

 ROBOT
RC7 CONTROLLER

Teach Pendant Panel Editor
Panel Designer

USER'S MANUAL

Copyright © DENSO WAVE INCORPORATED, 2005-2010

All rights reserved. No part of this publication may be reproduced in any form or by any means without
permission in writing from the publisher.

All products and company names mentioned are trademarks or registered trademarks of their respective
holders.

Specifications are subject to change without prior notice.

i

Foreword

This manual sets forth the Panel Designer, a teach pendant panel editor that enables you to create teach
pendant (TP) panel screen software on the computer screen.

This is a supplement to the Setting Manual and WINCAPSIII Guide.

Note for the global type of robot controllers
Version 2.801 or earlier: When the "External auto limited mode" is selected, teach pendant (TP) panel

screen software cannot run in External auto mode. (Refer to the RC7M
Controller Manual.)

Version 2.802 or later: Even in External auto mode, TP panel screen software can run except that RUN
and COTINUERUN commands (TP panel control languages) cannot execute.

Contents
Chapter 1 Panel Designer Overview ..1

1.1 Overview of Procedures for Creating TP Panel Data..2
1.2 Editor Screen Functional Description..4

1.2.1 Tool Bars ...5
1.2.2 Parts Tree Pane ..8
1.2.3 Properties Pane ..9
1.2.4 Layout Window..9
1.2.5 Source Code Edit Window ..10
1.2.6 Compiler Messages Pane...11
1.2.7 Menus ...12

1.3 Creating and Modifying Panel Layouts ...14
1.3.1 Adding Parts..14
1.3.2 Modifying Panel Layouts ...14
1.3.3 Changing Part Properties..15
1.3.4 Deleting Panel Layouts ...15
1.3.5 Importing Panel Layouts from Another TP Panel File ...15

1.4 Adding Action Source Code ..16
1.4.1 Writing Action Source Code ..16
1.4.2 Checking (Compiling) Action Source Code...16

1.5 Miscellaneous..17
1.5.1 Property Lists ..17
1.5.2 Event List ..17
1.5.3 Action Source Code Syntax ..18
1.5.4 Sending Data to Controller..18
1.5.5 Important Note on Radio Buttons..18

Chapter 2 Creating TP Panels...19
2.1 Configuring Teach Pendant ...19

2.1.1 Enabling TP Panel Operation..19
2.1.2 Specifying the Start Mode of TP Panel Screen Software [Version 2.32 or later]21
2.1.3 Automatically Displaying TP Panel Screens [Version 2.31 or earlier]......................................23
2.1.4 Specifying the Close Mode of TP Panel Screen Software [Version 2.32 or later].....................24
2.1.5 Hiding the Shortcut Button [Version 2.6 or later]...25

ii

2.2 Using Parts ..26

2.2.1 Parts and Their Functions ...26
2.2.2 Specifying Action Source Code for Parts ..27
2.2.3 Specifying the RELEASED Event Execution Condition [Version 2.32 or later]........................28
2.2.4 INITIALIZE Event [Version 2.32 or later]..31
2.2.5 DONE Event [Version 2.32 or later] ...32
2.2.6 Part Descriptions...33

2.3 Interfaces with PAC Language and System..66
2.3.1 Reading and Displaying PAC Variables ..66
2.3.2 Modifying PAC Variables...69
2.3.3 Reading I/O States ..72
2.3.4 Modifying I/O States ..74
2.3.5 Reading System Status...76

2.4 Switching TP Panels ...78
2.4.1 Example Switching in Same Folder ..78
2.4.2 Example Switching Between Folders..80

2.5 Flow Control ..82
2.5.1 Conditional Branching ...82
2.5.2 Iteration ...84

2.6 Local Variables ..85
Chapter 3 TP Panel Control Language's Structural Elements ..87

3.1 Language Elements ..87
3.2 Names ...87
3.3 Identifiers and Variables ..88

3.3.1 Variables ...88
3.3.2 Global Variables ..88
3.3.3 Local Variables ..89
3.3.4 Object Properties ..89
3.3.5 Folder Variables ..96

3.4 TP Panel Program...97
3.5 Data Types ..97
3.6 Type Conversion ...98
3.7 Constants ..98
3.8 Expressions and Operators...99

Chapter 4 TP Panel Control Language Syntax ...102
4.1 Statements and Lines..102
4.2 Character Set ..102
4.3 Reserved Words..102
4.4 Declaration Directives ...103
4.5 Assignment Statements...104
4.6 Flow Control Statements ...104
4.7 I/O Control Statements ..105
4.8 Task Control Statements ...105
4.9 Functions...106
4.10 System Information ...106
4.11 Preprocessor ...106

iii

Chapter 5 Command Reference ...107

5.1 List of TP Panel Control Commands...107
5.2 Declaration Statements ...109

DEFINT (Statement) ..109
DEFSNG (Statement)..109
DEFDBL (Statement)...110
DEFSTR (Statement) ..110
DEFIO (Statement) .. 111

5.3 Flow Control Statements ...112
FOR…NEXT (Statement) ..112
IF…END IF (Statement) ..113
SELECT CASE (Statement) ..114

5.4 Input/Output Control Statements...115
IN (Statement) ...115
OUT (Statement) ...115
SET (Statement) ..116
RESET (Statement) ...116
MSGBOX (Statement) ...117
PAGE_CHANGE (Statement)..117

5.5 Multitasking Control Statements..118
RUN (Statement) ...118
KILL (Statement)..119
SUSPEND (Statement) ...119
SUSPENDALL (Statement) ...120
KILLALL (Statement) ...120
CONTINUERUN (Statement) ..121
DEADMANSTATE (Statement)..121

5.6 Constants ..122
OFF (Built-in constant) ..122
ON (Built-in constant) ..122
PI (Built-in constant) ..123
FALSE (Built-in constant) ..123
TRUE (Built-in constant)..124

5.7 Time/Date Control ...125
DATE$ (System Variable)..125
TIME$ (System Variable) ..125
TIMER (System Variable)..126

5.8 Character String Functions..127
STR$ (Function) ..127
CHR$ (Function) ...127
SPRINTF$ (Function)..128

5.9 System Information ...129
CUROPTMODE (Statement)...129
SYSSTATE (Statement)...129
STATUS (Function)..130

5.10 Preprocessors ...131
#define (Preprocessor statement) ...131
#include (Preprocessor statement) ...132

iv

1

Chapter 1 Panel Designer Overview
WINCAPSIII includes the Panel Designer, a teach pendant editor for creating teach
pendant (TP) panel screen software by simply arranging parts on the computer screen
and then specifying action source code for the events associated with them.

This chapter outlines the procedures involved.

Creating TP Panel Screens

2

1.1 Overview of Procedures for Creating TP Panel Data

The procedure for creating TP panel data consists of the following five basic steps.

(1) Load editor
1) In WINCAPSIII, choose Project | Add Program to display the "Create new program"

dialog.

2) In Type, select Operation panel (*.pnl), enter the desired file name, and press OK to
start the Panel Designer.

 Note: To open existing TP panel data, double-click it in the Program List.

"Create new program" Dialog in WINCAPSIII

Panel Designer Window for New Panel Layout

3

(2) Create panel layout
Select the necessary parts from the Parts tool bar and arrange them in the Layout
window to create the TP panel screen.

For further details, see Chapter 2 "Creating TP Panels."

(3) Edit action source code
1) Click the Display source code icon in the Layout window to display the Source

Code Edit window.

2) Add to the Source Code Edit window the action source code for when the part is
pressed.

 For further details, see Section 2.2.2 "Specifying Action Source Code for Parts."

Parts tool bar Layout window

Display source code icon Source Code Edit window

4

(4) Compile
Compile the action source code just written to check for syntax, typing, or other errors.
Progress and other messages from the compiler appear in a pane near the bottom of
the main editor window.

(5) Send data to the controller
Send the newly created TP panel file to the controller, using WINCAPSIII. Note that
using the teach pendant as an operating panel requires reconfiguring the teach
pendant.

1.2 Editor Screen Functional Description
The following figure gives the editor screen layout. The following pages describe the
individual components.

Panel Designer Screen Layout

Tool bars
(Section 1.2.1)

Parts tree pane
(Section 1.2.2)

Properties pane
(Section 1.2.3)

Layout window
(Section 1.2.4)

Source code edit window
(Section 1.2.5)

Compiler messages pane
(Section 1.2.6)

5

1.2.1 Tool Bars

The editor provides the following handy tool bars for creating TP panel data.

(1) Main tool bar
This provides the following buttons.

 Name Description

 New Create a new TP panel file.

 Open... Open an existing TP panel file.

 Save Save the current file to disk, overwriting any older version
there.

 Cut Move the contents of the selected range to the system
clipboard.

 Copy Copy the contents of the selected range to the system
clipboard.

 Paste Insert the clipboard contents at the current cursor position.

 Undo Reverse the effects of the last operation.

 Redo Undo the last undo operation--in other words, repeat the
last operation.

 Print Print the current screen.

 About Display the About screen indicating the editor's version
number, etc.

(2) Zoom grid tool bar
These buttons change the Layout window magnification, toggle the grid display on and
off, etc.

 Name Description

 Zoom Change the magnification ratio for the selected region.

 Cancel Zoom Cancel zooming and return the Layout window to the
standard (100%) magnification.

 Pan Shift the display screen in the specified direction.

 Grid Toggle the grid display on and off.

 Snap Toggle automatic grid positioning on and off.

6

(3) Layout tool bar
These buttons assign uniform positioning, spacing, or size to the selected parts.

 Name Description

 Align Top Align along the upper edge.

 Align Middle Align vertical centers.

 Align Bottom Align along the lower edge.

 Align Left Align along the left edge.

 Align Center Align horizontal centers.

 Align Right Align along the right edge.

 Space across Standardize horizontal spacing.

 Space down Standardize vertical spacing.

 Same width Standardize width.

 Same height Standardize height.

 Same size Standardize size.

(4) Parts tool bar
Most of these buttons select a part to add to the panel layout in the Layout window.

 Name Description

 New panel Create a new panel layout.

 Select parts Select a part pointed with this cursor.

 Label Add part: label.

 Text box Add part: text box.

 Numerical
value input
box

Add part: numerical input box.

 Group box Add part: group box.

 Radio button Add part: radio buttons.

 Check box Add part: check box.

 Push button Add part: push button.

 Illuminated
push button

Add part: illuminated push button.

 Pilot lamp Add part: pilot lamp.

 Line Add part: line.

 Rectangle Add part: rectangle.

 Oval Add part: oval.

 Function key Add part: function key.

 Timer Add part: timer.

 Compile Translate the corresponding TP panel file into executable
format.

7

(5) Move tool bar
These buttons move parts around the panel layout and within the file's part hierarchy.

 Name Description

 Front Move to the top layer.

 Back Move to the bottom layer.

 Forward Move forward one layer.

 Backward Move backward one layer.

 Nudge up Move up.
Simultaneously holding down the Shift key moves 5 pixels
each time.

 Nudge down Move down.

 Nudge left Move left.

 Nudge right Move right.

8

1.2.2 Parts Tree Pane

This displays the current file's panels and parts in tree format.

(1) Parts Tree pane
The following figure shows a sample Parts Tree pane.

Double-clicking on a part displays its panel layout.

(2) Parts tool bar
This provides the following buttons.

 Name Description

 Layout form Specify the Layout window as target.

 Source form Specify the Source Code Edit window as target.

 Layout window Display the target window specified above.

 Erase panel Delete a panel layout from the TP panel data.

9

1.2.3 Properties Pane

This accesses the position, size, and other properties for a part.

The list of properties depends on the part type. For further details, see Section 1.5.1
"Property Lists."

Properties Pane

1.2.4 Layout Window

This window is for designing teach pendant TP panel screen software by placing parts
on this screen and then adjusting their positions and sizes with the cursor keys or
rubber band drag operations.

Clicking on the Display source code icon displays the corresponding Source Code Edit
window.
Display source code icon

Layout Window

Layout window
(client area)

10

1.2.5 Source Code Edit Window

This window is for assigning action source code to events associated with the parts on
the current panel layout.

Source Code Edit Window

(1) Source Code Edit window tool bar

 Name Description

 Layout window Display the corresponding panel layout.

 Indent Shift the selected lines one tab position to the
right.

 Outdent Shift the selected lines one tab position to the
left.

 Comment out Comment out the selected lines.

 Undo comment block Cancel commenting out for the selected lines.

 Bookmark Toggle bookmark on the current source code
line.

 Next bookmark Move the cursor to the next bookmark.

 Previous bookmark Move the cursor to the previous bookmark.

 Clear bookmarks Cancel all bookmark definitions.

 Find and replace Find the specified string and optionally
replace it.

Note: Setting a bookmark on a code line displays a square marker () to its left.

(1) Source Code Edit window tool bar

(2) Part list box (3) Event list box

(4) Action source code block

11

(2) Part list box
Select the part for which to assign action source code.

(3) Event list box
This lists the events available for the selected part. Selecting one automatically
generates the corresponding skeleton action source code block on the editor screen.

Example: Skeleton action source code block for pressing Button1

 DEF Button1_CLICKED()

 END

(4) Action source code block
Flesh out the skeleton with action source code.

Example: Action source code block for pressing Button1

 DEF Button1_CLICKED()
 Set IO[128] ' turn I/O variable #128 ON
 Run PRO100 ' run PRO100
 END

1.2.6 Compiler Messages Pane

This displays progress and other messages from the compiler as it compiles the TP
panel data.

Double-clicking on an error message line displays the corresponding source code in a
Source Code Edit window.

Compiler Messages Pane

12

1.2.7 Menus

This section lists the editor's menus and menu commands.

(1) File

Menu Command Description

 New Create new TP panel file.

 Open… Open an existing TP panel file.

Close Close the current file, first displaying the dialog box for

saving if current file edits have not been saved.

Save Save the current file to disk, displaying the dialog box for

saving if the file is new.

 Save As… Save the current file to disk under a new name.

Print… Print the contents of the current window: Layout or Source

Code Edit.
 Print Preview… Display a print image on the screen instead of sending

data to the printer.
 Printer Setting Display the dialog box for specifying printer settings.
 Import... Read panel layouts from another TP panel file.
 Most recently

used files
This section lists the last few TP panel files saved.

 Exit Close the editor.

