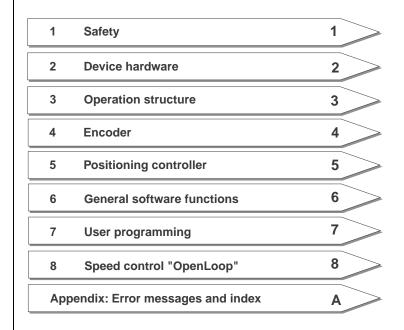


#### Application Manual CDE/CDB/CDF3000



ID no.: 1001.22 B.1-00

Status: 06/2005


Valid from software version V0.55 CDE3000 Valid from Software version V1.30 CDB3000 Valid from software version V1.00 CDF3000

Subject to technical changes without notice.

#### Dear user

this manual mainly addresses you as a **programmer** for drive and automation solutions. It describes how you can match your new drive system optimally to the corresponding application. At this point we assume that your drive is already running – otherwise you should first read the operating instructions.

Don't let the sheer volume of this manual put you off: Only the chapters 1 to 3 contain basic information you should become familiar with. All other chapters and the appendix are intended for **looking up information**. (They show the full scope of functions and the flexibility of the software for the positioning controllers to solve the most diverse drive tasks.)



EN

## Guide through this manual

### Pictograms

| <b>i</b> >     | Note: Useful information                                                                                      |                                                           |
|----------------|---------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| ►<br>►         | <b>Cross-reference:</b> Further information in other chapters of the user manual or additional documentations |                                                           |
| ×              | Step 1: Step-by-step instructions                                                                             |                                                           |
| Warning symbol | General explanation                                                                                           | Danger class acc. to<br>ANSI Z 535                        |
|                | <b>Attention!</b> Operating errors may cause damage to or malfunction of the drive.                           | This may result in physical injury or damage to material. |
|                | Danger, high voltage!Improper<br>behaviour may cause fatal accident.                                          | Danger to life or severe physical injury.                 |
| 5×             | Danger from rotating parts!The drive may automatically start.                                                 | Danger to life or severe physical injury.                 |
|                |                                                                                                               |                                                           |
|                |                                                                                                               |                                                           |
|                |                                                                                                               |                                                           |
|                |                                                                                                               |                                                           |

### Contents

1

3

### Safety

| 1.1 | Measures for your safety | 1-1 |
|-----|--------------------------|-----|
| 1.2 | Intended use             | 1-3 |
| 1.3 | Responsibility           | 1-4 |

### 2 Equipment hardware

| 2.1 | Terminal positions CDE3000   | 2-2  |
|-----|------------------------------|------|
| 2.2 | Terminal positions CDB3000   | 2-7  |
| 2.3 | Terminal positions CDF3000   | 2-11 |
| 2.4 | Light emitting diodes        | 2-15 |
| 2.5 | Resetting parameter settings | 2-16 |
| 2.6 | Loading device software      | 2-17 |
| 2.7 | Device protection            | 2-18 |

### **Operation structure**

| 3.1   | Operation levels in the parameter structure | 3-2  |
|-------|---------------------------------------------|------|
| 3.2   | Operation with DRIVEMANAGER                 | 3-4  |
| 3.2.1 | Operation masks                             | 3-5  |
| 3.3   | Operation with KP200-XL operation panel     | 3-9  |
| 3.4   | Commissioning                               | 3-14 |

# 4 CDE/CDB/CDF3000 in rotary speed operation

| Preset solutions                        | 4-2                                                                                                        |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------|
| General functions                       | 4-3                                                                                                        |
| Torque / rotary speed profile generator | 4-3                                                                                                        |
| Limitations/Stop ramps                  | 4-5                                                                                                        |
|                                         | Preset solutions<br>General functions<br>Torque / rotary speed profile generator<br>Limitations/Stop ramps |

| 4.3                                                                                                       | Torque control with reference value via analog input                                                                                                                                                                                                                                     | 4-6                                                                                       |
|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| 4.4                                                                                                       | Speed control with reference value via analog input                                                                                                                                                                                                                                      | 4-6                                                                                       |
| 4.5                                                                                                       | Speed control with reference value from fixed speed table                                                                                                                                                                                                                                | 4-7                                                                                       |
| 4.6                                                                                                       | Speed control with reference value and control via field bus                                                                                                                                                                                                                             | 4-9                                                                                       |
| 4.6.1<br>4.6.2                                                                                            | CANopen<br>PROFIBUS                                                                                                                                                                                                                                                                      |                                                                                           |
| 4.7                                                                                                       | Speed control with reference value via PLC                                                                                                                                                                                                                                               | -                                                                                         |
| 4.8                                                                                                       | Assignment of control terminal                                                                                                                                                                                                                                                           |                                                                                           |
| 4.8.1                                                                                                     | Terminal assignment CDE3000                                                                                                                                                                                                                                                              |                                                                                           |
| 4.8.2                                                                                                     | Terminal assignment CDB3000                                                                                                                                                                                                                                                              |                                                                                           |
| 4.8.3                                                                                                     | Terminal assignment CDF3000                                                                                                                                                                                                                                                              | 4-13                                                                                      |
| 5                                                                                                         | CDE/CDB/CDF3000 in positioning                                                                                                                                                                                                                                                           |                                                                                           |
|                                                                                                           | operation                                                                                                                                                                                                                                                                                |                                                                                           |
| 5.1                                                                                                       | Operation Pre-set solutions                                                                                                                                                                                                                                                              | 5-2                                                                                       |
| 5.1<br>5.2                                                                                                | •                                                                                                                                                                                                                                                                                        |                                                                                           |
| -                                                                                                         | · Pre-set solutions                                                                                                                                                                                                                                                                      | 5-4                                                                                       |
| 5.2                                                                                                       | Pre-set solutions<br>General functions                                                                                                                                                                                                                                                   | <b>5-4</b><br>5-5                                                                         |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3                                                                     | Pre-set solutions<br>General functions<br>Positioning modes<br>Units and standardization<br>Travel profile                                                                                                                                                                               | <b>5-4</b><br>5-5<br>5-6<br>5-9                                                           |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4                                                            | Pre-set solutions<br>General functions<br>Positioning modes<br>Units and standardization<br>Travel profile<br>Referencing                                                                                                                                                                | <b>5-4</b><br>5-5<br>5-6<br>5-9<br>5-13                                                   |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5                                                   | Pre-set solutions<br>General functions<br>Positioning modes<br>Units and standardization<br>Travel profile<br>Referencing<br>Limit switch                                                                                                                                                | <b>5-4</b><br>5-5<br>5-6<br>5-9<br>5-13<br>5-25                                           |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4                                                            | Pre-set solutions<br>General functions<br>Positioning modes<br>Units and standardization<br>Travel profile<br>Referencing<br>Limit switch<br>Manual operation / Jog mode                                                                                                                 | <b>5-4</b><br>5-5<br>5-6<br>5-9<br>5-13<br>5-25<br>5-26                                   |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5                                                   | Pre-set solutions<br>General functions<br>Positioning modes<br>Units and standardization<br>Travel profile<br>Referencing<br>Limit switch                                                                                                                                                | <b>5-4</b><br>5-5<br>5-6<br>5-9<br>5-13<br>5-25<br>5-26                                   |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>5.2.6<br><b>5.3</b><br>5.3.1                   | Pre-set solutions<br>General functions<br>Positioning modes<br>Units and standardization<br>Travel profile<br>Referencing<br>Limit switch<br>Manual operation / Jog mode<br>Positioning with table travel sets<br>Travel set selection                                                   | 5-4<br>5-5<br>5-6<br>5-9<br>5-13<br>5-25<br>5-26<br>5-28                                  |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>5.2.6<br><b>5.3</b>                            | Pre-set solutions<br>General functions<br>Positioning modes<br>Units and standardization<br>Travel profile<br>Referencing<br>Limit switch<br>Manual operation / Jog mode<br>Positioning with table travel sets<br>Travel set selection<br>Sequence of travel set selection with follow-t | 5-4<br>5-5<br>5-9<br>5-13<br>5-25<br>5-26<br>5-28<br>5-28<br>5-28                         |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>5.2.6<br><b>5.3</b><br>5.3.1<br>5.3.2          | Pre-set solutions                                                                                                                                                                                                                                                                        | 5-4<br>5-5<br>5-9<br>5-25<br>5-26<br>5-28<br>5-28<br>5-28<br>5-30                         |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>5.2.6<br><b>5.3</b><br>5.3.1<br>5.3.2<br>5.3.3 | Pre-set solutions                                                                                                                                                                                                                                                                        | 5-4<br>5-5<br>5-9<br>5-25<br>5-25<br>5-26<br>5-28<br>5-28<br>5-30<br>5-32                 |
| <b>5.2</b><br>5.2.1<br>5.2.2<br>5.2.3<br>5.2.4<br>5.2.5<br>5.2.6<br><b>5.3</b><br>5.3.1<br>5.3.2          | Pre-set solutions                                                                                                                                                                                                                                                                        | 5-4<br>5-5<br>5-9<br>5-13<br>5-25<br>5-26<br>5-28<br>5-28<br>5-28<br>5-30<br>5-32<br>5-37 |

| 5.4            | Positioning and control via field bus         | 5-40  |
|----------------|-----------------------------------------------|-------|
| 5.4.1          | CANopen                                       | 5-40  |
| 5.4.2          | PROFIBUS                                      | 5-40  |
| 5.5            | Positioning with PLC                          | 5-41  |
| 5.6            | Assignment of control terminal                | 5-41  |
| 5.6.1          | Terminal assignment CDE3000                   | 5-42  |
| 5.6.2          | Terminal assignment CDB3000                   |       |
| 5.6.3          | Terminal assignment CDF3000                   | 5-44  |
| 6              | General software functions                    |       |
| 6.1            | Inputs and outputs                            | 6-3   |
| 6.1.1          | Digital inputs                                | 6-4   |
| 6.1.2          | Digital outputs                               |       |
| 6.1.3          | Analog inputs                                 |       |
| 6.1.4          | Analog output for CDB3000                     | 6-30  |
| 6.2            | Setpoint generation                           | 6-33  |
| 6.2.1          | Rotary speed profile                          | 6-34  |
| 6.2.2          | Limitations                                   |       |
| 6.2.3          | Stop ramps                                    |       |
| 6.2.4          | Reference encoder/Master-Slave operation .    | 6-40  |
| 6.2.5          | Setpoint structure - further settings/control | C 47  |
| 6.2.6          | location<br>Control location                  |       |
| 6.2.0<br>6.2.7 | Motor potentiometer function                  |       |
| 6.3            | Motor control                                 |       |
| 6.4            | Motor and transducer                          |       |
| 6.4.1          | Motor data                                    |       |
| 6.4.2          | Encoder                                       |       |
| 6.4.3          | Motor protection                              |       |
| 6.4.4          | Motor holding brake                           |       |
| 6.5            | Bus systems                                   | 6-100 |
| 6.5.1          | CANopen                                       | 6-100 |
| 6.5.2          | PROFIBUS                                      |       |
| 6.6            | Cam controller                                | 6-106 |

| 6.7                 | Setting KP200-XL                             | 6-112 |
|---------------------|----------------------------------------------|-------|
| 6.8                 | Actual values                                | 6-117 |
| 6.8.1               | Temperature monitoring                       | 6-117 |
| 6.8.2               | Device data                                  | 6-118 |
| 6.8.3               | Options                                      |       |
| 6.8.4               | CANopen Field bus                            | 6-122 |
| 6.9                 | Warnings/errors                              | 6-124 |
| 6.9.1               | Error messages                               | 6-124 |
| 6.9.2               | Warning messages                             | 6-131 |
| 7                   | User programming                             |       |
| 7.1                 | PLC functionality                            | 7-3   |
| 7.2                 | PLC program                                  | 7-4   |
| 7.2.1               | PLC editor                                   |       |
| 7.2.2               | New generation of program                    |       |
| 7.2.3               | PLC program structure                        |       |
| 7.2.4               | Program testing and editing                  |       |
| 7.2.5<br>7.2.6      | PLC program files                            |       |
| _                   | Program handling                             |       |
| 7.3                 | PLC command syntax                           |       |
| 7.3.1<br>7.3.2      | Overview                                     |       |
| 1.3.2               | Detailed explanations                        | 7_17  |
| 7.4                 | •                                            |       |
| <b>7.4</b><br>7.4.1 | PLC control and parameters                   |       |
| 7.4.1               | PLC variables<br>PLC control parameters      |       |
|                     |                                              |       |
| 7.5                 | PLC program examples                         |       |
| 7.5.1<br>7.5.2      | Conveyor belt                                |       |
| 7.5.2               | Absolute positioning<br>Relative positioning |       |
| 7.5.3               | Sequential program                           |       |
| 1.0.7               |                                              |       |

| 8 | Speed Control "OpenLoop" for CDE/ |
|---|-----------------------------------|
|   | CDB3000                           |

| 8.1   | Preset solutions                                                    | 8-2         |
|-------|---------------------------------------------------------------------|-------------|
| 8.2   | General functions                                                   | 8-3         |
| 8.2.1 | Data set changeover                                                 | 8-3         |
| 8.2.2 | Speed profile generator "OpenLoop"                                  | 8-5         |
| 8.2.3 | Limitations/Stop ramps                                              | 8-8         |
| 8.3   | "OpenLoop" motor control method                                     | 8-10        |
| 8.3.1 | Start current controller                                            | 8-11        |
| 8.3.2 | Vibration damping controller                                        | 8-13        |
| 8.3.3 | Current limit controller                                            | 8-14        |
| 8.3.4 | DC-holding current controller                                       | 8-16        |
| 8.3.5 | v/f-characteristics curve                                           | 8-17        |
| 8.4   | Speed control "OpenLoop" with<br>0-10 V or fixed speeds             | <u>9_10</u> |
|       | •                                                                   |             |
| 8.5   | Speed control "OpenLoop" with<br>setpoint and control via field bus | 8-22        |

### A Appendix

| A.1 | Overview of all error messagesA | -2 |
|-----|---------------------------------|----|
|-----|---------------------------------|----|

B Index



### 1.1 Measures for your safety

1 Safety

In order to avoid physical injury and/or material damage the following information must be read before initial start-up.

The safety regulations must be strictly observed at any time.



#### Read the Operation Manual first!

- Follow the safety instructions!
- Please observe the user information



### Electric drives are generally potential danger sources:

- Electrical voltage <230 V/460 V: Dangerously high voltage may still be present 10 minutes after the power is cut. You should therefore always check that the system has been deenergized. (applies only for CDE/ CDB3000)
- Rotating parts
- Hot surfaces



### Protection against magnetic and/or electromagnetic fields during installation and operation.

- For persons with pacemakers, metal containing implants and hearing aids etc. access to the following areas is prohibited:
  - Areas in which drive systems are installed, repaired and operated.
  - Areas in which motors are assembled, repaired and operated. Motors with permanent magnets are sources of special dangers.



**Danger:** If there is a necessity to access such areas a decision from a physician is required.



3







#### Your qualification:

- In order to prevent personal injury or damage to property, only personnel with electrical engineering qualifications may work on the device.
- The qualified personnel must familiarise themselves with the Operation Manual (refer to IEC364, DIN VDE0100).
- Knowledge of the national accident prevention regulations (e. g. VBG 4 in Germany)

#### During installation follow these instructions:



- Always comply with the connection conditions and technical specifications.
- Comply with the standards for electrical installations, such as wire cross-section, earthing lead and ground connections.
- Do not touch electronic components and contacts (electrostatic discharge may destroy components).

| 1.2 | Intended use | Drive controllers are components for installation into stationary electric systems or machines.                                                                                                                             |   |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|     |              | When installed in machines the commissioning of the drive controller (i. e.                                                                                                                                                 | 1 |
|     |              | start-up of intended operation) is prohibited, unless it has been ascertained that the machine fully complies with the regulations of the EC-directive 98/37/EC (Machine Directive); compliance with EN 60204 is mandatory. | 2 |
|     |              | Commissioning (i. e. starting intended operation) is only permitted when strictly complying with EMC-directive (89/336/EEC).                                                                                                |   |
|     | CE           | The series CDE/CDB3000 complies with the low voltage directive 73/<br>23/EEC                                                                                                                                                | 3 |
|     |              | For the drive controller the harmonized standards of series EN 50178/<br>DIN VDE 0160 in connection with EN 60439-1/ VDE 0660 part 500 and<br>EN 60146/ VDE 0558 are applied.                                               | 4 |
|     |              |                                                                                                                                                                                                                             |   |
|     | CE           | The series CDF3000 complies with the EMC directive 89/336/EEC                                                                                                                                                               | 5 |
|     |              | The harmonized standards EN 50178/DIN VDE 0160 and EN 61800-3 are applied for the drive controllers.                                                                                                                        |   |
|     |              | If the drive controller is used in special applications, e. g. in areas subject                                                                                                                                             | 6 |
|     |              | to explosion hazards, the applicable regulations and standards (e. g. in Ex-environments EN 50014 "General provisions" and EN 50018 "Flameproof housing") must be strictly observed.                                        |   |
|     |              | Repairs must only be carried out by authorized repair workshops.                                                                                                                                                            | 7 |
|     |              | Unauthorised opening and incorrect intervention could lead to physical injury or material damage. The warranty granted by LUST will become void.                                                                            | 8 |
|     |              | Note: The use of drive controllers in mobile equipment is assumed                                                                                                                                                           |   |
|     |              | an exceptional environmental condition and is only permitted after a special agreement.                                                                                                                                     | A |
|     |              |                                                                                                                                                                                                                             |   |
|     |              |                                                                                                                                                                                                                             |   |
|     |              |                                                                                                                                                                                                                             |   |

### 1.3 Responsibility

Electronic devices are never fail-safe. The company setting up and/or operating the machine or plant is itself responsible for ensuring that the drive is rendered safe if the device fails.

EN 60204-1/DIN VDE 0113 "Safety of machines", in the section on "Electrical equipment of machines", stipulates safety requirements for electrical controls. They are intended to protect personnel and machinery, and to maintain the function capability of the machine or plant concerned, and must be observed.

An emergency stop system does not necessarily have to cut the power supply to the drive. To protect against danger, it may be more beneficial to keep individual drives running or to initiate specific safety sequences. Execution of the emergency stop measure is assessed by means of a risk analysis of the machine or plant, including the electrical equipment in accordance with DIN EN 1050, and is determined by selecting the circuit category in accordance with DIN EN 954-1 "Safety of machines - Safety-related parts of controls".

2

|   | 1 | - |
|---|---|---|
| Þ |   |   |

### **Equipment hardware** 2

| 2.1 | Terminal positions CDE3000   | 2-2  |
|-----|------------------------------|------|
| 2.2 | Terminal positions CDB3000   | 2-7  |
| 2.3 | Terminal positions CDF3000   | 2-11 |
| 2.4 | Light emitting diodes        | 2-15 |
| 2.5 | Resetting parameter settings | 2-16 |
| 2.6 | Loading device software      | 2-17 |
| 2.7 | Device protection            | 2-18 |
|     |                              |      |



Info: This chapter shows general items concerning the equipment hardware, which are required to understand and work with the application manual. Further information on equipment hardware can be found in the corresponding operating instructions for the positioning controllers.



2.1 Terminal positions CDE3000



2 Equipment hardware

#### Fig. 2.1 View of device CDE3000

| No.        | Designation           | Function                                                                                                          |
|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|
| H1, H2, H3 | Light emitting diodes | Equipment status display                                                                                          |
| S1         | Encoder switch        | Setting the CAN-address =<br>hardware address + parameter value COADR                                             |
| X1         | Power terminal        | Mains, motor, DC supply (L+/L-)<br>up to < 22 kW: Braking resistor L+/RB,<br>from > 22 kW: Braking resistor L+/RB |

Table 2.1 Legend to "View of device CDE3000"

|        | -                                  | Function                                                                                                     |
|--------|------------------------------------|--------------------------------------------------------------------------------------------------------------|
| X2     | Control terminal                   | 8 digital inputs, 2 analog inputs, (10 bit)<br>3 digital outputs, 1 relay<br>Safe stop with relay output     |
| Х3     | Motor temperature<br>monitoring    | PTC, following DIN 44082 or<br>KTY 84-130 (linear temperature sensor) or<br>Klixon (thermal circuit breaker) |
| X4     | RS232 port                         | for PC with DRIVEMANAGER or control unit KP200-XL                                                            |
| X5     | CAN-interface                      | CAN <sub>open</sub> - interface DSP402                                                                       |
| X6     | Resolver connection                | Resolver                                                                                                     |
| X7     | TTL-/SSI encoder<br>interface      | TTL encoder<br>SSI absolute value transducer, optionally: Sin-Cos<br>transducer                              |
| X8     | Optional board slot                | Expansion board slot for e.g. optional module<br>CM_DPV1 (PROFIBUS-DP)                                       |
| Х9     | Brake driver                       | 2A max.                                                                                                      |
| X10    | Voltage supply for optional module | + 24 V, ground                                                                                               |
| X11    | Interface<br>PROFIBUS-DP           | Input bus connection                                                                                         |
| X13    | Address coding plug                | Only with optional module DPV1                                                                               |
| S1, S2 | Address encoder switch             | Only with optional module DPV1                                                                               |

2

3

7

Α

ΕN

#### Power terminal

X1 Designation X1 Designation Motor cable U Motor cable U υ 🔲 🗖 U Motor cable V Motor cable V U 1 ۷ Motor cable W Motor cable W **□**|w w PE-conductor PE-conductor Ŧ ╧ PE-conductor PE-conductor ÷ ÷ D.C. ling voltage + D.C. ling voltage + 🔲 L+ L+ Braking resistor Braking resistor RB RB RB D.C. ling voltage -D.C. ling voltage -L-PE-conductor □ ÷ PE-conductor ᆂ 🗖 L3 Mains phase L3 NC Ν L2 Neutral conductor Mains phase L2 🗖 L1 🔲 L1 Mains phase Mains phase L1 Power terminal designation CDE32.xxx and CDE34.xxx Table 2.2

#### 2 Equipment hardware

Control terminal

| X2 | Designation | Function                                  |
|----|-------------|-------------------------------------------|
| 1  | DGND        | digital ground                            |
| 2  | +24V        | Auxiliary voltage $U_V = 24 \text{ V DC}$ |
| 3  | ISA0+       | Analog input 10 bit ± 10 V                |
| 4  | ISA0-       | Analog input                              |
| 5  | ISA1+       | Analog input 10 bit $\pm$ 10 V            |
| 6  | ISA1-       | Analog input                              |
| 7  | OSD00       | Digital output                            |
| 8  | 0SD01       | Digital output                            |
| 9  | 0SD02       | Digital output                            |
| 10 | ENPO        | Power stage hardware enable               |
| 11 | RSH         | Relay output safe stop                    |
| 12 | RSH         | Relay output safe stop                    |
| 13 | DGND        | digital ground                            |
| 14 | +24V        | Auxiliary voltage $U_V = 24 V DC$         |
| 15 | ISD00       | Digital input 0                           |
| 16 | ISD01       | Digital input 1                           |
| 17 | ISD02       | Digital input 2                           |
| 18 | ISD03       | Digital input 3                           |
| 19 | ISD04       | Digital input 4                           |
| 20 | ISD05       | Digital input 5                           |
| 21 | ISD06       | Digital input 6                           |
| 22 | ISDSH       | Digital input safe stop                   |
| 23 | REL         | Relay output                              |
| 24 | REL         | Relay output                              |

Table 2.3Signal assignment for control terminal X2, CDE3000

| Pin-No.   | Function                                                      |
|-----------|---------------------------------------------------------------|
| 1         | +15 V DC for control unit KP200-XL                            |
| 2         | TxD, data transmission                                        |
| 3         | RxD, data reception                                           |
| 4         | not used                                                      |
| 5         | GND for +15 V DC of the control unit KP200-XL                 |
| 6         | +24 V DC, voltage supply control print                        |
| 7         | not used                                                      |
| 8         | not used                                                      |
| 9         | GND for +24 V DC, voltage supply control print                |
| Table 2.4 | Pin assignment of the serial interface X4, 9-pin D-Sub socket |

RS232

i.

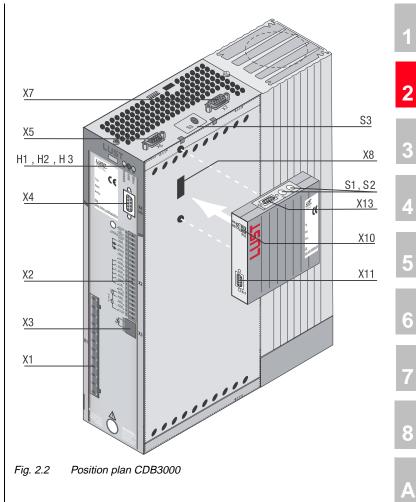
CAN

| Pin-No.                                | Function                                                                                                                                                                                                                                                                          |  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 1                                      | Wave terminating resistor 120 $\Omega$ internal for CAN by means of jumper between Pin 1 and Pin 2                                                                                                                                                                                |  |
| 2                                      | CAN_LOW, CAN signal                                                                                                                                                                                                                                                               |  |
| 3                                      | CAN_GND, reference ground of CAN 24 V (Pin 9)                                                                                                                                                                                                                                     |  |
| 4                                      | CAN-SYNC_LOW.                                                                                                                                                                                                                                                                     |  |
| 5                                      | Wave terminating resistor 120 $\Omega$ internal for CAN-SYNC by means of jumper between Pin 5 and Pin 4                                                                                                                                                                           |  |
| 6                                      | CAN_GND, bridged with Pin 3                                                                                                                                                                                                                                                       |  |
| 7                                      | CAN_HIGH, CAN signal                                                                                                                                                                                                                                                              |  |
| 8                                      | CAN-SYNC_HIGH.                                                                                                                                                                                                                                                                    |  |
|                                        | CAN +24 V (24 V ± 10%, 50 mA).                                                                                                                                                                                                                                                    |  |
| 9                                      | This supply voltage is required for CAN operation.                                                                                                                                                                                                                                |  |
| 9<br>ole 2.5                           | _ ( , ,                                                                                                                                                                                                                                                                           |  |
|                                        | This supply voltage is required for CAN operation.                                                                                                                                                                                                                                |  |
| ole 2.5                                | This supply voltage is required for CAN operation.<br><i>Pin assignment of CAN-interface X5, 9-pin D-Sub pin</i>                                                                                                                                                                  |  |
| ole 2.5<br>Pin-No.                     | This supply voltage is required for CAN operation. Pin assignment of CAN-interface X5, 9-pin D-Sub pin Function                                                                                                                                                                   |  |
| <i>ple 2.5</i><br><b>Pin-No.</b>       | This supply voltage is required for CAN operation. Pin assignment of CAN-interface X5, 9-pin D-Sub pin Function Sine+, S2                                                                                                                                                         |  |
| <i>Pin-No.</i> 1 2                     | This supply voltage is required for CAN operation.         Pin assignment of CAN-interface X5, 9-pin D-Sub pin         Function         Sine+, S2       Sine-, S4                                                                                                                 |  |
| <i>Pin-No.</i> 1 2 3                   | This supply voltage is required for CAN operation.         Pin assignment of CAN-interface X5, 9-pin D-Sub pin         Function         Sine+, S2       Sine-, S4         Cosine+, S1       Sine+, S1                                                                             |  |
| Die 2.5<br>Pin-No.<br>1<br>2<br>3<br>4 | This supply voltage is required for CAN operation.         Pin assignment of CAN-interface X5, 9-pin D-Sub pin         Function         Sine+, S2       Sine-, S4         Cosine+, S1       +5V                                                                                   |  |
| <i>Pin-No.</i> 1 2 3 4 5               | This supply voltage is required for CAN operation.         Pin assignment of CAN-interface X5, 9-pin D-Sub pin         Function         Sine+, S2         Sine-, S4         Cosine+, S1         +5V         PTC+, motor temperature monitoring                                    |  |
| <i>Pin-No.</i>                         | This supply voltage is required for CAN operation.         Pin assignment of CAN-interface X5, 9-pin D-Sub pin         Function         Sine+, S2         Sine-, S4         Cosine+, S1         +5V       PTC+, motor temperature monitoring         REF+, resolver excitation R2 |  |

#### Encoder

Resolver

|           | Function                  |       |                    |
|-----------|---------------------------|-------|--------------------|
| Pin-No.   | Sine/Cosine<br>(optional) | SSI   | Hiperface          |
| 1         | A-                        |       | REFCOS             |
| 2         | A+                        |       | +COS               |
| 3         | $+5V \pm 5\%$ at 150mA    | 5 V   |                    |
| 4         |                           | DATA+ | Data +, RS485      |
| Table 0.7 | Dia anaimmente            |       | AF air D. Cub High |


Table 2.7

7 Pin assignment for encoder interface X7, 15-pin D-Sub High Density, socket

|         |                           | Function |               |
|---------|---------------------------|----------|---------------|
| Pin-No. | Sine/Cosine<br>(optional) | SSI      | Hiperface     |
| 5       |                           | DATA-    | Data -, RS485 |
| 6       | В-                        |          | REFSIN        |
| 7       |                           |          |               |
| 8       | GND                       | GND      | GND           |
| 9       | R-                        |          |               |
| 10      | R+                        |          |               |
| 11      | B+                        |          | +SIN          |
| 12      | Sense +                   | Sense +  |               |
| 13      | Sense -                   | Sense -  |               |
| 14      |                           | CLK+     |               |
| 15      |                           | CLK-     |               |

Table 2.7Pin assignment for encoder interface X7, 15-pin D-Sub High<br/>Density, socket





| No.        | Designation           | Function                                                                                                          |
|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------|
| H1, H2, H3 | Light emitting diodes | Equipment status display                                                                                          |
| X1         | Power terminal        | Mains, motor, DC supply (L+/L-)<br>up to < 22 kW: Braking resistor L+/RB,<br>from > 22 kW: Braking resistor L+/RB |
| X2         | Control terminal      | 4 digital inputs, 2 analog inputs<br>3 digital outputs, (of these 1 relay)<br>1 analog output                     |
| Х3         | PTC-terminal          | PTC, thermal circuit breaker or linear temperature sensor KTY 84-130                                              |

Table 2.8 Legend to "Position plan CDB3000"

| No.      | Designation                        | Function                                                                 |
|----------|------------------------------------|--------------------------------------------------------------------------|
| X4       | RS232 port                         | for PC with DriveManager or control unit KP200-XL                        |
| X5       | CAN-interface                      | Access to integrated CAN-interface                                       |
| Х7       | TTL-/SSI encoder interface         | for connection of suitable encoders                                      |
| S3       | Address encoder switch<br>CANopen  | Setting the CAN-address =<br>hardware address + parameter value<br>COADR |
| X8       | Optional board slot                | e.g. optional module DPV1                                                |
| X10      | Voltage supply for optional module | + 24 V, ground                                                           |
| X11      | PROFIBUS-DP interface              | Input bus connection                                                     |
| X13      | Address encoder plug               | Only with optional module DPV1                                           |
| S1, S2   | Address encoder switch             | Only with optional module DPV1                                           |
| \$1, \$2 | Address encoder switch             | Unly with optional module DPV1                                           |

Table 2.8 Legend to "Position plan CDB3000"

#### Power terminal

| X1   | Designation         | X1   | Designation         |
|------|---------------------|------|---------------------|
| υ    | Motor cable U       | υ    | Motor cable U       |
|      | Motor cable V       |      | Motor cable V       |
| 🗖 w  | Motor cable W       | 🗖 w  | Motor cable W       |
| □ ÷  | PE-conductor        | □÷   | PE-conductor        |
| 🗖 ÷  | PE-conductor        | 🗖 ÷  | PE-conductor        |
| 🗖 L+ | D.C. ling voltage + | 🗖 L+ | D.C. ling voltage + |
| 🗖 RB | Braking resistor    | 🗖 RB | Braking resistor    |
| 🗖 L- | D.C. ling voltage - | 🗖 L- | D.C. ling voltage - |
| 🗖 ÷  | PE-conductor        | 🗖 ÷  | PE-conductor        |
|      | NC                  | 🗖 L3 | Mains phase L3      |
|      | Neutral conductor   | 🗖 L2 | Mains phase L2      |
| L1   | Mains phase         | 🗖 [1 | Mains phase L1      |

Table 2.9

Power terminal designation CDB32.xxx und CDB34.xxx

#### 2 Equipment hardware

#### Control terminal

| X2 | Designation    | Function                       |              |   |
|----|----------------|--------------------------------|--------------|---|
| 20 | 0SD02/20       | Make contact of two-way relay  | X2-18        | 1 |
| 19 | 0SD02/19       | Root of two-way relay          | <u>X2-19</u> |   |
| 18 | 0SD02/18       | Break contact of two-way relay | X2-20        |   |
| 17 | DGND           | digital ground                 |              | 2 |
| 16 | OSD01          | digital output                 |              | 2 |
| 15 | OSD00          | digital output                 |              |   |
| 14 | DGND           | digital ground                 |              |   |
| 13 | U <sub>V</sub> | Auxiliary voltage 24 V         |              | 3 |
| 12 | ISD03          | digital input                  |              |   |
| 11 | ISD02          | digital input                  |              |   |
| 10 | ISD01          | digital input                  |              | _ |
| 9  | ISD00          | digital input                  |              | 4 |
| 8  | ENPO           | Power stage hardware enable    |              |   |
| 7  | U <sub>V</sub> | Auxiliary voltage 24 V DC      |              |   |
| 6  | UV             | Auxiliary voltage 24 V DC      | 1            | 5 |
| 5  | OSA00          | analog output                  |              |   |
| 4  | AGND           | analog ground                  |              |   |
| 3  | ISA01          | analog input                   |              | 6 |
| 2  | ISA00          | analog input                   |              |   |
| 1  | U <sub>R</sub> | Reference voltage +10,5 V      |              |   |

RS232

Control terminal designation CDB3000 Table 2.10

| Pin-No. | Function                                      |
|---------|-----------------------------------------------|
| 1       | +15 V DC for control unit KP200-XL            |
| 2       | TxD, data transmission                        |
| 3       | RxD, data reception                           |
| 4       | not used                                      |
| 5       | GND for +15 V DC of the control unit KP200-XL |
| 6       | +24 V DC, voltage supply control print        |
| 7       | not used                                      |
| 8       | not used                                      |
| 9       | GND for +24V DC, voltage supply control print |

Table 2.11 Pin assignment of the serial interface X4, 9-pin D-Sub socket 7

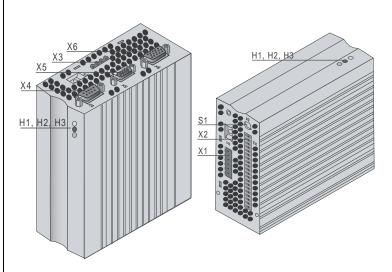
A

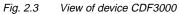
CAN

| Pin-No. | Function                                                                                           |
|---------|----------------------------------------------------------------------------------------------------|
| 1       | Wave terminating resistor 120 $\Omega$ internal for CAN by means of jumper between Pin 1 and Pin 2 |
| 2       | CAN_LOW, CAN signal                                                                                |
| 3       | CAN_GND, reference ground of CAN 24 V (Pin 9)                                                      |
| 4       | not used, please do not connect                                                                    |
| 5       | not used, please do not connect                                                                    |
| 6       | CAN_GND, bridged with Pin 3                                                                        |
| 7       | CAN_HIGH, CAN signal                                                                               |
| 8       | not used, please do not connect                                                                    |
| 9       | CAN_+24 V (24 V $\pm$ 25%, 50 mA).<br>This supply voltage is required for CAN operation.           |

 Table 2.12
 Pin assignment of CAN-interface X5, 9-pin D-Sub pin

Encoder


| Pin-No. | Function TTL                                                                                             | Function SSI                    |  |
|---------|----------------------------------------------------------------------------------------------------------|---------------------------------|--|
| 1       | A-                                                                                                       | DATA-                           |  |
| 2       | A+                                                                                                       | DATA+                           |  |
| 3       | +5 V / 150 mA                                                                                            | +5 V / 150 mA                   |  |
| 4       | not used, please do not connect                                                                          |                                 |  |
| 5       | not used, please do not connect                                                                          | not used, please do not connect |  |
| 6       | В-                                                                                                       | CLK-                            |  |
| 7       | not used, please do not connect                                                                          |                                 |  |
| 8       | GND                                                                                                      | GND                             |  |
| 9       | R-                                                                                                       |                                 |  |
| 10      | R+                                                                                                       |                                 |  |
| 11      | B+                                                                                                       | CLK+                            |  |
| 12      | +5 V (sensor)                                                                                            | +5 V (sensor)                   |  |
| 13      | GND (Sensor)                                                                                             | GND (Sensor)                    |  |
| 14/15   | Wave terminating resistor 120 $\Omega$ internal for track B by means of jumper between Pin 14 and Pin 15 |                                 |  |


Table 2.13Pin assignment for encoder terminal X7, 15-pin D-Sub High<br/>Density, socket

#### 2 Equipment hardware

### LUST

2.3 Terminal positions CDF3000





| No.        | Designation                          | Function                                             |
|------------|--------------------------------------|------------------------------------------------------|
| H1, H2, H3 | Light emitting diodes                | Equipment status display                             |
| S1         | Encoder switch                       | Setting the CAN-address                              |
| X1         | Power terminal                       | 6-pin                                                |
| X2         | Control terminal                     | 20-pin                                               |
| X3         | Motor power connection               | 4-pin                                                |
| X4         | RS232 port                           | for PC with DriveManager or<br>control unit KP200-XL |
| X5         | CAN-interface                        | DSP402                                               |
| X6         | Resolver / SSI-transducer connection | 15-pin HD-Sub-D (socket)                             |

Table 2.14 Legend to "View of device CDF3000"

1

2

3

7

А



#### 2 Equipment hardware

#### Power terminal

| X1    | Designation                             |
|-------|-----------------------------------------|
| L+    | Supply 24V - 55V                        |
|       | Ground connection                       |
| PE    | PE-conductor                            |
| PE PE | PE-conductor                            |
| RB+   | Connection of external braking resistor |
| RB-   | Connection of external braking resistor |



Power terminal designation X1, CDF3000

#### Control terminal

| X2 | Designation | Function                                                 |
|----|-------------|----------------------------------------------------------|
| 20 | -           | Not assigned                                             |
| 19 | -           | Not assigned                                             |
| 18 | RSH         | Relay contact safe stop (make contact)                   |
| 17 | RSH         | Relay contact safe stop (make contact)                   |
| 16 | ISDSH       | Digital input safe stop                                  |
| 15 | ISD02       | Digital input                                            |
| 14 | ISD01       | Digital input                                            |
| 13 | ISD00       | Digital input                                            |
| 12 | ENPO        | Release of closed loop control                           |
| 11 | +24 V       | +24 V supply                                             |
| 10 | OSD00       | Digital output                                           |
| 9  | ISA1+       | Analog input, differential +                             |
| 8  | ISA1-       | Analog input, differential -                             |
| 7  | ISA0+       | Analog input, differential +                             |
| 6  | ISA0-       | Analog input, differential -                             |
| 5  | +24 V       | +24 V supply for control element                         |
| 4  | GND         | Ground connection                                        |
| 3  | GND         | Ground connection                                        |
| 2  | OSD03       | Digital output, motor brake driver 1 (0.5 A eff, 2A max) |
| 1  | OSD04       | Digital output, motor brake driver 2 (0.5 A eff, 2A max) |

#### Table 2.16

Signal assignment for control terminal X2



#### 2 Equipment hardware

#### Motor connection

| Terminal X3/<br>Pin | Designation                                        | 1 |
|---------------------|----------------------------------------------------|---|
| W                   |                                                    |   |
| V                   | Motor phase connection (max. 1.5 mm <sup>2</sup> ) | 2 |
| U                   |                                                    |   |
| PE                  | Earthing lead connection                           |   |
| Table 2.17          | Motor terminal designation X3 CDF3000              | 3 |

| Tabl | e 2. | 17 | Λ |
|------|------|----|---|
|------|------|----|---|

Motor terminal designation X3 CDF3000

#### RS232

| Terminal X4/<br>Pin-No. | Function                                      | 4 |
|-------------------------|-----------------------------------------------|---|
| 1                       | +15 V DC for control unit KP200-XL            |   |
| 2                       | TxD, data transmission                        | E |
| 3                       | RxD, data reception                           | 5 |
| 4                       | not used                                      |   |
| 5                       | GND for +15 V DC of the control unit KP200-XL |   |
| 6                       | +24 V DC, voltage supply control print        | 6 |
| 7                       | not used                                      |   |
| 8                       | not used                                      |   |
| 9                       | GND for +24V DC, voltage supply control print | 7 |
| <b>-</b> // / .         |                                               |   |

Table 2.18 Pin assignment of the serial interface X4, CDF

| Terminal X5<br>Pin-No. | Function                                                                                               |
|------------------------|--------------------------------------------------------------------------------------------------------|
| 1                      | Wave terminating resistor 120 $\Omega$ internal for CAN by means of jumper between Pin 1 and Pin 2     |
| 2                      | CAN_LOW                                                                                                |
| 3                      | CAN_GND                                                                                                |
| 4                      | CAN_SYNC_LOW.                                                                                          |
| 5                      | Wave terminating resistor 120 $\Omega$ internal for CAN-SYNC by means of jumper between Pin 4and Pin 5 |
| 6                      | CAN_GND                                                                                                |
| Table 2.19             | Pin assignment of CAN-interface X5, 9-pin D-Sub pin                                                    |

Pin assignment of CAN-interface X5, 9-pin D-Sub pin

#### 2 Equipment hardware

| Terminal X5<br>Pin-No. | Function                                                                                |
|------------------------|-----------------------------------------------------------------------------------------|
| 7                      | CAN_HIGH                                                                                |
| 8                      | CAN_SYNC_HIGH.                                                                          |
| 9                      | CAN_+24 V (24 V $\pm$ 25%, 50 mA)<br>This supply voltage is required for CAN operation. |

Pin assignment of CAN-interface X5, 9-pin D-Sub pin

#### Resolver

Table 2.19

| Terminal X6/<br>Pin-No. | Function                            |  |  |
|-------------------------|-------------------------------------|--|--|
| 1                       | Sine-, resolver (S4)                |  |  |
| 2                       | Sine+, resolver (S2)                |  |  |
| 3                       | +5V / 150 mA, SSI                   |  |  |
| 4                       | DATA+, SSI                          |  |  |
| 5                       | DATA-, SSI                          |  |  |
| 6                       | Cosine-, resolver (S3)              |  |  |
| 7                       | REF-, resolver, (R2)                |  |  |
| 8                       | GND, SSI                            |  |  |
| 9                       | PTC- (KTY / Klixon), resolver / SSI |  |  |
| 10                      | PTC+ (KTY / Klixon), resolver / SSI |  |  |
| 11                      | Cosine+, resolver (S1)              |  |  |
| 12                      | REF+, resolver, (R1)                |  |  |
| 13                      | do not use                          |  |  |
| 14                      | CLK+, SSI                           |  |  |
| 15                      | CLK-, SSI                           |  |  |

Table 2.20Pin assignment for resolver interface X6, 15-pin High Density<br/>D-Sub pin, socket

#### Brake driver

| Terminal<br>X2/ Pin-<br>No. |       | Function                                                                      | Electrical isolation |
|-----------------------------|-------|-------------------------------------------------------------------------------|----------------------|
| 1                           | OSD04 | short-circuit proof                                                           |                      |
| 4                           | DGND  | Cable breakage monitoring; suitable for<br>controlling a motor holding brake. | yes                  |

Light emitting

H1 H2 H3

0

6

**O** H1 ○ H2○ H3

2.4

CDE/CDB

CDF

#### 2 Equipment hardware

| Device status                                                                                                                          | red LED (H1)   | yellow LED (H2) | green LED (H3) |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------|-----------------|----------------|--|
| Supply voltage 24 V DC (internal<br>or external) for control element<br>applied or closed loop control in<br>"Parameterization" status | О              | О               | •              |  |
| Ready (ENPO set)                                                                                                                       | О              | •               | •              |  |
| In service/auto-tuning active                                                                                                          | О              | *               | •              |  |
| Warning (at Standby)                                                                                                                   | О              | ●               | •              |  |
| Warning (active with operation/<br>self-adjustment)                                                                                    | О              | *               | •              |  |
| Error                                                                                                                                  | ★ (flash code) | О               | •              |  |
| OLED off, ● LED on, 米 LED flashing                                                                                                     |                |                 |                |  |

Table 2.21 Meaning of the light emitting diodes



| The parameterization mode by control unit is not separately |
|-------------------------------------------------------------|
| The parameterization mode by control unit is not separately |
| indicated.                                                  |

| Flash code of red LED | Display<br>control unit | Cause of fault               |
|-----------------------|-------------------------|------------------------------|
| 1x                    | E-CPU                   | Collective error message     |
| 2x                    | E-0FF                   | Undervoltage cut-off         |
| Зx                    | E-0C                    | Overcurrent cut-off          |
| 4x                    | E-OV                    | Overvoltage cut-off          |
| 5x                    | E-OLM                   | Motor overloaded             |
| 6x                    | E-OLI                   | Device overloaded            |
| 7х                    | E-OTM                   | Motor temperature too high   |
| 8x                    | E-0TI                   | Cooling temperature too high |



Error messages can be displayed more accurately with the KP200-XL control unit or the DRIVEMANAGER.



2

5

6

diodes Ο

Note:

The positioning controller is fitted with three status LED's in red (H1), yellow (H2) and green (H3) at the top right.

| 2.5     | Resetting<br>parameter<br>settings | The resetting of parameter settings is divided into two areas with differing effects. The parameter reset returns an individual parameter to the last saved value. Device reset restores the entire dataset to factory setting (delivery defaults).                                                                                                                         |
|---------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Parame  | eter reset                         | In the KEYPAD PARA menu:<br>If you are in the setup mode of a parameter and press the two arrow keys<br>simultaneously, the parameter you are currently editing will be reset to the<br>setting saved last.                                                                                                                                                                 |
|         |                                    | In DRIVEMANAGER:<br>In the focussed settings window by actuating the F1-key. The factory<br>setting of the parameter is to be taken and entered in the tab "Value<br>Range".                                                                                                                                                                                                |
| Factory | r setting                          | KEYPAD:<br>Press both arrow keys of the KEYPAD simultaneously during servo<br>controller power-up to reset all parameters to their factory defaults and<br>reinitialise the system                                                                                                                                                                                          |
|         |                                    | DRIVEMANAGER:<br>Select function "Reset to factory default" in the menu "Active device".                                                                                                                                                                                                                                                                                    |
|         |                                    | Ele Communication View       Active device Extras Window 2         Ele Communication View       Active device Extras Window 2         Ele Communication View       Drange settings         Load device settings from +       Size device settings on +         Size device settings       -         Corpsol       -         Event For       Monitor         Siglect       - |
|         |                                    | Fig. 2.4 Reset in DRIVEMANAGER                                                                                                                                                                                                                                                                                                                                              |
|         | Ì                                  | Note: This factory setting also resets the selected default solution.<br>Check the terminal assignment and the functionality of the<br>positioning controller in these operating modes or load your<br>user dataset.                                                                                                                                                        |
|         |                                    |                                                                                                                                                                                                                                                                                                                                                                             |

|     | 121                        | 2 Equipment naruware                                                                                                                                                                                                                                                                |   |
|-----|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2.6 | Loading device<br>software | With the DRIVEMANAGER you can load a new device software (Firmware) into the Flash-EPROM of the devices. This enables updating of the software without having to open the positioning controllers.                                                                                  | 1 |
|     |                            | <ol> <li>For this purpose set up a connection between DRIVEMANAGER and<br/>positioning controllers.</li> </ol>                                                                                                                                                                      |   |
|     |                            | 2. From the menu "Options" choose the option "Load device software<br>(Firmware)". From here the DRIVEMANAGER will guide you through<br>the other work steps. LEDs H2 and H3 will light during transfer of the<br>Firmware. After successful transfer the LED H2 will go out, if no | 2 |
|     |                            | ENPO signal is applied.                                                                                                                                                                                                                                                             | 3 |
|     |                            |                                                                                                                                                                                                                                                                                     | 4 |
|     |                            |                                                                                                                                                                                                                                                                                     | 5 |
|     |                            |                                                                                                                                                                                                                                                                                     | 6 |
|     |                            |                                                                                                                                                                                                                                                                                     | 7 |
|     |                            |                                                                                                                                                                                                                                                                                     | 8 |
|     |                            |                                                                                                                                                                                                                                                                                     | Α |
|     |                            |                                                                                                                                                                                                                                                                                     |   |



# 2.7 Device protection

| Function                     |                                                          | Effect                                                                                                                                                                                                            |
|------------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                              | ection of the positioning roller against damage          | The positioning controller stop the motor with an error message                                                                                                                                                   |
| caus                         | caused by overload.                                      | <ul> <li>E-OTI, if the device<br/>temperature exceeds a fixed<br/>limit</li> </ul>                                                                                                                                |
|                              |                                                          | <ul> <li>E-OLI, if the integrated<br/>current time value exceeds<br/>the limit value set in<br/>dependence on the power<br/>module by a certain<br/>triggering time</li> <li>E-OC when detecting short</li> </ul> |
|                              |                                                          | circuit or earth fault                                                                                                                                                                                            |
|                              |                                                          | • The positioning controller can submit a warning when the l <sup>2</sup> xt-device protection integrator is started                                                                                              |
|                              | ware and hardware of the<br>er the monitoring and protec | positioning controller automatical tion of the device.                                                                                                                                                            |
| The powe                     | er stage protects itself again                           | st overheating in dependence on                                                                                                                                                                                   |
| <ul> <li>the h</li> </ul>    | eat sink temperature,                                    |                                                                                                                                                                                                                   |
| • the a                      | pplied d.c. link voltage,                                |                                                                                                                                                                                                                   |
| <ul> <li>the till</li> </ul> | ransistor modules used in th                             | ne power stages and                                                                                                                                                                                               |
| <ul> <li>the n</li> </ul>    | nodulation switching freque                              | ncy                                                                                                                                                                                                               |
| Note:                        | controller in the area of t                              | nperature of the positioning<br>he power transistors (KTEMP) and<br>erature (DTEMP) are displayed in °C                                                                                                           |

Under high loads the  $l^2xt$ -integrator is activated. The  $l^2xt$  monitoring serves the purpose of protecting the device against permanent overloads. The switch-off limit is calculated on the basis of rated current and the overload ability of the controller.

| Device                                                                                   | Switch-off limit I <sup>2</sup> xt device |
|------------------------------------------------------------------------------------------|-------------------------------------------|
| CDB32.003 (0,375 kW)<br>to CDB34.032 (15 kW)<br>CDE32.003 (2,4 A)<br>to CDE34.032 (32 A) | 1,8 x Rated device current for 30 s       |
| CDB34.044 (22 kW)<br>to CDB34.168 (90 kW)                                                | 1,5 x Rated device current for 60 s       |
| CDE34.044 (45 A)<br>to CDB34.168 (170 A)                                                 | 2,0 x Rated device current for 3 s        |
| CDF3000 (8 A)                                                                            | 2,0 x Rated device current for 30 s       |

Table 2.23Switch-off limits l²xt acc. to device size

With active  $I^2xt$  integrator the warning message can be submitted to a digital output, field bus or PLC.

The hardware of the positioning controller will detect a short circuit at the motor output and switch off the motor.

**Info:** Detailed information on permissible current load for the positioning controllers can be taken from the operating instructions.

Short circuit





2

1

2

3

4



| 3.1   | Operation levels in the parameter structure | 3-2  |
|-------|---------------------------------------------|------|
| 3.2   | Operation with DRIVEMANAGER                 | 3-4  |
| 3.2.1 | Operation masks                             | 3-5  |
| 3.3   | Operation with KP200-XL operation panel     | 3-9  |
| 3.4   | Commissioning                               | 3-14 |

Due to the use of different operation variants and extensive possibilities for parameterization the operation structure is very flexible. The well organized data structure thus supports the handling of data and the parameterization of the positioning controllers.

Parameterization of the positioning controllers may take place via the easy to use hand-held KP200-XL operation panel or the comfortable PC user interface DRIVEMANAGER.



#### 3.1 Operation levels in the parameter structure

With adjustable parameters the positioning controllers can be adapted to any application. For the internal values of the positioning controllers there are further parameters available, which are password protected for reasons of operating safety.

The operation levels are adjusted by means of parameters. The number of editable and displayable parameters changes in dependence on the operation level. The higher the operation level, the higher the number of parameters with access rights. In contrast, the clarity of the parameters actually needed by the user to reach his application as quickly as possible, is reduced. This means that operation is remarkably easier when choosing the lowest possible operation level.



**Note:** The operation levels protect against unauthorized access. Thus the operation level 01-MODE = 2 is activated about 10 minutes after last activation of the button when using the KP200-XL operation panel.

#### Changing the operation level

If a higher operation level is selected via parameter 01-MODE, the associated password is automatically requested. This password can be changed by means of a password editor (setting "000" = password disabled).

| Target group     | Password<br>parameter     | Comment                                                                                                                                                  | Operation<br>level 01-<br>MODE | Password in<br>WE <sup>1)</sup> |
|------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|
| Layman           | no parameter<br>available | <ul> <li>without access right, only for status monitoring</li> <li>no parameterization, display of basic parameters</li> </ul>                           | 1                              | -                               |
| Beginner         | 362-PSW2                  | <ul> <li>with basic knowledge for minimum operation</li> <li>extended basic parameters editable</li> <li>extended parameter display</li> </ul>           | 2                              | 000                             |
| Advanced         | 363-PSW3                  | for commissioning and field bus connection <ul> <li>Parameterization for standard applications</li> <li>extended parameter display</li> </ul>            | 3                              | 000                             |
| Expert           | 364-PSW4                  | <ul> <li>with expert knowledge in control technology</li> <li>all closed loop control parameters editable</li> <li>extended parameter display</li> </ul> | 4                              | 000                             |
| Others           | 365-PSW5                  | for system integrators                                                                                                                                   | 5                              | -                               |
| Expert personnel | 367-PSWCT                 | Operation and start-up using the KP200-XL operation panel                                                                                                | CTRL menu                      | 573                             |

<sup>1)</sup> WE = Factory setting

Table 3.1 Setting operation levels

If a password is set up for operation level 2 ... 4, both viewing and editing of parameters in the corresponding operation level by means of the KP200-XL operation panel is maintained, until a change to a lower operation level. For this purpose a new operation level must be selected via parameter 01-MODE.

### Changing the password for an operation level

A password can only be changed via levels with operation rights, i.e. passwords of a higher operation level cannot be changed or viewed. A password is changed by selecting the parameter, editing and finally saving the password by pressing the Enter-key on the KP200-XL operation panel. This change can also be made via DRIVEMANAGER. The password will only become active when changing to a lower operation level.

### Changing the operation level in DRIVEMANAGER

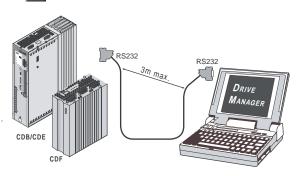
The corresponding level is selected in menu option "Extras - Select new user level".

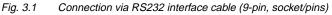
| User I | og-an        |
|--------|--------------|
| n de   | og-on as     |
|        | C 1 Laymen   |
|        | C 2 Beginner |
|        | C 3 Advanced |
|        | @ 4 Expert   |
|        | C Other      |
|        |              |
|        | Qk           |
|        |              |



Changing levels does not require a password.

1


3


### 3.2 Operation with DRIVEMANAGER

### **Connection and start**

- Connect the interface cable and switch on the power supply for the positioning controller.
- After the program start the DRIVEMANAGER will automatically set up a link to the connected controller (minimum V2.3).
- If the automatic connection does not work, check the setting in the menu Extras > Options and set up the connection with the Icon







| lcon                    | Function                            | Menu                                                                      |
|-------------------------|-------------------------------------|---------------------------------------------------------------------------|
| ∱∱                      | Connect to the device               | Communication > Connect > Single device                                   |
| R                       | Changing the device settings        | Active device > Change settings                                           |
| 9                       | Print parameter data<br>set         | Active device > Print settings                                            |
| $\overline{\mathbf{O}}$ | Control drive                       | Active device > Control > Basic<br>operation modes, no position setpoints |
| R                       | Digital Scope                       | Active device > Monitor > Quickly<br>changing digital scope values        |
| 1                       | Saving settings from device to file | Active device > Save settings of device to                                |

The most important functions



Further information can be found in the help to the DRIVEMANAGER.

| lcon  | Function                                | Menu                                              |  |
|-------|-----------------------------------------|---------------------------------------------------|--|
| 9     | Load settings from file into device     | Active device > Load settings into<br>device from |  |
| ₽₽₽   | Bus initialization<br>(change settings) | Communication > Bus configuration                 |  |
| ₩.    | Disconnect the link to the device       | Communication > Disconnect                        |  |
| 凫     | Compare device<br>settings              | Active device> Compare settings                   |  |
|       |                                         |                                                   |  |
| Note: | Further information c                   | an be found in the operating instructions         |  |



## 3.2.1 Operation



VIA ICON "CHANGE DEVICE SETTINGS" or via menu:

Active device > Change settings

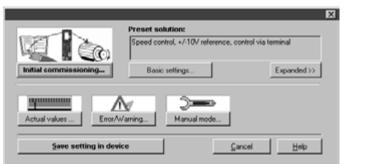



Fig. 3.2 Adjustment in minimized view

for the DRIVEMANAGER.

This operation mask "Settings" can be used to parameterize the position controllers.



3

| - FL                  | Preset solution:                |                                   |
|-----------------------|---------------------------------|-----------------------------------|
|                       | Speed control. +/-10V reference | control via terminal              |
| Initial commissioning | Basic settings                  | Expanded >>                       |
|                       | 1                               |                                   |
| 111111                |                                 |                                   |
| Inputs                |                                 | Encoder<br>TTL-motor and position |
|                       |                                 | encoder                           |
| Outputs Reference     | /Ramps. Loop control            | Motor and encoder                 |
|                       | 1                               | 2                                 |
| But systemsC          | am gear KP200 tetus             | PLC.                              |
|                       | M 🗆 🕬                           |                                   |
| Actual values ErrorA  | Warning Manual mode             | offline operation                 |
| Store setting in fi   | le l                            | Cancel Help                       |



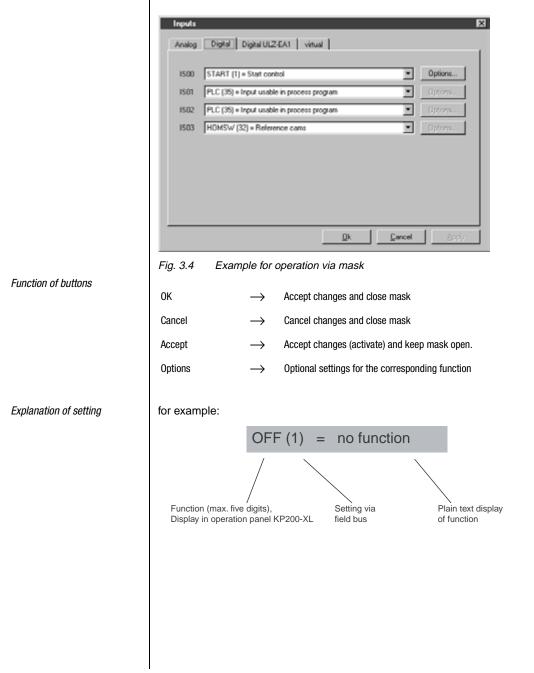


**Note:** Parameter changes only take place in the volatile random access memory and must subsequently be saved in the device by pressing the button "**Save device settings**". The same is achieved by simultaneous pressing of both arrow keys on the KP200-XL operation panel for approx. 2 seconds in menu level (see chapter 3.3).

2

3

4


5

6

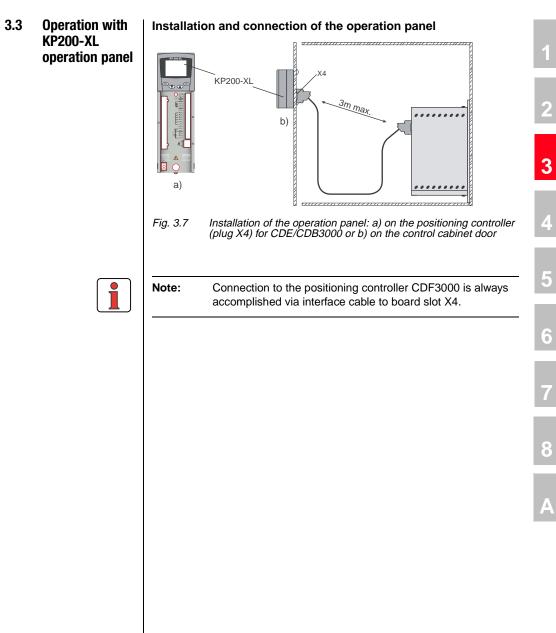
7

EN

## Example Operation via mask

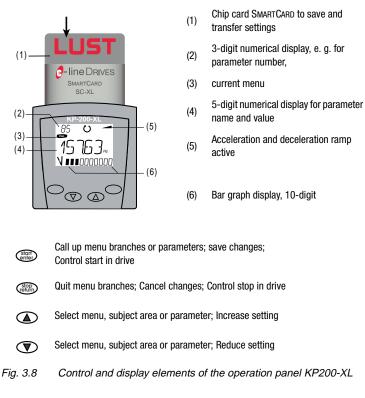


## Help function:

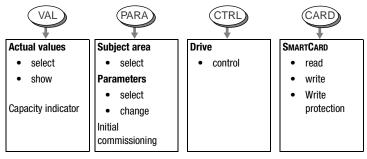

In any input window key **F1** can be used to call up a help function with further information on the corresponding parameter.

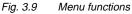
e.g. the mask "Function selector analog standard input

| Parameter propertie   | ns 🛛 🔀                                                     |
|-----------------------|------------------------------------------------------------|
| ISAR: Function select | tor                                                        |
| Indification Value    | sange Access Format                                        |
|                       |                                                            |
| Parameter number      | 180                                                        |
| Symbol                | FISA0                                                      |
| Fig. 3.5 Identii      | fication                                                   |
|                       |                                                            |
| Parameter number:     | Number of parameter                                        |
| Abbreviation:         | Name, max. five digits (display in KP200-XL)               |
|                       |                                                            |
|                       |                                                            |
| Parameter proper      | rties 🛛                                                    |
| ISAR: Function selec  | tor                                                        |
| Comercia Data         | and a stand                                                |
| Indification Value    | xange Access Format                                        |
| Minimum               | OFF IOL                                                    |
| Maximum               | 4-20 [42]                                                  |
| Factory setting       | PM10V (40)                                                 |
| Fig. 3.6 Value        | range                                                      |
| C C                   | 5                                                          |
| Minimum/Maximum:      | Value range (here: between OFF and /E-EX).                 |
| Factory setting:      | After a device reset to factory setting (WE) this value is |
| rationy sound.        | automatically entered.                                     |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |
|                       |                                                            |


#### 3 Operation structure



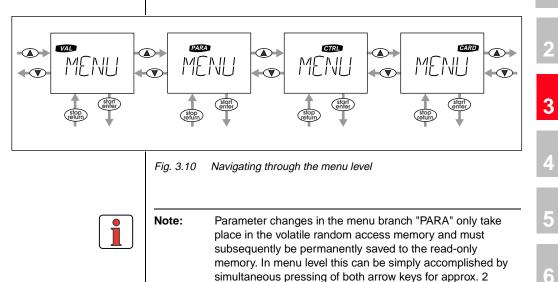




EN

### **Control and display elements**



The KP200-XL operation panel has a menu structure for clearly arranged operation






Menu structure

#### **3** Operation structure

In the menu level (display "MENU") one can use the arrow keys to change between menus. The **Start/Enter**-key opens a menu, the **Stop/Return**-key closes the menu.



seconds.

7

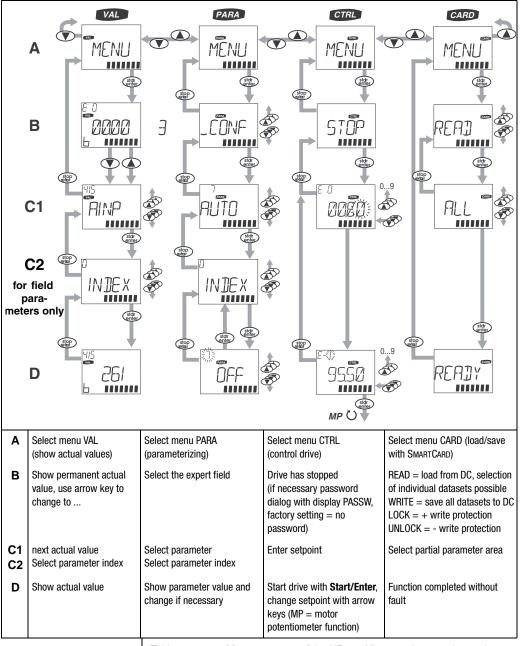
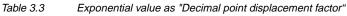



Table 3.2 Menu structure of the KP200-XL operation panel at a glance




Value display in exponential representation

The representation of the five-digit numerical display for parameter values uses the exponential notation. The setpoint specification in the CTRL-menu is likewise specified and displayed using the exponential notation.



The exponential representation makes work easier when considering the exponential value a "Decimal point displacement factor".

| Exponential value | Decimal point displacement direction in base value |
|-------------------|----------------------------------------------------|
| positive          | to the right $\Longrightarrow$ value increases     |
| negative          | to the left $\Longrightarrow$ value decreases      |



In the base value the decimal point is displaced by the number of digits corresponding with the exponential value.

### Example:



Decimal point displacement by one digit to the left  $\implies$  57.63 \*10<sup>-1</sup> Hz = 5.763 Hz



Decimal point displacement by two digits to the right  $\Rightarrow$  57.63\*10<sup>2</sup> Hz = 5763 Hz

### **SMARTCARDS**

SMARTCARDS are created in dependence on the firmware of the positioning controllers. In case of a firmware extension within the scope of a new device software version the extensions are automatically written to the SMARTCARD when saving ("WRITE"). SMARTCARDs are thus always upward compatible.



**Note:** SMARTCARDS can only be read by the positioning controller type (e.g. CDB3000) they have been written by.

1

3

4

6

## IIST

### **3** Operation structure Commissioning 3.4 Commissioning procedure by following the user manual 1. Initial commissioning by following the operating instructions: Prerequisite is the general initial commissioning by following the operating instructions. The user manual solely deals with the adaptation of the software functions. If the settings made during initial commissioning by following the operating instructions are not sufficient for the application: 2. Selecting the optimal pre-set solution The pre-set solutions cover the typical applications for the positioning controllers. The dataset most appropriate for the application is selected. 3. Individual adaptation of the preset solution to the application. The pre-set solution serves as initial point for an application related adaptation. Further function related adaptations are made to the parameters in the function oriented subject areas. Safe your settings in the unit! 4. Check the settings of the application solution With respect to the safety of man and machine the application solution should only be checked at low rotary speeds. The correct sense of rotation must be assured. In events of emergency can be stopped by disconnecting the ENPO-signal and thus blocking the controller output stage. 5. Completion of commissioning

After successful commissioning save your settings (with SMARTCARD or DRIVEMANAGER) and memorize the data set in the unit.

# 4 CDE/CDB/CDF3000 in rotary speed operation

| 4.1   | Preset solutions4-2                            |
|-------|------------------------------------------------|
| 4.2   | General functions4-3                           |
| 4.2.1 | Torque / rotary speed profile generator4-3     |
| 4.2.2 | Limitations/Stop ramps4-5                      |
| 4.3   | Torque control with                            |
|       | reference value via analog input4-6            |
| 4.4   | Speed control with                             |
|       | reference value via analog input4-6            |
| 4.5   | Speed control with                             |
|       | reference value from fixed speed table4-7      |
| 4.6   | Speed control with                             |
|       | reference value and control via field bus4-9   |
| 4.6.1 | CANopen4-9                                     |
| 4.6.2 | PROFIBUS4-10                                   |
| 4.7   | Speed control with reference value via PLC4-10 |
| 4.8   | Assignment of control terminal4-10             |
| 4.8.1 | Terminal assignment CDE30004-11                |
| 4.8.2 | Terminal assignment CDB30004-12                |
| 4.8.3 | Terminal assignment CDF30004-13                |

А

2

4

# **4.1 Preset solutions** Pre-set solutions are complete parameter datasets which are provided to handle a wide variety of typical application movement tasks. The positioning controllers are automatically configured by setting a preset solution. The parameters for

- the control location of the positioning controller,
- the reference source,
- the assignment of signal processing input and outputs and
- the type of control

are the focal points of the setting.

