Applications for Process Automation

applications & TOOLS

APC Add-on-Products versus PCS 7-integrated APC-Functions

System Application Hints for Practice and Differentiation

37361131

Note The application examples are not binding and do not claim to be complete regarding the circuits shown, equipment and possibilities. The software samples do not represent a customer-specific solution. They only serve as a support for typical applications. You are responsible for ensuring that the described products are used correctly. These application examples do not release you from your own responsibility regarding professional usage, installation, operation and maintenance of the plant. When using these application examples, you acknowledge that Siemens cannot be made liable for any damage/claims beyond the scope described in the liability clause. We reserve the right to make changes to these application examples at any time without prior notice. If there are any deviations between the recommendations provided in these application examples and other Siemens publications – e.g. catalogs – then the contents of the other documents have priority.

Warranty, Liability and Support

We accept no liability for information contained in this document.

Any claims against us – based on whatever legal reason – resulting from the use of the examples, information, programs, engineering and performance data etc., described in this application example shall be excluded. Such an exclusion shall not apply in the case of mandatory liability, e.g. under the German Product Liability Act ("Produkthaftungsgesetz"), in case of intent, gross negligence, or injury of life, body or health, guarantee for the quality of a product, fraudulent concealment of a deficiency or breach of a condition which goes to the root of the contract ("wesentliche Vertragspflichten"). The damages for a breach of a substantial contractual obligation are, however, limited to the foreseeable damage, typical for the type of contract, except in the event of intent or gross negligence or injury to life, body or health. The above provisions do not imply a change in the burden of proof to the detriment of the orderer.

Copyright© 2009 Siemens Industry Sector IA. These application examples or extracts from them must not be transferred or copied without the approval of Siemens.

For questions about this document please use the following e-mail address:

mailto:online-support.automation@siemens.com

Preface

Objective of the Application

Besides the APC functions in the SIMATIC PCS 7 APC Library respectively Advanced Process Library there are some more APC software packages in the PCS 7 add-on catalogue (available on <u>www.automation.siemens.com</u>):

- INCA: Model based predictive multivariable controller
- Presto: Softsensors for quantities not directly measurable
- RaPID: Expert tool for optimization of PID controllers
- ADCO: permanent adaptive controller
- Matlab/Simulink-DDE-Client: Online interface for APC
- FuzzyControl++: Engineering tool for fuzzy logic
- NeuroSystems: Engineering tool for artificial neural networks

Some functionalities, like e.g. fuzzy logic or adaptive control can be realized only with an Add-on product. On the other hand, in the areas of PID optimization, neural networks and predictive control, the customer has the choice between an add-on product and an APC function already included in PCS 7.

The following contribution is intended to support taking the appropriate decision, considering the setting of a task, the desired function range (set of features) and the non-functional requirements.

The illustrations added provide a visual impression of the graphical user interfaces of the software tools. As opposed to the other application notes, they are not intended to be a step-by-step manual for the application of the software. More detailed information concerning features and usage of the software tools can be found in the original documentation of the respective products.

Main Contents of this Application

The following main points are discussed in this application note:

- Optimization of PID controllers: RaPID by Ipcos versus PCS 7 PID-Tuner.
- Softsensors based on artificial neural networks: Presto by Ipcos versus SIMATIC NeuroSystems.
- Model based predictive control: INCA by Ipcos versus PCS 7 Mod-PreCon.

Validity

... valid for PCS 7 V7.0 SP1 and V7.1

Preface

APC AddOn-Products

37361131

Reference to Industry Automation and Drives Service & Support

This article is from the internet application portal of the Industry Automation and Drive Technologies Service & Support. Clicking the link below directly displays the download page of this document.

http://support.automation.siemens.com/WW/view/de/37361131

Table of Contents

Table of Contents			
1	Introduction	6	
2	Optimization of PID controllers: RaPID by Ipcos versus SIMATIC PCS 7 PID-Tuner	8	
2.1	Comparison in a Table	9	
2.2	Illustrations for RaPID	12	
2.3	Illustrations for PID-Tuner	15	
2.4	Hints for Selection of Appropriate Product	16	
2.4.1	Arguments for Application of PID-Tuner	16	
2.4.2	Arguments for the Application of RaPID	16	
3	Soft Sensors Based on Artificial Neural Networks: Presto by Ipcos versus SIMATIC NeuroSystems	17	
3.1	Comparison in a Table	18	
3.2	Illustrations for Presto	22	
3.3	Illustrations for NeuroSystems	25	
3.4	Hints for Selection of Appropriate Product	29	
3.4.1	Arguments for Application of NeuroSystems	29	
3.4.2	Arguments for Application of Presto	29	
4	Model Based Predictive Control: INCA by Ipcos versus SIMATIC PCS 7 ModPreCon	30	
4.1	Comparison in a Table	30	
4.2	Illustrations for INCA	34	
4.3	Illustrations for ModPreCon	40	
4.4	Hints for Selection of Appropriate Product	44	
4.4.1	Arguments for the Application of ModPreCon	44	
4.4.2	Arguments for the Application of INCA	44	
5	Summary	47	
6	History	48	

SIEMENS

Introduction

APC AddOn-Products

37361131

1 Introduction

Note A general overview of the PCS 7-embedded APC functions (Advanced Process Control) is provided by the White Paper "How to Improve the Performance of your Plant Using the Appropriate Tools of SIMATIC PCS 7 APC-Portfolio?"

http://pcs.khe.siemens.com/efiles/PCS 7/support/marktstudien/WP PCS 7 APC EN.pdf

SIMATIC PCS 7 Add-on-Catalogue

The modularity, flexibility, scalability and openness of SIMATIC PCS 7 offers ideal conditions for integrating additional components and solutions into the process control system and completing and extending their functionality in this way.