(2) Edit

Menu Command Description
 Undo Reverse the effects of the last operation.
 Redo Undo the last undo operation--in other words, repeat the

last operation.

Cut Move the contents of the selected range to the system

clipboard.

 Copy Copy the selected parts or string to the system clipboard.

 Paste Insert the clipboard contents at the current cursor position.
 Delete Delete the selected parts or string.

Find Display the dialog box for finding (and optionally

replacing) the specified string.

(3) View

Menu Command Description

 Tool bar Toggle display of tool bars.

 Status bar Toggle display of status bar.

Tree bar
(Parts tree)

Toggle display of the Parts Tree pane.

Property bar
(Property)

Toggle display of the Properties pane.

 Panel layout Display the corresponding panel layout.
 Grid Toggle the grid display on and off.
 Snap to grid Toggle automatic grid positioning on and off.

13

Menu Command Description

 Zoom Normal Cancel zooming and return the Layout window to the
standard (100%) magnification.

 Zoom Percent Change the magnification ratio for the Layout window
(50%, 75%, 100%, 200%).

(4) Tool

Menu Command Description

 Options… Specify the compiler output version.

Compile Translate the corresponding TP panel file into executable

format.

(5) Window

Menu Command Description

 Close Close the currently selected window.

Close all
windows

Close all open editor windows.

Cascade Display all open windows with the same size and

overlapped with only their title bars visible.

Tile Display all open windows as individual rectangles dividing

up the screen.

Arrange Icons Align the icons for minimized windows in the lower left

corner of the main editor window.

 List windows Display a list of all windows.

(6) Help

Menu Command Description
 Help Display the editor's help file.

 About Panel
Designer

Display the About screen indicating the editor's version
number, etc.

14

1.3 Creating and Modifying Panel Layouts

1.3.1 Adding Parts
Adding parts to a panel is a three-step procedure.

(1) Open the Layout window
To create a new panel, choose the File|New menu command or press the tool bar
button New panel.

To modify an existing panel layout, select the Layout form button on the Parts tool bar
and double-click on the corresponding Layout window icon or press the Display panel
button.

(2) Select a part
Selecting a part from the Parts tool bar displays the part mark at the current cursor
position in the Layout window.

(3) Add the part
Clicking in the Layout window adds the part with the default size at that location.

Note: Dragging the part at this point then adjusts the size.

1.3.2 Modifying Panel Layouts

The following methods are available for modifying part positions and sizes in Layout
windows.

(1) Moving parts
1) Drag the part with the mouse (whenever the move cursor is visible)

2) Use a cursor key

3) Use the Move tool bar

4) Modify the position properties x and y

(2) Changing size
1) Drag part frame's rubber band

2) Modify the properties width and height

3) If multiple parts are currently selected, use the Layout tool bar buttons for
standardizing spacing and size

(3) Aligning
If multiple parts are currently selected, use the Layout tool bar buttons for centering
parts or aligning them along the specified edge.

Note: For function keys, the property Index automatically determines the position and
size.

(4) Changing layers
Select the part to reorder and either choose Move on the right-click menu or press a
button in the tool bar's Order section.

Note: Changing the part order automatically updates the Parts Tree pane accordingly.

15

1.3.3 Changing Part Properties
The Properties pane provides facilities for modifying the parts name, color, and other
properties.

1.3.4 Deleting Panel Layouts
Select the panel layouts to delete on the Parts Tree pane and press the Delete panel
button.

1.3.5 Importing Panel Layouts from Another TP Panel File

Use the following procedure to import panels from another TP panel file, with
extension .pnl.

(1) Use the File|Import menu command to specify the source TP panel file.

(2) Select the panel layouts to import from the list for the file and press the Import
button to add them to the Parts Tree pane.

16

1.4 Adding Action Source Code

A Source Code Edit window is for specifying the events to take in response to a
CLICKED, RELEASED, or other state change event associated with the corresponding
part on the panel layout.

1.4.1 Writing Action Source Code
(1) Open the Source Code Edit window
Use one of the following methods to open the Source Code Edit window for the part.

1) Double-click on the part in the Layout window.

2) Select the part in the Layout window and press the Display layout button.

3) Select the panel layout on the Parts Tree pane, make sure that the Source form
button is pressed, and press the Display panel button.

(2) Select the part
Check whether the part appears in the Part list box at the top of the Source Code Edit
window. If it does not, select it with the list box.

(3) Select the event
The Event list box gives the events available for the selected part. Selecting one
automatically generates the corresponding 3-line action source code block skeleton on
the editor screen.

Example: Skeleton action source code block for pressing Button1

 DEF Button1_CLICKED()

 END

(4) Add action source code
Flesh out the skeleton with action source code.

Example: Action source code block for pressing Button1

Example: Action source code block for pressing Button1

 DEF Button1_CLICKED()
 Set IO[128] ' turn I/O variable #128 ON
 Run PRO100 ' run PRO100
 Run PRO200 ' run PRO200
 END

1.4.2 Checking (Compiling) Action Source Code

Compile the action source code just written to check for syntax, typing, or other errors.
Progress and other messages from the compiler appear in a pane near the bottom of
the main editor window. Double-clicking on an error message displays the
corresponding source code in a Source Code Edit window.

17

1.5 Miscellaneous

1.5.1 Property Lists

The following table lists the position, size, and other properties that can appear in the
Properties pane.
Note: The list displayed in the Properties pane depends on the part type.

Name Description Notes
name Name Unique identifier for the part
type Part type This is fixed for each part.
x x-coordinate
y y-coordinate

Reference position relative to the x- and y-axes within the teach
pendant screen's drawing range

width Width
height Height

Width in pixels relative to the reference corner (x, y)

fg Foreground color
bg Background color

Specify these colors with the list box.

group Group number Group number to which the part belongs
active Active/inactive setting Select with the list box.
style Display style Select with the list box.
caption Display string String to display on part surface

Note: Use the Ctrl+Enter key combination to insert a line break in
multiline text.

fsize Font size 0: Super small, 1: Small, 2: Medium, 3: Large
justify Caption positioning 0: Center, 1: Right-justified, 2: Left-justified
thickness Line width Line thickness in pixels

Note: The 0 setting produces flood fill.
myGroup Group number Unique to a particular group box
state State Select ON, OFF, or other state with the list box.
value Input value Unique to numerical input boxes
text Input text Unique to text boxes
index Function number Unique to function keys
interval Interval Unique to timers
timeout Timeout limit Applicable when no button, line or any other parts are selected.

(A single timeout property per TP panel file can be defined.)
release-mode RELEASED event

execution condition
Applicable when no button, line or any other parts are selected.
(A single release-mode property per TP panel file can be defined.)
[Version 2.32 or later]

1.5.2 Event List
The Event list box is for selecting a CLICKED, RELEASED, or other state change
event associated with the part.
Note: The events available depend on the part type.

Event Description
CLICKED Button pressed
RELEASED Button released
TIMER Interval elapsed
REFRESH Screen refreshed
INITIALIZE Initializable TP panel opened [Version 2.32 or later]
DONE OK button pressed [Version 2.32 or later]

18

1.5.3 Action Source Code Syntax
Action source code blocks consist of two kinds of statements:

(1) TP panel control commands
Chapter 4 gives TP panel control language syntax; Section 5.1 "List of TP Panel
Control Commands."

(2) Read/write access to part properties
Note: The properties available depend on the part type.

Such accesses use the standard dot notation: part_name.property.

Example 1: Reading the current state for radio button RadioBtn

 DEFINT iState
 IState = RadioBtn.State

Example 2: Setting button width to 200
 Button.Width = 200

1.5.4 Sending Data to Controller

Use WINCAPSIII to send the created TP panel data to the controller. Before data
transfer, WINCAPSIII compiles the last saved data. If the TP panel data is being edited,
therefore, be sure to save any data modifications before data transfer.

1.5.5 Important Note on Radio Buttons
Makes sure that only one, the default, has ON in its state property. The editor does not
check sets of radio buttons for multiple ON settings. Sending such data to the controller
produces a TP panel screen with multiple ON settings exactly as specified.

19

Chapter 2 Creating TP Panels
Chapter 1 gave an overview of the procedures for arranging objects (parts) on panel
layouts using mouse operations on the computer screen, assigning action source code,
and adjusting their size, position, color, and other properties.

This chapter gives the detailed procedures for creating TP panels. The teach pendant
provides a clean slate on which to display such user-specified panel layouts. A folder
can have only one TP panel file specifying a series of such panel layouts.

2.1 Configuring Teach Pendant

2.1.1 Enabling TP Panel Operation
Add support for TP panel operation to the teach pendant with the following procedure.

Step 1 From the teach pendant top screen, press [F6 Set]—[F7 Options.]—[F8 Extnsion]
—[F5 Input ID] to display the following screen.

20

Step 2 Type the password "1453" and press the OK button to display the list of additional

functionality available.

Step 3 Press the OK button to return to the top screen and confirm that the F5 label now

reads Panel.

Press [F5 Panel] to start the TP panel screen software.

Note: Enabling TP panel operation disables the RC5-compatible TP panel operation
assigned to F9.

21

2.1.2 Specifying the Start Mode of TP Panel Screen Software

[Version 2.32 or later]
Note: For Version 2.31 or earlier, see Section 2.1.3 "Automatically Displaying TP Panel
Screens."

The teach pendant provides the following setting for specifying the start mode of TP
panel screen software.

The four choices of the start mode parameters are available by the combination of
"what starts TP panel screen software--booting the controller or pressing [F5 Panel]"
and "which TP panel screen appears first" as listed below.

Start Mode of TP Panel Screen Software

Start mode
parameter
"0: Panel Start

Setting"

Path of TP panel
screen that
should appear
first
"1: Start-Panel

Path"

a) "What starts TP panel screen software"
b) "Which TP panel screen appears at the start"

Remarks

0 -- a) Pressing [F5 Panel]
b) Current directory* of the Program List

1 To be specified a) Booting the controller
b) TP panel screen specified by "Start-Panel

Path"
or
a) Pressing [F5 Panel]
b) Current directory* of the Program List

Select this parameter
to run TP panel
screen software
when the controller
boots.

2 To be specified a) Pressing [F5 Panel]
b) TP panel screen specified by "Start-Panel

Path"

Select this parameter
to display the TP
panel screen
predetermined
without changing the
current directory.

3 To be specified a) Booting the controller or Pressing [F5 Panel]
b) TP panel screen specified by "Start-Panel

Path"

*The "Current directory of the Program List" refers to the following.

The current directory is displayed
here.

22

Step 1

Press [F6 Set]—[F7 Options.]—[F9 Panel] to display the following screen.

Step 2

Set the "0: Panel Start Setting" parameter to any of 0 to 3 (defined on the previous
page).

Step 3

If the "0: Panel Start Setting" parameter is any of 1 to 3, specify the directory where
the desired TP panel screen is located, to the "1: Start-Panel Path" parameter.
Example: TEST
As shown above, delimit the path with backslash " ". This example calls up the TP
panel screen located in the "TEST" folder.

If the "1: Start-Panel Path" parameter is not specified, the root directory (folder at the
top of the directory tree structure) applies.

Note 1: The "1: Start-Panel Path" parameter can only specify a path. If more than one TP panel screen is
defined, the one that is located at the top when complied with Panel Designer will be displayed at the start of
TP panel screen software.

Note 2: After the teach pendant panel screen is switched to a different one located in the Start-Panel Path
(or in the current directory of the Program List) with the PAGE_CHANGE command, exiting from the TP
panel screen software and restarting it calls up the last TP panel screen.
However, after the teach pendant panel screen is switched to a different one located in the path other than
the Start-Panel Path (and the current directory of the Program List), doing the same calls up the TP panel
screen located in the Start-Panel Path (or in the current directory of the Program List) just as when the
controller boots.

Parameters relating to the start
mode of TP panel screen
software

The TP panel at the top of the directory
tree structure appears when the controller
boots.

Pressing this changes the order of TP
panels.

23

2.1.3 Automatically Displaying TP Panel Screens [Version 2.31 or earlier]

Note: For Version 2.32 or later, see Section 2.1.2 "Specifying the Start Mode of TP
Panel Screen Software."

The teach pendant provides the following setting for automatically displaying TP panel
screen software when the controller boots.

Step 1 Press [F6 Set]—[F7 Options.]—[F9 Panel] to display the following screen.

Step 2 Set the first setting to 1 to enable automatic loading and the second (path) to the

folder containing the TP panel screen software.

Step 3 Test by rebooting the controller.

Note: An error message on the teach pendant screen blocks automatic display.

24

2.1.4 Specifying the Close Mode of TP Panel Screen Software

[Version 2.32 or later]
The teach pendant provides the following setting for exiting the TP panel screen
software.

Close mode parameter
"2: Operation Panel Close Mode" Close mode

0 SHIFT + CANCEL (default)
Pressing the Cancel key with the Shift key held down exits the TP
panel screen software.

1 SHIFT + CANCEL + Password
Pressing the Cancel key with the Shift key held down and entering the
password exits the TP panel screen software.
The password should be specified with the password entry parameter
"3: Mode1: Password."

2 CANCEL
Pressing the Cancel key exits the TP panel screen software.

Step 1 Press [F6 Set]—[F7 Options.]—[F9 Panel] to display the following screen.

Step 2

Set the "2: Operation Panel Close Mode" parameter to any of 0 to 2.
0: SHIFT + CANCEL
1: SHIFT + CANCEL + Password (Proceed to Step 3.)
2: CANCEL

Step 3

If the "Operation Panel Close Mode" parameter is set to 1, enter an arbitrary
password to the "3: Mode1: Password" parameter.
Note: The password entry range is from -2147483648 to 2147483647.

When you attempt to exit the TP panel screen software by pressing the Cancel key
with the Shift key held down, the password entry window appears as shown below.
You need to enter the password and press the OK button. If the password entered
here matches the one preset to the "3: Mode1: Password" parameter, the TP panel
screen software exits.
Tip: If you forget the password, enter 273958314 to exit the TP panel screen
software.

Specify the close mode of TP panel
screen software.

25

2.1.5 Hiding the Shortcut Button [Version 2.6 or later]
You can hide the SHORTCUT button to prevent it from being pressed inadvertently
when the TP panel screen is active.

Step 1 Press [F6 Set]—[F7 Options.]—[F9 Panel] to display the Panel Setting screen.