The use of a pre-set solution considerably simplifies and shortens the commissioning of the positioning controller. By changing individual parameters, the preset solutions can be adapted to the needs of the specific task.

A total of eleven preset solutions covers the typical areas of application for torque/speed control with the closed-loop controllers.

| Abbrevia<br>tion | Reference source                           | Control location/<br>Bus control profile                                 | Chapt | Additionally required documentation        |
|------------------|--------------------------------------------|--------------------------------------------------------------------------|-------|--------------------------------------------|
| TCT_1            | ±10V analog torque                         | I/O-terminals                                                            | 4.8.2 |                                            |
| SCT_1            | +/-10V-analog                              | I/O-terminals                                                            | 4.8.2 |                                            |
| SCT_2            | Fixed speed table                          | I/O-terminals                                                            | 4.5   |                                            |
| SCC_2            | Fixed speed table                          | CAN <sub>open</sub> field bus interface<br>- EasyDrive-Profile "Basic"   | 4.5   | CAN <sub>open</sub> data transfer protocol |
| SCB_2            | Fixed speed table                          | Field bus module CM-DPV1 - EasyDrive-Profile "Basic"                     | 4.5   | PROFIBUS data transfer protocol            |
| SCC_3            | CAN <sub>open</sub> field bus<br>interface | CAN <sub>open</sub> field bus interface<br>- EasyDrive-Profile "Basic"   | 4.6   | CAN <sub>open</sub> data transfer protocol |
| SCB_3            | Field bus communication module (PROFIBUS)  | Field bus module CM-DPV1<br>- EasyDrive-Profile "Basic"                  | 4.6   | PROFIBUS data transfer protocol            |
| SCP_3            | PLC                                        | PLC                                                                      | 4.7   | see chapter 7                              |
| SCT_4            | PLC                                        | I/O-terminals                                                            | 4.7   | see chapter 7                              |
| SCC_4            | PLC                                        | CAN <sub>open</sub> field bus interface<br>- EasyDrive-Profile "ProgPos" | 4.7   | CAN <sub>open</sub> data transfer protocol |
| SCB_4            | PLC                                        | Field bus module CM-DPV1<br>- EasyDrive-Profile "ProgPos"                | 4.7   | PROFIBUS data transfer protocol            |

Table 4.1Preset solutions - in rotary speed operation

All pre-set solutions have an individual window for basic settings in DRIVEMANAGER. Tabs or control buttons contained therein differ in their general and special functions. The general functions are described in chapter 4.2, the special functions in the corresponding pre-settings from chapter 4.4 to 4.7.

## 4.2 General functions

## 4.2.1 Torque / rotary speed profile generator

The rotary speed profile generator generates the corresponding acceleration and deceleration ramps required to achieve the specified speed reference value.

The parameter MPTYP (linear/jerk limited) and JTIME can be used to slip linear ramps at their end points to limit the appearance of jerks.

| Type of movement     | Setting                                           |
|----------------------|---------------------------------------------------|
| dynamic, jerky       | MPTYP = 0, linear ramp without slip               |
| Protecting mechanics | MPTYP = 3, smoothened ramp by slip by JTIME [ms]. |

Activation of the jerk limitation

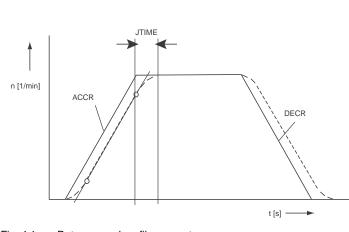



Fig. 4.1 Rotary speed profile generator

Table 4.2



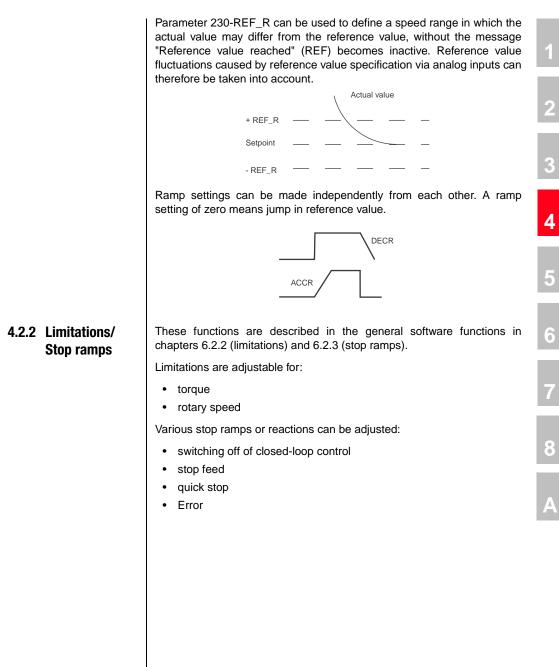
3

4

5

Due to the jerk limitation the acceleration and deceleration times rise by the slip time JTIME. The rotary speed profile is set in the DRIVEMANAGER according to Fig. 4.2.

| Speed profile                                     |       |         |
|---------------------------------------------------|-------|---------|
| Acceleration                                      | _1000 | 1/min/s |
| Deceleration                                      | _1000 | 1/min/s |
| Area "reference reached"                          | 5     | 1       |
| Profile type<br>3 = jolt limited ramp (smoothing) | ×     |         |
| Smoothing to reduct jolt                          | _100  | ma      |
|                                                   |       |         |


Fig. 4.2 Rotary speed profile

| DriveManager                                                                     | Value range | WE  | Unit                 | Parameters           |
|----------------------------------------------------------------------------------|-------------|-----|----------------------|----------------------|
| Acceleration<br>(only for speed control)                                         | 0 32760     | 0   | min <sup>-1</sup> /s | 590_ACCR<br>(_SRAM)  |
| Deceleration<br>(only for speed control)                                         | 0 32760     | 0   | min <sup>-1</sup> /s | 591_DECR<br>(_SRAM)  |
| Area "Reference reached"                                                         | 0 32760     | 20  | min <sup>-1</sup>    | 230_REF_R<br>(_OUT)  |
| Type of profile<br>0: Linear ramp<br>3: Jerk limited ramp<br>1, 2: not supported | 0 3         | 3   | -                    | 597_MPTYP<br>(_SRAM) |
| Slip                                                                             | 0 2000      | 100 | ms                   | 596_JTIME<br>(_SRAM) |



**Note:** In torque control mode no acceleration and deceleration ramps are active. Only the slip time remains analogically valid, i.e. it generates ramp shaped reference torque courses.

#### 4 CDE/CDB/CDF3000 in rotary speed operation



EN

### 4.3 Torque control with reference value via analog input

With the preset solution TCT\_1 the scalable torque reference value is specified via the analog input ISA0. The parameter settings for the analog input are described in chapter 6.1.3, the specific settings of inputs and outputs in chapter 4.8.

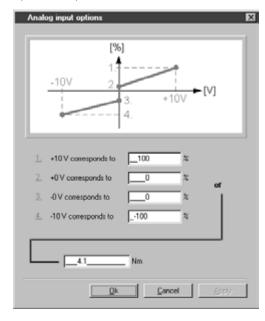
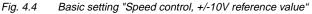
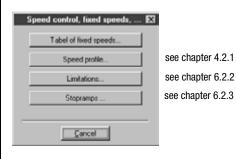




Fig. 4.3 Setting the torque control

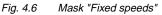
## 4.4 Speed control with reference value via analog input


With the preset solution SCT\_1 the scalable rotary speed reference value is specified via the analog input ISA0. The parameter settings for the analog input are described in chapter 6.1.3, the specific settings of inputs and outputs in chapter 4.8.

| Speed profile | see chapter 4.2.  |
|---------------|-------------------|
| Limitations   | see chapter 6.2.2 |
| Stopramps     | see chapter 6.2.3 |



### 4.5 Speed control with reference value from fixed speed table


The fixed speed table is the reference source for the preset solutions SCT\_2, SCC\_2 and SCB\_2. There are 16 travel sets (0-15) to be entered via the mask "Fixed speeds" from Fig. 4.6. The specific settings of inputs and outputs for the control locations via I/O-terminals (SCT\_2), CANopen (SCC\_2) or PROFIBUS (SCB\_2) are described in chapter 4.8.





### Table of fixed speeds

| Cam | Start position |
|-----|----------------|
| 0   | 1              |
| 1   | 10             |
| 2   | 100            |
| 3   | 1000           |
| 4   | 0              |
| 5   | 0              |
| 6   | 0              |
| 7   | . 0            |



| DriveManager | Value range      | WE  | Unit              | Parameters                                 |
|--------------|------------------|-----|-------------------|--------------------------------------------|
| Rotary speed | -32764.0 32764.0 | 0.0 | min <sup>-1</sup> | 269.x-RTAB (_RTAB)<br>x = fixed speed 0-15 |



Note:

The rotary speed profile is the same for all fixed speed. The realization of a variable speed profile in dependence on the speed can be realized with a PLC-program; for an example please refer to chapter 7.5.4.



1

2

4

6

### Selection of fixed speed

Fixed speeds can be selected via terminal or field bus (Profile EasyDrive "Basic"). The number of the active fixed speed is indicated by a parameter, and, binary coded, via the outputs (if parameterized).

The inputs planned for fixed speed selection are configured with FIxxx = TABx. The selection is binary coded.

The binary valence  $(2^0, 2^1, 2^2, 2^3)$  results from the TABx-assignment. The setting TAB0 thereby has the lowest  $(2^0)$ , the setting TAB3 the highest valence  $(2^3)$ . A logic-1-level at the input activates the valence. Changing the status of the terminal activates a new fixed speed.

Example:

| 1 | IE07 | IE06           | IE05           | IE04           | IE03           | IE02 | IE01           | IE00 | IS03 | IS02 | IS01           | IS00 | Selectable<br>travel sets |
|---|------|----------------|----------------|----------------|----------------|------|----------------|------|------|------|----------------|------|---------------------------|
|   |      | TAB3           | TAB2           | TAB1           | TAB0           |      |                |      |      |      |                |      |                           |
|   |      | =              | =              | =              | =              |      |                |      |      |      |                |      | 0-15                      |
|   |      | 2 <sup>3</sup> | 2 <sup>2</sup> | 2 <sup>1</sup> | 2 <sup>0</sup> |      |                |      |      |      |                |      |                           |
|   |      |                |                | TAB1           |                |      | TAB0           |      |      |      | TAB3           |      | 0-3,                      |
|   |      |                |                | =              |                |      | =              |      |      |      | =              |      | 0-3,<br>8-11              |
|   |      |                |                | 2 <sup>1</sup> |                |      | 2 <sup>0</sup> |      |      |      | 2 <sup>3</sup> |      | 0.11                      |

Table 4.3Example for the fixed speed selection via terminal

The following parameters are used to select or display the active travel set:

| DriveManager | Meaning                                                                                                                                     | Value range | WE | Unit | Parameter<br>s       |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|------|----------------------|
| -            | Selection of travel set fixed<br>speed This parameter<br>describes the selection via<br>inputs.<br>Field bus: Selection of a<br>tabular set | 0 - 15      | 0  | -    | 278-TIDX<br>(_RTAB)  |
| -            | Display parameter<br>Shows the currently<br>selected fixed speed.                                                                           | 0-15        | 0  | -    | 776-ATIDX<br>(_RTAB) |

With the STOP-Logics (feed enable) (terminal or bus) a progressing movement can be stopped and restarted by application of the programmed speed profile.



### 4.6 Speed control with reference value and control via field bus

With the preset solutions SCC\_3 and SCB\_3 the field bus is preset as source for reference values. The specific settings on inputs and outputs for the control locations CAN<sub>open</sub> (SCC\_3) and PROFIBUS (SCB\_3) are described in chapter 4.8.

The reference value specification for the speed control is either accomplished via the device internal CAN<sub>open</sub> field bus interface (SCC\_3), or via the PROFIBUS communication module (SCB\_3).

|                           | Speed control, reference and X         Speed profile         Limitations         Stopramps         Stopramps    See chapter 4.2.1 see chapter 6.2.2 see chapter 6.2.3                                                                                                                                                 |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                           | Fig. 4.7 Basic setting "Speed control, reference values and control via bus"                                                                                                                                                                                                                                          |
| 4.6.1 CAN <sub>open</sub> | The drive controllers are integrated into the automation network via the device internal electrically isolated CAN <sub>open</sub> interface X5.                                                                                                                                                                      |
|                           | Communication takes place in accordance with profile DS301. Control<br>and target position specification is in accordance with the proprietary<br>EasyDrive profile "Basic".                                                                                                                                          |
| i                         | <b>Note:</b> If a speed control in compliance with DSP402 is demanded, the <b>Profile-Velocity-Mode</b> must be used for to regulate the speed of the drive. This mode is a special form of positioning. Please choose the presetting " <i>PCC_1-Positioning, travel set specification and control via CAN-Bus</i> ". |
|                           | Detailed information on configuration of the drive controller in the network can be found in the separate documentation "CAN <sub>open</sub> data transfer protocol".                                                                                                                                                 |

1

2

4

## 4.6.2 PROFIBUS The speed specification and control via PROFIBUS requires the external

communication module CM-DPV1.

Control and speed specification is in accordance with the EasyDrive profile "Basic".

Detailed information on configuration of the drive controller in a network can be found in the separate documentation "PROFIBUS data transfer protocol".

## 4.7 Speed control with reference value via PLC

For the preset solutions SCP\_3, SCT\_4 SCC\_4 and SCB\_4 the PLC is preset as source of reference values. The specific settings for control locations I/O-terminals (SCT\_4), CAN<sub>open</sub> (SCC\_4) and PROFIBUS (SCB\_4) are described in chapter 4.8.

| Speed control, reference and |                   |
|------------------------------|-------------------|
| PLC                          | ssee chapter 7    |
| Speed profile                | see chapter 4.2.1 |
| Limitations                  | see chapter 6.2.2 |
| Stopramps                    | see chapter 6.2.3 |
| Qancel                       |                   |

Fig. 4.8 Basic setting "Speed control with PLC"

With these presettings the speed reference value is specified by means of the command SET REFVAL = [x]. If the control location has also been set to PLC (SCP\_3), the command SET ENCTRL = 0/1 can be used to switch the control off or on.



Note:

Detailed information on handling the PLC as well as programming and operation with the PLC editor see chapter 7 "User programming".

### 4.8 Assignment of control terminal

The control terminal for the speed control is configured in dependence on the chosen preset solution.

### 4 CDE/CDB/CDF3000 in rotary speed operation

## 4.8.1 Terminal assignment CDE3000

Depending on the selected presetting the parameterization of inputs and outputs differs from the factory setting, see Table 4.4. After selecting the presetting the parameterization of the terminals can be adapted to the application as desired.

|       |            |                                                  |       | Pre-set solution |       |                |                |       |       |                |  |
|-------|------------|--------------------------------------------------|-------|------------------|-------|----------------|----------------|-------|-------|----------------|--|
| I/O   | Parameters | Function                                         | TCT_1 | SCT_1<br>(WE)    | SCT_2 | SCC_2<br>SCB_2 | SCC_3<br>SCB_3 | SCP_3 | SCT_4 | SCC_4<br>SCB_4 |  |
| ISA0  | 180-FISA0  | Function selector analog<br>standard input ISA0+ |       | PM10V            | 0FF   | OFF            | OFF            | PLC   | PLC   | PLC            |  |
| ISA1  | 181-FISA1  | Function selector analog standard input ISA1+    |       | 0FF              |       |                |                | PLC   | PLC   | PLC            |  |
| ISD00 | 210-FIS00  | Function selector digital standard input ISD00   |       | START            |       | 0FF            | OFF            | PLC   | PLC   | PLC            |  |
| ISD01 | 211-FIS01  | Function selector digital standard input ISD01   |       | OFF              | INV   |                |                | PLC   | PLC   | PLC            |  |
| ISD02 | 212-FIS02  | Function selector digital standard input ISD02   |       | OFF              | TAB0  |                |                | PLC   | PLC   | PLC            |  |
| ISD03 | 213-FIS03  | Function selector digital standard input ISD03   |       | OFF              | TAB1  |                |                | PLC   | PLC   | PLC            |  |
| ISD04 |            | Function selector digital standard input ISD04   |       | OFF              | TAB2  |                |                | PLC   | PLC   | PLC            |  |
| ISD05 |            | Function selector digital standard input ISD05   |       | OFF              | TAB3  |                |                | PLC   | PLC   | PLC            |  |
| ISD06 |            | Function selector digital standard input ISD06   |       | OFF              |       |                |                | PLC   | PLC   | PLC            |  |
| OSD00 | 240-F0S00  | Function selector digital standard input OSD00   |       | REF              |       |                |                |       |       |                |  |
| 0SD01 | 241-F0S01  | Function selector digital standard input OSD01   |       | ROT_0            |       |                |                |       |       |                |  |
| 0SD02 | 242-F0S02  | Function selector digital standard input OSD02   |       | S_RDY            |       |                |                |       |       |                |  |
| OSD03 |            | Function selector digital standard input OSD03   |       | OFF              |       |                |                |       |       |                |  |

Table 4.4

Presetting the control inputs and outputs in speed controlled operation of the CDE3000

1

2

4

6

## 4.8.2 Terminal assignment CDB3000

Depending on the selected presetting the parameterization of inputs and outputs differs from the factory setting, see Table 4.5. After selecting the presetting the parameterization of the terminals can be adapted to the application as desired.

|       |            |                                                |                        |       | Pre            | -set solu      | tion  |       |                |
|-------|------------|------------------------------------------------|------------------------|-------|----------------|----------------|-------|-------|----------------|
| I/O   | Parameters | Function                                       | TCT_1<br>SCT_1<br>(WE) | SCT_2 | SCC_2<br>SCB_2 | SCC_3<br>SCB_3 | SCP_3 | SCT_4 | SCC_4<br>SCB_4 |
| ISA00 | 180-FISA0  | Function selector analog standard input ISA00  | PM10V                  | 0FF   | 0FF            | 0FF            | PLC   | PLC   | PLC            |
| ISA01 | 181-FISA1  | Function selector analog standard input ISA01  | 0FF                    |       |                |                | PLC   | PLC   | PLC            |
| ISD00 | 210-FIS00  | Function selector digital standard input ISD00 | START                  |       | 0FF            | 0FF            | PLC   |       | PLC            |
| ISD01 | 211-FIS01  | Function selector digital standard input ISD01 | 0FF                    |       |                |                | PLC   | PLC   | PLC            |
| ISD02 | 212-FIS02  | Function selector digital standard input ISD02 | 0FF                    | TAB0  |                |                | PLC   | PLC   | PLC            |
| ISD03 | 213-FIS03  | Function selector digital standard input ISD03 | 0FF                    | TAB1  |                |                | PLC   | PLC   | PLC            |
| 0SA00 | 200-F0SA0  | Function selector for analog output OSA00      | ACTN                   |       |                |                | PLC   | PLC   | PLC            |
| OSD00 | 240-F0S00  | Function selector digital standard input OSD00 | REF                    |       |                |                |       |       |                |
| OSD01 | 241-F0S01  | Function selector digital standard input OSD01 | ROT_0                  |       |                |                |       |       |                |
| OSD02 | 242-F0S02  | Function selector digital standard input OSD02 | S_RDY                  |       |                |                |       |       |                |

Table 4.5Presetting of the control inputs and outputs with speed control

### 4 CDE/CDB/CDF3000 in rotary speed operation

## 4.8.3 Terminal assignment CDF3000

Depending on the selected presetting the parameterization of inputs and outputs differs from the factory setting, see Table 4.6. After selecting the presetting the parameterization of the terminals can be adapted to the application as desired.

|       |            |                                                |       |               |       | Pre-se         | t solution     | 1     |       |                |
|-------|------------|------------------------------------------------|-------|---------------|-------|----------------|----------------|-------|-------|----------------|
| I/O   | Parameters | Function                                       | TCT_1 | SCT_1<br>(WE) | SCT_2 | SCC_2<br>SCB_2 | SCC_3<br>SCB_3 | SCP_3 | SCT_4 | SCC_4<br>SCB_4 |
| ISA0  | 180-FISA0  | Function selector analog standard input ISA0+  |       | PM10V         | 0FF   | 0FF            | OFF            | PLC   | PLC   | PLC            |
| ISA1  | 181-FISA1  | Function selector analog standard input ISA1+  |       | 0FF           |       |                |                | PLC   | PLC   | PLC            |
| ISD00 | 210-FIS00  | Function selector digital standard input ISD00 |       | START         |       | 0FF            | OFF            | PLC   | PLC   | PLC            |
| ISD01 | 211-FIS01  | Function selector digital standard input ISD01 |       | 0FF           | INV   |                |                | PLC   | PLC   | PLC            |
| ISD02 | 212-FIS02  | Function selector digital standard input ISD02 |       | 0FF           | TAB0  |                |                | PLC   | PLC   | PLC            |
| OSD00 | 240-F0S00  | Function selector digital standard input OSD00 |       | REF           |       |                |                |       |       |                |
| 0SD01 | 241-F0S01  | Function selector digital standard input OSD01 |       | ROT_0         |       |                |                |       |       |                |
| 0SD02 | 242-F0S02  | Function selector digital standard input OSD02 |       | S_RDY         |       |                |                |       |       |                |

Table 4.6

Presetting the control inputs and outputs in speed controlled operation of the CDF3000

1

2

4

5

6

# 5 CDE/CDB/CDF3000 in positioning operation

| 5.1   | Pre-set solutions                               | 5-2  |
|-------|-------------------------------------------------|------|
| 5.2   | General functions                               | 5-4  |
| 5.2.1 | Positioning modes                               | 5-5  |
| 5.2.2 | Units and standardization                       | 5-6  |
| 5.2.3 | Travel profile                                  | 5-9  |
| 5.2.4 | Referencing                                     | 5-13 |
| 5.2.5 | Limit switch                                    |      |
| 5.2.6 | Manual operation / Jog mode                     | 5-26 |
| 5.3   | Positioning with table travel sets              | 5-28 |
| 5.3.1 | Travel set selection                            | 5-28 |
| 5.3.2 | Sequence of travel set selection with follow-up |      |
|       | order logic                                     | 5-30 |
| 5.3.3 | Parameterization of the travel set table        | 5-32 |
| 5.3.4 | Switching points                                | 5-37 |
| 5.3.5 | Teach in                                        | 5-39 |
| 5.4   | Positioning and control via field bus           | 5-40 |
| 5.4.1 | CANopen                                         | 5-40 |
| 5.4.2 | PROFIBUS                                        |      |
| 5.5   | Positioning with PLC                            | 5-41 |
| 5.6   | Assignment of control terminal                  | 5-41 |
| 5.6.1 | Terminal assignment CDE3000                     | 5-42 |
| 5.6.2 | Terminal assignment CDB3000                     |      |
| 5.6.3 | Terminal assignment CDF3000                     |      |

Α

2

4

## 5.1 Pre-set solutions

Pre-set solutions are complete parameter data sets which are provided to handle a wide variety of typical application movement tasks.

The position controllers are automatically configured by loading a pre-set solution into the random access memory (RAM). The parameters for

- the control location of the drive controller,
- the reference source,
- the assignment of signal processing input and outputs and
- the type of control

are the focal points of the setting.

The use of a pre-set solution considerably simplifies and shortens the commissioning of the positioning controller. By changing individual parameters, the preset solutions can be adapted to the needs of the specific task. These modified pre-set solutions are saved in the device as customized datasets. In this way, you can arrive more rapidly at your desired movement solution.

A total of nine preset solutions covers the typical areas of application for positioning with the closed-loop controllers.

| Abbrevia<br>tion | Reference source                          | Control location/<br>Bus control profile                                                                      | Chapt. | Additionally required<br>Documentation     |
|------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------|
| PCT_2            | Tabular travel set                        | I/O-terminals                                                                                                 | 5.3    | -                                          |
| PCC_2            | Tabular travel set                        | CAN <sub>open</sub> field bus interface<br>- EasyDrive Profile "TabPos"                                       | 5.3    | CAN <sub>open</sub> data transfer protocol |
| PCB_2            | Tabular travel set                        | Field bus communication module<br>(PROFIBUS)<br>- EasyDrive Profile "TabPos"                                  | 5.3    | PROFIBUS data transfer protocol            |
| PCC_1            | CAN <sub>open</sub> field bus interface   | CAN <sub>open</sub> field bus interface<br>- DSP402-Profiles position mode<br>- DSP402-Profiles velocity mode | 5.4    | CAN <sub>open</sub> data transfer protocol |
| PCB_1            | Field bus communication module (PROFIBUS) | Field bus communication module<br>(PROFIBUS)<br>- EasyDrive-Profile "DirectPos"                               | 5.4    | PROFIBUS data transfer protocol            |
| PCP_1            | PLC                                       | PLC                                                                                                           | 5.5    | see chapter 7                              |
| PCT_3            | PLC                                       | I/O-terminals                                                                                                 | 5.5    | see chapter 7                              |
| PCC_3            | PLC                                       | CAN <sub>open</sub> field bus interface<br>- EasyDrive-Profile "ProgPos"                                      | 5.5    | CAN <sub>open</sub> data transfer protocol |
| PCB_3            | PLC                                       | Field bus communication module<br>(PROFIBUS)<br>- EasyDrive-Profile "ProgPos"                                 | 5.5    | PROFIBUS data transfer protocol            |

Table 5.1 Preset solutions for positioning

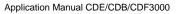
All pre-set solutions have an individual window for basic settings in DRIVEMANAGER. Tabs contained therein differ in their general and special functions. The general functions are listed in chapter 5.2.



#### 5 CDE/CDB/CDF3000 in positioning operation

The special functions, i.e. the reference source for the respective presettings, are described in chapter 5.3 to 5.5.

Chapter 5.6 defines the characteristics of the control location or the device control including the terminal assignment.




Note:

After selection of the preset solution the units and standardization of the drive must first be adjusted, as described in chapter 5.2.2. These are the basic requirements for the settings following thereafter.









## 5.2 General functions

Basic settings...

Activating the function button "Basic Settings" in DRIVEMANAGER opens the following window:

| Driving set number                             | 0                  | 1          |        | 1                  | l.           |    |
|------------------------------------------------|--------------------|------------|--------|--------------------|--------------|----|
| Target position                                | 0                  | Grad       | F      | .0                 | Grad         |    |
| Mode                                           | REL(1) + Relative  |            | RE     | L(1) = Relative    | 5.12         | ۲  |
| Speed                                          | 1000               | Grad/s     |        | 1000               | Grad/a       |    |
| Starting acceleration                          | 1000               | Grad/s2    |        | 1000               | Grad/s2      |    |
| Deceleration                                   | 1000               | Grad/s2    |        | 1000               | Grad/s2      |    |
| Repeat                                         | 0                  | -          | 0      |                    | -            |    |
| Follow-up order                                | 1                  |            | -      |                    |              | -  |
| Starting condition for<br>follow up and repeat | 514/ (0) + legal.  | 2          |        | / (0) = Ings.4     |              | 3  |
| Effect of starting signal                      | DFF 印 = Only al as | le starddd | 2   DF | F (D) = Drily at a | de standrift | 10 |
| Delay                                          | <u> </u>           | jes :      |        | _0                 | 10.0         |    |
| Switching point A                              | 0 = inactive       |            | . 0.   | inactive           |              | •  |
| Switching point B                              | 0 = mactive        |            | . 0.   | inactive           |              | ٠  |

Fig. 5.1 Preset solution "Positioning, Travel set tables, control via terminal"

This chapter describes the types of positioning and the functions (control buttons and tabs):

- Units and standardization
- Travel profile
- Referencing
- Limit switch
- Manual operation



### 5 CDE/CDB/CDF3000 in positioning operation

## 5.2.1 Positioning modes

Positioning is sub-divided into three different modes:

| Positioning mod | le Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ABSOLUTE        | The positioning application requires an absolute reference position<br>(zero). This position is either generated by referencing or by means<br>of a position measuring system measuring absolute values. An<br>absolute distance is travelled with respect to this reference position.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RELATIVE        | Relative travel tasks refer to the last target position, even if this position has not yet been reached, e. g. when triggered during a progressing positioning process. A new target position is thus calculated on the following basis:         Target position (new) = Target position (old) + relative distance         Exceptions:         -       Terminating an endless travel task with a relative travel task.         -       Releasing a follow-up task in the table of travel sets with the effect "NEXT - Immediately, RelBez. ActPos."         Here the relative distance refers to the actual position at the time of release. A new target position is thus calculated on the following basis:         Target position (new) = Actual position + relative distance         Relative positioning processes do not require a reference point or no reference travel.                                                                                                                |
| ENDLESS         | <ul> <li>For endless travel tasks the drive is moved with the specified speed (speed mode). A target position contained in this travel set is of no meaning.</li> <li>Table travel sets releasing a follow-up task with the start condition "WSTP - Without stop from target position" are also endless travel tasks. However, these are cancelled at the specified travel position and transferred to the follow-up order.</li> <li>An endless travel task can only be terminated with a new travel task. Absolute travel tasks approach the new target position directly. Relative travel tasks refer to the actual position at the time of release.</li> <li>Endless positioning processes do not require a reference point or no reference travel.</li> <li>Endless positioning can be used to realize a speed control or online switching between positioning and speed control. The CAN<sub>open</sub> Profile DSP402 "Profile Velocity Mode" is a form of endless positioning.</li> </ul> |

2

3

5

6

7

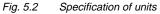
Α

## 5.2.2 Units and standardization



**Note:** After selection of the preset solution the units and standardization of the drive must first be adjusted. These are the basic requirements for the settings following thereafter. These settings can be made through the DRIVEMANAGER.

### Units


For positioning the units for position, speed and acceleration can be set. If not specified differently all positioning parameters are based on these units. The following base units can be set:

- Translatory unit: m
- · Rotary units: Degree, rev, rad, sec, min
- Special units: Incr, Steps
- Units with user defined text (max. 20 characters): User

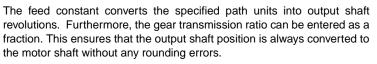
The time basis for the speed is automatically set to [Exp\*Path unit]/s, the one for acceleration to  $[Exp*Path unit]/s^2$ .

All parameters are integer values. Floating point settings are not possible. For the input of a value lower than 1 (<1) of the base unit the exponent must additionally be set. Base unit (e. g. [m]) and exponent (e. g. E-2) thus determine the resulting unit (z. B. [cm]).

| Units and stand | ardizations (1) |             | ×              |
|-----------------|-----------------|-------------|----------------|
| Dimension       | Exponent        | Basic unit  | Resulting unit |
| Position        | E0              | Cirad angel | ¥ ⇒ Grad       |
| Speed           | EO              | 2           | =>  Grad/1     |
| Acceleration    | 80              | 2           | => Grad/s2     |
|                 |                 |             | entinue >>     |



The parameter for the resulting unit is:


| DriveManager | Value range | WE     | Unit     | Parameters      |
|--------------|-------------|--------|----------|-----------------|
| Position     | -           | Degree | variable | 792_FGPUN (_FG) |

Units and standardisation ...

| DriveManager | Value range | WE            | Unit     | Parameters      |
|--------------|-------------|---------------|----------|-----------------|
| Speed        | -           | Degree/s      | variable | 793_FGVUN (_FG) |
| Acceleration | -           | Degree/<br>s2 | variable | 796_FGAUN (_FG) |

After determining the units the input continues with the mechanical drive values.

### Feed constant and gear factor



|            | ,360     | Grad           | com           | sponding |
|------------|----------|----------------|---------------|----------|
|            | _1       | Revolutions of | driving shaft |          |
|            |          |                |               |          |
| Gear (if a | wailable | n)a            |               |          |
| Revolutio  | n of mot | orshaft        | [             | 1        |
|            |          |                |               |          |

### Fig. 5.3 Settings for units and standardization

| DriveManager                                | Value range  | WE  | Unit     | Parameters          |
|---------------------------------------------|--------------|-----|----------|---------------------|
| Feed constant /<br>Path for n revolutions   | 0 4294967295 | 360 | variable | 789.0_FGFC<br>(_FG) |
| Feed constant /<br>Output shaft revolutions | 0 4294967295 | 1   | -        | 789.1_FGFC<br>(_FG) |
| Gear/<br>Motor shaft revolution             | 0 4294967295 | 1   | -        | 788.0_FGGR<br>(_FG) |
| Gear/<br>Output shaft revolutions           | 0 4294967295 | 1   | -        | 788.1_FGGR<br>(_FG) |



Continue >>

A

8

5



Beady

After the input of parameters the settings are checked by pressing "Ready". Pressing the "Return" button brings you back to the input of units.

### Checking the settings

The settings for units and standardization are checked fro plausibility and device internal value ranges and accepted.

In very few cases the following message will appear:



Fig. 5.4 Error message caused by collision

In this case value ranges or standardizations collided in the closed-loop control. The units and standardization assistant now suggests a different power or exponent for the unit and will ask you to check, accept or change this in the units window, which is directly opened upon acknowledgement. Accepting the new setting also adapts the feed constant.

## 5.2.3 Travel profile

This mask is used to configure the limit values for the travel set, the profile form and the travel range. The units have already been determined, see chapter 5.2.2.

| imit values                |                        |                   |                                         |
|----------------------------|------------------------|-------------------|-----------------------------------------|
| Max. velocity              | 10000                  | Getad/s           | 100000000000000000000000000000000000000 |
| Max. starting acceleration | 10000                  | Grad/s2           | Limitations                             |
| Max braking acceleration   | 10000                  | Gead/s2           | Stop ramps                              |
| Allowed tracking distance  | 190                    | Grad              | 23                                      |
| Reference reached window   | 100                    | Grad              |                                         |
| trufile:                   |                        |                   |                                         |
| Prolife type               | 3                      |                   |                                         |
| Smoothing time             | _100                   | me                |                                         |
| Rotating direction         | 0 = Count direction in | omal              |                                         |
| Processing area            | (IN (1) = On rendes    | process way       |                                         |
| lound table configuration  |                        |                   |                                         |
| Direction optimizing       | OFF (0)                |                   | *                                       |
| Rotating direction barrier | OFF (0) = No rotating  | direction barriel | *                                       |
| Circulation length         | жо                     | Grad              |                                         |

Fig. 5.5 Travel profile

### Limit values:

| DriveManager                     | Meaning                                                                                                                                                                     | Value range  | WE    | Unit     | Parameters           |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|-------|----------|----------------------|
| Max.<br>speed                    | Maximum speed of travel set. All speeds are limited to this value.                                                                                                          | 0 4294967295 | 10000 | variable | 724_POSMX<br>(_PRAM) |
| Max. start-up acceleration       | Max. start-up acceleration of the positioning set                                                                                                                           | 0 4294967295 | 10000 | variable | 722_POACC<br>(_PRAM) |
| Max. braking acceleration        | Max. braking acceleration of the positioning set                                                                                                                            | 0 4294967295 | 10000 | variable | 723_PODEC<br>(_PRAM) |
| Permissible trailing<br>distance | Max. difference between positioning reference<br>and actual value of the profile generator An error<br>reaction E-FLW will be executed when exceeding<br>(see chapter 6.9). | 0 4294967295 | 180   | variable | 757_PODMX<br>(_PBAS) |
| "Reference<br>reached"<br>window | Hysteresis for the target position to display the status "Target position reached". If the actual position is in this window, the status will be set to 1.                  | 0 4294967295 | 100   | variable | 758_POWIN<br>(_PBAS) |

Table 5.3

Basic settings for travel profile

1

2

3

4

5

6

The buttons "Limitations" and "Stop ramps" are described under the general software functions in chapters 6.2.2 (Limitations) and 6.2.3 (Stop ramps).

Limitations are adjustable for:

- torque
- rotary speed

Stop ramps or their reactions are adjustable for:

- switching off of closed-loop control
- stop feed
- quick stop
- Error

### Speed override

In positioning the travel speed can be scaled online. The speed override function with a possible scaling range from 0% - 150% of the travel speed serves this function.

The override is set by means of the volatile parameter POOVR.

| Function          | Value range | WE    | Data<br>types   | Parameters           |
|-------------------|-------------|-------|-----------------|----------------------|
| Speed<br>override | 0 150 %     | 100 % | usign8<br>(RAM) | 753-P00VR<br>(_PBAS) |

The override function is activated by:

- Changing the parameter 753-POOVR, e. g. via field bus
- Analog input FISA1 = SCALE. The analog value is written directly to parameter 753-POOVR. Manual changing of 753-POOVR is of no effect in this case.
- PROFIBUS EasyDrive control word "DirectPos". The transmitted value is set directly to parameter 753-POOVR. Manual changing of 753-POOVR is of no effect in this case.

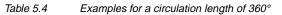
| DRIVEMANAGER                      | Meaning                                                                                                                                                                                                                                                                                                        | Value range | WE  | Unit | Parameters           |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|------|----------------------|
| Type of profile                   | 0: Linear acceleration profile, i.e. no jerk limitation<br>3: Jerk limited acceleration profile with programmed<br>slip time 596-JTIME<br>1,2: no function                                                                                                                                                     | 0 - 3       | 3   | -    | 597-MPTYP<br>(_SRAM) |
| Slip time with<br>jerk limitation | The acceleration and deceleration time increases by the slip time. A jerk limitation is thus achieved.                                                                                                                                                                                                         | 0 - 2000    | 100 | ms   | 596-JTIME<br>(SRAM)  |
| Sense of rotation                 | 0: Normal - positive position values = clockwise<br>rotation of motor<br>1: No function                                                                                                                                                                                                                        | 0 / 1       | 0   | -    | 795-FGPOL<br>(_FG)   |
| Travel range                      | <ul> <li>OFF (0): Off - limited travel path, e g. for linear axes</li> <li>ON (1): On - endless travel path, e g. for round axes</li> <li>Definition of a circulation length is required.</li> <li>For the round table configuration further</li> <li>adjustment possibilities must be implemented.</li> </ul> | OFF / ON    | OFF |      | 773-PORTA<br>(_PBAS) |

#### Profile

### Endless travel path - round table configuration

With an endless travel range, frequently referred to as round table, further detailed settings are possible. All travel paths are in this case calculated on a range 0 <= travel path < circulation length.

| DRIVEMANAGER              | Meaning                                                                                                                                                        | Value range     | WE  | Parameters           |
|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----|----------------------|
| Direction<br>optimization | OFF (0): Switched off<br>ON (1): Switched on<br>Further explanations see below                                                                                 | OFF ON          | 0FF | 775_PODOP<br>(_PBAS) |
| Reversing lock            | OFF (0): No reversing lock<br>POS (1:) Positive sense of rotation<br>locked<br>NEG (2): Negative sense of rotation<br>locked<br>Further explanations see below | OFF NEG         | OFF | 308_DLOCK<br>(_CTRL) |
| Circulation<br>length     | The circulation length specifies the position range. Thereafter (in case of overrun) the system starts at 0 again.                                             | 0<br>4294967295 | 360 | 774_PONAR<br>(_PBAS) |


#### Direction optimization

With direction optimization activated an absolute target is always approached over the shortest possible distance. Relative movements do not take place in a path optimized way.

5

EN

Examples for a circulation length of 360°, actual position of 0° and absolute positioning: Without direction optimization 1) Reference value 120°:  $0^{\circ}$ 2) Reference value 240°:  $240^{\circ}$ 3) Reference value  $600^{\circ}$  (=  $360^{\circ} + 240^{\circ}$ )  $0^{\circ}$   $240^{\circ}$   $0^{\circ}$   $0^{\circ}$   $240^{\circ}$   $0^{\circ}$   $0^{\circ}$   $240^{\circ}$   $0^{\circ}$   $0^{\circ}$  $0^$ 



In a round table configuration a reversing lock always has priority. If the negative sense of rotation was locked in the previous examples, the system would always move in positive direction, even if the direction optimization was active.

Absolute travel tasks are divided into three sections, depending on their target position.

| Travel range                            | Effect                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Target position < circulation<br>length | The drive approaches the specified target position.                                                                                                                                                                                                                                                                                                                                      |
| Target position = circulation<br>length | The drive will stop.                                                                                                                                                                                                                                                                                                                                                                     |
| Target position > circulation<br>length | Within the range of the circulation length the drive travels to<br>the "Target position - (n x circulation length)".<br>n = integer proportion of target position/circulation length<br>Example:<br>Circulation length= $360^\circ$ , absolute target position= $800^\circ$<br>n = $800^\circ/360^\circ$ = <b>2</b> ,222<br>Target position = $80^\circ$ = $800^\circ$ - 2 x $360^\circ$ |
| Table 5.5 Endless tra                   | avel range - behaviour of absolute travel tasks                                                                                                                                                                                                                                                                                                                                          |

Reversing lock

Behaviour of absolute travel tasks



### 5 CDE/CDB/CDF3000 in positioning operation

| Behaviour of relative travel<br>tasks                                        | Relative travel tasks always refer to the last target position, even if this position has not yet been reached, e.g. when triggered during a progressing positioning process.                                                                                                                                                                                                                                                                                    | 1 |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                              | With relative travel tasks paths longer than the circulation length are possible, if the target position exceeds the circulation length.                                                                                                                                                                                                                                                                                                                         |   |
|                                                                              | Example:<br>Circulation length = 360°; relative target position = 800°, start position =<br>0°                                                                                                                                                                                                                                                                                                                                                                   | 2 |
|                                                                              | The drive performs two complete revolutions (720°) and stops during the 3rd revolution at 80° (800° - 720°).                                                                                                                                                                                                                                                                                                                                                     | 3 |
| Behaviour of endless travel<br>tasks                                         | For endless travel tasks the drive is moved with the specified speed (speed mode). A target position contained in this travel set is of no meaning. Table travel sets releasing a follow-up task with the start condition "WSTP - Without stop from target position" are also endless travel tasks. However, these are cancelled at the specified travel position and transferred to the follow-up order.                                                        | 4 |
|                                                                              | Endless travel tasks run with specified speed, irrespective of the circulation length. When switching to the next travel set (absolute or relative) the system moves to the new target position in the present travel direction. An active direction optimization is thereby neglected.                                                                                                                                                                          | 5 |
| Behaviour in case of travel set<br>changes during progressing<br>positioning | The travel task is changed while positioning is in progress. If, in this case, the drive does not stop at the new target position, e. g. because of a too long deceleration time, the drive will overshoot and return to the target position.                                                                                                                                                                                                                    | 6 |
|                                                                              | If the reversing lock is in this case active the drive will brake to speed 0, accelerate again with the defined travel profile and continue in travel direction to the target position.                                                                                                                                                                                                                                                                          |   |
|                                                                              | In case of overshooting a set path optimization is neglected.                                                                                                                                                                                                                                                                                                                                                                                                    | 8 |
| 5.2.4 Referencing                                                            | Referencing is performed to generate an absolute position reference (related to the entire axis) and must normally be performed once after switching on the mains supply. Referencing is required when running absolute positioning processes without an absolute encoder (e. g. SSI-Multiturn-Encoder). All other positioning procedures (relative, endless) do not require referencing. For zeroizing with absolute encoders referencing type -5 is available. | Α |
|                                                                              | There are 41 different types, which can be set as required by the application.                                                                                                                                                                                                                                                                                                                                                                                   |   |

DE EN By selecting the referencing (type -5 to 35) and determining the setting

- the reference signal (positive limit switch, negative limit switch, reference cam)
- the travel direction of the drive and
- the position of the zero pulse

can be defined. The referencing sequence corresponds with the graphically displayed referencing type.

| Homing mode type      | 10 = 0.695 | I reference can polarity. | zero puble at RefNoc | k-Low 📃 |
|-----------------------|------------|---------------------------|----------------------|---------|
| Quick jog velocity V1 |            | nm/s                      |                      |         |
| Slow jog velocity V2  | 50         | new's                     |                      |         |
| Acceleration          | 35         | nm/12                     |                      |         |
| Zero-point-offset     |            | 0 8                       |                      |         |
| Start condition       | OFF (0)=1  | lo requirement (input, bu | re, PLC)             | *       |
| Index signal          |            |                           |                      |         |

| Fig. 5.6 | Selection | window fo | or referencing |
|----------|-----------|-----------|----------------|
|----------|-----------|-----------|----------------|

| DriveManager             | Meaning                                                                                                             | Value range               | WE  | Unit                      | Parameters          |
|--------------------------|---------------------------------------------------------------------------------------------------------------------|---------------------------|-----|---------------------------|---------------------|
| Referencing type         | The referencing type specifies the event required<br>to set the reference point.<br>Further explanations see below. | -5 35                     | -1  |                           | 730_HOMDT<br>(_HOM) |
| Rapid motion<br>speed V1 | Referencing speed to the first referencing event (reference cam, zero pulse)                                        | 0 4294967295              | 20  | Degree/<br>s              | 727_HOSPD<br>(_HOM) |
| Creep speed V2           | Referencing speed from the first event for slow approaching of the referencing position                             | 0 4294967295              | 20  | Degree/<br>s              | 727_HOSPD<br>(_HOM) |
| Acceleration             | Acceleration during the entire referencing process                                                                  | 0 4294967295              | 10  | Degree/<br>s <sup>2</sup> | 728_HOACC<br>(_HOM) |
| Zero point offset        | The reference point is always set with the zero point offset.                                                       | -2147483648<br>2147483647 | 0   | Degree                    | 729_H00FF<br>(_H0M) |
| Start condition          | Start condition for referencing.<br>Further explanations see below.                                                 | OFF TBEN                  | 0FF |                           | 731_HOAUT<br>(_HOM) |

Table 5.6 Settings for referencing

### Start of referencing

The start conditions can be programmed.

| BUS | Setting | Effect                                                                                                                                                                                                                                                                                                                                    |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | OFF     | <ul> <li>Referencing is requested via:</li> <li>field bus (DSP402-Homing mode or EasyDrive control word),<br/>level triggered (1- referencing On, 0- referencing Off)</li> <li>Terminal (ISxx=HOMST, flank triggered 0-&gt;1)</li> <li>PLC (command G0 0, flank triggered)</li> <li>Referencing is started with every request.</li> </ul> |
| 1   | AUTO    | Referencing is automatically started once when initially starting the control. No further referencing takes place if the referencing conditions remain unchanged for other starts of the control.                                                                                                                                         |
| 2   | TBEN    | Only valid when positioning with table travel sets.<br>Referencing is automatically performed once when initially selecting a<br>travel set. No further referencing takes place if the referencing<br>conditions remain unchanged for other travel set selections.                                                                        |

Table 5.7 F

Referencing start conditions

#### **Referencing type**

The following describes the different types. The individual reference points, which correspond with the zero point, are numbered in the graphs. The different speeds (V1-rapid motion, V2-creep speed) and the movement directions are also shown.

The four signals for the reference signal are:

- Negative (left) hardware limit switch
- Positive (right) hardware limit switch
- Reference cams
- Index signal of the encoder

In referencing the absolute encoders (e. g. SSI-Multiturn-Encoder) are a special feature, because they directly create an absolute relation to the position. Referencing with these encoders therefore does not require any movement and, under certain conditions, energizing of the drive may also not be necessary. However, adjustment of the zero point is still necessary. The type -5 is particularly suitable for this purpose.

5

6

Type -5, absolute encoder This type is particularly suitable for absolute encoders (e.g. SSI-Multiturn-Encoder). Referencing takes place immediately after switching the mains supply on, which means that it can also be activated in deenergized state. The current position complies with the zero point. The zero position is calculated on basis of the absolute encoder position + zero point offset. According to this, referencing with zero point offset = 0 supplies the absolute position of the SSI-encoder, e.g. in operation of a SSI-Multiturn-Encoder. Another referencing with unchanged setting of the zero point offset does not cause a change in position. Referencing or zero point adjustment for the system must be performed as follows 1. Enter zero point offset = 0 2. Referencing (start referencing) delivers the absolute position of the sensor **3.** Move drive to reference position (zero point of machine) **4.** At this point enter the zero point offset (the value by which the position is to be changed with respect to the displayed position) 5. Repeat referencing (start referencing) 6. Save the setting (zero point offset) 7. The system will be automatically referenced when switching the mains supply on. Manual referencing is no longer necessary. Type -4, continuous Like referencing type 22, with subsequent possibility of continuous referencing. Further explanations under "Type -3". referencing, neg. reference cams Type -3, continuous Like referencing type 20, with subsequent possibility of continuous referencing, pos. reference referencing. cams Types "-3" and "-4" can only be used with endless travel range (773-PORTA=ON). They serve the fully automatic compensation of slippage or inaccurate transmission ratio. After initial referencing the actual position is overwritten with the zero point offset at every rising flank of the reference cam. The path still to be travelled is corrected, the axis is thus able to perform any number of relative movements to one direction without drifting off, even with drives susceptible for slippage. The circulation length (774-PONAR) must come as close as possible to

the path between two reference signals. With other words: E.g., the same position must be indicated after one circulation, as otherwise disturbing movements may occur during a correction. The permissible trailing distance (757-PODMX) must be bigger than the maximum mechanical inaccuracy.



|                                                   | Attention: The correction of the actual position takes place in form of jumps. No acceleration ramps are active. The correction is this dealt with like a trailing error compensation. The maximum speed during the correction process can be adjusted under the function "Limitations" (see chapter 6.2.2). Here the maximum speed of the positioning travel profile is not active. | 1<br>2 |
|---------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Type -2, no referencing                           | No referencing is performed. The zero point offset is added to the current position. During initial switching on of the power stage the status "referencing completed" is set.                                                                                                                                                                                                       | 3      |
|                                                   | This type is most suitable for absolute encoders, as long as no zeroizing is required. For zeroizing you should select type -5.                                                                                                                                                                                                                                                      | 4      |
| Type -1, actual position = 0                      | The actual position corresponds with the zero point, it is set to 0, i. e. the closed-loop control runs a actual position reset. The zero point offset is added.                                                                                                                                                                                                                     | 5      |
| Туре О                                            | Not defined.                                                                                                                                                                                                                                                                                                                                                                         | ວ      |
| Type 1, negative limit switch<br>and index signal | The initial movement takes place according to Fig. 5.7 in direction of the negative (left) hardware limit switch (this switch is inactive) and the direction of movement is reversed with active flank. The first index signal after the descending flank corresponds with the zero point.                                                                                           | 6      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                      | 7      |
|                                                   | Index signal                                                                                                                                                                                                                                                                                                                                                                         | 8      |
|                                                   | negative limit switch                                                                                                                                                                                                                                                                                                                                                                | Α      |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                      |        |

DE EN

*Type 2, negative limit switch and index signal* 

The initial movement takes place according to Fig. 5.8 in direction of the positive (right) hardware limit switch (this switch is inactive) and the direction of movement is reversed with active flank. The first index signal after the descending flank corresponds with the zero point.

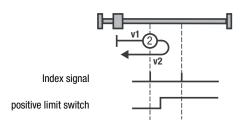



Fig. 5.8 Type 2, negative limit switch and index signal

The initial movement takes place according to Fig. 5.9 in direction of the positive (right) hardware limit switch, if the reference cam is inactive, see symbol A in Fig. 5.9.

As soon as the reference cam becomes active, the direction of movement will be reversed for type 3.

The first index signal after the descending flank corresponds with the zero point. For type 4 the first index signal after the ascending flank corresponds with the zero point.

The initial movement takes place in direction of the negative (left) hardware limit switch and the reference cam is active, see symbol B in Fig. 5.9.

*Type 3+4, positive limit switch and index signal* 

#### 5 CDE/CDB/CDF3000 in positioning operation

If the reference cam becomes inactive, the first index signal of type 3 will correspond with the zero point. With type 4 the movement direction will change as soon as the reference cam becomes inactive. The first index signal after the ascending flank corresponds with the zero point.

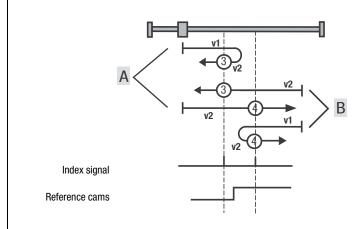



Fig. 5.9 Type 3+4, positive limit switch and index signal

The initial movement takes place in direction of the positive (right) hardware limit switch and the reference cam is active, see symbol A in Fig. 5.10.

For type 5 the first index signal after the descending flank corresponds with the zero point. When the reference cam becomes inactive, the direction of movement with type 6 will be reversed and the first index signal after the ascending flank corresponds with the zero point.

The initial movement takes place in direction of the negative (left) hardware limit switch and the reference cam is inactive, see symbol B in Fig. 5.10.



5

6



*Type 5+6, negative limit switch* 

and index signal

LUST

With type 5 the direction of movement is reversed as soon as the reference cam becomes active, and the first index signal after the descending flank corresponds with the zero point. For type 6 the first index signal after the ascending flank corresponds with the zero point.

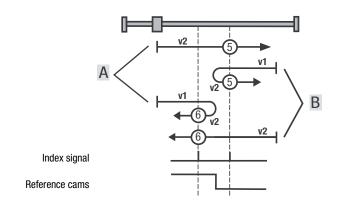



Fig. 5.10 Type 5+6, negative limit switch and index signal

The initial movement is in direction of the positive (right) hardware limit switch. Limit switch and reference cam are inactive, see symbol A in Fig. 5.11.

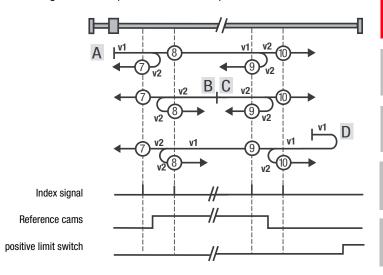
Type 7 changes the direction of movement after the active reference cam. The first index signal after the descending flank corresponds with the zero point. With type 8 the zero point corresponds with the first index signal with active reference cam. Type 9 changes the direction of movement, if the reference cam has been overtravelled. The zero point corresponds with the first index signal after the ascending flank. With type 10 the reference cam is overtravelled and the first index signal after this corresponds with the zero point.

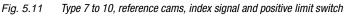
The initial movement is in direction of the negative (left) hardware limit switch. The positive limit switch is inactive and the reference cam is active, see symbol B in Fig. 5.11.

With type 7 the zero point corresponds with the first index signal after descending flank of the reference cam. Type 8 changes the direction of movement after descending flank of the reference cam. The zero point corresponds with the first index signal after the ascending flank of the reference cam.

The initial movement is in direction of the positive (right) hardware limit switch. The limit switch is inactive and the reference cam is active, see symbol C in Fig. 5.11.

*Type 7 to 10, reference cams, index signal and positive limit switch* 


#### 5 CDE/CDB/CDF3000 in positioning operation


Type 9 changes the direction of movement, if the reference cam is inactive. The zero point corresponds with the first index signal after the ascending flank. With type 10 the first index signal is the zero point after descending flank of the reference cam.

The initial movement is in direction of the positive (right) hardware limit switch. Limit switch and reference cam are active. As soon as the positive limit switch becomes active the direction of movement will change, see symbol D in Fig. 5.11.

With type 7 the first index signal after overtravelling the reference cam corresponds with the zero point.

Type 8 changes the direction of movement, if the reference cam has been overtravelled. The zero point corresponds with the first index signal after the ascending flank. With type 9 the zero point corresponds with the first index signal with active reference cam. Type 10 changes the direction of movement after the active reference cam. The first index signal after the descending flank corresponds with the zero point.





The initial movement is in direction of the negative (left) hardware limit switch. Limit switch and reference cam are inactive, see symbol A in Fig. 5.12.

Type 11 changes the direction of movement after the active reference cam. The first index signal after the descending flank corresponds with the zero point. With type 12 the zero point corresponds with the first index signal with active reference cam.

Type 11 to 14, reference cams, index signal and negative limit switch

LUST



5

1

Application Manual CDE/CDB/CDF3000

Type 13 changes the direction of movement, if the reference cam has been overtravelled. The zero point corresponds with the first index signal after the ascending flank.

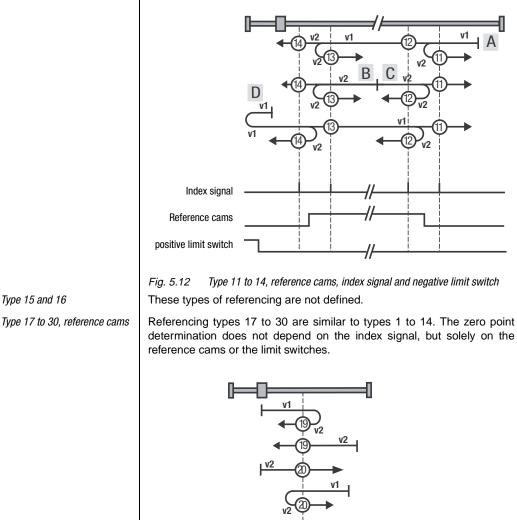
With type 14 the reference cam is overtravelled and the first index signal after this corresponds with the zero point.

The initial movement is in direction of the negative (left) hardware limit switch. The limit switch is inactive and the reference cam is active, see symbol B in Fig. 5.12.

Type 13 changes the direction of movement, if the reference cam is inactive. The zero point corresponds with the first index signal after the ascending flank. With type 14 the first index signal is the zero point after descending flank of the reference cam.

The initial movement is in direction of the positive (right) hardware limit switch. The negative limit switch is inactive and the reference cam is active, see symbol C in Fig. 5.12.

With type 11 the zero point corresponds with the first index signal after descending flank of the reference cam. Type 12 changes the direction of movement after descending flank of the reference cam. The zero point corresponds with the first index signal after the ascending flank of the reference cam.


The initial movement is in direction of the negative (left) hardware limit switch. Limit switch and reference cam are active. As soon as the negative limit switch becomes active the direction of movement will change, see symbol D in Fig. 5.12.

With type 11 the reference cam must be overtravelled, so that the first index signal corresponds with the zero point.

Type 12 changes the direction of movement, if the reference cam has been overtravelled. The zero point corresponds with the first index signal after the ascending flank.

With type 13 the zero point corresponds with the first index signal with active reference cam.

Type 14 changes the direction of movement after the active reference cam. The first index signal after the descending flank corresponds with the zero point.



5

6

8

EN

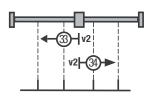


Fig. 5.13 Type 17 to 30, reference cams

LUST

Type 15 and 16

| Type 1  | analog | Type 17 |
|---------|--------|---------|
|         | :      |         |
| Type 4  | analog | Type 20 |
|         | :      |         |
| Туре 8  | analog | Type 24 |
|         | :      |         |
| Type 12 | analog | Type 28 |
|         | :      |         |
| Type 14 | analog | Туре 30 |
| Type 14 | analog | Type 30 |


Table 5.8Type analogy for the individual types of referencing

Type 31 and 32

Type 33 and 34, index signal

The zero point corresponds with the first index signal in direction of movement.

The current position complies with the zero point. No reset is performed.



Index signal

Fig. 5.14 Type 33 and 34, index signal

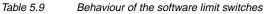
These types of referencing are not defined.

Туре 35

### 5.2.5 Limit switch

#### Software limit switch

The software limit switches are only valid for positioning. They only become active after successful referencing.


The software limit switches are only activated by identical setting (limit switch+ = limit switch- = 0).

| Driving set table | Driving profile | Homing mode | Limit switch | Mar |
|-------------------|-----------------|-------------|--------------|-----|
| Software end      | switch:         |             |              |     |
| Positive          |                 | _0          | Grad         |     |
| Negative          |                 | _0          | Grad         |     |

| DriveManager | Meaning                                                   | Value range               | WE | Unit     | Parameters           |
|--------------|-----------------------------------------------------------|---------------------------|----|----------|----------------------|
| Positive     | Software limit switch<br>in positive sense of<br>rotation | -2147483648<br>2147483647 | 0  | variable | 759-SWLSP<br>(_PBAS) |
| Negative     | Software limit switch<br>in negative sense of<br>rotation | -2147483648<br>2147483647 | 0  | variable | 760-SWLSN<br>(_PBAS) |

The behaviour or reaction depends on the parameterized fault reaction (see chapter 6.9) and the positioning mode.

| Positioning mode              | Behaviour/reaction                                                                                                                                                                                                                                                 |
|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Absolute                      | Before releasing an absolute travel task the system will                                                                                                                                                                                                           |
| Relative                      | check whether the target is in the valid range, meaning<br>inside the range of the software limit switches. If the<br>target is outside the limits no travel order will be<br>submitted and the programmed fault reaction acc. to 543-<br>R-SWL will be performed. |
| Endless<br>(speed controlled) | The drive moves until a software limit switch is detected.<br>After this the programmed fault reaction acc. to 543-R-<br>SWL is performed. A rapid stop is also performed<br>with reactions of R-SWL=NOERR or WARN                                                 |



3

4

5

6

#### Hardware limit switch

The hardware limit switches are valid for all types of closed-loop control. They are connected via drive controller inputs. For this purpose two inputs must be set up as described in chapter 6.1.1.

### 5.2.6 Manual operation / Jog mode

Manual operation/Jog mode is only valid for positioning. With jog mode activated the drive is operated in speed controlled mode (endless).

For manual operation two different jog speeds can be set. These can be activated via the window DRIVEMANAGER Manual operation or via terminal and field bus. This activation requires that the drive is stopped.

| Positioning, table process s        | Positioning, table process sets, control via terminal |                                        |   |  |  |  |
|-------------------------------------|-------------------------------------------------------|----------------------------------------|---|--|--|--|
| Driving set table   Driving profile | Homing mode   Lin                                     | a swech Manual mode   Swetching points | 1 |  |  |  |
| Speeds:                             |                                                       |                                        |   |  |  |  |
| Quick jog                           | 1000                                                  | Grad/s                                 |   |  |  |  |
| Slow jog                            | 500                                                   | Grad/s                                 |   |  |  |  |
|                                     |                                                       |                                        |   |  |  |  |
| Accelerations:                      |                                                       |                                        |   |  |  |  |
| Slow down and speed up appl         |                                                       | homing model                           |   |  |  |  |
|                                     |                                                       |                                        |   |  |  |  |
|                                     |                                                       |                                        |   |  |  |  |

| DriveManager          | Value range | WE   | Unit     | Parameters         |
|-----------------------|-------------|------|----------|--------------------|
| Speed<br>Rapid motion | 04294967295 | 1000 | variable | 721_VQJOG (_PRAM ) |
| Speed<br>Creep speed  | 04294967295 | 500  | variable | 720_VSJOG (_PRAM ) |

Jog mode via terminal or field bus

In jog mode the drive is controlled by means of two signals or inputs, either in positive or negative direction. If one of these signals becomes active while the control is active, the drive will move with creep speed. Rapid motion is activated by operating the second jog input also in creep speed status. If the first signal is deactivated in rapid motion, the drive will stop. If it is set again, the drive will again move with creep speed, even if rapid motion had been requested. An example for a jog sequence in positive travel direction is shown in Table 5.10.

| SerNo. | Signal<br>TIPP | Signal<br>TIPN | Status of axis |
|--------|----------------|----------------|----------------|
| 1.     | 0              | 0              | Standstill     |
| 2.     | 1              | 0              | Creep speed    |
| 3.     | 1              | 1              | Rapid motion   |
| 4.     | 0              | 1              | Standstill     |
| 5.     | 1              | 1              | Creep speed    |
| 6.     | 1              | 0              | Creep speed    |
| 7.     | 1              | 1              | Rapid motion   |
| 8.     | 1              | 0              | Creep speed    |
| 9.     | 0              | 0              | Standstill     |

Table 5.10

Example jog operation in positive direction

2

4

5

7

0

A



5.3 Positioning with table travel sets For the preset solutions PCT\_2, PCC\_2 and PCB\_2 the travel set table is preset as setpoint source. The specific settings of the control via I/O-terminals or field bus are described in chapter 5.6. If the drive is controlled via field bus, the special proprietary EasyDrive protocol "TablePos" is used.

There are 16 travel sets (0-15). A travel set consists of:

- 1. Target position
- 2. Mode for absolute/relative/endless positioning
- 3. Speed
- 4. Start-up acceleration
- 5. Braking deceleration
- 6. Repetition of a relative travel set
- Follow-up order logics with various provisional conditions. Follow-up orders enable the realization of small automated sequence programs.
- 8. Travel set dependent switching points, see chapter 5.3.4

A slip time in ms programmed in the travel profile serves as jerk limitation. It applies for all travel sets. The travel sets can only be set via the PC desktop DRIVEMANAGER or field bus.



Note:

The travel sets have the predefined standard units. Before parameterizing the travel sets you must therefore first set the units and the standardization, see chapter see chapter 5.2.2.

# 5.3.1 Travel set selection

Travel sets can be selected and activated via terminal or field bus. The number of the active travel set is indicated by a parameter, and, binary coded, via the outputs (if parameterized).

The inputs planned for travel set selection are configured with Flxxx = TABx, see example in Table 5.11. The selection is binary coded.

The binary valence  $(2^0, 2^1, 2^2, 2^3)$  results from the TABx-assignment. The setting TAB0 thereby has the lowest  $(2^0)$ , the setting TAB3 the highest valence  $(2^3)$ . A logic-1-level at the input activates the valence. Example:

| IE07 | IE06                        | IE05                        | IE04                        | IE03                        | IE02                        | IE01                        | IE00                        | IS03 | IS02 | IS01                        | IS00                        | Selectable<br>travel sets |
|------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|------|------|-----------------------------|-----------------------------|---------------------------|
|      | TAB3<br>=<br>2 <sup>3</sup> | TAB2<br>=<br>2 <sup>2</sup> | TAB1<br>=<br>2 <sup>1</sup> | TAB0<br>=<br>2 <sup>0</sup> |                             |                             |                             |      |      |                             |                             | 0-15                      |
|      |                             |                             |                             |                             | TAB2<br>=<br>2 <sup>2</sup> |                             | TAB1<br>=<br>2 <sup>1</sup> |      |      |                             | TAB0<br>=<br>2 <sup>0</sup> | 0-7                       |
|      |                             |                             | TAB1<br>=<br>2 <sup>1</sup> |                             |                             | TAB0<br>=<br>2 <sup>0</sup> |                             |      |      | TAB3<br>=<br>2 <sup>3</sup> |                             | 0-3,<br>8-11              |

 Table 5.11
 Example for the travel set selection via terminal

A separate release signal (see Table 5.12) via an input or the field bus (trigger) is required to activate a travel set via terminal. The selection of a new table index and thus a new travel task will interrupt the ongoing positioning process or the follow-up order logic.

| Control<br>location | Signal                                         | Comment                                                                                                                                                                                              |
|---------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| I/O-terminal        | Input Flxxx = TBEN                             | Release of selected travel set<br>The selection of a new table index and thus a new<br>travel task will always interrupt the ongoing<br>positioning process or the follow-up order logic.            |
| 10-terminar         | Input Flxxx = FOSW                             | Next start<br>Effect like "TBEN", if a follow-up order is started<br>but no follow-up order is available or waiting.<br>FOSW will then start the next selected travel set.                           |
|                     | Bit<br>"Perform travel task"                   | Release of selected travel set<br>The selection of a new table index and thus a new<br>travel task will always interrupt the ongoing<br>positioning process or the follow-up order logic.            |
| Field bus           | Bit<br>"Repetition/perform<br>follow-up order" | Next start<br>Effect like bit "Perform follow-up task", if a follow-<br>up order is started but no follow-up order is<br>available or waiting. FOSW will then start the next<br>selected travel set. |

Table 5.12 Release signal for new travel set

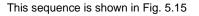
2

3

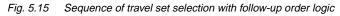
5

The following parameters are used to select or display the active travel set:

| DriveManager | Meaning                                                                        | Value range | WE | Unit | Parameters           |
|--------------|--------------------------------------------------------------------------------|-------------|----|------|----------------------|
| -            | Travel set selection.<br>This parameter describes<br>the selection via inputs. | 0 - 15      | 0  | -    | 278-TIDX<br>(_RTAB)  |
| -            | Display parameter<br>Shows the currently<br>processed travel set.              | 0-15        | 0  | -    | 776-ATIDX<br>(_RTAB) |


With the HALT-Logic (Enable feed) (terminal or bus) a progressing positioning can be interrupted either with the programmed or the quick stop ramp (see chapter 6.2.3) and subsequently continued again.