Since SIMATIC PCS 7 was launched on the market, we at Siemens as well as our external partners have developed a host of supplementary components that we refer to in short as PCS 7 add-ons.

The catalogue is available in the internet via the IA&DT mall:

https://mall.automation.siemens.com/DE/guest/index.asp?aktprim=0&nodel D=10008888&lang=en&foldersopen=-1303-1300-1-8523-8524-8525-8745-4545-&jumpto=8745

The responsibility for a PCS 7 add-on product generally rests with the appropriate product manager. External SIMATIC PCS 7 partners organize the sale and delivery of their products independently. Their own terms and conditions of business and delivery apply.

In the add-on catalogue, section "Advanced Process Control", you will find the software packages shown in **Figure 1-1**.

In the following areas of APC methods the customer in principle has the choice between an add-on product and an APC function already included in PCS 7:

- Optimization of PID controllers: RaPID by Ipcos versus PCS 7 PID-Tuner.
- Softsensors based on artificial neural networks: Presto by Ipcos versus SIMATIC NeuroSystems.
- Model based predictive control: INCA by Ipcos versus PCS 7 Mod-PreCon.

SIEMENS

APC AddOn-Products

37361131

Figure 1-1: Detail from the interactive catalogue of the IA&DT-Mall

A&D Mall	Home Products Interactive catalog
🖃 🔄 Process control systems	
🛨 🚞 SIMATIC PCS 7 V7.0	
🕀 🧰 🧰 Migration to SIMATIC PCS 7	7
😑 📥 Add-ons for SIMATIC PCS 7	
🕂 🔄 Information and Manag	ement Systems
🖯 🔂 Advanced Process Cont	rol
🔁 INCA: Model-prediv	ctive multi-variable controller
🧰 Presto: Soft sensors	s for non-measurable quality variables
🔁 RaPID: Expert tool	for the optimization of PID controllers
🧰 ADCO: Adaptive co	ontroller
🦳 MATLAB/SIMULIN	K-DDE client: Online coupling for APC
🧰 FuzzyControl++: Co	onfiguration tool for fuzzy logic
NeuroSystems	s: Configuration tool for neural networks
🛨 🛁 Industry-specific applica	itions

37361131

2

Optimization of PID controllers: RaPID by Ipcos versus SIMATIC PCS 7 PID-Tuner

Many PID-controllers in industry are tuned by trial-and-error methods or by heuristic rules, and the differential action is frequently not considered at all. For certain standard control loops like the flow control of fluids with a proportional valve, there are empirical values for standard parameter sets. For slow controlled processes like temperature control loops, an optimization by trial-and-error takes too much time, because the observation of a single step response may need several hours.

Consequently the application of computer-aided controller design tools is winning recognition. The systematic optimization of the subordinate PID controllers has to be performed before any supervisory MPC can be applied, because the slave closed loops are part of the (time-invariant) process model used in the MPC master controller, and cannot be re-tuned later on.

The principle sequence of steps for computer-aided controller design stays the same from PID to MPC. The process is excited with a step of the manipulated variable or a setpoint step (if there is at least a stable but suboptimal controller setting). A dynamic process model is estimated from the stored measurement data by the tuning tool, i.e. the process parameters are calculated such that the learning data are fitted optimally (in a least squares sense) by the model. The calculation of the optimal controller parameters is based on the identified process model.

37361131

2.1 Comparison in a Table

Optimization of PID Controllers

Table 2-1: Product Information

	INCA PID-Tuner alias Ra- PID ("Robust Advanced PID Control")	SIMATIC PCS 7 PID-Tuner
Software producer	IPCOS NV Leuven/Belgium and Boxtel/Netherlands http://www.ipcos.be	Siemens AG, I IA AS
Form of delivery	External product in add-on- catalogue	Since V7.0 integral part of PCS 7 toolset (before: option package with extra charge)

Table 2-2: System architecture

	INCA PID-Tuner alias Ra- PID ("Robust Advanced PID Control")	SIMATIC PCS 7 PID-Tuner
Integration in PCS 7	Separate software tool on external PC	Integral part of PCS 7-ES

Table 2-3: Usability

	INCA PID-Tuner alias Ra- PID ("Robust Advanced PID Control")	SIMATIC PCS 7 PID-Tuner
Call	Windows start menu	Via context menu in CFC of PID controller
Coordination of tuning tool and plant operator	 No support by tool. Process excitation is operated manually in faceplate of controller, or excitation signals are read from a file. 	 Tick mark "Enable Optimization" in PID faceplate. During process excitation, the PID block is "remote controlled" by tuner software.
User guidance	Interactive Windows program with numerous menus and numerous user specified parameters	Software assistant ("wizard") with pre-specified sequence of steps. Number of parameters to be specified by user is mini- mized.