Step 2

Select [4: “SHORTCUT” disable] and change the parameter by pressing [F5
Change.].
Pressing the OK button enables the setting.

Parameters for [4: “SHORTCUT” disable] on the Panel Setting screen
Parameter Description Remarks

0 Display the SHORTCUT button when the TP panel
screen is active Default

1 Hide the SHORTCUT button when the TP panel
screen is active

SHORTCUT button

26

2.2 Using Parts

2.2.1 Parts and Their Functions

The following table lists the 14 part types available for building TP panel screen
software.

Parts

 Part Function Refer to:
(1) Button Functions as a push button. Section 2.2.6 [1]
(2) Label Displays text. [2]
(3) Pilot lamp Indicates on/off setting. [3]
(4) Numerical input

box
Accepts a numerical value from the ten-key pad. [4]

(5) Text box Accepts text from the keyboard. [5]
(6) Check box Turns setting on and off. [6]
(7) Radio button Selects from a group of mutually exclusive choices. [7]
(8) Group Provides mutually exclusive operation for a group of

radio buttons.
 [8]

(9) Function key Configures a teach pendant function key (F1 to F12)
for use as a push button.

 [9]

(10) Timer
(not shown below)

Triggers action source code at a fixed interval. [10]

(11) Line Displays a straight line. [11]
(12) Oval Displays a circle or oval. [12]
(13) Rectangle Displays a square or rectangle. [13]
(14) Illuminated push

button
(not shown below)

Combines push button and pilot lamp operation. [14]

Sample TP Panel Screens

(3) Pilot lamp

(1) Button

(5) Text box

(2) Label

(8) Group (7) Radio buttons (6) Check boxes

(9) Function keys

(4) Numerical input box

(13) Rectangle

(12) Oval (11) Line

27

2.2.2 Specifying Action Source Code for Parts

A part on a TP panel screen responds to button presses and other events by executing
action source code that reads or modifies part properties and performs other
operations.

Action Source Code Syntax
An action source code block has the following structure.

DEF object_event
 desired operations
END

Selecting an object and an event in the editor automatically generates a skeleton
consisting of the first (DEF) and last (END) lines. The developer needs only supply the
source code specifying the desired response.

The table below lists the possibilities.

Note: The events available depend on the part type.

Event Description

CLICKED Button pressed
RELEASED Button released (See Section 2.2.3.)
TIMER Interval elapsed
REFRESH Screen refreshed
INITIALIZE [Version 2.32 or later] Initializable TP panel opened
DONE [Version 2.32 or later] OK button pressed

Action Source Code Statements
Action source code blocks consist of two kinds of statements: TP panel control
commands and read/write accesses to part properties. Accesses use the standard dot
notation: part_name.property.

For a list of part properties and possible values, see Section 3.3.4 "Object Properties."

Action source code blocks can use global variables of type integer, float, double, or
string, local variables, and folder variables.

28

2.2.3 Specifying the RELEASED Event Execution Condition [Version 2.32 or later]

2.2.3.1 Release-mode property added

The release-mode property is added to the property screen, making it possible to
specify the RELEASED event execution condition. The property provides the following
setting.

Release-mode parameter The RELEASED event executes: Remarks

0 - Post Event Even if a press on the part is released outside
the part.

Default in Version 2.32
or later

1 - No Event Only when a press on the part is released
within the part.

Fixed to this setting in
Version 2.31 or earlier

Specifying the RELEASED event execution condition

Note: The release-mode parameter can be contained, one per panel file. Changing the parameter applies
to all parts containing the RELEASED event.

Release the press on the part within the part.
(1 - No Event)

Release the press on the part outside the
part by sliding your finger on the screen
surface. (0 - Post Event)

Release-mode property

29

2.2.3.2 Notes on using the RELEASED event

The RELEASED event cannot be executed if any other screen appears on the current
TP panel screen. The following example using the push-button shows the detail.

 What blocks the execution of the RELEASED event

If any of the following conditions arises when the push-button is being pressed, the
RELEASE event cannot be executed.

(1) When an error occurs.

(2) When the PRINTMSG command displays the message.

(3) When the PAGE_CHANGE command switches TP panel screens, using the timer.

If blocking the execution of the RELEASED event with the above conditions raises a
problem, use a workaround in your program as shown on the next page.

Push-button being pressed If any of the following conditions arises, releasing the
push-button does not execute the RELEASED event:
(1) When an error occurs.

(2) When the PRINTMSG command displays the message.

(3) When the PAGE_CHANGE command switches TP
panel screens, using the timer.

30

 Program example requiring a workaround

The program example given below turns I/O [128] on only when the push-button is
being pressed, so it requires a workaround. (While I/O [128] is on, the external
equipment operates.)

Only when the push-button is being pressed, I/O [128] is on. Program example

DEF PB1_CLICKED()
set IO[128]
END
DEF PB1_RELEASED()
reset IO[128]
END

 Workarounds to the occurrence of errors

(1) Workaround 1
With the supervisory task mode or its extension being enabled, run the following
supervisory task that causes a fail-safe operation (that is, turn I/O [128] off) if an error
occurs. (Refer to the SETTING-UP MANUAL, Chapter 3, Sections 3.4.10 and 3.4.11.)

Program TSR1
 DEFINT ERRCODE
 INITWAITERR 'Initialize WAITERROR data.

 WHILE 1
 ERRCODE＝WAITERROR 'Wait until an error occurs.
 IF GETERRLVL(ERRCODE)>1 'If Level 2 or higher error occurs,
 RESET IO[128] 'turn I/O[128] off as fail-safe operation.
 INITWAITERR 'Initialize WAITERROR data.
 ENDIF
 WEND
END

(2) Workaround 2
Use a supervisory task that monitors the deadman switch (Enable switch) state and
add such a process that turns I/O [128] on or off when the deadman switch is pressed
or released, respectively. Accordingly, if an error occurs, releasing the deadman switch
causes a fail-safe operation (turn I/O [128] off).

(3) Workaround 3
Modify the program to turn I/O [128] on for the specified time length when the
push-button is pressed and to cause no change when the push-button is released. This
produces inching-like motion.

Also change the PRINTMSG and PAGE_CHANGE commands to turn I/O [128] on or
off when the switch is pressed or released, respectively.

31

2.2.4 INITIALIZE Event [Version 2.32 or later]

The INITIALIZE event can be added to each panel. It is used to initialize the TP panel
layout.

The INITIALIZE event will be called when any of the following conditions arises.

(1) When pressing [F5 Panel] starts the TP panel screen software.

(2) When booting the controller starts the TP panel screen software.

(3) When the PAGE_CHANGE command switches the TP panel screen.

Step 1

Select a TP panel file, and the INITIALIZE event only becomes available.

Selecting the INITIALIZE event automatically generates a skeleton consisting of the
first (DEF) and last (END) lines as shown below.

DEF Panel_INITIALIZE()
END

Step 2

Flesh out the skeleton with action source code.

Note: The PAGE_CHANGE command cannot be used for this source code.

Select a TP panel file.

Select INITIALIZE event.

Action source code block

32

2.2.5 DONE Event [Version 2.32 or later]

The DONE event is added to the "Numerical input box" and "Text box." Pressing the
OK button on the numerical input box or the text box executes the DONE event.

Example: Numerical input box

Step 1

Select one of the numerical input boxes and select the DONE event.
The action source code block in the following skeleton will be executed.

DEF NB1_DONE()
END

DONE event example: "IO=NB1.Value"

In this example, pressing the OK button sets the property value of the selected part
to a global variable.

Pressing OK executes the DONE event.
Pressing CANCEL produces nothing.

Select one of the numerical input boxes.

Select DONE
event.

The action source
code block
executes.

33

2.2.6 Part Descriptions

[1] Button
This part has two events: CLICKED and RELEASED.

Button Example
The following example illustrates the procedure for creating two buttons: one (labeled
"I/O operation") that turns I/O variable #24 on as long as it is pressed and another
(labeled "Program_run") that runs a program (Sample pro).

Step 1 Create a panel layout with two buttons.

The buttons can go anywhere within the boundaries of the teach pendant screen.

All parts, not just buttons, have a unique name providing read/write accesses to part
properties from the part itself as well as other parts on the same TP panel. The editor
uses as its default Button plus a number, but the developer is free to change names.
The following example simply uses the default names: "Button1" and "Button2."

34

Step 2 Label the buttons by changing their caption properties.

Step 3 Adding action source code

A button has separate action source code blocks for the events CLICKED and
RELEASED. The following example shows how to add action source code for these
two events.

Double-clicking the button labeled "I/O operation" opens an empty Source Code Edit
window.

35

Step 4 Start by adding action source code to turn I/O variable #24 on when the button is

pressed. Selecting the combination Button1 and CLICKED from the Part and Event
list boxes at the top of the Source Code Edit window automatically generates the
corresponding 3-line action source code block skeleton on the editor screen.

Step 5 Flesh out the skeleton with action source code.

36

Step 6 Similarly add action source code to turn I/O variable #24 off when Button1 is

released (RELEASED) and to run a program (Sample pro) when Button2 is pressed
(CLICKED).

Step 7 When the panel layout is complete, save it to disk, and compile the file to check for

syntax, typing, or other errors.

37

Step 8 If the compile operation is successful, download the results to the controller with

WINCAPSIII.

Step 9 Changing button properties

Color, position, and other button properties support read/write access from the part
itself as well as other parts on the same TP panel using the standard dot notation:
part_name.property.

For a list of part properties and possible values, see Section 3.3.4 "Object
Properties."

The following example changes the foreground color (.fg), background color (.bg),
display text (.caption), horizontal position (.x), and vertical position (.y).

Start by loading the editor, adding a button, and opening the corresponding Source
Code Edit window as above.

38

Step 10 Type in the source code as shown below.

Step 11 Save the edits, compile the file, and download the results to the controller as before.

TP Panel Screen with Button Pressed

39

[2] Label
This part simply displays text. It supports no events, so does not accept action source
code.

Label Example

The following example shows how pressing a button on the same screen can change
label properties.

Step 1 Load the editor and place a label and a button on the panel layout.

40

Step 2 Changing label properties

The label properties for display text, color, font size, and character position support
read/write access using the standard dot notation: part_name.property.

Changing the display text for the part named Label1 to "Off" requires the following
line.

Label1.caption="Off"

Changing the foreground color to yellow, the background color to brown, the font
size to big, and the character position to left-justified requires the following lines.

Label1.fg=yellow Foreground color: Yellow
Label1.bg =brown Background color: Brown
Label1.fsize=2 Font size: Big
Label1.justify=2 Character position: Left-justified

Add the above to the skeleton created in the Source Code Edit window for pressing
Button1.

41

Step 3 Compiling this panel layout and downloading it to the controller produces the

following display when the button is pressed.

Before pressing button

After pressing button

42

[3] Pilot Lamp
This part has two display states (ON and OFF) and generates REFRESH events at
regularly scheduled intervals to allow visual monitoring of some state.

Lamp Example

The following example uses a lamp to monitor an I/O state.

Step 1 Load the editor and place a lamp on the panel layout.

43

Step 2 Adding action source code

This part generates REFRESH events at regularly scheduled intervals. Use these to
visually monitor I/O variable #25 by turning the lamp ON and OFF as appropriate. In
the Source Code Edit window, select the lamp's REFRESH event and add the
following line to the skeleton automatically created.

This statement means update the lamp state from the IO[25] state.

44

Step 3 Compiling this panel layout and downloading it to the controller produces the

following displays.

Lamp on

Lamp off

Step 4 Changing lamp properties

The procedures for accessing properties are the same as for all other parts.

45

[4] Numerical Input Box
This part is a button that displays a numerical value. Pressing this button switches the
pendant operation screen to ten-key pad input for directly updating that value.

This part has CLICKED and RELEASED events similar to those for buttons.

Note: In Version 2.32 or later, the DONE event is added to this part. For details, see
Section 2.2.5 "DONE Event."

Numerical Input Box Example

Step 1 Load the editor and place a numerical input box on the panel layout.

(Optional) Specify an initial value.

Step 2 Adding action source code

The procedures for adding action source code are the same as for buttons.

46

Step 3 Changing numerical input box properties

In addition to the color, position, and other properties that this part shares with
buttons, it has the unique properties of a floating-point value (.value) and display
format, decimal or hexadecimal (.style).

This example uses a button press on the same screen to read global string variable
#10 into a text box and store that value in global string variable #11.

Load the editor and place a numerical input box and button on the panel layout.

Open the Source Code Edit window, select Button1 and CLICKED to create the
action source code skeleton, and add the following lines.

The procedures for accessing properties are the same as for all other parts.

47

[5] Text Box
This part is a button that displays a string. Pressing this button switches the pendant
operation screen to keyboard input for directly updating that string.

This part has CLICKED and RELEASED events similar to those for buttons.

Note: In Version 2.32 or later, the DONE event is added to this part. For details, see
Section 2.2.5 "DONE Event."

Text Box Example

Step 1 Load the editor and place a text box on the panel layout.

(Optional) Specify an initial value.

Step 2 Add action source code

This part has CLICKED and RELEASED events similar to those for buttons.

Step 3 Changing text box properties

In addition to the color, position, and other properties that this part shares with
buttons, this part it has the unique property of a display string (.text).

This example uses a button press on the same screen to read global string variable
#10 into a text box and store that value in global string variable #11.

Load the editor and place a text box and button on the panel layout.

Open the Source Code Edit window, select Button1 and CLICKED to create the
action source code skeleton, and add the following lines.

The procedures for accessing properties are the same as for all other parts.

Textbox1.text=S[10]
S[11]=Textbox1.text

48

[6] Check Box
This part toggles a setting between on and off. Access to this setting is via the property
state.

This part has other properties similar to buttons and labels.

Check Box Example

Step 1 Load the editor and place a check box on the panel layout.

Step 2 Adding action source code

This part has CLICKED and RELEASED events similar to those for buttons.

49

Step 3 Read/write access to check box properties

This example shows how pressing a button on the same screen can update IO[24]
to IO[26] from a set of check boxes.

Add a button to the panel layout.

50

Step 4 Open the Source Code Edit window, select Button1 and CLICKED to create the

action source code skeleton, and add the following lines for reading the check box
properties (.state).