The sequence of travel set editing is prioritized:


- 1. Execution of the selected travel set
- **2.** Execution of repetition with relative travel sets Repetitions are performed with parameterizable start conditions. The start conditions are identical with the ones of the follow up order.
- **3.** Jump to the next travel set The follow-up order is performed with parameterizable start conditions. The start conditions are identical with the ones for the repetitions.

Activation of a travel set always interrupts this sequence.

### 5.3.2 Sequence of travel set selection with follow-up order logic











5.3.3 Parameterization of the travel set table

| Driving set number                             |                        | 0                   |                      | 1              |
|------------------------------------------------|------------------------|---------------------|----------------------|----------------|
| Target position                                | 0                      | Grad                | 0                    | Grad           |
| Mode                                           | REL(1) + Relative      |                     | REL (1) = Relative   | ×              |
| Speed                                          | 1000                   | Grad/s              | 1000                 | Grad/s         |
| Starting acceleration                          | 1000                   | Grad/s2             | 1000                 | Grad/s2        |
| Deceleration                                   | 1000                   | Grad/s2             | 1000                 | Grad/s2        |
| Repeat                                         | 0                      | -                   | 0                    | -              |
| Follow-up order                                | 0 - Driving set 0      | 2                   | 1 = no bilowup or    | der 💌          |
| Starting condition for<br>follow up and repeat | SN4DT (2) = input      | , max. Timax. 🔄     | Sw/ (0) = Input      | 9              |
| Effect of starting signal                      | NEXT [2] + at since, R | will Asp. Address 📑 | OFF (D) = Drily at a | ole standold 🔣 |
| Delay                                          | _0                     | per :               | 0                    | 100            |
| Switching point A                              | 0 = nactive            |                     | 0 = nactive          |                |
| Switching point B                              | 0 = inactive           | 2                   | 0 = inactive         |                |

### **Target position**

The target position can be parameterized in a user defined path unit.

| DRIVEMANAGER    | Value range               | WE | Unit     | Parameters                                    |
|-----------------|---------------------------|----|----------|-----------------------------------------------|
| Target position | -2147483648<br>2147483647 | 0  | variable | 272.x-PTPOS<br>(_RTAB)<br>x = travel set 0-15 |

#### Mode

The mode defines the relation to the target position. In this context please observe the notes in chapter 5.2.1-"Positioning modes".

| DRIVEMANAGER | Value range | WE  | Unit | Parameters                                    |
|--------------|-------------|-----|------|-----------------------------------------------|
| Mode         | ABS SPEED   | REL |      | 274.x_PTMOD<br>(_RTAB)<br>x = travel set 0-15 |

Mode settings:

| BUS | Setting | Effect                                                                                                                                                                                                     |
|-----|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | ABS     | The target position always refers to a fixed reference zero point.                                                                                                                                         |
| 1   | REL     | A relative travel task always refers to a variable position.<br>Depending on the start conditions for repeat or follow-up<br>order this may either be the last target position or the current<br>position. |
| 2   | SPEED   | The axis moves with the speed profile programmed in the selected travel set. The target position is of no relevance.                                                                                       |

#### Speed

The speed can be specified signed A negative setting is only evaluated in case of an endless positioning. The speed is limited by the maximum speed in the travel profile.

| DriveManager | Value range               | WE   | Unit     | Parameters                                    |
|--------------|---------------------------|------|----------|-----------------------------------------------|
| Speed        | -2147483648<br>2147483647 | 1000 | variable | 273.x_PTSPD<br>(_RTAB)<br>x = travel set 0-15 |

### Acceleration

The acceleration values for starting and braking can be parameterized irrespective of each other. The input 0 means that the acceleration will take place with maximum ramp steepness or maximum torque. The acceleration values are limited by the maximum values in the travel profile.

| DriveManager          | Value range  | WE    | Unit     | Parameters                                    |
|-----------------------|--------------|-------|----------|-----------------------------------------------|
| Start-up acceleration | 0 4294967295 | 10000 | variable | 276.x_PTACC<br>(_RTAB)<br>x = travel set 0-15 |
| Braking acceleration  | 0 4294967295 | 10000 | variable | 277.x_PTDEC<br>(_RTAB)<br>x = travel set 0-15 |

7

5



#### Repetition

A travel set with relative positioning can be repeated several times with the programmed value. Like the follow-up order, the repetitions of the travel set are started in dependence on the start condition. The execution of possible repetitions has priority over the execution of a follow-up order.

| DriveManager | Value range | WE | Unit | Parameters                                    |
|--------------|-------------|----|------|-----------------------------------------------|
| Repetition   | 0 255       | 0  |      | 762.x_FOREP<br>(_RTAB)<br>x = travel set 0-15 |

#### Follow-up order

The parameterization of a follow-up order for a travel set enables the realization of small automated sequential programs.

The setting "-1" signalizes that no further travel set (follow-up order) is to be activated.

| DRIVEMANAGER    | Value range | WE | Unit | Parameters                                   |
|-----------------|-------------|----|------|----------------------------------------------|
| Follow-up order | -1 15       | -1 |      | 761.x_FONR<br>(_RTAB)<br>x = travel set 0-15 |

#### Start condition - activating condition "WANN"

This start condition can be used to adjust when a travel set is to be repeated or the follow-up order is to be activated.

| DRIVEMANAGER    | Value range | WE | Unit | Parameters                                   |
|-----------------|-------------|----|------|----------------------------------------------|
| Start condition | SW WSTP     | SW |      | 764.x_FOST<br>(_RTAB)<br>x = travel set 0-15 |

Description of setting:

| BUS | Setting | Meaning                                                  |
|-----|---------|----------------------------------------------------------|
| 0   | SW      | Switch- digital input or control bit starts the sequence |

| BUS | Setting | Meaning                                                                                                                                                                         |
|-----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | DT      | The repetition or the follow-up order is started with a<br>programmable delay time after the target position has been<br>reached.                                               |
| 2   | SW-DT   | A repetition or the follow-up order is started via a digital input<br>or control bit, but at the latest after a defined delay time.                                             |
| 3   | WSTP    | The drive moves to the target position with speed v1 of the current travel set and then accelerates "on the fly" (without stop) to V2 or the repetition or the follow-up order. |

### Effect start condition - activation condition "WIE"

The "WIE"-condition is parameterized in dependence on the setting of the previously selected "WANN"-activation condition:

| DRIVEMANAGER           | Value range | WE  | Unit | Parameters                                    |
|------------------------|-------------|-----|------|-----------------------------------------------|
| Effect of start signal | OFF NEXT    | OFF |      | 765.x_FOSWC<br>(_RTAB)<br>x = travel set 0-15 |

#### Start condition = SW:

Activation of the follow-up order or repetition is flank triggered (High-Level). The effect of a start signal during a running positioning process can be parameterized, see Table 5.13.

| Bus | Setting | Meaning                                                                                                                                                                                                                                                                                                                                                                             |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | 0FF     | Signals occurring during an ongoing positioning process are ignored.<br>Thus a signal never interrupts a running travel task.                                                                                                                                                                                                                                                       |
| 1   | STORE   | Signals occurring during an ongoing positioning process cause an<br>immediate change of the current target position. A relative proportion is<br>added to the previous target position and approached without<br>intermediate stop. The number of follow-up orders to be executed<br>depends on the accumulated signal flanks. This function is useful for<br>relative positioning. |
| 2   | NEXT    | Signals occurring during an ongoing positioning process cause an immediate change of the current target position. A relative proportion is added to the actual position at the time of the change and approached without intermediate stop. This position is most suitable for compensation of a residual path.                                                                     |

Table 5.13 Effect of start condition for repetition and follow-up order

If no travel set is being processed or no repetition active, the signal to activate the follow-up order will start the travel set, that has been selected via terminal or field bus system. See "Travel set selection", page 5-28.

The parameters effect start signal (FOSWC) in Table 5.13 and the delay time (FODT) must be set.

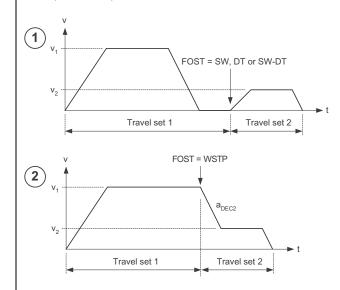


4

5

6

Start condition = SW-DT:


#### Delay time

This field will only become active if the delay time (DT, SW-DT) for the follow-up order has been selected under start condition.

| DriveManager | Value range | WE | Unit | Parameters                                   |
|--------------|-------------|----|------|----------------------------------------------|
| Delay time   | 0 65535     | 0  | ms   | 763.x_F0DT<br>(_RTAB)<br>x = travel set 0-15 |

Example travel set linkage with follow-up order logic

The following picture shows two examples for positioning with follow-up order (travel set 2).



#### Switching point A and B

Two switching points can be evaluated per travel set. Switching points 0-3 are selected via two parameters. The entry 0 does not select a switching point (inactive).

| DRIVEMANAGER      | Value range | WE | Unit | Parameters                                    |
|-------------------|-------------|----|------|-----------------------------------------------|
| Switching point A | 0 4         | 0  |      | 771.x_PTSP1<br>(_RTAB)<br>x = travel set 0-15 |
| Switching point B | 0 4         | 0  |      | 772.x_PTSP2<br>(_RTAB)<br>x = travel set 0-15 |



#### 5 CDE/CDB/CDF3000 in positioning operation

# 5.3.4 Switching points

Four switching points can be defined. Each switching point can modify up to three markers. The switching points can be used in all travel sets. A maximum of two switching points can be used in each travel set. Configuration takes place via the travel set dependent switching point configuration. Each switching point has the following settings.

| Switching point | 0                                   | 1                               |
|-----------------|-------------------------------------|---------------------------------|
| Target position | 100 mm                              | 200 mm                          |
| mode            | RELS (1) = rel. to starting postion | RELE (2) = rel. to end position |
| Action:         |                                     |                                 |
| Flag CM1        | SET (1) = Set 💌                     | Clear (2) = dear                |
| Flag CM2        | OFF (0) = Inactive                  | OFF (0) = Inactive              |
| Flag CM3        | OFF (0) = Inactive                  | OFF (0) = Inactive              |

### **Target position**

The target position is effective in dependence on the switching point mode and its linkage with a travel set.

| DriveManager    | Value range               | WE | Unit     | Parameters                                       |
|-----------------|---------------------------|----|----------|--------------------------------------------------|
| Target position | -2147483648<br>2147483647 | 0  | variable | 766.x_CPOS<br>(_RTAB)<br>x = switching point 0-3 |

### Mode

| DRIVEMANAGER | Value range | WE  | Unit | Parameters                                       |
|--------------|-------------|-----|------|--------------------------------------------------|
| Mode         | ABS RELE    | ABS |      | 767.x_CREF<br>(_RTAB)<br>x = switching point 0-3 |

Setting of mode:

| BUS | Setting | Meaning                                                                                                                       |
|-----|---------|-------------------------------------------------------------------------------------------------------------------------------|
| 0   | ABS     | The switching point refers to the reference position or the absolute position of the system.                                  |
| 1   | RELS    | Relative to the travel set start position: Switching point responds after a relative path related to the start position.      |
| 2   | RELE    | Relative to the travel set end position: The switching point responds after a relative path before reaching the end position. |

### Marker

| DriveManager | Value range | WE  | Unit | Parameters                                       |
|--------------|-------------|-----|------|--------------------------------------------------|
| Marker 1     | OFF INV     | OFF |      | 768.x_CM1CF<br>(RTAB)<br>x = switching point 0-3 |
| Marker 2     | OFF INV     | OFF |      | 769.x_CM2CF<br>(RTAB)<br>x = switching point 0-3 |
| Marker 3     | OFF INV     | OFF |      | 770.x_CM3CF<br>(RTAB)<br>x = switching point 0-3 |

Marker function:

| BUS | Setting | Meaning            |
|-----|---------|--------------------|
| 0   | 0FF     | inactive           |
| 1   | SET     | Marker is set to 1 |
| 2   | CLEAR   | Marker is set to 0 |
| 3   | INV     | Marker is inverted |

### 5.3.5 Teach in

#### DRIVEMANAGER:

The actual position is transferred to the corresponding table by means of the DRIVEMANAGER.

- 1. Opening of the manual mode window and selection of the tab "Travel set table".
- 2. Moving the drive to the position to be learned.
- 3. Enter the travel set number in the manual mode window and click on button "Accept".

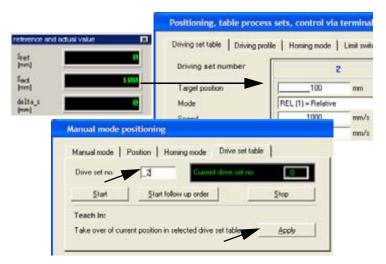



Fig. 5.16 Teach-In via DRIVEMANAGER

#### Terminals:

If an input is parameterized for "Teach in" (FIxx = TBTEA), the current position is transferred to the travel set in the table as target position, with ascending flank.



4

5

6

| 5.4   | Positioning and<br>control via field<br>bus | With the preset solutions PCC_1 and PCB_1 the field bus is the reference source. The specific settings of the I/O-terminals is described in chapter 5.6.                                                                         |
|-------|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                             | Positioning via field bus either takes place via the device internal CAN <sub>open</sub> field bus interface, or via the PROFIBUS communication module. All general positioning functions, as described under 5.2, can be used.  |
| 5.4.1 | CAN <sub>open</sub>                         | The drive controller is integrated into the automation network via the device internal electrically isolated CAN <sub>open</sub> interface X5.                                                                                   |
|       |                                             | Communication takes place in accordance with profile DS301.<br>Furthermore, a standardized communication with the device profile for<br>drives with changeable speed DSP402 is assured. The following profiles<br>are supported: |
|       |                                             | Homing Mode (referencing) with 41 different types                                                                                                                                                                                |
|       |                                             | Profile-Position-Mode for direct travel set specification with device internal jerk-limited profile generation                                                                                                                   |
|       |                                             | <ul> <li>Profile-Velocity-Mode for speed regulation of the drive. This is a<br/>special positioning mode, solely used for endless travelling. A target<br/>position is of no relevance.</li> </ul>                               |
|       |                                             | Online switching between modes, i.e. with active control, is possible. In addition, standardizations and units are applied according to the <b>Factor-Group</b> and the control according to the DRIVECOM-status machine.        |
|       |                                             | Detailed information on configuration of the drive controller in the network can be found in the separate documentation "CAN <sub>open</sub> data transfer protocol".                                                            |
| 5.4.2 | PROFIBUS                                    | The travel set specification and control via PROFIBUS requires the external communication module CM-DPV1.                                                                                                                        |
|       |                                             | Control and target position specification is in accordance with the EasyDrive profile "DirectPos".                                                                                                                               |
|       |                                             | Detailed information on configuration of the drive controller in the network<br>can be found in the separate documentation "PROFIBUS data transfer<br>protocol".                                                                 |
|       |                                             |                                                                                                                                                                                                                                  |
|       |                                             |                                                                                                                                                                                                                                  |
|       |                                             |                                                                                                                                                                                                                                  |
|       |                                             |                                                                                                                                                                                                                                  |
|       |                                             |                                                                                                                                                                                                                                  |

| 5.5 | Positioning with<br>PLC        | For the preset solutions PCP_1, PCT_3, PCC_3 and PCB_3 the PLC is preset as source of reference values. The specific settings on inputs and outputs for the control locations PLC (PCP_1), terminal (PCT_3), CAN <sub>open</sub> (PCC_3) or PROFIBUS (PCB_3) are described in chapter 5.6.                             | 1  |
|-----|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|     |                                | With these presettings the various positioning commands GO [x] and STOP [x]. can be used. If the control location has also been set to PLC (PCP_1), the command SET ENCTRL = $0/1$ can be used to switch the control off or on.                                                                                        | 2  |
|     |                                | All general positioning functions, as described under 5.2, can be used.<br>The travel set table can be called up via a special positioning commands<br>GO T [x]. Automatic linkage via repetitions and follow-up orders as well as<br>the switching points cannot be used when specifying reference values via<br>PLC. | 3  |
|     |                                | If the drive is controlled via field bus, the special proprietary EasyDrive protocol "ProgPos" is used.                                                                                                                                                                                                                | 4  |
|     |                                | Detailed information on handling the PLC as well as programming and operation with the PLC editor see see chapter 7 "User programming".                                                                                                                                                                                | 5  |
| 5.6 | Assignment of control terminal | The control terminal for positioning is configured in dependence on the chosen preset solution.                                                                                                                                                                                                                        | 6  |
|     |                                |                                                                                                                                                                                                                                                                                                                        | 7  |
|     |                                |                                                                                                                                                                                                                                                                                                                        | 8  |
|     |                                |                                                                                                                                                                                                                                                                                                                        | Α  |
|     |                                |                                                                                                                                                                                                                                                                                                                        |    |
|     |                                |                                                                                                                                                                                                                                                                                                                        |    |
|     |                                |                                                                                                                                                                                                                                                                                                                        |    |
|     |                                |                                                                                                                                                                                                                                                                                                                        | DE |

EN

### 5.6.1 Terminal assignment CDE3000

Depending on the selected presetting the parameterization of inputs and outputs differs from the factory setting, see Table 5.14. After selecting the presetting the parameterization of the terminals can be adapted to the application as desired.

|       |            |                                                  | Pre-set solution |                |       |       |                |       |                |  |
|-------|------------|--------------------------------------------------|------------------|----------------|-------|-------|----------------|-------|----------------|--|
| I/O   | Parameters | Function                                         | SCT_1<br>(WE)    | PCC_1<br>PCB_1 | PCP_1 | PCT_2 | PCC_2<br>PCB_2 | PCT_3 | PCC_3<br>PCB_3 |  |
| ISA0  | 180-FISA0  | Function selector analog standard<br>input ISA0+ | PM10V            | 0FF            | PLC   | 0FF   | OFF            | PLC   | PLC            |  |
| ISA1  | 181-FISA1  | Function selector analog standard<br>input ISA1+ | 0FF              |                | PLC   | 0FF   | 0FF            | PLC   | PLC            |  |
| ISD00 | 210-FIS00  | Function selector digital standard input ISD00   | START            | 0FF            | PLC   | START | OFF            | RECAM | PLC            |  |
| ISD01 | 211-FIS01  | Function selector digital standard input ISD01   | OFF              | RECAM          | RECAM | TBEN  | RECAM          | PLC   | RECAM          |  |
| ISD02 | 212-FIS02  | Function selector digital standard input ISD02   | OFF              |                | PLC   | TAB0  |                | PLC   | PLC            |  |
| ISD03 | 213-FIS03  | Function selector digital standard input ISD03   | OFF              |                | PLC   | TAB1  |                | PLC   | PLC            |  |
| ISD04 |            | Function selector digital standard input ISD04   | OFF              |                | PLC   | TAB2  |                | PLC   | PLC            |  |
| ISD05 |            | Function selector digital standard input ISD05   | OFF              |                | PLC   | TAB3  |                | PLC   | PLC            |  |
| ISD06 |            | Function selector digital standard input ISD06   | OFF              |                | PLC   |       |                | PLC   | PLC            |  |
| OSD00 | 240-F0S00  | Function selector digital standard input OSD00   | REF              |                |       |       |                |       |                |  |
| OSD01 | 241-F0S01  | Function selector digital standard input OSD01   | ROT_0            |                |       |       |                |       |                |  |
| OSD02 | 242-F0S02  | Function selector digital standard input OSD02   | S_RDY            |                |       |       |                |       |                |  |
| OSD03 |            | Function selector digital standard input OSD03   | OFF              |                |       |       |                |       |                |  |

Table 5.14Presetting of the control inputs and outputs on CDE3000

#### 5 CDE/CDB/CDF3000 in positioning operation

### 5.6.2 Terminal assignment CDB3000

Depending on the selected presetting the parameterization of inputs and outputs differs from the factory setting, see Table 5.15. After selecting the presetting the parameterization of the terminals can be adapted to the application as desired.

|       |            |                                                | Pre-set solution |                |       |       |                |       |                |
|-------|------------|------------------------------------------------|------------------|----------------|-------|-------|----------------|-------|----------------|
| I/O   | Parameters | Function                                       | SCT_1<br>(WE)    | PCC_1<br>PCB_1 | PCP_1 | PCT_2 | PCC_2<br>PCB_2 | PCT_3 | PCC_3<br>PCB_3 |
| ISA00 | 180-FISA0  | Function selector analog standard input ISA00  | PM10V            | 0FF            | PLC   | 0FF   | 0FF            | PLC   | PLC            |
| ISA01 | 181-FISA1  | Function selector analog standard input ISA01  | OFF              |                | PLC   |       |                | PLC   | PLC            |
| ISD00 | 210-FIS00  | Function selector digital standard input ISD00 | START            | 0FF            | PLC   |       | 0FF            |       | PLC            |
| ISD01 | 211-FIS01  | Function selector digital standard input ISD01 | OFF              |                | PLC   | FOSW  |                | PLC   | PLC            |
| ISD02 | 212-FIS02  | Function selector digital standard input ISD02 | OFF              |                | PLC   | TAB0  |                | PCL   | PCL            |
| ISD03 | 213-FIS03  | Function selector digital standard input ISD03 | OFF              | HOMSW          | HOMSW | HOMSW | HOMSW          | HOMSW | HOMSW          |
| 0SA00 | 200-F0SA0  | Function selector for analog output<br>OSA00   | ACTN             |                | PLC   |       |                | PLC   | PLC            |
| OSD00 | 240-F0S00  | Function selector digital standard input OSD00 | REF              |                |       |       |                |       |                |
| 0SD01 | 241-F0S01  | Function selector digital standard input OSD01 | ROT_0            |                |       |       |                |       |                |
| 0SD02 | 242-F0S02  | Function selector digital standard input OSD02 | S_RDY            |                |       |       |                |       |                |

Table 5.15Presetting of the control inputs and outputs on CDB3000

5

6

### 5.6.3 Terminal assignment CDF3000

Depending on the selected presetting the parameterization of inputs and outputs differs from the factory setting, see Table 5.16. After selecting the presetting the parameterization of the terminals can be adapted to the application as desired.

|       |            |                                                  | Pre-set solution |                |       |       |                |       |                |  |
|-------|------------|--------------------------------------------------|------------------|----------------|-------|-------|----------------|-------|----------------|--|
| I/O   | Parameters | Function                                         | SCT_1<br>(WE)    | PCC_1<br>PCB_1 | PCP_1 | PCT_2 | PCC_2<br>PCB_2 | PCT_3 | PCC_3<br>PCB_3 |  |
| ISA0  | 180-FISA0  | Function selector analog standard<br>input ISA0+ | PM10V            | 0FF            | PLC   | 0FF   | OFF            | PLC   | PLC            |  |
| ISA1  | 181-FISA1  | Function selector analog standard<br>input ISA1+ | OFF              |                | PLC   | 0FF   | 0FF            | PLC   | PLC            |  |
| ISD00 | 210-FIS00  | Function selector digital standard input ISD00   | START            | 0FF            | PLC   | START | OFF            | RECAM | PLC            |  |
| ISD01 | 211-FIS01  | Function selector digital standard input ISD01   | 0FF              | RECAM          | RECAM | TBEN  | RECAM          | PLC   | RECAM          |  |
| ISD02 | 212-FIS02  | Function selector digital standard input ISD02   | OFF              |                | PLC   | TAB0  |                | PLC   | PLC            |  |
| OSD00 | 240-F0S00  | Function selector digital standard input OSD00   | REF              |                |       |       |                |       |                |  |
| OSD01 | 241-F0S01  | Function selector digital standard input OSD01   | ROT_0            |                |       |       |                |       |                |  |
| OSD02 | 242-F0S02  | Function selector digital standard input OSD02   | S_RDY            |                |       |       |                |       |                |  |

Table 5.16 Presetting of the control inputs and outputs on CDF3000

# 

| 7 |  |
|---|--|
|   |  |
|   |  |

A

| 6.1   | Inputs and outputs6-3                         |
|-------|-----------------------------------------------|
| 6.1.1 | Digital inputs6-4                             |
| 6.1.2 | Digital outputs6-13                           |
| 6.1.3 | Analog inputs6-24                             |
| 6.1.4 | Analog output for CDB30006-30                 |
| 6.2   | Setpoint generation6-33                       |
| 6.2.1 | Rotary speed profile6-34                      |
| 6.2.2 | Limitations6-35                               |
| 6.2.3 | Stop ramps6-37                                |
| 6.2.4 | Reference encoder/Master-Slave operation6-40  |
| 6.2.5 | Setpoint structure - further settings/control |
|       | location6-47                                  |
| 6.2.6 | Control location6-55                          |
| 6.2.7 | Motor potentiometer function6-58              |
| 6.3   | Motor control6-62                             |
| 6.4   | Motor and transducer6-67                      |
| 6.4.1 | Motor data6-67                                |
| 6.4.2 | Encoder6-74                                   |
| 6.4.3 | Motor protection6-83                          |
| 6.4.4 | Motor holding brake6-90                       |
| 6.5   | Bus systems6-100                              |
| 6.5.1 | CANopen6-100                                  |
| 6.5.2 | PROFIBUS6-104                                 |
| 6.6   | Cam controller6-106                           |
| 6.7   | Setting KP200-XL6-112                         |



| 6.8   | Actual values          | 6-117 |
|-------|------------------------|-------|
| 6.8.1 | Temperature monitoring | 6-117 |
| 6.8.2 | Device data            | 6-118 |
| 6.8.3 | Options                | 6-119 |
| 6.8.4 | CANopen Field bus      | 6-122 |
| 6.9   | Warnings/errors        | 6-124 |
| 6.9.1 | Error messages         | 6-124 |
| 6.9.2 | Warningmessages        |       |



# 6.1 Inputs and outputs Each input and output on the positioning controller has a parameter to assign a function. These parameters are called function selectors. In addition, both the setpoint structure and the control location have an effect on the function of inputs and outputs In the preset solutions such settings have already been made.

The positioning controllers are equipped with the inputs and outputs listed in Table 6.1.

| Inputs/outputs                                            | CDE3000                             | CDB3000        | CDF3000                             |  |
|-----------------------------------------------------------|-------------------------------------|----------------|-------------------------------------|--|
| Analogue inputs                                           | ISA0, ISA1                          | ISA0, ISA1     | ISA0, ISA1                          |  |
| Digital inputs                                            | ISD00 to ISD06                      | ISD00 to ISD03 | ISD00 to ISD02                      |  |
| Virtual inputs                                            | FIFO, FIF1                          | FIFO, FIF1     | FIF0, FIF1                          |  |
| Input "Safe stop"                                         | ISDSH                               |                | ISDSH                               |  |
| Analog outputs                                            | -                                   | OSA0           | -                                   |  |
| Digital outputs                                           | OSD00 to OSD02                      | 0SD00, 0SD01   | OSD00                               |  |
| Relay outputs                                             | -RSH (only for safe stop)<br>-OSD04 | -0SD02         | -RSH (only for safe stop)<br>-OSD05 |  |
| Power outputs 24V/2A<br>(e.g. for motor holding<br>brake) | OSD03                               | -              | 0SD03, 0SD04                        |  |
| Virtual outputs                                           | OV00, OV01                          | 0V00, 0V01     | OV00, OV01                          |  |

Table 6.1Inputs and outputs of positioning controllers



For information on hardware for inputs and outputs see chapter 2.1 to chapter 2.3. The detailed specification is described in the corresponding operating instructions.

6

7

1



I

Application Manual CDE/CDB/CDF3000

### 6.1.1 Digital inputs

| to de                 | (1)<br>FISOX<br>FISAX<br>FIFX<br>(2)<br>FUNCTION DIOC | unctio  | on of     |          |         | gital ir | nputs              | ignment |
|-----------------------|-------------------------------------------------------|---------|-----------|----------|---------|----------|--------------------|---------|
| ISE0x<br>ISA0x<br>IFx | FISOx<br>FIEOx<br>FISAx<br>FIFx<br>(2)                | • •     |           |          | unction | for the  | digital            | input   |
| Fig. 6.1              | Function bloc                                         |         |           |          |         |          |                    |         |
|                       |                                                       | ck for  | adapta    | ation of | the dig | ital inp | uts                |         |
| ↑↑↑↓<br>Inputs.       | 4                                                     |         |           |          |         |          |                    |         |
| Inputs                |                                                       |         |           |          | _       | _        | _                  | ×       |
| Analog                | Digital Digital L                                     | JLZ-EA1 | 1 virtual | 1        |         |          |                    | 1       |
| ISOO                  | START (1) = Start o                                   | control | _         |          |         | ۷        | Options.           | -       |
| 1501                  | PLC [35] = Input us                                   |         |           |          |         | ×        | <i>Options</i>     |         |
| 1902                  | PLC [35] = Input us<br>H0MSW [32] = Rel               |         |           | gram     | _       | ×        | Options<br>Options |         |
|                       |                                                       |         |           |          |         | -        | Coprovine.         |         |
| Fig. 6.2              | Tab example                                           | e "Dig  | itai inpl | Jts"     |         |          |                    |         |





Application Manual CDE/CDB/CDF3000

| Drive-<br>Manager | Function                                       | Value range   | WE      | Parameter<br>s     | valid for<br>positioning<br>controller |
|-------------------|------------------------------------------------|---------------|---------|--------------------|----------------------------------------|
| ISD00             | Function selector digital standard input ISD00 | see Table 6.5 | 1-START | 210-FIS00<br>(_IN) | CDE, CDB, CDF                          |
| ISD01             | Function selector digital standard input ISD01 | _"-           | 0-0FF   | 211-FIS01<br>(_IN) | CDE, CDB, CDF                          |
| ISD02             | Function selector digital standard input ISD02 | _"-           | 0-0FF   | 212-FIS02<br>(_IN) | CDE, CDB, CDF                          |
| ISD03             | Function selector digital standard input ISD03 | _"-           | 0-0FF   | 213-FIS03<br>(_IN) | CDE, CDB                               |
| ISD04             | Function selector digital standard input ISD04 | _"_           | 0-0FF   | 224-FIS04<br>(_IN) | CDE                                    |
| ISD05             | Function selector digital standard input ISD05 | _"-           | 0-0FF   | 225-FIS05<br>(_IN) | CDE                                    |
| ISD06             | Function selector digital standard input ISD06 | _"_           | 0-0FF   | 226-FIS06<br>(_IN) | CDE                                    |

### Parameter for setting the digital inputs

Table 6.2

Parameter for setting the digital inputs

Parameter for setting the digital inputs on terminal extension module UM-8I4O

| Drive-<br>Manager | Function                                                     | Value range   | WE    | Parameter<br>s     | valid for<br>positioning<br>controller |
|-------------------|--------------------------------------------------------------|---------------|-------|--------------------|----------------------------------------|
| IED00             | Function selector for digital input of the user module IED00 | see Table 6.5 | 0-0FF | 214-FIE00<br>(_IN) | CDE, CDB                               |
| IED01             | Function selector for digital input of the user module IED01 | _"-           | 0-0FF | 215-FIE01<br>(_IN) | CDE, CDB                               |
| IED02             | Function selector for digital input of the user module IED02 | _"_           | 0-0FF | 216-FIE02<br>(_IN) | CDE, CDB                               |
| IED03             | Function selector for digital input of the user module IED03 | _"_           | 0-0FF | 217-FIE03<br>(_IN) | CDE, CDB                               |
| IED04             | Function selector for digital input of the user module IED04 | _"_           | 0-0FF | 218-FIE04<br>(_IN) | CDE, CDB                               |

Table 6.3

Parameter for setting the digital inputs on terminal extension module UM-8I4O



1

2

3

4

6

7

| Drive-<br>Manager | Function                                                     | Value range | WE    | Parameter<br>s     | valid for<br>positioning<br>controller |
|-------------------|--------------------------------------------------------------|-------------|-------|--------------------|----------------------------------------|
| IED05             | Function selector for digital input of the user module IED05 | _"-         | 0-0FF | 219-FIE05<br>(_IN) | CDE, CDB                               |
| IED06             | Function selector for digital input of the user module IED06 | _"_         | 0-0FF | 220-FIE06<br>(_IN) | CDE, CDB                               |
| IED07             | Function selector for digital input of the user module IED07 | _"_         | 0-0FF | 221-FIE07<br>(_IN) | CDE, CDB                               |

Table 6.3

3 Parameter for setting the digital inputs on terminal extension module UM-8I4O

### Parameter for setting the virtual digital inputs

Virtual inputs have the fixed value 1 (High-Level). These can be used instead of a permanently switched on switch.

| Drive<br>Manager | Function                                               | Value range | WE    | Parameter<br>s    | valid for<br>positioning<br>controller |
|------------------|--------------------------------------------------------|-------------|-------|-------------------|----------------------------------------|
| FIF0             | Function selector for virtual digital fixed input<br>0 | _"-         | 0-0FF | 222-FIF0<br>(_IN) | CDE, CDB, CDF                          |
| FIF1             | Function selector for virtual digital fixed input 1    | _"_         | 0-0FF | 223-FIF1<br>(_IN) | CDE, CDB, CDF                          |

Table 6.4Parameter for setting the virtual digital inputs



Options ...

Depending on the setting of the function selector an option is available for the corresponding input.

Setting the function selectors for the digital inputs:

| BUS | US Setting Function Effect |                                                | Effect                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|-----|----------------------------|------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 0   | 0FF                        | no function                                    | Input switched off                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
| 1   | START                      | Start closed-loop control                      | Start of closed-loop control - motor is energized. The sense<br>of rotation depends on the setpoint.<br>Low-High flank controlled Level controlled via AUTO-Start<br>function under "Start "Level triggered" (Auto-Start)" on<br>page 6-55.<br>The reaction of the drive to remove the start signal can be<br>programmed (see chapter 6.2.3, "Reactions in case of<br>"Control off""). |  |  |  |
| 2   | STR                        | Start clockwise                                | Start release for clockwise rotation of motor (not during positioning).<br>See also "Explanations to various functions".                                                                                                                                                                                                                                                               |  |  |  |
| 3   | STL                        | Start anti-clockwise                           | Start release for anti-clockwise rotation of motor (not during positioning).<br>See also "Explanations to various functions".                                                                                                                                                                                                                                                          |  |  |  |
| 4   | INV                        | Reversal                                       | The setpoint is inverted, this causes a reversal of the set<br>of rotation (only for speed control).                                                                                                                                                                                                                                                                                   |  |  |  |
| 5   | /STOP                      | /Quick stop                                    | Quick stop in accordance with quick stop reaction (Low active) (see chapter 6.2.3, "Reactions with quick stop:").                                                                                                                                                                                                                                                                      |  |  |  |
| 6   | SADD1                      | Changing the setpoint source 1<br>(280-RSSL1)  | The setpoint source 1 (280-RSSL1) is switched over to the setpoint source set in 289-SADD1 (see chapter 6.2.5, "Setpoint structure - further settings/control location").                                                                                                                                                                                                              |  |  |  |
| 7   | SADD2                      | Changing the setpoint source 2<br>(281-RSSL2)  | The setpoint source 2 (281-RSSL2) is switched over to the setpoint source set in 290-SADD2 (see chapter 6.2.5, "Setpoint structure - further settings/control location").                                                                                                                                                                                                              |  |  |  |
| 8   | E-EXT                      | External error                                 | Error messages from external devices cause an error<br>message with reaction, as specified in parameter 524-R-<br>EXT (see chapter 6.9.1, "Error messages").                                                                                                                                                                                                                           |  |  |  |
| 9   | /E-EX                      | External error                                 | Error messages from external devices cause an error<br>message with reaction, as specified in parameter 524-R-<br>EXT (see chapter 6.9.1, "Error messages") Low active.                                                                                                                                                                                                                |  |  |  |
| 10  | RSERR                      | Resetting an error message                     | Error messages are reset with an ascending flank, if the error is no longer present (see 6.9.1, "Acknowledgement and resetting of errors")                                                                                                                                                                                                                                             |  |  |  |
| 11  | TBTEA                      | Travel set positioning                         | Teach in for position travel set table (see chapter 5.3.5, "Teach in").                                                                                                                                                                                                                                                                                                                |  |  |  |
| 12  | HOMST                      | Start referencing                              | Start referencing in accordance with the parameterized referencing type 730_H0MTD (see chapter 5.2.4, "Referencing").                                                                                                                                                                                                                                                                  |  |  |  |
| 13  | TAB0                       | Travel set selection (valence 2 <sup>0</sup> ) | Binary travel set selection (bit 0), (valence 2 <sup>0</sup> ) for speed (see chapter 4.5) or positioning (see chapter 5.3.1).                                                                                                                                                                                                                                                         |  |  |  |

Table 6.5Function selectors for digital inputs

| BUS | Setting | Function                                                      | Effect                                                                                                                                                                                                                                      |
|-----|---------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14  | TAB1    | Travel set selection (valence 2 <sup>1</sup> )                | Binary travel set selection (bit 1), (valence $2^1$ ) for speed (see chapter 4.5) or positioning (see chapter 5.3.1).                                                                                                                       |
| 15  | TAB2    | Travel set selection (valence 2 <sup>2</sup> )                | Binary travel set selection (bit 2), (valence $2^2$ ) for speed (see chapter 4.5) or positioning (see chapter 5.3.1).                                                                                                                       |
| 16  | TAB3    | Travel set selection (valence 2 <sup>3</sup> )                | Binary travel set selection (bit 3), (valence $2^3$ ) for speed (see chapter 4.5) or positioning (see chapter 5.3.1).                                                                                                                       |
| 17  | /LCW    | Limit switch for clockwise rotation                           | Limit switch evaluation without overrun protection. The<br>reactions for limit switch overrun and for mixed up limit<br>switches can be adjusted (see chapter 6.9.1, "Error<br>messages").<br>See also "Explanations to various functions". |
| 18  | /LCCW   | Limit switch anti-clockwise rotation                          | Limit switch evaluation without overrun protection. The<br>reactions for limit switch overrun and for mixed up limit<br>switches can be adjusted (see chapter 6.9.1, "Error<br>messages").<br>See also "Explanations to various functions". |
| 19  | SIO     | Input appears in the status word of the serial interface (X4) | Status of input can be read out via the status word parameter 550-SSTAT of the serial interface.                                                                                                                                            |
| 20  | OPTN    | Evaluation via field bus module<br>(PROFIBUS)                 | Evaluated through the PROFIBUS. (Placeholder, inputs can always be read via the field bus).                                                                                                                                                 |
| 21  | CAN     | Evaluation via CAN-Bus                                        | Evaluated via CAN-Bus (placeholder, inputs can always be read via field bus)                                                                                                                                                                |
| 23  | USER1   | Only for CDB3000                                              | Only for CDB3000                                                                                                                                                                                                                            |
| 24  | USER2   | up to software V2.0:                                          | up to software V2.0:                                                                                                                                                                                                                        |
| 25  | USER3   | reserved for special software                                 | Input can be used by special software.                                                                                                                                                                                                      |
| 23  | DSEL    | Select data set                                               | Only with rotary speed control "OpenLoop"<br>Changeover of data set (0=CDS1, 1=CDS2)<br>(see chapter 8.2.1)                                                                                                                                 |
| 24  | MP_UP   | Motor potentiometer<br>Raise setpoint                         | The rotary speed setpoint for the digital motor potentiometer function is raised (see chapter 6.2.7).                                                                                                                                       |
| 25  | MP_DN   | Motor potentiometer<br>Reduce setpoint                        | The rotary speed setpoint for the digital motor potentiometer function is reduced (see chapter 6.2.7).                                                                                                                                      |
| 26  | MAN     | Activation of manual mode                                     | With field bus operation (CAN, PROFIBUS) changeover of setpoint source (289-SADD1=xx) and control location to terminal (260-CLSEL=TERM). See also "Explanations to various functions".                                                      |
| 27  | TIPP    | Jog mode, positive direction                                  | In manual positioning the axis can be moved in creep speed<br>or in rapid motion (see chapter 5.2.6).                                                                                                                                       |
| 28  | TIPN    | Jog mode, negative direction                                  | In manual positioning the axis can be moved in creep speed<br>or in rapid motion (see chapter 5.2.6).                                                                                                                                       |

 Table 6.5
 Function selectors for digital inputs

| BUS       | Setting                                                                                                                                             | Function                                                                                                                                                                                                                                                 | Effect                                                                                                                                                         |  |
|-----------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 29        | TBEN                                                                                                                                                | Release of table position                                                                                                                                                                                                                                | Acceptance of the selected positioning table index and execution of the corresponding travel set (see chapter 5.3.1).                                          |  |
| 30        | /HALT                                                                                                                                               | Feed enable         The running movement of the axis is interrupted<br>to the HALT reaction (see chapter 6.2.3, "Reaction<br>"Stop feed"") and continued when reset.           Stop PLC program         The PLC program is stopped after the current end |                                                                                                                                                                |  |
| 31        | PLCIS                                                                                                                                               | Stop PLC program                                                                                                                                                                                                                                         | The PLC-program is stopped after the current command line<br>has been processed. When removing the signal the program<br>continues with the next command line. |  |
| 32        | HOMSW                                                                                                                                               | Reference cams                                                                                                                                                                                                                                           | for zero point determination in positioning                                                                                                                    |  |
| 33        | FOSW                                                                                                                                                | Execution of follow-up order                                                                                                                                                                                                                             | in travel set positioning (see chapter 5.3.2)                                                                                                                  |  |
| 34        | CAMRS                                                                                                                                               | Resetting the cycle of the cam switching unit                                                                                                                                                                                                            | Setting the zero position of the cam switching unit (see chapter 6.6).                                                                                         |  |
| 35        | PLC                                                                                                                                                 | Input used in sequence program                                                                                                                                                                                                                           | Placeholder, inputs can always be read, irrespective of the setting.                                                                                           |  |
| 36        | 36 PLCGO Start/stop the sequence program The PLC-program is started with the first command line. Cancelling ends the program run (see chapter 7.4). |                                                                                                                                                                                                                                                          |                                                                                                                                                                |  |
| For the ( | CDB3000 a HTL                                                                                                                                       | encoder can be additionally conne                                                                                                                                                                                                                        | cted to the inputs ISD01 - ISD03. In this case the setting is:                                                                                                 |  |
| 37        | 37 ENC HTL - encoder 0-track ISD01 (index signal), A-track ISD02 and B-t                                                                            |                                                                                                                                                                                                                                                          | 0-track ISD01 (index signal), A-track ISD02 and B-track ISD03 (see chapter 6.4.2, "Encoder for CDB3000").                                                      |  |

Table 6.5Function selectors for digital inputs

7

5

6

2

- Α



Flxxx = STR, STL (Not with positioning)

### Explanation of various functions

The start command for a direction of rotation can be specified via the terminals of the positioning controller. The sense of rotation is thus determined by the start commands STR and STL.

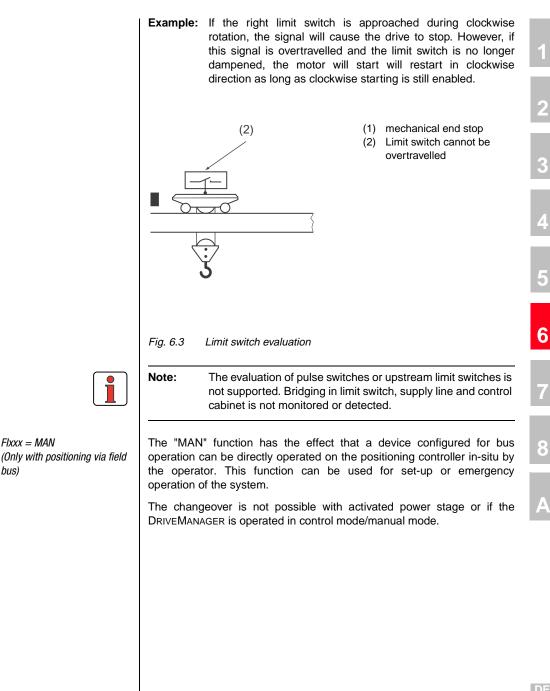
If the setpoint has a negative sign, this will cause an inverse behaviour when starting, i.e. with a clockwise start the motor shaft will turn anticlockwise.

| STL                                  | STR | Explanation                                                                                                                                                                                                                             |
|--------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                                    | 0   | STOP, braking and shut-down of control as per reaction with                                                                                                                                                                             |
| 1                                    | 0   | "Control off" (see chapter 6.2.3, "Stop ramps"). <sup>1)</sup><br>START anti-clockwise, acceleration with travel profile generator                                                                                                      |
| 0                                    | 1   | START and clockwise, acceleration with travel profile generator                                                                                                                                                                         |
| 1                                    | 1   | BRAKING and shut-down of control as per reaction with "Control off" (see chapter 6.2.3, "Stop ramps"). <sup>1)</sup><br>The braking process can be be interrupted by simply attaching a start contact; the motor will accelerate again. |
| $\begin{bmatrix} 0\\1 \end{bmatrix}$ |     | Sense of rotation REVERSING, overlapping time (STL and STR = 1) min. 2 ms $% \left( \frac{1}{2}\right) = 0$                                                                                                                             |

 With "OpenLoop" speed control the DC holding current controller (see chapter 8.3.4) becomes active in case of the response "Control off" = "1=Braking with deceleration ramp" when the speed setpoint "0" is reached.

#### Table 6.6 Truth table for control via terminals

Flxxx = /LCW, /LCCW


The limit switch evaluation is based on the evaluation of static signals. No signal flanks are evaluated.

The limit switches are monitored in dependence on the sense of rotation, so that mixed up limit switches will be reported as errors. The drive runs out unguided.

The reactions for limit switch overrun and for mixed up limit switches can be adjusted (see chapter 6.9.1, "Error messages").

Mechanical overtravelling of limit switches is not permitted and is not monitored for plausibility.

bus)



EN

If the input is activated, the control location is set to "Terminal" (260-CLSEL=TERM). At the same time the setpoint source is set to the reference specified by parameter 289-SADD1. The selection of the setpoint source must be made in the function mask "Reference/Ramps -Further Settings" (see Fig. 6.4).

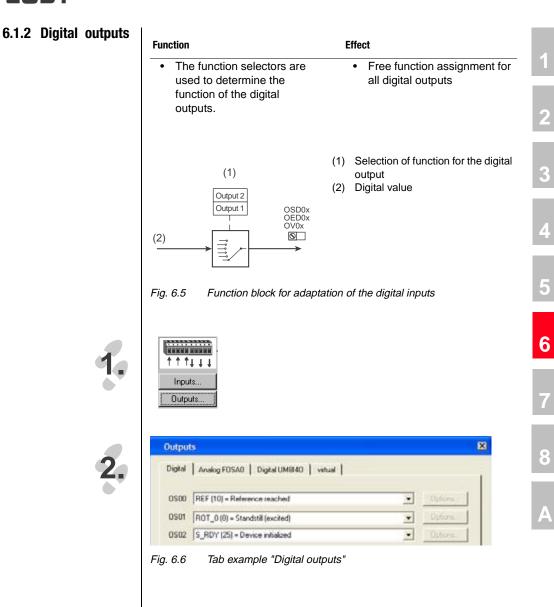

| Source 1:                                                   | Stan     | dard-reference:                                                                                                                                                                                                                                                        |   |
|-------------------------------------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                             | FIAD     | [1] = Reference of analog input ISA00                                                                                                                                                                                                                                  | + |
| Reference source 1 on selection<br>(input function = SADD1) | viainput | RCON (0) = Reference constant 0                                                                                                                                                                                                                                        |   |
| Source 2:<br>Standard-refer                                 | ence:    | RCON (0) = Reference constant 0<br>RA0 (1) = Reference of analog input ISA00<br>RA1 (2) = Reference of analog input ISA01                                                                                                                                              | 0 |
| Reference source 2 on                                       |          | RSI0 (3) = Reference of serial interface RS232<br>RDIG (4) = Reference of digital input at slave operation<br>RCAN (5) = Reference of CAN interface<br>RPLC (5) = Reference of PLC<br>RTAB (7) = Reference of process set table<br>RFIX (8) = Reference of fixed value |   |
| Speed-motor-poti                                            |          | RMIN (9) = Reference of minimum value<br>RMAX (10) = Reference of maximum value<br>R0PT (11) = Reference of option module                                                                                                                                              |   |

Fig. 6.4 Setting the parameter SADD1 in "MAN" mode

A start signal must be switched to a digital input and parameterized (FIxxx = START).



**Note:** While the "MAN" function is active no "Saving of device settings" must take place, because the device setting would be changed in the background and the original setting would not become active when switching on the mains supply the next time.



### Parameter for setting the digital outputs

| Drive-<br>Manager | Function                                                                                                                           | Value range    | WE       | Parameters          | valid for<br>positioning<br>controller |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|---------------------|----------------------------------------|
| OSD00             | Function selector digital standard input<br>OSD00                                                                                  | see Table 6.10 | 10-REF   | 240-F0S00<br>(_0UT) | CDE, CDB, CDF                          |
| OSD01             | Function selector digital standard input<br>OSD01                                                                                  | _"_            | 8-R0T_0  | 241-F0S01<br>(_0UT) | CDE, CDB                               |
| OSD02             | Function selector for standard output<br>OSD02<br>• Digital output with CDE, CDF<br>• Two-way relay with CDB                       | _"_            | 25-S-RDY | 242-F0S02<br>(_0UT) | CDE, CDB                               |
| OSD03             | Function selector for electronic power drivers (2 A) OSD03                                                                         | _"_            | 0-0FF    | 251-F0S03<br>(_0UT) | CDE, CDF                               |
| OSD04             | Function selector digital standard input<br>OSD04<br>• Normally open relay with CDE<br>• electronic power driver (2 A) with<br>CDF | _"_            | 0-0FF    | 250-F0S04<br>(_0UT) | CDE, CDF                               |
| OSD05             | Function selector, relay output (normally open) CDF                                                                                | _"_            | 0-0FF    | 252-F0S05<br>(_0UT) | CDF                                    |
| 0ED00             | Function selector for digital output of the user module OED00                                                                      | _"_            | 0-0FF    | 243-F0E00<br>(_0UT) | CDE, CDB                               |
| 0ED01             | Function selector for digital output of the user module OED01                                                                      | _"_            | 0-0FF    | 244-F0E01<br>(_0UT) | CDE, CDB                               |
| 0ED02             | Function selector for digital output of the user module OED02                                                                      | _"_            | 0-0FF    | 245-F0E02<br>(_0UT) | CDE, CDB                               |
| 0ED03             | Function selector for digital output of the user module OED03                                                                      | _"_            | 0-0FF    | 246-F0E03<br>(_0UT) | CDE, CDB                               |

Table 6.7Parameter for setting the digital outputs

# Parameter for setting the digital outputs on terminal extension module UM-8I4O

| Drive-<br>Manager | Function                                                      | Value range | WE    | Parameters          | valid for<br>positioning<br>controller |
|-------------------|---------------------------------------------------------------|-------------|-------|---------------------|----------------------------------------|
| 0ED00             | Function selector for digital output of the user module OED00 | _"_         | 0-0FF | 243-F0E00<br>(_0UT) | CDE, CDB                               |

Table 6.8Parameter for setting the digital outputs on terminal extension<br/>module UM-8I4O



| 0ED01 | Function selector for digital output of the user module OED01 | _"- | 0-0FF | 244-F0E01<br>(_0UT) | CDE, CDB |
|-------|---------------------------------------------------------------|-----|-------|---------------------|----------|
| 0ED02 | Function selector for digital output of the user module OED02 | _"- | 0-0FF | 245-F0E02<br>(_0UT) | CDE, CDB |
| 0ED03 | Function selector for digital output of the user module OED03 | _"_ | 0-0FF | 246-F0E03<br>(_0UT) | CDE, CDB |

 
 Table 6.8
 Parameter for setting the digital outputs on terminal extension module UM-8I4O

### Parameter for setting the virtual digital outputs

Virtual outputs can be used, among others, for:

- Creation of an event for the TxPDO event control in CANopen field bus communication
- Status evaluation in the PLC

| Drive-<br>Manager | Function                                             | Value range | WE    | Parameters          | valid for<br>positioning<br>controller |
|-------------------|------------------------------------------------------|-------------|-------|---------------------|----------------------------------------|
| 0,000             | Function selector for virtual digital output OV00c   | _"_         | 0-0FF | 248-F0V00<br>(_0UT) | CDE, CDB, CDF                          |
| 0001              | Function selector for virtual digital output<br>OV01 | _"_         | 0-0FF | 249-F0V01<br>(_0UT) | CDE, CDB, CDF                          |

Table 6.9Parameter for setting the virtual digital outputs

### Settings for the function selectors

| BUS | Setting | Function                        | Effect                                                                                                                                    |
|-----|---------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 0   | 0FF     | no function                     | Output switched off.                                                                                                                      |
| 1   | ERR     | Collective error message        | Device is in error state. The error must<br>be rectified and reset before resuming<br>operation (see chapter 6.9.1, "Error<br>messages"). |
| 2   | WARN    | Collective warning<br>message   | Parameterizable warning limit fallen<br>short of, device still operable (see<br>chapter 6.9.2, "Warning messages").                       |
| 3   | /ERR    | Collective message fault denied | Device is in error state. The error must<br>be rectified and reset before resuming<br>operation (see chapter 6.9.1, "Error<br>messages"). |

 Table 6.10
 Setting the function selectors FOxxx for the digital outputs



1

2

3

5

6

| BUS | Setting | Function                                               | Effect                                                                                                                                                                          |  |
|-----|---------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 4   | /WARN   | Collective message<br>warning denied                   | Parameterizable warning limit<br>exceeded, device still operable. Fail-<br>safe design (see chapter 6.9.2,<br>"Warning messages").                                              |  |
| 5   | ACTIVE  | Control in function                                    | Power stage active and closed-loop control/control functioning                                                                                                                  |  |
| 6   | ROT_R   | Sense of rotation<br>clockwise                         | Motor turns clockwise.                                                                                                                                                          |  |
| 7   | ROT_L   | Sense of rotation anti-<br>clockwise                   | Motor turns anti-clockwise.                                                                                                                                                     |  |
| 8   | ROT_0   | Motor stopped                                          | Motor in standstill window, depending on actual value.                                                                                                                          |  |
| 9   | LIMIT   | Setpoint limitation active                             | The internally processed setpoint<br>exceeds the reference value limitation<br>and is maintained at limit value level<br>(see "Explanation of various functions")               |  |
| 10  | REF     | Setpoint reached                                       | The specified setpoint has been<br>reached,<br>depending on actual value (see<br>"Explanation of various functions").                                                           |  |
| 11  | SIO     | Access to control word of<br>RS232                     | The output can be set by means of the LUSTBus-control word via the serial interface.                                                                                            |  |
| 12  | OPTN    | Reserved for the<br>communication module<br>(PROFIBUS) | The output is set via the module CM_DPV1 (PROFIBUS).                                                                                                                            |  |
| 13  | CAN     | Reserved for CAN-Bus                                   | The output is set via the CAN-Bus.                                                                                                                                              |  |
| 14  | BRK1    | Holding brake function 1                               | Output becomes active in accordance<br>with the holding brake function, see<br>chapter 6.4.4.<br>Only suitable for U/f-operation!                                               |  |
| 15  | BRK2    | Holding brake function 2                               | Output becomes active in accordance with the holding brake function, see chapter 6.4.4.                                                                                         |  |
| 16  | WUV     | Warning undervoltage in<br>d.c. link                   | Warning message, if the voltage in the<br>d.c. link falls short of the value<br>specified in parameter 503-WLUV.<br>Device operable (see chapter 6.9.2,<br>"Warning messages"). |  |

Table 6.10Setting the function selectors FOxxx for the digital outputs

| BUS | S Setting Function Effect                                         |                                                    | Effect                                                                                                                                                                          |  |
|-----|-------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 17  | WOV                                                               | Warning overvoltage in<br>d.c. link                | Warning message, if the voltage in the<br>d.c. link exceeds the value specified in<br>parameter 5043-WLOV. Device still<br>operable (see chapter 6.9.2, "Warning<br>messages"). |  |
| 18  | 18 WIIT Warning, I <sup>2</sup> t-integrator has started (device) |                                                    | Warning message, if the integrator for<br>current I <sup>2</sup> over time t has started as<br>device protection (see chapter 6.9.2,<br>"Warning messages").                    |  |
| 19  | WOTM Warning motor<br>temperature                                 |                                                    | Warning message, if the motor<br>temperature has exceeded the value<br>specified in parameter 502-WLTM (see<br>chapter 6.9.2,"Warning messages").                               |  |
| 20  | WOTI                                                              | Warning, heat sink<br>temperature of device        | Warning message, if the heat sink<br>temperature of the device exceeds the<br>value specified in parameter 500-WLTI.                                                            |  |
| 21  | WOTD                                                              | Warning, internal<br>temperature in device         | Warning message, if the internal<br>temperature in the device has exceeded<br>the value specified in parameter 501-<br>WLTD (see chapter 6.9.2, "Warning<br>messages").         |  |
| 22  | WLIS                                                              | Warning message<br>apparent current limit<br>value | Warning message, if the apparent<br>current has exceeded the value<br>specified in parameter 506-WLIS (see<br>chapter 6.9.2, "Warning messages").                               |  |
| 23  | WLS Warning message speed<br>limit                                |                                                    | Warning message, if the rotary speed<br>has exceeded the value specified in<br>parameter 505-WLS (see chapter<br>6.9.2,"Warning messages").                                     |  |
| 24  | WIT                                                               | Warning Ixt-integrator has started (motor)         | Warning message, if the motor<br>protection integrator has exceeded the<br>programmable threshold 337-WLITM<br>(see chapter 6.9.2, "Warning<br>messages").                      |  |
| 25  | S_RDY                                                             | Device initialized                                 | The output becomes active if the device<br>has been initialized after the power<br>supply has been switched on                                                                  |  |
| 26  | C_RDY                                                             | Device operable                                    | The output becomes active, if the device is "operable" by setting the signal ENPO and no error message is applied.                                                              |  |

Table 6.10

Setting the function selectors FOxxx for the digital outputs

2

3

6

7

A

| BUS | Setting | Function                                         | Effect                                                                                                                                                                                                              |  |  |
|-----|---------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 27  | USER0   |                                                  |                                                                                                                                                                                                                     |  |  |
| 28  | USER1   | Reserved for special                             | Output can be used by special software.                                                                                                                                                                             |  |  |
| 29  | USER2   | software                                         | output can be used by special software.                                                                                                                                                                             |  |  |
| 30  | USER3   |                                                  |                                                                                                                                                                                                                     |  |  |
| 31  | WLTQ    | Warning message torque<br>limit value exceeded   | Warning message, if the torque<br>exceeds the value specified in<br>parameter 507-WLTQ.                                                                                                                             |  |  |
| 32  | ENMO    | Switching of motor<br>contactor                  | The output becomes active when<br>starting the control and the up-time is<br>extended by the time 247-TENMO when<br>cancelling the start and stopping the<br>drive (see "Explanation of various<br>functions").     |  |  |
| 33  | /ENMO   | Switching of motor<br>contactor, denied function | The output becomes inactive when<br>starting the control and the down-time<br>is extended by the time 247-TENMO<br>when cancelling the start and stopping<br>the drive (see "Explanation of various<br>functions"). |  |  |
| 34  | PLC     | Output of sequential program can be used         | Output is set by PLC-program, e. g. SET<br>0S00 = 0/1, Mxxx (see chapter 7.3.2,<br>"Setting commands (SET)").                                                                                                       |  |  |
| 35  | REFOK   | Referencing                                      | Referencing successfully completed.                                                                                                                                                                                 |  |  |
| 36  | TAB0    | Active table travel set                          | (Valence 2 <sup>0</sup> )                                                                                                                                                                                           |  |  |
| 37  | TAB1    | Active table travel set                          | (Valence 2 <sup>1</sup> )                                                                                                                                                                                           |  |  |
| 38  | TAB2    | Active table travel set                          | (Valence 2 <sup>2</sup> )                                                                                                                                                                                           |  |  |
| 39  | TAB3    | Active table travel set                          | (Valence 2 <sup>3</sup> )                                                                                                                                                                                           |  |  |
| 40  | TBACT   | Travel set active                                | Table travel set positioning active                                                                                                                                                                                 |  |  |
| 41  | /EFLW   | No trailing error                                |                                                                                                                                                                                                                     |  |  |
| 42  | STOP    | Quick stop active                                | The drive is in "Quick stop" state.                                                                                                                                                                                 |  |  |
| 43  | CM1     | Switching point 1                                | Cam switching point (see chapter                                                                                                                                                                                    |  |  |
| 44  | CM2     | Switching point 2                                | 6.6)                                                                                                                                                                                                                |  |  |
| 45  | СМЗ     | Switching point 3                                | <ul> <li>Switching point flag for<br/>positioning by means of table<br/>travel sets (see chapter 5.3.4)</li> </ul>                                                                                                  |  |  |

Table 6.10

Setting the function selectors FOxxx for the digital outputs

| BUS | Setting | Function                                                                    | Effect                                                                                                                              |   |
|-----|---------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|---|
| 46  | CM4     | Switching point 4                                                           |                                                                                                                                     | 1 |
| 47  | CM5     | Switching point 5                                                           |                                                                                                                                     |   |
| 48  | CM6     | Switching point 6                                                           |                                                                                                                                     |   |
| 49  | CM7     | Switching point 7                                                           |                                                                                                                                     | 2 |
| 50  | CM8     | Switching point 8                                                           |                                                                                                                                     |   |
| 51  | CM9     | Switching point 9                                                           |                                                                                                                                     |   |
| 52  | CM10    | Switching point 10                                                          | Cam switching points (see chapter 6.6)                                                                                              |   |
| 53  | CM11    | Switching point 11                                                          |                                                                                                                                     | 3 |
| 54  | CM12    | Switching point 12                                                          |                                                                                                                                     |   |
| 55  | CM13    | Switching point 13                                                          |                                                                                                                                     |   |
| 56  | CM14    | Switching point 14                                                          |                                                                                                                                     | 4 |
| 57  | CM15    | Switching point 15                                                          |                                                                                                                                     | _ |
| 58  | CM16    | Switching point 16                                                          |                                                                                                                                     |   |
| 59  | /BRK1   | Holding brake function 1,<br>inverted (without motor<br>current monitoring) | Output becomes inactive in accordance<br>with the holding brake function, see<br>chapter 6.4.4.<br>Only suitable for U/f-operation! | 5 |
| 60  | /BRK2   | Holding brake function 2, inverted                                          | Output becomes inactive in accordance with the holding brake function, see chapter 6.4.4.                                           | 6 |

 Table 6.10
 Setting the function selectors FOxxx for the digital outputs

Α



FOxxx = LIMIT

### **Explanation of various functions**

The LIMIT function detects if the setpoint exceeds the maximum value When exceeding, the output is set.

Limit values:

• Torque control:

The limit value display becomes active when the torque reference exceeds the max. torque.

Max. torque = 805-SCALE x 803-TCMMX x 852-MOMNM

• Speed regulation:

The limit value display becomes active when the speed reference exceeds the max. speed.

Max. speed = 813-SCSMX x 157-MOSNM

Positioning:

The limit value display becomes active when the speed reference exceeds the max. speed or the torque reference exceeds the max. torque.

Max. torque = 805-SCALE x 803-TCMMX x 852-MOMNM Max. speed = 813-SCSMX x 157-MOSNM

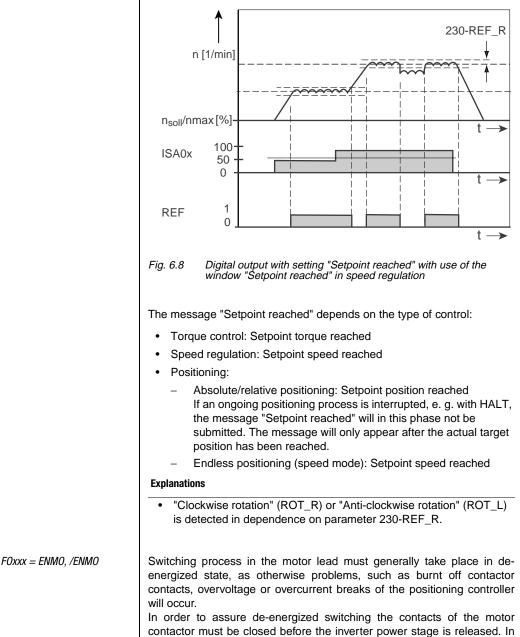
The specified parameters (except the online torque scaling 805-SCALE) can be set in the function mask "Limitations" (see chapter 6.2.2).

| forque limit: |        | _   |     | S. N               |       |
|---------------|--------|-----|-----|--------------------|-------|
| Mmax =        | 100.00 | 2   | ×   | Motor rated torque | Nm    |
| Annual -      | 100%   |     | 100 |                    | 10000 |
| Speed limit:  |        |     |     |                    |       |
|               | 100.00 | - 2 |     | Motor rated speed  | _     |
| Nmax =        | 100%   |     | ×   |                    | 1/min |

Fig. 6.7 Function mask "Limitations"

#### Explanations

• Both the special PLC-flag STA\_LIMIT and the bit "LIMIT" in the field bus EasyDrive status words have the same meaning.


*FOxxx* = *REF* 

Both the parameters 230-REF\_R (setting see chapter 4.2.1) for torque and speed regulations as well as 758-POWIN (setting see chapter 5.2.3) for positioning can be used to define an area, in which the actual value

#### 6 General software functions

# LUST

may deviate from the setpoint, without the message "Setpoint reached" (REF) becoming inactive. Setpoint fluctuations caused by setpoint specification, e. g. via analog inputs can therefore be taken into account.

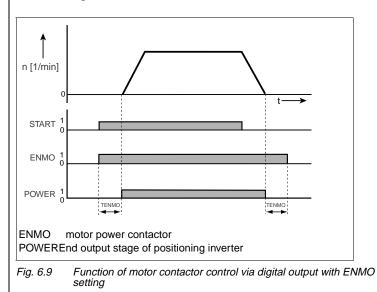


6

EN

Application Manual CDE/CDB/CDF3000

the opposite case the contacts must remain closed until the inverter power stage has been switched off.


This can be achieved by implementing the corresponding safety periods for switching of the motor contactor into the control sequence of the machine or by using the special ENMO software function of the positioning controller.

The power contactor in the motor supply line can be controlled by the positioning controller. With the timer parameter 247-TENMO the pickup and drop off time of the power contactor can be accounted for. With this one can make sure that, after the start release, the setpoint is only specified after the contactor has closed, or, with inactive power stage, the motor is disconnected from the positioning controller by the contactor.



Note:

In the time base of the TENMO timer additional times for typical contactor chattering have been taken into account. Depending on the contactor, these may take several 100 ms.



