DENSO ROBOT

RC7 CONTROLLER

Teach Pendant Panel Editor
Panel Designer

USER'S MANUAL



Copyright © DENSO WAVE INCORPORATED, 2005-2010

All rights reserved. No part of this publication may be reproduced in any form or by any means without
permission in writing from the publisher.

All products and company names mentioned are trademarks or registered trademarks of their respective
holders.

Specifications are subject to change without prior notice.



Foreword

This manual sets forth the Panel Designer, a teach pendant panel editor that enables you to create teach
pendant (TP) panel screen software on the computer screen.

This is a supplement to the Setting Manual and WINCAPSIII Guide.

Note for the global type of robot controllers

Version 2.801 or earlier: When the "External auto limited mode" is selected, teach pendant (TP) panel
screen software cannot run in External auto mode. (Refer to the RC7M
Controller Manual.)

Version 2.802 or later: Even in External auto mode, TP panel screen software can run except that RUN
and COTINUERUN commands (TP panel control languages) cannot execute.

Contents

Chapter 1 Panel Designer OVEIVIEW .........coiciriiiiemniiess s s s s sss e s sms s s nn s 1
1.1 Overview of Procedures for Creating TP Panel Data.............ccccuveeiieiiiiciiiieicee e 2
1.2 Editor Screen Functional DeSCPLON..........uuuiiiii i a e e e e 4
0t B Lo T I = =T PP PPTTPPPP 5
1.2.2 PartS Tre@ PaAne@ ..ottt e e e e et e e e e e e e e e e e e e e e e enaeaeeas 8
1.2.3 Properti@sS Pane ... 9
L = 1Y TU | AT Lo o U PP PPR 9
1.2.5 Source Code Edit WINAOW ........coiiiiiiiiiiiie ettt e et e e e st e e e snaeeeeenes 10
1.2.6 Compiler MeSSages Pan@ .........ooo ittt 11
L2 A |V 1= o U PP PPRPR PP 12

1.3 Creating and Modifying Panel LAYOULS ..........ccceoiiiiiiiiiiiie ettt e e e naeeee s 14
1.301 AAAING PartS ... 14
1.3.2 Modifying Panel LayOULS ..........cooiiiiiiiiiiiie et 14
1.3.3 Changing Part Properties.........ccoi ittt e e e e e e e e e e e s eanraeeee s 15
1.3.4 Deleting Panel LAyOULS ........ouuiii ittt 15
1.3.5 Importing Panel Layouts from Another TP Panel File ........ccccccoooiiiiiiiie e, 15

1.4 Adding ACtiON SOUICE COE .......uveiiiieeiiiciiieeee et e e e e e e et e e e e e e s e et b e e e e e e e e sannneeaaeeas 16
1.4.1 Writing ACtiON SOUICE COUE .....ooiiiiiiiiiiiie e e b e 16
1.4.2 Checking (Compiling) Action SOUrCe COUE........eeiiiiiiiiiiiiiiie e 16

1.5 MISCEIIANEOUS........oee ettt e e e e e s bbbt e e et e e e s e bab e et e e e s e nnbbeeeeeaeeas 17
1,501 Property LISt oo 17
R V=Y o G I SO RR 17
1.5.3 ACtiON SOUICE COdE SYNTAX .eiiiiiiiiiiiiiiiie ettt e e e e e e e e e e e e st re e e e e e e e e snnrnaeeeas 18
1.5.4 Sending Data to CoNtrOlEr.........coo i 18
1.5.5 Important Note on Radio BUONS...........ooooiiiiii i, 18
Chapter 2 Creating TP Panels........iiiiiiiiicciiiiiiiisssccsssseree s s sss s sssssss s s e s s s s ssssmse s e s s e s sasssssmmsnessnesanssssnmenssnssnnn 19
2.1 Configuring Teach Pendant...........coooiiiiiiii e 19
2.1.1 Enabling TP Panel OPeration...........ccciiiiiiiiiiiiiee et e ettt e e e st e e e e e e e s enanraeeaaaeeenan 19
2.1.2 Specifying the Start Mode of TP Panel Screen Software [Version 2.32 or later] ...................... 21
2.1.3 Automatically Displaying TP Panel Screens [Version 2.31 or earlier]..........cc.ccccoeevvieereeriennns 23
2.1.4 Specifying the Close Mode of TP Panel Screen Software [Version 2.32 or later]..................... 24
2.1.5 Hiding the Shortcut Button [Version 2.6 or later]..........cccveeiiiiiiiiiieee e 25