IO[24] = checkbox1.state
IO[25] = checkbox2.state
IO[26] = checkbox3.state

Compile this panel layout, download it to the controller, and test.

51

[7] Radio Button
A group (described below) of these parts provides a set of mutually exclusive settings.

These parts have ON/OFF properties (.state) similar to those for lamps and check
boxes.

Radio Button Example

The following example uses radio buttons for three mutually exclusive settings.

Step 1 Load the editor and place a group with three radio buttons on the panel layout.

52

Step 2 Set the property group for all radio buttons to the group number for the group to

ensure mutually exclusive operation of the radio buttons within the group. This
example uses group number 0.

Step 3 Adding action source code

This part has CLICKED and RELEASED events similar to those for buttons.

53

Step 4 Changing radio button properties

Radio buttons have properties similar to those for buttons and labels.

This example shows how pressing a button (Button1) on the same screen can
update both the corresponding output (IO[24] to IO[26]) and a numerical input box
from the corresponding global float variable (F[10] to F[12]) based on the current
states of the radio buttons (RadioButton1 to RadioButton3).

Add the button and numerical input box to the panel layout.

54

Step 5 Open the Source Code Edit window, select Button1 and CLICKED to create the

action source code skeleton, and add the following IF statement branching on the
radio button properties (.state).

 If radiobutton1.state=1 then
 Io[24] = 1
 Numeric1.value = F[10]
 Elseif radiobutton2.state=1 then
 Io[25] = 1
 Numeric2.value = F[11]
 Elseif radiobutton3.state=1 then
 Io[26] = 1
 Numeric1.value = F[12]
 End if

Compile this panel layout, download it to the controller, and test.

55

[8] Group
This part provides mutually exclusive operation for a set of radio buttons.

Group Example

The following example demonstrates mutually exclusive operation with two sets of
radio buttons.

Step 1 Place two groups with three and four radio buttons respectively on the panel layout.

56

Step 2 Assign group number 0 to Group1 and 1 to Group2.

Step 3 Set the property group for all radio buttons to the group number for the group to

which they belong to ensure mutually exclusive operation within the group.

57

[9] Function Key
This part resembles buttons in assigning captions to pendant function keys and action
source code to function key presses, but it lacks the position properties of other parts
because the pendant function keys have fixed positions, specified by number (.index).

Note: In Version 2.32 or later, the RELEASED event is added to this part.

Function Key Example

Step 1 Load the editor and place the function key anywhere on the panel layout in the
Layout window. Note, however, that the final result will not appear at this position,
but on the corresponding function key on the teach pendant screen.

Specify "Next panel" as the display text (.caption) for the function key.

58

Step 2 Specify the desired function key number (0 to 9). This example uses #2.

Step 3 Adding action source code

This part differs from buttons and other parts in supporting only a single event,
CLICKED.

This example responds to the key press by switching to a different panel, Panel2.

Step 4 Changing function key properties

This part differs from other parts in offering only a single property, caption. Access is
the same as for other parts.

59

[10] Timer
This part automatically triggers action source code for the TIMER event at the interval
specified by the property interval.

Timer Example

Step 1 Load the editor and place a timer anywhere on the panel layout in the Layout
window. Note, however, that the final result will not appear on the teach pendant
screen.

Step 2 Changing timer properties

The main properties here are active, which controls (and indicates) timer status, and
interval, which controls event frequency.

This example uses buttons to enable and disable a timer which alternately switches
a pilot lamp on and off.

Load the editor and place a timer, two buttons, and a pilot lamp on the panel layout in
the Layout window.

60

Step 3 Adding action source code

Open the Source Code Edit window, select Timer1 and TIMER, create the action
source code skeleton, and add the following line to switch the lamp ON and OFF.

 If Lightbutton1.state = 1 then
 Lightbutton1.state = 0
 Else
 Lightbutton1.state = 1
 End if

Add the following lines so that the CLICKED events for Button1 ("Start") and Button2
("Stop") respectively enable and disable the timer.

 Timer1.active = 1
 Timer1.active = 0

61

[11] Line
This part draws a straight line with the specified pattern on the panel layout.

The parts line, oval, and rectangle are for drawing only. They support no events.
Nevertheless, other parts on the same screen can still change their properties.

Line Example

Step 1 Load the editor and place a line on the panel layout.

Step 2 Changing line properties

Like all drawing parts, the main properties here are line type (.style) and line
thickness (.thickness).

The following example uses a button press to change line thickness and style.

Add a second line and a button to the panel layout.

62

Step 3 Open the Source Code Edit window and add the following action source code for

changing the line 1 thickness to 5 pixels and the line 2 style to dotted line when the
button is pressed.

Step 4 Compiling this panel layout and downloading it to the controller produces the

following displays.
Before button press

After button press

63

[12] Oval
This part draws an oval with the specified pattern on the panel layout.

The parts line, oval, and rectangle are for drawing only. They support no events.
Nevertheless, other parts on the same screen can still change their properties.

Oval Example

Step 1 Load the editor and place an oval on the panel layout.

Step 2 Changing oval properties

Like all drawing parts, the main properties here are line type (.style) and line
thickness (.thickness).

The procedures for accessing properties are the same as for all other parts.

[13] Rectangle
This part draws a rectangle with the specified pattern on the panel layout.

The parts line, oval, and rectangle are for drawing only. They support no events.
Nevertheless, other parts on the same screen can still change their properties.

Rectangle Example

Step 1 Load the editor and place a rectangle on the panel layout.

Step 2 Changing rectangle properties

Like all drawing parts, the main properties here are line type (.style) and line
thickness (.thickness).

The procedures for accessing properties are the same as for all other parts.

64

[14] Illuminated Push Button
An illuminated push button combines button and lamp operation. It therefore supports
CLICKED, RELEASED, and REFRESH events for adding action source code.

The property state gives the lamp's current state just as it does for lamps and check
boxes.

Illuminated Push Button Example

Step 1 Load the editor and place the button just as you would with a regular button.

Step 2 Changing illuminated push button properties

The following example uses illuminated push buttons to run a program and display
an I/O state. Pressing this button runs a program in the same folder. (This program
waits two seconds and then turns IO[24] on.) The lamp in the button tracks IO[24].

Add the necessary parts to the panel layout.

65

Step 3 Adding action source code

This part supports three events for adding action source code: CLICKED,
RELEASED, and REFRESH. This example uses only two.

lbutton1.state = io[24] ' copy IO[24] state into Lightbutton1

Step 4 Write the program to run using WINCAPSIII.

Compile this and the panel layout, download them to the controller, and test.

66

2.3 Interfaces with PAC Language and System

Data exchange between the PAC language and the TP panel is via global and folder
variables.

The interface with the system uses the SYSSTATE command and I/O variables.

2.3.1 Reading and Displaying PAC Variables
A TP panel can access PAC global and folder variables, but not local ones. Folder
variables require EXTERN declarations; global ones do not.

The following examples display such variables on TP panels.

Example Displaying Global Variables

Accessing a global variable uses array notation with the array name indicating the
type: I for integer, F for float, D for double, and S for string. Global integer variable #10,
for example, is I[10].

The following example displays a global variable of each type in a numerical input box
(or text box for the string) when a button is pressed.

Step 1 Load the editor and place a button, three numerical input boxes for displaying the
three numerical variables, and a text box for displaying the string variable on the
panel layout.

67

Step 2 Open the Source Code Edit window and add the following action source code for

when this button is pressed. This example copies global integer variable #10, float
variable #11, and double variable #12 to numerical input boxes and global string
variable #13 to a text box.

 Numeric1.value = I[10]
 Numeric2.value = F[11]
 Numeric3.value = D[12]
 Textbox1.text = S[13]

Step 3 Compiling this panel layout and downloading it to the controller produces a display

similar to the following when the button is pressed.

68

Example Displaying Folder Variables

Accessing folder variables in action source code for a button or other part requires first
declaring them with EXTERN plus a reserved word (DEFINT, DEFSNG, DEFDBL, or
DEFSTR) indicating the type. To access folder integer variable itest, for example, the
action source code must first declare it with the following statement.

EXTERN DEFINT itest

The following example displays a folder variable of each type in a numerical input box
(or text box for the string) when a button is pressed.

Step 1 Load the editor and place a button, three numerical input boxes for displaying the
three numerical variables, and a text box for displaying the string variable on the
panel layout.

Note that the layout is identical to that for the global variable example above.

Step 2 Open the Source Code Edit window and add the following action source code for
when this button is pressed. This example copies integer ITEST, float FTEST, and
double DTEST to numerical input boxes and string STEST to a text box.

 EXTERN DEFINT ITEST
 EXTERN DEFSNG FTEST
 EXTERN DEFDBL DTEST
 EXTERN DEFSTR STEST

 Numeric1.value = ITEST
 Numeric2.value = FTEST
 Numeric3.value = DTEST
 Textbox1.text = STEST

69

2.3.2 Modifying PAC Variables

Modifying PAC variables is simply the write access counterpart of the read access
described in the preceding section.

Example Modifying Global Variables

The following example updates a global variable of each type from the corresponding
numerical input box (or text box for the string) when a button is pressed.

Step 1 Load the editor and place a button, three numerical input boxes for specifying the
three numerical values, and a text box for specifying the string on the panel layout.

70

Step 2 Open the Source Code Edit window and add the following action source code for

when this button is pressed. This example copies the three numerical values to
global integer variable #20, float variable #21, and double variable #22 and the
string to global string variable #23.

 I[20]=Numeric1.value
 F[21]=Numeric2.value
 D[22]=Numeric3.value
 S[23]=Textbox1.text

71

Example Modifying Folder Variables

Accessing folder variables in action source code for a button or other part requires first
declaring them with EXTERN plus a reserved word (DEFINT, DEFSNG, DEFDBL, or
DEFSNG) indicating the type.

The following example updates a folder variable of each type from the corresponding
numerical input box (or text box for the string) when a button is pressed.

Step 1 Load the editor and place a button, three numerical input boxes for specifying the
three numerical values, and a text box for specifying the string on the panel layout.

Note that the layout is identical to that for the global variable example above.

Step 2 Open the Source Code Edit window and add the following action source code for
when this button is pressed. This example copies integer ITEST, float FTEST, and
double DTEST to numerical input boxes and string STEST to a text box.

 EXTERN DEFINT ITEST
 EXTERN DEFSNG FTEST
 EXTERN DEFDBL DTEST
 EXTERN DEFSTR STEST

 ITEST=Numeric1.value
 FTEST=Numeric2.value
 DTEST=Numeric3.value
 STEST=Textbox1.text

72

2.3.3 Reading I/O States

A TP panel can read robot controller I/O states via global I/O variables or local I/O
variables declared with DEFIO. We postpone discussion of the latter to the local
variable description below.

Example Using Global I/O Variables

Accessing a global I/O variable uses array notation with the array name IO.

This example monitors global I/O variables #24 to #27 with lamps updated at regularly
scheduled intervals.

Step 1 Load the editor and place four lamps on the panel layout.

73

Step 2 In the Source Code Edit window, select the REFRESH event for one lamp (This

example uses LightButton1.) and add the following action source code for copying
the I/O states to the lamps at regularly scheduled intervals to the skeleton
automatically created.

 LightButton1.state = IO[24] ' copy I/O variable #24 state into LightButton1
 LightButton2.state = IO[25] ' copy I/O variable #25 state into LightButton2
 LightButton3.state = IO[26] ' copy I/O variable #26 state into LightButton3
 LightButton4.state = IO[27] ' copy I/O variable #27 state into LightButton4

74

2.3.4 Modifying I/O States

Use the SET and RESET commands to modify system I/O states.

ON: SET IO[I/O number]
OFF: RESET IO[I/O number]

Example Modifying I/O States

The following example updates I/O variables #28 to #31 from the corresponding check
boxes when a button is pressed.

Step 1 Load the editor and place four check boxes and a button on the panel layout.

75

Step 2 Open the Source Code Edit window and add the following action source code for

updating the outputs from the check boxes.

 IO[28]=Checkbox1.state ' update I/O variable #28 from Checkbox1
 IO[29]=Checkbox2.state ' update I/O variable #29 from Checkbox2
 IO[30]=Checkbox3.state ' update I/O variable #30 from Checkbox3
 IO[31]=Checkbox4.state ' update I/O variable #31 from Checkbox4

76

2.3.5 Reading System Status

The SYSSTATE command reads the system status.

For further details on this and other commands, see Chapter 5 "Command Reference."

Example Reading System Status

The following example lights a lamp when the controller is in automatic mode.

Step 1 Load the editor and place a lamp on the panel layout.

77

Step 2 In the Source Code Edit window, select the lamp's REFRESH event and add the

following action source code for updating the lamp based on the mode data read
from the controller at regularly scheduled intervals to the skeleton automatically
created. (This example uses the default name LightButton1.)

 DEFINT STAT, AUTOSTAT

 STAT=SYSSTATE
 AUTOSTAT = &H0010 AND STAT
 IF AUTOSTAT = 0 THEN
 LIGHTBUTTON1.state = 0
 ELSE
 LIGHTBUTTON1.STATE = 1
 END IF

78

2.4 Switching TP Panels

The PAGE_CHANGE command switches the teach pendant screen to a different TP
panel in the same folder or even one in a different folder. It has the following syntax.

Same folder: PAGE_CHANGE panel_name
Different folder: PAGE_CHANGE path_name.panel_name
Root folder: PAGE_CHANGE \panel_name

2.4.1 Example Switching in Same Folder

The following example has three panel layouts in the same folder with two buttons on
each for freely moving between them.

Step 1 Load the editor, create three panel layouts with two buttons on each, and label the
buttons for the two other panel layouts.

79

Step 2 Open Source Code Edit windows for the panel layouts and add the appropriated line

from the following action source code to each button's CLICKED event.

PAGE_CHANGE PANEL1 ' switch screen to PANEL1
PAGE_CHANGE PANEL2 ' switch screen to PANEL2
PAGE_CHANGE PANEL3 ' switch screen to PANEL3

Compile the panel layouts, download them to the controller, and test.

80

2.4.2 Example Switching Between Folders

The following example has three panel layouts all in different folders in a 3-level
hierarchy with two buttons on each for freely moving between them.

Step 1 Create the 3-level hierarchy with WINCAPSIII.

Load the editor, create three panel layouts, one at each level, with two buttons on
each, and label the buttons for the two other panel layouts.