ENMO setting = motor contactor:

- With setting TENMO=0 the motor contactor function is deactivated.
- With activation of the ENMO function the motor contactor is automatically closed during the self-setting process
- The motor contactor function is active if one of the function selectors of digital outputs OSD0x or OED0x has the value ENMO or /ENMO. The time TENMO can be set in the DriveManager after selecting the function under "Options".

| forque limit: |                |     |       |                    |       |
|---------------|----------------|-----|-------|--------------------|-------|
| 127733551     | 100.00         | 2   | 10200 | Motor rated torque |       |
| Mmax =        | 100%           | -   | ×     | 41                 | Nm    |
| Speed limit:  |                |     |       |                    |       |
|               | 100.00         | - 2 |       | Motor rated speed  |       |
| Nmax +        | 100%           | _   | ×     |                    | 1/min |
| Nmax -        | J. Contraction | *   | ×     | Motor rated speed  | 1/min |

Fig. 6.10 Setting the breaking delay TENMO

| DriveManager                                                                                                                  | Value range | WE  | Unit | Parameters          |
|-------------------------------------------------------------------------------------------------------------------------------|-------------|-----|------|---------------------|
| Making and breaking delay<br>between digital output of<br>motor contactor and<br>controller release (output<br>stage release) | 0 2000      | 300 | ms   | 247-TENMO<br>(_OUT) |



Note:

If switching takes place with the output stage in the motor line still active, a reactance coil must be used to avoid the error message E-OC caused by transient currents in the switching phase. Furthermore, with error message E-OC-1 the system will check whether the hardware release ENPO is applied before

submitting the error message. If this is not the case, it is assumed that an intended switching process by a motor contactor took place in the motor line and error message will be suppressed. 1

2

6

8

### 6.1.3 Analog inputs

Function Effect ٠ Determination of the internal • Processing and filtering of processing of analog input analog setpoint specification signals (3) (1)(2)(4) Function Filter Backlash Options (5)ISA0x (6) $\odot$ 

(1) Specification of analog setpoint or use as digital input

(2) Input filter for interference decoupling

(3) Dead band function for interference decoupling around the zero point

- (4) Options for standardizing the analog input
- (5) Analog value
- (6) Digital value

x Number of input

Fig. 6.11 Function block for adaptation of the digital inputs

### **Configuration possibilities ISA0x**

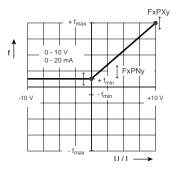



Fig. 6.12 Standardizing with unipolar operation

11111

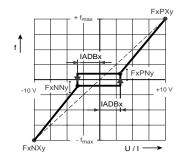



Fig. 6.13 Dead band function with bipolar operation



| nputs<br>Insion I to | gital   Digital UM8I40   virtual |         |
|----------------------|----------------------------------|---------|
| ISA0                 | dea 1 redearceneero 1 vanta 1    |         |
| Function             | OFF (0) = no function            |         |
| Backlash             | _0.00 %                          | Dptoni  |
| Filter               | 3=1 m                            |         |
| ISA1                 |                                  |         |
| Function             | OFF (0) = no function            | •       |
| Backlash             | _0.00 %                          | Optiona |
| Filter               | 3=1 ms 💌                         |         |
|                      | 1                                |         |

Fig. 6.14 Analog inputs



5

6

7

А

Both analog inputs ISA0 and ISA1 can also be configured as digital inputs. For this purpose the settings OFF (0) to PLCGO (36) of the function selectors FISA0 and FISA1 are available, as with the digital inputs, see also Table 6.5. In addition there are the settings 0-10V (38) to OVR (43) for use as analog inputs. Table 6.11 shows these additional adjustment possibilities of the function selectors.

Function selectors FISA0 and FISA1:

| DRIVEMANAGER | Meaning                                                          | Value range | WE           | Unit | Parameters                      |
|--------------|------------------------------------------------------------------|-------------|--------------|------|---------------------------------|
| Function     | Determination of the internal processing of analog input signals | 0FF 4-20    | PM10V<br>OFF |      | 180_FISA0<br>181_FISA1<br>(_IN) |
| Dead band    | Dead band around<br>zero                                         | 0.00 999.95 | 0.00         | %    | 192_IADB0<br>193_IADB1<br>(_IN) |
| Filter       | Filter time of the<br>analog input                               | 0 7         | 3            | ms   | 188_AFIL0<br>189_AFIL1<br>(_IN) |

Setting of filters AFIL0 and AFIL1:

| DRIVEMANAGER | Meaning |
|--------------|---------|
| 0            | 0 ms    |
| 1            | 300 µs  |
| 2            | 500 µs  |
| 3            | 1 ms    |
| 4            | 2 ms    |
| 5            | 4 ms    |
| 6            | 8 ms    |
| 7            | 16 ms   |



Options ...

Various options are available, depending on the setting "Function". Fig. 6.15 shows the options mask for setting the function selector to "PM10 V(40) = analog setpoint input -10V...+10V".

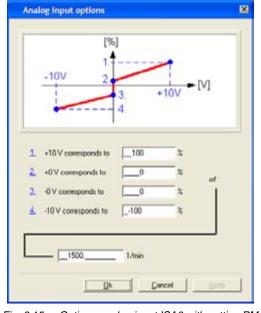



Fig. 6.15 Options analog input ISA0 with setting PM10V

### Parameter for the analog input ISA0

| DriveManager          | Meaning                                                                            | Value range | WE   | Unit | Parameters          |
|-----------------------|------------------------------------------------------------------------------------|-------------|------|------|---------------------|
| 1.                    | Maximum value ISA00 at +10V                                                        | -1000 1000  | 100  | %    | 182_F0PX<br>(_IN)   |
| 2.                    | Minimum value ISA00 at +0V                                                         | -1000 1000  | 0    | %    | 183_F0PN<br>(_IN)   |
| 3.                    | Minimum value ISA00 at -0V                                                         | -1000 1000  | 0    | %    | 185_F0NN<br>(_IN)   |
| 4.                    | Maximum value ISA00 at -10V                                                        | -1000 1000  | -100 | %    | 184_F0NX<br>(_IN)   |
| Rated<br>motor speed  | Setpoint of scaling with speed control<br>(see chapter 6.2.2, "Limitations")       | 0 100000    | 1500 | rpm  | 157_MOSNM<br>(_MOT) |
| Rated<br>motor torque | Reference value for scaling with torque control (see chapter 6.2.2, "Limitations") | 0.001 5000  | 4.1  | Nm   | 852_MOMNM<br>(_MOT) |

А

EN

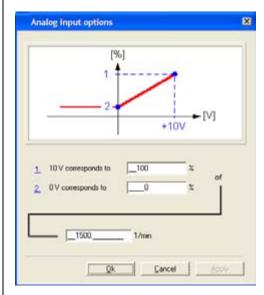



Fig. 6.16 Options analog input ISA1 for setting 0-10V

### Parameter for the analog input ISA1

| DriveManager          | Meaning                                                                           | Value range | WE   | Unit | Parameters          |
|-----------------------|-----------------------------------------------------------------------------------|-------------|------|------|---------------------|
| 1.                    | Maximum value ISA01 at +10V                                                       | -1000 1000  | 100  | %    | 186_F1PX<br>(_IN)   |
| 2.                    | Minimum value ISA01 at +0V                                                        | -1000 1000  | 0    | %    | 187_F1PN<br>(_IN)   |
| Rated<br>motor speed  | Reference value of scaling with speed control (see chapter 6.2.2, "Limitations")  | 0 100000    | 1500 | rpm  | 157_MOSNM<br>(_MOT) |
| Rated<br>motor torque | Reference value of scaling with torque control (see chapter 6.2.2, "Limitations") | 0.001 5000  | 4.1  | Nm   | 852_MOMNM<br>(_MOT) |



**Note:** The resolution of the analog inputs is 10 bit. In order to achieve an optimal interference suppression they are scanned ad filtered with 250 µs. Further processing takes place with 1 ms.

| Bus | Setting | Function                                | Effect                                                                                                                                                                                                                                                                              | ISA0 | ISA1 |
|-----|---------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|
| 38  | 0-10V   | Analog setpoint<br>input 0-10 V         | Setpoint specification 0-10 V. Observe the standardization<br>and adapt the setpoint structure by means of the setpoint<br>selector.                                                                                                                                                |      | ~    |
| 39  | SCALE   | Torque scaling                          | Online torque scaling 0 - 100% of the maximum value (see chapter 6.2.2).<br>The torque scaling is tapped directly after the analog filter and before the dead band. The dead band is thus without any effect for these functions!                                                   |      | ~    |
| 40  | PM10V   | Analog setpoint<br>input<br>-10 V +10 V | Setpoint specification 0-10 V. Observe the standardization<br>and adapt the setpoint structure by means of the setpoint<br>selector.                                                                                                                                                | ~    |      |
| 41  | 0-20V   | Current input                           | Only for CDB3000!<br>0 20 mA current input                                                                                                                                                                                                                                          | ~    |      |
| 42  | 4-20V   | Current input<br>4 20 mA                | Only for CDB3000!<br>If the current drops below 3 mA the open-circuit monitoring<br>is triggered The reaction to this error message is<br>determined by parameter 529-R-WBK.                                                                                                        | ~    |      |
| 43  | OVR     | Speed override                          | 0 - 150%<br>Scaling of the parameterized travel speed in positioning<br>(see chapter 5.2.3, sub-subject "Speed override").<br>The override is tapped directly after the analog filter and<br>before the dead band. The dead band is thus without any<br>effect for these functions! |      | ~    |

### Setting the function selectors FISAO and FISA1:

 Table 6.11
 Function selectors for analog inputs FISA0 and FISA1

Α



### 6.1.4 Analog output for CDB3000

|                                                                                                                                                                                             | Effect                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| <ul> <li>Determination which<br/>actual value is to be<br/>submitted to the ana<br/>output (0 10V)</li> </ul>                                                                               | analog actual values                                                                 |
| (2)<br>Function                                                                                                                                                                             | (4)<br>Reference value10 V<br>(3) (5)<br>Filter 0 V<br>0 V<br>OSA00<br>S             |
| <ol> <li>Actual value</li> <li>Selection of the actual</li> <li>Output filter for interfer</li> <li>3000 ms</li> <li>Reference value 10 V</li> <li>Standardization of the actual</li> </ol> | erence decoupling from 10 to                                                         |
| <ul> <li>(2) Selection of the actual</li> <li>(3) Output filter for interference value</li> <li>(4) Reference value</li> <li>(5) Standardization of the actual</li> </ul>                   | erence decoupling from 10 to                                                         |
| <ul> <li>(2) Selection of the actual</li> <li>(3) Output filter for interference value</li> <li>(4) Reference value</li> <li>(5) Standardization of the actual</li> </ul>                   | erence decoupling from 10 to<br>analog output<br>for adaptation of the analog output |

(1) Output value, e. g. frequency



#### 6 General software functions



t t t J J J Inputs...



| outputs           |                                                                                                                | ×        |
|-------------------|----------------------------------------------------------------------------------------------------------------|----------|
|                   | Digital UM8I40   virtual                                                                                       | Options. |
| OV corresponds to | and a second |          |
|                   |                                                                                                                |          |
| 0V corresponds to | 0 ≈ of reference value                                                                                         |          |

2

3

4

5

6

Α

EN

### Fig. 6.19 Tab "Analog outputs FOSA0" of the CDB3000

| DriveManager         | Value range | WE   | Unit | Parameters          |
|----------------------|-------------|------|------|---------------------|
| Function             | OFF PLC     | ACTN |      | 200_F0SA0<br>(_0UT) |
| Filter               | 10 3000     | 10   | ms   | 203_0ATF0<br>(_0UT) |
| 0V corresponds with  | -200 200    | 0    | %    | 201_0AMN0<br>(_0UT) |
| 10V corresponds with | -200 200    | 100  | %    | 202_0AMX0<br>(_0UT) |

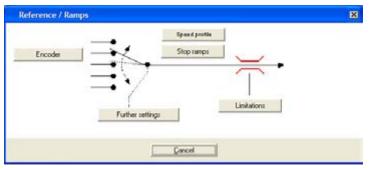
#### Explanations

- For both corner points (0 V, 10 V) the actual value can be adapted in the range from 200 % to + 200 % from a reference value.
- In the hardware the analog output is filtered by a filter with a cut-off frequency of 100 Hz.

### Setting the function selector for FOSA0:

| BUS | Setting | Function                               | Reference value    |
|-----|---------|----------------------------------------|--------------------|
| 0   | OFF     | no function, the input is switched off |                    |
| 1   | ACTT    | current actual torque                  | max. torque        |
| 2   | ACTN    | current actual speed                   | max. speed         |
| 3   | AACTN   | Value of the current actual speed      | max. speed         |
| 4   | APCUR   | actual apparent current                | 2 * I <sub>N</sub> |

#### 6 General software functions


| BUS | Setting | Function                                      | Reference value |
|-----|---------|-----------------------------------------------|-----------------|
| 5   | ISA00   | ISA00                                         | 10 V / 20 mA    |
| 6   | ISA01   | ISA01                                         | 10 V            |
| 7   | MTEMP   | actual motor temperature                      | 200 °C          |
| 8   | KTEMP   | actual heat sink temperature                  | 200 °C          |
| 9   | DTEMP   | actual inside temperature                     | 200 °C          |
| 10  | PLC     | Specify the value from the sequencing control | 10.000          |


# 6.2 Setpoint generation

| Function                                                                                                                                                                  | Effect                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|
| The setpoint generation<br>serves the preparation of the<br>setpoint. Here the application<br>dependent setpoint structure<br>is supplied with "raw data"<br>and limited. | All system conditions have<br>an effect on the setpoint. |
| • The setpoint is changed in dependence on various system conditions (errors, warnings, etc.).                                                                            |                                                          |
| Beference/Bamps                                                                                                                                                           |                                                          |
|                                                                                                                                                                           | e setpoint generation for closed-loop                    |

2.

Fig. 6.20 shows all functions of the setpoint generation for closed-loop control types speed control and torque control. These functions are described next. If this mask is opened when presetting a positioning process, the "Speed profile" function will not be displayed.





3

6

7

Α

# 6.2.1 Rotary speed profile

| Function                                                                                      | Effect                                                                                                        |
|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Setting of acceleration and<br>deceleration ramps for the<br>rotary speed profile             | <ul> <li>Matching the dynamics of the motor to the application</li> <li>Jerk reduced moving of the</li> </ul> |
| <ul> <li>Setting of a slip for the start<br/>and end points of the linear<br/>ramp</li> </ul> | drive                                                                                                         |

This function is only available for speed controlled and, to a limited extent, for torque controlled presettings. It is described in chapter 4.2.1.

### 6.2.2 Limitations

| Fun | ction                          | Effect                                |
|-----|--------------------------------|---------------------------------------|
| •   | Limitation of torque and speed | Setting maximum and<br>minimum values |
|     |                                |                                       |

The maximum permissible torque and the maximum speed are set as a percentage of their nominal values.



**Note:** If the setting is higher, the percentage based scaling of the torque is automatically reduced to the maximum torque that can be set with the drive controller, during the controller initialization.

| forque limit: |        |     |       |                    |         |
|---------------|--------|-----|-------|--------------------|---------|
| 0.000.000     | 100.00 | 2   | 10200 | Motor rated torque | - 222.0 |
| Mmax =        | 100%   |     | ×     | 41                 | Nm      |
| Speed limit:  |        |     |       |                    |         |
|               | 100.00 | - x |       | Motor rated speed  |         |
| Nmax =        | 100%   |     | ×     |                    | 1/min   |

### Fig. 6.21 Limitations

| DriveManager       | Value range | WE     | Unit | Parameters           |
|--------------------|-------------|--------|------|----------------------|
| Torque limitation  | 0.00 999.95 | 100.00 | %    | 803_TCMMX<br>(_CTRL) |
| Rated motor torque | 0.001 5000  | 4.1    | Nm   | 852_MOMNM<br>(_MOT)  |
| Speed limitation   | 0.00 999.95 | 100.00 | %    | 813_SCSMX<br>(_CTRL) |
| Rated motor speed  | 0 100000    | 1500   | rpm  | 157_MOSNM<br>(_MOT)  |

8

1

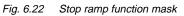
2

5

6



There are two possible ways to limit the torque variably, while the closed-loop control is active:


- Torque limitation via analog input ISA1 With setting FISA1=SCALE the set maximum torque is reduced from 0% (0 V) - 100% (10 V).
- Torque limitation by means of parameter 805-SCALE With this setting the set maximum torque is reduced from 0% - 100%. The parameter is permanently stored, i. e. after switching the mains supply on the setting is always 100%. With this function the maximum torque can be dynamically changed via field bus or PLC.

If the analog input is set to FISA1=SCALE, setting the parameter 805-SCALE will have no effect.

| Function       | Value range   | WE     | Data<br>types       | Parameters           |
|----------------|---------------|--------|---------------------|----------------------|
| Torque scaling | 0.00 100.00 % | 100.00 | fixpoint16<br>(RAM) | 805_SCALE<br>(_CTRL) |

### 6.2.3 Stop ramps

|       |                          |                           | D:#***                                       |                |
|-------|--------------------------|---------------------------|----------------------------------------------|----------------|
| d     | eceleration rar          | various                   | <ul> <li>Different r<br/>possible</li> </ul> | amp settings a |
| S     | stem conditio            |                           |                                              |                |
| -     | Switch of cl<br>control  | losed-loop                |                                              |                |
| _     | Stop feed                |                           |                                              |                |
| _     | Quick stop               |                           |                                              |                |
| _     | Error                    |                           |                                              |                |
|       |                          |                           |                                              |                |
|       |                          |                           |                                              |                |
| Stop  | o ramps                  |                           |                                              | EX.            |
| Reac  | tion at "control off"    |                           |                                              |                |
| 1-5   | low down with decelera   | ation tamp                |                                              | -              |
| Reac  | tion at "halt feed"      |                           |                                              |                |
| 1=5   | low down with decelera   | ation ramp                |                                              |                |
| Reac  | tion at "quick stop"     |                           |                                              |                |
| 2=8   | itake with quick-stop ra | mp, controll off          |                                              | •              |
| Quici | stop ramp                | 3000.                     | 1/min/s                                      |                |
|       |                          |                           |                                              |                |
|       | tion at error messag     | and the second second     | -                                            |                |
| -     | and to see also and the  | reaction (producer specil | hc)                                          | -              |
| -     | acc. to entir depending  |                           |                                              |                |
| -1 =  | stop ramp                | _3000                     | 1/min/s                                      |                |
| -1 =  | Company and a            | _3000                     | 1/min/s Error reactions                      |                |



| DriveManager                                            | Value range           | WE   | Unit | Parameters           |
|---------------------------------------------------------|-----------------------|------|------|----------------------|
| Reaction with "Control off"<br>- Shutdown Option Code - | -1 1                  | 0    |      | 663_SDOPC<br>(_SRAM) |
| Reaction with "Stop feed"<br>- Stop Option Code -       | 0 4                   | 1    |      | 664_HAOPC<br>(_SRAM) |
| Reaction at quick stop<br>- Quick Stop Option Code -    | 0 8                   | 2    |      | 661_QSOPC<br>(_SRAM) |
| Quick stop ramp                                         | 0 32760 <sup>1)</sup> | 3000 | rpm  | 592_STOPR<br>(_SRAM) |



6

7

A

| DriveManager                                                              | Value range           | WE   | Unit | Parameters           |
|---------------------------------------------------------------------------|-----------------------|------|------|----------------------|
| Reaction in case of error<br>message<br>- Fault Reaction Option<br>Code - | -1                    | -1   |      | 662_FROPC<br>(_SRAM) |
| Error stop ramp                                                           | 0 32760 <sup>1)</sup> | 3000 | rpm  | 593_ERR_R<br>(_SRAM) |

1) A setting of 0 rpm means braking with max. dynamics / max. ramp.

### Reactions in case of "Control off"

The condition transition "Control off" is passed through when switching off the output stage. The closed-loop control is shut down via various control channels (terminals, bus, PLC).

| BUS | Setting | Reaction                                                                                        |
|-----|---------|-------------------------------------------------------------------------------------------------|
| -1  | -1      | As reaction in case of quick stop                                                               |
| 0   | 0       | Lock output stage - drive "runs out"                                                            |
| 1   | 1       | The drive brakes with programmed deceleration ramp, the<br>output stage is subsequently locked. |

Table 6.12 Setting of reaction with "Control off"

### Reaction with "Stop feed"

The status "Stop feed" brakes an ongoing movement, as long as the condition is active. During braking acceleration to the previous status is possible. When deactivated acceleration will take place along the programmed acceleration ramp.

"Stop feed" is triggered by:

| Triggering<br>location | HALT switch on    | HALT switch off   |
|------------------------|-------------------|-------------------|
| Terminals              | FIxxx = /HALT = 0 | FIxxx = /HALT = 1 |
| Field bus              | Bit HALT = 1      | Bit HALT = 0      |
| PLC                    | SET HALT = 1      | SET HALT = 0      |

Table 6.13 Triggering locations for HALT

| BUS | Setting | Reaction                                                                         |  |
|-----|---------|----------------------------------------------------------------------------------|--|
| 0   | 0       | No function - please do not adjust                                               |  |
| 1   | 1       | Braking with programmed deceleration ramp                                        |  |
| 2   | 2       | Braking with quick stop ramp                                                     |  |
| 3   | 3       | Braking with max. dynamics at the current level. The speed setpoint is set to 0. |  |
| 4   | 4       | Braking with max. dynamics at the current level. The speed setpoint is set to 0. |  |

Table 6.14 Setting the reactions with HALT

#### Reactions with quick stop:

Quick stop brakes a running movement. The drive controller is in "Quick stop" state. Acceleration up to the previous state "Technology ready" is possible during the braking process and in dependence on the reaction, as long as the closed-loop control is active.

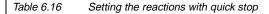
Quick stop is triggered via:

| Triggering<br>location | Quick stop - enable | Quick stop - disable |
|------------------------|---------------------|----------------------|
| Terminals              | FIxxx = /STOP = 0   | FIxxx = /STOP = 1    |
| Field bus              | Bit /STOP = 0       | Bit /STOP = 1        |
| PLC                    | Set brake = 1       | SET BRAKE = 0        |

Table 6.15Quick stop triggering locations

| BUS        | Setting   | Reaction                                                                                                                      |
|------------|-----------|-------------------------------------------------------------------------------------------------------------------------------|
| 0          | 0         | Lock output stage - drive "runs out"                                                                                          |
| 1          | 1         | Braking with programmed deceleration ramp, the output stage is subsequently locked.                                           |
| 2          | 2         | Braking with quick stop ramp,<br>the output stage is subsequently locked.                                                     |
| 3          | 3         | Braking with max. dynamics at the current level. The speed setpoint is set to 0, the output stage is subsequently locked.     |
| 4          | 4         | Braking with max. dynamics at the current level. The speed setpoint is set to 0, the output stage is subsequently locked.     |
| 5          | 5         | Braking with programmed deceleration ramp. The drive remains in quick stop state, the axis is energized with speed 0. $^{1)}$ |
| Table 6 16 | Sotting t | he reactions with quick stop                                                                                                  |

Table 6.16Setting the reactions with quick stop




1



| ĺ | BUS | Setting | Reaction                                                                                                                                                            |
|---|-----|---------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 6   | 6       | Braking with quick stop ramp. The drive remains in quick stop state, the axis is energized with speed 0. $^{1)}$                                                    |
|   | 7   | 7       | Braking with max. dynamics at the current level. The speed setpoint is set to 0. The drive remains in quick stop state, the axis is energized with speed 0. $^{1)}$ |
|   | 8   | 8       | Braking with max. dynamics at the current level. The speed setpoint is set to 0. The drive remains in quick stop state, the axis is energized with speed 0. $^{1)}$ |

<sup>1)</sup> Transition to the state "Technology ready" is only possible by resetting the quick stop request. In "Quick stop" state cancelling the signal "Start closed-loop control/drive" has no effect, as long as the quick stop request is not reset as well.



#### **Reaction with error**

The reaction of the error stop ramp always depends on the corresponding error. This is described in chapter 6.9.

| Function                                                                                                                                   | Effect                                                                                                   |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--|--|
| <ul> <li>TTL or HTL reference encoder input as<br/>setpoint source (Master)</li> <li>Voltageless connection when using the HTL-</li> </ul> | <ul> <li>Following axis (Slave)</li> <li>Speed and angle synchronous synchronism related to a</li> </ul> |  |  |
| input on CDB3000                                                                                                                           | leading axis (Master)                                                                                    |  |  |
| <ul> <li>A/B incremental or pulse direction signals</li> <li>Transmission ratio can be set in form of a fraction</li> </ul>                | Master-Slave operation                                                                                   |  |  |

The configuration of the reference encoder input must be set in function "Setpoint/ramps", option "Reference encoder".

### 6.2.4 Reference encoder/ Master-Slave operation

Encoder





Note:

The configuration of the reference encoder input uses the same parameters, as the encoder configuration (see chapter 6.4.2), because the hardware interfaces are identical. Changing the reference encoder parameterization thus has a direct influence on the encoder configuration.

| laster encoder:                                                                                       | TTL51(1) = 551                                                                                                            | or TTL-encoder (%7)                                                                                                                                               |                                |
|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|
| Input                                                                                                 | ECTTL(1) = TTL-e                                                                                                          | ncoder                                                                                                                                                            |                                |
| Signal type                                                                                           | A_8 (0) = A/8 Incr                                                                                                        | mental encoder signs                                                                                                                                              | da 💌                           |
| Transmission                                                                                          | atio                                                                                                                      | 2.                                                                                                                                                                |                                |
| Input ing                                                                                             | sulse / revolution                                                                                                        | 1                                                                                                                                                                 |                                |
| i =                                                                                                   |                                                                                                                           | ×1                                                                                                                                                                | _                              |
|                                                                                                       | 1.                                                                                                                        | 3.                                                                                                                                                                |                                |
| Master encoder:                                                                                       | Dk<br>(HTL (2) = HTL m                                                                                                    |                                                                                                                                                                   | Acoly                          |
| laster encoder:                                                                                       |                                                                                                                           | ncoder (P2)                                                                                                                                                       |                                |
| laster encoder:<br>Please set funct                                                                   | HTL (2) = HTL e                                                                                                           | ncoder (P2)<br>uts to encoder (EIN                                                                                                                                | .)<br>C)=                      |
| Please set funct<br>ISD02 ENC (3                                                                      | HTL (2) = HTL e                                                                                                           | ncoder (2)<br>uts to encoder (EIX<br>S001, A. ISD02, B. IS                                                                                                        | <br>c)≠<br>sDO3)               |
| Inster encoder:<br>Please set funct<br>ISD02 ENC (3<br>ISD03 EXCER                                    | HTL (2) = HTL-er<br>ion of following inp<br>(7) = HTL-ercoder (0.1                                                        | ncoder (PQ)<br>uts to encoder (EM<br>SD01, A. ISD02, 8-15<br>SD01, A. ISD02, 8-15                                                                                 | <br>c)≠<br>sDO3)               |
| Inster encoder:<br>Please set funct<br>ISD02 ENC (3<br>ISD03 EXCER                                    | HTL (2) = HTL-er<br>ion of following inpr<br>(7) = HTL-encoder (0. 1<br>7) = HTL-encoder (0. 1<br>A_B (0) = A/B Increment | ncoder (P2)<br>uts to encoder (EN<br>SD01, A: ISD02, 8: IS<br>SD01, A: ISD02, 8: IS<br>SD01, A: ISD02, 8: IS<br>Not encoder signals<br>Rate encoder signals<br>2. | 2<br>C)=<br>6003) •<br>5003) • |
| Aster encoder:<br>Please set funct<br>ISD02 ENC 13<br>ISD03 ESCRE<br>Signal type 7<br>Transmission ra | HTL (2) = HTL-er<br>ion of following inpr<br>(7) = HTL-encoder (0. 1<br>7) = HTL-encoder (0. 1<br>A_B (0) = A/B Increment | ncoder (PQ)<br>uts to encoder (EIM<br>SD01, A. ISD02, 8-15<br>SD01, A. ISD02, 8-15<br>Roll encoder tignals                                                        | 2<br>C)=<br>6003) •<br>5003) • |

Fig. 6.23 Setting the reference encoder for TTL- (top) and HTL- input (bottom, only for CDB3000)

1

Note:

The figures 1., 2. and 3. are explained in Table 6.19 for the TTL-input and in Table 6.20 for the HTL-input.



1

2

6

#### Selecting the reference encoder for CDB3000

| DriveManager         | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                       | Value range       | WE      | Unit | Parameters          |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|---------|------|---------------------|
| Reference<br>encoder | Selection of the reference encoder channel:         OFF (0):       Off - No reference encoder needed. The TTL/<br>HTL encoder interfaces can be used for<br>motor encoders.         TTLSI (1):       TTL- reference encoder on X7. This input is<br>not voltageless with respect to the control<br>electronics of the controller.         HTL (2):       HTL- reference encoder on control terminal<br>X2. Voltageless input. | OFF (0) - HTL (2) | 0FF (0) | -    | 475-CFREC<br>(_ENC) |

 Table 6.17
 Selecting the reference encoder for CDB3000

#### Selecting the reference encoder for CDE/CDF3000

| DriveManager         | Meaning                                                                                                                                                                                                                                                                                                                                                                   | Value range      | WE      | Unit | Parameters          |
|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------|------|---------------------|
| Reference<br>encoder | <ul> <li>Selection of the reference encoder channel:</li> <li>OFF (0): Off - No reference encoder needed. The TTL/<br/>HTL encoder interfaces can be used for<br/>motor encoders.</li> <li>X6 (1): No function</li> <li>X7 (2): TTL- reference encoder on X7. This input is<br/>not voltageless with respect to the control<br/>electronics of the controller.</li> </ul> | 0FF (0) - X7 (2) | 0FF (0) | -    | 475-CFREC<br>(_ENC) |

 Table 6.18
 Selecting the reference encoder for CDE/CDF3000

| DriveManager                                        | Meaning                                                                                                                                                                                                                                                                                                                                                                               | Value range                                                                                      | WE                                                     | Unit | Parameters          | 1      |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------|------|---------------------|--------|
| input                                               | Input configuration on X7:<br>CDB3000: ECTTL (1):<br>CDE/CDF3000: ECTTL (4):<br>The input is evaluated as TTL-encoder. The<br>index signal of the encoder is not evaluated in<br>the "Reference encoder" function.<br>All other parameter settings are invalid for the<br>reference encoder configuration. These are<br>reserved for motor code setting or Master/Slave-<br>coupling. | CDB3000:<br>OFF (0) - SSISL (4)<br>CDE/CDF3000:<br>OFF(0) - SSIMS(7)<br>here only<br>ECTTL valid | CDB3000:<br>ECTTL (1)<br>CDE/<br>CDF3000:<br>ECTTL (4) | -    | 438-CFX7<br>(_ENC)  | 2<br>3 |
| Signal type                                         | A_B (0): Two 90 phase-displaced incremental<br>signals A/B serve as input signals<br>A_DIR (1): Track A is the clock input. Track B defines<br>the direction of counting or rotation (Low:<br>clockwise, High: anti-clockwise)                                                                                                                                                        | A_B (0) - A_DIR (1)                                                                              | A_B (0)                                                | -    | 484-ECST1<br>(_ENC) | 4      |
| Ratio -<br>input pulse/<br>revolution ( <b>1.</b> ) | Reference encoder pulses                                                                                                                                                                                                                                                                                                                                                              | 32 - 8192                                                                                        | 1024                                                   | -    | 432-ECLN1<br>(_ENC) | 5      |
| Ratio -<br>numerator ( <b>2</b> .)                  | Numerator for ratio between leading and following<br>axis. If leading and following axes are be counter-<br>rotating, a negative numerator must be entered. The<br>numerator can be changed online.                                                                                                                                                                                   | -32768 - 32767                                                                                   | 1                                                      |      | 435-ECN01<br>(_ENC) | 6      |
| Ratio -<br>denominator ( <b>3.</b> )                | Denominator for ratio between leading and following axis. The denominator can be changed offline (controller off)                                                                                                                                                                                                                                                                     | 0 - 65535                                                                                        | 1                                                      |      | 436-ECDE1<br>(_ENC) | 7      |

#### | Configuration of a TTL- reference encoder

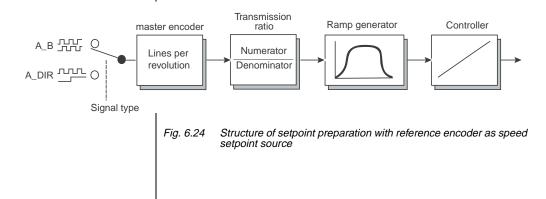
 Table 6.19
 Configuration of a TTL- reference encoder

8

A



#### Configuration of a HTL- reference encoder with CDB3000


The digital inputs ISD02 and ISD03 must be set to "Encoder input ENC (37)".

| DriveManager                                        | Meaning                                                                                                                                                                                                                        | Value range         | WE      | Unit | Parameters          |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|------|---------------------|
| Signal type                                         | A_B (0): Two 90 phase-displaced incremental<br>signals A/B serve as input signals<br>A_DIR (1): Track A is the clock input. Track B defines<br>the direction of counting or rotation (Low:<br>clockwise, High: anti-clockwise) | A_B (0) - A_DIR (1) | A_B (0) | -    | 483-ECST2<br>(_ENC) |
| Ratio -<br>input pulse/<br>revolution ( <b>1.</b> ) | Reference encoder pulses                                                                                                                                                                                                       | 32 - 8192           | 1024    | -    | 482-ECLN2<br>(_ENC) |
| Ratio -<br>numerator ( <b>2</b> .)                  | Numerator for ratio between leading and following<br>axis. If leading and following axes are be counter-<br>rotating, a negative numerator must be entered. The<br>numerator can be changed online.                            | -32768 - 32767      | 1       |      | 480-ECN02<br>(_ENC) |
| Ratio -<br>denominator ( <b>3.</b> )                | Denominator for ratio between leading and<br>following axis. The denominator can be changed<br>offline (controller off)                                                                                                        | 0 - 65535           | 1       |      | 481-ECDE2<br>(_ENC) |

 Table 6.20
 Configuration of a HTL- reference encoder

#### Reference encoder in speed controlled operation

For speed regulation with reference encoder setpoint source no preset solution is available. You should therefore select a preset solution, which, in any case, complies with the desired control location (e. g. terminal or field bus). Then select the setting "RDIG (4)" from the function mask "Setpoint/ramp - further settings" instead of the specified setpoint source. Fig. 6.24 shows the structure of the selected setpoint preparation.



The speed setpoint in rpm is smoothened by means of the speed profile generator (see chapter 4.2.1). The function "/HALT - feed/speed release" can be used to couple or decouple the following axis via digital input or field bus, when the motor control is active.

The speed setpoint of the reference encoder always refers to the motor shaft. When using a gearbox on motor and target and the drive shaft speed is to be determined by the reference encoder, the gearbox ratio must be parameterized in the reference encoder configuration.

The speed synchronism can also be activated via PLC (see chapter 7.3.2 - "Speed synchronism" on page 7-36). Further possibilities for adapting the setpoint source can be found in chapter 6.2.5.

# Reference encoder in positioning operation (electronic transmission)

In positioning operation synchronous travel with reference encoder setpoint specification is controlled via PLC with special program commands. For this purpose you should select a preset solution with specified setpoint via PLC.

| Switching on synchronous travel (coupling):  | GOSYN 1 |
|----------------------------------------------|---------|
| Switching off synchronous travel (decouple): | GOSYN 0 |

Table 6.21 PLC-commands to control synchronous travel



Note:

Switching on synchronous travel occurs abrupt, without limitation of the axis dynamics by ramps. Soft coupling to a moving leading axis is not possible.

The reference encoder position refers to the motor shaft. The unit is always in increments (65536 Incr = 1 motor revolution). If the reference encoder position is to be directly related to the output shaft, the transmission ration must be entered for the reference encoder. A transmission ratio in the standardizing assistant will be ignored when using the reference encoder.

1

6

#### Example for reference encoder configuration with CDB3000:

System structure:

- HTL reference encoder as setpoint specification connected to terminal X2 on CDB3000.
- CDB3000 with gear motor (i = 56/3)
- A transmission ratio of 56/3 was entered in the standardizing assistant (under basic settings).

Conclusions:

- with a reference encoder transmission ratio of 1/1 the reference encoder setpoint refers to the motor shaft of the gear motor.
- ➤ with a reference encoder transmission ratio of 56/3 the reference encoder setpoint refers to the output shaft of the gear motor.

Further information on PLC-programming see chapter 7. Concerning angular synchronism see chapter 7.3.2 - "Angular synchronism (electronic transmission)" on page 7-36.



| .2.5 Setpoint<br>structure -            | Function Effect                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| further<br>settings/control<br>location | <ul> <li>The setpoint structure adds<br/>up both setpoints channels.<br/>Each channel can obtain a<br/>setpoint source from a fixed<br/>selection.</li> <li>The setpoint structure is<br/>adapted to the application by<br/>the preset solution, so that<br/>most applications do not<br/>require any adaptation.</li> </ul> |
|                                         | <ul> <li>There is one setpoint<br/>structure each for speed<br/>controlled operation and<br/>positioning operation.</li> <li>For special applications the<br/>internal processing of the<br/>setpoint can be adapted<br/>through the flexible setpoint<br/>structure.</li> </ul>                                             |
| i                                       | Note: This chapter addresses solely users, who cannot find their particular drive solution or an approach to their solution in the preset solutions.                                                                                                                                                                         |
|                                         | Reference - further settings 🔀                                                                                                                                                                                                                                                                                               |
|                                         | Source 1: Standardreference:                                                                                                                                                                                                                                                                                                 |
|                                         | RPLC (6) = Reterence of PLC         I           Reference source 1 on selection via input<br>(input function = SADD1)         RCON (0) = Reterence constant 0         I                                                                                                                                                      |
|                                         | Source 2:<br>Standardreference:<br>RCDN [0] = Reference constant 0<br>Reference source 2 on<br>selection via input (input<br>function = SADD2)<br>RCDN [0] = Reference constant 0                                                                                                                                            |
|                                         | Seed-motor-soti  OFF [0] = Inactive                                                                                                                                                                                                                                                                                          |
|                                         | Control location of motor control: FLC (6) = Control Via process program  E valuation of start signal: OFF (0) = edge triggered                                                                                                                                                                                              |
|                                         |                                                                                                                                                                                                                                                                                                                              |

Fig. 6.25 Tab Reference - further settings

The control location for the motor control is described in the separate chapter 6.2.6.



2

3

5

6

7

Settings for source 1 / source 2

| DRIVEMANAGER                                                               | Value range | WE          | Unit | Parameters                       |
|----------------------------------------------------------------------------|-------------|-------------|------|----------------------------------|
| Standard setpoint                                                          | RCONROPT    | RA0<br>RCON |      | 280_RSSL1<br>281_RSSL2<br>(_REF) |
| Setpoint source1,<br>Setpoint source2,<br>when switching over<br>via input | RCONROPT    | RCON        |      | 289_SADD1<br>290_SADD2<br>(_REF) |

Settings for RSSL1 / RSSL2 and SADD1 / SADD2:

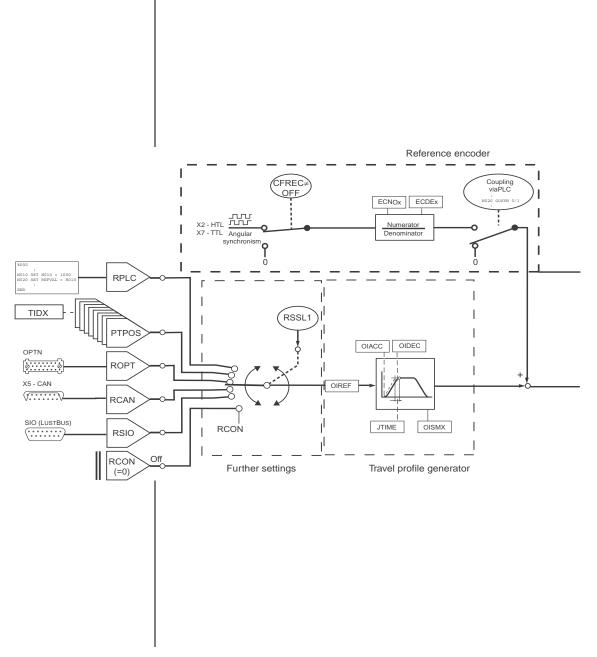
| BUS | Setting | Function                                      |
|-----|---------|-----------------------------------------------|
| 0   | RCON    | Setpoint constantly zero                      |
| 1   | RA0     | Setpoint of analog input ISA00                |
| 2   | RA1     | Setpoint of analog input ISA01                |
| 3   | RSIO    | Setpoint for serial interface                 |
| 4   | RDIG    | Setpoint for digital input in Slave-operation |
| 5   | RCAN    | Setpoint for CAN-interface                    |
| 6   | RPLC    | Setpoint for PLC                              |
| 7   | RTAB    | Setpoint from travel set table                |
| 8   | RFIX    | Setpoint of fixed value                       |
| 9   | RMIN    | Setpoint of minimum value                     |
| 10  | RMAX    | Setpoint of maximum value                     |
| 11  | ROPT    | Setpoint for communication module             |
| 12  | RPARA   | Setpoint for parameter interface              |

The following section describes the corresponding setpoint structures for torque/speed control and positioning.

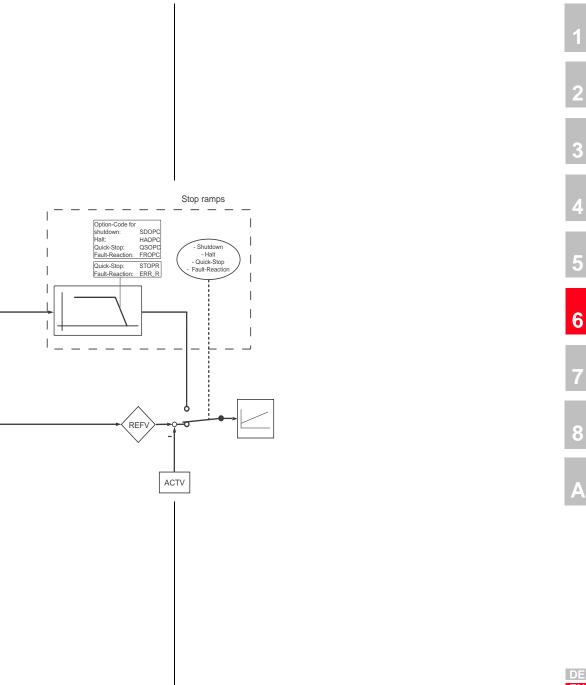
| Symbol | Meaning                                                        |
|--------|----------------------------------------------------------------|
|        | Setpoint source (input), partly with second characteristic set |
| I      | Setpoint selector (switch)                                     |
|        | Parameters                                                     |

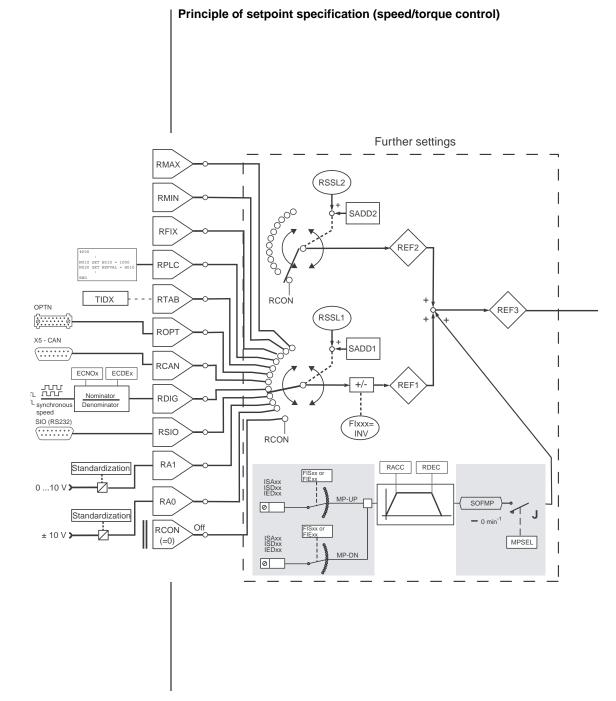


Table 6.22 Symbols used in the block diagrams

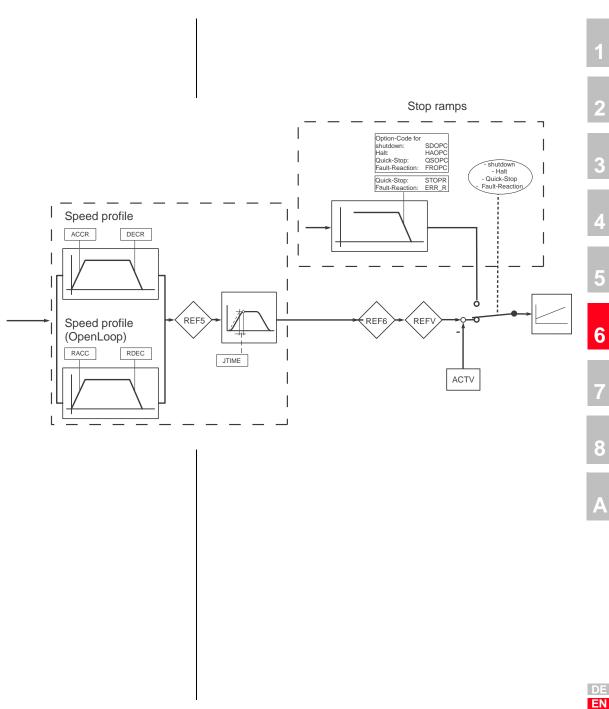

| Symbol     | Meaning                                   |   |   |
|------------|-------------------------------------------|---|---|
| $\bigcirc$ | Intermediate setpoints (for display only) | 4 | 1 |
|            | Limitation of setpoint                    |   | 2 |
|            | mathematical influence                    | 1 |   |
| Table 6.22 | Symbols used in the block diagrams        |   |   |




DE EN




Block diagram of setpoint specification (position control)




#### 6 General software functions





#### 6 General software functions



#### Further parameters of setpoint structure

| Function                        | Value range  | WE | Unit | Parameters |
|---------------------------------|--------------|----|------|------------|
| Analog setpoint input ISA00     | -32764 32764 | 0  |      | 282-RA0    |
| Analog setpoint input ISA01     | -32764 32764 | 0  |      | 283-RA1    |
| Setpoint for serial interface   | -32764 32764 | 0  |      | 284-RSI0   |
| Setpoint communication slot     | -32764 32764 | 0  |      | 287-ROPTN  |
| CAN bus setpoint                | -32764 32764 | 0  |      | 288-RCAN   |
| Setpoint of setpoint selector 1 | -32764 32764 |    |      | 291-REF1   |
| Setpoint of setpoint selector 2 | -32764 32764 |    |      | 292-REF2   |
| REF1 + REF2                     | -32764 32764 | 0  |      | 293-REF3   |
| Setpoint after ramp generator   | -32764 32764 | 0  |      | 295-REF5   |
| Setpoint after slip             | -32764 32764 | 0  |      | 296-REF6   |

Table 6.23Parameters of the setpoint structure

#### 6.2.6 . . +: C

| 6.2.6 Control location                    | Function                                           |                                                                             | Effect                                                                                                                                                                                                                                                                                                                 |      |                      |  |
|-------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------------------|--|
|                                           | interface for su<br>control comma<br>loop control. | ation determines the<br>bmission of the<br>nd to start the closed-          | <ul> <li>The control location is automatically set when choosing a preset solution.</li> <li>Possible control locations are (see Table 6.26):         <ul> <li>Terminals</li> <li>Control unit</li> <li>Serial interface</li> <li>Optional slot (PROFIBUS),</li> <li>CAN-interface</li> <li>PLC</li> </ul> </li> </ul> |      |                      |  |
|                                           |                                                    | tion is set with paran<br>etpoint/Ramps - furthe                            |                                                                                                                                                                                                                                                                                                                        |      | RIVEIMANAGER         |  |
|                                           | DRIVEMANAGER                                       | Value range                                                                 | WE                                                                                                                                                                                                                                                                                                                     | Unit | Parameters           |  |
|                                           | Control location for motor control                 | OFF PLC                                                                     | TERM                                                                                                                                                                                                                                                                                                                   |      | 260_CLSEL<br>(_CONF) |  |
|                                           | Table 6.24 Pa                                      | arameter control locatio                                                    | n                                                                                                                                                                                                                                                                                                                      |      |                      |  |
|                                           | Evaluation of s                                    | tart signal                                                                 |                                                                                                                                                                                                                                                                                                                        |      |                      |  |
|                                           | Prerequisites for                                  | starting the controller:                                                    |                                                                                                                                                                                                                                                                                                                        |      |                      |  |
|                                           | signal (High-<br>• The device s                    | status "Safe Stop" (on                                                      |                                                                                                                                                                                                                                                                                                                        |      | -                    |  |
|                                           | version "SH"                                       |                                                                             |                                                                                                                                                                                                                                                                                                                        |      | . 1                  |  |
|                                           |                                                    | s evaluated in depend                                                       |                                                                                                                                                                                                                                                                                                                        | 0    |                      |  |
| Start "flank triggered" (factory setting) | signal is at High-                                 | ace after a Low-High<br>-Level immediately aft<br>igh transition is require | er switchir                                                                                                                                                                                                                                                                                                            |      |                      |  |
| Start "Level triggered" (Auto-<br>Start)  |                                                    |                                                                             |                                                                                                                                                                                                                                                                                                                        |      |                      |  |
|                                           |                                                    | also used for automa switched on by param                                   |                                                                                                                                                                                                                                                                                                                        |      | itching on the       |  |
|                                           |                                                    |                                                                             |                                                                                                                                                                                                                                                                                                                        |      |                      |  |
|                                           |                                                    |                                                                             |                                                                                                                                                                                                                                                                                                                        |      |                      |  |
|                                           |                                                    |                                                                             |                                                                                                                                                                                                                                                                                                                        |      |                      |  |

6

A

DE EN



Attention: With Auto-Start the drive starts automatically after Mains On or after resetting an error, depending on the error reaction.

| Function   | Meaning                                                                | Value range | WE  | Parameter         |
|------------|------------------------------------------------------------------------|-------------|-----|-------------------|
| Auto-Start | OFF: Start Low-High-<br>flank triggered<br>ON. Start "Level triggered" | OFF/ON      | 0FF | 7-AUTO<br>(_CONF) |

Table 6.25Parameter Auto-Start

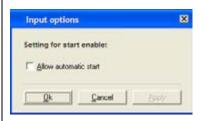



Fig. 6.26 Setting of Auto-Start function with selection via terminal (TERM)

#### Setting of control location selector 260-CLSEL

| BUS | KeyPad/<br>DriveManager | Function                                                              |
|-----|-------------------------|-----------------------------------------------------------------------|
| 0   | 0FF                     | no function                                                           |
| 1   | TERM                    | Control via terminal strip                                            |
| 2   | KPAD                    | Control via KeyPad                                                    |
| 3   | SIO                     | serial interface RS232 ( <u>S</u> erial <u>I</u> nput <u>O</u> utput) |
| 4   | CAN                     | Control via CANopen interface                                         |
| 5   | OPTN                    | Control via communication module                                      |
| 6   | PLC                     | Control via sequencing program                                        |
| 7   | PARAM                   | Control via parameter interface<br>- NO FUNCTION -                    |



Settings for 260-CLSEL control location selector



| Terminals (TERM)                           | To start the controller in control mode "Terminal" a digital input must be parameterized to FIxxx = START.                                                                                                                         |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | With the settings FIxxx = STR, STL a start command can be specified for a direction of rotation. The start commands are thereby decisive for the sense of rotation.                                                                |
|                                            | In order to save an input, the start function with Auto-Start can also be parameterized to a virtual input. The controller is in this case started by setting the hardware release ENPO.                                           |
| Operation panel KeyPAD KP200-<br>XL (KPAD) | In the CONTROL menu the operation panel completely takes over the controller. It sets the control location selector and the setpoint channel 1 to KP200-XL. The second setpoint channel is disabled.                               |
|                                            | With the operation panel one can take over the control of the closed-loop control and specify a signed setpoint to determine the sense of rotation                                                                                 |
| ĺ                                          | Note: The operation panel KP200-XL is connected to the CDF3000 using an additional interface cable.                                                                                                                                |
| Serial interface (SIO)                     | A special bus protocol is used to control the positioning controllers via the serial interface (terminal X4). The operating software DRIVEMANAGER uses this protocol for communication and control of the positioning controllers. |
|                                            | As soon as the DRIVEMANAGER function "Control device" is called up, the control location is set to SIO.                                                                                                                            |
|                                            | Once the end of the control window is reached, the DRIVEMANAGER resets the original parameter setting.                                                                                                                             |
| 1                                          | Note: If the communication between positioning controller and DRIVEMANAGER is interrupted, the setting cannot be reset by the DRIVEMANAGER.                                                                                        |
| CANopen-interface (CAN)                    | The positioning controller is controlled via a device internal CANopen interface. Control modes according to the CANopen device profile DSP402 and the manufacturer specific protocol EASYDRIVE are available.                     |
| Optional slot (OPTN, e.g.<br>PROFIBUS)     | The control of the positioning controller via communication modules can take place through the manufacturer specific protocol EASYDRIVE.                                                                                           |
|                                            | The control location is set to OPTN.                                                                                                                                                                                               |
| Sequential program (PLC)                   | When controlling the positioning controller via PLC, the control location is set to PLC.                                                                                                                                           |

DE EN

#### 6.2.7 Motor potentiometer function

L

| • With two inputs the                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ect                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
| can be raised or red                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Simple adaptation of motor speed to process |
| linear way                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| MPSEL                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
|                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
|                                                                                                                                                              | SOFMP (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                             |
| 2                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| 1) active motor potention                                                                                                                                    | meter function in s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | etpoint source FPOT                         |
| ig. 6.27 Function block                                                                                                                                      | a motor potentiome                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | eter function selector                      |
|                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| he motor potentiometer                                                                                                                                       | function can be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | parameterized in two ways:                  |
| -                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | IP_xx) and the corresponding                |
| options function                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ir_xx) and the corresponding                |
| 2. Via function mask "S                                                                                                                                      | Setnoint/ramns - f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | further settings"                           |
|                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | urther settings                             |
| Input options                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ×                                           |
| Speed-motor-poti:                                                                                                                                            | More settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |
| F1 (1) = Standard MP function                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                             |
| OFF (0) = Inactive<br>F1 (1) = Standard MP function                                                                                                          | Motor-poti - More                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | settings                                    |
|                                                                                                                                                              | An example of the second |                                             |
| F2 (2) = Standard + reset offset if bo<br>F3 (3) = Standard + save offset at p                                                                               | N 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             |
| F2 (2) = Standard + reset offset if bo                                                                                                                       | Acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _10001/min/s                                |
| F2 (2) = Standard + reset offset if bo<br>F3 (3) = Standard + save offset at p                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | _1000 1/min/s                               |
| F2 (2) = Standard + reset offset if bo<br>F3 (3) = Standard + save offset at p                                                                               | Acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |
| F2 (2) = Standard + reset offset if bo<br>F3 (3) = Standard + save offset at p                                                                               | Acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |
| F2 (2) = Standard + reset offset if bo<br>F3 (3) = Standard + save offset at p                                                                               | Acceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/min/s                                     |
| F2 (2) = Standard = reset offset # b<br>F3 (3) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/min/s       Qk     Cancel                 |
| F2 (2) = Standard + reard offset if b<br>F3 (3) = Standard + save offset at p<br>F4 (d) = Standard + save risid leadures                                     | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qk Cancel Apply:                            |
| F2 (2) = Standard = reset offset # b<br>F3 (3) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qk Cancel Apply                             |
| F2 (2) = Standard = reset offset # b<br>F3 (3) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qk Cancel Apply                             |
| F2 (2) = Standard = reset offset # b<br>F3 (3) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qk Cancel Apply:                            |
| F2 (2) = Standard = reset offset # b<br>F3 (3) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qk Cancel Apply:                            |
| F2 (2) = Standard = reset offset # b<br>F3 (3) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1/min/s                                     |
| F2 (2) = Standard = reset offset # b<br>F3 (3) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qk Cancel Apply:                            |
| F2 (2) = Standard = reset offset # b<br>F3 (3) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p<br>F4 (d) = Standard = save offset at p | Acceleration<br>Deceleration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Qk Cancel Apply                             |

| DriveManager                                                                       | Function                                                                     | Value range  | WE      | Unit                 | Parameter          |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------|---------|----------------------|--------------------|
| Speed motor<br>potentiometer                                                       | Configuration for motor potentiometer<br>function<br>Settings see Table 6.28 | 0 6          | 0 (OFF) |                      | 640_MPSEL<br>(_VF) |
| Acceleration<br>(Further settings)                                                 | Acceleration ramp for motor potentiometer function                           | 0 32760      | 1000    | min <sup>-1</sup> /s | 641_MPACC<br>(_VF) |
| Deceleration Deceleration ramp for motor potentiometer (Further settings) function |                                                                              | 0 32760      | 1000    | min <sup>-1</sup> /s | 642_MPDCC<br>(_VF) |
|                                                                                    | Display of current offset speed SOFMP                                        | -32764 32764 | 0       | rpm                  | 643-SOFMP<br>(_VF) |

#### Parameters for motor potentiometer function

Table 6.27Parameters for motor potentiometer function

#### Settings for motor potentiometer function 640-MPSEL

| BUS   | KP/DM | Function                                                                                                                                          |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 0     | 0FF   | no function                                                                                                                                       |
| 1     | F1    | Raising or lowering the speed within the speed range (limits $\pm$ MOSNM x SCSMX[%]) with inputs MP_UP and MP_DN.                                 |
| 2     | F2    | Raising or lowering the speed within the speed range (limits $\pm$ MOSNM x SCSMX[%]) with inputs MP_UP and MP_DN.                                 |
|       |       | If both inputs are set at the same time, the offset speed is reset to 0 min <sup>-1</sup> .                                                       |
|       | 50    | Raising or lowering the speed within the speed range (limits $\pm$ MOSNM x                                                                        |
| 3     | F3    | SCSMX[%]) with inputs MP_UP and MP_DN.<br>In case of a mains failure the offset speed is saved.                                                   |
|       |       | Raising or lowering the speed within the speed range (limits +MOSNM x                                                                             |
|       |       | SCSMX[%]) with inputs MP_UP and MP_DN.                                                                                                            |
| 4     | F4    | If both inputs are set at the same time, the offset speed is reset to 0 min <sup>-1</sup> . In case of a mains failure the offset speed is saved. |
| 5     | F5    | Raising or lowering the speed within the speed range (limits <u>+</u> MOSNM x SCSMX[%]) with inputs MP_UP and MP_DN.                              |
|       |       | When cancelling the start command, the offset speed is reset to 0 $\min^{-1}$ .                                                                   |
|       | 50    | Raising or lowering the speed within the speed range (limits $\pm$ MOSNM x SCSMX[%]) with inputs MP_UP and MP_DN.                                 |
| 6     | F6    | If both inputs are set at the same time, the offset speed is reset to 0 min <sup>-1</sup> .                                                       |
|       |       | When cancelling the start command, the offset speed is reset to 0 min <sup>-1</sup> .                                                             |
| Table | 6.28  | Settings for 320-MPSEL motor potentiometer function                                                                                               |

2

3

6

7

А

#### Setting the inputs for motor potentiometer functions



**Note:** For terminal control the function selector of one digital or analog input (with digital function) must be controlled with

MP-UP = Setpoint up MP-DN = Setpoint down

(see chapter 6.1.2 "Digital outputs").

#### Example: Setting F2 of the motor potentiometer function

A digital potentiometer is supplied via two digital inputs. One of the inputs has a reducing effect for the setpoint, the other one raises the setpoint. At the analog input ISA0x a base value can be specified as analog speed setpoint, so that the digital inputs have the effect of an offset. The motor potentiometer function assigns a setpoint to the setpoint source SOFMP.

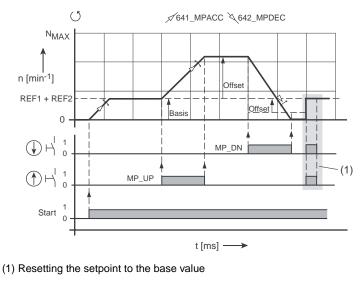




Fig. 6.29 Basic function with reset to base value (corresponds with setting F2 in Table 6.28)

#### 6 General software functions

| Definitions on<br>Fig. 6.29 |                                                                                                                     |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------|
| Basis                       | analog default speed value at input ISAxx                                                                           |
| Offset                      | Proportion of increase or reduction from the base value,<br>influenced by the inputs with functions MP_UP and MP_DN |
| $ISDxx = MP_UP$             | Input for offset setting to increase the setpoint                                                                   |
| $ISDxx = MP_DN$             | Input for offset setting to reduce the setpoint                                                                     |



A



#### 6.3 Motor control

| Function                                                                                        | Effect                                |
|-------------------------------------------------------------------------------------------------|---------------------------------------|
| Optimization of controller<br>settings                                                          | Optimal concentricity of the<br>drive |
| <ul> <li>Adaptation of the controller<br/>to the moment of inertia of<br/>the system</li> </ul> |                                       |
| <ul> <li>Setting the switching</li> </ul>                                                       |                                       |

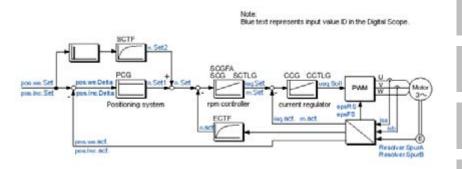
frequency of the output stage

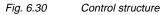
The positioning controller is based on the principle of field oriented controlling. Field orientation means to memorize a current at the location in the motor, at which the field has the biggest size.

The memorized current is thus optimally converted to torque. This results in an optimal utilization of the machine with highest possible dynamics, together with low losses. The result is a very good rate of efficiency.

The digitally controlled drive is most suitable for applications calling for the following characteristics:

- Speed constancy (concentricity)
- Position accuracy
- Dynamics
- constant torque
- Interference compensation


The positioning controller can be operated in three different control modes:


| <ul> <li>Torque control</li> </ul> | Torque Control | (TCON) |
|------------------------------------|----------------|--------|
| <ul> <li>Speed control</li> </ul>  | Speed Control  | (SCON) |

Speed control Speed Control (SCON)
 Position control Position Control (PCON)

It has three control circuits, which are superimposed to each other (see illustration Fig. 6.30). Depending on the preset solution, the lower-level control circuits are active, e.g. with speed control only the speed and the

torque controller. The speed setpoint is thereby directly delivered by the setpoint specification, the positioning controller is decoupled and out of function.





Torque and speed controllers are designed as PI-controllers, the positioning controller as P-controller. Amplification (P-proportion) and integral-action time (I-proportion) of the individual controllers can be adjusted. In the operation mask these settings are made in the function mask "Control".

During commissioning the desired preset solution can be simply selected and parameterized with the help of the DRIVEMANAGER. This also includes the setting of the control mode.



Loop control...

The control structure and the parameters to be set are displayed when selecting the setting values "Control" Fig. 6.31. When selecting the tab "Output stage" you can determine the switching frequency of the output stage, see Table 6.29.

6



| 2. |
|----|
|    |

| Control                               |                             |                |                             |       |
|---------------------------------------|-----------------------------|----------------|-----------------------------|-------|
| Control   Current controller   Pow    | er stage                    |                |                             |       |
| Adapt the external inertia            |                             |                |                             |       |
| Speed controller gain SCGFA           | 100.00                      | 2              | Moments of inerti           | 6     |
| Adapt stiffness of power train        |                             |                |                             |       |
| By setting the stillness the adjustme | nts of speed and positionin | g control will | be calculated automatically |       |
|                                       |                             |                | 100 100                     | -     |
| Stifrees: 100_                        | - 1                         | 50             | 100 150                     | 200   |
| and the second second                 |                             |                | -                           | - the |
|                                       | 1.22                        | 116 24         | 17                          |       |
|                                       | Calculated                  |                | Actual adjusted             |       |
| Speed controller gain SCG             | TRACED S                    | Ninini         | 0.036887                    | Nmmin |
| Speed controller lag time SCTLG       | 26.950001                   |                | _26 950001                  | inc . |
| Position controller gain PCG          | 3018.96792                  | 1/min          | 3018.86792                  | 1/min |
| Actual speed filter ECTF              |                             |                | 0.6                         | -     |
| Reference speed litter SCTF           |                             |                | 0                           | -     |
|                                       |                             |                |                             |       |
| Illustration of control structure     |                             | Qk.            | Cancel                      | dety: |

Fig. 6.31 Setting the positioning/speed control

| DriveManager                                                   | Value range  | WE     | Unit   | Parameter            |
|----------------------------------------------------------------|--------------|--------|--------|----------------------|
| Amplification speed control, scaling factor SCGFA              | 0 999.95     | 100.00 | %      | 811_SCGFA<br>(_CTRL) |
| Moment of inertia of motor<br>(Button "Moments of inertia")    | 0 100        | 0      | ms     | 160_MOJNM<br>(_MOT)  |
| Motor of inertia motor+system<br>(Button "Moments of inertia") | 0 1000       | 0      | ms     | 817_SCJ<br>(_CTRL)   |
| SCG: Amplification speed control                               | 0 1000000000 | 0.035  | Nm min | 810_SCG<br>(_CTRL)   |
| SCTLG: Integral-action time<br>speed control                   | 1 2000       | 12.6   | ms     | 812_SCTLG<br>(_CTRL) |
| PCG: Amplification positioning<br>control                      | 1 32000      | 4000   | rpm    | 473_PCG<br>(_CTRL)   |
| ECTF: Filter actual speed value                                | 0 100        | 0.6    | ms     | 818_ECTF<br>(_CTRL)  |
| SCTF: Filter speed setpoint                                    | 0 1000       | 0      | ms     | 816_SCTF<br>(_CTRL)  |

| DriveManager                                            | Value range       | WE       | Unit | Parameter            |
|---------------------------------------------------------|-------------------|----------|------|----------------------|
| Reduction of speed control<br>amplification             | 0.00 100.00       | 50.00    | %    | 809_SCGF0<br>(_CTRL) |
| Power stage switching frequency<br>(Tab "Output stage") | 4KHZ (0)16KHZ (3) | 8KHZ (1) | kHz  | 690_PMFS<br>(_CONF)  |

Setting the switching frequency (parameter PMFS):

| BUS | Setting   | Function |
|-----|-----------|----------|
| 0   | 4KHZ (0)  | 4 kHz    |
| 1   | 8KHZ (1)  | 8 kHz    |
| 2   | 12KHZ (2) | 12 kHz   |
| 3   | 16KHZ (3) | 16 kHz   |



Depending on the application the following steps must be performed to set the speed control circuit:

• Adaptation of the speed control amplification to the existing external inertia.

For this purpose one can either enter the known moment of inertia directly in the function mask (button "Moments of inertia"), or the speed control amplification can be changed in percent (SCGFA in %)

The moment of inertia for the system must thus be reduced to the motor.

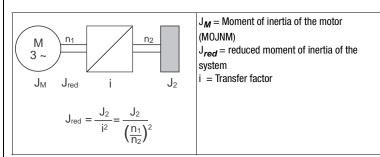



Fig. 6.32 Reduction of the moment of inertia

• Adaptation to the stiffness of the drive line:

This is possible in two different ways. The control circuits can either parameterized or the adaptation can be made through an assistant. In the assistant the stiffness can be specified in percent and the

5

6

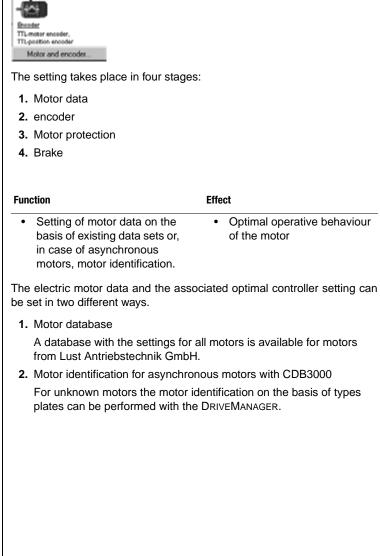
7

newly calculated values can be transferred to the controller setting. A value of <100% results in a "soft" controller setting (e.g. for a toothed belt drive), whereas a value of >100% causes a "hard" controller setting for hard mechanics (free of clearance and elasticity).

The torque/current controller is optimally adjusted to the respective motor by means of the motor data set or the identification. The tab "Current controller" is available for adaptation and testing by means of a test signal.

| 9.6   |       |
|-------|-------|
|       |       |
| _3.6  | me    |
|       |       |
| 1.600 | A     |
|       | 1.600 |

*Fig. 6.33* Function mask for setting the current controller


| DriveManager                 | Value range | WE  | Unit | Parameter            |
|------------------------------|-------------|-----|------|----------------------|
| Amplification (CCG)          | 0 500       | 1   | V/A  | 800_CCG<br>(_CTRL)   |
| Integral-action time (CCTLG) | 0,1 100     | 3,6 | ms   | 801_CCTLG<br>(_CTRL) |

# 6.4 Motor and transducer



The motor data are required for controlling the motor. For this purpose you must select the mask "Motor and encoder".