2.2 USING PATS ...ttt e h b e e et n et e e aanee s 26

2.2.1 Parts and Their FUNCHONS ..o e 26
2.2.2 Specifying Action Source Code for Parts ... 27
2.2.3 Specifying the RELEASED Event Execution Condition [Version 2.32 or later]..........c............. 28
2.2.4 INITIALIZE Event [Version 2.32 OF later]......ccoia et 31
2.2.5 DONE Event [Version 2.32 OF [ater] ......ccccuuiiiiiiie ettt ea e e 32
2.2.6 Part DeSCriPtiONS ...ttt e e e e e e e e e e e e e er e e e e e e e e annreeeeeaaannn 33
2.3 Interfaces with PAC Language and SYSIEM ..........uiiiiiiiiiiiii e 66
2.3.1 Reading and Displaying PAC Variables ............coouiiiiiiiiii e 66
2.3.2 Modifying PAC Variables .............uviiiiiiii ettt a e e e e r e e e e 69
2.3.3 ReAAING /O SEALES ...t e 72
2.3.4 MOdifying 1/O SEALES .....uueeiiiie it e e e e e e e e e e e s e e e e e e e e e rareeaaaaane 74
2.3.5 Reading SYstem STAtUS..........uiiiiiiiii e 76

2.4 SWItChING TP PANEIS .....coiiiiiiiiiie ettt et e et e e saneee s 78
2.4.1 Example Switching in Same FOIder ..o 78
2.4.2 Example Switching BetWeen FOIAErS...........uoiiiiiiiiiiiiieee et a e 80

2 T [0 1T O o 01 o] SRR 82
2.5.1 Conditional BranChiNg ............eoioiiiiii e e 82

S I | (= - 11 o PO PPPP PP PPPPPRN 84

2.6 LOCAl VArTADIES ... e a e 85
Chapter 3 TP Panel Control Language's Structural Elements ..........cccccciiiimiiinimnen e 87
G T B = T g o [0 =T T = (=T o Y=o PRSP 87
G T2 =0 1= T PSP PPTIPPRP 87
3.3 Identifiers and Variables ....... ... et a e eeeaaeeas 88
G TR Tt Y = 14 =T o[ SRR 88
3.3.2 GIODAl VAIGDIES ......cooieiieeeee ettt enees 88

G TR TR o o= | BV = =1 o) L= USRS 89
3.3.4 ODJECE PrOPEITIES .. ...eieeiieiiiee ettt e e e ettt e e e e e st e et e e e e e e aaasbateeeaaeesesnnseaeeesaaannes 89
TR T T o] o L= Y = T F= o] [ SO 96
K I e o= 0 T=T I o (oo | =T o PSP PUPRRPTP 97
R D= 1 2= Y/ o= T PRSPPI 97
BT I Y/ o oY 0701 V=T =Yoo [PPSR 98
T A 0o g - - o1 (SR 98
3.8 EXPressions and OPEratorsS...... oot e e e e e e e e e e e e e e e e e e e e eaneeaae s 99
Chapter 4 TP Panel Control Language SYNtaX ........ccccccccmrriiiiciisssmersnsinssssssssssssssssssssssssssssssssssssssssssssssees 102
g S =Y (=Y ¢ L= a1 (3= Lo I T S 102
A O ¢ = = Vo (=1 T S 102
4.3 RESEIVEA WOIAS. ... .ottt e e e ettt e e e e e s bbb et e e e e e e e e nba b e e ee e e anbnrees 102
4.4 Declaration DIFECLVES ......ooeii ittt e ettt e e e e e e st ae e e e e e e e e e nneeeeeeeee e nnnneeas 103
4.5 ASSIGNMENt SAIEMENTS...ccoiiiiiii e 104
4.6 Flow Control SEatEMENTS ... ..eiiiiiiiii et e e e e et e e e ennees 104
A VL@l O70) ¢ (o] IRS £= 1410 0= | S 105
4.8 Task Control StatemMeENts ...t e e e e e e 105
e I ¥ [ Ted 1] 1 PP PP P UPTTR RPN 106
4.10 System INFOrMAtION .......eiii e e e eare e e e 106
g o (=T o Yo =TT ) S 106