37361131

Table 2-4: Functionality

	INCA PID-Tuner alias Ra- PID ("Robust Advanced PID Control")	SIMATIC PCS 7 PID-Tuner
Controller types	Independent of DCS. Predefined templates for common PID algorithms by Siemens, ABB, Honeywell, Emerson, etc. The appropri- ate structure has to be manually selected.	PID function blocks from PCS 7 Standard Library and Advanced Process Library are supported automatically. With V7.0 or higher, there is also an interface for different but similar function blocks from 3 rd party libraries.
Data acquisition	OPC interface to PCS 7- Operator Station or offline evaluation of measurement data files	Trend curve recorder inte- grated in tuner assistant
Test signals	 Setpoint step Manipulated variable step Ramps Pseudo random binary noise signals (PRBNS) 	 Setpoint step Manipulated variable step
Data pre-processing	Select time slotsFilter data	None
System identification	Selection of different model types with/without deadtime, system order to be selected arbitrarily.	PTn-models only, system order is determined auto- matically, deadtimes are approximated by higher sys- tem order.
Prior knowledge about the plant	can be applied in the de- sign	is not necessary, but there is also no way to apply it inside the tool.
Verification of process model	"Model fit"	Available since V7.0
Controller design	Mathematical parameter optimization using simulated scenarios for setpoint follow- ing or disturbance rejection, allows well defined specifica- tion of requirements.	P/PI/PID according to stan- dard formula of modulus optimum (→optimal distur- bance rejection). Optional: detuning of setpoint response.
Simulation of control loop	Can be fully parameterized. Exact quantitative evaluation of results, comparison of different control designs, additional frequency domain analysis.	Fixed pre-defined scenario. (Simulation available since V7.0)
Transfer of controller pa- rameters	Manual input at Operator Station and CFC	Loading into AS and offline data management of CFC via mouse-click

37361131

Literature:

- <u>http://www.ipcos.com/cms/uploads/INCA%20PID%20Tuner.pdf</u>
- Ipcos User Manual RaPID, Jan. 2007.
- Siemens PCS 7 PID-Tuner Online-Help V7.0.1, Nov. 2007.

37361131

2.2 Illustrations for RaPID

Figure 2-1: RaPID user interface

37361131

Figure 2-2: Process model in RaPID

Formula		×
Ke	$\frac{-Ts}{(s^2+2\zeta_d\omega_ds+\omega_d^2)}$	
Parameters	Numerator ———	Denominator ———
K (Gain) -0.347 Degrees/%		Complex1
T (Delay) 3 min	1	
Offsets	· · · · · · · · · · · · · · · · · · ·	J
CV Offset: 485 Degrees		ζ _d 0.653
MV Offset: 44.7 %		\mathbf{f}_{d} 0.076 cycles/min
Integrator		
	ζ: Damping Ratio	τ : Time Constant
	f: Natural Frequency	ω = 2*∏*f
		Close

Figure 2-3: Selection of different controller types in RaPID

37361131

Figure 2-4: Comparison of different control designs in RaPID

37361131

2.3 Illustrations for PID-Tuner

Figure 2-5: PCS 7 PID-Tuner in CFC

37361131

2.4 Hints for Selection of Appropriate Product

2.4.1 Arguments for Application of PID-Tuner

- Seamless integration in PCS 7.
- No software license costs.
- Lower engineering costs.
- If the requirements for the application of PCS 7 PID-Tuners are fulfilled, and you are satisfied with the tuning results, you don't need RaPID.
- RaPID is a tool "from experts for experts", i.e. RaPID can be successfully applied only by control engineering specialists with the appropriate theoretical background. RaPID takes some time to get familiar with the software – the manual contains more than 100 pages and is available in English only.

2.4.2 Arguments for the Application of RaPID

 If you are using an older PCS 7-Version (<V7.0), and PID function blocks, that are not part of the Standard Library of PCS 7, RaPID is recommended, because the PID-Tuner of older versions is only applicable to standard PID function blocks of the PCS 7 Library. In principle, any 3rd-party PID tuning tools could be applied.

The following reasons might justify the purchasing and application of RaPID in special situations, although the PCS 7 PID-Tuner is also applicable:

- You impose very precise requirements how the controller should work in certain situations, i.e. you want to design and optimize the controller for a well-defined disturbance scenario, or for a welldefined setpoint trajectory (e.g. a typical setpoint step "from x to y")
- You impose very special requirements with respect to robustness of the control loop (gain and phase margin), or the noise sensitivity (controller gain at high frequencies). RaPID allows for detailed specifications with respect to controller optimization.
- You are dealing with controlled plants showing extraordinary dynamical behavior, e.g. plants that are already oscillating without feedback control, or show non-minimum-phase behavior, i.e. after a manipulated variable command, they start running in the opposed direction first.
- You require especially high control performance, and are therefore prepared to spend a lot of time for the fine-tuning of individual control loops. As a tool "from experts for experts", RaPID offers a lot of features, functions and tuning parameters.

3

37361131

Soft Sensors Based on Artificial Neural Networks: Presto by Ipcos versus SIMATIC NeuroSystems

Many process engineering plants suffer from the fact, that for important quality parameters of intermediate or end products, there are currently no low-cost, low-maintenance, reliable and fast sensors available on the market. The application of online analyzers or the execution of laboratory analyses is expensive, and even worse, it takes time, so that it is typically too late for efficient control actions to achieve the desired specifications. The application of model based estimation methods is an alternative solution in such cases, because they make use of process values that can be directly and easily measured, in order to predict quality parameters. This requires the existence of an appropriate process model that describes the correlation of these variables. In literature, this approach is called "soft sensor", "virtual online analyzer" or "property estimator".

There are several methods to develop soft sensors. The best results can be achieved using theoretical process models, relying on physical, thermodynamical and chemical first principles. Unfortunately this approach is not feasible in many cases, because the cost for theoretical modeling is not justified with respect to the expected benefit.

Empirical modeling based on historical process data requires less effort; however it does not always succeed. The disadvantage is that such models in soft sensors are valid only in this operation region, where process data are available in sufficient amount and quality, because extrapolation capabilities of such model are very limited.

If the correlation between measurable process values and quality variables to be estimated is strongly nonlinear, the application of artificial neural networks for modeling is well established, because they don't require to prespecify the exact mathematical structure of the nonlinearity. The structure of an artificial neural network roughly resembles the structure of biological brains, involving a huge number of neurons and interconnections, where the knowledge about the detailed correlation is stored in the connection weights.