Step 2 Open Source Code Edit windows for the panel layouts and add the appropriated line

from the following action source code to each button's CLICKED event.

PAGE_CHANGE FOLDER1.PANEL1 ' switch screen to PANEL1 in FOLDER1
relative to the current folder

PAGE_CHANGE FOLDER2.PANEL1 ' switch screen to PANEL1 in FOLDER2
relative to the current folder

PAGE_CHANGE FOLDER1.FOLDER2.PANEL1
 ' switch screen to PANEL1 in

FOLDER1.FOLDER2 relative to the current
folder

PAGE_CHANGE \PANEL3 ' switch screen to PANEL1 in the root folder
using absolute folder reference

81

Step 2

(continued)

Compile the panel layouts, download them to the controller, and test.

82

2.5 Flow Control

The TP panel control language has three types of flow control statements: conditional
branches IF... END IF and IF... THEN... ELSE..., SELECT... CASE, and iteration FOR...
NEXT.

The following sections give examples.

2.5.1 Conditional Branching
Example Using IF... END IF

The following IF statement example reads a global variable into a numerical input box if
an I/O condition is met.

Step 1 Load the editor and place a numerical input box and a button to trigger the test on
the panel layout.

Step 2 Open the Source Code Edit window and add action source code updating the
numerical input box from global integer variable #10 only if I/O variable #24 is 1
when this button is pressed.

Compile the panel layout, download it to the controller, and test.

83

Example Using SELECT... CASE

The following SELECT... CASE example runs a different program according to the
value in a numerical input box when a button is pushed.

Step 1 Load the editor and place a button and a numerical input box on the panel layout.

Step 2 Open the Source Code Edit window and add the following action source code for the
button's CLICKED event.

DEFINT TYPE

 TYPE = Numeric1.value
 SELECT CASE TYPE
 CASE 0
 RUN PRO0
 CASE 1
 RUN PRO1
 CASE 2
 RUN PRO2
 CASE ELSE
 RUN PRO10
 END SELECT

Compile the panel layout, download it to the controller, and test.

84

2.5.2 Iteration

Example Using FOR...NEXT

The following FOR... NEXT example counts the number of zero values in global integer
variables #0 to #99 when a button is pushed and displays the result in a numerical
input box.

Step 1 Load the editor and place a button and a numerical input box on the panel layout.

Step 2 Open the Source Code Edit window and add the following action source code for the
button's CLICKED event.

DEFINT COUNT,ZEROCOUNT=0

 FOR COUNT = 0 TO 99
 IF I[COUNT] = 0 THEN
 ZEROCOUNT = ZEROCOUNT + 1
 END IF
 NEXT
 NUMERIC1.VALUE = ZEROCOUNT

Compile the panel layout, download it to the controller, and test.

85

2.6 Local Variables

The TP panel control language supports local variables of type integer, float, double,
string, and I/O.

Declaring a variable inside an action source code block makes it local--that is,
accessible only that block.

DEF Button1_CLICKED()

Valid range for COUNT and
ZEROCOUNT

 DEF Button1_CLICKED()
 DEFINT COUNT,ZEROCOUNT=0

 FOR COUNT = 0 TO 99
 IF I[COUNT] = 0 THEN
 ZEROCOUNT = ZEROCOUNT + 1
 END IF
 NEXT
 NUMERIC1.VALUE = ZEROCOUNT

END

Example Using Local Variables

The following example copies global variables into local ones when a button is pressed,
manipulates the local variables, and copies the results back to the original global
variables.

Step 1 Load the editor and place a button on the panel layout.

86

Step 2 Open the Source Code Edit window and add the following action source code for

* reading global integer variable #10 into a local integer variable, multiplying it by 10,
and writing the result back

* reading global float variable #10 into a local float variable, multiplying it by 20, and
writing the result back

* reading global double variable #10 into a local double variable, multiplying it by 10,
and writing the result back

* reading global string variable #10 into a local string variable, adding "end," and
writing the result back

DEFINT ITEST
DEFSNG FTEST
DEFDBL DTEST
DEFSTR STEST

ITEST = I[10]
FTEST = F[10]
DTEST = D[10]
STEST = S[10]

ITEST = ITEST * 10
FTEST = FTEST * 20
DTEST = DTEST * 10
STEST = STEST + “END”

I[10] = ITEST
F[10] = FTEST
D[10] = DTEST
S[10] = STEST

Compile the panel layout, download it to the controller, and test.

87

Chapter 3 TP Panel Control Language's Structural
Elements

3.1 Language Elements
The TP panel control language has the following structural elements.

identifier Name distinguishing a structural element
variable Temporary storage for data
constant Data with a fixed value
operator Symbol indicating an operation on one or two values
expression Combination of structural elements yielding a value
command Built-in PAC language instruction

3.2 Names
This section sets forth the TP panel control language's rules.

Names representing commands and variables must comply with the following rules.

● Names consist of letters, digits, and underscores. The first character must be a letter.
Note that there is no distinction between upper and lower case.

● The following characters cannot be used in identifiers: period, slash, backslash,
space, colon, semicolon, single quote, double quote, and asterisk.

● Certain characters are used as operators, so cannot be used in identifiers: +, -, *, /,
(,), etc.

● A space or other delimiter must separate a name from other words on either side.

● The maximum permissible length for a name is 64 characters.

88

3.3 Identifiers and Variables

3.3.1 Variables

Variables represent temporary storage for data. There are global variables, local
variables, and, for TP panel parts, object properties.

A global variable is accessible from all TP panel files.

A local variable is accessible only within the program defining it. Another program
running concurrently may define its own local variable with the same name, but the two
never interact because they are considered entirely separate variables.

An object property is accessible only within the TP panel file defining the object (part).

The following figure illustrates the relationships between parts objects and programs.

3.3.2 Global Variables

These have names consisting of one or two letters indicating the type--I for integer, F
for float, D for double, S for string, and IO for I/O--and a number in brackets ([]). These
names are predefined by the system, so can be used without declarations.

I: integer, -2147483648 to +2147483647
F: single-precision floating point, -3.402823E+38 to 3.402823E+38
D: double-precision floating point, -1.7976931348623157E+308 to

1.7976931348623157E+308
S: string, up to 243 bytes long
IO: I/O line

Examples: I[1], F[1], D[1], S[1], IO[1]

89

3.3.3 Local Variables

These have the same types as global ones.

I integer -2147483648 to +2147483647
F single-precision floating point -3.402823E+38 to 3.402823E+38
D double-precision floating point -1.7976931348623157E+308 to

1.7976931348623157E+308
S string up to 243 bytes long
I/O I/O line

A local variable must be defined with a type declaration directive before it can be used.

Note: The TP panel control language does not share the PAC language's support for
indirect reference or post-positions.

3.3.4 Object Properties

Object properties provide read/write access to TP panel screen part internals using the
standard dot notation: part_name.property.

Examples:

(1) Change the caption for the part named Button1 to "Button"

(2) Read the state for the part named LightButton1 into I[1]

The following table lists parts, their events, and their properties.

Object Properties for TP Panel Screen Parts

Part Type Property Name Type Meaning Notes

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Visible and active
settings

0: Invisible & inactive
Add 1 for visible and 2 for active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).

style I Display style 0: 2D rectangle, 1: 3D rectangle,
2: 2D oval, 3: 3D oval

caption S Display text String, max. 80 bytes

fsize I Font size 0: Tiny, 1: Small, 2: Standard, 3: Big

Button

Events:
CLICKED,
RELEASED

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified

90

Part Type Property Name Type Meaning Notes

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Active setting 0: Invisible, 1: Visible

caption S Display text String, max. 80 bytes

fsize I Font size 0: Tiny, 1: Small, 2: Standard, 3: Big

Label

Events:
None

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Active setting 0: Invisible, 1: Visible

style I Display style 0: 2D rectangle, 1: 3D rectangle,
2: 2D oval, 3: 3D oval

caption S Display text String, max. 80 bytes

fsize I Font size 0: Tiny, 1: Small, 2: Standard, 3: Big

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified
Note: This setting is ignored for style settings 2
and 3.

Lamp

Events:
REFRESH

state I State 0: Out, 1: On

91

Part Type Property Name Type Meaning Notes

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Active setting 0: Invisible, 1: Visible

style I Display style 0: Solid line

1 to 7: Dash (dashed line)

8 to 14: Dash double (alternate long and two
short dashed line)

Line

thickness I Line thickness The 0 setting produces a line width of 2.

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Visible and active
settings

0: Invisible & inactive. Add 1 for visible and 2 for
active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).

style I Display style 0: 2D, 1: 3D

caption S Display text String, max. 80 bytes

fsize I Font size 0: Tiny, 1: Small, 2: Standard, 3: Big

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified

Numerical
Input
Button

Events:
CLICKED,
RELEASED

value D Input value Equivalent to variable of type double

92

Part Type Property Name Type Meaning Notes

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Active setting 0: Invisible, 1: Visible

style I Display style 0: Solid line

1 to 7: Dash (dashed line)

8 to 14: Dash double (alternate long and two
short dashed line)

Oval
(Circle)

thickness I Line thickness The 0 setting produces flood fill.

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Active setting 0: Invisible, 1: Visible

style I Display style 0: Solid line

1 to 7: Dash (dashed line)

8 to 14: Dash double (alternate long and two
short dashed line)

Rectangle

thickness I Line thickness The 0 setting produces flood fill.

93

Part Type Property Name Type Meaning Notes

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Visible and active
settings

0: Invisible & inactive. Add 1 for visible and 2 for
active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).

style I Display style 0: 2D, 1: 3D

caption S Display text String, max. 80 bytes

fsize I Font size 0: Tiny, 1: Small, 2: Standard, 3: Big

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified

Text Box

Events:
CLICKED,
RELEASED

text S Input text Equivalent to variable of type string

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Active setting 0: Invisible, 1: Visible

caption S Display text String, max. 80 bytes

fsize I Font size 0: Tiny, 1: Small, 2: Standard, 3: Big

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified

thickness I Line thickness The 0 setting produces a line width of 2.

Group

myGroup I Group number Number identifying group

94

Part Type Property Name Type Meaning Notes

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Visible and active
settings

0: Invisible & inactive. Add 1 for visible and 2 for
active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).

style I Display style 0: 2D check box

1: 3D check box

2: 3D button

caption S Display text String, max. 80 bytes
Note: Specifying too long a string produces
string overlap on the button surface.

fsize I Font size 0: Standard, 1: Small, 2: Big

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified

Check Box

Events:
CLICKED,
RELEASED

state I State 0: Off, 1: On

95

Part Type Property Name Type Meaning Notes

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Visible and active
settings

0: Invisible & inactive. Add 1 for visible and 2 for
active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).

style I Display style 0: 2D check box

1: 3D check box
2: 3D button

caption S Display text String, max. 80 bytes
Note: Specifying too long a string produces
string overlap on the button surface.

fsize I Font size 0: Tiny, 1: Small, 2: Standard, 3: Big

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified

Radio
Button

Events:
CLICKED,
RELEASED

state I State 0: Off, 1: On

caption S Display text String Function
Key

Events:
CLICKED

index I Function key
number

1 to 12

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

group I Group number Group to which part belongs

active I Active setting 0: Inactive, 1: Active

Timer

Events:
TIMER

interval I Interval Spacing, in ms, between events

96

Part Type Property Name Type Meaning Notes

x and y I Upper left corner
coordinates

Position relative to the upper left corner of the
drawing region. This corner must be within the
teach pendant drawing range.

width and
height

I Part dimensions in
pixels

These define the corner opposite the reference
corner (x, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.

fg and bg I Foreground and
background colors

1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow

group I Group number Group to which part belongs

active I Visible and active
settings

0: Invisible & inactive. Add 1 for visible and 2 for
active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).

style I Display style 0: 2D rectangle, 1: 3D rectangle,
2: 2D oval, 3: 3D oval

caption S Display text String, max. 80 bytes

fsize I Font size 0: Tiny, 1: Small, 2: Standard, 3: Big

justify I Caption positioning 0: Centered, 1: Right-justified, 2: Left-justified
Note: This setting is ignored for style settings 2
and 3.

Illuminated
Push Button

Events:
CLICKED,
RELEASED,
REFRESH

state I State 0: Out, 1: On

3.3.5 Folder Variables
To access a folder variable declared by a PAC program in the same folder, a TP panel
file must first declare it with an EXTERN declaration.

Example: EXTERN DEFINT AAA ' declare folder variable with name AAA

Read/write access then uses the same syntax as normal variables.

Examples:
AAA = LightButton1.state ' read lamp LightButton1 state into folder variable AAA
I[2] = AAA ' copy contents of folder variable AAA into global

variable I[2]

97

3.4 TP Panel Program

A TP panel program consists solely of action source code blocks with the following
structure.

DEF Object_Event
 desired operations
END

Selecting an object and an action in the editor automatically generates a skeleton
consisting of the first (DEF) and last (END) lines. The developer needs only supply the
source code specifying the desired response.

The table below lists the possibilities.

Note: The actions available depend on the part type.

Event Description

CLICKED Button pressed
RELEASED Button released
TIMER Interval elapsed
REFRESH Screen refreshed

For further details, see Section 2.2.2 "Specifying Action Source Code for Parts."

One TP panel program cannot access the local variables in another.

3.5 Data Types
The TP panel control language supports three types of data:

(1) String data (S)
A string can be up to 243 bytes long.

(2) Numerical data (I, F, and D)
There are three types here.

I: integer, -2147483648 to +2147483647

F: single-precision floating point, -3.402823E+38 to 3.402823E+38

D: double-precision floating point, -1.7976931348623157E+308 to
1.7976931348623157E+308

(3) I/O data (IO)
I/O data expresses the I/O port status (ON/OFF) as a numeric value.

98

3.6 Type Conversion

Mixing data of different numerical types involves type conversion using the following
rules.

- Assigning a numerical value to a numerical variable of a different type involves first
converting that value to the target variable's type. (implicit casting)

- An expression mixing two numerical values of different types usually involves first
converting the one with lower precision to the type with higher precision. (promoting)

- The only exception to the preceding rule involves bitwise logical operators, which
always convert their operands to integers and yield integer results.

- Converting a floating point value to an integer rounds toward zero, yielding the first
integer between the original value and zero. Examples: 1.23 -> 1 and -1.23 -> -1.