6 General software functions



#### 6.4.1 Motor data

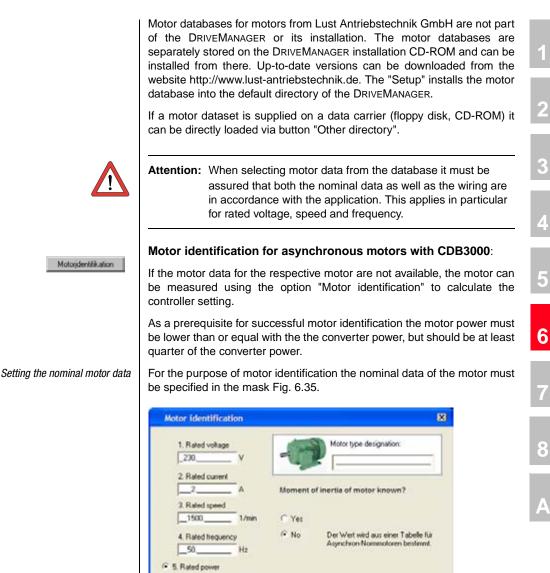
6

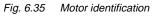
1

| lotor and encoder                                           |  |
|-------------------------------------------------------------|--|
| Motor Encoder Motor protection Brake                        |  |
|                                                             |  |
| Actual motor:                                               |  |
| Motor type designation:                                     |  |
| Wy_Motor                                                    |  |
|                                                             |  |
| Select new motor from data base:                            |  |
| Motor selection                                             |  |
|                                                             |  |
| Identify new motor from type plate data:                    |  |
| substance in a second strate in a second strate state state |  |

Fig. 6.34 Motor and encoder

In both cases a presetting is determined for the controller, which is based on the following assumptions:


- The torque controller is set up optimally, so no further adjustments are necessary.
- The setting of the speed controller is based on the assumption that the moment of inertia of the machine reduced to the motor shaft is equal to the moment of inertia of the motor.
- The position controller has been designed for elastic coupling to the mechanics.
- Optimizations can be made according to chapter 6.3 "Motor control".


#### Motor database

If the data for the motor to be used are available in a database of the DRIVE MANAGER, these can be selected via the option "Motor selection" and transferred to the device.

A database with the settings for all motors (without encoder information) is available for motors from Lust Antriebstechnik GmbH. Using the correct motor dataset ensures:

- that the electrical data of the motor are correctly parameterized,
- that the motor protection (tab "Motor protection") is correctly set and
- the control circuits for the drive are preset.





Net

Start identification

6. Rated torque

QK.

4.1

Display motor parameters ...

Cancel

Setting the motor data:

| DriveManager                                               | Value range    | WE   | Unit | Parameter           |
|------------------------------------------------------------|----------------|------|------|---------------------|
| Type designation motor                                     | max. 25 digits | -    | -    | 839_MONAM<br>(_MOT) |
| 1. Rated voltage                                           | 0 1000         | 230  | V    | 155_MOVNM<br>(_MOT) |
| 2. Rated current                                           | 0.1 64         | 2.95 | А    | 158_MOCNM<br>(_MOT) |
| 3. Rated speed                                             | 0 100000       | 1500 | rpm  | 157_MOSNM<br>(_MOT) |
| 4. Rated frequency                                         | 0.1 1600       | 50   | Hz   | 156_MOFN<br>(_MOT)  |
| 5. Rated power                                             | 0.02 1000000   | 0.57 | kW   | 154_MOPNM<br>(_MOT) |
| 6. Rated torque<br>(only with synchronous<br>servo motors) | 0.001 5000     | 4.1  | Nm   | 852_MOMNM<br>(_MOT) |

The moment of inertia of the motor is of relevance for the setting of the speed control.

If the moment of inertia of the motor is known, it is recommended to enter this before starting the motor identification. The controller parameters are adapted accordingly.

| DriveManager               | Value range | WE | Unit             | Parameter           |
|----------------------------|-------------|----|------------------|---------------------|
| Moment of inertia of motor | 0 100       | 0  | kgm <sup>2</sup> | 160_MOJNM<br>(_MOT) |

Select "No" if the moment of inertia is unknown. A "0" is entered as moment of inertia (160-MOJNM=0). The motor data are then used to determine a moment of inertia suitable for an IEC-standard motor. The moment of inertia of the motor depends on the number of pole pairs and the related rotor design. The moment of inertia of standard three-phase current motors with squirrel-cage rotor (acc. to DIN VDE 0530, 1000 min<sup>-1</sup>, 6-pole, 50 Hz and self-ventilated), saved in the positioning controller, are shown in Table 6.45.

| Power P [kW] | Moment of inertia J <sub>M</sub> [kgm <sup>2</sup> ] |
|--------------|------------------------------------------------------|
| 0,09         | 0,00031                                              |
| 0,12         | 0,00042                                              |
| 0,18         | 0,00042                                              |

Table 6.30Basic values for the moment of inertia related to a six-poleIEC-standard motor

| Power P [kW]                                      | Moment of inertia J <sub>M</sub> [kgm <sup>2</sup> ] |
|---------------------------------------------------|------------------------------------------------------|
| 0,25                                              | 0,0012                                               |
| 0,37                                              | 0,0022                                               |
| 0,55                                              | 0,0028                                               |
| 0,75                                              | 0,0037                                               |
| 1,1                                               | 0,0050                                               |
| 1,5                                               | 0,010                                                |
| 2,2                                               | 0,018                                                |
| 3,0                                               | 0,031                                                |
| 4,0                                               | 0,038                                                |
| 5,5                                               | 0,045                                                |
| 7,5                                               | 0,093                                                |
| 11                                                | 0,127                                                |
| 13                                                | 0,168                                                |
| 15                                                | 0,192                                                |
| 20                                                | 0,281                                                |
| 22                                                | 0,324                                                |
| 30                                                | 0,736                                                |
| 37                                                | 1,01                                                 |
| 45                                                | 1,48                                                 |
| 55                                                | 1,78                                                 |
| 75                                                | 2,36                                                 |
| 90                                                | 3,08                                                 |
| Table 6.30 Basic values for the IEC-standard moto | moment of inertia related to a six-pole              |
| The ENPO of the device must b dentification".     | e set before pressing the button "St                 |

Performing identification



 
 Note:
 During self-setting the electric motor circuit must be closed. Contacts must thus only be bridged during the self-setting phase. If the actuation of the motor contactor is realized via the positioning controller with the function ENMO, the motor contactor will be automatically closed during the identification.



1

In the steps "Frequency response analysis" and "Measurement of the inductance characteristic" the positioning controller measures the motor and determines the resistance values and the inductances. In the subsequent operating point calculation the flow is adapted in such a way, that the rated speed can be reached and the rated torque (defined via the rated power) is reached at rated speed. If the voltage is found to be too low, the flow is reduced to such an extent, that the speed is reached in any case. The rated torque is automatically reduced. Finally, the control circuits are preset.

After successful motor identification the calculated motor parameters are displayed in the function "Show motor parameters".



Attention: Motor parameters must only be changed by qualified personnel. With an incorrect setting the motor may start unintentionally ("thrashing").

| -                  | r type designat | on               | -   |
|--------------------|-----------------|------------------|-----|
| Stator resistance  | Ohm             | Stray inductance | н   |
| Rotorwidenstand    | Ohm             | x [100 %         |     |
| Main inductance at | н               | Rated flux       | -vi |

Fig. 6.36 Motor parameters

| DriveManager       | Value range | WE    | Unit | Parameter           |
|--------------------|-------------|-------|------|---------------------|
| Primary resistor   | 0.0 500.0   | 6.0   | Ω    | 842_MOR_S<br>(_MOT) |
| Leakage inductance | 0.0 10.0    | 0.018 | Н    | 841_MOL_S<br>(_MOT) |
| Rotor resistance   | 0.0 500.0   | 4.2   | Ω    | 843_MOR_R<br>(_MOT) |

#### 6 General software functions

| DriveManager                                                                                                  | Value range | WE    | Unit | Parameter           |
|---------------------------------------------------------------------------------------------------------------|-------------|-------|------|---------------------|
| Rotor resistance scaling factor<br>(120% recommended for rotor<br>resistance with warm motor)                 | 20 300      | 100   | %    | 837_MORRF<br>(_MOT) |
| Main inductance<br>(only for display, calculated on<br>basis of rated flow and<br>magnetizing characteristic) | 0.0 10000   | 0.1   | Н    | 850_MOL_M<br>(_MOT) |
| Rated flow                                                                                                    | 0.0 100.0   | 0.358 | Vs   | 840_MOFNM<br>(_MOT) |



6

|  | 1 |  |
|--|---|--|
|  |   |  |
|  |   |  |

8

Α



#### 6.4.2 Encoder

| Function                                    | Effect                                                         |
|---------------------------------------------|----------------------------------------------------------------|
| Encoder setting                             | <ul> <li>Determination of the motor</li> </ul>                 |
| <ul> <li>Evaluation of up to two</li> </ul> | rotor position                                                 |
| encoders                                    | Determination of the<br>movement of the connected<br>mechanics |

Controlled operation of the drive requires the use of an encoder. Configuration takes place via the tab "Encoder".



Note:

This chapter solely describes the setting of the encoders. The specification and acceptability of the encoders as well as their interfaces and connections is described in the operating instructions for the corresponding positioning controllers.

#### Types of project planning

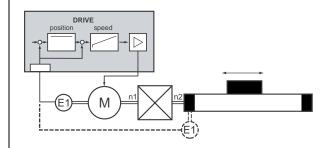
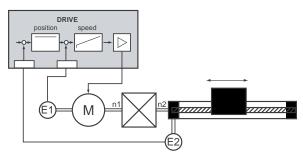
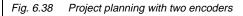



Fig. 6.37 Project planning with one encoder

Two different installation variants are possible:


- Mounting of encoder E1 to the motor
  - Inverting the sense of rotation by using a ratio n1/n2 = -1/1 is possible
- Mounting encoder E1 to the mechanics or gearbox output shaft (dashed encoder E1 in Fig. 6.37)
  - Prerequisite is a fixed ratio n1/n2 between drive and output, n1/ n2 must be parameterized.
  - For a sufficient generation of a rotating field a position resolution of at least 7 bit (128 pulses) related to one revolution of the motor shaft is required.


Project planning with one encoder

Project planning with two encoders

Example:
 Encoder with 2048 pulses/revolution, n1/n2 = 10
 => 204,8 pulses/revolution related to the motor shaft (> 7 bit)
 => o.k.

For compensation of inaccuracies in the mechanics (looseness, play) or for exact determination of the absolute position of the moving mechanics for positioning without referencing, a second encoder E2 can be directly mounted to the mechanics.





- Encoder 1 on motor for speed regulation and commutation.
- Encoder 2 on mechanics or gearbox output shaft for position control. The transmission ratio n1/n2 must be parameterized.

#### Encoder for CDB3000

The following encoders are evaluated by the CDB3000:

| Encoder type                                                                                                             | Connection to CDB3000             |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--|--|--|--|--|
| TTL incremental encoder (TTL)                                                                                            | Х7                                |  |  |  |  |  |
| SSI absolute value<br>encoder (SSI)                                                                                      | Х7                                |  |  |  |  |  |
| HTL incremental encoder (HTL)                                                                                            | X2 (control terminal ISD01-ISD03) |  |  |  |  |  |
| Permitted encoders with the associated connection specification are specified in the CDE/CDB3000 operating instructions! |                                   |  |  |  |  |  |
| <b>-</b> // /                                                                                                            |                                   |  |  |  |  |  |

Table 6.31Accepted encoders on CDB3000

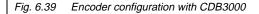
Accepted encoders

1

2

3

6




Selecting the encoder configuration

Attention: The configuration of the encoders uses the same parameters as the configuration of the reference encoder input (see chapter 6.2.4), because the hardware interfaces are identical. Changing the encoder parameterization thus has a direct influence on the configuration reference encoder.

The encoder configuration is determined at the start.

| lotor and encoder                                                                             |    |
|-----------------------------------------------------------------------------------------------|----|
| Notor Encoder Motor protection Brake                                                          |    |
| Select encoder combination:                                                                   |    |
| TT_TT (2) = TTL-motor and position encoder                                                    | -1 |
| USER [0] = User defined (e. G. master encoder)<br>HT. HT (1] = HTL motor and position encoder | -  |
| 11 11 [2] = 11L-motor and position encoder                                                    |    |
| HT_SI (3) = HTL-motor encoder, SSI-position encoder                                           |    |
| SI_SI (4) = SSI motor and position encoder                                                    |    |



Depending on the selection of encoder combinations the following settings can be made:

| DriveManager                                    |               |     | Value range |                             | WE                                                                                             | Unit        | Parameter        |
|-------------------------------------------------|---------------|-----|-------------|-----------------------------|------------------------------------------------------------------------------------------------|-------------|------------------|
| Selection of encoder<br>combinations USER HT_TT |               |     | Г           | TT_TT - 430_ECTYP<br>(_ENC) |                                                                                                |             |                  |
| Encoder<br>E1                                   | Encoder<br>E2 | BUS | S Setting   |                             | Function                                                                                       |             |                  |
|                                                 |               | 0   | USER        | (                           | User defined<br>(Is set by the drive, if e.g. the reference<br>encoder has been parameterized) |             |                  |
| HTL                                             | -             | 1   | HT_HT       | H                           | HTL motor and position encoder                                                                 |             |                  |
| TTL                                             | -             | 2   | Π_Π         | Т                           | TTL motor and position encoder                                                                 |             |                  |
| SSI                                             | -             | 4   | SI_SI       | S                           | SSI motor and position encoder                                                                 |             |                  |
| HTL                                             | SSI           | 3   | HT_SI       | ŀ                           | HTL motor encoder, SSI position enco                                                           |             | position encoder |
|                                                 | TTL           | 5   | HT_TT       | ŀ                           | ITL motor e                                                                                    | ncoder, TTL | position encoder |



Encoder settings

For each encoder combination a special function mask is displayed.

| TTL-motor and position encoder: | HTL-motor and position encoder:<br>Set input on X2 to encoder: |
|---------------------------------|----------------------------------------------------------------|
| Encoder lines: 1124             | ISD01 ENC (37) = HTL encoder (0. ISD01, A. ISD02, 8: ISD03, •  |
|                                 | ISD02 ENC (37) = H1L encoder (2: ISD01, A: ISD02, 8: ISD03     |
| Encoder not mounted on shaft:   | 15003 [INC (07) = HTL encoder (2) (5001, A: (5002, 8: (5003) • |
| Transmission ratio              | Encoder Inec 1024 Encoder not mounted on shafts Ratio:         |

Fig. 6.40 Selection of special function masks for encoder configuration

For HTL-encoders the following parameters must be set:

| DriveManager                           | Value range  | WE   | Unit | Parameter           |
|----------------------------------------|--------------|------|------|---------------------|
| Lines per revolution (HTL-<br>encoder) | 32 8192      | 1024 | -    | 482_ECLN2<br>(_ENC) |
| n1 (numerator)                         | -32768 32767 | 1    |      | 480_ECNO2<br>(_ENC) |
| n2 (denominator)                       | 1 65535      | 1    |      | 481_ECDE2<br>(_ENC) |

Transmission ratio n2/n1 (is encoder is not mounted on motor shaft)

Furthermore, the digital inputs for encoder connection must be configured. The connection of track signals A to ISD02 and B to ISD03 is mandatory. Connection of an index signal to ISD01 is optionally possible.

With TTL or SSI encoders the following parameters must be set:

| DriveManager                               | Value range  | WE   | Unit | Parameter           |
|--------------------------------------------|--------------|------|------|---------------------|
| Lines per revolution (TTL-<br>encoder)     | 32 8192      | 1024 | -    | 432_ECLN1<br>(_ENC) |
| Number of bits Multiturn<br>(SSI encoder)  | 0 16         | 12   | -    | 448_SSIMU<br>(_ENC) |
| Number of bits Singleturn<br>(SSI encoder) | 0 20         | 13   | -    | 447_SSISI<br>(_ENC) |
| n1 (numerator)                             | -32768 32767 | 1    |      | 435_ECN01<br>(_ENC) |
| n2 (denominator)                           | 1 65535      | 1    |      | 436_ECDE1<br>(_ENC) |

Transmission ratio n2/n1 (is encoder is not mounted on motor shaft)





Attention: Only SSI absolute value encoders as specified in the operating instructions must be used. Setting the number of bits and other settings under the button "SSI-configuration" are reserved for special SSI encoders. Such encoders may only be used after express approval by Lust Antriebstechnik GmbH!

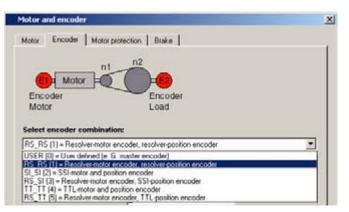
#### Encoder for CDE3000/CDF3000

Accepted encoders

The following encoders are evaluated by the CDE3000/CDF3000:

| Encoder type                                                                                                                            | Connection to CDE3000 | Connection to CDF3000 |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------|--|--|--|
| TTL incremental encoder (TTL)                                                                                                           | Х7                    | X6                    |  |  |  |
| SSI absolute value<br>encoder (SSI)                                                                                                     | X7                    | X6                    |  |  |  |
| Resolver                                                                                                                                | X6                    | X6                    |  |  |  |
| Accepted encoders with the associated connection specification are specified in the CDE/<br>CDB3000 and CDF3000 operating instructions! |                       |                       |  |  |  |

Table 6.32Accepted encoders on CDE3000/CDF3000




Attention: The configuration of the TTL or SSI encoders uses the same parameters as the configuration of the reference encoder input (see chapter 6.2.4), because the hardware interfaces are identical. Changing the encoder parameterization thus has a direct influence on the configuration of the reference encoder.



Selecting the encoder configuration

The encoder configuration is determined at the start.





Depending on the selection of encoder combinations the following settings can be made:

| Driv          | DriveManager Value range          |     |            | ange                                             | WE                                                                                            | Unit         | Parameter    |
|---------------|-----------------------------------|-----|------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------|--------------|
|               | Selection of encoder combinations |     | USER RS_TT |                                                  | RS_RS - 430_ECTYF                                                                             |              |              |
| Encoder<br>E1 | Encoder<br>E2                     | BUS | S Sett     | ing                                              | Function                                                                                      |              |              |
|               |                                   | 0   | US         | ER (I                                            | User defined<br>(Is set by the drive, if e.g. the referenc<br>encoder has been parameterized) |              |              |
| Resolver      | -                                 | 1   | RS_        | RS F                                             | Resolver motor and position encoder                                                           |              |              |
| SSI           | -                                 | 2   | SI_        | _SI S                                            | SSI motor and position encoder                                                                |              |              |
| TTL           | -                                 | 4   | Π_Π        |                                                  | TTL motor and position encoder                                                                |              |              |
| Resolver      | SSI                               | 3   | HT_SI      |                                                  | Resolver motor encoder, SSI position encoder                                                  |              | SSI position |
| NESUIVEI      | TTL                               | 5   | HT_        | HT_TT Resolver motor encoder, TTL pos<br>encoder |                                                                                               | TTL position |              |

4

#### 6 General software functions



#### Encoder settings

For each encoder combination a special function mask is displayed.

| Pole number resolver    | _1       |                          |            |           |                   |
|-------------------------|----------|--------------------------|------------|-----------|-------------------|
| Encoder aftest          | FEBSH    |                          |            |           |                   |
|                         | Detect e | ncoder altret            |            |           |                   |
| lignal conection (SPOC) | ON (1)   | 2                        | 1          |           |                   |
|                         |          | -                        | -          |           |                   |
|                         |          | Resideer motor encoder   | ao:        |           |                   |
|                         |          | Number of pole pairs     | 1          |           |                   |
|                         |          | Encode officet           | FEB1H      |           | Defect offset     |
|                         |          | Signal correction (SPOC) | ON (1)     |           |                   |
|                         |          | SSI position encoder (12 | N<br>Mueri | Singleham |                   |
|                         |          | Number of bits 12        |            | tù        | SSI-Configuration |
|                         |          | Transmission ratio:      |            |           |                   |
|                         |          | n1 [ 1                   |            |           |                   |
|                         |          |                          |            |           |                   |

Fig. 6.42 Selection of special function masks for encoder configuration

For resolver encoders the following parameters must be set:

| DriveManager                                                                       | Value range | WE    | Unit | Parameter           |
|------------------------------------------------------------------------------------|-------------|-------|------|---------------------|
| Number of pole pairs, resolver                                                     | 1 80        | 1     | -    | 433_ECNPP<br>(_ENC) |
| Encoder offset<br>(see also "Automatic<br>determination of the encoder<br>offset") | 0000h FFFFh | 0000h | -    | 434_ECOFF<br>(_ENC) |
| Track signal correction<br>(GPOC)<br>(see also "Track signal<br>correction GPOC")  | OFF RESET   | OFF   |      | 685_ECCON<br>(_ENC) |

Automatic determination of the encoder offset

Encoder-Offset ermitteln

For commutation of synchronous motors excited by permanent magnets the rotor position is required before starting the control. The determination therefore uses absolute measuring systems, such as e.g. resolvers. The relation between zero position of the absolute measuring system and rotor position must thereby be known. A possible offset between the zero positions of rotor and encoder is referred to as encoder offset.

For servo motors form Lust Antriebstechnik GmbH it is assured, that the encoder offset is always constant (normally 0h). It has been set in the corresponding motor datasets.





Attention: For the determination of the encoder offset the motor is energized. Rotary movements are thereby possible.

Unknown encoder offsets can be detected by means of the DRIVEMANAGER. The button "Determine encoder offset" must be pressed for this purpose.

*Track signal correction GPOC* Resolvers show systematic faults, which are reflected by the measured position and the speed calculated on this basis. Dominant encoder faults are in this case amplification and phase faults, as well as offset proportions of the track signals.

The "Gain-Phase-Offset-Correction" (GPOC) was developed for this purpose. This patented method evaluates the amplitude of the complex pointer described by the track signals, using special correlation methods. The dominant faults can thus be exactly determined and subsequently corrected, without being influenced by other encoder faults.

| BUS | BUS KEYPAD/<br>DRIVEMANAGER Signal correction function |                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-----|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 0   | OFF                                                    | The track signals are corrected with fixed values.<br>These values are individually determined for each device in the<br>factory. Scattering of the individual encoders cannot be taken into<br>account.                                                                                                                                                                                                         |  |  |  |  |
| 1   | ON                                                     | The track signals are corrected with fixed values.<br>These values can be determined by the GPOC using the ADAPT<br>mode and stored in the positioning controller.                                                                                                                                                                                                                                               |  |  |  |  |
| 2   | ADAPT                                                  | The optimal correction values are determined online with the GPOC.<br>At low speeds the adaptation is switched off, thus to avoid drifting off of the error parameters. The minimum speed for an adaptation is calculated on the basis of (scanning frequency of the control x 60 / 500).<br>With a 4 kHz scanning frequency of the control and a two-pole resolver the adaptation will take place from 480 rpm. |  |  |  |  |
| 3   | RESET                                                  | The correction parameters are reset to factory setting. RESET is not set as status, but leaves the current status unchanged.                                                                                                                                                                                                                                                                                     |  |  |  |  |

Table 6.33Parameter settings 685-ECCON for the signal correction

With TTL or SSI encoders the following parameters must be set:

| DriveManager                              | Value range | WE   | Unit | Parameter           |
|-------------------------------------------|-------------|------|------|---------------------|
| Lines per revolution (TTL-<br>encoder)    | 32 8192     | 1024 | -    | 432_ECLN1<br>(_ENC) |
| Number of bits Multiturn<br>(SSI encoder) | 0 16        | 12   | -    | 448_SSIMU<br>(_ENC) |



1

3

6

| DriveManager                                                        | Value range  | WE | Unit | Parameter           |  |  |  |
|---------------------------------------------------------------------|--------------|----|------|---------------------|--|--|--|
| Number of bits Singleturn<br>(SSI encoder)                          | 0 20         | 13 | -    | 447_SSISI<br>(_ENC) |  |  |  |
| Transmission ratio n2/n1 (is encoder is not mounted on motor shaft) |              |    |      |                     |  |  |  |
| n1 (numerator)                                                      | -32768 32767 | 1  |      | 435_ECN01<br>(_ENC) |  |  |  |
| n2 (denominator)                                                    | 1 65535      | 1  |      | 436_ECDE1<br>(_ENC) |  |  |  |



 Attention:
 Only SSI absolute value encoders as specified in the operating instructions must be used.

 Setting the number of bits and other settings under the button "SSI-configuration" are reserved for special SSI encoders.

 Such encoders may only be used after express approval by Lust Antriebstechnik GmbH!

# 6.4.3 Motor protection

|   |   | Thi     |
|---|---|---------|
|   | Г | aries.  |
| 1 |   | Encoder |

#### Function



Monitoring of the motor temperature by temperature sensors or thermal switches.



TTL-motor encoder, TTL-position encoder Motor and encoder...

 I<sup>2</sup>xt-monitoring. This function replaces a motor protection switch.

#### Effect

• Shut-down with an error message E-OTM, if the motor temperature exceeds the limit value. 1

2

4

5

6

Д

- When using a linear temperature sensor the position controllers can emit a warning message at a defined temperature.
- Shut-down with an error message from E-OLM, if the applied currenttime value exceeds the limit value.
- The positioning controllers are able to emit a warning message at a defined value of the l<sup>2</sup>xt motor protection integrator.



**А**ртс

#### Motor temperature monitoring

| Motor and encoder                                                     | × |
|-----------------------------------------------------------------------|---|
| Motor   Encoder Motor protection   Brake  <br>Temperature monitoring: | ĺ |
| OFF (0) = No temperature control                                      |   |
| Maximum temperature 150 °C                                            |   |

Fig. 6.43 Monitoring of the motor temperature by temperature sensors or thermal switches.

| DriveManager                                                     | Value range | WE  | Unit | Parameter           |
|------------------------------------------------------------------|-------------|-----|------|---------------------|
| Temperature monitoring<br>(type of motor temperature monitoring) | 0FF KTY     | 0FF |      | 330_MOPTC<br>(_MOT) |
| Maximum temperature<br>(Only for linear PTC (KTY84-130))         | 10 250      | 150 | °C   | 334_MOTMX<br>(_MOT) |



Setting for parameter MOPTC:

| BUS | DriveManager | Function                                                                                                     |
|-----|--------------|--------------------------------------------------------------------------------------------------------------|
| 0   | 0FF          | Monitoring switched off                                                                                      |
| 1   | KTY          | linear PTC (KTY84-130, tolerance band yellow)                                                                |
| 2   | PTC          | Threshold value PTC with short-circuit detection<br>(DIN 44081/44082)<br>- recommended for "Triple-PTC" -    |
| 3   | TSS          | Klixon (normally closed temperature switch)                                                                  |
| 41  | PTC1         | Threshold value PTC without short-circuit detection<br>(DIN 44081/44082)<br>- recommended for "Single-PTC" - |

Table 6.34

Setting for the type of motor PTC-evaluation MOPTC

Specification of temperature sensor connection X3



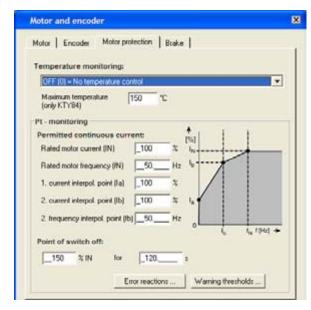
#### Specification:

- Measuring range max. 12 V
- Measuring range 100  $\Omega$  15 k $\Omega$
- Short-circuit detection 18  $\Omega$  to 100  $\Omega$
- Cycle time 5 ms

#### Explanations

- The following temperature sensors can be evaluated:
  - linear PTC (KTY84-130, tolerance band yellow)
  - Threshold value PTC (acc. to DIN 44081, DIN 44082)
  - temperature dependent switch (Klixon)
- If the temperature exceeds a limit value, the positioning controller switches the motor off with error message E-OTM. The reaction to the error "Overtemperature motor" can be parameterized. (see chapter 6.9.1).
- With "KTY84 -130"-evaluation the actual motor temperature is displayed in the actual value menu (button "Actual values").
- The "KTY84 -130"-evaluation has an adjustable "Motor temperature" warning threshold, to warn in case of an expected overtemperature shut-down (see chapter 6.9.2).
- With evaluations by means of KTY84-130 the limit value can be set with parameter 334-MOTMX "Maximum temperature".






#### Motor current l<sup>2</sup>xt-monitoring

The Ixt-monitoring protects the motor against overheating over the complete speed range.

This is especially important with self-ventilated motors. In case of longer operation of IEC asynchronous standard motors with low speed the cooling provided by blower and housing is not sufficient. Self-ventilated asynchronous motors thus need a reduction of the maximum permissible permanent current in dependence on the rotation frequency. The rotation is calculated on basis of the actual motor speed.

Correctly adjusted, this function replaces a motor protection switch. The characteristic can be adapted to the operating conditions by means of interpolation points.



l<sup>2</sup>xt-monitoring Fig. 6.44

| DRIVEMANAGER          | Meaning                                                                                           | Value range | WE  | Unit | Parameter           |
|-----------------------|---------------------------------------------------------------------------------------------------|-------------|-----|------|---------------------|
| Permissible permanen  | current                                                                                           |             |     |      |                     |
| Rated motor current   | Rated motor current (I <sub>N</sub> ) for<br>motor protection (related to rated<br>motor current) | 0 1000      | 100 | %    | 335_MOPCN<br>(_MOT) |
| Rated motor frequency | Rated motor frequency (f <sub>N</sub> )<br>for motor protection                                   | 0.1 1000    | 50  | Hz   | 336_MOPFN<br>(_MOT) |



#### 6 General software functions

|                  | DriveManager                    |            |                                                                                                                                               | Mea       | ning                                       |          | Value   | range      | WE                  | Unit                | Parameter           |
|------------------|---------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------|----------|---------|------------|---------------------|---------------------|---------------------|
|                  | 1. Current interpolation point  |            | 1. Current interpolation point (l <sub>a</sub> )<br>of the motor protection<br>characteristic (related to the<br>max. characteristic current) |           | 0                                          | 1000     | 100     | %          | 332_MOPCA<br>(_MOT) |                     |                     |
|                  | 2. Current interpolation point  |            | 2. Current interpolation point (I <sub>b</sub> )<br>of the motor protection<br>characteristic (related to the<br>max. characteristic current) |           | 0                                          | 1000     | 100     | %          | 331_MOPCB<br>(_MOT) |                     |                     |
|                  | 2. Frequency interpolation poir | ıt         |                                                                                                                                               | for moto  | terpolation  <br>or protection<br>teristic |          | 0.1     | 1000       | 50                  | Hz                  | 333_MOPFB<br>(_MOT) |
|                  | Switch-off point                | t (current | - time a                                                                                                                                      | rea, max  | imum integ                                 | grator v | /alue)  |            |                     |                     |                     |
|                  | IN                              |            | Overloa                                                                                                                                       |           | (related to<br>current)                    | rated    | 0       | 1000       | 150                 | %                   | 352_MOPCM<br>(_MOT) |
|                  | for x s                         |            | Overload time<br>Maximum time for maximum<br>current                                                                                          |           |                                            | 0 600    |         | 120        | S                   | 353_MOPCT<br>(_MOT) |                     |
| Motor protection | characteristic                  |            |                                                                                                                                               |           |                                            |          |         |            |                     |                     |                     |
| •                | in factory setting              |            |                                                                                                                                               |           |                                            |          |         |            |                     |                     |                     |
|                  |                                 |            | I <sub>N</sub> = 335-M0<br>f <sub>N</sub> = 336-M0                                                                                            |           |                                            |          |         |            |                     |                     |                     |
|                  |                                 |            |                                                                                                                                               |           |                                            | f [Hz]   |         |            |                     |                     |                     |
|                  |                                 |            | ١N                                                                                                                                            |           |                                            |          |         |            |                     |                     |                     |
|                  | Fig. 6.45 Setting t             |            |                                                                                                                                               | the motor | r prote                                    | ection c | naracte | eristic in | factory             | setting             |                     |
|                  |                                 |            |                                                                                                                                               |           |                                            |          |         |            |                     |                     |                     |
|                  |                                 |            |                                                                                                                                               |           |                                            |          |         |            |                     |                     |                     |
|                  |                                 |            |                                                                                                                                               |           |                                            |          |         |            |                     |                     |                     |
|                  |                                 |            |                                                                                                                                               |           |                                            |          |         |            |                     |                     |                     |



Setting the motor protection characteristic

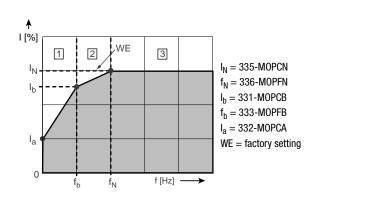



Fig. 6.46 Adaptation of characteristic by means of interpolation points below the rated frequency  $f_N$  for e. g. IEC asynchronous standard motors.

#### Explanations on the adjustment of the motor protection characteristic

 As a rule of thumb the motor protection characteristic or the operation of the IEC asynchronous standard motor should comply with the following limit values, in order to protect the motor.

| Frequency (Hz)       | Rated motor current (%) |
|----------------------|-------------------------|
| 0                    | 30 (l <sub>a</sub> )    |
| 25 (f <sub>b</sub> ) | 80 (l <sub>b</sub> )    |
| 50 (f <sub>N</sub> ) | 100 (I <sub>N</sub> )   |

Switch-off point acc. to VDE0530 at 150 % x  $I_N$  for 120 s

For servo motors setting a constant characteristic is recommended. The information provided by the manufacturer must be observed.

 The switch-off point defines the permissible current-time area up to switching off. For IEC asynchronous motors the switch-off point acc. to VDE0530 has been set to 150 % of the rated motor current for 120 s. For servo motors the information provided by the manufacturer must be observed.



4

5

6

#### Explanations on the function of the motor protection characteristic

- As long as the current value at a certain frequency is below the characteristic, the motor is in a safe operating state.
- If the current value at a certain frequency is above the characteristic, the motor is overloaded. The l<sup>2</sup>xt-integrator becomes active. Integration always takes place with the square value of the motor current, according to the equation:

$$l^{2}t = \int_{0}^{1} (l_{Mot}^{2} - l_{grenz}^{2}) dt$$
 for  $0 < l^{2}t < l^{2}t_{max}$ 

• The l<sup>2</sup>xt-integrator starts at 110% of the current limit value of the motor protection characteristic.

$$_{\text{grenz}} = 1, 1 \times \text{Rated motor current (MOCNM}) \times \frac{I_{\text{N}}}{100\%} \times \frac{I(f)}{100\%}$$

I(f) results from the motor protection characteristic with  $I_{\text{N}},\,I_{\text{a}},\,I_{\text{b}},\,f_{\text{n}}$  and  $F_{\text{b}}$ :

| Condition                           | Section Fig. 6.46 | Calculation I(f)                                            |
|-------------------------------------|-------------------|-------------------------------------------------------------|
| f <sub>ist</sub>   < f <sub>b</sub> | 1                 | $I(f) = \frac{I_b - I_a}{f_b} \times f + I_a$               |
| $f_b \le  f_{ist}  < f_N$           | 2                 | $I(f) = \frac{I_N - I_b}{f_N - f_b} \times (f - f_N) + I_N$ |
| $f_N <  f_{ist} $                   | 3                 | $I(f) = I_N$                                                |

 The limit value of the integrator is defined by a permissible overcurrent

 $\frac{\text{3rload factor (MOPCM)}}{100\%} \times \text{Rated motor current (MOCNM)}^2 \times \text{overload time ((MOI))}^2$ 

However, this value only applies for the rated point. If the motor protection characteristic had been parameterized, the permissible overcurrent applies for other frequencies over the overload time MOPCT:

$$I_{max}(f) =$$

$$\frac{\text{ited motor current (MOCNM)}}{100\%} \sqrt{\text{overload factor (MOPCM)}^2 + I_N^2 \times \frac{l(f)^2 - 100\%^2}{100\%^2}}$$

- If the integrated current time value exceeds the motor dependent adjusted limit value, the positioning controllers switch off the motor with error message E-OLM. The reaction to the error "Ixt shut-down motor" can be parameterized. (see chapter 6.9.1). This function replaces a motor protection switch.
- A "Motor protection" warning threshold to signalize an expected shutdown can be adjusted as a percentage value of the maximum integrator value (see chapter 6.9.2).

|                                                     | Α                                                          | В                                 | C                       | D                                             | C+D                                                |
|-----------------------------------------------------|------------------------------------------------------------|-----------------------------------|-------------------------|-----------------------------------------------|----------------------------------------------------|
| Type of<br>overload                                 | Motor<br>protection<br>switch (e.g.<br>PKZM) <sup>1)</sup> | Thermistor<br>protection<br>relay | Motor PTC<br>monitoring | Software<br>function<br>"Motor<br>protection" | Motor PTC<br>monitoring<br>and motor<br>protection |
| Overload in<br>permanent<br>operation <sup>2)</sup> | •                                                          | •                                 | •                       | •                                             | •                                                  |
| Heavy<br>starting <sup>3)</sup>                     | •                                                          |                                   |                         | •                                             |                                                    |
| Blocking <sup>2)</sup>                              | •                                                          | ٠                                 | •                       | •                                             | ٠                                                  |
| Blocking <sup>3)</sup>                              | •                                                          |                                   | ●                       | •                                             | •                                                  |
| Ambient<br>temperature<br>>50°C <sup>2)</sup>       | 0                                                          | •                                 | •                       | 0                                             | ٠                                                  |
| Restriction of cooling <sup>2)</sup>                | 0                                                          | •                                 | •                       | 0                                             | •                                                  |
| Converter<br>operation<br><50 Hz                    | 0                                                          |                                   | •                       |                                               |                                                    |
| O No prot                                           | ection                                                     | Limited                           | protection              | Full p                                        | rotection                                          |

#### **Possible motor protections**

1) Operation in motor line between positioning controller and motor not permitted

2) Controller and motor have the same power rating (1:1)

3) The controller is at least four times the rating of the motor (4:1)

4) Effective with warm motor, too long reaction with cold motor

5) No full protection, because only based on the permissible current.

Table 6.35 Possible motor protections

## 6.4.4 Motor holding brake

The following software functions are used in both the controlling as well as the regulating modes of operation.

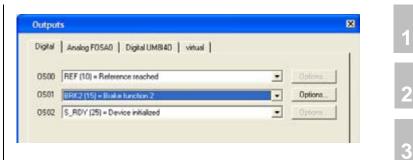
| Function                                                                                | Effect                                                             |
|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| An electro-magnetic holding<br>brake can be triggered in<br>dependence on limit values. | The holding brake closes     when falling below a speed     limit. |
| <ul> <li>Time controlled releasing or</li> </ul>                                        |                                                                    |

 Time controlled releasing or applying of the holding brake can optionally be taken into account.

The motor holding brake has the two modes BRK1 (only for U/f-characteristic control) and BRK2.

Parameter settings for the motor holding brake are made with the buttons "Outputs".

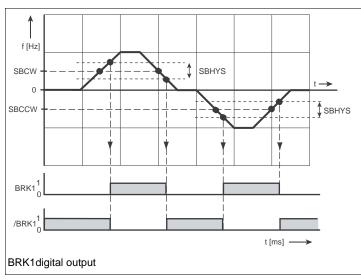


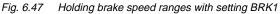

| -6 | 1                                      |         |    |
|----|----------------------------------------|---------|----|
|    | <u>der</u><br>notor eno<br>losition er |         |    |
| h  | fotor and                              | l encod | er |



#### 6 General software functions






#### Motor holding brake BRK1

This function can only be used for the U/f-characteristic control. For a controlled variant the BRK2 function is to be used.

The following illustration shows the function of the motor holding brake within the adjustable speed range. The brake can be released in dependence on a setpoint by means of a digital output, that can be set by means of the function selector.







5

| 3. |  |
|----|--|
|    |  |

|   | 1/min |       |
|---|-------|-------|
| 0 | 1/min |       |
|   |       |       |
| 1 | 1/min |       |
|   |       | 1/min |

Parameters for motor holding brake BRK1

| DriveManager               | Function                                                           | Value range  | WE | Unit              | Parameter              |
|----------------------------|--------------------------------------------------------------------|--------------|----|-------------------|------------------------|
| Clockwise<br>rotation      | BRK1: Speed limit for<br>motor brake (clockwise<br>rotation)       | 0 32764      | 0  | min <sup>-1</sup> | 310-SBCW<br>(_FEPROM)  |
| Anti-clockwise<br>rotation | BRK1: Speed limit for<br>motor brake (anti-<br>clockwise rotation) | -32764 0     | 0  | min <sup>-1</sup> | 311-SBCCW<br>(_FEPROM) |
| Hysteresis                 | BRK1: Switch-on<br>hysteresis of motor<br>holding brake            | -32764 32764 | 1  | min <sup>-1</sup> | 312-SBHYS<br>(_FEPROM) |

Table 6.36 Parameters for motor holding brake BRK1

#### Explanations

- The speed limit for application/release of the holding brake can be set independently for clockwise and anti-clockwise rotation. The switching hysteresis must be taken into consideration.
- The switching points for the motor holding brake BRK1 are coupled to the setpoint.



#### Motor holding brake BRK2 for closed loop

The function is activated by selecting the braking function BRK2 through a digital output. The time for release and application of the motor holding brake can be accounted for by means of seperate timing elements. The possibility of building up torque is a prerequisite for releasing the brake.

| Operation point                  |       |    |
|----------------------------------|-------|----|
| Hysteresis10                     | 1/min |    |
|                                  |       |    |
| Delay times:                     |       |    |
| Open break - Reference selection | _100  | ma |
| Hysteresis                       | 100   | ma |

#### Parameters for motor holding brake BRK2

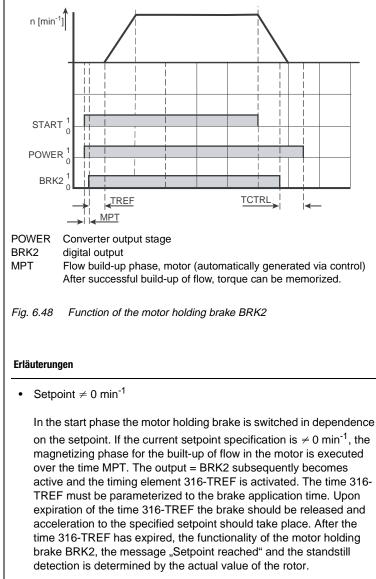
| DriveManager                                   | Function                                                                                 | Value range | WE  | Unit              | Parameter              |
|------------------------------------------------|------------------------------------------------------------------------------------------|-------------|-----|-------------------|------------------------|
| Hysteresis                                     | -NO FUNCTION-                                                                            | 1 32764     | 10  | min <sup>-1</sup> | 315-SSHYS<br>(_FEPROM) |
| Release brake -<br>setpoint specifica-<br>tion | Delay of the setpoint<br>specification with motor<br>brake (brake applica-<br>tion time) | 0 65535     | 100 | ms                | 316-TREF<br>(_FEPROM)  |
| Apply brake -<br>control off                   | Delay of deactivating the<br>control with motor brake<br>(releasing the brake)           | 0 65535     | 100 | ms                | 317-TCTRL<br>(_FEPROM) |

Table 6.37 Parameters for motor holding brake BRK2

#### Explanations

- The re-parameterization of digital output from or to the setting BRK2 does not work online. For parameterization the output stage must be inactive.
- If the brake control BRK2 is linked with the motor protection control ENMO, the timing element 247-TENMO "Time between motor contactor and active control" is executed before or after the brake is triggered.




1

2

6

В

#### Time diagram for the motor holding brake BRK2



Sollwert = 0 min<sup>-1</sup>

If, with setpoint = 0 min<sup>-1</sup> the actual value is in the window "Setpoint reached" of the parameter 230-REF\_R in parameterization, standstill of the motor is detected. At the same time the timing element 317-

TREF is started with setpoint specification =  $0 \text{ min}^{-1}$ . The time 317-TCTRL must be parameterized to the brake application time. After expiration of the time 317-TCTRL the brake must be reliable closed and hold the load. The output stage is subsequently locked.

 In case of fault all outputs are set to LOW and the motor holding brake will close.







#### Motor holding brake BKRK2 for "OpenLoop" speed control

By selecting the braking function BRK2 via a digital output the corresponding function is activated.

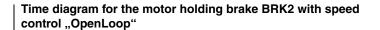
The time for releasing or applying the motor holding brake can be accounted for by using separate timing elements. The switching points of the brake control are triggered in a setpoint dependent way. The build up of torque is enabled by operating the motor at slip speed with the motor holding brake closed.

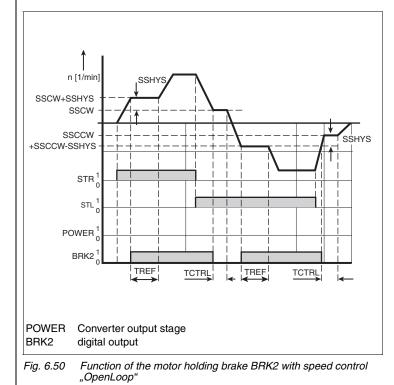
| Clockwise              | _90          | 1/min |   |
|------------------------|--------------|-------|---|
| Anti-clockwise         | 90           | 1/min |   |
| Operation point        |              |       |   |
| Hysteresis             | _1           | 1/min |   |
| Delay times:           |              |       |   |
| Open break - Reference | ce selection | _100  | m |
| Hysteresis             |              | 100   | m |

Fig. 6.49 Tab motor holding brake BRK2 for speed control "OpenLoop"

#### Parameters for motor holding brake BRK2

#### Erläuterungen


| DriveManager                                | Function                                                                                                  | Value range | WE  | Unit              | Parameter              |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------|-------------|-----|-------------------|------------------------|
| Clockwise rotation                          | Speed limit of motor<br>holding brake (clock-<br>wise) enables torque<br>building with ultimate<br>speed. | 0 32764     | 90  | min <sup>-1</sup> | 636_SSCW<br>(_VF)      |
| Anti-clockwise rota-<br>tion                | Speed limit of motor<br>holding brake (clock-<br>wise) enables torque<br>building with ultimate<br>speed. | -32764 0    | -90 | min <sup>-1</sup> | 637_SSCCW<br>(_VF)     |
| Hysteresis                                  | - NO FUNCTION -                                                                                           | 1 32764     | 10  | min <sup>-1</sup> | 315-SSHYS<br>(_FEPROM) |
| Release brake-<br>setpoint<br>specification | Delay of the setpoint<br>specification with motor<br>brake (brake application<br>time)                    | 0 65535     | 100 | ms                | 316-TREF<br>(_FEPROM)  |
| Apply brake -<br>control off                | Delay of deactivating the<br>control with motor brake<br>(releasing the brake)                            | 0 65535     | 100 | ms                | 317-TCTRL<br>(_FEPROM) |


| able 6.38 | Parameters for | motor holding | brake BRK2 |
|-----------|----------------|---------------|------------|
|-----------|----------------|---------------|------------|

#### Explanations

- The speed limit of speed control "OpenLoop" for releasing the motor holding brake is independently adjustable for clockwise or anti-clockwise rotation. Please consider the hysteresis.
- The speed of clockwise or anti-clockwise rotation is adjusted to the slip speed of the motor.
- The value of the speed hysteresis for the motor holding brake is half the value of the slip of the motor.
- The re-parameterization of a digital output from or to the setting BRK2 does not work online. For parameterization the output stage must be inactive.
- If the brake control BRK2 is linked with the motor protection control ENMO, the timing element 247-TENMO "Time between motor contactor and active control" is executed before or after the brake is triggered.

6





#### Explanations

#### Speed set point > speed limit (SSCW or SSCCW)

- Setting the speed reference above the value "Speed limit + speed hysteresis" the motor accelerates on this value and the brake releases. The reference will be fixed up to expiration of time TREF. Parameterize time TREF to the opening time of the brake.
- After expiration of time TREF the brake shall be released and the reference will be accelerated to the set reference above "Speed limit + speed hysteresis" value.
- The adjustable speed limit will be fixed to the slip speed of the motor, so that the motor builts a torque against the brake. Immediately after releasing the brake a torque for the load is available.

#### Speed set point > speed limit (SSCW or SSCCW)

- Setting the reference below the adjustable speed limit the drive will be decelerated. Reaching the speed limit closes the brake. Reference will be fixed at the speed limit up to expiration of time TCTRL. Parameterize time TCTRL to the decelaration time of the brake.
- After expiration of time TCTRL the brake shall be closed safely. References below the speed limit, parameterized to the slip speed, results in low torque.
- The brake protect the load, if there is no sufficient torque available during operation of the motor below the slip speed

1

2

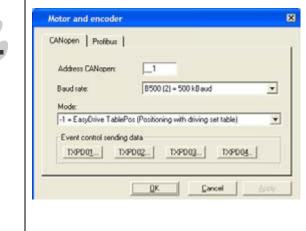
.



#### 6.5 Bus systems

| Function                        | Effect                                                                      |
|---------------------------------|-----------------------------------------------------------------------------|
| Configuration as field bus user | <ul> <li>Selection of important<br/>settings for the application</li> </ul> |




The positioning controllers can be integrated into a field bus network. The available bus systems are listed in Table 6.39.

| Field bus  | possible for<br>positioning<br>controller                                   | Connection                               | Required<br>documentation for<br>commissioning |  |  |  |
|------------|-----------------------------------------------------------------------------|------------------------------------------|------------------------------------------------|--|--|--|
| CANopen    | CDE3000<br>CDB3000<br>CDF3000                                               | device internal (standard)<br>via X5     | User manual CM-DPV1                            |  |  |  |
| PROFIBUS   | CDE3000<br>CDB3000                                                          | external communication<br>module CM-DPV1 | CANopen user manual                            |  |  |  |
| Download o | Download of required documentation under http://www.lust-antriebstechnik.de |                                          |                                                |  |  |  |

Table 6.39Possible field bus systems

#### 6.5.1 CAN<sub>open</sub>

DRIVEMANAGER or KEYPAD are used to set field bus address and baud rate. An operating mode can be additionally selected. Further settings of the field bus configuration solely take place via the field bus system.





CANopen configuration

parameter



The CANopen user manual is required when connecting, commissioning and diagnosing a drive controller in the CANopen network.

| DriveManager                   | Function                                                                                                                                                                                      | Value range | WE   | Parameter           |
|--------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------|---------------------|
| Address<br>CAN <sub>open</sub> | Set the software field bus address.<br>The software address is added to<br>the hardware address set with the<br>coding switch                                                                 | 0 127       | 1    | 580_COADR<br>(_CAN) |
| Baud rate                      | Permissible data transmission<br>frequencies (see Table 6.40).                                                                                                                                | B_1M B10    | B500 | 581_COBDR<br>(_CAN) |
| Mode of<br>operation           | Determination for DSP402 or<br>EASYDRIVE modes with the<br>definition of control and status<br>channel (see Table 6.40). The<br>operating mode is preset when<br>selecting a preset solution. | -4 6        | -1   | 638_H6060<br>(_CAN) |

| Baud rate 581-COBDR |         |           |
|---------------------|---------|-----------|
| BUS                 | Setting | Baud rate |
| 0                   | B_1M    | 1 MBaud   |
| 1                   | B800    | 800 kBaud |
| 2                   | B500    | 800 kBaud |
| 3                   | B250    | 250 kBaud |
| 4                   | B125    | 800 kBaud |
| 5                   | B50     | 50 kBaud  |
| 6                   | B20     | 20 kBaud  |
| 7                   | B10     | 10 kBaud  |

| 0       | perating mode 638-H6060               |
|---------|---------------------------------------|
| Setting | Mode of operation                     |
| -4      | -                                     |
| -3      | EASYDRIVE ProgPos (PLC control)       |
| -2      | EASYDRIVE Basic                       |
| -1      | EASYDRIVE TablePos (travel set table) |
| 0       | -                                     |
| 1       | DSP402 - Profile position mode        |
| 2       | -                                     |
| 3       | DSP402 - Profile velocity mode        |
| 4       | -                                     |
| 5       | -                                     |
| 6       | DSP402 - Homing Mode                  |
|         |                                       |



Setting the CANopen baud rate and operating mode

#### TxPDO-Event control





EN

2

3

4

5

The 4 transmission PDOs are sent in asynchronous mode (factory setting, see CANopen user manual) in dependence on one or several events. The events for each individual PDO can be selected from individual function masks, see example in Fig. 6.51. The same event (e. g. input IS02) can be used several times, i.e. with each TX event control.

| end | TXPD01   | at changing     | of     |         |         |         |
|-----|----------|-----------------|--------|---------|---------|---------|
| Г   | 1500     | T IS01          | F 1502 | F IS03  |         |         |
| Г   | 1E 00    | IT IE01         | F 1E02 | IT 1E03 | IT IE04 | IT IE05 |
| Г   | 0V00     | IT 0V01         |        |         |         |         |
|     | PLC flag | 98=1            |        |         |         |         |
| •   | PLC flag | 99=1            |        |         |         |         |
|     | CAN-stat | us word (byte i | 0-1)   |         |         |         |
| Г   | CAN-stat | us word (byte ) | 2-3]   |         |         |         |

Fig. 6.51 Function mask event control for TxPDO1 with CDB3000

| DriveManager  | Function                                                                                             | Value range | WE    | Parameter           |
|---------------|------------------------------------------------------------------------------------------------------|-------------|-------|---------------------|
| Button TXPD01 | Events for sending of the first<br>transmission PDO (TxPDO1)<br>Bit by bit coded acc. to Table 6.41  | Oh FFFFh    | 7000h | 148-TXEV1<br>(_CAN) |
| Button TXPD02 | Events for sending of the second<br>transmission PDO (TxPDO2)<br>Bit by bit coded acc. to Table 6.41 | 0h FFFFh    | 7000h | 149-TXEV2<br>(_CAN) |
| Button TXPD03 | Events for sending of the third<br>transmission PDO (TxPDO3)<br>Bit by bit coded acc. to Table 6.41  | 0h FFFFh    | 7000h | 675-TXEV3<br>(_CAN) |
| Button TXPD04 | Events for sending of the fourth<br>transmission PDO (TxPDO4)<br>Bit by bit coded acc. to Table 6.41 | Oh FFFFh    | 7000h | 676-TXEV4<br>(_CAN) |

The events are saved bit by bit in the parameters TXEVn ( $n = 1 \dots 4$ ).

| L | U | 5 | Т |
|---|---|---|---|
|   | - |   |   |

| Bit | Default | TxPDOn (n = 1 4) send in case of change of                     |
|-----|---------|----------------------------------------------------------------|
| 0   | 0       | Input IS00                                                     |
| 1   | 0       | Input IS01                                                     |
| 2   | 0       | Input IS02                                                     |
| 3   | 0       | Input IS03                                                     |
| 4   | 0       | Input IE00                                                     |
| 5   | 0       | Input IE01                                                     |
| 6   | 0       | Input IE02                                                     |
| 7   | 0       | Input IE03                                                     |
| 8   | 0       | Input IE04                                                     |
| 9   | 0       | Input IE05                                                     |
| 10  | 0       | Virtual output OV00                                            |
| 11  | 0       | Virtual output OV01                                            |
| 12  | 1       | PLC-Flag M98=1                                                 |
| 13  | 1       | PLC-Flag M99=1                                                 |
| 14  | 1       | CAN status word                                                |
| 15  | 0       | Extended CAN status word (only with EASYDRIVE operating modes) |

Table 6.41 Bit by bit coding of parameters TXEVn

#### Explanations

• The diagnose of the CANopen control and status word as well as the network status takes place in the function menu "Actual values", tab "CANopen", see chapter 6.8.4.



#### 6.5.2 PROFIBUS

DRIVEMANAGER or KEYPAD are used to set field bus address and configuration of the process data channel (operating mode).

| Address Prolibus:   | _0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---|
| Process data channe | and the second se |                  |   |
| 6 = EasyDrive Table | Pos (Positioning with d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | iving set table) | - |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |   |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |   |



2.

# For connecting the communication module CM-DPV1 as well as the commissioning and diagnose of a drive controller in the PROFIBUS network, the user manual CM-DPV1 is required.

| DriveManager                               | Function                                                                                                                                                                                               | Value range | WE | Parameter           |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|----|---------------------|
| Address<br>PROFIBUS                        | Set the software field bus address.<br>The software address is only<br>evaluated, if the coding switches S1<br>and S2 for the hardware address<br>are set to 0.                                        | 0 127       | 0  | 582_PPADR<br>(_OPT) |
| Process data<br>channel -<br>configuration | Determination of the EASYDRIVE<br>operating modes with definition of<br>the control and status channel (see<br>Table 6.42). The process data<br>channel is preset when selecting a<br>preset solution. | 0 255       | 0  | 589_0PCFG<br>(_0PT) |

#### Process data channel - configuration 589-OPCFG

|         | 0.0.2                           |
|---------|---------------------------------|
| Setting | Mode of operation               |
| 0 - 3   | -                               |
| 4       | EasyDrive Basic                 |
| 5       | EASYDRIVE ProgPos (PLC control) |

 Table 6.42
 Setting the PROFIBUS process data channel

### PROFIBUS configuration parameters

| Process | data channel - configuration 589-<br>OPCFG |
|---------|--------------------------------------------|
| Setting | Mode of operation                          |
| 6       | EASYDRIVE TablePos (travel set table)      |
| 7       | EASYDRIVE DirectPos                        |
| 8       | -                                          |

 Table 6.42
 Setting the PROFIBUS process data channel

#### Explanations

• A diagnose of the PROFIBUS control and status word takes place with plugged on and active PROFIBUS module CM-DPV1 in the function menu "Actual values", tab "Option", see chapter 6.8.3.

5



#### 6.6 Cam controller

| Function                                        | Effect                                                                      |
|-------------------------------------------------|-----------------------------------------------------------------------------|
| Electronic cam controller                       | Replacement for mechanical                                                  |
| with up to 16 cams                              | cam controllers                                                             |
| <ul> <li>Can be used with positioning</li></ul> | <ul> <li>Short set-up time by</li></ul>                                     |
| or speed control                                | changing cams                                                               |
|                                                 | <ul> <li>Selection of important<br/>settings for the application</li> </ul> |

The cam controller implemented in the positioning controller can most simply be described as a cylinder with radially attached cams along the axis of the cylinder. Up to 16 cams with start and end position, related to the cylinder diameter (cycle), can be arranged in any order. Each cam has an action register assigned, which triggers the corresponding actions when the cam is reached. This status can be reported to a superordinate controls, e.g. by setting a flag CMx. The flag status CMx can be transmitted via outputs or the field bus. The cam status can be additionally used by describing a PLC-flag in the sequencing control.

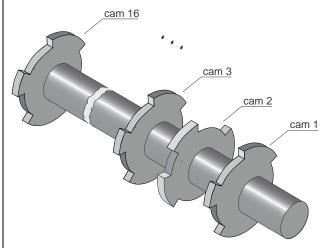



Fig. 6.52 Function of electronic cam controller

The cam controller is started and works if a cam number unequal zero is specified.



Cam gear



6 General software functions

Cam settings



| Cam                 | Start position        |                  | End position | Action     | 1 |
|---------------------|-----------------------|------------------|--------------|------------|---|
| 0                   | 0                     |                  | 0            | FFFF0000H  |   |
| 1                   | 0                     |                  | 0            | FFFF0000H  |   |
| 2                   | 0                     |                  | 0            | FFFF0000H  |   |
| 3                   | 0                     |                  | 0            | FFFF0000H  |   |
| Double click on     | column "Action" to de | efine the action | 0            | FFFF0000H  | 1 |
| 5                   | 0                     |                  | 0            | FFFF0000H  |   |
| 8                   | 0                     |                  | 0            | FFFF0000H  | 2 |
| 5                   | n                     | 10               | n            | FEFFITTION | × |
| ycle cam gear       | [                     | 0                | mm           |            |   |
| Number fo cams      |                       | 0                |              |            |   |
| lysteresis to avoid | jitter effects        | _0               | mm           |            |   |
| AM gear is driven   | by:                   |                  |              |            |   |



Pressing the button "Help" in the windows "Settings cam controller" and "Define action" opens the online help.

The corresponding configurations of the cam controller must be made with the following parameters:

| DriveManager   | Meaning                                                                                                                                                          | Value range           | WE            | Parameter                 |
|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------|---------------------------|
| Start position | The cam positions can be specified in<br>any sequence, however, should<br>always be inside the cycle, This                                                       | 0<br>2147483647       | 0             | 743.x_CST<br>AP<br>(_CAM) |
| End position   | condition is not checked!<br>Unit:<br>Increments (65536/motor revolution)<br>with speed control, user defined with<br>positioning                                | 0<br>2147483647       | 0             | 744.x_CEN<br>DP<br>(_CAM) |
| Action         | Setting switching points, setting PLC<br>markers. Double-clicking on the<br>column opens the action window. The<br>parameter is bit coded acc. to Table<br>6.43. | 00000000H<br>FFFFFFFH | FFFF0<br>000H | 745.x_CAC<br>TN<br>(_CAM) |

4

2

6

7



| DRIVEMANAGER                                     | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Value range     | WE   | Parameter               |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------|-------------------------|
| Cam controller<br>cycle                          | After the end of the defined cycle<br>(revolution of the cam controller) the<br>cycle is restarted.<br>Permitted only with reference position<br>CCENC = ENCD, EGEAR. With CCENC<br>= ACTP the cycle depends on the<br>actual position of the positioning<br>controller (e.g. with endless<br>positioning: Cycle = length of<br>revolution).<br>Unit:<br>Increments (65536/motor revolution)<br>with speed control, user defined with<br>positioning                                                                                                                                                                        | 0<br>2147483647 | 0    | 741_CCCCY<br>C<br>(_IN) |
| Number of<br>cams                                | Only the defined number of cams is<br>evaluated. If the defined number of<br>cams is zero, the cam controller will<br>not be processed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0 15            | 0    | 742_CCNU<br>M<br>(_IN)  |
| Hysteresis for<br>avoidance of<br>jitter effects | It makes sense to select a bigger cam<br>length than the hysteresis.<br>Unit:<br>Increments (65536/motor revolution)<br>with speed control, user defined with<br>positioning.                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0<br>2147483647 | 0    | 747_CCHY<br>S<br>(_IN)  |
| Reference<br>position                            | Here the position source to feed the<br>cam controller is set. The following<br>settings are possible:<br>"ENCD [0] = cam controller cycle<br>related to the position encoder" :=<br>The cycle of the cam controller is<br>determined by the current position of<br>the position encoder.<br>"EGEAR [1] = cam controller cycle<br>related to the reference encoder" :=<br>The cycle of the cam controller is<br>determined by the external reference<br>encoder.<br>"ACTP [2] = related to the actual<br>position": =<br>The cam controller cycle is<br>determined by the actual position of<br>the positioning controller. | ENCD ACTP       | ACTP | 740_CCEN<br>C<br>(_CAM) |



#### 6 General software functions

Defining the cam action



The following window opens when double-clicking into the column "Action":

|             | Cam:             | 0              | <b>بې</b> |
|-------------|------------------|----------------|-----------|
| Switch as f | unction of di    | rection of rot | ation:    |
| OFF (2) - 1 | h both direction | 1              | 2         |
| Cam gear s  | witching po      | inte:          |           |
| IT CM1      | I ⊂ CM2          | Г СМЗ          | IT CM4    |
| IT CM5      | □ CM6            | IT CM7         | IT CM8    |
| IT CM9      | Г СМ10           | Г СМ11         | E CM12    |
| [ CM13      | I € CM14         | ☐ CM15         | E CM16    |
| Set switchi | ing points to    | outputs:       |           |
| Set PLC fla | 081              |                | Outputs   |
| First flag  |                  | 255 (0         |           |
| Second fla  | NC .             | 255 10         |           |

| DriveManager                          | Meaning                                                                                                                                                                                                                                                                                                                                                                                                 | Value range | WE  | Parameter             |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|-----|-----------------------|
| Sense of rotation dependent switching | Activation of cam only with defined travel direction. The<br>following settings are possible:<br>"NEG [0] = Only to negative direction" := The cam<br>switches only in negative sense of rotation.<br>"POS [1] = Only to positive direction" := The cam<br>switches only in positive sense of rotation.<br>"OFF [2] = To both directions" := The cam switches<br>irrespective of the sense of rotation. | NEG OFF     | OFF | 750.x_CCDIR<br>(_CAM) |

The following actions (can also be multiply combined) are possible for each cam:  $\label{eq:can}$ 

| bint CM1 |
|----------|
|          |
| int CM2  |
| int CM3  |
| int CM4  |
| int CM5  |
| int CM6  |
| int CM7  |
| c        |

Table 6.43

Action register for the individual cams 745.x\_CACTN

EN

Α

2

3

4

5

| Bit   | Default  | Cam action                     |
|-------|----------|--------------------------------|
| 7     | Inactive | Set/delete switch point CM8    |
| 8     | Inactive | Set/delete switch point CM9    |
| 9     | Inactive | Set/delete switch point CM10   |
| 10    | Inactive | Set/delete switch point CM11   |
| 11    | Inactive | Set/delete switch point CM12   |
| 12    | Inactive | Set/delete switch point CM13   |
| 13    | Inactive | Set/delete switch point CM14   |
| 14    | Inactive | Set/delete switch point CM15   |
| 15    | Inactive | Set/delete switch point CM16   |
| 16 23 | 255      | Number of PLC-flag (00h - FFh) |
| 24 31 | 255      | Number of PLC-flag (00h - FFh) |

Table 6.43Action register for the individual cams 745.x\_CACTN



In odder to avoid undefined conditions a flag (CMx or PLC-flag) must only be used in a cam or action register.

The switch points can be set to outputs. For this purpose the chosen output must be assigned to the cam controller (e.g.: OS02 := CM4 (46)). The assignment of the output takes place in the "Output" mask (button "Outputs").

#### Explanations

• Hysteresis

An hysteresis can be specified as a measure to avoid jitter effects. When the cam is reached the first time, the entry position is saved. If the cam is e.g. left at the same position, the cam condition will only be deactivated when the hysteresis (747-CCHYS) has also been left. For a clear detection of the cam, the cam length must be adapted to the max. speed of the drive (detection in 1ms-cycle).

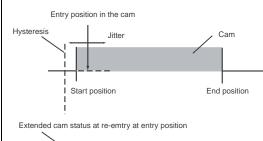





Fig. 6.53Hysteresis with cam controller

- Synchronization of the cam controller
  - Synchronization of the cam controller to the current position via PLCMotion:

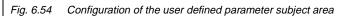
A positive flank of the flag M75 synchronizes the cam controller to the current position.

Synchronization of the cam controller to the current position via terminal:

A positive flank at the input parameterized to start "CAMRS (34) = reset cycle of cam controller", synchronizes the cam controller to the current position.

• Stopping the cam controller

The cam controller is stopped by the sequencing program of the PLC or by the field bus. If the number of cams (parameter "742-CCNUM number of cams") is set to zero, the cam controller is stopped.


Transmission of CAN-telegrams

The cam controller itself does not transmit any CAN-telegrams. Setting the markers 98 or 99, the virtual outputs OV00 und OV01, creates an event handling to CAN (see chapter 6.5.1, "TxPDO-Event control").