37361131

3.1 Comparison in a Table

Soft sensors based on artificial neural networks

Table 3-1: Product Information

	INCA Sensor alias Presto ("Properties Estimator")	SIMATIC NeuroSystems
Software provider	IPCOS NV Leuven / Belgium and Boxtel / Netherlands http://www.ipcos.be	Siemens AG, I IS Erlangen
Delivery form	External product in add-on- catalogue	Siemens product in add-on catalogue

Table 3-2: System architecture

	INCA Sensor alias Presto ("Properties Estimator")	SIMATIC NeuroSystems
Integration in PCS 7	Separate software tool on external PC	Optional software tool in PCS 7-ES
Runtime algorithm	PrestoOnline as OPC DA- Client on Windows-PC with connection to Operator Sta- tion, requires typically an Ipocs DataServer and Sched- uler as runtime environment. A PCS 7 function block with corresponding data structure in the OS, e.g. OpAnL is used as an interface in the WinCC OPC Server. The runtime software does not require a lot of computing power and can be installed directly on an OS-client.	CFC-ready SIMATIC function block NEURO_64K. The runtime software does not require a lot of computing power, but an additional user date block for parameteriza- tion.
Availability	of software on Windows PC is generally lower than in the central controller of a DCS. Therefore supervision via watchdog is required.	of runtime software is equivalent to conventional function blocks inside DCS, and moreover can make use of redundant AS hardware.

37361131

Table 3-3: Usability

	INCA Sensor alias Presto ("Properties Estimator")	SIMATIC NeuroSystems
Call	Windows start menu	Via context menu in CFC of Neuro function block or via Windows start menu
User guidance in engineering tool	Interactive Windows program with numerous menus and numerous user specified parameters	Interactive Windows program with simple menus and a small number of user speci- fied parameters
Operator monitoring and control during operating phase	Compact GUI of Presto Online including functions for input of lab sample results	Standardized PCS 7 face- plate
Transfer of configuration data to runtime algorithm	PrestoOffline creates *.csv- configuration file for Pres- toOnline.	Parameters for the user data block of Neuro function block are supplied by NeuroSys- tems tool

Table 3-4: Functionality

	INCA Sensor alias Presto ("Properties Estimator")	SIMATIC NeuroSystems
Number of inputs	Unlimited	\leq 100, typically \leq 8
Number of outputs	Unlimited	\leq 10, typically \leq 4
Data acquisition	 Offline evaluation of measurement data files: Excel, Text, Access etc. Data including time stamps, also suitable for dynamic models. Import of several data files is supported. 	 Offline evaluation of measurement data files: Ascii-Text, tab delimited, in fixed format. Data without time stamps, because only static models are identi- fied. Only one file for learning data, and optionally a second file for validation data.
Test signals	Have to be generated by user outside of tool.	Have to be generated by user outside of tool.
Data preprocessing offline	 Comprehensive statistic of raw data, Selection of time slots, Data filtering, De-Trending, Outlier elimination, Resampling of datasets with different sampling rates, 	 Statistical distribution of learning date incl. Mean value and variance, Option for normalization of input- and output data based on learning data file. For further data preprocess- ing, external tools like MS Excel or Matlab must applied

37361131

	INCA Sensor alias Presto ("Properties Estimator")	SIMATIC NeuroSystems
	Arithmetic operations,Automatic Normalization	
Selection of relevant input variables	Comparison of models with different structures, i.e. with different combinations of input variables. Selection via genetic algo- rithms or "beam search".	Combination visualization of correlation of input and out- put signals. Visualization of relevance of each input.
Modeling of dynamic sys- tems	Dynamic model types or con- sideration of time-delayed inputs.	Only feasible using work- arounds: series connection of deadtime-blocks in front of individual input variables, estimation of deadtimes us- ing external tools, mani- pulation of learning data to make them deadtime-free.
System identification	 Selection of different model types: Linear transfer functions General non-linear Models (GNOMOs) Fuzzy logic Partial least squares estimators 	 Three types of artificial neural networks: Mulitlayer-perceptron RBF network (radial basis functions) Neuro-fuzzy system
Prior knowledge about the plant	can be applied in the de- sign.	is not necessary, but there is also no way to apply it inside the tool (besides the selection of input variables).
Verification of process mod- els	 Comparison of model output and measured data in trend curve. Individual time slots can be declared to be learn- ing or validation data. The statistical evaluation of models can be based on learning and/or valida- tion data. Further graphical evalua- tions: scatterplot, residual analysis. 	 Comparison of model output and measured data in trend curve. Validation data can be read from a separate data file, or selected sto- chastically from the learning data. Animated 3D graphics (characteristic surface).
Data preprocessing online	Inside OPC client incl. Outlier detection ("peak shaving").	Can be realized using stan- dard CFC function blocks (e.g. Smooth).
Alignment with laboratory measurement results	Bias update module.	is missing.

37361131

	INCA Sensor alias Presto ("Properties Estimator")	SIMATIC NeuroSystems
Information regarding reliabil- ity of calculation results	Confidence intervals for cal- culated output values	are missing.
Alarming	Inside Ipcos environment, i.e. outside of DCS. If needed, an additional alarming inside of DCS can be realized with additional CFC function blocks.	Can be realized with stan- dard CFC function blocks (e.g. MonAnL).