- Assigning a double-precision floating point (double) value to single-precision (float)
one rounds the mantissa off to seven decimal digits.

3.7 Constants
A constant is an expression representing a fixed value.

The TP panel control language supports four types of constants: integer (I), float (F),
double (D), and string (S).

The following describes them individually.

(1) Integer constants
These cover the range -2147483648 to +2147483647.

There are two ways to specify them: in decimal and binary notation. There is no
hexadecimal notation.

Decimal Notation

These are integer constants specified in standard decimal notation.

Examples: 32767, -125, +10

Binary Notation

These are integer constants specified in a binary notation consisting of a prefix (&B)
and a string of binary digits (0 or 1). Using this binary notation, the valid range for
(32-bit) integer constants is &B0 to &B11111111111111111111111111111111.

Examples: &B110, &B0011

99

(2) Float constants
These are single-precision floating point constants with up to 7-digit mantissas over the
range -3.402823E+38 to 3.402823E+38.

There are two ways to specify them: in decimal and exponential (E) notation.

Examples: 1256.3, -9.345E-06

(3) Double constants
These are double-precision floating point constants with up to 15-digit mantissas over
the range -1.79769313486231E+308 to 1.79769313486231E+308.

There are two ways to specify them: in decimal and exponential (E) notation.
Example 1: 1256.325468

This has more than 7 decimal digits, so does not fit in a float.
Example 2: -9.345E-06

(4) String constants
These are constants consisting of up to 128 characters, enclosed in double quotes (").

Example: "PAC"

3.8 Expressions and Operators
Expressions evaluate to a value. An expression can be anything from a single
"element" (constant or variable) to an arithmetic formula combining such elements with
operators. The PAC language offers expressions for all data types that it supports. This
section describes operators and their operations on elements in expressions.

(1) Assignment operator (=)
An assignment statement "assigns" (copies) the result of evaluating the expression on
the right side of this operator to the variable on the left.

100

(2) Arithmetic operators
The following table lists these operators and gives their order of precedence during
expression evaluation.

Arithmetic Operators

Operator Description Order of Precedence
^ Exponentiation Highest
- Unary minus
*, / Multiplication and division
MOD Modulus
+, - Addition and subtraction Lowest

Sign of Division Results

Divisor
(right element)

Left element
+ 0 -

+ + Error +
0 0 Error 0
- - Error +

(3) Relational operators
Relational operators compare two numerical values and return a Boolean result: 1 for
true and 0 for false. The archetypical use is as the conditional expression in a flow
control statement.

Relational Operators

Operator Description
= equal

<> not equal
< less than
> greater than

<= less than or equal
=. approximately equal
>= greater than or equal

101

(4) Bitwise logical operators
These operators perform bit arithmetic (logical) operations on the bits of their
operands.

Note that operands are first converted to integers, if necessary.

Bitwise Logical Operators

Operator Description
NOT Invert
AND Logical product
OR Logical sum

XOR Mutually exclusive OR

Example: I1 = &B1100 XOR &B0101

The result is &B1001 because the bits differ only in the first and fourth positions.

(5) String operator (+)
This operator concatenates (joins) two strings.

Example: A = "ABC" + "DEF"

String A becomes "ABCDEF."

(6) Order of precedence for arithmetic, bit arithmetic, and relational
operators

The following table gives the order of precedence for mixtures of these operators
during expression evaluation.

Operator Description Order of Precedence
^ Exponentiation Highest
- Unary minus
*, / Multiplication and division
MOD Modulus
+, - Addition and subtraction
NOT Invert
AND Logical product
OR Logical sum
XOR Mutually exclusive OR
=, <>, <, >, <=, >= Relational operators Lowest

When two operators have the same order of precedence, expression evaluation is
from left to right. To override this behavior, explicitly specify the order of evaluation with
parentheses,

102

Chapter 4 TP Panel Control Language Syntax
4.1 Statements and Lines

A TP panel control language program consists of lines with one statement per line. A
line can be up to 255 bytes long.

A statement is the minimum unit for PAC language programming. It consists of a single
command.

A command consists of the command name plus parameters specifying additional
information to the command.

4.2 Character Set
The TP panel control language uses ASCII letters, digits, and certain special
characters. It does not distinguish between upper and lower case.

These special characters consist of the arithmetic operators (+, -, *, and /) plus the
following.

comma (,): Delimiter for parameters
single quote ('): In-line counterpart of the REM command
double quote ("): Beginning and end markers for a string constant
space: Delimiter before and after instruction name

4.3 Reserved Words
Command names, the MOD operator, and other words are reserved--that is, have a
preassigned function in processing the TP panel control language, so cannot be used
and names for variables, panels, etc.

TP Panel Reserved Word List

if, then, else, elseif, while, do, return, print, add_widget, msgbox, page_change,
set, reset, run, kill, suspend, suspendall, killall, caption, fg, bg, timeout,
defint, defsng, defdbl, defstr, defio, in, out, break, continue, var, def, pend,
for, refresh, extern, begin, end, wend, next, endif, status, str$, continuerun,
io, i, f, d, s, sysstate, curoptmode, time$, date$, timer, select, case, is, to,
deadmanstate, sprintf$, releasemode, pnlccver, chr$, step

103

4.4 Declaration Directives

These specify names and types for variables, constants, functions, and other items so
that the program can use them. There are three major types.

(1) Type declarations
These specify types for variables and constants.

Type Declaration Directives

Type Command Example
integer DEFINT DEFINT AA,AB
float DEFSNG DEFSNG BA,BB
double DEFDBL DEFDBL CA,CB
string DEFSTR DEFSTR DA,DB

They can also simultaneously initialize the variables.

Examples:

DEFINT AA = 1 ' declare AA as an integer and initialize to 1
DEFSNG BB(10) ' declare BB as a float array with 10 elements

(2) Array declarations
Array declarations use type declaration directives specifying the number of elements.
All types except I/O variables support arrays.

Note, however, that type declaration directives cannot initialize arrays.

Array subscripts start at 0.

An array can have up to three dimensions.

An array can have up to 32767 elements in total.

Example:

DEFINT CC(3,3,3) ' declare CC as 3-dimensional integer array

(3) I/O variable declarations
These assign variable names to specific I/O ports.

I/O Variable Declarations

Type Command Example
I/O variable DEFIO DEFIO PORT = BYTE, 104

104

4.5 Assignment Statements

An assignment statement "assigns" (copies) a value to a variable of some type.

There are two types.

Numerical: This assigns the result of a numerical expression to a numerical variable.

Example: D[2] = 3.14 ' set D[2] to 3.14

String: This assigns the result of a string expression to a string variable.

Example: S[2] = "DENSO"' set S[2] to "DENSO"

4.6 Flow Control Statements
Flow control statements change statement execution order.

There are three main types.

(1) Conditional branching
IF... THEN... ELSE and IF... END IF statements change execution flow based on
whether the specified condition is satisfied. Execution branches to the statements
following the THEN if the relational expression immediately following the IF evaluates
to TRUE (1) and to those following the ELSE otherwise.

(2) SELECT... CASE
Here execution branches to the CASE line matching the result of evaluating the
specified arithmetic expression on the SELECT line, executing the statement block
between that CASE line and the next one (or END SELECT line). If there is no such
match, execution branches to the CASE ELSE block.

(3) Iteration
Here execution of the statement block between the FOR and NEXT lines repeats as
long as the condition specified on the FOR line remains satisfied.

105

4.7 I/O Control Statements

There are three types here.

(1) DI and DO control statements
These directly control I/O ports.

DI/DO Commands

Command Description
IN Read data from the I/O port designated by an I/O variable.
OUT Output data to the I/O port designated by an I/O variable.
SET Set an I/O port to ON.
RESET Set an I/O port to OFF.

(2) Teach pendant control statements
These control teach pendant screen I/O.

Teach Pendant Commands

Command Description
MSGBOX Display message screen.
PAGE_CHANGE Display the specified TP panel.
REFRESH Redraw screen.

4.8 Task Control Statements
These control the multitasking of tasks other than the one containing the statement.

Task Control Commands

Command Description
RUN Create/initiate task.
SUSPEND Interrupt task.
KILL Delete task.
SUSPENDALL Interrupt all tasks.
KILLALL Delete all tasks.
CONTINUERUN Resume suspended task.

106

4.9 Functions

The following string functions are available.

String Functions

Function Description
STR$ Convert a value to a character string.
CHR$ Specify a character using a numeric code.

4.10 System Information
The following commands return system information.

System Information Commands

Command Description
STATUS Obtain the program status.
CUROPTMODE Get the current operation mode.
SYSSTATE Get the system status of the robot controller.

4.11 Preprocessor
A preprocessor statement controls string substitution or file fetch in compiling
programs--that is, translating them into executable form.

Preprocessor Commands

Command Description
#define Define macro (symbolic name) for constant or string.
#include Insert the specified file at this point.

107

Chapter 5 Command Reference
5.1 List of TP Panel Control Commands

 Classified by functions Commands Functions
4-axis 6-axis

Declaration Statements
Local Variable
 Integer

DEFINT Declare an integer type variable. The range of the
integer is from -2147483648 to 2147483647.

 Floating-point DEFSNG Declare a single precision real type variable. The
range of single precision real variables is from
-3.402823E+38 to 3.402823E+38.

 Double-precision DEFDBL Declare a double precision real type variable. The
range of double precision real type variables is from
-1.79769313486231D + 308 to
1.79769313486231D + 308.

 String DEFSTR Declare a character string type variable. You can
enter 247 characters or less as a character string.

 I/O DEFIO Declare an I/O variable corresponding to the
input/output port.

Flow Control Statements
Repeat FOR…NEXT Repeatedly execute a series of instructions

between FOR…NEXT sections.

Conditional Branch IF…END IF Conditionally decide a conditional expression
between IF…END IF.

 SELECT CASE Execute a plural condition decision.
Input/Output Control
Statements

I/O Port IN Read data from the I/O port designated by an I/O
variable.

 OUT Output data to the I/O port designated by an I/O
variable.

 SET Set an I/O port to ON.
 RESET Set an I/O port to OFF.
TP Panel MSGBOX Display message screen.
 PAGE_CHANGE Display the specified TP panel.
Multitasking Control
Statements

Task Control RUN Concurrently run another program.
 KILL Forcibly terminate a task.
 SUSPEND Suspend a task.
 SUSPENDALL Suspend all running programs except supervisory

tasks.

 KILLALL Forcibly terminate all tasks except supervisory
tasks.

 CONTINUERUN Continue-run tasks.
 DEADMANSTATE Obtain the current deadman switch state.
Constants
Built-in Constants OFF Set an OFF (0) value.
 ON Set an ON (1) value.
 PI Set a π value.
 FALSE Set a value of false (0) to a Boolean value.
 TRUE Set a value of true (1) to a Boolean value.
Time/Date Control
Time/Date DATE$ Obtain the current date.
 TIME$ Obtain the current time.
 TIMER Obtain the elapsed time.

108

 Classified by functions Commands Functions

4-axis 6-axis
Functions
 STR$ Convert a value to a character string.
 CHR$ Convert an ASCII code to a character.
 SPRINTF$ Convert an expression to a designated format and

returns it as a character string.

System Information
Operation Mode CUROPTMODE Get the current operation mode.
 SYSSTATE Get the system status of the robot controller.
 STATUS Obtain the program status.
Preprocessor
Symbol Constants
Macro Definitions

#define Replace a designated constant or macro name in
the program with a designated character string.

File Fetch #include Fetch the preprocessor program.

109

5.2 Declaration Statements

DEFINT (Statement)

Function

Declare an integer variable within the range from −2147483648 to 2147483647.

Format
DEFINT <Variablename>[=<Constant>][,<Variablename>[=<Constant>]...]

Explanation
This statement declares the variable designated by <Variablename> as the integer
type variable. By writing a constant after <Variablename>, initialization can be carried
out simultaneously with the declaration.

Multiple variable names can be declared at a time by delineating the names using ",".

Related Terms
DEFDBL, DEFSNG, DEFSTR

Example
 DEFINT lix, liy, liz 'Declare lix, liy, and liz as integer type variables.
 DEFINT lix = 1 'Declare lix as an integer type variable and set
 'the initial value to 1.

DEFSNG (Statement)

Function

Declare a single precision real type variable.

The range of single precision real variables is from -3.402823E+38 to 3.402823E+38.

Format
DEFSNG <Variablename>[=<Constant>][,<Variablename>[=<Constant>]...]

Explanation
This statement declares a variable designated by <Variablename> as a single
precision real type variable. By writing a constant after <Variablename>, initialization
can be done simultaneously with the declaration.

Multiple variable names can be declared at a time by separating them with a comma
",".

Related Terms
DEFDBL, DEFINT, DEFSTR

Example
 DEFSNG lfx, lfy, lfz 'Declare lfx, lfy, and lfz as single precision real type
 'variables.
 DEFSNG lfx = 1.0 'Declare lfx as a single precision real type variables and
 'set the initial value to 1.0.

110

DEFDBL (Statement)

Function

Declare a double-precision variable of type real.
The range of double precision real type variables is from -1.79769313486231D + 308
to 1.79769313486231D + 308.

Format
DEFDBL <Variablename>[=<Constant>][,<Variablename>[=<Constant>]...]

Explanation
This statement declares the variable designated by <Variablename> as a double
precision real type variable. By writing a constant after <Variablename>, initialization
can be performed simultaneously with the declaration.

Multiple variable names can be declared at a time by separating each variable name
by a comma (",").

Related Terms
DEFINT, DEFSNG, DEFSTR

Example
 DEFDBL ldx, ldy, ldz 'Declare ldx, ldy, and ldz as double precision real type
 'variables.
 DEFDBL ldx = 1.0 'Declare ldx as a double precision real type variable and
 'sets the initial value to 1.0.

DEFSTR (Statement)

Function

Declare a string variable.
You can enter 243 characters or less as a character string.

Format
DEFSTR <Variablename>[=<Constant>][,<Variablename>[=<Constant>]...]

Explanation
This statement declares a variable designated by <Variablename> as a character
string. By writing a constant after <Variablename>, initialization can be done
simultaneously with the declaration.

Multiple variable names can be declared at a time by separating each variable with a
comma (",").