Chapter 5 Command ReferenCe ...... ..o mnn e 107

5.1 List of TP Panel Control COMMANGS .........ooiiiiiiiieiie e e e e e e eeneeeeeeas 107
5.2 Declaration STateMENTS .........oiiiiiiiiiie e 109
DEFINT (SEAEMENT) .....eiiiiiiiee et e e e e e e s e e e e e e e s e abaeeeeaaeessnnssseeeesannnrneeees 109
D] S Nl (51 v= 1 (=10 T=T o T PRSPPI 109
DEFDBL (StAtEMENL) .. ..uiiiiiiiee ittt e e e e e e e e e e e e e e st re e e e e e e e e s e annebae e e e e nrnreees 110
DEFSTR (StatemMeENt) ....coo ittt e s s 110
D o (O ) = (=T 4 1Y o PO 111
5.3 FIoW CONtrol STAteMENTS ......ooiiiiiiiie e e e et e e e ae e e e e nee e e nees 112
FOR...INEXT (Stat@mMENt) .......coiiiiieiiiiiie ettt et e e st e e e st e e e s e e e e e snssaeeesnnsaeeennaeens 112
IF...END IF (Stat@mMeENt) ....ccoeiiiiiiieeee et e e e e e e et r e e e e e s e s nsbee e e e e annrnreees 113
SELECT CASE (StatemMeENnt) ......ccciciiiieiiie ettt e e et e e e enae e e e snae e e e snnree e s eneeeennees 114
5.4 Input/Output Control Statements ... 115
IN (SEAEEMENT) ...ttt e b et e e st e e s st e e e snnnee s 115
(O] 65372 (=10 1 =T o1 TSSO 115
SET (StatemMeENt) ... .o e 116
S =l I =1 (T 411 1 PSP 116
MSGBOX (SEAtEMENE) ... et e b e e s 117
PAGE_CHANGE (State€meEnt).........ouiiiiiiieiiiieiiee et a e e e e e e e e e e e e 117
5.5 Multitasking Control StatemENtS.............uviiiiiii e 118
RUN (SEAEEMENT) ...t e e e e e e e e e e e e e e s st ba e e e e e e e e seanasbaeeeesnnnrnneees 118
NI (S 7= 1 (=T 0 1T o | PO P PSPPSR 119
SUSPEND (Stat@mMeENt) ...t e e e e e e e e e e e e s et e e e e e e e e anraaaaeeas 119
SUSPENDALL (StatemMENt) ......cooiiiiiie et e e e eee e e e etae e e e snnrea e e eneeeennees 120
KILLALL (StatemMENT) ...ttt e e e e e e e e e et e e e e e e e s e sansb e e e e eaeeesesnnbeeaeeeaeanns 120
CONTINUERUN (Stat@mMENt) .......vveieiiiiiiie ittt e ettt e e ste e s etee e e e st e e s sste e e s entaeaesenseeaesenseeeesnnes 121
DEADMANSTATE (Stat@mMENt)......coiiiiiiieiiiiii ettt e ettt e e st e e e s nse e e e seneeeeeeanneeas 121
LTGRO0 5 =1 | PSR RR 122
OFF (BUIIE-IN CONSTANT) ....eeiiiiiiee et rb e b e e e e 122
ON (BUIlt=iN CONSTANT) ..o e e e e e e e e e e e s e et e e e e e ensnraaeeaaeeas 122
PI(BUII=IN CONSTANT) ...ttt e e s 123
FALSE (BUIlt=-in CONSTANT) ...eciiiiiiiiiieeiie ettt e e e e e e e e e st e e e e e s nrnneees 123
TRUE (BUIlt-in CONSTANT).....ceiiiiiiii ettt e st ee st e e e 124
LA {4 U= £ = 1 (= @7 0] 1 o SRR 125
DATES (SyStem Vari@ble).........cooiiiiieiiiee ettt see s e e neeene s 125
TIMES (SYStEM VATIADIE) ...ttt et e et e e et e e aee e e e e ereeans 125
TIMER (SYStemM Vari@ble) .........ueiiiiiiiiieee ettt e e 126
5.8 Character String FUNCHONS..........uiiie e 127
STRE (FUNCHON) ...ttt ettt sttt et eeteeteebesaeeseeebeeseensesseansesseaeaeseaneesneneis 127
(070 | 2 I (20T To7 1o 7o ) RS 127
S S LN I (LU g Ted i) o ) TSRS 128
5.9 System INFOrMAatIoN ........oooiiii e e 129
CUROPTMODE (Stat@mMENt)......cciiiiiiieiie ettt e e e e e e e e s e et e e e e e e e e snnssaaeeeaeeanes 129
SYSSTATE (SEAtEMENL)....ciiiiiiiie ettt e et ee e e e et e e e e stae e e e snraeeeesnaeeeeensseeeesneeeeennees 129
STATUS (FUNCHON)....eeeiiieeeitttee ettt e et e e e e e e et e e e e e e e e e s st s reeeaaaeeesnststeeeeaeesesssraneeaeeens 130
LT LI o (=Y o] o Tt =TT T = PP 131
#define (Preprocessor State€MENT)..........oii i e a e 131
#include (Preprocessor StatemMeEnt) .........c..ioi i 132






Chapter 1 Panel Designer Overview

WINCAPSIII includes the Panel Designer, a teach pendant editor for creating teach
pendant (TP) panel screen software by simply arranging parts on the computer screen
and then specifying action source code for the events associated with them.