Literature:

- http://www.ipcos.com/cms/uploads/INCA%20Sensor.pdf
- Ipcos user manual Presto, 2007
- User manual SIMATIC NeuroSystems V5.1, Siemens AG, 2008
- Contact (product manager NeuroSystems): Langer, Gerhard; Industry Sector, <u>I IS IN E&C OC IT PRODUCTS</u>, Erlangen
- Dittmar, R: Vergleich von Werkzeugen zur Entwicklung von Soft-Sensoren auf der Grundlage künstlicher neuronaler Netze. Studie im Auftrag von A&D GT 5 (B-M. Pfeiffer), FH Westküste, Heide/Holstein, August 2001.

37361131

3.2 Illustrations for Presto

Figure 3-1: System architecture for external soft sensor Presto

37361131

The so called "DataServer" is an Ipcos-internal OPC server, that is connected via an "OPC delegator" to the "process interface", i.e. the OPC server of an OS-Client.

37361131

Figure	3-3.	GUI	of Pro	sto∩nling
rigule	3-3.	GOI	OFIE	SIOOIIIIIIe

Jutput 3.8804E+00	Time	7/23/2003 4:57:07	PM	
Bias 7.0480E-01	Lab Time	7/23/2003 4:52:07	PM	-
RESET BIAS	Lab sample	4.8331E+00		
Tagname		Value	Status	P
TJ402_ER.PV		128.71	0	
TJ405_ER.PV		118.90	0	
TJ406_ER.PV		118.55	0	-
SS_RX_HAC_BIAS.PV		0.70		
SS_RX_HAC_NEUR.PV		3.18		
AI191_EF.PV		4.83	0	
SS_RX_HAC.pv		3.88	0	
# bad NN output		0.00		-
# na hiss undates		0.00		
# no bias updates		0.00		-

37361131

3.3 Illustrations for NeuroSystems

Figure 3-4: System architecture for SIMATIC NeuroSystems

37361131

37361131

🚧 SIMATIC S7 NeuroSystem 64K Daten Version 5.1 🛛 🗙							
-W					S7-	Programn	n(1)/CFC(1)/1
	🗌 🔒 🖌		Standard	▼ 🗳			
			ſ				
Input 1	+0,00	Input 21	+0,00	Mode		+0,49	Output 1
Input 2	+0,00	Input 22	+0,00-	Auto	ר∣ב	+0,55	Output 2
Input 3	+0,00	Input 23	+0,00-	ERROR	_ -[+0,46	Output 3
Input 4	+0,00	Input 24	+0,00-	0	╴╴	+0,63	Output 4
Input 5	+0,00	Input 25	+0,00-	START STO	₽ -[+0,61	Output 5
Input 6	+0,00	Input 26	+0,00-	Run	ר∣ב	+0,52	Output 6
Input 7	+0,00	Input 27	+0,00-	PROJ NAME	<u> </u>	+0,60	Output 7
Input 8	+0,00	Input 28	+0,00	Classifi	┛┝┎	+0,46	Output 8
Input 9	+0,00	Input 29	+0,00-				
Input 10	+0,00	Input 30	+0,00-				
Input 11	+0,00	Input 31	+0,00-				
Input 12	+0,00	Input 32	+0,00-				
Input 13	+0,00	Input 33	+0,00-				
Input 14	+0,00	Input 34	+0,00				
Input 15	+0,00	Input 35	+0,00-				
Input 16	+0,00	Input 36	+0,00-				
Input 17	+0,00	Input 37	+0,00-				
Input 18	+0,00						
Input 19	+0,00						
Input 20	+0,00						

Figure 3-6: Faceplate of function block Neuro_64K

37361131

Figure 3-7: GUI of engineering tool NeuroSystems

🏽 Start 🔍 Explorer - NeuroFuzzy Demo 🔁 Posteingang - Microsoft O... 💽 Microsoft PowerPoint - [Ad... 📦 Konfiguration NeuroS...

37361131

3.4 Hints for Selection of Appropriate Product

3.4.1 Arguments for Application of NeuroSystems

- Higher availability of runtime algorithm in automation system, up to exploitation of redundant SIMATIC hardware.
- More easy integration in PCS 7.
- Less software and engineering costs.
- For Presto, the integration into the DCS and model engineering require an amount of effort similar to the application of an external model predictive controller (e.g. INCA in section 4).
- In general, the Ipcos tool is a tool "from experts for experts" (similar to RaPID) and requires the appropriate time to get familiar with the software and the theory behind – while the less cost-intensive Siemens tool has advantages with respect to usability.
- For smaller soft sensor applications (static models with 2...5 input variables) SIMATIC NeuroSystems is completely sufficient.

3.4.2 Arguments for Application of Presto

- Only Presto is really prepared for the modeling of dynamic effects, i.e. for the identification of time delays between input and output variables. NeuroSystems in principal assumes a static characteristic surface, i.e. delay-free effects from the input variables to the output variables.
- For larger softsensor applications with numerous input variables, Presto offers advantages with respect to modeling features and model performance that can be achieved.
- As a tool "from experts for experts" Presto offers a lot of functions and user definable parameters, and is promising very good results if applied by professionals.
- If the application of INCA (c.f. section 4) is planned anyway, the application of Presto suggests itself, because both tools work neatly together in a common runtime environment on a separate PC.

4

37361131

Model Based Predictive Control: INCA by Ipcos versus SIMATIC PCS 7 ModPreCon

Although there are a lot of different multivariable control algorithms in theory (e.g. state space controllers, H_{∞} - controllers), the model predictive controllers (MPC) dominate the field in industry. Like suggested by the term "model based", a dynamic model of process behaviour including all interactions is used inside the control algorithm to predict future process movements in a defined time span. The control problem is interpreted and solved as an optimization problem. The optimal trajectory of the manipulated variables (MVs) minimizes both the sum of future control errors and the sum of future MV moves.