Related Terms
DEFDBL, DEFINT, DEFSNG

Example
 DEFSTR lsx, lsy, lsz 'Declare lsx, lsy, and lsz as character string type
 'variables.
 DEFSTR lsx = "DENSO" 'Declare lsx as a character string type variable and set
 'the initial value to "DENSO".

111

DEFIO (Statement)

Function

Declare an I/O variable corresponding to the input/output port.

Format
DEFIO <Variablename> = <I/O variable type>,<Port address>[,<Mask data>]

Explanation
This statement declares a variable designated by <Variable name> as an I/O variable.

<I/O variable type> Selects the type of the I/O variable. The I/O variable types include
BIT, BYTE, WORD and INTEGER. Designate a range of 1 bit for a
BIT type, 8 bits for a BYTE type, 16 bits for a WORD type and 32
bits for an INTEGER type.

<Port address> Designates the starting input/output port number.

<Mask data> In the case of an input port, the AND (product set) from input data
and mask data is taken.

In the case of an output port, the AND (product set) from output data and mask data is
output, however, the output status of a bit where no mask has been set does not
change.

Related Terms
IN, OUT, SET, RESET

Example
 DEFIO samp1 = BIT, 1
 'Declare samp1 as a BIT type I/O variable which starts from
 'port 1. The return value of samp1 becomes a 1-bit integer
 'of 1 or 0 that expresses the status of port 1.
 DEFIO samp2 = BYTE, 10, &B00010000
 'Declare samp2 with mask data as a BYTE type I/O
 'variable which starts from port 10. The return value of
 'samp2 becomes an 8-bit integer of 0 or 16 that expresses
 'the status of port 10.
 DEFIO samp3 = WORD, 15
 'Declare samp3 as a WORD type I/O variable which starts
 'from port 15. The return value of samp3 becomes a 16-bit
 'integer of 0 to &Hffff which expresses the status of the ports
 'from 15 to 30.
 DEFIO samp4 = INTEGER, 1
 'Declare samp4 as an INTEGER type I/O variable which
 'starts from port 1. The return value of samp4 becomes a
 '32-bit integer of 0 to &Hffffffff which expresses the
 'status of the ports from 1 to 32.

Notes

For WORD and INTEGER, a port used as the MSB is assumed to be a sign bit.

The table below lists the allowable range of numeric values and pot numbers used as
the MSB.

WORD Allowable range of numeric values: -32768 to 32767
MSB port No.: Starting port address + 15

INTEGER Allowable range of numeric values: -2147483648 to 2147483647
MSB port No.: Starting port address + 31

112

5.3 Flow Control Statements

FOR…NEXT (Statement)

Function

Repeatedly execute a series of instructions between FOR…NEXT sections.

Format
FOR <Variablename> = <Initial value> TO <Final value> [STEP <Increment>]
 :
NEXT [<Variablename>]

Explanation
This statement repeatedly executes a series of instructions between FOR…NEXT
according to the condition designated on the FOR line.

Set the initial value of the variable designated by <Variablename> for <Initial value>.

Set the final value of the variable designated by <Variablename> for <Final value>.

Set an increment value between the initial value and the final value for <Increment>.
Omitting STEP regards the increment as 1. No negative value can be specified for
<Increment>.

You can put another FOR…NEXT in one FOR…NEXT (referred to as a nested
construction).

In this case, a different variable must be used for each <Variablename>. Additionally,
one FOR…NEXT must be completely inside the other FOR…NEXT.

Example
 DEFINT li1
 FOR li1 = 1 TO 5 'Repeat the process of FOR…NEXT 5 times.

 NEXT 'Repeat.

113

IF…END IF (Statement)

Function

Conditionally decide a conditional expression between IF…END IF.

Format
IF <Conditional expression> THEN
 :
[ELSEIF <Conditional expression> THEN]
 :
[ELSE]
 :
END IF

Explanation
The execution of a program is controlled with the condition of <Conditional
expression>.

If <Conditional expression> of an IF statement is true (except for 0), then the
statements between the IF…ELSEIF statement are executed. If the <Conditional
expression> is false (0), then <Conditional expression> of an ELSE IF statement is
decided. In the same manner as this, ELSEIF ELSE and ELSE…END IF are
executed.

Related Terms
IF…THEN…ELSE

Example
 DIM li1 As Integer
 IF li1 = 0 THEN 'When li1 is 0,
 PAGE_CHANGE PANEL1 'move to PANEL1.
 ELSEIF li1 = 1 THEN 'When li1 is 1,
 PAGE_CHANGE PANEL2 'move to PANEL2.
 ELSEIF li1 = 2 THEN 'When li1 is 2,
 PAGE_CHANGE PANEL3 'move to PANEL3.
 ELSE 'When li1 is any other value,
 PAGE_CHANGE PANEL4 'move to PANEL4.
 END IF 'Declare the end to the IF statement.

114

SELECT CASE (Statement)

Function

Execute a plural condition decision.

Format
SELECT CASE <Expression>
 CASE <Item>[,<Item>...]
 :
 [CASE ELSE]
END SELECT

Explanation
This statement executes a series of instructions after CASE if the value of
<Expression> matches <Item> of the CASE statement.

An arithmetic expression or character string can be designated for <Expression>.

A variable, a constant, an expression or a conditional expression can be designated for
<Item>.

A conditional expression can be designated as follows.

• <Arithmetic expression 1> TO < Arithmetic expression 2>
 The result of <Expression> is checked if it is <Arithmetic expression 1> or higher, or if

it is <Arithmetic expression 2> or lower.
 This statement cannot be used in the case of a character string.

• IS <Comparison operator><Arithmetic expression>
 The result of <Expression> and the value of <Arithmetic expression> are compared.

In the case of a character string, <Comparison operator> is " = ".

A CASE ELSE statement is executed if all CASE statements are not satisfied.

A CASE ELSE statement must be put before an END SELECT statement.

Related Terms
IF…END IF

Example
 SELECT CASE Index 'Execute this command if the index value matches the CASE
 'statement value.
 CASE 0 'If the index is 0.
 Button1.caption = "0"
 CASE 1 'If the index is 1.
 Button1.caption = "1"
 CASE 2 'If the index is 2.
 Button1.caption = "2"
 CASE 3 'If n the index is 3.
 Button1.caption = "3"
 CASE 4 'If the index is 4.
 Button1.caption = "4"
 CASE 5 'If the index is 5.
 Button1.caption = "5"
 CASE 6 TO 8 'If the index is 6 to 8.
 Button1.caption = "6-8"
 CASE IS ≥ 9 'If the index is 9 or more.
 Button1.caption = "9-"
 END SELECT 'Declare the end of the plural conditional decision statement.

115

5.4 Input/Output Control Statements

IN (Statement)

Function

Read data from the I/O port designated by an I/O variable.

Format
IN <Arithmetic variablename> = <I/O variable>

Explanation
This statement assigns the I/O port data designated by <I/O variable> to the variable
designated by <Arithmetic variablename>.

The <I/O variable> is declared using a DEFIO statement or an I/O type variable.

Related Terms
OUT, DEFIO

Example
 DEFINT Li1, Li2
 DEFIO samp1 = INTEGER, 220 'Declare samp1 as an INTEGER type I/O variable
 'beginning at port 220.
 IN Li1 = samp1 'Assign the samp1 data to Li1.
 IN Li2 = IO[240] 'Assign the port 240 data to Li2.
 OUT samp1 = Li1 'Output the Li1 data from the port declared in samp1.
 OUT IO[240] = Li2 'Output the Li2 data from port 240.

OUT (Statement)

Function

Output data to the I/O port designated by an I/O variable.

Format
OUT <I/O variable> = <Output data>

Explanation
This statement outputs the value of <Output data> to the port address designated by
<I/O variable>.

<I/O variable> is declared using a DEFIO statement or I/O type variable.

Related Terms
IN, DEFIO

Example
 DEFINT Li1, Li2
 DEFIO samp1 = INTEGER, 220 'Declare samp1 as an INTEGER type I/O variable
 'beginning at port 220.
 IN Li1 = samp1 'Assign the samp1 data to Li1.
 IN Li2 = IO[240] 'Assign the port 240 data to Li2.
 OUT samp1 = Li1 'Output the Li1 data from the port declared in samp1.
 OUT IO[240] = Li2 'Output the Li2 data from port 240.

116

SET (Statement)

Function

Set an I/O port to ON.

Format
SET <I/O variable>[,<Output time>]

Explanation
This statement sets the designated port in <I/O variable> to ON.

If <Output time> is designated a pulse is output. (The output time unit is ms.)

If <Output time> is designated the system does not proceed to the next instruction until
this time elapses. The specified output time value is the minimum output time while the
actual output time will change according to task priority.

Related Terms
RESET, DEFIO

Example
 SET IO[240] 'Set BIT port 240 to ON.
 SET IO[SOL1] 'Set port specified by I/O variable SOL1 to ON.
 SET IO[104 TO 110] 'Set BIT ports 104 to 110 to ON.
 IF IO[242] THEN
 RESET IO[240] 'Set BIT port 240 to OFF.
 RESET IO[SOL1] 'Set port specified by I/O variable SOL1 to OFF.
 RESET IO[104 TO 110] 'Set BIT ports 104 to 110 to OFF.
 ENDIF

RESET (Statement)

Function

Set an I/O port to OFF.

Format
RESET <I/O variable>

Explanation
This statement sets the port specified by <I/O variable> to OFF.

Related Terms
SET, DEFIO

Example
 SET IO[240] 'Set BIT port 240 to ON.
 SET IO[241],40 'Set BIT port 241 to ON for 40 ms.
 SET IO[SOL1] 'Set port specified by I/O variable SOL1 to ON.
 SET IO[104 TO 110] 'Set BIT ports 104 to 110 to ON.
 IF IO[242] THEN
 RESET IO[240] 'Set BIT ports 104 to 110 to OFF.
 RESET IO[SOL1] 'Set port specified by I/O variable SOL1 to OFF.
 RESET IO[104 TO 110] 'Set BIT ports 104 to 110 to OFF.
 ENDIF

117

MSGBOX (Statement)

Function

Display message screen.

Format
MSGBOX <message_string>

Explanation
This statement displays the specified message, up to 60 characters long, on the teach
pendant's color LCD screen.

Related Terms
MSGBOX "Hello World !"

Notes
This statement does nothing in a CLICKED event source code block for parts
(numerical input box and text box) using pop-up windows.

PAGE_CHANGE (Statement)

Function

Display the specified TP panel.

Format
PAGE_CHANGE <panel_name> [, <folders_up>]

where

<panel_name> TP panel to display on the teach pendant's color LCD screen

<folders_up> Number of folder levels to step up to reach the folder containing the
specified TP panel

Explanation
This statement displays the specified TP panel on the teach pendant's color LCD
screen.

Example
 page_change panel1 'Display specified TP panel
 page_change panel1,2 'Move up two folders and display panel1 in that folder

118

5.5 Multitasking Control Statements

RUN (Statement)

Function

Run another program concurrently.

Format
RUN <Programname> [(<Argument>[,<Argument>…])][,<RUN option>]

Explanation
This statement allows the currently executed program to run a program designated in
<Programname>. However, the current program cannot run the program itself.

Only values are usable for <Argument>. Even if you specify reference pass, the
reference data will automatically be changed to values. But you cannot use local array.

For <RUN option>, there are PRIORITY (or P) and CYCLE (or C).

PRIORITY (or P)

Designates the priority of a program. If ignored, the default value of 128 is set. The
smaller the value, the higher the level of priority. The setting range is from 102 to 255.

Note: The priority over of the supervisory task cannot be changed.

CYCLE (or C)

Designates an alternate cycle (time of each cycle when a program is run repeatedly).
This option is expressed in msec. The setting range is from 1 to 2,147,483,647.

You cannot start any program that includes arguments when using the cycle option.

Example
 DEFINT Li1 = 1, Li2 =2, Li3 = 3
 RUN samp1 C=1000 'Runs samp1 in parallel n (C=1000).
 RUN samp2(Li1) 'Runs samp2 using the Li1 argument in parallel.
 RUN samp3(Li1,Li2),PRIORITY = 129
 'Runs samp3 using the Li1 and Li2 arguments in parallel
 '(P = 129).
 RUN samp4(Li1,Li2),PRIORITY = 150
 'Runs samp4 using the Li1 and Li2 arguments in parallel
 '(P = 150).
 RUN samp5(Li1,Li2,Li3)，P = 120
 'Runs samp5 using the Li1, Li2, and Li3 arguments in parallel
 '(P = 120)

119

KILL (Statement)

Function

Forcibly terminate a task.

Format
KILL <Programname>

Explanation
This statement forcibly terminates the task (program) designated by <Programname>.
However, it cannot kill a program that contains the statement. If attempted, an error will
occur. To forcibly terminate a statement-containing program, use a STOP instruction.

Related Terms
SUSPEND

Example
 RUN samp1 'Concurrently runs samp1.
 .
 .
 .
 KILL samp1 'Ends samp1.

SUSPEND (Statement)

Function

Suspend a task.

Format
SUSPEND <Programname>

Explanation
This statement suspends the processing of a designated task. However, it cannot
suspend a program that contains the statement.

Related Terms
KILL

Example
 SUSPEND samp1 'Suspend task execution of samp1.

120

SUSPENDALL (Statement)

Function

Suspend all running programs except supervisory tasks.

Format
SUSPENDALL

Explanation
This statement suspends all tasks except supervisory tasks, makes them enter the
"Continue Stop" state, and turns off the "Robot-in-operation" output signal.

Related Terms
SUSPEND, KILLALL

Example
 SUSPENDALL 'Immediately stop all tasks and enter "Continue Stop" status.

KILLALL (Statement)

Function

Forcibly terminate all tasks except supervisory tasks. (Functionally equivalent to the
"Program reset" command)

Format
KILLALL

Explanation
This statement forcibly terminates all tasks except supervisory tasks and turns off the
"Robot-in-operation" output signal.

Related Terms
KILL, SUSPENDALL

Example
 KILLALL 'Terminate all tasks and enter the program reset state.

121

CONTINUERUN (Statement)

Function

Continue-run tasks.

Format
CONTINUERUN

Explanation
Restarts all continue-stopped tasks from the subsequent steps.

Related Terms
KILL, SUSPENDALL

Example
 CONTINUERUN 'Restart all tasks.