### 6.7 Setting KP200-XL

| Function                                                                                                                                                                                                                                                                              | Effect                                                                                                                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Determination of the permanent displays</li> <li>Compilation of the user defined parameter subject area _11UA</li> <li>Definition of additional actual values in the VAL menu</li> </ul>                                                                                     | <ul> <li>Selection of important actual values for permanent display</li> <li>Selection of important settings for the application</li> </ul> |
| User defined parameter subject                                                                                                                                                                                                                                                        |                                                                                                                                             |
| <ul> <li>The user defined subject area<br/>menu of the operation panel K</li> </ul>                                                                                                                                                                                                   | _11UA is only visible in the PARA                                                                                                           |
|                                                                                                                                                                                                                                                                                       | Inderlain by a data field, suitable for<br>r numbers for display in the subject                                                             |
| • In the parameter subject area                                                                                                                                                                                                                                                       | no actual value parameters can be                                                                                                           |
| displayed.                                                                                                                                                                                                                                                                            | ·                                                                                                                                           |
| <ul><li>displayed.</li><li>All parameters displayed in this</li></ul>                                                                                                                                                                                                                 | no actual value parameters can be<br>s subject area can be edited in                                                                        |
| displayed.                                                                                                                                                                                                                                                                            | ·                                                                                                                                           |
| <ul><li>displayed.</li><li>All parameters displayed in this</li></ul>                                                                                                                                                                                                                 | ·                                                                                                                                           |
| <ul><li>displayed.</li><li>All parameters displayed in this operation level 1.</li></ul>                                                                                                                                                                                              | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1. KP200 setup User application (PARA) User application (VAL The following parameters are displayed in the                                                                                                                | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1. KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user-definable subject area (_11UA)                                                                           | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1. KP200 setup User application (PARA) User application (VAL The following parameters are displayed in the                                                                                                                | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1.  KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user-definable subject area (_11UA) Index Parameter number 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0             | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1.  KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user-definable subject area (_11UA)  Index Parameter number 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0            | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1.  KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user-definable subject area (_11UA).  Index Parameter number 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1.  KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user-definable subject area (_11UA).  Index Parameter number 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1.  KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user definable subject area (_11UA).  Index Parameter number 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1.  KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user-definable subject area (_11UA).  Index Parameter number 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1.  KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user definable subject area (_11UA).  Index Parameter number 0 1 0 2 0 3 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | s subject area can be edited in                                                                                                             |
| displayed. All parameters displayed in this operation level 1.  KP200 setup User application (PARA) User application (VAL) The following parameters are displayed in the user definable subject area (_11UA).  Index Parameter number 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0           | s subject area can be edited in                                                                                                             |



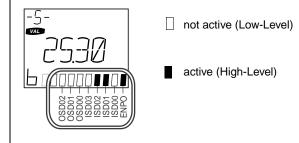
| DriveManager                                                          | Value range | WE | Parameter               |
|-----------------------------------------------------------------------|-------------|----|-------------------------|
| User application (PARA)<br>for user defined<br>parameter subject area | 0 999       | 0  | 13.x_UAPSP.x<br>(_KPAD) |

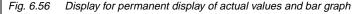
#### User defined actual value display

- User defined actual values are only visible in the VAL-menu of the KEYPAD operation panel KP200-XL.
- The parameter 12-UAVAL is underlain by a data field, suitable for the input of max. 14 parameter numbers for display in the VAL-menu.
- Editable parameters can also be displayed.
- All parameters entered here are also visible in operation level 1.

| er apprecision (mec)              | ]] Displays                      |
|-----------------------------------|----------------------------------|
| e following paramete<br>VAL menu. | rs are displayed additionally in |
| Index                             | Parameter number                 |
| 0                                 | 0                                |
| 1                                 | 0                                |
| 2                                 | 0                                |
| 3                                 | 0                                |
| 4                                 | 0                                |
| 5                                 | 0                                |
| 6                                 | 0                                |
| 7                                 | 0                                |
| 8                                 | 0                                |
| 0                                 | 2                                |

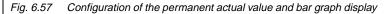
Fig. 6.55 Configuration of user defined actual values in the VAL-menu


| DriveManager                                                       | Value range | WE | Parameter               |
|--------------------------------------------------------------------|-------------|----|-------------------------|
| User application (VAL)<br>for user defined actual<br>value display | 0 999       | 0  | 12.x_UAVAL.x<br>(_KPAD) |




1

5


#### Display for permanent display of actual values and bar graph





Permanent actual value display and bar graph can be used separately for the display of actual values. The bar graph is used for the status display of system values or to show the trend of individual actual values. The permanent actual value display is directly opened when accessing the VAL-menu (menu of actual values). The input of an index is only necessary for field parameters, i.e. a parameter with several entries. For all other parameters it must be set to 0.

| KP200 setup                              |              |              | 8  |
|------------------------------------------|--------------|--------------|----|
| User application (VAL)                   | Displays     | 1            | 41 |
| Parameter for:                           |              |              |    |
|                                          | No.          | Index        |    |
| Continuous actual value                  | e dis 400    | 0            | 7  |
| Bar graph                                | 170          | 0            | -  |
| Specification of Ind<br>field parameters | ex is only r | necessary fo | 2  |
|                                          |              |              |    |



#### 6 General software functions

| DriveManager Value range                         |               | WE      | Parameter                       |
|--------------------------------------------------|---------------|---------|---------------------------------|
| Permanent actual value<br>display<br>No. / Index | 1 999 / 0 255 | 400 / 0 | 360_DISP / 375_DPIDX<br>(_KPAD) |
| Bar graph<br>No. / Index                         | 1 999 / 0 255 | 170/    | 361_BARG / 374_BGIDX<br>(_KPAD) |

| Function                                    | Parameter |       | Operation   | DISP | BARG |
|---------------------------------------------|-----------|-------|-------------|------|------|
| Function                                    | DM        | KP200 | level KP200 | DISF | DANU |
| Actual torque value                         | 14        | ACTT  | 2           | ~    | ~    |
| Actual speed value                          | 77        | SPEED | 2           | ~    | ~    |
| d.c. link direct voltage                    | 405       | DCV   | 2           | ~    | ~    |
| Current actual value of control             | 400       | ACTV  | 2           | ~    |      |
| Current setpoint of control                 | 406       | REFV  | 2           | ~    | ~    |
| Effective value of apparent current         | 408       | APCUR | 2           | ~    | ~    |
| System time after switching on              | 86        | TSYS  | 3           | ~    |      |
| Operating hours of positioning controller   | 87        | TOP   | 3           | ~    |      |
| States of digital inputs and outputs        | 419       | IOSTA | 2           | ~    | ~    |
| Filtered input voltage ISA00                | 416       | ISA0  | 4           | ~    |      |
| Filtered input voltage ISA01                | 417       | ISA1  | 4           | ~    |      |
| Filtered input current ISA00                | 418       | IISA0 | 4           | ~    |      |
| Motor temperature with KTY84-<br>evaluation | 407       | MTEMP | 2           | ~    |      |
| Internal temperature                        | 425       | DTEMP | 2           | ~    | ~    |
| Heat sink temperature                       | 427       | KTEMP | 2           | ~    | ~    |
| Filtered output voltage                     | 420       | OSA00 | 4           | ~    |      |

#### Adjustment possibilities for 360-DISP and 361-BARG

Table 6.44Settings for permanent actual value and bar graph display

| Parameter | Function                   | Effect/notes                                   | Reference<br>value |
|-----------|----------------------------|------------------------------------------------|--------------------|
| SPEED     | current actual<br>speed    | only clockwise rotation (only positive values) | max. speed         |
| APCUR     | actual apparent<br>current |                                                | 2*I <sub>N</sub>   |

Table 6.45Standardization of actual parameter values



2

3

4

5

6

8

Α

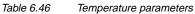
Standardization of parameters with bar graph display

| Parameter | Function                                       | Effect/notes                                                                                                                                                                                                                                                                       | Reference<br>value |
|-----------|------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| ISA0      | Voltage or current<br>at analog input<br>ISA00 |                                                                                                                                                                                                                                                                                    | 10 V / 20 mA       |
| ISA1      | Voltage at analog<br>input ISA01               |                                                                                                                                                                                                                                                                                    | 10 V               |
| MTEMP     | actual motor<br>temperature                    | Motor temperature only with linear evaluation (KTY)                                                                                                                                                                                                                                | 200 °C             |
| KTEMP     | actual heat sink<br>temperature                | $\leq$ 15 kW: Temperatures > 100 °C in the<br>output stage module correspond with<br>temperatures > 85 °C on the heat sink and<br>causes shut-down<br>$\geq$ 15 kW: Temperatures >85 °C cause<br>shut-down, because the temperature<br>sensor is directly mounted to the heat sink | 200 °C             |
| DTEMP     | actual inside<br>temperature                   | Inside temperatures > 85 °C cause shut-<br>down                                                                                                                                                                                                                                    | 200 °C             |
| DCV       | d.c. link direct<br>voltage                    | Reference values depend on device design<br>CDX32.xxx 500 V<br>CDX34.xxx 1000 V                                                                                                                                                                                                    | 500 V /<br>1000 V  |
| ACTT      | current actual<br>torque                       |                                                                                                                                                                                                                                                                                    | max. torque        |

Table 6.45Standardization of actual parameter values

#### 6 General software functions






6.8.1 Temperature monitoring

| Actual values |                                |        |  |
|---------------|--------------------------------|--------|--|
| Function      |                                | Effect |  |
|               | ion of device and<br>peratures | 8      |  |
| 203           | Pevice   Option   CANoper      |        |  |
|               | near sink ( C)                 | 24.00  |  |

0.00

| DriveManager | Meaning                                                                                                                                                                                                                                                                                                                                                                        | Unit | Parameter           |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|---------------------|
| Heat sink    | Heat sink temperature of positioning controllers                                                                                                                                                                                                                                                                                                                               | °C   | 427-KTEMP<br>(_VAL) |
| Inside       | Inside temperature of positioning controllers                                                                                                                                                                                                                                                                                                                                  | °C   | 425-DTEMP<br>(_VAL) |
| Motor        | <ul> <li>Motor temperature Is only displayed if the motor is equipped with a linear temperature sensor KTY84-130 and the evaluation is parameterized, see chapter 6.4.3.</li> <li>The warning threshold can be programmed (see chapter 6.9.2)</li> <li>If a temperature of 150°C is exceeded, a parameterizable error message will be displayed (see chapter 6.9.1)</li> </ul> | °C   | 407-MTEMP<br>(_VAL) |



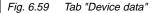
Motor (only KTY84) (°C)

Actual temperature display

Fig. 6.58

6

7


### 6.8.2 Device data

| Function                                        | Effect                                                                                         |
|-------------------------------------------------|------------------------------------------------------------------------------------------------|
| Provision of all positioning<br>controller data | <ul> <li>Clear identification of<br/>positioning controller and<br/>device software</li> </ul> |

The equipment data provide information about hardware and software, which should always be at hand when calling the support hotline.

The device data can partly also be read off the type plates.

| V2.60 - 98 |           |
|------------|-----------|
| 12.00 00   |           |
| C788H      |           |
| 043601160  |           |
|            | 310       |
| 339        | h         |
|            |           |
|            | 043601160 |



| DriveManager                       | Meaning                                                 | Value range     | Unit | Parameter            |
|------------------------------------|---------------------------------------------------------|-----------------|------|----------------------|
| Software version                   | Software revision                                       | *               |      | 92-REV<br>(_STAT)    |
| Software version<br>- appendix -xx | Revision index as<br>appendix to the revision<br>number | *               |      | 106-CRIDX<br>(_STAT) |
| CS:                                | Check sum XOR                                           | *               |      | 115-CSXOR<br>(_STAT) |
| Serial number                      | Serial number of the device                             | *               |      | 127-S_NR<br>(_STAT)  |
| Data set<br>designation            | Data set designation                                    | 0-28 characters |      | 89-NAMDS<br>(_CONF)  |
| d.c. link direct<br>voltage        | Current d.c.link direct voltage                         | *               | V    | 405-DCV<br>(_VAL)    |

Table 6.47Parameter Device data

6.8.3 Options

| Operating hours<br>Time after<br>switching on |                                         | *                   | h           | 87-TOP<br>(_VAL)           |
|-----------------------------------------------|-----------------------------------------|---------------------|-------------|----------------------------|
| switching on                                  |                                         |                     |             |                            |
|                                               |                                         | 1 65535             | min         | 86-TSYS<br>(_VAL)          |
| ') With an actual value                       | the value range is of no ir             | nportance           |             |                            |
| Table 6.47 F                                  | Parameter Device d                      | lata                |             |                            |
| Function                                      |                                         | Effect              |             |                            |
|                                               | f all data for a<br>optional module     | conne               |             | tion of the<br>onal module |
|                                               |                                         |                     |             |                            |
| Acutal values                                 |                                         | ×                   |             |                            |
| Temperatures   De                             | vice Option CANopen                     | d .                 |             |                            |
| Indification option                           | n module:                               |                     |             |                            |
| Module:                                       | 1/0-Module (UM-8/40)                    |                     |             |                            |
| Software version:                             | 0.00                                    |                     |             |                            |
|                                               |                                         |                     |             |                            |
| ig. 6.60 Optic-<br>8/40                       | onal module status                      | display, in this ca | ase the I/C | -module UM                 |
|                                               |                                         |                     |             |                            |
| The following mo                              | odules can be use                       | ed:                 |             |                            |
| • PROFIBUS                                    | field bus module                        | CM-DPV1             |             |                            |
| Communica                                     | ation module UM-8                       | 3140                |             |                            |
|                                               | Real and a strength start               |                     |             |                            |
|                                               | tion on optional m<br>S user manual) or |                     |             |                            |
| o. g. 1 1001 1200                             |                                         |                     |             |                            |





1

2

5

6

8

Α

The data of the optional module are displayed first. These consists of the detected module and, if present, of the software version of the module.

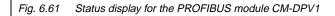

| DriveManager     | Meaning                                                                                                                                                                                    | Parameter           |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Module           | Identification of a connected module. Possible displays<br>are:<br>NONE: no module connected<br>PROFI: PROFIBUS communication module CM-DPV1<br>IO1: I/O terminal extension module UM-8I4O | 579-OPTN1<br>(_OPT) |
| Software version | Software version of the connected optional module A value of 0.00 indicates that the module has no software.                                                                               | 576-0P1RV<br>(_0PT) |

 Table 6.48
 Parameters of the optional module identification

The rest of the display depends on the respective module.

Besides the option detection, the control and status word transmitted via field bus is also displayed when using PROFIBUS communication.

| dification option            | module:                                       |                               |                                                                                                                |
|------------------------------|-----------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------|
| Module:<br>Software version: | Profibus DP (CM-0<br>0.00                     | (PV1)                         |                                                                                                                |
| rocess data channe           | - configuration                               |                               |                                                                                                                |
|                              |                                               |                               |                                                                                                                |
| Control word PZD1 ·          |                                               | A REAL PROPERTY AND INCOME.   |                                                                                                                |
| PZD1 PZD2<br>00H 00H 00H 00  | time, which we have been a stand on the stand | 4 P205 P20<br>00H 00H 00H 00H | the second s |
| itatus word PZD1 -           | 6                                             |                               |                                                                                                                |
| COLUMN AND DESCRIPTION OF    | 2203 220                                      | A E205 E20                    | -                                                                                                              |



Status display for the PROFIBUS module CM-DPV1

| DriveManager                               | Function                                                                                                                                                                                        | Parameter               |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| Process data<br>channel -<br>configuration | Active EASYDRIVE operation mode. Selection from menu "Bus systems/PROFIBUS", see chapter 6.5.2                                                                                                  | 589_0PCFG<br>(_0PT)     |
| Control word PZD1-<br>6                    | Display of the hexadecimal coded EASYDRIVE- control<br>word with the PZD's 1-6.<br>By clicking on the corresponding PZD, it is displayed<br>bit coded, partly with text display, see Fig. 6.62. | 598.x_PBCTR.x<br>(_OPT) |
| Control word PZD1-<br>6                    | Display of the hexadecimal coded EASYDRIVE- status<br>word with the PZD's 1-6.<br>By clicking on the corresponding PZD, it is displayed<br>bit coded, partly with text display. see Fig. 6.62   | 599.x_PBSTA.x<br>(_OPT) |
|                                            | arameters of the PROFIBUS module CM_DP                                                                                                                                                          | V1 status               |

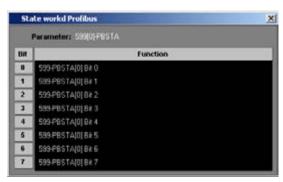



Fig. 6.62 Bit coded PZD-display

#### Explanations

 A detailed diagnose of the bus system is only possible with commercial bus analysers. Here only the control and status information can be checked.



For further information on PROFIBUS communication please refer to the CM-DPV1 user manual.

2

3

4

6

Α

Effect

### 6.8.4 CAN<sub>open</sub> Field bus

Function

| communication stat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | open                                                                                                                                                                                        | ntification of the ata transfer                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Acutal values                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8                                                                                                                                                                                           |                                                                                                                        |
| Temperatures   Device   Option<br>Device address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CANopen                                                                                                                                                                                     |                                                                                                                        |
| Active mode:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                             |                                                                                                                        |
| EasyDrive TablePos (Positioning                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a with driving set table)                                                                                                                                                                   |                                                                                                                        |
| State of network:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                        |
| 127 - Pre-Operational                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 11                                                                                                                                                                                          |                                                                                                                        |
| Control word (byte 1-0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8884H                                                                                                                                                                                       |                                                                                                                        |
| Extended control word (byte 3-2<br>(only Easy Drive)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 0000H                                                                                                                                                                                     |                                                                                                                        |
| Status word (byte 1-0)<br>Extended status word (byte 3-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2F26H                                                                                                                                                                                       |                                                                                                                        |
| (only Easy Drive)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                             |                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | communication status                                                                                                                                                                        |                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                             | Parameter                                                                                                              |
| Fig. 6.63 CAN <sub>open</sub> of <b>DRIVEMANAGER</b><br>Device address<br>(partly not displayed in the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | communication status                                                                                                                                                                        | sum of 571-CAADR                                                                                                       |
| Fig. 6.63 CAN <sub>open</sub> d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | communication status           Meaning           Device address, resulting from the hardware coding and software set                                                                        | e sum of 571-CAADR<br>tting (_CAN)                                                                                     |
| Fig. 6.63 CAN <sub>open</sub> of<br>DRIVEMANAGER<br>Device address<br>(partly not displayed in the<br>function mask)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Communication status           Meaning           Device address, resulting from the hardware coding and software set (580-COADR).                                                           | e sum of 571-CAADR (_CAN)                                                                                              |
| Fig. 6.63 CAN <sub>open</sub> of CAN <sub>open</sub> | Communication status           Meaning           Device address, resulting from the hardware coding and software set (580-COADR).           Active (selected) CAN <sub>open</sub> operation | esum of<br>tting         571-CAADR<br>(_CAN)           on mode         653-H6061<br>(_CAN)           588-NMT<br>(_CAN) |

Table 6.50Parameter CANopen field bus status

| DriveManager                       | Meaning                                                                                               | Parameter           |
|------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------|
| Status word (byte1-0)              | Hexadecimal coded status word for<br>CANopen communication                                            | 572-H6041<br>(_CAN) |
| Extended status word<br>(Byte 3-2) | Extended hexadecimal coded status word<br>for CANopen communication with<br>EASYDRIVE operation mode. | 575-H223F<br>(_CAN) |

By clicking on the corresponding control or status word, it is displayed bit coded, partly with text display, see Fig. 6.62.

Table 6.50 Parameter CANopen field bus status

#### Explanations

• A detailed diagnose of the bus system is only possible with commercial bus analysers. Here only the control and status information can be checked.



For further information on CANopen communication please refer to the CANopen user manual.

5



#### 6 General software functions

# LUST

6.9 Warnings/ errors



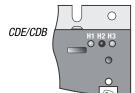
Error/Warring...

6.9.1 Error messages

| Display system                   | and resetting faults | of drive               | <ul> <li>Quick identification of fault<br/>cause and determination of</li> </ul> |
|----------------------------------|----------------------|------------------------|----------------------------------------------------------------------------------|
| Setting                          | of fault reacti      | ons                    | the reaction of the drive to fault                                               |
| Warnings                         | /Errors              | ×                      |                                                                                  |
| Last enor                        |                      |                        |                                                                                  |
| Error                            | E-CAN-31,322h        | Diagnosis              |                                                                                  |
| Time point                       | 0                    | min                    |                                                                                  |
| Error rea                        | ctions               | Reset error            |                                                                                  |
|                                  |                      |                        |                                                                                  |
| Error history                    | E0-0.0h              | Diagnosis              |                                                                                  |
| Error history<br>2nd last        |                      |                        |                                                                                  |
| PROPERTY AND                     | E0-0.0h              | Diagnosis              |                                                                                  |
| 2nd last                         | E0-0.0h              | Diagnotit<br>Diagnotit |                                                                                  |
| 2nd last<br>3rd last             | 1000                 |                        |                                                                                  |
| 2nd last<br>3rd last<br>4th last | 1000                 |                        |                                                                                  |

Fig. 6.64 Tab "Warnings/errors"

#### Error messages


Error messages can be detected and evaluated via the status LEDs of the controllers and the DRIVEMANAGER. A red flashing LED H1 indicates a fault.

The reaction to a fault can be parameterized in dependence on the cause of the fault.

| Flash code of red LED (H1) | Display<br>KeyPad | Cause of fault           |
|----------------------------|-------------------|--------------------------|
| 1x                         | E-CPU, various    | Collective error message |
| 2x                         | E-0FF             | Undervoltage cut-off     |
| 3х                         | E-0C              | Overcurrent cut-off      |
| 4x                         | E-OV              | Overvoltage cut-off      |

Table 6.51Error message signal

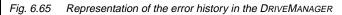




CDF

H1
 H2
 H3

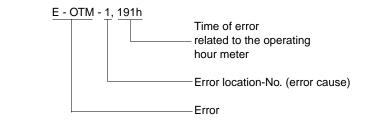
|           | code of<br>ED (H1) | Display<br>KeyPad | Cause of fault                         |
|-----------|--------------------|-------------------|----------------------------------------|
| ļ         | 5x                 | E-OLM             | Motor overloaded                       |
| (         | 6x                 | E-OLI             | Device overloaded                      |
|           | 7x                 | E-OTM             | Motor temperature too high             |
| 1         | 8x                 | E-OTI             | Heat sink/device temperature too high  |
| Table 6.5 | 1 Erro             | r message sig     | nal                                    |
| Note:     | Further the app    |                   | rs and possible causes can be found in |


#### Representation of the error history

The last four errors are stored in the history. Each error is saved with an error location number and the error time related to the operating hour meter.

After each error the error log rotates one step further and the error parameter will indicate the last fault.

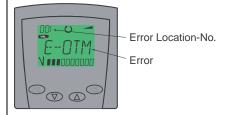
The error history is displayed in the function mask "Error/Warning". When pressing button "Diagnose" the error cause is described in detail and remedial measures are suggested.

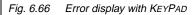

| Error                                 | E-CAN-31,322h | Diagnosi               |
|---------------------------------------|---------------|------------------------|
| lime point                            | 0             | min                    |
| Enor rea                              | ictions       | Reset error            |
|                                       |               |                        |
| mor history                           |               |                        |
| 24/ H-10                              | E0-0.0h       | Diagnosis              |
| Error history<br>2nd last<br>3rd last | E0-0.0h       | Diagnosis<br>Diagnosis |



View of the error history in the DRIVEMANAGER




5




| DriveManager           | Meaning                                       | Value range | WE | Unit | Parameter         |
|------------------------|-----------------------------------------------|-------------|----|------|-------------------|
| Last error-<br>Error   | Last error                                    | 0 65535     | 0  | h    | 95-ERR1<br>(_ERR) |
| Last error-<br>time    | System time at<br>occurrence of last<br>error | 0 65535     | 0  | min  | 94-TERR<br>(_ERR) |
| Error history<br>2last | second last error                             | 0 65535     | 0  | h    | 96-ERR2<br>(_ERR) |
| Error history<br>3last | third last error                              | 0 65535     | 0  | h    | 97-ERR3<br>(_ERR) |
| Error history<br>4last | fourth last error                             | 0 65535     | 0  | h    | 98-ERR4<br>(_ERR) |

Table 6.52Parameters of the error history

#### Error display with KeyPad







Note:

A list of errors and warning messages displayed in the DRIVEMANAGER or KEYPAD can be found in the appendix.

resetting error

#### Acknowledgement and resetting of errors

Errors can be acknowledged and reset in different ways:

- Rising flank at digital input ENPO
- Rising flank at a programmable digital input with setting of the function selector to RSERR
- Writing the first value to parameter 74-ERES via bus system or via corresponding bit in control word
- In DRIVEMANAGER under tab "Error/warnings" by pressing button "Reset error"
- In PLC-sequential program with command "SET ERRRQ=1"

#### Errors and the related error reactions

Errors trigger different reactions. These can be set for any error.

| Undervoltage inverter              | HALT (2) = Lock power stage                          | •     |
|------------------------------------|------------------------------------------------------|-------|
| Overvoitage inverter               | LOCKH (4) = Lock power stage, save against re-start  | •     |
| Divercurrent inverter              | LOCKH [4] = Lock power stage, save against re-start  |       |
| Overtemperature inverter           | LOCKH (4) = Lock power stage, save against re-start  | ¥     |
| lxt switch off motor               | LOCKH [4] = Lock power stage, save against re-start  | •     |
| External error                     | STOP (3) = Slow down with fault decceleration        | -     |
| Wire damage at 420 mA              | STOP [3] = Slow down with fault decceleration        | -     |
| interchanged limit switches        | STOP (3) = Slow down with fault decceleration        | *     |
| Limit switch activated             | STOP [3] = Slow down with fault decceleration        | •     |
| Software limit switch              | WARN [1] = Warning missage actualed, Execute Quick S | top - |
| Positioning                        | STOP (3) = Slow down with fault decceleration        | •     |
| Tracking error                     | WARN (1) = Warning message actuated                  | •     |
| PLC - process program sequence     | HALT [2] = Lock power stage                          | •     |
| Time delay of error message E-OC-1 | 0 ms Error stop ramp                                 | Ner   |

Fig. 6.67 Setting of fault reactions



2

4

5

6

8

Error reactions ...



| DriveManager                        | Value range        | WE    | Parameter           |
|-------------------------------------|--------------------|-------|---------------------|
| Converter undervoltage              | HALT, LOCKH, RESET | HALT  | 512_R-0FF<br>(_ERR) |
| Converter overvoltage               | HALT, LOCKH, RESET | LOCKH | 514_R-0V<br>(_ERR)  |
| Converter overcurrent               | HALT, LOCKH, RESET | LOCKH | 513_R-0C<br>(_ERR)  |
| Motor overtemperature               | HALT RESET         | LOCKH | 516_R-OTM<br>(_ERR) |
| IxI-motor cut-off                   | HALT RESET         | LOCKH | 519_R-OLM<br>(_ERR) |
| External error message              | WARN RESET         | STOP  | 524_R-EXT<br>(_ERR) |
| Wire breakage at 4 20 mA            | WARN RESET         | STOP  | 529_R-WBK<br>(_ERR) |
| Mixed up limit switches             | HALT RESET         | STOP  | 535_R-LSX<br>(_ERR) |
| Limit switch contacted              | HALT RESET         | STOP  | 534_R-LS<br>(_ERR)  |
| Software limit switch               | NOERR LOCKS        | WARN  | 543_R-SWL<br>(_ERR) |
| Positioning                         | HALT RESET         | STOP  | 536_R-POS<br>(_ERR) |
| Servo lag                           | WARN RESET         | WARN  | 542_R-FLW<br>(_ERR) |
| PLC-sequential program              | WARN RESET         | HALT  | 541_R-PLC<br>(_ERR) |
| Time delay error message E-OC-<br>1 | 0 1000             | 0 ms  | 545_TEOC<br>(_ERR)  |

Table 6.53Parameters for error reactions in case of error messages

#### Explanations

- The functionality of the error reaction is described in Table 6.54.
- When switching in the motor line at the motor output to the positioning controller short-term high voltage peaks and currents will occur when the output stage is active or the motor is still excited. These will certainly not destroy the output stage of the positioning controller, but will occasionally cause E-OC-1 error messages. The output stage is already deactivated with message E-OC-1 when the overcurrent is detected. With the programmable time delay TEOC the error message is held back and after this time has expired the system will check whether the hardware release ENPO is still set. In this case the error message is signalized.
- KP/DM BUS Function NOERR 0 no reaction Trigger warning (message), no further reaction concerning the drive. This warning is not of the same significance as the warning messages in chapter 6.9.2. 1 WARN NOTE: In contrast to the general definition, the error reaction "Software limit switch" causes a quick stop. Lock output stage. If the error is no longer present, the device may be restarted after HALT 2 acknowledging the error message. With programmed auto start (7-AUTO=ON) the device starts automatically after the reset. Brake drive with error stop ramp to 0 rpm, then block the output stage. If the error is no longer present, the device may be restarted after STOP 3 acknowledging the error message. With programmed auto start (7-AUTO=ON) the device starts automatically after the reset. Block output stage and lock against restarting. If the error is no longer present, the device may be restarted after 4 LOCKH confirming the error message. With programmed auto start (7-AUTO=ON) automatic starting of the device is prevented. Brake drive with error stop ramp to 0 rpm, then block the output stage. Secure against restarting. 5 LOCKS If the error is no longer present, the device may be restarted after acknowledging the error message. With programmed auto start (7-AUTO=ON) automatic starting of the device is prevented. Table 6.54 Meaning of error reactions
- The error stop ramp can be parameterized in a separate tab, see see chapter 6.2.3.

1

2

4

5

6

| BUS   | KP/DM | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |       | Lock output stages and wait for error reset by mains off/on.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|       |       | Note: This error can <b>only</b> be reset by switching the mains supply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |       | off and on again!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6     | RESET | After a reset the device performs an initialisation and self-test phase.<br>During this time the bus connection is interrupted and signal changes at the<br>inputs are not detected. The outputs additionally take on their hardware<br>rest position. The completion of an initialisation and self test phase can be<br>displayed via a digital output as "Device operable".<br>If the error is no longer present and the device reports to be operable after<br>the reset, the device can be restarted. With programmed auto start (7-<br>AUTO=ON) the device starts automatically. |
| Table | 6.54  | Meaning of error reactions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# 6.9.2 Warning messages

| Function                                                                                                                                   | Effect                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| A warning is submitted when<br>adjustable limits for various actual<br>values of the positioning controllers<br>or the motor are exceeded. | • EA forthcoming fault in the drive system will be signalized to the system a an early stage. |
|                                                                                                                                            |                                                                                               |
| Warning thresholds                                                                                                                         |                                                                                               |

Warning messages are automatically reset as soon as the reason for the warning no longer exists. They are reported or evaluated via:

- · Digital outputs
- Field bus status word
- PLC-sequential program
- DRIVEMANAGER status display

The warning messages are displayed in the  $\mathsf{DRIVEMANAGER}$  in parameter 122-WRN according to Table 6.55 hexadecimal coded.

| Warning | Function                                                                                                         | Hex-value | Bit |
|---------|------------------------------------------------------------------------------------------------------------------|-----------|-----|
| WOTI    | Warning message, if the heat sink<br>temperature exceeds the value specified in<br>parameter 500-WLTI.           | 0001H     | 0   |
| WOTD    | Warning message, if the heat sink<br>temperature exceeds the value specified in<br>parameter 501-WLTD.           | 0002H     | 1   |
| WOTM    | Warning message, if the motor temperature<br>has exceeded the value specified in<br>parameter 502-WLTM.          | 0004H     | 2   |
| WOV     | Warning message, if the voltage in the d.c.<br>link exceeds the value specified in<br>parameter 504-WLOV.        | 0008H     | 3   |
| WUV     | Warning message, if the voltage in the d.c.<br>link falls short of the value specified in<br>parameter 503-WLUV. | 0010H     | 4   |

Table 6.55 Hexadecimal representation of warning messages



1

4

6

7

| Warning | Function                                                                                               | Hex-value | Bit |
|---------|--------------------------------------------------------------------------------------------------------|-----------|-----|
| WLS     | Warning message, if the output speed exceeds the value specified in parameter 505-WLS.                 | 0020H     | 5   |
| WIS     | Warning message, if the apparent current<br>has exceeded the value specified in<br>parameter 506-WLIS. | 0040H     | 6   |
| WIIT    | Warning message, if the I <sup>2</sup> *t integrator of the device is active.                          | 0080H     | 7   |
| -       | reserved                                                                                               | 0100H     | 8   |
| WIT     | Warning message, if the lxt-integrator of the motor is active.                                         | 0200H     | 9   |
| WLTQ    | Warning message, if the torque exceeds the value specified in parameter 507-WLTQ.                      | 0400H     | 10  |

Table 6.55Hexadecimal representation of warning messages

Warning messages come with a hysteresis:

| Physical magnitude | Hysteresis                                                |
|--------------------|-----------------------------------------------------------|
| Voltages           | Undervoltage - 0V / + 10 V<br>Overvoltage - 10 V / + 10 V |
| Temperature        | - 0 °C / + 5 °C                                           |
| Frequency          | + 0 Hz / - 1 Hz                                           |

Table 6.56Hysteresis for warning messages

Warning thresholds ...



| Warning thresholds | 5 |
|--------------------|---|
|--------------------|---|

Warning thresholds determine when a warning is to be submitted.

| Interior temperature 00 °C<br>Motor temperature (only KTY84) 180 °C<br>Motor protection 0 % von Ptenax<br>Power stage protection 0 % von Ptenax<br>Undervoltage 0 V<br>Divervoltage 000 V | Heat sink temperature          | 100    | °C          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------|-------------|
| Malor potection0 % von Pimax<br>Power stage protection0 % von Pimax<br>Undervokage0 V                                                                                                     | interior temperature           | 80     | °C          |
| Power stage protection 0 % von Penax<br>Undervoltage V                                                                                                                                    | Motor temperature (only KTV94) | 190    | - *C        |
| Undervoltage                                                                                                                                                                              | Malar protection               | 0      | % von Pimax |
|                                                                                                                                                                                           | Power stage protection         | _0     | 3 von Pimax |
| Overvokage 000 V                                                                                                                                                                          | Undervoltage                   | _0     |             |
|                                                                                                                                                                                           | Overvoitage                    | 000    | v           |
| Speed 32267 1/min                                                                                                                                                                         | Speed                          | 32767  | 1/min       |
| Appwert current 1000 A Option                                                                                                                                                             | Apparent current               | 1000   | A Options   |
| Tarque16.11000 Nm                                                                                                                                                                         | Taque                          | 16.110 | 00 Nm       |

Fig. 6.69 Warning thresholds

| L | U | 5 | Т |
|---|---|---|---|
|   | - |   |   |

| DriveManager                                                        | Value range  | WE    | Unit | Parameter            |
|---------------------------------------------------------------------|--------------|-------|------|----------------------|
| Heat sink temperature                                               | 5 100        | 100   | °C   | 500_WLTI<br>(_WARN)  |
| Internal temperature                                                | 5 80         | 80    | °C   | 501_WLTD<br>(_WARN)  |
| Motor temperature<br>(only KTY84-130)                               | 5 250        | 180   | °C   | 502_WLTM<br>(_WARN)  |
| Undervoltage                                                        | 0 800        | 0     | V    | 503_WLUV<br>(_WARN)  |
| Motor protection<br>(percentage of the<br>maximum integrator value) | 0 100        | 0     | %    | 337_WLITM<br>(_WARN) |
| Overvoltage                                                         | 0 800        | 800   | V    | 504_WLOV<br>(_WARN)  |
| Rotary speed                                                        | 0 32767      | 32767 | rpm  | 505_WLS<br>(_WARN)   |
| Apparent current                                                    | 0 1000       | 1000  | Α    | 506_WLIS<br>(_WARN)  |
| Torque                                                              | -10000 10000 | 10000 | Nm   | 507_WLTQ<br>(_WARN)  |
| Switching-on delay<br>(Option for the warning<br>message "Torque")  | 0 10         | 0     | S    | 508_TWLTQ<br>(_WARN) |

| Table 6.57 | Parameter warning thresholds |
|------------|------------------------------|
| Table 6.57 | Parameter warning thresholds |

8

6

7

A



Application Manual CDE/CDB/CDF3000

Options ...

#### Explanations

- Each warning can be emitted to any digital output.
- The motor temperature warning (WLTM) indicates an overloading of the motor.
- The device temperature warning (WLTI) takes the temperature value from the sensor mounted on the heat sink near the output stage transistors or, in case of small controllers, directly from the output stage module.
- Due to high break-away or starting torques it may be necessary to activate the torque warning threshold only if the threshold value is exceeded for a longer period of time. This can be accomplished with parameter 508-TWLTQ "Switch-on delay for torque warning threshold".
- Falling short of or exceeding the d.c. link direct voltage triggers the warning "Undervoltage" (WLUV) or "Overvoltage" (WLOV).
- The status word 122-WRN is made up of the existing warning messages. It is displayed in the window "Warnings/errors".

Α

# 7 User programming

| 7.1   | PLC functionality                                                                            | 7-3                  |
|-------|----------------------------------------------------------------------------------------------|----------------------|
| 7.2   | PLC program                                                                                  | 7-4                  |
| 7.2.1 | PLC editor                                                                                   | 7-4                  |
| 7.2.2 | New programming                                                                              | 7-5                  |
| 7.2.3 | PLC program structure                                                                        |                      |
| 7.2.4 | Program testing and editing                                                                  |                      |
| 7.2.5 | PLC program files                                                                            |                      |
| 7.2.6 | Program handling                                                                             |                      |
| 7.3   | PLC command syntax                                                                           |                      |
| 7.3.1 | Overview                                                                                     |                      |
| 7.3.2 | Detailed explanations                                                                        |                      |
| -     | Jump instructions sub-program invocations (JMP)                                              |                      |
|       | Unconditional jump instructions                                                              | 7-16                 |
|       | Conditional jump instructions                                                                |                      |
|       | Setpoint                                                                                     |                      |
|       | Axis status                                                                                  | 7-17                 |
|       | Status of a digital input                                                                    |                      |
|       | Status of a digital output<br>Status of a logic marker                                       |                      |
|       | Status of a special marker                                                                   |                      |
|       | Value of an integer variable (direct comparison)                                             |                      |
|       | Value of an integer variable                                                                 |                      |
|       | (comparison with second variable)                                                            |                      |
|       | Value of a floating point variable (direct comparison)<br>Value of a floating point variable |                      |
|       | (comparison with second variable)                                                            |                      |
|       | Status of a counter                                                                          |                      |
|       | Status of a timer                                                                            |                      |
|       | Sub-programs (CALL, RET)                                                                     |                      |
|       | Setting a breakpoint (BRKPT)                                                                 |                      |
|       | Blank instruction (NOP)                                                                      |                      |
|       | Program end (END)                                                                            |                      |
|       | Setting commands (SET)                                                                       |                      |
|       | Setting a digital output                                                                     |                      |
|       | Setting a logic marker<br>Setting special markers – variables (status variables) .           | <i>1-</i> 23<br>7-24 |
|       |                                                                                              |                      |



### 7 User programming

|       | Setting special markers – variables (control variables)                                 |      |
|-------|-----------------------------------------------------------------------------------------|------|
|       | Indexed assignment of a constant value<br>Setting an integer variable                   |      |
|       | Setting a special integer variable                                                      |      |
|       | Setting a floating point variable                                                       |      |
|       | Setting a special floating point variable                                               |      |
|       | Setting a counter<br>Setting and starting a timer                                       |      |
|       | Setting parameters                                                                      |      |
|       | Setting field parameters                                                                |      |
|       | Inverting (INV)                                                                         | 7-32 |
|       | Travel commands with positioning (GO)                                                   | 7-32 |
|       | Travelling with or without continuation of program                                      |      |
|       | Travelling with continuation                                                            |      |
|       | Travelling without continuation<br>Referencing                                          |      |
|       | Travelling endless                                                                      |      |
|       | Speed synchronism                                                                       |      |
|       | Angular synchronism (electronic transmission)                                           |      |
|       | Path optimized positioning of a round table<br>Braking the drive (STOP, SET HALT/BRAKE) |      |
|       | Stop feed                                                                               |      |
|       | Quick stop                                                                              |      |
|       | Braking with deceleration ramp (only positioning)                                       |      |
|       | Braking with quick stop ramp (only positioning)                                         | 7-38 |
|       | Emergency stop (speed = 0) and shut-down of control<br>(only positioning)               | 7-38 |
|       | Wait commands (WAIT)                                                                    |      |
|       | Time                                                                                    |      |
|       | Axis status                                                                             |      |
|       | Parameter write access                                                                  |      |
|       | Example program                                                                         |      |
| 7.4   | PLC control and parameters                                                              | 7-41 |
| 7.4.1 | PLC variables                                                                           | 7-42 |
| 7.4.2 | PLC control parameters                                                                  | 7-43 |
| 7 -   | •                                                                                       |      |
| 7.5   | PLC program examples                                                                    |      |
| 7.5.1 | Conveyor belt                                                                           | 7-46 |
| 7.5.2 | Absolute positioning                                                                    | 7-47 |
| 7.5.3 | Relative positioning                                                                    |      |
| 7.5.4 | Sequential program                                                                      |      |
| 1.0.4 | Sequential program                                                                      | 1-30 |

| 7.1 | PLC           |                                                                                                                               |   |
|-----|---------------|-------------------------------------------------------------------------------------------------------------------------------|---|
| 7.1 | functionality | The PLC firmware contains a routine for the sequential processing of a user programmable sequential program.                  |   |
|     |               | Number of programs in the device memory: 1                                                                                    |   |
|     |               | Number of command lines per program: 254                                                                                      |   |
|     |               | Processing time per command line: 150 ms                                                                                      |   |
|     |               | The sequential program enables:                                                                                               | 1 |
|     |               | Starting of the motor control                                                                                                 |   |
|     |               | Setpoint specification for motor control (torques, speeds, position)                                                          |   |
|     |               | <ul> <li>Setting/reading analog and digital outputs/inputs</li> <li>Reading/writing parameters</li> </ul>                     |   |
|     |               | <ul> <li>Mathematical operations (+,-,*, :, ≠, £,, ≥, modulo, abs, round)</li> </ul>                                          |   |
|     |               | Logic operations (AND, OR, Exclusive OR)                                                                                      | 1 |
|     |               | Time and counter functions                                                                                                    |   |
|     |               | • Single axis positioning control                                                                                             |   |
|     |               | Work with the PLC functionality or the PLC editor requires an installed DRIVEMANAGER, because it is in integral part of this. |   |
|     |               | 1-CDE32.004 setup                                                                                                             |   |
|     |               | Preset solution: Postoring, preset of process sets via PLC, control via terminal                                              |   |
|     |               | Initial commissioning Basic settings Expanded >>                                                                              |   |
|     |               |                                                                                                                               |   |
|     |               |                                                                                                                               |   |
|     |               | Outputs Perference/Plamps. Loop control. Motor and encoder                                                                    |   |
|     |               | Bus systems Cam gear KP200 setup PLC                                                                                          |   |
|     |               | Actual values Enor/Warning Manual mode                                                                                        |   |

Save setting in device

DRIVEMANAGER main window

Fig. 7.1

Gancel

Help

2

3

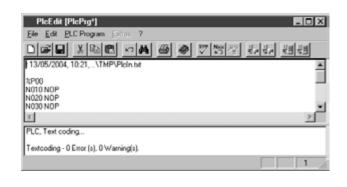
5

6

7

8

Д


### 7.2 PLC program

### 7.2.1 PLC editor

|         | PLC program editor |
|---------|--------------------|
| Process | data               |
|         | Flam Musel         |

The PLC editor is supplied as installation version on a separate CD-ROM. The languages German and English are available.

The PLC editor is an "Add-On" component of the DRIVEMANAGER and can thus only be used with the DRIVEMANAGER.





The PLC editor is only required for project planning or initial commissioning, series commissioning of the drive controller then takes place with the help of the DRIVEMANAGERdataset or the SMARTCARD.

The PLC program editor provides the functions:

- Program generation
  - Editor for program generation
  - Generation of a text declaration file <Project Name>.txt for the variables to display application specific texts in the DRIVEMANAGER.
  - Command code syntax check
  - Renumbering of line numbers
- Program handling
  - Loading/Saving/Printing/New generation of programs
  - Loading/Saving a program from/to the drive controller.
     Loading/Saving a program from/to DRIVEMANAGER dataset.
- Online help for PLC editor and command syntax with examples

7.2.2

7.2.3

2

4

5

7

Α

EN

All PLC functions can be selected via control buttons.

|                                                          | DB                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |           |            | ß    | 两            | 8             |             | SYN                                                | Nxx<br>S                    | 9%<br>1 | 륑                         |                         | Į                        |                        |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------|------|--------------|---------------|-------------|----------------------------------------------------|-----------------------------|---------|---------------------------|-------------------------|--------------------------|------------------------|
|                                                          |                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |           |            |      |              |               |             |                                                    |                             |         |                           |                         |                          |                        |
|                                                          | Vew program<br>Dpen program as file                                                                                                                                                                                                                                                                                                                | Save program as file *.plc<br>Cut text                                                                                                                | Copy text | Paste text | do   | -ind/Replace | Print program | Online Help | Program-Syntax-Test / Program kernel with new file | Renumbering of line numbers |         | .oad program from dataset | Save program to dataset | -oad program from device | Save program to device |
|                                                          | Nev<br>Ope                                                                                                                                                                                                                                                                                                                                         | Sav                                                                                                                                                   | Cop       | Pas        | Undo | Fino         | Prin          | Onli        | Pro                                                | Ren                         |         | Loa                       | Sav                     | Loa                      | Sav                    |
| New generation<br>of program<br>PLC program<br>structure | For a <b>quick start</b> or a <b>new generation</b> of a sequential program the syntax test is called up with an empty text field. The PLC editor now offers the generation of a program kernel.<br>The PLC program editor supports the functions for program generation, program handling and online help for the PLC editor. These functions can |                                                                                                                                                       |           |            |      |              |               |             |                                                    |                             |         |                           |                         |                          |                        |
|                                                          | be sele<br>A progr                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                       |           |            |      |              |               |             |                                                    |                             | •••     |                           |                         |                          |                        |
|                                                          | 1. Tex<br>2. Se                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                       |           |            |      | ariat        | oles,         | marł        | kers                                               | , cou                       | nte     | ers a                     | and t                   | ime                      | rs use                 |
|                                                          | The <b>text declaration</b> serves the purpose of identifying the variables, markers, counters and timers used in the sequential program. The text declaration is used to generate a text file, which, after being evaluated in the DRIVEMANAGER, displays the values in the application specific texts.                                           |                                                                                                                                                       |           |            |      |              |               |             |                                                    |                             |         |                           |                         |                          |                        |
|                                                          |                                                                                                                                                                                                                                                                                                                                                    | The text declaration starts with a designator, which contains the project name of the text declaration file (for details please refer to "PLC program |           |            |      |              |               |             |                                                    |                             |         |                           |                         |                          |                        |
|                                                          | %TEXT (                                                                                                                                                                                                                                                                                                                                            | Proje                                                                                                                                                 | ct n      | .ame)      | 1    | ;            | Star          | t of        | E te                                               | xt d                        | ecl     | ara                       | tior                    | 1                        |                        |
|                                                          | This is                                                                                                                                                                                                                                                                                                                                            | follow                                                                                                                                                | ed by     | / the      | ass  | signr        | nent          | of p        | arar                                               | nete                        | r te    | xts:                      |                         |                          |                        |

### IIST

DEF M000 = Reference point\_OK DEF H000 = Setpoint position\_1 DEF H001 = Setpoint position\_2 DEF H002 = Actual position DEF H003 = Zero offset

The end of the text declaration is always followed by the line:

END

The text declaration is optional. PLC parameters without declaration are not saved in the text file or are not displayed in the DRIVEMANAGER with their number.

| x  | - 0   | PLC flags |         | PLC integer variables |
|----|-------|-----------|---------|-----------------------|
|    | Value | Flag      | Value - | Variable              |
|    | 0     | M000      | 360     | H000                  |
|    | 0     | M001      | 5000    | H001                  |
|    | 0     | M002      | 500     | H002                  |
| í. | 0     | M003      | 0       | H003                  |
|    | 0     | M004      | 0       | H004                  |
|    | 0     | M005      | 0       | H005                  |
|    | 0     | M006      | 0       | H006                  |
|    | 0     | M007      | 0       | H007                  |
|    | 0     | M008      | 0       | H008                  |
|    | 0     | M009      | 0       | H009                  |
| -  | 0     | M010      | 0 -1    | H010                  |
| -  | 1.1   | 41        | 1.      | 10                    |

Fig. 7.2 Display of PLC values with application specific texts

The **Sequential program** follows the text declaration. It contains a program header, the actual program section and the program end.

The program header consists of a line with program number (at present only %P00 possible):

%P00

The lines of the actual program section are referred to as command lines. The maximum number of sets that can be saved in the positioning controller is limited to (N001 ... N254). Each command line consists of a line number, the command and the operand. After separation by means of a semicolon a comment can be inserted.

N030 SET M000 = 0; Reference point not defined

The program end is always followed by the line (without line number):

END

Example programs can be found in the installed DRIVEMANAGER directory "..\userdata\samples\PLC".

2

5

7

8

Α

DE EN

| 7.2.4 | Program testing<br>and editing | The <b>syntax test</b> checks the current program for errors in the command code. The test is automatically conducted when saving the program to the drive controller or, manually, by pressing the corresponding button. The result of this test is displayed in the status bar. In case of error messages one can jump directly to the faulty program line by simply double-clicking on the corresponding error message.                                                                                                                                                                                                                                                                        |
|-------|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                | <b>Renumbering</b> the line numbers eases inserting program sets. With renumbering the first line is identified by number N010, all further lines are incremented with a step width of 10 (N020, N030,). If the representation of a program with the specified line range (001-254) is not possible this way, the step width will be automatically reduced.                                                                                                                                                                                                                                                                                                                                       |
| 7.2.5 | PLC program                    | The program content is saved in two files:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       | files                          | <ol> <li>Program file *.plc<br/>This file contains the sequential program as well as the text<br/>declaration, and therefore the complete program information. When<br/>passing on the PLC program it is thus enough to just copy this file.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |                                | 2. Text declaration file <project name="">.txt<br/>The file is used by the DRIVEMANAGER to display the application<br/>specific parameter designations.<br/>It is automatically generated from the text declaration of the program<br/>file after successfully completed loading of the program into the drive<br/>controller or into a dataset. The file <project name="">.txt is copied into<br/>the DRIVEMANAGER directory "LUST\<br/>DriveManager\firmdata\<projektname>.txt". This file is now available<br/>on the PC used to generate the program or to load the source code<br/>into the drive controller. However, it can also be copied to other PCs.</projektname></project></project> |
|       | Ì                              | The complete sequential program is saved in two parameters as machine code. These parameters are contained in the device data set and can thus be loaded or saved via the DRIVEMANAGER or, in case of series commissioning, via the SMARTCARD.                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |                                | For reproduction of all program information or data each program must be saved as *.plc file.<br>The comment lines in the sequential program and the text declarations are not saved in the controller or in the device dataset, i.e. they cannot be read back.                                                                                                                                                                                                                                                                                                                                                                                                                                   |

#### 7 User programming

### 7.2.6 Program handling

Open / Edit

An existing PLC program can be opened in different ways:

- 1. Double-click on the file \*.plc. This opens the DRIVEMANAGER, which in turn starts the PLC editor and opens the program.
- 2. Opening via the DRIVEMANAGER menu "File/Open/PLC Sequential Program ..."



Fig. 7.3 Opening a PLC program via DriveManager

**3.** Opening via the already started PLC editor



4. Opening of a program from a device dataset.



Saving after Create / Edit

An existing PLC program can be saved by the PLC editor in different ways.

#### 7 User programming

1. Saving a program into a file



With this button a file \*.plc is created on your PC; this file contains the PLC program and the text declaration.

2. Saving a program into a device



With this button the PLC program is saved as machine code into two parameters in the controller. The file <Project name.txt> generated from the text declaration is thus saved in the corresponding DRIVEMANAGER directory, see 7.2.5.

**3.** Saving a program into a dataset



With an existing device dataset this button can be used to save a PLC program into an existing device dataset. The file <Project name.txt> generated from the text declaration is thus saved in the corresponding DRIVEMANAGER directory, see 7.2.5.



Attention: It is not possible to generate a new dataset, which only contains the PLC program.

6

2

4



# 7.3 PLC command syntax

| Operand    | Comment                                                                                             |
|------------|-----------------------------------------------------------------------------------------------------|
| Схх, Суу   | Counter index 00-10                                                                                 |
| Нххх, Нууу | Variable index 000-127                                                                              |
| Fxxx, Fyyy | Variable index 000-127                                                                              |
| Zxx, Zyy   | Timer index 00-10                                                                                   |
| Ny         | Line number 001-254                                                                                 |
| PARA[n, i] | Parameter number n 000-999<br>Parameter index i 000-255                                             |
| Мххх, Мууу | Flag index 000-255                                                                                  |
| Іррі       | Inputs<br>ppi = A00, A00, E00-E07,<br>S00-S03 (CDB3000),<br>S00-S06 (CDE3000),<br>S00-S02 (CDF3000) |
| Оррі       | Outputs<br>ppi = E00-E03,<br>S00-S02 (CDB3000),<br>S00-S04 (CDE3000),<br>S00, S03-S05 (CDF3000)     |

| Operand | Comment                                         |
|---------|-------------------------------------------------|
| b       | Value 1-32                                      |
| d       | Counter reading 065535<br>(16 bit)              |
| t       | Timer reading<br>0 4.294.967.295 (32 bit)       |
| f       | Numerical floating point value<br>(32 bit)      |
| Z       | Integer numerical value<br>±2147483648 (32 bit) |

### Logic operands:

| Operand | Comment                   |
|---------|---------------------------|
| &       | AND                       |
| I       | OR                        |
| ^       | Exclusive OR              |
| !=      | ≠                         |
| <=      | ≤                         |
| >=      | ≥                         |
| ABS     | Absolute-value generation |

#### Mathematical operands:

| Operand | Comment                   |
|---------|---------------------------|
| +       | Addition                  |
| -       | Subtraction               |
| *       | Multiplication            |
| :       | Division                  |
| %       | Modulo                    |
| ABS     | Absolute-value generation |
| ROUND   | Rounding                  |

### 7 User programming

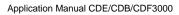
### 7.3.1 Overview

| omm<br>nd | Operand                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         | Comment                                                            |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------|
| ump iı    | nstructions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |                                                                    |
| IMP       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ny/END  | unconditional jump                                                 |
|           | (ACTVAL = < > Hxxx,Fyyy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ny/END  | Actual value                                                       |
|           | $(ACTVAL \le ACTVAL < ACTVAL < ACTVAL < ACTVAL < $ | Ny/END  |                                                                    |
|           | (ACTVAL != Hxxx,Fyyy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ny/END  |                                                                    |
|           | (ACTVAL = != 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ny/END  |                                                                    |
|           | (REFVAL = < > Hxxx,Fyyy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ny/END  | Setpoint                                                           |
|           | (REFVAL <= >= Hxxx,Fyyy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ny/END  |                                                                    |
|           | (REFVAL != Hxxx,Fyyy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ny/END  |                                                                    |
|           | (REFVAL = != 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ny/END  |                                                                    |
|           | (REF = 0/1, =Mxxx)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ny/END  | Axis status setpoint reached                                       |
|           | $(ROT_0 = 0/1, =Mxxx)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Ny/END  | Axis status standstill                                             |
|           | (lppi = 0/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ny/END  | Status of an input                                                 |
|           | (Oppi = 0/1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ny/END  | Status of an output                                                |
|           | (Mxxx = 0/1, = != Myyy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ny/END  | Status of a flag                                                   |
|           | (spec. flag = $0/1$ , = != Myyy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ny/END  | Status of a special flag, e. g.<br>STA_REF                         |
|           | (Mxxx &   ^ lppi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ny/END  | Logic operation flag input                                         |
|           | (Mxxx &   ^ Oppi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ny/END  | Logic operation flag output                                        |
|           | (Hxxx = != 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ny/END  |                                                                    |
|           | (Hxxx = != < <= > >=<br>Ny/END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | = Нууу) | Value of integer variables                                         |
|           | (Fxxx = != 0.0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Ny/END  |                                                                    |
|           | (Fxxx= != < <= > >=<br>Ny/END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Fууу)   | Value of floating point variables                                  |
|           | (Cxx = != d)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ny/END  | Counter status                                                     |
|           | (Zxx = != 0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Ny/END  | Timer status                                                       |
|           | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         | Jump to program end                                                |
| Sub-pro   | ogram invocation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |         |                                                                    |
| CALL      | Ny                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         | Sub-program invocation after line Ny<br>Maximum nesting depth. 250 |
| RET       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         | Return to the line of sub-program invocation                       |
| BRKPT     | SET BRKPT=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | Activates breakpoint; the set<br>breakpoint is evaluated           |
|           | SET BRKPT=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         | Deactivates breakpoint; the set<br>breakpoint is not evaluated     |

#### 7 User programming

| Comm<br>and | Operand                              | Comment                                              |  |  |  |
|-------------|--------------------------------------|------------------------------------------------------|--|--|--|
|             |                                      |                                                      |  |  |  |
| Setting     | Setting commands                     |                                                      |  |  |  |
| SET         | Oppi = 0/1, Mxxx                     | Output direct or with flag                           |  |  |  |
|             | OUTPUT = Hxxx                        | Set output image                                     |  |  |  |
|             | Mxxx = 0/1, Ippi, Oppi, Myyy, M[Cxx] | Set flag                                             |  |  |  |
|             | Mxxx = Hxxx                          | Set flag (LSB of Hxxx)                               |  |  |  |
|             | M[Cxx] = 0/1                         |                                                      |  |  |  |
|             | M[Cxx] = Myyy                        | Set flag (indexed*)                                  |  |  |  |
|             | Mxxx & I ^ Myyy                      | Link flag logically                                  |  |  |  |
|             | $Mxxx = STA\_ERR$                    | Read error status (1 -> error)                       |  |  |  |
|             | Mxxx = STA_WRN                       | Read warning status<br>(1 -> Warning)                |  |  |  |
|             | Mxxx = STA_ERR_WRN                   | Read warning/error status<br>(1 -> Warning/Error)    |  |  |  |
|             | Mxxx = STA_ACTIV                     | Control active                                       |  |  |  |
|             | $Mxxx = STA_ROT_R$                   | Motor turning clockwise                              |  |  |  |
|             | $Mxxx = STA_ROT_L$                   | Motor turning anti-clockwise                         |  |  |  |
|             | $Mxxx = STA_ROT_0$                   | Motor standstill                                     |  |  |  |
|             | Mxxx = STA_LIMIT                     | Setpoint limitation                                  |  |  |  |
|             | Mxxx = STA_REF                       | Setpoint reached                                     |  |  |  |
|             | Mxxx = STA_HOMATD                    | Reference point defined                              |  |  |  |
|             | Mxxx = STA_BRAKE                     | Quick stop active                                    |  |  |  |
|             | Mxxx = STA_OFF                       | Deenergized state                                    |  |  |  |
|             | $Mxxx = STA_C_RDY$                   | Control standby state                                |  |  |  |
|             | Mxxx = STA_WUV                       | Undervoltage warning                                 |  |  |  |
|             | Mxxx = STA_WOV                       | Overvoltage warning                                  |  |  |  |
|             | $Mxxx = STA_WIIT$                    | Warning I <sup>2</sup> *t                            |  |  |  |
|             | Mxxx = STA_WOTM                      | Warning motor overtemperature                        |  |  |  |
|             | Mxxx = STA_WOTI                      | Warning heat sink temperature                        |  |  |  |
|             | Mxxx = STA_WOTD                      | Warning inside temperature                           |  |  |  |
|             | Mxxx = STA_WIS                       | at present no function (always 1)                    |  |  |  |
|             | Mxxx = STA_WFOUT                     | at present no function (always 1)                    |  |  |  |
|             | Mxxx = STA_WFDIG                     | at present no function (always 1)                    |  |  |  |
|             | Mxxx = STA_WIT                       | Warning I*t motor protection                         |  |  |  |
|             | $Mxxx = STA_WTQ$                     | Warning torque                                       |  |  |  |
|             | Mxxx = STA_INPOS                     | Setpoint position reached                            |  |  |  |
|             | ENCTRL = 0/1, Mxxx                   | Controller off / on                                  |  |  |  |
|             | INV = 0/1, Mxxx                      | Invert setpoint (only with speed and torque control) |  |  |  |
|             | ERR = 1, Mxxx                        | Trigger error                                        |  |  |  |

#### 7 User programming


| Comm<br>Ind | Operand                                                    | Comment                                                    |    |
|-------------|------------------------------------------------------------|------------------------------------------------------------|----|
|             | ERRRQ = 1, Mxxx                                            | Reset error                                                |    |
| <b>E</b> T  | BRKPT = 0/1, Mxxx                                          | Breakpoints off / on                                       | ÷. |
|             | BRAKE = 0/1, Mxxx                                          | Quick stop off / on                                        |    |
|             | HALT = 0/1, Mxxx                                           | Halt/Feed off / on                                         |    |
|             | PCTRL = 0/1, Mxxx                                          | no function                                                | 1  |
|             | Hxxx = EGEARPOS, EGEARSPEED                                | Read reference encoder increments, reference encoder speed |    |
|             | F[CXX], H[Cxx], M[Cxx] = Value                             | Indexed assignment                                         |    |
|             | Hxxx = z, Hyyy, H[Cyy], Fxxx, Mxxx, Cyy, Zxx               | Set variable                                               | 1  |
|             | H[Cxx] = z, Hyyy                                           | Set integer variable (indexed*)                            |    |
|             | Hxxx + - * : % z, Hyyy                                     | Calculate variable                                         |    |
|             | Hxxx << >> z, Hyyy                                         | Displace variable                                          |    |
|             | Hxxx = ABS Hyyy                                            | Variable absolute-value generation                         |    |
|             | Hxxx = PARA[n], PARA[n, i]                                 | Set variable                                               |    |
|             | Hxxx, Fxxx = REFPOS                                        | Position setpoint                                          |    |
|             | Hxxx, Fxxx = ACTPOS                                        | Actual position value                                      | 1  |
|             | Hxxx, Fxxx = ACTFRQ                                        | Assign actual frequency [Hz]                               |    |
|             | Hxxx, Fxxx = ACTSPEED                                      | Assign actual speed [min <sup>-1</sup> ]                   |    |
|             | Hxxx, Fxxx = ACTTORQUE                                     | Assign actual torque [Nm]                                  |    |
|             | Hxxx, Fxxx = ACTCURRENT                                    | Assign actual current (effective) [A]                      |    |
|             | Hxxx = 0SA0                                                | Analog output value                                        |    |
|             | Hxxx = ISA0, ISA1                                          | Assign analog input 0 / 1                                  |    |
|             | Hxxx = OUTPUT, INPUT                                       | Read variable with output or input image                   | i  |
|             | EGEARPOS = Hxxx                                            | Set reference encoder increments                           |    |
|             | OSA0 = Hxxx                                                | Assign analog value                                        |    |
|             | REFVAL = Hxxx, Fxxx                                        | Assign setpoint (only with speed and torque control)       | l  |
|             | INPOSWINDOW = Hxxx                                         | Setpoint reaches window                                    |    |
|             | Fxxx = f, Hxxx, F[Cxx], Fyyy                               | Set floating point variable                                |    |
|             | F[Cxx] = f, Fyyy                                           | Set floating point variable (indexed)                      |    |
|             | Fxxx + - *: f, Fyyy                                        | Calculate floating point variable                          |    |
|             | Fxxx = ROUND Fyyy                                          | Round floating point variable                              |    |
|             | Fxxx = ABS Fyyy                                            | Floating point variable absolute-<br>value generation      |    |
|             | Fxxx = PARA[n, i], PARA[n],<br>PARA[Hyyy,Hzzz], PARA[Hyyy] | Set parameter                                              |    |
|             | Cxx = d, Cyy, Hyyy                                         | Set counter                                                |    |
|             | Cxx + - d, Hyyy                                            | Calculate counter                                          |    |
|             | Zxx = t, Hyyy                                              | Set timer                                                  |    |
|             | PARA[n] = Hxxx, Fxxx                                       | Parameter number direct                                    |    |

#### 7 User programming

| Comm<br>and | Operand                          | Comment                                                                                                                                                       |
|-------------|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | PARA[Hxxx] = Hyyy, Fxxx          | Parameter number via integer<br>variable                                                                                                                      |
| SET         | PARA[n,i] = Hxxx, Fxxx           | Input parameter number, direct                                                                                                                                |
|             | PARA[Hxxx, Hyyy] = Hzzz, Fxxx    | Specification parameter number and index via integer variable                                                                                                 |
|             | ACCR = Hxxx                      | Change acceleration                                                                                                                                           |
|             | DECR = Hxxx                      |                                                                                                                                                               |
|             | ACCR = 0150%                     | Scaling                                                                                                                                                       |
|             | DECR = 0150%                     | Scaling                                                                                                                                                       |
| Wait co     | mmands                           |                                                                                                                                                               |
| WAIT        | d, Hxxx                          | Wait time in ms<br>(0 4.294.967.295 ms)                                                                                                                       |
|             | ROT_0                            | Setpoint position = target position                                                                                                                           |
|             | REF                              | Actual position in position window                                                                                                                            |
|             | PAR                              | Wait until parameter is written.                                                                                                                              |
| Travel o    | commands (only with positioning) |                                                                                                                                                               |
| GO          | W A Hxxx                         | Travel <b>absolute</b> by value of Hxxx<br>with speed acc. to<br>parameter 724_POSMX and wait<br>with program processing, until targe<br>position is reached. |
|             | W R Hxxx                         | Travel <b>relative</b> by value of Hxxx wit<br>speed acc. to<br>parameter 724_POSMX and wait<br>with program processing, until targe<br>position is reached.  |
|             | A Hxxx                           | Travel <b>absolute</b> by value of Hxxx<br>with speed acc. to<br>parameter 724_POSMX (program<br>processing continues)                                        |
|             | R Hxxx                           | Travel <b>relative</b> by value of Hxxx wit<br>speed acc. to<br>parameter 724_POSMX (program<br>processing continues)                                         |
|             | 0                                | perform selected referencing                                                                                                                                  |
|             | 0+Hxxx                           | perform selected referencing and se<br>reference position=Hxxx                                                                                                |
|             | А Нххх V Нууу                    | Travel <b>absolute</b> by value of Hxxx<br>with speed Hyyy (program<br>processing continues)                                                                  |

#### 7 User programming

| Comm<br>and | Operand               | Comment                                                                                                                             |
|-------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|             | R Hxxx V Hyyy         | Travel <b>relative</b> by value of Hxxx with<br>speed Hyyy (program processing<br>continues)                                        |
| GO          | T[Hxxx]               | Position via table                                                                                                                  |
|             | T[Cxx]                | Travel via table entry Cxx                                                                                                          |
|             | W T[Hxxx]             | Travel via table entry Hxxx, wait                                                                                                   |
|             | W T[Cxx]              | Travel via table entry Cxxx, wait                                                                                                   |
|             | T[xxx]                | Travel via table entry xxx                                                                                                          |
|             | W T[xxx]              | Travel via table entry xxx, wait until position is reached                                                                          |
|             | V Hxxx                | Travel endless via variable                                                                                                         |
|             | W A Hxxx V Hyyy       | Travel <b>absolute</b> by value of Hxxx<br>with speed Hyyy and wait with<br>program processing, until target<br>position is reached |
|             | W R Hxxx V Hyyy       | Travel <b>relative</b> by value of Hxxx with<br>speed Hyyy and wait with program<br>processing, until target position is<br>reached |
|             | SYN 1 / SYN 0         | Switching synchronous travel on and off                                                                                             |
| Comma       | and to stop the drive |                                                                                                                                     |
| STOP        | В                     | Braking with parameterized deceleration (only with positioning)                                                                     |
| тор         | Μ                     | Braking with quick stop ramp<br>(only with positioning)                                                                             |
| STOP        | 0                     | Braking with quick stop ramp and<br>shut-down of control, if control<br>location=PLC<br>(only with positioning)                     |
| SET         | BRAKE = 0/1, Mxxx     | Perform quick stop acc. to quick stop<br>reaction (see 6.2.3):<br>1: Perform quick stop<br>0: End quick stop                        |
| SET         | HALT = 0/1, Mxxx      | Stop feed acc. to reaction (see<br>6.2.3):<br>1: Stop axis<br>0: Enable axis                                                        |
| Furthe      | commands              |                                                                                                                                     |
| NOP         |                       | Instruction without function                                                                                                        |
| NV          | Оррі, Мххх, Нххх      | Inverting                                                                                                                           |
| END         |                       | Quits the program, all other lines will<br>be ignored. Do not enter line number.                                                    |



EN

#### 7 User programming

| Comm<br>and Operand | Comment                                                       |                                    |
|---------------------|---------------------------------------------------------------|------------------------------------|
| BRKPT               | Insert breakpoint in<br>evaluation with acti<br>see page 7-11 | to program line<br>ve breakpoints, |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |
|                     |                                                               |                                    |



| 7.3.2 Detailed<br>explanations  | <ul> <li>Jump instructions and sub-program invocation (JMP)</li> <li>Unconditional jump instructions will be executed in any case (without</li> </ul>                                                                                                                        |    |  |  |  |  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| oxplanationo                    | condition).                                                                                                                                                                                                                                                                  |    |  |  |  |  |
|                                 | <ul> <li>Conditional jump instructions will only be executed when the<br/>specified condition is fulfilled. The condition for execution is specified<br/>in parenthesis ().</li> </ul>                                                                                       | 2  |  |  |  |  |
|                                 | <ul> <li>A line number or the end of the program is always specified<br/>as jump target.</li> </ul>                                                                                                                                                                          |    |  |  |  |  |
|                                 | Attention: If a JMP/SET command is set to non-existing inputs/outputs, no error message will be generated.                                                                                                                                                                   | 3  |  |  |  |  |
| Unconditional jump instructions | These commands are not linked to any prerequisites (axis position, status of programmed variables) and are thus executed directly and unconditionally.                                                                                                                       | 4  |  |  |  |  |
| Conditional jump instructions   | JMP Ny Jump to set with number y<br>JMP END Jump to program end<br>Conditional jump instructions / sub-program invocations are linked with                                                                                                                                   | 5  |  |  |  |  |
| conanona jump instructions      | certain conditions, which are specified in parenthesis. If this condition is<br>fulfilled, the jump to the specified set number or the end of the program<br>will be executed. If the condition is not fulfilled, the program will continue<br>with the next successive set. | 6  |  |  |  |  |
| i                               | <b>Note:</b> The execution of a conditional jump can be linked to one of the following conditions.                                                                                                                                                                           | 7  |  |  |  |  |
| Actual value                    | reached:                                                                                                                                                                                                                                                                     | •  |  |  |  |  |
|                                 | JMP (ACTVAL = Hyyy, Fyyy) Ny/END                                                                                                                                                                                                                                             | 8  |  |  |  |  |
|                                 |                                                                                                                                                                                                                                                                              |    |  |  |  |  |
|                                 | JMP (ACTVAL > Hxxx,Fyyy) Ny/END<br>JMP (ACTVAL >= Hxxx,Fyyy) Ny/END                                                                                                                                                                                                          | Α  |  |  |  |  |
|                                 | fallen short of:                                                                                                                                                                                                                                                             |    |  |  |  |  |
|                                 | JMP (ACTVAL < Hxxx,Fyyy) Ny/END<br>JMP (ACTVAL <= Hxxx,Fyyy) Ny/END                                                                                                                                                                                                          |    |  |  |  |  |
|                                 | compare:                                                                                                                                                                                                                                                                     |    |  |  |  |  |
|                                 | JMP (ACTVAL != Hxxx,Fyyy) Ny/END<br>JMP (ACTVAL = 0) Ny/END<br>JMP (ACTVAL != 0) Ny/END                                                                                                                                                                                      |    |  |  |  |  |
|                                 |                                                                                                                                                                                                                                                                              | DE |  |  |  |  |

EN

| ĺ                 | In case of positionir                                              | VAL is of relevance for the speed control.<br>ng the command REF is processed,<br>and refers to "Setpoint reached". |
|-------------------|--------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| tpoint            | reached:                                                           |                                                                                                                     |
|                   | JMP (REFVAL = Hxxx, Fyyy)                                          | Ny/END                                                                                                              |
|                   | exceeded:                                                          |                                                                                                                     |
|                   | JMP (REFVAL > Hxxx,Fyyy)<br>JMP (REFVAL >= Hxxx,Fyyy)              |                                                                                                                     |
|                   | fallen short of:                                                   |                                                                                                                     |
|                   | JMP (REFVAL < Hxxx,Fyyy)<br>JMP (REFVAL <= Hxxx,Fyyy)              |                                                                                                                     |
|                   | compare:                                                           |                                                                                                                     |
|                   | JMP (REFVAL != Hxxx,Fyyy)<br>JMP (REFVAL = 0)<br>JMP (REFVAL != 0) | Ny/END<br>Ny/END<br>Ny/END                                                                                          |
| status            | REF reached:                                                       |                                                                                                                     |
|                   | JMP (REF = 1) Ny/END                                               | Actual value in setpoint window                                                                                     |
|                   | REF not reached:                                                   |                                                                                                                     |
|                   | JMP (REF = 0) Ny/END window                                        | Actual value not in setpoint                                                                                        |
|                   | in dependence on a flag:                                           |                                                                                                                     |
|                   | JMP (REF = Mxxx) Ny/END                                            | Flag: Mxxx=1; Mxxx=0                                                                                                |
|                   | Axis stopped:                                                      |                                                                                                                     |
|                   | JMP (ROT_0 = 1) Ny/END                                             |                                                                                                                     |
|                   | Axis moves:                                                        |                                                                                                                     |
|                   | JMP (ROT_0 = 0) $Ny/END$                                           |                                                                                                                     |
|                   | in dependence on a flag:                                           |                                                                                                                     |
|                   | JMP (ROT_0 = Mxxx) Ny/END                                          |                                                                                                                     |
| f a digital input | Status = 0:                                                        |                                                                                                                     |
|                   | JMP (Ippi = 0) Ny/END                                              |                                                                                                                     |
|                   | Status = 1:                                                        |                                                                                                                     |
|                   | JMP (Ippi = 1) Ny/END                                              |                                                                                                                     |

#### 7 User programming

## LUST

| Status of a digital output                              | Status = 0:                                                                                      | N. (D)-5                                                 |                      | 1 |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------|----------------------|---|
|                                                         | JMP (Oppi = 0)<br>Status = 1:                                                                    | Ny/END                                                   |                      |   |
|                                                         |                                                                                                  | N. (END                                                  |                      | 2 |
| Status of a logic flag                                  | JMP (Oppi = 1)                                                                                   | Ny/END                                                   |                      |   |
|                                                         | JMP (Mxxx = Myyy)<br>JMP (Mxxx != Myyy)<br>JMP (Mxxx = 0)<br>JMP (Mxxx = 1)<br>JMP (Mxxx & Ippi) | NY / END<br>NY / END<br>NY / END<br>NY / END<br>NY / END |                      | 3 |
|                                                         | JMP (Mxxx   Ippi)<br>JMP (Mxxx ^ Ippi)<br>JMP (Mxxx & Oppi)                                      | NT / TINTO                                               |                      | 4 |
| Status of a special flag                                |                                                                                                  |                                                          |                      |   |
|                                                         | JMP (spec. flag = Mx<br>JMP (spec. flag != M                                                     | ixxx)                                                    | Ny / END<br>Ny / END | 5 |
|                                                         | <pre>JMP (spec. flag = 0) JMP (spec. flag = 1)</pre>                                             |                                                          | Ny / END<br>Ny / END |   |
|                                                         |                                                                                                  |                                                          |                      | 6 |
| Value of an integer variable                            | compare:                                                                                         |                                                          |                      |   |
| (direct comparison)                                     |                                                                                                  | Ny / END<br>Ny / END                                     |                      | 7 |
|                                                         |                                                                                                  |                                                          |                      |   |
| Value of an integer variable<br>(comparison with second | compare:                                                                                         |                                                          |                      |   |
| variable)                                               | JMP (Hxxx = Hyyy)<br>JMP (Hxxx != Hyyy)                                                          |                                                          |                      | 8 |
|                                                         | exceeded:                                                                                        |                                                          |                      |   |
|                                                         | JMP (Hxxx >= Hyyy)<br>JMP (Hxxx > Hyyy)                                                          | Ny / END<br>Ny / END                                     |                      | Δ |
|                                                         | fallen short of:                                                                                 | , , , , , , , , , , , , , , , , , , ,                    |                      |   |
|                                                         | JMP (Hxxx <= Hyyy)<br>JMP (Hxxx < Hyyy)                                                          | Ny / END<br>Ny / END                                     |                      |   |
| Value of a floating point                               | compare:                                                                                         |                                                          |                      |   |
| variable (direct comparison)                            | JMP (Fxxx = 0.0)<br>JMP (Fxxx != 0.0)                                                            | Ny / END<br>Ny / END                                     |                      |   |
|                                                         |                                                                                                  |                                                          |                      |   |
|                                                         |                                                                                                  |                                                          |                      |   |
|                                                         |                                                                                                  |                                                          |                      |   |

| Value of a floating point                  | compare:                                |                  |                                                                         |
|--------------------------------------------|-----------------------------------------|------------------|-------------------------------------------------------------------------|
| variable (comparison with second variable) | JMP (Fxxx = Fyyy)<br>JMP (Fxxx != Fyyy) | -                |                                                                         |
|                                            | exceeded:                               |                  |                                                                         |
|                                            | JMP (Fxxx >= Fyyy)<br>JMP (Fxxx > Fyyy) | -                |                                                                         |
|                                            | fallen short of:                        |                  |                                                                         |
|                                            | JMP (Fxxx <= Fyyy)<br>JMP (Fxxx < Fyyy) | ÷ .              |                                                                         |
| Status of a counter                        | JMP (Cxx = d)<br>JMP (Cxx != d)         | Ny/END<br>Ny/END | Jump if value is reached<br>Jump if value is not reached                |
| Status of a timer                          | JMP (Zxx = 0)<br>JMP (Zxx != 0)         | Ny/END<br>Ny/END | Timer run out?<br>Timer not yet run out?                                |
|                                            |                                         |                  |                                                                         |
| 1                                          | "= 0"), be                              | cause it canno   | nly possible with a run-out timer (i.e.<br>to be assured that a certain |

"= 0"), because it cannot be assured that a certain intermediate status ("=t") is reached at the time of the query.