The following section is a typical example for the comparison of a DCS embedded "lean" MPC and an external "full-blown" MPC with online optimization, as discussed in general form in section 1.4 of the whitepaper cited above.

4.1 Comparison in a Table

Model Predictive Control

Table 4-1 Product information

	INCA MPC ("Ipcos Novel Controller Architecture")	SIMATIC PCS 7 MPC bzw. ModPreCon
Software provider	IPCOS NV Leuven/Belgium and Boxtel/Netherlands http://www.ipcos.be	Siemens AG, I IA AS
Delivery form	External product in add-on catalogue, is typically sold in conjunction with engineering services as "turnkey solu- tion".	Since V7.0.1 integral part of PCS 7 toolset, as part of APC-Library respectively Advanced Process Library

Table	4-2:	System	architecture
i ubic	– – .	Oyotonn	aronicoluro

	INCA MPC ("Ipcos Novel Controller Architecture")	SIMATIC PCS 7 MPC bzw. ModPreCon
Integration in PCS 7	Separate software tool on external PC	PCS 7 function block with faceplate and configuration tool
Runtime algorithm	INCAEngine as OPC DA client on Windows-PC with connection to Operator Sta- tion, requires an Ipocs Data- Server and Scheduler as	PCS 7 function block MPC or ModPreCon. The function block requires considerable computing power and a separate user

37361131

	INCA MPC ("Ipcos Novel Controller Architecture")	SIMATIC PCS 7 MPC bzw. ModPreCon
	runtime environment. Dedicated APC interface function blocks are required as infrastructure in the AS. Those are provided by CC CG as re-usable solution. Starting from PCS 7 V7.1, all controller blocks of the Ad- vanced Process Library will provide dedicated interfaces for external APC software tools. The controller runtime soft- ware requires a lot of com- puting power and must be installed on a separate PC.	data block for parameteriza- tion. The function block can typi- cally be called in low-priority cyclic task inside the SIMATIC controller.
Availability	of software on Windows PC is generally lower than in the central controller of a DCS. Therefore a conventional backup control strategy in- side the DCS and supervi- sion via watchdog is re- quired.	is equivalent to conven- tional controller function blocks inside DCS, and moreover can make use of redundant AS hardware.

Table 4-3: Usability

	INCA MPC ("Ipcos Novel Controller Architecture")	SIMATIC PCS 7 MPC bzw. ModPreCon
Call	Windows start menu	Via context menu in CFC of ModPreCon function block, or via Windows start menu
User guidance in engineering tool	Interactive Windows program INCA_Modeler with numer- ous menus and numerous user specified parameters	MPC configurator with prede- fined sequence of three working steps. Number of parameters to be specified by user is mini- mized.
Operator monitoring and control during operating phase	GUI INCA_View with numer- ous possibilities for parame- terization. Online visualization of predic- tions.	Standardized PCS 7 Face- plate. Look&feel similar to PID con- troller.

37361131

Table 4-4: Functionality

	INCA MPC ("Ipcos Novel Controller Architecture")	SIMATIC PCS 7 MPC bzw. ModPreCon
Number of controlled vari- ables (CVs)	unlimited, typically 320 can be varying at runtime (become smaller).	\leq 4 constant at runtime.
Number of manipulated vari- ables (MVs)	unlimited, typically 520 frequently not equal to num- ber of CVs, can be varying at runtime (become smaller).	 ≤ 4 usually equal to number of CVs, can be varying at runtime (become smaller).
Number of disturbance vari- ables (DVs)	unlimited, typically 05, can be activated at runtime.	≤ 1can be activated at runtime.
CV constraints	Control zones around set- points ("soft constraints")	Control zones around set- points ("soft constraints")
MV constraints	MV limits ("hard constraints")	MV limits ("hard constraints")
Control targets	CVxZone, CVxIdeal, CVxDy- namic, MVxMovePenalty, MVxIdeal each of them with rank and weight.	SPx±SPxDeadBand, MVxMovePenalty each of them with weight.
Optimization	Online iterative solution of optimization problem in each sample step, considering constraints and hierarchy of control targets (ranks). Algorithm: quadratic programming (QP-Solver).	Analytical solution of optimi- zation problem ignoring con- straints. This solution can be calculated offline based on performance index and proc- ess model, and delivers a mathematical formula that requires only a few matrix multiplications for the online calculation of MVs.
Test signals	Generation of special PRBNS test signals based on rough process model. Test signals can be activated using an additional applica- tion called INCA_Test.	Typically a series of step experiments. Test signals must be gener- ated by user in manual mode of ModPreCon.
Data acquisition	using INCA_Test.	using trend curve recorder of CFC
Data preprocessing offline	 Selection of several time slots Low-pass filtering De-trending 	 Selection of time slot Low-pass filtering De-trending
System identification	Numerous model forms, to be selected by user: • Finite Impulse Response (FIR models)	Universal, fixed model type: ARX model of 4. order plus deadtime for each transfer channel.