DEADMANSTATE (Statement)

Function

Obtain the current deadman switch state.
0: OFF, 1: ON taka

Format
DEADMANSTATE

Explanation
This statement gets the current state of the deadman switch (Enable switch).

Example
 IO = DEADMANSTATE 'Assign the current deadman state to I0.

122

5.6 Constants

OFF (Built-in constant)

Function

Set an OFF (0) value.

Format
OFF

Explanation
This statement sets an OFF (0) value in an expression.

Related Terms
ON

Example
 1F I1 = TRUE THEN 'Set the Boolean value to true (1).
 I1 = ON 'Set ON (1) to the integer variable.
 ELSEIF I1 = FALSE THEN 'Set the Boolean value to true (1).
 I1 = OFF 'Set OFF (0) to the integer variable.
 ELSE
 D1 = PI 'Assign π to the real variable.
 ENDIF

ON (Built-in constant)

Function

Set an ON (1) value.

Format
ON

Explanation
This statement sets an ON (1) value in an expression.

Related Terms
OFF

Example
 1F I1 = TRUE THEN 'Set the Boolean value to true (1).
 I1 = ON 'Set ON (1) to the integer variable.
 ELSEIF I1 = FALSE THEN 'Set the Boolean value to true (1).
 I1 = OFF 'Set OFF (0) to the integer variable.
 ELSE
 D1 = P 'Assign π to the real variable.
 ENDIF

123

PI (Built-in constant)

Function

Set a π value.

Format
PI

Explanation
This statement returns a double-precision value of π.

Example
 1F I1 = TRUE THEN 'Set the Boolean value to true (1).
 I1 = ON 'Set ON (1) to the integer variable.
 ELSEIF I1 = FALSE THEN 'Set the Boolean value to true (1).
 I1 = OFF 'Set OFF (0) to the integer variable.
 ELSE
 D1 = PI 'Assign π to the real variable.
 ENDIF

FALSE (Built-in constant)

Function

Set a value of false (0) to a Boolean value.

Format
FALSE

Explanation
This statement sets a value of false (0) to a Boolean value in an expression.

Related Terms
TRUE

Example
 1F I1 = TRUE THEN 'Set the Boolean value to true (1).
 I1 = ON 'Set ON (1) to the integer variable.
 ELSEIF I1 = FALSE THEN 'Set the Boolean value to true (1).
 I1 = OFF 'Set OFF (0) to the integer variable.
 ELSE
 D1 = PI 'Assign π to the real variable.
 ENDIF

124

TRUE (Built-in constant)

Function

Set a value of true (1) to a Boolean value.

Format
TRUE

Explanation
This statement sets a value of true (1) to a Boolean value.

Related Terms
FALSE

Example
 1F I1 = TRUE THEN 'Set the Boolean value to true (1).
 I1 = ON 'Set ON (1) to the integer variable.
 ELSEIF I1 = FALSE THEN 'Set the Boolean value to true (1).
 I1 = OFF 'Set OFF (0) to the integer variable.
 ELSE
 D1 = PI 'Assign π to the real variable.
 ENDIF

125

5.7 Time/Date Control

DATE$ (System Variable)

Function

Obtain the current date.

Format
DATE$

Explanation
This statement stores the current date in the following format: "yyyy/mm/dd"
(year/month/day).

Related Terms
TIME$

Example
 defstr ls1
 ls1 = DATE$ 'Assign the current date to ls1.

TIME$ (System Variable)

Function

Obtain the current time.

Format
TIME$

Explanation
This statement stores the current time in the following format: "hh:mm:ss" (Time:
minute: second).

Time is displayed using the 24 hour system.

Related Terms
DATE$

Example
 defstr ls1
 ls1 = TIME$ 'Assign the current time to ls1.

126

TIMER (System Variable)

Function

Obtain the elapsed time.

Format
TIMER

Explanation
This statement obtains the elapsed time, measured in milliseconds from the time, when
the controller power is ON (0).

Note: If the elapsed time exceeds 2147483647 milliseconds, the elapsed
time will be displayed from -2147483648 milliseconds.

Example
 DEFINT li1, li2, li3
 li1 = TIMER 'Assign the elapsed time from the reference time to li1.

127

5.8 Character String Functions

STR$ (Function)

Function

Convert a value to a character string.

Format
STR$ (<Expression>)

Explanation
This statement converts the value designated in <Expression> to a character string.

Related Terms
CHR$, SPRINTF$

Example
 DEFSTR ls1, ls2
 ls1 = STR$(20) 'Convert 20 to a string and assign it to ls1.
 ls2 = STR$(li1) 'Convert li1 to a string and assign it to ls2.

CHR$ (Function)

Function

Convert an ASCII code to a character.

Format
CHR$ (<Expression>)

Explanation
This statement obtains a character with the character code of the value designated in
<Expression>.

Related Terms
STR$

Example
 DEFSTR ls1, ls2
 ls1 = CHR$(49) 'Assign a character with the character code of 49 to ls1.
 ls2 = CHR$(&H4E) 'Assign a character with the character code of &H4E to ls2.

 PB1.caption = "program" + CHR$(13) + CHR$(10) + "start"

 'Use CR-LF combination as a line delimiter for captions.

128

SPRINTF$ (Function)

Function

Convert an expression to a designated format and returns it as a character string.

Format
SPRINTF$ (<Format>, <Expression>)

Related Terms
STR$

Example
 SO = SPRINTF$("% d",123) 'Assign "123" to S0.

129

5.9 System Information

CUROPTMODE (Statement)

Function

Get the current operation mode.

Format
CUROPTMODE

Explanation
This statement gets the current operation mode as a value (any of 1 to 4 shown below).
1: Manual, 2: Teach check, 3: Internal auto, 4: External auto

Example
 I[1] = CUROPTMODE 'Get the current operation mode.

SYSSTATE (Statement)

Function

Get the system status of the robot controller.

Format
SYSSTATE

Explanation
This statement gets the system status of the robot controller. The status data differs
depending upon the I/O line assignment. Listed below are data that can be obtained.
Bit 0 Robot-in-operation signal
 1 Robot failure signal
 2 Servo ON signal
 3 Robot initialization complete signal (in the I/O standard mode)
 Robot power on complete signal (in the I/O compatible mode)
 4 Auto mode signal
 5 External mode signal
 6 Dead battery warning signal
 7 Robot warning signal
 8 Continue start permitted signal
 9 SS mode signal
 10 Robot stop signal
 11 Enable Auto signal
 12 to 15 Reserved.
 16 Program start reset signal (in the I/O compatible mode)
 17 CAL complete signal (in the I/O compatible mode)
 18 Teaching signal (in the I/O compatible mode)
 19 Single-cycle end signal (in the I/O compatible mode)
 20 to 23 Reserved.
 24 Command processing complete signal (in the I/O standard mode)
 25 to 31 Reserved.

Example
 I[1] = SYSSTATE 'Get the system status of robot controller.

130

STATUS (Function)

Function

Obtain the program status.

Format
STATUS (<Programname>)

Explanation
This statement stores the program status of the program designated in
<Programname> using an integer.

Value Status
1 Running Executing
2 Stopping Stopping in progress
3 Suspend Suspension in progress
4 Delay Delay in progress
5 Pending Currently pending
6 Step Stopped Step stoppage in progress

Example
 defint li1
 li1 = STATUS(samp1) 'Assign the program status of samp1 to li1 using an integer.

Notes

This statement cannot obtain the status of its own.

131

5.10 Preprocessors

#define (Preprocessor statement)

Function

Replace a designated constant or macro name in the program with a designated
character string.

Format
#define <Symbol constant> <String>
or
#define <Macro name (Argument)> <Argument included character string>

Explanation
This statement replaces <Symbol constant> or <Macro name> in the program with a
designated character string. In the case of a macro name, it is replaced with the
arguments already included.

<Symbol constant> or character strings of <Macro name> in " " (double quotations) are
not replaced.

You must describe the #define statement on one line.

You must place 1 or more space characters between <Symbol constant> and <String>.

Do not place a space between a macro name and the parentheses of an argument.

<Symbol constant> and <Macro name> must be within 64 characters.

You can use a maximum of 2048 macro names in one program. There is no limitation
to the number of macro function arguments you may use.

Example
 #DEFINE NAME "Denso Corporation"
 'Assign "DENSO Corporation" to the symbol constant NAME.
 S1 = NAME 'Assign "DENSO Corporation" to S1.

132

#include (Preprocessor statement)

Function

Fetch the preprocessor program.

Format
#include "[Path] filename"

#include <[Path] filename>

Explanation
This statement fetches the preprocessor program file, at a position where the #include
statement is placed. In the case of " ", if the path of the file is ignored the system
searches for the file in the current directory first and then the system directory. In the
case of < >, it searches only the system directory. If the path is designated with a full
path, it searches only in the directory designated.

You can include the #include statement for a file designated with the #include
statement. You can nest up to 8 levels.

The file extension available is H.

Example
 #include "samp1.h" 'Expand the samp1.h file on this line.

RC7 CONTROLLER

Teach Pendant Operating Panel Editor
Panel Designer

User's Manual
 First Edition February 2005
 Fourth Edition April 2009
 Fifth Edition March 2010

DENSO WAVE INCORPORATED

The purpose of this manual is to provide accurate information in the handling and operating
of the Panel Designer. Please feel free to send your comments regarding any errors or
omissions you may have found, or any suggestions you may have for generally improving the
manual.

In no event will DENSO WAVE INCORPORATED be liable for any direct or indirect damages
resulting from the application of the information in this manual.

3M**C

	Foreword
	Contents
	Chapter 1 Panel Designer Overview
	1.1 Overview of Procedures for Creating TP Panel Data
	1.2 Editor Screen Functional Description
	1.2.1 Tool Bars
	1.2.2 Parts Tree Pane
	1.2.3 Properties Pane
	1.2.4 Layout Window
	1.2.5 Source Code Edit Window
	1.2.6 Compiler Messages Pane
	1.2.7 Menus

	1.3 Creating and Modifying Panel Layouts
	1.3.1 Adding Parts
	1.3.2 Modifying Panel Layouts
	1.3.3 Changing Part Properties
	1.3.4 Deleting Panel Layouts
	1.3.5 Importing Panel Layouts from Another TP Panel File

	1.4 Adding Action Source Code
	1.4.1 Writing Action Source Code
	1.4.2 Checking (Compiling) Action Source Code

	1.5 Miscellaneous
	1.5.1 Property Lists
	1.5.2 Event List
	1.5.3 Action Source Code Syntax
	1.5.4 Sending Data to Controller
	1.5.5 Important Note on Radio Buttons

	Chapter 2 Creating TP Panels
	2.1 Configuring Teach Pendant
	2.1.1 Enabling TP Panel Operation
	2.1.2 Specifying the Start Mode of TP Panel Screen Software [Version 2.32 or later]
	2.1.3 Automatically Displaying TP Panel Screens [Version 2.31 or earlier]
	2.1.4 Specifying the Close Mode of TP Panel Screen Software [Version 2.32 or later]
	2.1.5 Hiding the Shortcut Button [Version 2.6 or later]

	2.2 Using Parts
	2.2.1 Parts and Their Functions
	2.2.2 Specifying Action Source Code for Parts
	2.2.3 Specifying the RELEASED Event Execution Condition [Version 2.32 or later]
	2.2.4 INITIALIZE Event [Version 2.32 or later]
	2.2.5 DONE Event [Version 2.32 or later]
	2.2.6 Part Descriptions

	2.3 Interfaces with PAC Language and System
	2.3.1 Reading and Displaying PAC Variables
	2.3.2 Modifying PAC Variables
	2.3.3 Reading I/O States
	2.3.4 Modifying I/O States
	2.3.5 Reading System Status

	2.4 Switching TP Panels
	2.4.1 Example Switching in Same Folder
	2.4.2 Example Switching Between Folders

	2.5 Flow Control
	2.5.1 Conditional Branching
	2.5.2 Iteration

	2.6 Local Variables

	Chapter 3 TP Panel Control Language's Structural Elements
	3.1 Language Elements
	3.2 Names
	3.3 Identifiers and Variables
	3.3.1 Variables
	3.3.2 Global Variables
	3.3.3 Local Variables
	3.3.4 Object Properties
	3.3.5 Folder Variables

	3.4 TP Panel Program
	3.5 Data Types
	3.6 Type Conversion
	3.7 Constants
	3.8 Expressions and Operators

	Chapter 4 TP Panel Control Language Syntax
	4.1 Statements and Lines
	4.2 Character Set
	4.3 Reserved Words
	4.4 Declaration Directives
	4.5 Assignment Statements
	4.6 Flow Control Statements
	4.7 I/O Control Statements
	4.8 Task Control Statements
	4.9 Functions
	4.10 System Information
	4.11 Preprocessor

	Chapter 5 Command Reference
	5.1 List of TP Panel Control Commands
	5.2 Declaration Statements
	DEFINT (Statement)
	DEFSNG (Statement)
	DEFDBL (Statement)
	DEFSTR (Statement)
	DEFIO (Statement)

	5.3 Flow Control Statements
	FOR…NEXT (Statement)
	IF…END IF (Statement)
	SELECT CASE (Statement)

	5.4 Input/Output Control Statements
	IN (Statement)
	OUT (Statement)
	SET (Statement)
	RESET (Statement)
	MSGBOX (Statement)
	PAGE_CHANGE (Statement)

	5.5 Multitasking Control Statements
	RUN (Statement)
	KILL (Statement)
	SUSPEND (Statement)
	SUSPENDALL (Statement)
	KILLALL (Statement)
	CONTINUERUN (Statement)
	DEADMANSTATE (Statement)

	5.6 Constants
	OFF (Built-in constant)
	ON (Built-in constant)
	PI (Built-in constant)
	FALSE (Built-in constant)
	TRUE (Built-in constant)

	5.7 Time/Date Control
	DATE$ (System Variable)
	TIME$ (System Variable)
	TIMER (System Variable)

	5.8 Character String Functions
	STR$ (Function)
	CHR$ (Function)
	SPRINTF$ (Function)

	5.9 System Information
	CUROPTMODE (Statement)
	SYSSTATE (Statement)
	STATUS (Function)

	5.10 Preprocessors
	#define (Preprocessor statement)
	#include (Preprocessor statement)