#### Sub-programs (CALL, RET)

A sub-program is a part of the main program. No independent program header, e. g. P01, is generated. The invocation is not realized by means of JMP, but via CALL.

| CALL Ny | Invocation of a sub-program, or a jump to the first program line of the sub-program |
|---------|-------------------------------------------------------------------------------------|
| RET     | Return from the sub-program                                                         |

### Possible structure of the program (the line numbers only serve as examples)

| N010 |           | ; | Start of main program  |
|------|-----------|---|------------------------|
| N050 | CALL N110 | ; | Sub-program invocation |
| N100 | JMP       | ; | End of main program    |
|      |           |   |                        |
| N110 |           | ; | Start of sub-program   |
| N200 | RET       | ; | End of sub-program     |
|      |           |   |                        |



After processing of the sub-program the program is continued with the set following the invocation (CALL). The maximum nesting depth for sub-programs is 250. If this number is exceeded an error message will be issued and the running program will be aborted.

#### Setting a breakpoint (BRKPT)

With this command the sequential program can be interrupted at any line.

How to use breakpoints in a sequential program:

Activating/deactivating breakpoints in the sequential program

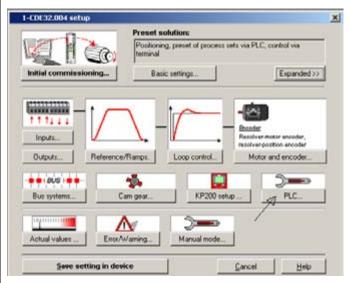
Ny Set brkpt = 1 / 0

Setting breakpoints in a line in the sequential program

Ny BRKPT

With activated breakpoints the program processing is interrupted in line Ny (parameter 450 PLCST = BRKPT).

By starting (parameter operation status on "Start" in the PLC window, 450-PLCST = GO) the program processing is continued with the next command line.




2

6



Note: Breakpoints can also be set via the user interface of the DRIVEMANAGER.



Switching off the PLC (e.g. via parameter 450 PLCST = OFF) the program processing is ended.

#### ; Example program

| %P00 |                        |                          |
|------|------------------------|--------------------------|
| N010 | NOP                    | ; no instruction         |
| N020 | SET BRKPT = 1          | ; activate breakpoints   |
| N030 | SET H000 = 0           | ; assign variable        |
| N040 | SET H001 = 10          | ; assign variable        |
| N050 | BRKPT                  | ; Breakpoint             |
| N060 | SET H000 + 1           | ; increment variable     |
| N070 | JMP (H000 < H001) N100 | ; H000 smaller 10 ?      |
| N080 | SET BRKPT = 0          | ; deactivate breakpoints |
| N100 | JMP N040               | ; continue incrementing  |
| END  |                        |                          |

With deactivated breakpoints this function is similar to an blank instruction (NOP).

#### **Blank instruction (NOP)**

This is an instruction without function, i.e. the program processes the line, but no reaction will occur. The processing requires (as with other commands) computing time.

How to use this function in the sequential program:

Ny NOP Instruction without function

#### Program end (END)

Both the text declaration as well as the actual sequential program must be quit with this command. All subsequently following lines will be ignored. In case of a missing END an error message will be emitted.

How to use this function in the sequential program

END No line number is specified!





#### Setting commands (SET)



Note: The results of calculations etc. are always saved in the left variable. F001 = 10; F002 = 15, Set F001 - F002; "-5" is generated in F001

With the help of setting commands a vast variety of operations can be executed in the travel programs:

- Setting of outputs (direct, via flags)
- Setting of flags (direct, indexed, via logic operations, ...)
- Setting, calculation of variables, ...
- Setting, incrementing, decrementing of counters
- · Setting and starting of timers
- Access to device parameters (e. g. controller settings, override functions, setpoint tables, etc.)
- Changing of acceleration parameters

Setting a digital output

direct:

```
SET Oppi = 0
SET Oppi = 1
via flag:
```

SET Oppi = Mxxx

#### Output image:

SET OUTPUT = Hxxx



Attention: Only the outputs will be set, which have their function selector FOppi=PLC set.

Setting logic flag

direct:

SET Mxxx = 0 SET Mxxx = 1 indexed:

SET M[Cxx] = 0 SET M[Cxx] = 1

#### 7 User programming

|                                                           | via 2. flag:                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                         |     |
|-----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                           | direct:                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                         | 1   |
|                                                           | SET Mxxx = Myyy as                                                                                                                                                                                                                                                                                                                           | ssign flag value                                                                                                                                                                                                                                                                                                                                        |     |
|                                                           | indexed:                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                         |     |
|                                                           | SET M[Cxx] = Myyy                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                         | 2   |
|                                                           | via logic operation:                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         |     |
|                                                           | SET Mxxx   Myyy                                                                                                                                                                                                                                                                                                                              | Logic AND<br>Logic OR                                                                                                                                                                                                                                                                                                                                   | 3   |
|                                                           |                                                                                                                                                                                                                                                                                                                                              | Logic EXCLUSIVE-OR                                                                                                                                                                                                                                                                                                                                      |     |
|                                                           | via integer variable                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                         | 4   |
|                                                           | SET MXXX = HXXX<br>via digital inputs and output                                                                                                                                                                                                                                                                                             | Assignment of LSB for Hxxx                                                                                                                                                                                                                                                                                                                              |     |
|                                                           | SET MXXX = Ippi                                                                                                                                                                                                                                                                                                                              | assign status input                                                                                                                                                                                                                                                                                                                                     |     |
|                                                           | SET MXXX = Oppi                                                                                                                                                                                                                                                                                                                              | assign status output                                                                                                                                                                                                                                                                                                                                    | 5   |
| Setting special markers –<br>variables (status variables) | _                                                                                                                                                                                                                                                                                                                                            | Drive in error status<br>Drive in warning status<br>Drive in status error / warning                                                                                                                                                                                                                                                                     | 6   |
|                                                           | SET MXXX = STA_ROT_L<br>SET MXXX = STA_ROT_0                                                                                                                                                                                                                                                                                                 | Motor rotating clockwise<br>Motor rotating anti-clockwise                                                                                                                                                                                                                                                                                               | 7   |
|                                                           | SET MXXX = STA_HOMATD<br>SET MXXX = STA_BRAKE<br>SET MXXX = STA_OFF<br>SET MXXX = STA_C_RDY<br>SET MXXX = STA_WUV                                                                                                                                                                                                                            | Axis referenced<br>Drive in braking state<br>Drive in de-energized state<br>Drive in status "Controller ready"<br>Warning undervoltage                                                                                                                                                                                                                  | 8   |
|                                                           | SET Mxxx = STA_WOV<br>SET Mxxx = STA_WIIT<br>SET Mxxx = STA_WOTM<br>SET Mxxx = STA_WOTI<br>SET Mxxx = STA_WOTD<br>SET Mxxx = STA_WIS<br>SET Mxxx = STA_WIS<br>SET Mxxx = STA_WFDIG<br>SET Mxxx = STA_WIT<br>SET Mxxx = STA_WIT<br>SET Mxxx = STA_WIT<br>SET Mxxx = STA_UTO<br>SET Mxxx = STA_UTO<br>SET Mxxx = STA_UTO<br>SET Mxxx = STA_UTO | Warning overvoltage<br>Warning warning I^2*t<br>Warning motor overtemperature<br>Warning heat sink temperature<br>Warning apparent current - limit value<br>Warning output frequency - limit value<br>Warning setpoint master error<br>Warning I*t motor protection<br>Warning torque<br>Position setpoint reached<br>(only with positioning controller | Α   |
| Setting special flags –<br>variables (control variables)  | SET ENCTRL = 0 / 1, Mxxx<br>location PLC)<br>SET INV = 0 / 1, Mxxx                                                                                                                                                                                                                                                                           | x Control off / on (only with control<br>Invert setpoint<br>(only with speed control, not with<br>endless positioning)                                                                                                                                                                                                                                  | DE  |
|                                                           |                                                                                                                                                                                                                                                                                                                                              | 7.05                                                                                                                                                                                                                                                                                                                                                    | EIN |

7-25

#### 7 User programming

|                                        | SET ERR = 0 / 1, Mxxx<br>SET ERRRQ = 0 / 1, Mxxx                  |                                                                                          |
|----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|
|                                        | SET BRKPT = 0 / 1, Mxxx<br>SET ACCR = 0 150%                      | Breakpoints off / on<br>Scaling of acceleration from 0                                   |
|                                        | SET ACCR = 0 150%                                                 | percent to 150 percent<br>Scaling of deceleration<br>from 0 percent to 150 percent       |
|                                        | SET HALT = 0/ 1, Mxxx                                             | Stop feed acc. to stop reaction,<br>see 6.2.3 and<br>"Braking the drive (STOP, SET HALT/ |
|                                        | BRAKE)", page 7-38<br>SET BRAKE = 0/ 1, Mxxx                      | -                                                                                        |
|                                        | BRAKE)", page 7-38<br>SET EGEARPOS = Hxxx                         | "Braking the drive (STOP, SET HALT/<br>Set run-in reference encoder<br>increments        |
|                                        | SET HXXX = EGEARPOS                                               | Read run-in reference encoder<br>increments                                              |
|                                        | SET HXXX = EGEARSPEED                                             | Read reference encoder speed in rpm                                                      |
| Indexed assignment of a constant value | SET F[Cxxx] = Value<br>SET H[Cxxx] = Value<br>SET M[Cxxx] = Value |                                                                                          |
|                                        |                                                                   |                                                                                          |
| Setting integer variable               | direct:                                                           |                                                                                          |
|                                        | SET Hxxx = z                                                      |                                                                                          |
|                                        | indexed:                                                          |                                                                                          |
|                                        | SET H[Cxx] = z                                                    |                                                                                          |
|                                        | with 2. variable:                                                 |                                                                                          |
|                                        | direct:                                                           |                                                                                          |
|                                        | SET Hxxx = Hyyy                                                   |                                                                                          |
|                                        | indexed:                                                          |                                                                                          |
|                                        | SET H[Cxx] = Hyyy                                                 |                                                                                          |
|                                        | with 2. indexed variable:                                         |                                                                                          |
|                                        | SET HXXX = H[Cyy]                                                 |                                                                                          |
|                                        | with 2. floating point variab                                     | le:                                                                                      |
|                                        | SET HXXX = FXXX                                                   |                                                                                          |
|                                        | Assignment of a floating po<br>no rounding                        | oint variable with limitation to +/- 2147483647                                          |
|                                        |                                                                   |                                                                                          |

2

4

5

6

7

EN

with flag: SET HXXX = MXXX with counter status: SET HXXX = Cyy with timer status: SET HXXX = ZXX via acceleration - direct: 2) SET Hxxx +zAdditionSET Hxxx -zSubtractionSET Hxxx \*zMultiplicatSET Hxxx :z $z \neq 0$ SET Hxxx \*z $z \neq 0$ Subtraction Multiplication SET Hxxx % z Modulo via displacement with constant: to the right: SET Hxxx >> z Division Hxxx by 2<sup>z</sup> to the left: SET Hxxx<< z Multiplication Hxxx with 2<sup>z</sup> Calculation via second variable - direct: 2) SET HXXX + Hyyy Addition SET HXXX - Hyyy Subtraction SET HXXX \* Hyyy Multiplication SET НХХХ : НУУУ Hyyy  $\neq 0^{(1)}$  Division Modulo SET HXXX % HVVV Calculation via displacement with second variable: Right: SET Hxxx >> Hyyy Division Hxxx by 2<sup>Hyyy</sup> Left: SET Hxxx << Hyyy Multiplication Hxxx with 2<sup>Hyyy</sup> Calculation by means of absolute-value generation: SET HXXX = ABS HYYY

#### 7 User programming

- z or Hyyy = 0 is not permitted (division by 0)! (error message will be triggered).
   With this operation one must make sure
  - With this operation one must make sure that no value range overflow takes place.

with value of parameter: Setting special integer variable direct: SET HXXX = PARA[n] with value of field parameter: direct: SET HXXX = PARA[n,i] with actual values: direct: SET Hxxx = ACTPOSAssign actual position valueSET Hxxx = ACTFRQAssign actual frequency value (only for U/f) 4 SET Hxxx = ACTSPEED Assign actual speed value SET Hxxx = ACTTORQUE Assign actual torque SET Hxxx = ACTCURRENT Assign actual current value 5 with setpoints: direct: SET Hxxx = REFPOS Assign position setpoint 6 with input and output functions: SET HXXX = OSA0 Read value of analog output 7 (0..10.000 = 0V..10V)SET HXXX = ISA0 Assign value of analog input 0  $(0 \dots 1.000 = 0V \dots 10V).$ SET HXXX = ISA1 Assign value of analog input 1  $(0 \dots 1.000 = 0V \dots 10V)$ SET Hxxx = InputAssign input imageSET Hxxx = OutputAssign output image Assign output image SET OSA0 = Hxxx Assign CDB3000 analog output (0..10.000 = 0V.. 10V). SET Oppi = 0 Set digital output to Low SET Oppi = 1 Set digital output to High SET Oppi = Mxxx Assign flag value to digital output The function selector of the outputs must be set to PLC. SET REFVAL = HXXX Assign setpoint

SET NEPVAL - MXXX Assign setpoint (only for torque/speed control= SET INPOSWINDOW = HxxxAssign window setpoint reached (only with positioning)

### IIST

#### 7 User programming

Setting floating point variable

direct: SET  $F_{XXX} = f$ with 2. variable: direct: SET Fxxx = Fyyy Assignment of floating point variable indexed: SET F[Cxx] = Fyyy Indexed assignment with 2. indexed variable SET Fxxx = F[Cxx]Indexed assignment with 2. integer variable: SET FXXX = HXXX Assignment of integer variables via calculation - direct: SET FXXX + f Addition of floating constants SET Fxxx - f Subtraction of floating constants SET Fxxx \* f Multiplication of floating constants SET Fxxx : f Division of floating constants Calculation via 2. variable - direct: Addition of floating variables SET FXXX + FVVV SET FXXX - Fyyy Subtraction of floating variables Multiplication of floating variables SET Fxxx \* Fyyy SET Fxxx : Fyyy Division of floating variables Calculation by rounding: SET Fxxx = ROUND Fyyy Mathematically rounded 2.8 -> 3.0 -2.8 -> -3.0 Calculation by means of absolute-value generation: Setting special floating point Absolute-value generation -2.8 -> 2.8 SET Fxxx = ABS Fyyy SET Fxxx = PARA[Hyyy, Hzzz] Assign field parameter value SETFxxx = PARA[Hyyy, Hzzz] Assign field parameter valueSETFxxx = PARA[Hyyy]Assign parameter valueSETFxxx = PARA[n, i]Assign field parameter valueSETFxxx = PARA[n]Assign parameter valueSETFxxx = ACTFRQActual frequency value (only with U/f)SETFxxx = ACTSPEEDActual speed valueSETFxxx = ACTTOURQUEActual torque valueSETFxxx = ACTTOURQUEActual current valueSETFxxx = ACTTOURQUEActual position valueSETFxxx = ACTPOSAssign actual position valueSETREFVAL=FxxxAssign setpoint SET REFVAL= Fxxx Assign setpoint via floating point variable (only for torque/speed control)

variable

#### 7 User programming

| Set counter                 | direct:                                                                                                                                                            |   |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                             | SET Cxx = d                                                                                                                                                        | 1 |
|                             | with variable:                                                                                                                                                     |   |
|                             | SET Cxx = Hyyy                                                                                                                                                     |   |
|                             | with counter:                                                                                                                                                      | 2 |
|                             | SET Cxx = Cyy                                                                                                                                                      |   |
|                             | Incrementing / decrementing counter:                                                                                                                               |   |
|                             | SET Cxx + d<br>SET Cxx - d                                                                                                                                         | 3 |
|                             | Incrementing / decrementing counter via variable:                                                                                                                  |   |
|                             | SET Cxx + Нууу<br>SET Cxx - Нууу                                                                                                                                   | 4 |
| Setting and starting timers | After assigning a timer (time counting element) with a value, this value is automatically reduced by 1 every millisecond, until finally the value of 0 is reached. | 5 |
| ĺ                           | The timer Z11 must not be used when working with the command WAIT, because this timer is used to execute the WAIT commands.                                        | 6 |
|                             | direct:                                                                                                                                                            | 7 |
|                             | SET Zxx = t                                                                                                                                                        |   |
|                             | with variable:                                                                                                                                                     |   |
|                             | SET Zxx = Hyyy                                                                                                                                                     | 8 |
|                             | The timer value is specified in ms.                                                                                                                                |   |
| Set parameter               | with integer variable:                                                                                                                                             | P |
|                             | SET PARA[n] = Hxxx Direct specification of parameter number<br>SET PARA[Hxxx] = Hyyy Specification of parameter number via<br>floating point variable              |   |
|                             | with floating point variable                                                                                                                                       |   |
|                             | SET PARA[n] = Fxxx Direct specification of parameter number<br>SET PARA[Hxxx] = Fyyy Specification of parameter number via<br>integer variable                     |   |
|                             |                                                                                                                                                                    |   |
|                             |                                                                                                                                                                    |   |
|                             |                                                                                                                                                                    | D |

EN



Setting field parameters

**Note:** Saving the sequential program, the parameters and the travelling data into the Flash-EPROM may also be triggered by the program. (SET PARA [150] =1).

#### with integer variable:

| SET Para [n,i] = Hxxx<br>number | Direct specification of parameter                                                 |
|---------------------------------|-----------------------------------------------------------------------------------|
| SET PARA [Hxxx,Hyyy] = Hzzz     | and index<br>Specification of parameter number<br>and index via integer variables |
| with floating point variable:   |                                                                                   |
| SET PARA [n,i] = Fxxx           | Specification of parameter number<br>and index direct                             |
| SET PARA [Hxxx, Hyyy] = Fxxx    | Specification of parameter number<br>and index via integer variables              |



Note:

The data type must be observed during read / write operations. Example: Do not assign floating point values to an integer type parameter (value range violations possible).

| Data types | Value range               | Function                                                                                                    | Suitable for<br>PLC variable |  |
|------------|---------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------|--|
| USIGN8     | 0 255                     |                                                                                                             |                              |  |
| USIGN16    | 0 65535                   | unsigned                                                                                                    |                              |  |
| USIGN32    | 0 4294967295              |                                                                                                             |                              |  |
| INT8       | -128 127                  |                                                                                                             | Hxxx, Fxxx                   |  |
| INT16      | -32768 32767              | Integer, signed                                                                                             |                              |  |
| INT32      | -2147483648<br>2147483647 |                                                                                                             |                              |  |
| INT32Q16   | -32767,99 32766,99        | 32 bit number with<br>standardization 1/65536,<br>i. e. the low-word<br>indicates the fractional<br>digits. |                              |  |
| FIXPOINT16 | 0,00 3276,80              | Fixed-point number with standardization 1 /20, i. e. increment value 0.05                                   | Fxxx                         |  |
| FL0AT32    | see IEEE                  | 32 bit floating point number in IEEE-format                                                                 |                              |  |

Table 7.1 Data types

### 1

2

0

4

E

5

6

7

8

A



The INV-command can be used to logically invert an integer variable, a flag or the status of a digital output. With this e.g. an output with Low-Level is inverted to High-Level, whereby it can be used in the program as a status indicator.

How to use this function in the sequential program:

```
Ny INV HxxxLogic inverting of an integer variableNy INV MxxxLogic inverting of a flagNy INV OppiLogic inverting of a digital output
```

#### Travel commands in positioning (GO)

These commands can be used to move the driven positioning axis. These commands must only be used in positioning mode, the setpoint channel must be set to PLC (preset solution with setpoint via PLC). With torque/ speed control GO-commands are evaluated as NOP. Effect of the individual positioning modes see chapter 5.2.1.

There are generally five methods to move the axis:

- Absolute positioning: Travelling to a certain position (GO A ..)
- Relative positioning: Travelling over a certain distance (GO R ..)
- Endless positioning: Travelling with defined speed (GO V ...)
- Start referencing: (GO 0)
- Synchronous travel: Electronic transmission (GO SYN ..)
- with continuation of program (GO ...)

If this command is submitted within the program, the program will immediately continue with the following program line, after the axis has been started. In this way several commands can be processed parallel to an ongoing positioning.

If this command is submitted during an ongoing positioning, the travel to the new target position will be continued with the changed

Travelling with or without continuation of program



| LUST                            | 7                                                                                                                                                                                                                                       | User programming                                                                                                                                                               |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | <ul> <li>specified in the previous of Reference for relative posts</li> <li>without continuation of pr</li> <li>With this command the net processed after the actual As long as the axis is not trailing error - the program</li> </ul> | ext successive program line is only<br>I position has reached the position window.<br>in the positioning window - e.g. due to a                                                |
| Travelling with continuation    | Position or path via variable /                                                                                                                                                                                                         | speed via variable                                                                                                                                                             |
| -                               | GO A HXXX V Hyyy<br>GO R HXXX V Hyyy                                                                                                                                                                                                    | Absolute travel by value of Hxxx<br>with speed Hyyy<br>(program processing continues)<br>Relative travel by value of Hxxx<br>with speed Hyyy<br>(program processing continues) |
|                                 | Position via variable / speed v                                                                                                                                                                                                         | ia parameter                                                                                                                                                                   |
|                                 | (program proc<br>GO R Hxxx Relative trav                                                                                                                                                                                                | vel by value of Hxxx<br>cessing continues)<br>vel by value of Hxxx<br>cessing continues)                                                                                       |
|                                 |                                                                                                                                                                                                                                         | h continuation must not be processed in a s would lead to a position overflow. See                                                                                             |
|                                 | N010 SET H001 = 360<br>N020 GO R H001<br>N030 JMP N020                                                                                                                                                                                  |                                                                                                                                                                                |
|                                 | Position or path from table                                                                                                                                                                                                             |                                                                                                                                                                                |
|                                 | (prog<br>GO T[Cxx] Trave<br>(prog<br>GO T[xxx] Trave                                                                                                                                                                                    | <pre>l acc. to table entry<br/>ram processing continues)<br/>l acc. to table entry<br/>ram processing continues)<br/>l acc. to table entry<br/>ram processing continues)</pre> |
| Travelling without continuation | Position or path via variable /                                                                                                                                                                                                         | speed via variable                                                                                                                                                             |
|                                 | GO W A Hxxx V Hyyy Absolut<br>with sp<br>and wai<br>target j<br>GO W R Hxxx V Hyyy Relativ<br>with sp<br>and wai                                                                                                                        | e travel by value of Hxxx<br>eed Hyyy<br>t for further program processing until<br>position is reached                                                                         |

2

7

8

A

DE EN

| L | U | Т |
|---|---|---|
|   |   |   |

|             | l                                     |                                                                          |                                                                                                    |
|-------------|---------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
|             | Position via variat                   | ole / speed via para                                                     | ameter                                                                                             |
|             | GO W A Hxxx<br>GO W R Hxxx            | and wait for fu<br>target position<br>Relative travel<br>and wait for fu | by value of Hxxx<br>Arther program processing until                                                |
|             | Position or path fr                   | target position<br>om table                                              | 1 is reached                                                                                       |
|             | GO W T[Hxxx]                          |                                                                          | table entry Hxxx,                                                                                  |
|             |                                       | wait until posi<br>Travel acc. to                                        | tion is reached<br>table entry Cxxx,                                                               |
|             | GO WT[xxx]                            | Travel acc. to                                                           | tion is reached<br>table entry,<br>tion is reached.                                                |
| Referencing | Referencing is pe<br>associated speed |                                                                          | e specified referencing type and the                                                               |
|             |                                       |                                                                          | a program, the next successive set<br>ig has been completed.                                       |
|             |                                       | Referencing is p<br>in dependence on                                     | erformed,<br>the method specified in parameter                                                     |
|             | GO 0 + Hxxx                           | 0 results from t                                                         | tware status<br>erformed, position<br>his. Thereafter this zero<br>to the value specified in Hxxx. |
|             |                                       | nand is flank trigge<br>ancellation condition                            | ered. Referencing can therefore only on (e. g. STOP B).                                            |
|             | The status of re<br>STA_HOMATD:       | eferencing can b                                                         | e monitored with the special flag                                                                  |
|             | Example for refere                    | encing with status                                                       | query:                                                                                             |
|             | N010 SET H000 =<br>N020 GO 0 + H000   |                                                                          | ; (30 degree zero offset)                                                                          |
|             |                                       | MATD = 1) N050                                                           | <pre>; HOMATD = 1 -&gt; Reference point<br/>;</pre>                                                |
|             | N040 JMP N030<br>N050                 |                                                                          | ; not defined<br>; Return in query<br>; further program run                                        |
|             | after referencing assigned (in the d  |                                                                          | zero position will have the value 30°                                                              |
|             |                                       |                                                                          |                                                                                                    |
|             |                                       |                                                                          |                                                                                                    |

| LUSI |
|------|
|      |

Endless travel

via variable:

GO V Hxxx Hxx= Index of variables with speed value The sign of the value in Hxxx determines the travel direction.

Speed synchronism

Switching on synchronous travel:

GOSYN 1

Switching off synchronous travel:

GOSYN 0

With speed synchronism (configuration of input see chapter 6.2.4) the speed of the reference encoder in rpm is switched to the setpoint structure. The speed acceleration ramps (see chapter 6.2) are active, i.e. "soft" coupling and decoupling.



**Note:** Speed synchronism is only active with speed control.

The speed setpoint of the reference sensor always refers to the motor shaft. When using a gearbox on motor and target and the drive shaft speed is to be determined by the reference sensor, the gearbox ratio must be parameterized in the reference sensor configuration.

With angular synchronism (configuration of input see chapter 6.2.4) the drive controller converts the incoming square wave pulses of a reference encoder directly to a position setpoint and approaches this point in a position controlled manner.

The configuration of the reference encoder input is described in detail in chapter 6.2.4.

Switching on synchronous travel:

GOSYN 1

Switching off synchronous travel:

GOSYN 0

After switching on synchronous travel with the command GOSYN 1 the sequential program is immediately continued with the next successive set.



**Note:** Switching synchronous travel on / off occurs abrupt, without limitation of the axis dynamics by ramps. Soft coupling / decoupling on a rotating leading axis is not possible.

Angular synchronism (electronic transmission) The reference sensor position refers to the motor shaft. The unit is always in increments (65536 Incr = 1 motor revolution). If the reference sensor position is to be directly related to the output shaft, the transmission ration must be entered for the reference sensor. A transmission ratio in the standardizing assistant will be ignored when using the reference sensor.

Example for the CDB3000:

System structure:

- HTL reference sensor as setpoint specification connected to terminal X2 on CDB3000.
- CDB3000 with gear motor (i = 56 /3)
- A transmission ratio of 56/3 was entered in the standardizing assistant (under basic settings).

Conclusions:

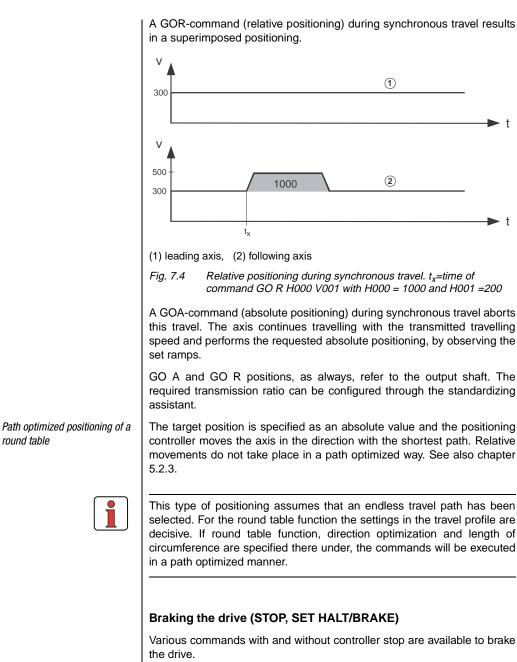
- with a reference sensor transmission ratio of 1/1 the reference sensor setpoint refers to the motor shaft of the gear motor.
- with a reference sensor transmission ratio of 56/3 the reference sensor setpoint refers to the output shaft of the gear motor.

Position and speed of the reference encoder can be read with the help of special PLC variables:

SET Hxxx = EGEARPOS; Reading the reference encoder position in increments

The submitted reference encoder increments are the actual increments of the reference encoder, multiplied with the transmission ratio of the reference encoder.

SET Hxxx = EGEARSPEED; Reading the reference encoder speed in rpm


The output is the reference encoder speed, multiplied with the transmission ratio of the reference encoder.

The position of the reference encoder can also be changed via the PLC:

 $\mbox{SET EGEARPOS}$  = Hxxx; Setting the reference encoder position in increments

2

6



#### 7 User programming

| Stop feed                                                    | With the command                                                                                                                                                                                                                                                                                                        |    |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                              | SET HALT = 1                                                                                                                                                                                                                                                                                                            | 1  |
|                                                              | the drive is braked to standstill according to the reaction "Stop Feed" (see chapter 6.2.3). The drive thus remains energized.                                                                                                                                                                                          |    |
|                                                              | With the command                                                                                                                                                                                                                                                                                                        | 2  |
|                                                              | SET HALT = 0                                                                                                                                                                                                                                                                                                            |    |
|                                                              | the drive is set in motion again with the previously specified travel set.<br>The braking process can be terminated at any time.                                                                                                                                                                                        | 2  |
| Quick stop                                                   | With the command                                                                                                                                                                                                                                                                                                        | J  |
|                                                              | SET BRAKE = 1                                                                                                                                                                                                                                                                                                           |    |
|                                                              | the drive is braked according to the reaction "Quick Stop" (see chapter 6.2.3). The drive controller is in "Quick stop" system state. The controller is now switched off, if switching off has been parameterized in the quick stop reaction and if it has been enabled via PLC (SET ENCTRL = 1, control location PLC). | 4  |
|                                                              | With the command                                                                                                                                                                                                                                                                                                        | 5  |
|                                                              | SET BRAKE = 0                                                                                                                                                                                                                                                                                                           |    |
|                                                              | the quick stop condition is terminated. This command must always be<br>executed before the drive can be switched on again. Termination of the<br>quick stop and return to the previous travel set is possible, as long as the<br>drive is energized.                                                                    | 6  |
| Droking with deceleration roma                               |                                                                                                                                                                                                                                                                                                                         | 7  |
| Braking with deceleration ramp<br>(only positioning)         | For normal braking with programmed deceleration ramp the command                                                                                                                                                                                                                                                        |    |
|                                                              | STOP B                                                                                                                                                                                                                                                                                                                  |    |
|                                                              | is available. The braking process cannot be aborted. The travel set that<br>had been valid when the STOIP command was triggered, becomes<br>invalid. The command is valid with positioning.                                                                                                                             | 8  |
| Braking with quick stop ramp                                 | For quick braking with quick stop ramp the command                                                                                                                                                                                                                                                                      |    |
| (only positioning)                                           | STOP M                                                                                                                                                                                                                                                                                                                  |    |
|                                                              | is available. The braking process cannot be aborted. The travel set that had been valid when the STOIP command was triggered, becomes invalid. The command is valid with positioning.                                                                                                                                   |    |
| Emergency stop (speed = 0)<br>and shut-down of control (only | for quickest possible braking (speed setpoint=0) and subsequent shut down of the control the command                                                                                                                                                                                                                    |    |
| positioning)                                                 | STOP 0                                                                                                                                                                                                                                                                                                                  |    |
|                                                              | is available. The control is only switched off if it had been switched on via PLC (SET ENCTRL = 1, control location PLC).                                                                                                                                                                                               |    |
|                                                              |                                                                                                                                                                                                                                                                                                                         |    |
|                                                              |                                                                                                                                                                                                                                                                                                                         | DE |
|                                                              | 7-30                                                                                                                                                                                                                                                                                                                    | EN |

| LUST                   | 7 User programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | The braking process cannot be aborted. The travel set that had been valid when the STOIP command was triggered, becomes invalid. The command is valid with positioning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | Wait commands (WAIT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Time                   | This command can be used to realize a certain time delay in milliseconds. After expiration of this time the program will continue with the next successive program line. The WAIT command is executed via the timer Z11.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                        | direct:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | WAIT d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | via variable:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | WAIT Hxxx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Axis status            | The program is continued, if the following condition is fulfilled.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        | Position window reached                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                        | WAIT REF Actual position in position window $^{1)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        | Axis stopped:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                        | WAIT ROT_0 Position setpoint = Target position <sup>2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                        | <ol> <li>Positioning finished,<br/>Output "Axis in position" will be set</li> <li>Positioning mathematically finished,</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Parameter write access | WAIT PAR Wait until parameter write access has taken place.<br>If the parameter write access is mandatory for the further processing of<br>the program, a WAIT PAR should be inserted after the parameter<br>assignments.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Example program        | <pre>%P00<br/>N010 SET H000 = 1 ; Assign value 1 to variable H000<br/>N020 SET PARA[460,1] = H000 ; Write (field) parameter 460,</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | N030 SET PARA[460,2] = H000 ; Write (field) parameter 460,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                        | N040SET PARA[270] = H000; Write parameter 270N050WAIT PAR; Wait with program processing until; all parameter write access                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | END ; End of program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Parameter write access | <pre>direct:<br/>WAIT d<br/>via variable:<br/>WAIT HXXX<br/>The program is continued, if the following condition is fulfilled.<br/>Position window reached<br/>WAIT REF Actual position in position window <sup>1)</sup><br/>Axis stopped:<br/>WAIT ROT_O Position setpoint = Target position <sup>2)</sup><br/><sup>1)</sup> Positioning finished,<br/>Output "Axis in position" will be set<br/><sup>2)</sup> Positioning mathematically finished,<br/>WAIT PAR Wait until parameter write access has taken place.<br/>If the parameter write access is mandatory for the further processing of<br/>the program, a WAIT PAR should be inserted after the parameter<br/>assignments.<br/><sup>%PO0</sup><br/>N010 SET H000 = 1 ; Assign value 1 to variable H000<br/>N020 SET PARA[460,1] = H000 ; Write (field) parameter 460,<br/>; Index 1<br/>N030 SET PARA[460,2] = H000 ; Write (field) parameter 460,<br/>; Index 2<br/>N040 SET PARA[270] = H000 ; Write parameter 270<br/>N050 WAIT PAR ; All parameter write access<br/>; have taken place</pre> |

#### 7 User programming

7.4 PLC control and parameters An uncomplicated setting of the specified PLC control parameters enables the PLC function mask (extended main window -> PLC or via "Basic settings/PLC with the corresponding PLC presetting):

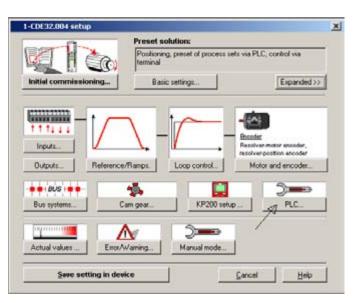



Fig. 7.5 DRIVEMANAGER - PLC function mask



2

5

6

#### 7.4.1 PLC variables

All PLC variables are shown by means of parameters. These parameters can be edited via the DRIVEMANAGER in a PLC function mask (see Fig. 7.5).

| DriveManager                                         | Meaning                                                                                                                                                                                                                                                                           | Value range                                        | Changing<br>ONLINE | Parameter            |
|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------------|----------------------|
| Integer variables<br>(32 bit)                        | Integer variables are integer numerical values. In<br>combination with floating point variables or parameters<br>the digits after the decimal point are not taken into<br>consideration. Rounding will also not take place.<br>Access in the sequential program H000H127          | 2 <sup>-31</sup> to 2 <sup>31</sup>                | yes                | 460-PLC_H<br>(_PLCP) |
| Flag (0/1)                                           | Access in the sequential program M000M255                                                                                                                                                                                                                                         | 0/1                                                | yes                | 461-PLC_M<br>(_PLCP) |
| Timer (32 bit)                                       | Time base 1 ms<br>Access in the sequential program Z00Z11<br>Timers are set to a certain value and run back to 0.                                                                                                                                                                 | 0 to 2 <sup>32</sup>                               | yes                | 462-PLC_Z<br>(_PLCP) |
| Counter for indexed addressing (8 bit)               | Access in the sequential program C00C10                                                                                                                                                                                                                                           | 0 to 65535                                         | yes                | 463-PLC_C<br>(_PLCP) |
| Image of the digital<br>outputs (bit coded)          | The image can also be written in the program as special variable OUTPUT.<br>OSD00-OSD02 Bit 0 - Bit 2<br>OED00-OED03 Bit 4 - Bit 6<br>OV00-OV01 Bit 7 - Bit 8<br>In order to set outputs from within the program, the corresponding function selector must be set to FOppi = PLC. |                                                    | yes                | 464-PLC_0<br>(_PLCP) |
| Floating point<br>variables                          | Access in the sequential program F000F127                                                                                                                                                                                                                                         | -3,37x10 <sup>38</sup> to<br>3,37x10 <sup>38</sup> | yes                | 465-PLC_F<br>(_PLCP) |
| lmage of digital and<br>analog inputs (bit<br>coded) | The image can also be written in the program as special<br>variable INPUT.<br>ISD00-ISD03 Bit 0 - Bit 3<br>IED00-IED07 Bit 4 - Bit 11<br>ISA00 - ISA01 Bit 12 - Bit 13                                                                                                            |                                                    | read only          | 466-PLC_I<br>(_PLCP) |

Table 7.2PLC Variables and flags



# 7.4.2 PLC control parameters

The PLC control parameters enable a flexible configuration of the PLCprogram or of its sequence.

| DriveManager                                     |                                                                                                          | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      | Parameter             |
|--------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------------------|
| Name of the PLC<br>program (Project<br>name)     | declaratio<br>name.txt)                                                                                  | project name is defined when generating the sequential program (text<br>iration). The name directly designates the text declaration file (project<br>e.txt)<br>. 32 characters without special characters, spaces will be ignored)                                                                                                                                                                                                                                      |      | 468- PLCPJ<br>(_PLCC) |
|                                                  |                                                                                                          | meter enables the starting/stopping (depending on parameter 452-<br>ARA) or indicates the current operating status of the sequential                                                                                                                                                                                                                                                                                                                                    |      |                       |
|                                                  | 0FF (0)                                                                                                  | PLC program sequence shut-down / switched off                                                                                                                                                                                                                                                                                                                                                                                                                           |      | 450-PLCST<br>(_PLCC)  |
| 0                                                | GO(1)                                                                                                    | Start PLC program sequence / in progress                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                       |
| Operating status of<br>the sequencing<br>control | BRKPT(2)                                                                                                 | PLC program sequence interrupted<br>The GO command continues the operation. The program<br>processing can be interrupted (BRKPT) or ended (OFF) with<br>the parameter at any time, irrespective of the control<br>location. With GO the processing of the program can be<br>resumed from the cancellation line, as long as the control<br>location is still valid (e.g. terminal still set). If this conditions<br>is no longer fulfilled, the parameter is set to OFF. | yes  |                       |
| Current program line                             | Shows the currently processed program line. The line number is also visible in the digital oscilloscope. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | read | 451-PLCPL<br>(_PLCC)  |

Table 7.3 PLC control parameters



7

2

3

4

5



| DriveManager                                            |                                                                                                                                                               | Meaning                                                                                                                                                                             | Changing<br>ONLINE | Parameter            |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------|
|                                                         | Parameter PLCCT defines the location from which the sequential program is started.                                                                            |                                                                                                                                                                                     |                    |                      |
|                                                         | TERM(0)                                                                                                                                                       | PLC start via input<br>The function selector for an input must be set to Fixxx =<br>PLCGO. (0 -> Program stopped, 1 -> Program started)                                             |                    | 452-PLCST<br>(_PLCC) |
| Start conditions of                                     | PARA(1)                                                                                                                                                       | PLC start via parameter "Operation status"<br>Manual change of operation status PLCST                                                                                               | yes                |                      |
| the sequencing<br>control                               | AUT0(2)                                                                                                                                                       | Automatic PLC start when starting the device, parameter<br>"Operation status" is set to GO and serves as status<br>indicator                                                        |                    |                      |
|                                                         | CTRL(3)                                                                                                                                                       | PLC start together with activation of controller<br>PLC start together with deactivation of controller                                                                              |                    |                      |
|                                                         | BUS(4)                                                                                                                                                        | PLC is started via field bus in EasyDrive-ProgPos control<br>word with the bit "Start PLC". When resetting the bit the<br>PLC-sequence is directly terminated by jumping to line 0. |                    |                      |
| Program stop in line<br>x (breakpoint)                  | The program is interrupted at the line specified under PLCBN; the parameter 450-PLCST changes to status BRKPT. The program is restarted with 450-PLCST=G0(1). |                                                                                                                                                                                     |                    | 455-PLCBN<br>(_PLCC) |
| Start with program<br>line (0 = first<br>program line). | Processing of the program starts with the line specified in PLCSN. This is very sensible, if a program contains different independent routines.               |                                                                                                                                                                                     |                    |                      |

Table 7.3PLC control parameters

| 7.5 | PLC program<br>examples | The examples in this chapter are solely intended as programming<br>exercises. Neither the problem definitions, nor the suggested solutions<br>have been checked under the aspects of safety.                                                                                                     |  |  |  |
|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     |                         | The examples shall demonstrate the possible solutions with the integrated sequencing control and what a typical program section could look like. A preset solution, which access the PLC, must be set up, e.g. "PCT_3 (18) positioning, travel set specification via PLC, control via terminal". |  |  |  |
|     |                         | The specified values for path unit, speed and acceleration are only<br>examples and should strictly be adapted to the application described<br>hereunder.                                                                                                                                        |  |  |  |
|     |                         | Basis for these examples is a gear motor with a rated speed of 1395 min <sup>-</sup> <sup>1</sup> and a transmission ratio of ü=9,17.                                                                                                                                                            |  |  |  |
|     |                         | Lust Antriebstechnik GmbH therefore does not assume any responsibility<br>and will not accept any liability for damage resulting from the type of use<br>of this programming material or of parts thereof.                                                                                       |  |  |  |
|     |                         | The numerical values for path. speed and acceleration solely refer to the programming units specified in the positioning controllers.                                                                                                                                                            |  |  |  |
|     |                         |                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                         |                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                         |                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                         |                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                         |                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                         |                                                                                                                                                                                                                                                                                                  |  |  |  |
|     |                         |                                                                                                                                                                                                                                                                                                  |  |  |  |

2

7

8

A

**7.5.1 Conveyor belt** After the start the conveyor belt drive shall advance the belt by 1m (corresponds with 10 revolutions of the output shaft) with a speed of 35 mm/s. After a waiting time of 5 s the process shall be repeated, until the input is reset. (Input used ISD03).


Setting units and standardization in the standardization assistant:

| Position:                                                             | mm                                                                                                                            |  |  |  |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Speed                                                                 | mm/s                                                                                                                          |  |  |  |
| Acceleration:                                                         | mm/s <sup>2</sup>                                                                                                             |  |  |  |
| Feed constant:                                                        | 1000 mm corresponds with 10 revolutions of<br>the output shaft<br>Motor shaft revolutions 917<br>Output shaft revolutions 100 |  |  |  |
| Gear:                                                                 |                                                                                                                               |  |  |  |
| Adapting the travel profile:                                          |                                                                                                                               |  |  |  |
| Max. speed:                                                           | 250 mm/s                                                                                                                      |  |  |  |
| Max. starting acceleratio                                             | n: 50 mm/s <sup>2</sup>                                                                                                       |  |  |  |
| Max. braking acceleratio                                              | n: 50 mm/s <sup>2</sup>                                                                                                       |  |  |  |
| referencing has been para<br>%TEXT (Conveyor Belt)<br>DEF H001 = Path | can be transferred to the controller, after meterized as described in chapter 5.2.4.                                          |  |  |  |
| DEF H002 = Speed<br>END                                               |                                                                                                                               |  |  |  |
| %P00<br>N001 SET H001 = 1000<br>N002 SET H002 = 35                    |                                                                                                                               |  |  |  |
| N020 JMP (IS03=0) N020                                                | <pre>; Perform referencing ; continue, if input = high ; Travel to position direction with 35</pre>                           |  |  |  |
| N040 WAIT 5000<br>N050 JMP N020<br>END                                | ; Wait 5 s<br>; Restart cycle                                                                                                 |  |  |  |
|                                                                       |                                                                                                                               |  |  |  |



# 7.5.2 Absolute positioning

The fourth position is to be approached with a speed of v=80 mm/s absolute, followed by a wait period of always 1 s. The travel back to initial position is to take place with three times the speed (240mm/s).



1

5

6

7

Positions and speeds are directly transferred as values, the specification of the acceleration takes place according to the machine parameters.

| <pre>; Standardization in s=mm a %TEXT (Absolute Positioning DEF H000 = Position_0 DEF H001 = Position_1 DEF H002 = Position_2 DEF H003 = Position_3 DEF H004 = Speed_v1 DEF H005 = Speed_v2 END</pre> |   | v=mm/s                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-------------------------------------------------------------------------------------|
| <pre>%P00<br/>N001 SET H000 = 200<br/>N002 SET H001 = 300<br/>N003 SET H002 = 400<br/>N004 SET H003 = 500<br/>N005 SET H004 = 80<br/>N006 SET H005 = 240</pre>                                         |   |                                                                                     |
| N020 GO 0<br>N030 GO W A H000 V H004<br>N040 WAIT ROT_0<br>N050 WAIT 1000                                                                                                                              | ' | Referencing<br>Approach initial position<br>Wait until axis has stopped<br>Wait 1 s |
| N060 GO W A H001 V H004                                                                                                                                                                                | ; | Approach position 1 and wait until axis has stopped                                 |
| N070 WAIT 1000<br>N080 GO W A H002 V H004<br>N090 WAIT 1000                                                                                                                                            | ; | Position 2                                                                          |
| N100 GO W A H003 V H004<br>N110 WAIT 1000                                                                                                                                                              | ; | Position 3                                                                          |
| N120 GO W A H000 V H005                                                                                                                                                                                | ; | return to initial position                                                          |
| N130 JMP N050<br>END                                                                                                                                                                                   |   |                                                                                     |

2

5

6

7

8

A

DE EN

| 7.5.3 Relativ<br>positio | oning | distance, this opens the pos                                                                                                                                 | axis has always travelled further by the same<br>ssibility for a solution with relative positioning.<br>actual position; units and standardization see |
|--------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |       | <pre>%TEXT (Relative Positioni<br/>DEF H000 = Position_0<br/>DEF H001 = Distance_betwe<br/>DEF H002 = Speed_v1<br/>DEF H003 = Speed_v2<br/>END</pre>         |                                                                                                                                                        |
|                          |       | <pre>%P00<br/>N001 SET H000 = 200<br/>N002 SET H001 = 100<br/>N005 SET H002 = 80<br/>N006 SET H003 = 240</pre>                                               | ; Position 0 in mm<br>; Distance between two positions in mm<br>; Speed in mm/s<br>; Speed in mm/s                                                     |
|                          |       | N020 GO W A H000 V H002<br>N030 SET COO = 0<br>N040 WAIT 1000<br>N050 GO W R H001 V H002<br>N060 SET CO0+1                                                   |                                                                                                                                                        |
|                          |       | N090 GO W A H000 V H003<br>N100 JMP N030<br>END                                                                                                              | ; Position 3 not yet reached<br>; return to initial position                                                                                           |
|                          |       |                                                                                                                                                              | er and more elegant when doing without the<br>n is made with the position setpoint (SP).                                                               |
|                          |       | <pre>%TEXT (Relative Positioni<br/>DEF H000 = Position_0<br/>DEF H001 = Distance_betwe<br/>DEF H002 = Speed_v1<br/>DEF H003 = Speed_v2<br/>END</pre>         |                                                                                                                                                        |
|                          |       | <pre>%P00<br/>N001 SET H000 = 200<br/>N002 SET H001 = 100<br/>mm<br/>N003 SET H002 = 80<br/>N004 SET H003 = 240<br/>N005 SET H004 = 500<br/>comparison</pre> | ; Position 0 in mm<br>; Distance between two positions in<br>; Speed in mm/s<br>; Speed in mm/s<br>; Position setpoint 3, used for                     |
|                          | 1     | N010 GO 0<br>N020 GO W A H000 V H002<br>N030 WAIT 1000                                                                                                       | ; Referencing<br>; Approach initial position and wait                                                                                                  |
|                          | 1     | N050 WAIT 1000                                                                                                                                               | ; Approach next position<br>N040 ; Position 3 not yet reached                                                                                          |
|                          | 1     | N070 GO W A H000 V H003                                                                                                                                      | ; return to initial position                                                                                                                           |
|                          |       | N080 JMP N030<br>END                                                                                                                                         |                                                                                                                                                        |

# 7.5.4 Sequential program

Here the positioning controller is used as a freely programmable sequencing control for a speed profile.

An endless conveyor belt is operated with two speeds. The belt is to be stopped when a target position ( $\geq$  10000) has been reached. The cycle is repeated by a new release input. In order to maintain the structure clear, sub-programs are used. The main program takes over the initialization and call up the sub-programs 1 to 3 in an endless loop.

| Parameterization             | IS00  | Start(1) = Start of control                           |
|------------------------------|-------|-------------------------------------------------------|
| of inputs<br>(DRIVEMANAGER): | IS01  | PLC (35) = Input can be used in sequential program    |
|                              | IS02  | PLC (35) = Input can be used in<br>sequential program |
|                              | IS03  | /HALT (Feed release, must have<br>High-Level)         |
| Input<br>(Program):          | ISD01 | Selection of speed<br>0 = v1 / 1 = v2                 |
|                              | ISD02 | Release                                               |
| Output<br>(Program)          | OSD00 | Target position reached                               |

Setting units and standardization in the standardization assistant:

| Position:      | Degree                                                      |
|----------------|-------------------------------------------------------------|
| Speed          | Degree/s                                                    |
| Acceleration:  | Degrees/s <sup>2</sup>                                      |
| Feed constant: | 360° corresponds with 1 revolution of the output shaft      |
| Gear:          | Motor shaft revolutions 917<br>Output shaft revolutions 100 |

Adapting the travel profile:

| Max. speed:                 | 900 degree/s               |
|-----------------------------|----------------------------|
| Max. starting acceleration: | 320 Degrees/s <sup>2</sup> |
| Max. braking acceleration:  | 320 Degrees/s <sup>2</sup> |

1

4

5

6

7

EN

```
The example program can be transferred to the controller, after
referencing has been parameterized as described in chapter 5.2.4.
%TEXT (Sequencing control)
DEF H000 = Speed
DEF H001 = Position
END
%P00
                       ; Main program
                       ; Perform referencing
N005 GO 0
N010 SET M000 = 1
                       ; Flag = 1:
                       ; Axis is not to be started
N015 SET M001 = 0
                       ; Flag = 0: Axis is not moving
N020 SET H001 = 10000 ; Target position for comparison
N025 CALL N045
                       ; Sub-program query inputs
N030 CALL N080
                      ; Sub-program start axis
N035 CALL N105
                      ; Sub-program position comparison
N040 JMP N025
                       ; Repeat
; Sub-program 1: Query inputs
N045 JMP (M001 = 1) N075; If drive is in motion, jump to RET
N050 JMP (IS02 = 0) N075; no query
N055 SET M000 = 0
                       ; Start took place, set flag = 0
N060 SET H000 = 300 ; Set speed 1
N065 JMP (IS01 = 0) N075; Speed 1 selected
N070 SET H000 = 600 ; Speed 2 selected + set
N075 RET
; Sub-program 2: Start axis
N080 JMP (M000 = 1) N100
N085 GO R H001 V H000 ; Axis starts with
                       ; speed H000, target position H001
N090 SET M000 = 1; Release detected, reset flagN095 SET M001 = 1; Drive in motion
N100 RET
; Sub-program 3: Position comparison
N105 JMP (REF = 1) N120
N110 SET OSOO = 0
N115 JMP N135
N120 SET M000 = 1
N125 SET M001 = 0
                   ;Drive stopped
N130 SET OS00 = 1
N135 RET
END
```

Application Manual CDE/CDB/CDF3000

2

3

4

5

6

0

A



# 8 Speed Control "OpenLoop" for CDE/CDB3000

| 8.1   | Preset solutions8-2                                                  |
|-------|----------------------------------------------------------------------|
| 8.2   | General functions8-3                                                 |
| 8.2.1 | Data set changeover8-3                                               |
| 8.2.2 | Speed profile generator "OpenLoop"8-5                                |
| 8.2.3 | Limitations/Stop ramps8-8                                            |
| 8.3   | "OpenLoop" motor control method8-10                                  |
| 8.3.1 | Start current controller8-11                                         |
| 8.3.2 | Vibration damping controller8-13                                     |
| 8.3.3 | Current limit controller8-14                                         |
| 8.3.4 | DC-holding current controller8-16                                    |
| 8.3.5 | v/f-characteristics curve8-17                                        |
| 8.4   | Speed control "OpenLoop" with<br>0-10 V or fixed speeds8-19          |
| 8.5   | Speed control "OpenLoop" with setpoint and control via field bus8-22 |

# **8.1 Preset solutions** Pre-set solutions are complete parameter datasets which are provided to handle a wide variety of typical application movement tasks. The positioning controllers are automatically configured by setting a preset solution. The parameters for

- the control location of the positioning controller,
- the reference source,
- the assignment of signal processing input and outputs and
- the type of control

are the focal points of the setting.

The use of a pre-set solution considerably simplifies and shortens the commissioning of the positioning controller. By changing individual parameters, the preset solutions can be adapted to the needs of the specific task.

A total of three preset solutions covers the typical areas of application for "OpenLoop" speed control with the closed-loop controllers.

| Abbrevia<br>tion | Reference source                           | Control location/<br>Bus control profile                                 |     | Additionally required<br>Documentation     |
|------------------|--------------------------------------------|--------------------------------------------------------------------------|-----|--------------------------------------------|
| VSCT1            | 0-10V analog                               | I/O-terminals                                                            | 8.4 |                                            |
| V.5U.L.1         | CAN <sub>open</sub> field bus<br>interface | CAN <sub>open</sub> field bus interface<br>- EasyDrive-Profile "Basic"   | 8.5 | CAN <sub>open</sub> data transfer protocol |
|                  | Field bus communication module (Profibus)  | Field bus communication module (Profibus)<br>- EasyDrive-Profile "Basic" | 8.5 | Profibus data transfer protocol            |

 Table 8.1
 Preset solutions - in speed controlled operation

All pre-set solutions have an individual window for basic settings in DRIVEMANAGER. Tabs or control buttons contained therein differ in their general and special functions. The general functions are described in chapter 8.2, the motor control method in chapter 8.3 and the special functions for the respective presettings in chapters 8.4 and 8.5.

| 8.2   | General<br>functions   |                                                          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1         |
|-------|------------------------|----------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 8.2.1 | Data set<br>changeover | Function                                                 |                                                     | Effect                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|       |                        | <ul> <li>Online switchin<br/>two data sets is</li> </ul> |                                                     | <ul> <li>Matching the dyna<br/>the motor to the approximately the motor to the approximately the second se</li></ul> |           |
|       |                        |                                                          |                                                     | Operation of two c<br>motors with one po<br>controller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|       |                        | The "OpenLoop" sp<br>second data set CD                  |                                                     | ins two data sets. Swite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |
|       |                        | <ul> <li>via terminals,</li> </ul>                       | the encod limit                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4         |
|       |                        | <ul><li>when reaching</li><li>when reversing</li></ul>   | the sense of rotati                                 | ion or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |
|       |                        | access by bus                                            |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5         |
|       |                        | is possible.                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|       |                        | Note: Online o<br>possibl                                |                                                     | en data sets CDS1 and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CDS2 is 6 |
|       |                        |                                                          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7         |
|       |                        |                                                          | et switching                                        | X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |
|       |                        |                                                          | g (online capable)<br>) = CDS2 if speed > parameter | SLIM 💽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8         |
|       |                        | Speed I                                                  | hreshold SLIM                                       | 1/min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0         |
|       |                        |                                                          |                                                     | Cancel Apply                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Α         |
|       |                        | Fig. 8.1 Function                                        | mask "Data set cha                                  | angeover"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |
|       |                        |                                                          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|       |                        |                                                          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|       |                        |                                                          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |
|       |                        |                                                          |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |

DE EN

#### Parameters for data set changeover

| DriveManager            | Function                                                        | Value range   | WE  | Unit              | Parameter          |
|-------------------------|-----------------------------------------------------------------|---------------|-----|-------------------|--------------------|
| Changeover              | Control location for changeover of data set (CDS)               | see Table 8.4 | OFF |                   | 651-CDSSL<br>(_VF) |
| Speed threshold<br>SLIM | Speed limit for changeover to CDS                               | -32764 32764  | 600 | min <sup>-1</sup> | 652-FLIM<br>(_VF)  |
| -                       | Display of active data set (CDS)<br>(not shown in DRIVEMANAGER) | see Table 8.5 | 0   |                   | 650-CDSAC<br>(_VF) |

Table 8.2

Parameters for data set changeover

#### Explanations

• An overview of function areas with parameters for the second characteristics curve data set can be found in Table 8.3.

# Function areas with parameters for characteristics curve data sets

| Function area                      | Parameter                            |
|------------------------------------|--------------------------------------|
| Fixed CDS speeds                   | all parameters                       |
| Speed profile generator "OpenLoop" | Acceleration and deceleration ramps  |
| Current limit controller           | Limit value and function selector    |
| v/f-characteristics curve          | all parameters                       |
| Start current controller           | Setpoint, reduced setpoint and timer |
| Vibration damping controller       | Amplification                        |

Table 8.3Function areas with parameters in the second data set (CDS)

#### Possibilities of data set changeover

| BUS       | KP/DM              | Function                                                                                                                     |
|-----------|--------------------|------------------------------------------------------------------------------------------------------------------------------|
| 0         | OFF                | no changeover <ul> <li>CDS 1 active</li> </ul>                                                                               |
| 1         | SILIM              | Changeover when exceeding the speed setpoint of<br>the value in parameter SILIM<br>• CDS 2, is speed > SLIM, otherwise CDS 1 |
| 2         | TERM               | Changeover via digital input<br>• CDS 2, if IxDxx = 1, otherwise CDS 1                                                       |
| Table 8.4 | Settings for varia | ants of data set changeover                                                                                                  |

Application Manual CDE/CDB/CDF3000

| BUS | KP/DM | Function                                                                                                                                                    |
|-----|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3   | ROT   | Changeover when reversing the sense of rotation<br>• CDS 2, if ccw-rotation, otherwise CDS 1                                                                |
| 4   | SIO   | Changeover via SIO<br>• CDS 2, if control bit is set, otherwise CDS 1                                                                                       |
| 5   | CAN   | Control via CANopen interface <ul> <li>CDS 2, if control bit is set, otherwise CDS 1</li> </ul>                                                             |
| 6   | OPTN  | Changeover via field bus to optional slot <ul> <li>CDS 2, if control bit is set, otherwise CDS 1</li> </ul>                                                 |
| 7   | SLABS | Changeover when exceeding the speed setpoint of<br>the absolute value (value formation) in parameter<br>SILIM<br>• CDS2, if speed > (SILIM), otherwise CDS1 |

Table 8.4 Settings for variants of data set changeover

#### Active characteristics curve data set display with 650-CDSAC

| BUS | KP/DM | Function                                       |
|-----|-------|------------------------------------------------|
| 0   | CDS1  | characteristics curve data set 1 (CDS1) active |
| 1   | CDS2  | characteristics curve data set 2 (CDS2) active |

Table 8.5

Display of active data set

#### 8.2.2 Speed profile generator "OpenLoop"

| Function                                                                                                                                                                   | Effect                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Setting of acceleration and deceleration ramps for the rotary speed profile</li> <li>Setting of a slip for the start and end points of the linear ramp</li> </ul> | <ul> <li>Matching the dynamics of<br/>the motor to the application</li> <li>Jerk reduced moving of the<br/>drive</li> </ul> |

.