37361131

	INCA MPC ("Ipcos Novel Controller Architecture")	SIMATIC PCS 7 MPC bzw. ModPreCon
	 State space models (semi-automatic order selection using Hankel singular values) ARX models identified by output error minimization Laplace transfer func- tions in continuous time 	Automatic conversion to Fi- nite Step Response (FSR model) for controller.
Prior knowledge about the plant	can be applied in the de- sign.	is not necessary, but there is also no way to apply it inside the tool.
Verification of process mod- els	Comparison of model output and measured data in trend curve.	Comparison of model output and measured data in trend curve.
Controller design	not explicitly required. Numerous controller parame- ters can be adjusted online. For Simulation there is a separate elaborate tool called INCA_Simulator.	automatically in MPC con- figurator, requires the specification of CV weights and MV move penalties only. can easily be verified in- side the configurator tool by simulation.
Handling of nonlinear proc- esses	 Gain scheduling Trajectory control 	 Model scheduling (solution template since PCS 7 V7.1) Trajectory control designated in ModPreCon function block, dedicated modeling and activation of trajectories currently still require applicative efforts.
Data preprocessing	In APC interface blocks or via Smooth function block.	Can be realized with stan- dard CFC function blocks (e.g. Smooth).
Alarming	Inside Ipcos environment, i.e. outside of DCS, and addi- tionally with APC interface blocks inside of DCS.	Can be realized with stan- dard CFC function blocks (e.g. MonAnL).

37361131

Literature:

- http://www.ipcos.com/cms/uploads/INCA%20MPC.pdf
- Ipcos user manual INCAEngine V7.1, Jan. 2007
- Siemens AG, Automation and Drives: Online-Help of PCS 7 APC-Library V7.0 SP 1, Nov. 2007.
- Siemens AG, Sektor Industry: Online-Help of PCS 7 Advanced Process Library V7.1, Mar. 2009.

4.2 Illustrations for INCA

Figure 4-1: System architecture for external "full-blown" predictive controller INCA

37361131

The so called "DataServer" is an Ipcos-internal OPC server, that is connected via an "OPC delegator" to the "process inferface", i.e. the OPC server of an OS-Client. The "projekt specific operator user interface" is realized using the APC faceplates on the OS. The alternative process connection via a database interface is not applied in the context of PCS 7.

37361131

Figure 4-3: Features and faceplates of the three APC interface function blocks

Figure 4-4: MPC graphical user interface INCA_View with online visualization of predictions

37361131

- Orange: setpoint
- blue: CV in the past
- red: prediction of free CV response if MVs are frozen
- green: planned optimal CV trajectory
- CVs: controlled variables
- MVs: manipulated variables
- DVs: disturbance variables

Figure 4-5: GUI of INCA_Modeler

INCA Modeler - [Project]						
S Project View Window Help			s Invit r	s a		<u>- 5 ×</u>
				<u>a</u> <u>x</u>		
Overview TestProject		Diata	a Properties	: Data∖De	ps	
Data	Name	Unit	Samples	Period	Description	
Dep:	Diameter.PV	-	1000	60	Average Diameter	
inos	WallThickness.PV	Merry	1000	60	Average Wal Thicknes	2
		Modify				
		Load				
		Save				
		Toomast				
Cases		Export				
		Export				
		Cut				
		Сору				
		Paste	_			
		Delete				
		Rename				
Models		View				
		Execute				
		Properties	5			
	-					
🛱 Data : 4 🔛 Cases : 3 🔛 M	odels: 3				😵 AutoSave :	01:31

In a modeling project, there are folders with data and models. A "case" is a combination of data and model structure, the execution of a case is the identification of model parameters from these data.

37361131

Figure 4-6: Comparison of two models in INCA_Modeler

37361131

	Microsoft Excel - INCA_Glass.csv																			
	🗐 Eile Edit <u>V</u> iew Insert F <u>o</u> rmat <u>I</u> cols <u>D</u> ata <u>W</u> ind					<u>/</u> indo	iw ļ	<u>H</u> elp	Acr	obat							a×			
B	🔗 📮		a d	ARC	L K		A	1	-) .	Or v	10	LΣ	f,	. A 1	111	1	00%	-	🧿 »
븝	201.00		-	~ ~	00		-	~						,			~			
고	🗘 🗍 🖓				• 10	-	в	1	Ū		=	=	별				9	• <mark>A</mark>	τ.	÷
A1 = #				#Exo	#Exename:INCAengi				jine											
	A B				C					D				E			F			
392	# CV	1															_			
393	1	<u></u>			PV CTATUC			-	125_TUP_Ct.PV						+					
234	T	<u>75</u> 75 7			STATUS			-	IDP_CESTATUS							+				
330	T T	Z5_1		-				-	800							+				
337	1	75 1			ENGLOW IDEAL			-	300 75 TOR Clideal							+				
399		75 1		-				-	75 TOP C operlow							+				
399		75 1			OPERUPE				75 TOP C operunn							+				
400	1	Z5 1	IOP CI	:	USE	USE				Z5 TOP Cluse							+			
401	Т	Z5 1	TOP CI		ENGUPP			1	1020							\uparrow				
402	Т	Z5 1	IOP C		VALUPP				1400							1				
403	Т	Z5 1	rop d		CRITICAL				0											
404	Т	Z5_1	rop_ci		ZONERANK				1											
405	Т	Z5_1	rop_ci	7	ISSZONEWT				1											
406	Т	Z5_1	rop_ci		IDEALRANK				3											
407	Т	Z5_1	rop_ci		ISSIDEALWT				1											
408	Т	Z5_1	rop_ci		IDYNWT				1											
409	T	Z5_1	rop_ci		TRAJECT			_	-1						-	1				
410	T	<u>75 </u>	rop_ct		GAIN			_	1						1			1		
411	I T	26_1	10P_C		DELAY			_								u			J	
412	1	<u></u>	<u>10P_C</u>		RAMPINGON			-	77 -		74			+						
413	1	<u>25</u>		-				-	IZ5_TOP_C.StpRmp							+				
414	T	25_1						- 1	125_TOP_C.StpRmp							+				
410	Т	20_1 76_7						+	1							+				
410	0	20_1		-				_	Alwaya					75 T	'nΡ			u		
417	0	76 1							Aways Alwaye					75 TOP_CLIVEAL					ET	
419	0	75	10 P C		ACTIVE			ť	Aways				75 TOP CACTIVE							
420	т	75 1						ť	ر سیما م ل				20_1	01	Ť	- VII				
421	T	Z5 1	IOP C		INTERMITON				0							+				
422	Т	Z5 1	TOP CI		NOTMEASON				0						+					
423	Т	Z5_1	TOP_C		NEW	ΈV								0						
Doa	dv.	19CA_	Glass						_		1	•		_	NU	M L				-

Figure 4-7: Parameters for one CV of an INCA controller in form of an Excel table

37361131

4.3 Illustrations for ModPreCon

Figure 4-8: System architecture for DCS-embedded predictive controller ModPreCon

37361131

Figure 4-9: Model predictive controller ModPreCon as PCS 7 function block

37361131

Figure 4-10: ModPreCon faceplate on PCS 7 Operator Station

37361131

Figure 4-11: GUI of MPC configurator in second working step: display of process model and specification of controller parameters

37361131

4.4 Hints for Selection of Appropriate Product

4.4.1 Arguments for the Application of ModPreCon

- Higher availability of runtime algorithm in automation system, up to exploitation of redundant SIMATIC hardware.
- More easy integration in PCS 7.
- No software license costs.
- Less engineering costs.
- Look&feel of ModPreCon are similar to conventional PID controllers. Therefore you need less time to get familiar with it, and in most cases there is no need to call for external consultants as experts for specialized MPC software packages.
- In general, INCA is a tool "from experts for experts" (similar to the other add-on products by Ipcos) and requires the appropriate time to get familiar with the software and the theory behind – while the no-charge Siemens tool has advantages with respect to usability.
- Summing up, the starting prize for a turn-key ModPreCon solution is reduced by an order of magnitude compared to an INCA solution. This also means that small and medium-sized applications, that do not allow amortizing a full-blown MPC, become attractive for predictive control.

4.4.2 Arguments for the Application of INCA

- For larger MPC applications with more than 4 interacting MVs and CVs the combination of several ModPreCon function blocks with coupling by a disturbance compensation at the "joint" is principally feasible, but INCA will provide better control performance in such cases.
- As a tool "from experts for experts", INCA offers a lot of features, functions and tuning parameters, and is promising very high performance if applied by professionals.

In the following cases, the application of INCA is strongly recommended, because ModPreCon does not dispose of the required features:

- Larger control problems, where several MVs have to be driven to the constraints in order to achieve optimal performance. Only an online optimization is capable of finding the ideal working point at the intersection of several constraints at runtime.
- Larger control problems, where the number of degrees of freedom is varying frequently at runtime, because CVs or MVs are switched on/off or are hanging at limits. Only an online optimization considering constraints can make sure that the mathematically optimal solution of the constrained problem is really found.

- Control problems with much more MVs than CVs. Only an online optimization can make goal-oriented use of these degrees of freedom, e.g. by targeting economically optimal values for the MVs.
- Control problems with control targets of different priority in a fixed ranking order. Only a hierarchical online optimization can make sure that targets of lower rank are considered only if all targets of higher rank are already fulfilled completely. Example: plant "safety" has higher rank than product quality; product quality has higher rank than reduction of resource consumption. (Remark: the term "safety" in this context refers to staying within limit values, it does not refer to replacing dedicated safety oriented controllers, safety shutdowns etc.)
- Numerically "stiff" control problems, where inside of a multivariable process, very fast and very slow part transfer functions are interacting. In these cases, dedicated model structures in INCA like e.g. state space models are helpful.

In the meanwhile there are two extensions of INCA, that are not yet listed in the PCS 7 add-on catalogue, but could in principle be interfaced to PCS 7 similar to INCA:

- INCA NL for nonlinear processes like e.g. batch reactors or cristallers. Existing nonlinear physical models are used primarily instead of the experimental identification of linear models from learning data.
- INCA MPC4Batch with special features for batch processes. Model and controller parameters are adapted to the different phase of a batch process. A batch-to-batch observer and controller provide adaption of setpoints and constraints based on measurements of batch end quality. By using existing physical models for heat and energy balances of the reactor the effort required for experimental modeling is reduced considerably. A nonlinear model of the reaction kinetics is deduced from historical batch data.

37361131

SIEMENS

Summary

APC AddOn-Products

37361131

5 Summary

Some similarities are obvious in all three comparisons.

Advantages of PCS 7 embedded APC products:

- Availability: is in general higher on the SIMATIC CPU compared to a Windows PC, moreover the advantages of redundant hardware can be exploited.
- **Costs**: for the PCS 7 embedded APC products, there are no or only small software license fees.
- **Usability**: for the PCS 7 embedded APC products, there is less expert know how required, look&feel are similar to conventional automation functions, the user is guided.
- Engineering effort: the PCS 7 embedded APC products are developed to allow for fast and easy engineering and commissioning, the number of parameters to be specified by the user is minimized.

Advantages of Ipcos add-on products:

- **Functionality**: the lpcos products provide nearly all features that are available from mathematical theory in this context.
- **Performance**: the lpcos products are state-of-the-art with respect to control performance, approximation precision etc.
- **Flexibility**: a large number of tuning parameters allow adapting the lpcos products very precisely to specified requirements.
- **Application area**: the high-performance products by Ipcos can be applied even for very large or very difficult applications.

SIEMENS

APC AddOn-Products

6 History

Table 6-1: History

Version	Datum	Modification							
V1.0	February 2009	1st release							

History

37361131