The ramps can be selected separately for each data set.

The parameter MPTYP (linear/jerk limited) and JTIME can be used to slip linear ramps at their end points to limit the appearance of jerks.

| Type of movement     | Setting                                              |
|----------------------|------------------------------------------------------|
| dynamic, jerky       | MPTYP = 0, linear ramp without slip                  |
| Protecting mechanics | MPTYP = 3, smoothened ramp by slip by<br>JTIME [ms]. |

Table 8.6 Activation of the jerk limitation 4

5

6

8

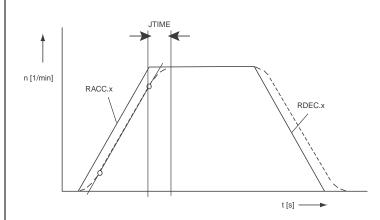



Fig. 8.1 Speed profile generator for "OpenLoop" speed control

Due to the jerk limitation the acceleration and deceleration times rise by the slip time JTIME. The rotary speed profile is set in the DRIVEMANAGER according to Fig. 8.2.

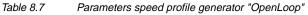

| Acceleration           | _1000     | 1/min/ |
|------------------------|-----------|--------|
| Deceleration           | _1000     | 1/min/ |
| Auea "reference reach  | ef 30     |        |
| Profile type           |           |        |
| 3 - Jerk Imited ramp [ | (moothed) | 2      |
| Smoothing time         | [100      |        |

Fig. 8.2 Function mask speed profile "OpenLoop"

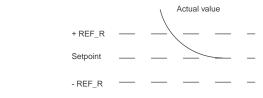
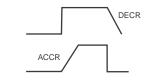

| DriveManager                         | Value range | WE   | Unit                 | Parameter                         |
|--------------------------------------|-------------|------|----------------------|-----------------------------------|
| Acceleration<br>(Data set dependent) | 0 32760     | 1000 | min <sup>-1</sup> /s | 620.x_RACC <sup>1)</sup><br>(_VF) |
| Deceleration<br>(Data set dependent) | 0 32760     | 1000 | min <sup>-1</sup> /s | 621.x_DECR <sup>1)</sup><br>(_VF) |
| Area "Reference reached"             | 0 32760     | 30   |                      | 230_REF_R<br>(_0UT)               |

Table 8.7 Parameters speed profile generator "OpenLoop"


| DriveManager                                                                     | Value range         | WE       | Unit        | Parameter            |
|----------------------------------------------------------------------------------|---------------------|----------|-------------|----------------------|
| Type of profile<br>0: Linear ramp<br>3: Jerk limited ramp<br>1, 2: not supported | 0 3                 | 3        | -           | 597_MPTYP<br>(_SRAM) |
| Slip                                                                             | 0 2000              | 100      | ms          | 596_JTIME<br>(_SRAM) |
| <sup>1)</sup> Field parameters; Index "x"                                        | = 0: Data set CDS1, | index "x | " = 1: Data | set CDS2             |



Parameter 230-REF\_R can be used to define a speed range in which the setpoint after the profile generator may differ from the input setpoint, without the message "Reference value reached" (REF) becomes inactive. Setpoint fluctuations caused by setpoint specification via analog inputs can therefore be taken into account.



Ramp settings can be made independently from each other. A ramp setting of zero means jump in setpoint.



3

5

6

8

#### 8.2.3 Limitations/ Stop ramps

| Function                                  | Effect                                                                 |
|-------------------------------------------|------------------------------------------------------------------------|
| Limitation of motor current     and speed | Setting maximum and<br>minimum values                                  |
| •                                         | s are limited to a percentage of the aximum speed to the nominal motor |

| Current li | mit:            |                |             |       |
|------------|-----------------|----------------|-------------|-------|
| Data set   | 1 (CDS1)   Data | set 2 (CDS2)   |             |       |
| 100        | ≂ Start up      | o current till | [360        | 1/min |
| Current    | imit value      | 150            | 3           | i.    |
| Speed lin  | uit:            |                |             |       |
| Nmax -     | 100.00          | <u>x</u> ×     | Motor rated | speed |

Fig. 8.3 Function mask "OpenLoop" limitations

| DriveManager            | Function                                                                                                                                        | Value range                                | WE     | Unit | Parameter                         |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|--------|------|-----------------------------------|
| Start current           | The start current (motor control<br>function "start current controller") is<br>controlled up to a defined speed in a<br>data set dependent way. | 0 180<br>of the nominal device<br>current  | 100    | %    | 601.x_CICN <sup>1)</sup><br>(_VF) |
| Current limit value     | The current limit (motor control<br>function "current limit controller") is<br>limited in a data set dependent way.                             | 0180<br>of the nominal device<br>current   | 150    | %    | 632.x_CLCL <sup>1)</sup><br>(_VF) |
| Speed limitation        | Percentage limitation of the speed setpoint                                                                                                     | 0.00 999.95<br>of the rated motor<br>speed | 100.00 | %    | 813_SCSMX<br>(_CTRL)              |
| Rated motor speed       |                                                                                                                                                 | 0 100000                                   | 1500   | rpm  | 157_MOSNM<br>(_MOT)               |
| 1) Field parameters; Ir | ndex "x" = 0: Data set CDS1, index "x'                                                                                                          | ' = 1: Data set CDS2                       | •      |      | •                                 |

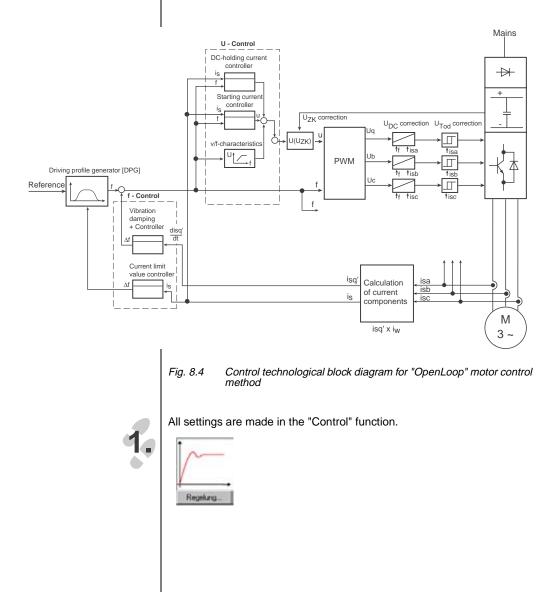
Table 8.8 Parameters for the "OpenLoop" limitation function



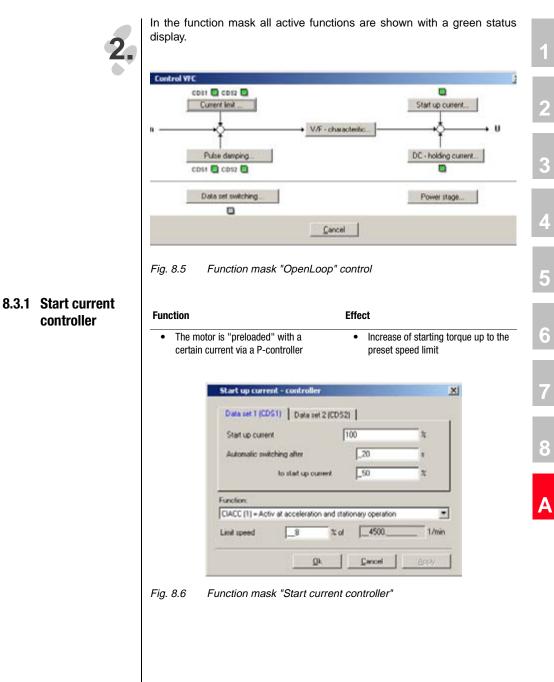
#### 8 Speed Control "OpenLoop" for CDE/CDB3000

The stop ramps are described with the general software function in chapter 6.2.3 (stop ramps). Various stop ramps or reactions can be adjusted:

- Switching off of closed-loop control
- Stop feed
- Quick stop
- Error




Α




#### 8.3 "OpenLoop" motor control method

With default setting "OpenLoop" for speed control the drive controller uses the motor control method VFC. This control method does not require any speed feedback, because the drive controller works with v/f - characteristics curve control. Function, see control technological block diagram (Fig. 8.4).







EN

| Meaning                                                                                                                                        | Value range                                                                                                                                                                                                                                                                                                               | WE                                                                                                                                                                                                                                                                                                                                                                                                                          | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                     | Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Controller OFF/ON                                                                                                                              | OFF/CIACC                                                                                                                                                                                                                                                                                                                 | 0FF(0)                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                        | 600_CISEL<br>(_VF)                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Start current in % of the<br>drive controller<br>rated current                                                                                 | 0 180<br>of the nominal<br>device current                                                                                                                                                                                                                                                                                 | 100                                                                                                                                                                                                                                                                                                                                                                                                                         | %                                                                                                                                                                                                                                                                                                                                                                                                                                        | 601.x_CICN <sup>4)</sup><br>(_VF)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Timer for changeover to<br>the reduced start<br>current. Changeover to<br>the reduced start current<br>setpoint after the time<br>has run out. | 0 60                                                                                                                                                                                                                                                                                                                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                           | S                                                                                                                                                                                                                                                                                                                                                                                                                                        | 605.x_CITM <sup>4)</sup><br>(_VF)                                                                                                                                                                                                                                                                                                                                                                                                            |
| Reduced start current<br>after time CITM has run<br>out                                                                                        | 0 180                                                                                                                                                                                                                                                                                                                     | 50                                                                                                                                                                                                                                                                                                                                                                                                                          | %                                                                                                                                                                                                                                                                                                                                                                                                                                        | 602.x_CICNR <sup>4)</sup><br>(_VF)                                                                                                                                                                                                                                                                                                                                                                                                           |
| Speed at which the P-<br>controller is switched off.                                                                                           | % of rated<br>motor speed<br>MOSNM                                                                                                                                                                                                                                                                                        | 8                                                                                                                                                                                                                                                                                                                                                                                                                           | %                                                                                                                                                                                                                                                                                                                                                                                                                                        | 603_CISM<br>(_VF)                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                | Controller OFF/ON<br>Start current in % of the<br>drive controller<br>rated current<br>Timer for changeover to<br>the reduced start<br>current. Changeover to<br>the reduced start current<br>setpoint after the time<br>has run out.<br>Reduced start current<br>after time CITM has run<br>out<br>Speed at which the P- | Controller OFF/ONOFF/CIACCStart current in % of the<br>drive controller<br>rated current0 180<br>of the nominal<br>device currentTimer for changeover to<br>the reduced start<br>current. Changeover to<br>the reduced start current<br>setpoint after the time<br>has run out.0 60Reduced start current<br>after time CITM has run<br>out0 180Speed at which the P-<br>controller is switched off% of rated<br>motor speed | Controller OFF/ONOFF/CIACCOFF(0)Start current in % of the<br>drive controller<br>rated current0 180<br>of the nominal<br>device current100Timer for changeover to<br>the reduced start<br>current. Changeover to<br>the reduced start current<br>setpoint after the time<br>has run out.0 602Reduced start current<br>after time CITM has run<br>out0 18050Speed at which the P-<br>controller is switched off% of rated<br>motor speed8 | Controller OFF/ONOFF/CIACCOFF(0)Start current in % of the<br>drive controller<br>rated current0 180<br>of the nominal<br>device current100%Timer for changeover to<br>the reduced start<br>current. Changeover to<br>the reduced start current<br>setpoint after the time<br>has run out.0 602sReduced start current<br>after time CITM has run<br>out0 18050%Speed at which the P-<br>controller is switched off% of rated<br>motor speed8% |

 From cut-off speed the controlled start current is controlled back to the normal operating current of the v/f - characteristics curve. The transition range is fixed to 5% of the rated motor frequency (MOFN).

 The start current setting can also be found in the basic setting mask under the option "Limitation".

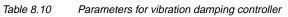
3) The changeover can be deactivated by setting the start current and the reduced start current to the same value.

4) Field parameter; index "x" = 0: Data set CDS1, index "x" = 1: Data set CDS2

Table 8.9 Parameters for start current controller



#### Note Start current setpoint:


Please remember that the start current setpoint must always be lower (at least 25%) than the rated current of the current limit controller.

#### 8 Speed Control "OpenLoop" for CDE/CDB3000

# LUST

#### 8.3.2 Vibration damping controller

| propensity                 | oller reduces the oscillation<br>v by means of automatic<br>peed or frequency | vibrat<br>rotor<br>bendi<br>• This (<br>additi<br>accel<br>mech | tion beh<br>shafts v<br>ing.<br>control<br>ional da<br>leration<br>nanical d | aviour o<br>vhich are<br>function<br>impening<br>processe | effect on                                      |
|----------------------------|-------------------------------------------------------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------|
|                            | Pulse damping - contro                                                        | 11                                                              |                                                                              | ×                                                         |                                                |
|                            | Data set 1 (CDS1) Da                                                          | ta set 2 (CDS2)                                                 |                                                                              | -1                                                        |                                                |
|                            | Gain (OFF=0)                                                                  | _100                                                            | z                                                                            |                                                           |                                                |
|                            | Filter time                                                                   | _0.1                                                            | :                                                                            |                                                           |                                                |
|                            | Qk                                                                            | <u>C</u> ancel                                                  | deeby                                                                        |                                                           |                                                |
|                            |                                                                               |                                                                 |                                                                              |                                                           |                                                |
| Fig. 8.7 F<br>DriveManager | unction mask "Vibration<br>Meaning                                            | n damping con                                                   | troller<br>WE                                                                | "<br>Unit                                                 | Parameter                                      |
| 0                          |                                                                               |                                                                 |                                                                              |                                                           | Parameter<br>611.x_APGN <sup>1)</sup><br>(_VF) |



7

Α

# 8.3.3 Current limit controller

| Function                                                                                                                                                                                                                                                                                                                                               | Effect                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>The drive accelerates along the set acceleration ramp. When an adjustable current limit is reached the acceleration process is decelerated in dependence on the selected function, until sufficient current reserves are available again.</li> <li>In stationary operation the speed is reduced, if the motor current is too high.</li> </ul> | <ul> <li>Protection against<br/>overcurrent shut down when<br/>accelerating excessive<br/>moment of inertia.</li> <li>Protection against chopping<br/>of the drive.</li> <li>Acceleration processes with<br/>maximum dynamics along<br/>the current limit.</li> </ul> |
| Current limit - controller Data set 1 (CDS1) Data set 2 (CD Functions CCW/FR (1) = Speed reduction at 1 Current limit value 150                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                       |
| Initial speed0<br>Lowering speed150<br>Lowering ramp1000                                                                                                                                                                                                                                                                                               | Hz<br>Hz<br>Hz/s                                                                                                                                                                                                                                                      |
| Fig. 8.8 Function mask "Current limi                                                                                                                                                                                                                                                                                                                   | it controller"                                                                                                                                                                                                                                                        |

| DriveManager        | Meaning                                                                                                                                                                             | Value range                               | WE     | Unit                 | Parameter                         |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------|----------------------|-----------------------------------|
| Function            | Controller OFF/ON<br>OFF: Function disabled<br>CCWFR: see Table 8.12                                                                                                                | OFF/CCWFR                                 | 0FF(0) |                      | 631.x_CLSL <sup>1)</sup><br>(_VF) |
| Current limit value | see Table 8.12                                                                                                                                                                      | 0 180<br>of the nominal<br>device current | 150    | %                    | 632.x_CLCL <sup>1)</sup><br>(_VF) |
| Application speed   | <b>Note</b> : In the speed range from 0 to application speed the value of the acceleration ramp RACC is reduced to 25%. With setting 0 min <sup>-1</sup> this function is disabled. | 0 30.000                                  | 0      | min <sup>-1</sup>    | 634_CLSR<br>(_VF)                 |
| Lowering speed      | If the apparent motor current is 100% of the set current limit (CLCL), the speed will be                                                                                            | 0 1000                                    | 150    | min <sup>-1</sup>    | 633_CLSLR<br>(_VF)                |
| Deceleration ramp   | lowered to the lowering speed along the adjusted deceleration ramp.                                                                                                                 | 0 32000                                   | 1000   | min <sup>-1</sup> /s | 635_CLRR<br>(_VF)                 |

| Status                                                       | Function                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|--------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Accelerations with<br>activated current<br>limit controller  | During the acceleration process with acceleration ramp (RACC) the acceleration (RACC) is reduced in a linear way from the the set value to 0 rpm/s, when 75% of the current limit is reached. This means that the drive is no longer accelerated when the current limit is reached. If the current limit is exceeded, the speed setpoint will be reduced. This reduction takes place with the steepness of the deceleration ramp (CLRR). This steepness increases linear from 0 to the preset value CLRR at current limit 125% CLCL. This process only takes place in the range of the lowering speed (CLSLR). If the apparent current of the motor drops below the current limit, the drive will again be accelerated along the acceleration ramp (RACC). The conditions mentioned before do thereby apply. |  |  |  |
| Stationary operation<br>with active current<br>limit control | The controller is still active after the acceleration process.<br>If the motor load, and thus the current, increases during stationary<br>operation, the speed will be reduced when the motor current exceeds<br>the current limit. The motor speed is reduced along the deceleration<br>ramp (CLRR) down to the maximum lowering speed CLSLR.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| Deceleration with<br>active current limit<br>control         | The <b>current control has no effect on</b> the deceleration ramp. I.e. the<br>speed ramp does not change if the motor current exceeds the current<br>limit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |

2

3

4

7

A

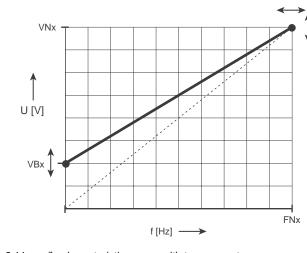
#### 8.3.4 DC-holding current controller

| an adjusta                 | deceleration ramp (RDEC)<br>able direct current is<br>nto the motor.       | This counteracts a rotation of the<br>motor shaft without load. No stall<br>torque is applied against a loaded<br>motor shaft. |        |           |                                                     |  |
|----------------------------|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------|-----------|-----------------------------------------------------|--|
|                            | DC-holding - controller                                                    |                                                                                                                                | ×      |           |                                                     |  |
|                            | Holding current<br>Holding time (OFF = 0)                                  | [_50<br>[0.5                                                                                                                   | X<br>1 |           |                                                     |  |
|                            |                                                                            | ancel <u>Ass</u>                                                                                                               | 17     |           |                                                     |  |
|                            |                                                                            |                                                                                                                                |        |           |                                                     |  |
| Fig. 8.9 Fi                | unction mask DC holding<br>Meaning                                         | current contro                                                                                                                 | oller  | Unit      | Parameter                                           |  |
|                            | -                                                                          |                                                                                                                                |        | Unit<br>% |                                                     |  |
| DRIVEMANAGER<br>DC holding | Meaning<br>DC holding current related to<br>the rated current of the drive | Value range                                                                                                                    | WE     |           | Parameter<br>608_H0DC<br>(_VF)<br>609_H0DC<br>(_VF) |  |

- with reaction "Controller off" = "-1= acc. to reaction Quick Stop" (see chapter 6.2.3)
- when triggering quick stop via terminal (FIxxx=/STOP) or field bus control bit.



#### 8.3.5 v/fcharacteristics curve




The v/f - characteristics curve is automatically adapted during initial startup or via the motor identification. Further optimization of the motor control method VFC does not take place with the help of the v/f - characteristics curve, but via the P-controllers described in chapter8.3.

The VFC control method has been optimized for asynchronous standard motors or asynchronous geared motors acc. to VDE 0530.

| Data set 1 (CDS1) Data       | set 2 (CDS2) |    |
|------------------------------|--------------|----|
| Boost voltage                | _0           | v  |
| Rated motor voltage          | 460          | v  |
| Rated motor frequency        | 50           | Hz |
| Filter of data set switching | 0.003        | -  |

Fig. 8.10 v/f-characteristics curve







1

2

3

4

5

6

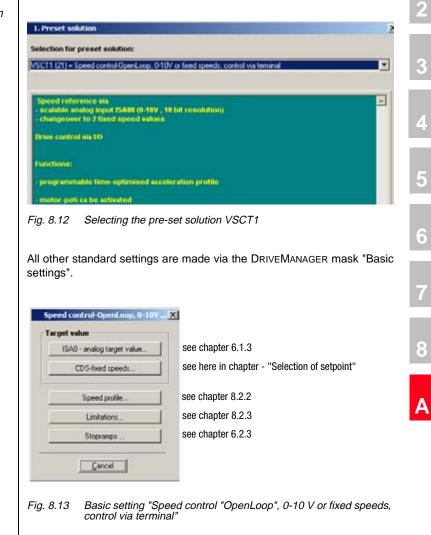
8

| DriveManager                        | Meaning                                                                                                          | Value range   | WE       | Unit      | Parameter                       |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------|----------|-----------|---------------------------------|
| Boost voltage                       | Start voltage at 0 min <sup>-1</sup> .<br>This is automatically<br>adapted via the start current<br>controller.  | 0 100         | 0        | V         | 615.x_VB <sup>1)</sup><br>(_VF) |
| Rated motor<br>voltage              | The values related to the<br>connected motor are<br>detected by the motor<br>identification.                     | 0 460         | 460      | V         | 616.x_VN <sup>1)</sup><br>(_VF) |
| Rated motor<br>frequency            |                                                                                                                  | 0 1600        | 50       | Hz        | 617.x_FN <sup>1)</sup><br>(_VF) |
| Filtering in data<br>set changeover | When changing data sets<br>the motor voltage is filtered<br>to avoid sporadic changes<br>in the transition area. | 0 1P          | 0.003    | S         | 704_VTF<br>(_VF)                |
| 1) Field parame                     | eter; index "x" = 0: Data set 0                                                                                  | DS1, index "x | " = 1: D | ata set ( | CDS2                            |

Table 8.14Parameters for v/f-characteristics curve



#### 8.4 Speed control "OpenLoop" with 0-10 V or fixed speeds


Selecting the pre-set solution

This chapter describes the preset solution of speed control "OpenLoop" with 0-10V or fixed speeds. This chapter describes the inputs and outputs and the generation of setpoints.

1

EN

The preset drive solution is selected via the "1st step" during initial startup.





Assignment of control terminal

|              |         |                   | CD    | B3000          | CE    | DE3000             |                       |                             |
|--------------|---------|-------------------|-------|----------------|-------|--------------------|-----------------------|-----------------------------|
|              |         |                   | X2    | Des.           | X2    | Des.               | Fur                   | nction                      |
|              |         |                   | 20    | OSD02          | 24    | REL                | 14                    | Relay contact               |
|              | ко      | +24V <b>→</b>     | 19    | OSD02          | 23    | REL                | 11                    | for message                 |
|              |         |                   | 18    | OSD02          | /     | /                  | 12                    | "Standby"                   |
|              |         |                   | 17    | DGND           | 13    | DGND               | digital ground        |                             |
|              | + +     | <sup>12</sup> 🛇 — | 16    | OSD01          | 8     | 0SD01              | Message "BRK2"        |                             |
|              | F       | <u>11</u>         | 15    | OSD00          | 7     | OSD00              | Message "Setpoint rea | ached"                      |
|              |         | _                 | 14    | DGND           | 1     | DGND               | digital ground        |                             |
|              |         |                   | 13    | +24V           | 14    | +24V               | Auxiliary voltage +24 | V                           |
|              |         | S2                | 12    | ISD03          | 18    | ISD03              | CDS fixed speed 1/2   |                             |
|              |         | S1                | 11    | ISD02          | 17    | ISD02              | 0-10V/CDS fixed spee  | ds                          |
|              |         | STL               | 10    | ISD01          | 16    | ISD01              | START left            |                             |
|              |         | STR               | 9     | ISD00          | 15    | ISD00              | START right           |                             |
|              |         | ENPO              | 8     | ENP0           | 10    | ENP0 <sup>1)</sup> | Power stage hardware  | e enable <sup>1)</sup>      |
|              |         |                   | 7     | +24V           | 2     | +24V               | Auxiliary voltage +24 | V                           |
|              |         |                   | 6     | +24V           | /     | /                  | Auxiliary voltage +24 | V                           |
|              |         |                   | 5     | 0SA00          | /     | /                  | OFF                   |                             |
| +10 V        | R1      |                   | 4     | AGND           | /     | /                  | analog ground (CDB30  | 000)                        |
| $\mathbf{A}$ | ≥ 10 kΩ |                   | 3     | ISA01          | /     | /                  | Not assigned          |                             |
| Ľ≯→          |         |                   | 2     | ISA00          | 3     | ISA0+              | Setpoint 0 V + 10 V   | with CDB3000 <sup>2)</sup>  |
|              |         |                   | 1     | U <sub>R</sub> | 4     | ISA0-              | Reference voltage 10  | , 10mA with CDB3000 $^{3)}$ |
| CDE3000      | C       | DB3000            | 1) Pl | ease reme      | ember | that the c         | control input ENPO on | CDE3000 is part of the      |

1) Please remember that the control input ENPO on CDE3000 is part of the control function "Safe Stop"

2) Analog input, differentially + at CDE3000

3) Analog input, differentially - at CDE3000

Fig. 8.14 Assignment of control terminals CDE/CDB3000



#### Selection of setpoint

The setpoint specification can either take place via n analog setpoint or via two fixed speeds. The logic in Table 8.15 does thereby apply.

| S1<br>ISD02 | S2<br>ISD03 | Actual setpoint                                                                                      | Factory setting<br>[min <sup>-1</sup> ] |
|-------------|-------------|------------------------------------------------------------------------------------------------------|-----------------------------------------|
| 0           | 0           | Analog input active                                                                                  | variable                                |
| 0           | 1           | Analog input active                                                                                  | variable                                |
| 1           | 0           | Changeover analog input/CDS<br>fixed speed<br>if S2 = 0 - fixed speed 1<br>if S2 = 1 - fixed speed 2 | 500                                     |
| 1           | 1           | Changeover analog input/CDS<br>fixed speed<br>if S2 = 0 - fixed speed 1<br>if S2 = 1 - fixed speed 2 | 100                                     |

Table 8.15Truth table for setpoint specification (S1, S2)

The CDS fixed speeds are set by means of a function mask.

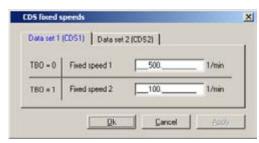



Fig. 8.15 Function mask CDS fixed speeds

| DriveManager                                                     | Meaning                | Value range     | WE  | Unit              | Parameter                                                       |  |
|------------------------------------------------------------------|------------------------|-----------------|-----|-------------------|-----------------------------------------------------------------|--|
| Fixed speed 1                                                    | Fixed speed at TBO = 0 | -32764<br>32764 | 500 | min <sup>-1</sup> | 613.0_RCDS1 <sup>1)</sup><br>614.0_RCDS2 <sup>2)</sup><br>(_VF) |  |
| Fixed speed 2                                                    | Fixed speed at TB0 = 1 | -32764<br>32764 | 100 | min <sup>-1</sup> | 613.1_RCDS1 <sup>1)</sup><br>614.1_RCDS2 <sup>2)</sup><br>(_VF) |  |
| 1) Parameter for data set CDS1<br>2) Parameter for data set CDS2 |                        |                 |     |                   |                                                                 |  |

Table 8.16 Parameters CDS fixed speeds



EN

2

3

4

5

6

CANopen

Profibus

#### 8.5 Speed control "OpenLoop" with setpoint and control via field bus

With the preset solutions VSCC1 and VSCB1 the field bus is preset as setpoint source.

The reference value specification for the speed control is either accomplished via the device internal CAN<sub>open</sub> field bus interface (VSCC1), or via the Profibus communication module (VSCB1).

| Speed control, reference and |                   |
|------------------------------|-------------------|
| Speed profile                | see chapter 8.2.2 |
| Limitations                  | see chapter 8.2.3 |
| Stopramps                    | see chapter 6.2.3 |
|                              |                   |

Fig. 8.16 Basic setting "Speed control "OpenLoop", setpoint and control via bus"

Assignment of control terminal All inputs and outputs are set to 0-OFF. They can be set as described in chapter 6.1"Inputs and outputs".

The drive controllers are integrated into the automation network via the device internal electrically isolated CAN<sub>open</sub> interface X5.

Communication takes place in accordance with profile DS301. Control and target position specification is in accordance with the proprietary EasyDrive profile "Basic".

Detailed information on configuration of the drive controller in the network can be found in the separate documentation "CAN<sub>open</sub> data transfer protocol".

The speed specification and control via Profibus requires the external communication module CM-DPV1.

Control and speed specification is in accordance with the EasyDrive profile "Basic".

Detailed information on configuration of the drive controller in a network can be found in the separate documentation "Profibus data transfer protocol".

| Appendix A |                                   |  |  |  |  |  |
|------------|-----------------------------------|--|--|--|--|--|
|            |                                   |  |  |  |  |  |
| A.1        | Overview of all error messagesA-2 |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |
|            |                                   |  |  |  |  |  |

#### Appendix A

# A.1 Overview of all error messages

The error messages are divided into error including error number and fault location. Detailed explanations on error history and reactions can be found in chapter 6.9.1

| Error-<br>No. | Error | Fault<br>location | Description                                                                                                                                           |  |  |  |
|---------------|-------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 1             | E-CPU | Hardware          | or software error                                                                                                                                     |  |  |  |
|               |       | 0                 | Unidentifiable error in control print                                                                                                                 |  |  |  |
|               |       | 6                 | Error in self-test:<br>Parameter initialization failed due to incorrect parameter<br>description.                                                     |  |  |  |
|               |       | 10                | Insufficient RAM area for Scope function                                                                                                              |  |  |  |
|               |       | 16                | Error in program data memory (detected during run time)                                                                                               |  |  |  |
|               |       | 17                | Error in program data memory<br>(detected when starting device)                                                                                       |  |  |  |
| 2             | 0FF   | Mains fai         | lure                                                                                                                                                  |  |  |  |
|               |       | 1                 | D.C. link direct voltage < 212 V / 425 V<br>(is also displayed with normal mains off)                                                                 |  |  |  |
| 3             | E-0C  | Overcurre         | ent cut-off                                                                                                                                           |  |  |  |
|               |       | 0                 | Overcurrent due to:<br>1. Incorrectly set parameters<br>2. Short circuit, earth leakage or insulation faults<br>3. Device internal defect             |  |  |  |
|               |       | 1                 | Ixt-shut-down below 5 Hz (quick Ixt) to protect the output stage (permissible current-time area exceeded) reported by self status monitoring          |  |  |  |
|               |       | 43                | Output stage protection has tripped<br>The max. permitted motor current was exceeded in dependence<br>on the ZK-voltage and the heat sink temperature |  |  |  |
|               |       | 46                | Overcurrent shut-down after wiring test<br>Short circuit, earth leakage or insulation faults detected                                                 |  |  |  |
|               |       | 48                | Overcurrent detected:<br>1. Incorrectly set parameters<br>2. Short circuit, earth leak or insulation fault in operation<br>3. Device internal defect  |  |  |  |
|               |       | 49                | Overcurrent detected<br>1. Incorrectly set parameters<br>2. Short circuit, earth leak or insulation fault in operation<br>3. Device internal defect   |  |  |  |
|               |       | 50                | Internal fault in overcurrent monitoring                                                                                                              |  |  |  |

| Error-<br>No. | Error | Fault<br>location | Description                                                                                                                                                                |
|---------------|-------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4             | E-OV  | Overvolta         | ge cut-off                                                                                                                                                                 |
|               |       | 1                 | Overvoltage caused by<br>1. Overload of brake chopper (too long or to many brake<br>operations)<br>2. Mains overvoltage                                                    |
| 5             | E-OLM | IxI-motor         | cut-off                                                                                                                                                                    |
|               |       | 47                | Ixt-shut-down to protect the motors<br>(Permissible current-time area exceeded)                                                                                            |
| 6             | E-0LI | Ixt-conve         | rter cut-off                                                                                                                                                               |
|               |       | 48                | ${\rm I}^2 {\rm xt}\mbox{-shut-down}$ to protect the output stage (permissible current-time area exceeded)                                                                 |
| 7             | E-OTM | Motor ove         | ertemperature                                                                                                                                                              |
|               |       | 47                | Motor overtemperature (temperature sensor in motor has<br>responded) due to:<br>1. Temperature sensor not connected or incorrectly<br>parameterized<br>2. Motor overloaded |
| 8             | E-0TI | Drive unit        | t overtemperature                                                                                                                                                          |
|               |       | 44                | Output stage (heat sink) overheated due to:<br>1. Too high ambient temperature<br>2. Too high load (output stage or brake chopper)                                         |
|               |       | 45                | Overtemperature inside the device caused by<br>1. Too high ambient temperature<br>2. Too high load (output stage or brake chopper)                                         |

A

#### Appendix A

# LUST

| Error-<br>No. | Error | Fault<br>location | Description                                                                                                                     |
|---------------|-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
| 9             | E-PLS | Plausibilit       | y error with parameter or program sequence                                                                                      |
|               |       | 0                 | Unidentifiable runtime error                                                                                                    |
|               |       | 4                 | Unknown switching frequency or unknown device type detected                                                                     |
|               |       | 6                 | The parameter list could not be initialized in the device start list.<br>Possibly incorrect table with device class parameters. |
|               |       | 7                 | Runtime monitoring detected invalid parameter object (incorrect data type or incorrect data width)                              |
|               |       | 8                 | The current operation level does not contain a readable<br>parameter, or parameter access error via KP200                       |
|               |       | 11                | Runtime monitoring detected invalid length of the automatically saved memory area.                                              |
|               |       | 12                | Runtime error when activating an assistance parameter                                                                           |
|               |       | 13                | Unidentifiable parameter access level                                                                                           |
|               |       | 42                | An exception message (Exception) was triggered.                                                                                 |
|               |       | 54                | Runtime error when checking an assistance parameter                                                                             |
|               |       | 100               | Internal parameter access error during controller initialization                                                                |
|               |       | 101               | Unknown switching frequency during initialization of the PWM                                                                    |
|               |       | 130               | Error in current controller tuning                                                                                              |
|               |       | 133               | Error in performance of Macro-State-Machine                                                                                     |
|               |       | 255               | Userstack exceeded the maximum size                                                                                             |

#### Appendix A

| Error-<br>No. | Error | Fault<br>location      | Description                                                                                                                     |  |  |  |
|---------------|-------|------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 10            | E-PAR | Parameterization error |                                                                                                                                 |  |  |  |
|               |       | 0                      | Invalid parameter setting                                                                                                       |  |  |  |
|               |       | 5                      | After the device boot phase the value of a parameter is outside the valid range.                                                |  |  |  |
|               |       | 6                      | Fault when initially initializing the parameter list. A parameter could not be reset to default.                                |  |  |  |
|               |       | 7                      | Error when initializing a parameter with its saved setting.                                                                     |  |  |  |
|               |       | 8                      | Error during internal parameter access via KP200. A parameter could not be read or written.                                     |  |  |  |
|               |       | 47                     | Error when initializing the motor protection module                                                                             |  |  |  |
|               |       | 55                     | Internal error in status machine control                                                                                        |  |  |  |
|               |       | 100                    | Error in controller initialization                                                                                              |  |  |  |
|               |       | 101                    | Error when initializing the modulation                                                                                          |  |  |  |
|               |       | 102                    | Error when initializing the brake chopper                                                                                       |  |  |  |
|               |       | 103                    | Error when initializing the current model                                                                                       |  |  |  |
|               |       | 104                    | Error when initializing the current control                                                                                     |  |  |  |
|               |       | 105                    | Error when initializing the speed calculation                                                                                   |  |  |  |
|               |       | 106                    | Error when initializing the speed controller                                                                                    |  |  |  |
|               |       | 107                    | Error when initializing the torque calculation                                                                                  |  |  |  |
|               |       | 108                    | Error when initializing the position detection                                                                                  |  |  |  |
|               |       | 109                    | Error when initializing the position controller                                                                                 |  |  |  |
|               |       | 110                    | Error when initializing the V/f-characteristic control                                                                          |  |  |  |
|               |       | 111                    | Error when initializing current controlled operation                                                                            |  |  |  |
|               |       | 112                    | Error when initializing the flow control in field weakening range                                                               |  |  |  |
|               |       | 113                    | Error when initializing the mains failure support                                                                               |  |  |  |
|               |       | 114                    | Error when initializing the current and voltage detection                                                                       |  |  |  |
|               |       | 115                    | Error when initializing the TTL encoder evaluation,<br>lines per revolution or transmission ratio are not supported             |  |  |  |
|               |       | 116                    | Error when initializing the HTL encoder evaluation,<br>lines per revolution or transmission ratio are not supported             |  |  |  |
|               |       | 117                    | Error when initializing the SSI-interface and encoder evaluation, lines per revolution or transmission ratio are not supported. |  |  |  |

2

6

7

8

A

#### Appendix A

| Error-<br>No. | Error    | Fault<br>location | Description                                                                                                                                                                         |
|---------------|----------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10            | 10 E-PAR |                   | rization error                                                                                                                                                                      |
|               |          | 118               | Error when initializing the encoder function<br>prohibited combination of encoders (e.g. a transducer is used as<br>encoder and reference encoder)                                  |
|               |          | 119               | Error when initializing the control<br>Invalid values for main inductance (zero or negative)                                                                                        |
|               |          | 120               | Error when initializing the analog output                                                                                                                                           |
|               |          | 121               | Error when initializing the analog inputs                                                                                                                                           |
|               |          | 122               | Error when initializing the resolver evaluation                                                                                                                                     |
|               |          | 123               | Error when initializing the fault voltage compensation                                                                                                                              |
|               |          | 124               | Error when initializing the speed control without sensor (SFC)                                                                                                                      |
|               |          | 125               | Error when initializing the speed control without sensor (U/I-model)                                                                                                                |
|               |          | 126               | Error when initializing the external AD-converters                                                                                                                                  |
|               |          | 127               | The desired method for commutation finding is not supported.                                                                                                                        |
|               |          | 128               | Error when initializing the GPOC error correction method                                                                                                                            |
|               |          | 129               | Error in configuration of HTL encoder. HTL-encoder was parameterized as position-speed or reference encoder, but the input terminals FISO2 and FISO2 are not set to HTL-evaluation. |
|               |          | 130               | Error in current controller tuning                                                                                                                                                  |
|               |          | 131               | Error in self-setting (test signal generator)                                                                                                                                       |
|               |          | 132               | Error in UZK-calibration                                                                                                                                                            |
|               |          | 133               | Error in performance of Macro-State-Machine                                                                                                                                         |
| 11            | E-FLT    | Floating p        | point error                                                                                                                                                                         |
|               |          | 0                 | General error in floating point calculation                                                                                                                                         |
| 12            | E-PWR    | Unknown           | power circuitry                                                                                                                                                                     |
|               |          | 4                 | Power section not correctly detected                                                                                                                                                |
|               |          | 6                 | Power section not correctly detected                                                                                                                                                |
| 13            | E-EXT    | external e        | error message (input)                                                                                                                                                               |
|               |          | 1                 | Error message from an external device is present                                                                                                                                    |
| 15            | E-0PT    | Error on r        | nodule in options module location                                                                                                                                                   |
|               |          | 26                | BUSOFF                                                                                                                                                                              |
|               |          | 27                | Unable to send Transmit Protocol                                                                                                                                                    |
|               |          | 28                | Guarding error                                                                                                                                                                      |
|               |          | 29                | Node-Error                                                                                                                                                                          |
|               |          | 30                | Initialization error                                                                                                                                                                |

| Error-<br>No. | Error | Fault<br>location | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------|-------|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16            | E-CAN | CAN bus           | error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |       | 0                 | CAN bus error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               |       | 31                | BUSOFF detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |       | 32                | Unable to send Transmit Telegram                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |       | 33                | Guarding error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |       | 34                | Node-Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |       | 35                | Initialization error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               |       | 36                | PDO object outside value range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               |       | 37                | Error in initialization of communication parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |       | 38                | Target position memory - overflow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |       | 39                | Heartbeat - Error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |       | 40                | invalid CAN-address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |       | 41                | Insufficient memory to save communication objects                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |       | 42                | Guarding error in monitoring of a Sync/PDO object                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17            | E-PLC | Error in p        | rocessing of PLC sequential program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |       | 0                 | Error in sequencing control (PLC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |       | 210               | Error triggered through PLC (SET ERR = 1, Mxxx with $Mxxx = 1$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|               |       | 211               | Error in sub-program invocation / return with CALL / RET.<br>Stack underflow: unexpected RET without previous CALL-<br>invocation.<br>Stack overflow: max. nesting depth (250 CALL - invocations)<br>reached                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |       | 212               | Error when writing parameters (buffer full)<br>Writing from the interrupt takes place via a buffer for max.30<br>entries, whereby the buffer itself is processed in the main loop.<br>If this message occurs, the buffer capacity has been reached,<br>i.e. the main loop was unable to process all assigned<br>parameters.<br>The command WAIT PAR has the effect, that the program<br>processing is stopped, until all parameters have been written<br>and the buffer has been emptied. With a high number of<br>parameter access operations (more than 30 successive<br>parameter assignments) or when assuring the parameter write<br>access during the further processing of the program, a WAIT<br>PAR should be inserted. |
|               |       | 213               | Error when writing parameters. Parameter does not exist, is no field parameter. Value range violation, value cannot be written, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

DE EN

#### Appendix A

# LUST

| Error-<br>No. | Error | Fault<br>location | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---------------|-------|-------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               |       | 214               | Error when reading parameters. Parameter does not exist or is no field parameter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |       | 215               | Internal error: No code available or program instruction cannot be executed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |       | 216               | Internal error: No code available, program instruction cannot be<br>executed or jump to next unused address.<br>This error occurs when a sequential program is loaded while a<br>sequential program is still active in the controller, whereby the<br>new program has different line numbers. If not absolutely<br>necessary, you should switch off the PLC when loading a<br>program.                                                                                                                                                                                                |
|               |       | 217               | During a division operation in the program a division by zero has<br>occurred.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               |       | 220               | Error in floating point operation in sequencing control. The<br>sequencing control is in wait state and shows the faulty<br>program line. Check the cancellation conditions (value ranges)<br>for floating point operations. If necessary correct the<br>sequencing program or the faulty program line.<br>Note: In floating point calculations value range violations<br>(03.37E+38) can occur.<br>When comparing two floating point variables the cancellation<br>condition may probably not be reached. Make sure to use<br>unambiguous and plausible value ranges in programming. |
|               |       | 221               | The cycle time of the sequencing control has been exceeded,<br>i.e. the processing of the program takes more time than<br>permitted.                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |       | 223               | Error in indexed addressing, e.g. SET $H000 = H[C01]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 18            | E-SIO | Error in s        | erial interface                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|               |       | 9                 | Watchdog for monitoring of communication via LustBus has tripped.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 19            | E-EEP | Faulty EE         | PROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               |       | 0                 | Error when accessing the parameter ROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               |       | 2                 | Error when writing to the parameter ROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               |       | 4                 | Error when reading the parameter ROM in the device boot phas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |       | 7                 | Error when writing a String parameter to the parameter ROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               |       | 11                | Checksum error when initializing the AutoSave parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               |       | 15                | Checksum error when initializing the device setting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20            | E-WBK | Open circ         | uit at current input 4-20 mA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|               |       | 1                 | Wire breakage at current input 4 to 20mA detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               |       | 127               | Phase failure on motor detected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### Appendix A

| Error-<br>No. | Error | Fault<br>location                             | Description                                                                                                                                        |                                       |  |
|---------------|-------|-----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| 30            | E-ENC | Error in rotary position transducer interface |                                                                                                                                                    |                                       |  |
|               |       | 0                                             | Error in encoder interface                                                                                                                         |                                       |  |
|               |       | 1                                             | Error in encoder interface:<br>Wire breakage in track signals detected                                                                             | 2                                     |  |
|               |       | 117                                           | Initialization of SSI-interface                                                                                                                    |                                       |  |
|               |       | 127                                           | Error in commutation finding<br>The commutation angle has not been determined accurately<br>enough.                                                | 3                                     |  |
|               |       | 137                                           | Wire breakage SSI encoder                                                                                                                          |                                       |  |
| 32            | E-FLW | Servo lag                                     |                                                                                                                                                    |                                       |  |
|               |       | 240                                           | Servo lag                                                                                                                                          | 4                                     |  |
| 33            | E-SWL | Software                                      | limit switch evaluation has responded.                                                                                                             |                                       |  |
|               |       |                                               | 0                                                                                                                                                  | Error in internal setpoint limitation |  |
|               |       | 243                                           | Positive software limit switch has responded.                                                                                                      | 5                                     |  |
|               |       | 244                                           | Positive software limit switch has responded.                                                                                                      |                                       |  |
|               |       | 246                                           | Internal setpoint limitation<br>Travel set rejected by the contacted hardware or software limit<br>switch due to a limitation of the travel range. | 6                                     |  |
| 36            | E-POS | Positionin                                    | g error                                                                                                                                            |                                       |  |
|               |       | 0                                             | Error in positioning and sequencing control                                                                                                        |                                       |  |
|               |       | 241                                           | Error of hardware limit switch detected during referencing or no reference cam found                                                               |                                       |  |
|               |       | 242                                           | Error of hardware limit switch interchanged during referencing.                                                                                    |                                       |  |
|               |       | 245                                           | No reference point defined                                                                                                                         | 8                                     |  |
|               |       | 247                                           | Timeout reached at target position                                                                                                                 |                                       |  |
|               |       | 248                                           | Feed release missing (technology not ready, feed release missing (HALT active), quick stop active)                                                 |                                       |  |
|               |       | 249                                           | Positioning currently not permitted<br>(referencing active, step mode active, positioning inactive)                                                | A                                     |  |
|               |       | 250                                           | Initialization of standardization block: the total transmission ratio (numerator/denominator) can no longer be displayed in 16 bit.                |                                       |  |
|               |       | 251                                           | Standardization: the standardized position can no longer be displayed in 32-bit.                                                                   |                                       |  |
| 38            | E-HW  | Hardware                                      | limit switched has been approached                                                                                                                 |                                       |  |
|               |       | 51                                            | Left hardware limit switched has been contacted                                                                                                    |                                       |  |
|               |       | 52                                            | Right hardware limit switched has been contacted                                                                                                   |                                       |  |

DE EN

#### Appendix A

# LUST

| Error-<br>No. | Error | Fault<br>location | Description                                                                                                                       |
|---------------|-------|-------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| 39            | E-HWE | Hardware          | limit switched mixed up                                                                                                           |
|               |       | 1                 | Hardware limit switched mixed up<br>negative setpoint for positive limit switch or<br>positive setpoint for negative limit switch |
| 41            | E-PER |                   |                                                                                                                                   |
|               |       | 4                 | Internal error in CPU periphery.                                                                                                  |

# LUST Appendix B Index

### A

| Action register 6-106                            |
|--------------------------------------------------|
| Active characteristic curve data set display 8-5 |
| Actual value 4-5                                 |
| Adaptation of the application                    |
| data set 3-14                                    |
| Adjustment in minimized view 3-5                 |
| Amplification 6-66                               |
| analog input, options 6-27                       |
| Angular synchronism 7-36                         |
| Automation network                               |
| Integration 4-9, 8-22                            |
| Auto-Start                                       |
| Axis status 7-40                                 |
|                                                  |

### В

| Bar graph, KP200-XL       | 6-114 |
|---------------------------|-------|
| Basic function with reset | 6-60  |
| Breakpoints               | 7-11  |
| Bus systems               | 6-100 |

### С

| travel set table                     | 5-41            |
|--------------------------------------|-----------------|
| CANopen 4                            | -9, 6-100, 8-22 |
| Changing the operation level         | 3-2, 3-3        |
| Changing the password for an operat  | tion level 3-3  |
| Chopping protection                  |                 |
| Circulation length                   | 5-11            |
| CM-ProfibusDPV1                      |                 |
| Commissioning                        | 3-14            |
| Concentricity                        | 6-62            |
| Conditional jump instructions        |                 |
| Connection an start                  | 3-4             |
| Connection via RS232 interface cable | e 3-4           |
| Control and display elements         | 3-10            |
| KP200-XL                             | 3-10            |
| Control location                     | 4-2, 6-55, 8-2  |
| Drive controller                     | . 4-2, 5-2, 8-2 |
| OPTN                                 | 6-57            |
| PLC                                  | 4-10, 5-41      |
| Serial interface                     | 6-57            |
| Control location selector            |                 |
| Settings                             | 6-56            |
| Control off                          | 6-38            |
| Control terminal designation         | 2-9             |
| Controller initialization            |                 |
| Current-time value                   | 6-83            |

7

Α

EN

### D

| Danger (symbols)                                 | 0-2  |
|--------------------------------------------------|------|
| Dangers                                          | 1-1  |
| Dead band function with bipolar operation        | 6-25 |
| Deceleration ramp                                | 6-37 |
| Device data 6                                    | -118 |
| Device protection                                | 2-18 |
| Digital output with setting "Setpoint reached" . | 6-21 |
| Direction optimization                           | 5-11 |
| Display                                          |      |

| 650-CDSAC         | . 8-5 |
|-------------------|-------|
| DS301 4-9,        |       |
| DSP402            | . 4-9 |
| Dynamics, maximum | 8-14  |

### Ε

| EasyDrive profile 4-10, 8-22                     |
|--------------------------------------------------|
| Einstellung                                      |
| digitale Ausgänge für BRK2 6-93                  |
| Electronic transmission 6-45, 7-36               |
| EMC (Electromagnetic Compatibility) 1-2          |
| Emergency Stop facility 1-4                      |
| Encoder                                          |
| Encoder for CDB3000 6-75                         |
| Encoder for CDE3000/CDF3000 6-78                 |
| Encoder combination 6-76, 6-79                   |
| Encoder offset 6-80                              |
| Error                                            |
| Reactions 6-40                                   |
| reset 6-127                                      |
| error history                                    |
| Error log 6-125                                  |
| Error messages 2-15, 6-124                       |
| Error reactions 6-127, 6-129                     |
| Error stop ramp 6-40                             |
| Event control, TxPDO 6-101                       |
| Example                                          |
| Setting F1 motor potentiometer function 6-60     |
| Exponential representation in the KP200 display  |
| 3-13                                             |
| Exponential value as "Decimal point displacement |
| factor" 3-13                                     |

### F

| Factory setting         2-16           Feed constant         5-7           Feed enable         4-8, 5-30 |
|----------------------------------------------------------------------------------------------------------|
| field oriented control 6-62                                                                              |
| Fixed speed                                                                                              |
| Selection 4-8                                                                                            |
| Flag 6-106                                                                                               |
| Flußaufbauphase                                                                                          |
| Motor                                                                                                    |
| Following axis                                                                                           |
| Follow-up order 5-34                                                                                     |

#### Appendix B Index

| 5-35  |
|-------|
| 5-35  |
| 5-35  |
| 5-33  |
| 5-34  |
| 5-35  |
| 5-34  |
| 5-35  |
| 5-35  |
| 6-72  |
|       |
| 6-98  |
|       |
| 8-4   |
|       |
| 6-13  |
| 6-30  |
| 6-22  |
| . 6-7 |
| 6-15  |
|       |
| 3-14  |
|       |
| 6-94  |
|       |

### G

| Gear factor               | 5-7 |
|---------------------------|-----|
| Guide through this manual | 0-1 |

### Н

| Hardware release              | 6-23          |
|-------------------------------|---------------|
| Hexadecimal representation of |               |
| warning messages              | 6-131         |
| Holding brake                 | 6-90          |
| Speed range                   | 6-91          |
| HTL reference encoder         |               |
| input                         | 6-40          |
| Hysteresis                    | . 6-97, 6-132 |

#### I

| I2xt-monitoring | , 6-85 |
|-----------------|--------|
| Inputs          |        |
| analog          | 6-25   |
| digital         | 6-4    |

| of positioning controllers        | 6-3 |
|-----------------------------------|-----|
| Terminal extension module UM-8I40 | 6-5 |
| virtual                           | 6-6 |
| Inputs and outputs                |     |
| Assignment 4-2,                   | 8-2 |
| Installation                      |     |
| Connecting the KeyPad             | 3-9 |
| Integral-action time 6            | -66 |
| Interference suppression 6        | -28 |
|                                   |     |

### J

| Jerk limitation         | 4-3, 8-5 |
|-------------------------|----------|
| Jitter effects          | 6-110    |
| Jog mode                | 5-26     |
| Jump in reference value | 4-5      |

### Κ

| KeyPad KP200-XL, c | operation |  | 3-9 |
|--------------------|-----------|--|-----|
|--------------------|-----------|--|-----|

### L

| Leading axis            | 6-40 |
|-------------------------|------|
| Light emitting diodes   | 2-15 |
| Limit switch            | 5-25 |
| Hardware                | 5-26 |
| Software                | 5-25 |
| Limit switch evaluation | 6-10 |
| Limit values            |      |
| Travel set              | 5-9  |
| Limitation              |      |
| Rotary speed            | 8-8  |
| rotary speed            |      |
| Torque                  | 8-8  |
| torque                  |      |
| Loading device software |      |
| Low voltage directive   |      |

### Μ

| Manual operation         | 5-26  |
|--------------------------|-------|
| Master-Slave operation   | 6-40  |
| Measures for your safety | . 1-1 |
| Menu level               | 3-11  |
| Menu structure           | 3-10  |
| KeyPad at a glance       | 3-12  |

#### Appendix B Index

| KP200-XL, overview               |
|----------------------------------|
| Mode 5-32                        |
| Moment of inertia 6-70           |
| of the system                    |
| reduction                        |
| Moments of inertia 6-70          |
| Motor                            |
| selection                        |
| type designation 6-70            |
| Motor contactor control 6-22     |
| Motor control                    |
| control location                 |
| Motor data 6-67                  |
| Motor database 6-68              |
| Motor holding brake 6-90         |
| BRK1 6-91                        |
| Time diagram 6-98                |
| Motor identification             |
| Motor potentiometer function     |
| Motor power contactor            |
| Motor protection                 |
| Motor protection characteristic  |
| Factory setting                  |
| Setting 6-87                     |
| Motor shaft 5-7                  |
| Motor temperature monitoring     |
| Motorhaltebremse BRK2 6-93, 6-96 |
| movement tasks 4-2, 8-2          |
|                                  |

### Ν

| Nominal motor data 6-6 | 39 |
|------------------------|----|
|------------------------|----|

### 0

| Operation and data structure 3-1                |
|-------------------------------------------------|
| Operation levels in the parameter structure 3-2 |
| Operation levels, parameter structure 3-2       |
| Operation panel KP200-XL 6-57                   |
| Optional board slot 6-57                        |
| Output shaft 5-7                                |
| Output, analog 6-30                             |
| Outputs                                         |
| digital                                         |
| Terminal extension module UM-8I40 6-14          |



2

3

4

5

Α

| virtual                            | 6-15  |
|------------------------------------|-------|
| Outputs of positioning controllers | . 6-3 |
| Overcurrent protection             | 8-14  |
| Override                           | 5-10  |

### Ρ

| Parameter                                           |
|-----------------------------------------------------|
| Characteristic curve changeover                     |
| Characteristic curve data set changeover 8-4        |
| Device data 6-118                                   |
| Motor holding brake 6-92                            |
| Motor potentiometer function                        |
| Subject area _51ER Error messages 6-126             |
| parameter datasets 4-2, 8-2                         |
| Parameters                                          |
| digital outputs                                     |
| Setpoint structure 6-54                             |
| Path optimized positioning of a round table 7-38    |
| Permanent actual value display, KP200-XL 6-114      |
| Pictograms 0-2                                      |
| Pin assignment of the serial interface X4, CDE 2-13 |
| PLC                                                 |
| Command syntax 7-10                                 |
| Control parameters 7-43                             |
| Line renumbering 7-7                                |
| New generation of program 7-5                       |
| PLC editor 7-4                                      |
| PLC program structure 7-5                           |
| Program file7-7                                     |
| Program handling 7-8                                |
| Sequential program 7-6                              |
| Syntax test 7-7                                     |
| Text declaration7-5                                 |
| Text declaration file 7-7                           |
| Variables and flags 7-42                            |
| Position Control                                    |
| Position control                                    |
| Block diagram 6-50                                  |
| Position plan CDB3000 2-7                           |

#### Appendix B Index

| Pre-set solution 5-2                           |
|------------------------------------------------|
| Possibilities of characteristic curve data set |
| changeover with 651-CDSSL 8-4                  |
| Possible motor protections 6-89                |
| Power terminal designation CDB 2-8             |
| Pre-set solution 4-2, 8-2                      |
| Positioning5-2                                 |
| Reset                                          |
| Speed control "OpenLoop" 8-2                   |
| Speed regulation 4-2                           |
| Procedure                                      |
| Commissioning 3-14                             |
| Profibus 4-10, 6-104, 8-22                     |
| Profile 5-10                                   |
| Profile Velocity mode 4-9                      |
| PTC                                            |
| Evaluation 6-84                                |

### Q

| Qualification, user | . 1-2 |
|---------------------|-------|
| Quick stop          |       |
| Reactions           | 6-39  |
| Quick stop ramp     | 5-30  |

### R

| Ramp, linear                                |
|---------------------------------------------|
|                                             |
| Ramps                                       |
| linear 4-3, 8-5                             |
| Reactance coil 6-23                         |
| Reference encoder 6-40                      |
| as speed setpoint source 6-44               |
| Configuration HTL 6-44                      |
| Configuration TTL 6-43                      |
| Example for reference encoder configuration |
| 6-46                                        |
| in positioning operation                    |
| in speed controlled operation               |
| Selection for CDB3000 6-42                  |
| Selection for CDE/CDF3000 6-42              |
| Reference encoder input                     |
| Configuration 7-36                          |
| Reference encoder input, configuration 6-40 |
| Reference source 4-2, 8-2                   |
| Field bus 4-9                               |
| PLC 4-10                                    |

Positioning

| Pre-set solution 4-2, 8-                | 2 |
|-----------------------------------------|---|
| Speed regulation 4-                     | 7 |
| Travel set table 5-2                    | 8 |
| Reference value                         |   |
| reached 4-                              | 5 |
| Referencing 5-13, 5-13                  | 5 |
| Absolute encoder 5-1                    | 6 |
| General 5-1                             | 3 |
| Homing Mode with CANopen 5-4            | 0 |
| start conditions 5-1                    | 5 |
| Tab 5                                   | 4 |
| Type 1 5-1                              | 7 |
| Type 11 to 14 5-2                       | 1 |
| Type 17 to 30 5-2                       | 3 |
| Type 2 5-1                              | 8 |
| Type 3+4 5-1                            | 8 |
| Type 33 and 34 5-24                     | 4 |
| Type 35 5-2-                            | 4 |
| Type -4 to type 0 5-1                   | 6 |
| Type 5+6 5-1                            | 9 |
| Type 7 to 10 5-2                        | 0 |
| Re-initialization 2-1                   | 6 |
| Relative positioning                    | 8 |
| Repairs 1-:                             | 3 |
| Repetition 5-3-                         | 4 |
| Representation                          |   |
| error history 6-12                      | 5 |
| Reset                                   |   |
| Parameters 2-1                          | 6 |
| Resetting parameter settings 2-1        | 6 |
| Responsibility 1                        | 4 |
| Reversing lock 5-1                      | 1 |
| Round table configuration               | 2 |
| Rotary speed profile generator 4-3, 6-3 | 4 |
| Round table configuration 5-1           | 1 |
| RS232 2                                 | 4 |

### S

| Safety                                | 1-1  |
|---------------------------------------|------|
| Sequential program                    |      |
| PLC                                   | 6-57 |
| Serial interface, as control location | 6-57 |
| Set counter                           | 7-31 |
| Setpoint                              |      |
| generation                            | 6-33 |
|                                       |      |

#### Appendix B Index

| reached 8-7                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Setpoint fluctuation                                                                                                                                                                                                                                                                   |
| Setpoint generation                                                                                                                                                                                                                                                                    |
| Setpoint jump 8-7                                                                                                                                                                                                                                                                      |
| Setpoint reached                                                                                                                                                                                                                                                                       |
| Setpoint source                                                                                                                                                                                                                                                                        |
| Field bus 8-22                                                                                                                                                                                                                                                                         |
| Setpoint specification                                                                                                                                                                                                                                                                 |
| Block diagram                                                                                                                                                                                                                                                                          |
| Setpoint structure                                                                                                                                                                                                                                                                     |
| Display parameter                                                                                                                                                                                                                                                                      |
| Setting                                                                                                                                                                                                                                                                                |
| digital outputs for BRK2 6-97                                                                                                                                                                                                                                                          |
| Motor protection characteristic                                                                                                                                                                                                                                                        |
| Setting and starting timers                                                                                                                                                                                                                                                            |
| Setting operation levels via "_36KP-KeyPad" 3-2                                                                                                                                                                                                                                        |
| Settings                                                                                                                                                                                                                                                                               |
| 360-DISP and 361-BARG                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                        |
| 651-CDSSL                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                        |
| Control location selector 260-CLSEL 6-56                                                                                                                                                                                                                                               |
| Function selector for digital outputs 6-15                                                                                                                                                                                                                                             |
| Inputs motor potentiometer functions 6-60                                                                                                                                                                                                                                              |
| Motor potentiometer function                                                                                                                                                                                                                                                           |
| Motor protection characteristic                                                                                                                                                                                                                                                        |
| settings                                                                                                                                                                                                                                                                               |
| 240-F0S00 246-F0E03 6-15                                                                                                                                                                                                                                                               |
| Short circuit 2-19                                                                                                                                                                                                                                                                     |
| Slave 6-40                                                                                                                                                                                                                                                                             |
| Slip 6-34, 8-5                                                                                                                                                                                                                                                                         |
| Jerk limitation 5-28                                                                                                                                                                                                                                                                   |
| Slip time                                                                                                                                                                                                                                                                              |
| JTIME 4-4, 8-6                                                                                                                                                                                                                                                                         |
| with jerk limitation 5-11                                                                                                                                                                                                                                                              |
| Specification                                                                                                                                                                                                                                                                          |
| Specification                                                                                                                                                                                                                                                                          |
| Interface contacts 2-9                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                        |
| Interface contacts                                                                                                                                                                                                                                                                     |
| Interface contacts                                                                                                                                                                                                                                                                     |
| Interface contacts2-9Interface contacts CDE2-4, 2-13Speed Control6-62Speed control6-62                                                                                                                                                                                                 |
| Interface contacts2-9Interface contacts CDE2-4, 2-13Speed Control6-62Speed control6-62+/- 10V reference value8-19                                                                                                                                                                      |
| Interface contacts       2-9         Interface contacts CDE       2-4, 2-13         Speed Control       6-62         Speed control       6-62         +/- 10V reference value       8-19         via CANopen       8-22                                                                |
| Interface contacts2-9Interface contacts CDE2-4, 2-13Speed Control6-62Speed control6-62+/- 10V reference value8-19via CANopen8-22via Profibus8-22                                                                                                                                       |
| Interface contacts       2-9         Interface contacts CDE       2-4, 2-13         Speed Control       6-62         Speed control       6-62         +/- 10V reference value       8-19         via CANopen       8-22         via Profibus       8-22         Speed limit       6-90 |
| Interface contacts2-9Interface contacts CDE2-4, 2-13Speed Control6-62Speed control6-62+/- 10V reference value8-19via CANopen8-22via Profibus8-22                                                                                                                                       |



Α

| Block diagram 6-5                               | 52 |
|-------------------------------------------------|----|
| via CANopen 4-                                  | -9 |
| via Profibus 4-                                 | -9 |
| with fixed speed 4-                             | -7 |
| with PLC 4-1                                    | 0  |
| with reference encoder setpoint source 6-4      | 4  |
| Speed synchronism 7-3                           | 36 |
| Standardization 5-                              | -6 |
| Standardization of actual parameter values 6-11 | 5  |
| Standardization of the analog output 6-3        | 30 |
| Standardizing with unipolar operation           | 25 |
| Standards 1-                                    | -3 |
| Start                                           |    |
| flank triggered 6-5                             | 55 |
| Level triggered 6-5                             | 55 |
| Stop feed 6-3                                   | 38 |
| Reactions 6-3                                   | 38 |
| Stop ramp 4-5, 8-                               | -8 |
| Switching point 5-3                             | 36 |
| Switch-off limits 2-1                           | 9  |
| Synchronism 6-4                                 |    |
| Synchronization                                 | 1  |
|                                                 |    |

### Т

| Table of fixed speeds<br>Tabular travel set   | . 4-7 |
|-----------------------------------------------|-------|
| PCT_2, PCC_2, PCB_2                           | . 5-2 |
| Target position                               |       |
| Teach in                                      |       |
| Temperature sensor                            | 6-83  |
| Temperature sensors, types                    | 6-84  |
| Terminals                                     |       |
| as control location                           | 6-57  |
| Time diagram for the motor holding brake      |       |
| BRK2                                          | 6-98  |
| Time diagram for the motor holding brake BRK2 |       |
| 6-94                                          |       |
| Torque Control                                | 6-62  |
| Torque control                                | 6-62  |
| Block diagram                                 | 6-52  |
| Torque limitation                             |       |
| via analog input                              |       |
| via parameter                                 | 6-36  |
| Track signal correction GPOC                  | 6-81  |
| Trailing distance                             |       |

#### Appendix B Index

| permissible 5-                  | -  |
|---------------------------------|----|
| Travel profile 5-               | .9 |
| Travel set                      |    |
| Display and selection 4-        | 8  |
| Limit values 5-                 | 9  |
| Repetition 5-3                  | 4  |
| see follow-up order 5-3         | 4  |
| Switching points 5-3            | 6  |
| Travel set selection 5-2        | 8  |
| Travelling                      |    |
| endless 7-3                     | 6  |
| with continuation 7-3           | 4  |
| Truth table for                 |    |
| control via terminals6-         | 9  |
| TTL reference encoder input 6-4 | 0  |

### U

| Units                     |         | . 5-6 |
|---------------------------|---------|-------|
| User defined subject area | _11UA 6 | 6-112 |

#### V

| Value display in exponential representation | 3-13  |
|---------------------------------------------|-------|
| Value ranges                                | . 5-8 |
| View of device and terminals                | . 2-7 |

#### W

| Wait commands      | 7-40  |
|--------------------|-------|
| Warning messages   |       |
| Hysteresis         | 6-132 |
| Warning thresholds | 6-132 |



LUST Antriebstechnik GmbH Gewerbestraße 5-9 • 35633 Lahnau • Germany ANTRIEBSTECHNIK Phone +49 (0) 64 41 / 9 66-0 • Fax +49 (0) 64 41 / 9 66-137 Internet: http://www.lust-antriebstechnik.de • e-mail: info@lust-tec.de



Lust DriveTronics GmbH Hansastraße 120 • 59425 Unna • Germany Phone +49 (0) 23 03 / 77 9-0 • Fax +49 (0) 23 03 / 77 9-3 97 Internet: http://www.lust-drivetronics.de • e-mail: info@drivetronics.de

ID no.: 1001.22B.1-00 • 06/2005

We reserve the right to make technical changes.