This chapter outlines the procedures involved.

i PanelD esigner - Panels1_pnl

File Edt Yiew Toolz “Window Help
DeayEels gt | [ar(n6(ED] e aEE s == e
gladbeMer oseNOO|(mEZs|S [wnmm @i =
2l & Layout - Panell = =3
IEEEE R E
| o s |80 (120 |150 200 |240 280 |320 350 |400 440 |430 520 |550 500| B
E-[] Panels1 0
=5 Panefi g1 i @ 5 B uaTal S
_____ [ Label i
----- =t Groupl
----- % RadioButtonl
----- % RadioButton2
----- % LighiButtonl
----- % LightButton2
----- =% LightButton3
----- T3 Buttonl
----- 1 ButtonZ |
----- L Buttond
----- % Linel
= ]
=1/ Property
Marne Panell L
Type panel ook
FG | CLICKED
BS .Cyan |
[=l| Misc.
Caption
Timeout 200 00008 BEF Button3_RELEASED()
falalulary
00002 END
falalulal=]
FG 00010 pEF RadioButton1_CLICKED()
Foreground colar o011
00012 END
Ready o B2Y: 24 i

Creating TP Panel Screens



1.1 Overview of Procedures for Creating TP Panel Data

The procedure for creating TP panel data consists of the following five basic steps.

(1) Load editor

1) In WINCAPSIII, choose Project | Add Program to display the "Create new program"
dialog.

2) In Type, select Operation panel (*.pnl), enter the desired file name, and press OK to
start the Panel Designer.

Note: To open existing TP panel data, double-click it in the Program List.

B Create new proeram @

Create new prograrm,
Select kind of program, and input Program name.

Type Template
) Program (*.Pac) i
i Headsr (* 1)

(%) Operation panel (*.pnl)

Folder i Aurce Filesy |

Program | |

File name | |samplePanel |

[ 4 ] [ Cancel ]

"Create new program" Dialog in WINCAPSIII

imi PanelDesigner - Panels1

File Edit ¥iew Toolz Window Help
e ayEels e ||ars@ED] e E=Em: =
g|aabl 2OV o \NOO BEENS|& HJ“““@ i =
B E
IEENE =T
|
ED Parels1
-7 R
=l| Property
Marne Panell
Type Panel
Fiz .Black
BG .Cyan
[=I| Misc.
- .. [
I | | | | | £ cl‘;)I
Ready _ ’—’—’—’_’_I— 4

Panel Designer Window for New Panel Layout

2



(2) Create panel layout

Select the necessary parts from the Parts tool bar and arrange them in the Layout
window to create the TP panel screen.

For further details, see Chapter 2 "Creating TP Panels."

Parts tool bar Layout window

= Panellesigner - Panelsl

Fie Edt View Tools Window Help _
EN A ®) |\._:¢. SRR A n_;.|[§l€fg G| e

ob|& B ¢

= L] Panels)

= Foneil

(3) Edit action source code

1) Click the Display source code icon in the Layout window to display the Source
Code Edit window.

2) Add to the Source Code Edit window the action source code for when the part is
pressed.

For further details, see Section 2.2.2 "Specifying Action Source Code for Parts."

Display source code icon Source Code Edit window

bl E& Vow Jock Srdew' teb

[T=w s B |j| S R [l f:e__l_'!_' EEE s |
[ e e = T e e e B R
= ——ld aioix
RIS F € I

— | T o e o e e e e e e e
N ] — = = - e 1

& O Pareil W e [ 1 wete|l T

£ Buiond
= i1
o LR
B [Bunon | = [euicken
SO T T ey

_ — I E|
actve |2 veile s naties 2

{ Style | 1 = Rectangie {33)
5 e,




(4) Compile

Compile the action source code just written to check for syntax, typing, or other errors.
Progress and other messages from the compiler appear in a pane near the bottom of
the main editor window.

(5) Send data to the controller

Send the newly created TP panel file to the controller, using WINCAPSIII. Note that
using the teach pendant as an operating panel requires reconfiguring the teach
pendant.

1.2 Editor Screen Functional Description

The following figure gives the editor screen layout. The following pages describe the
individual components.

Tool bars
m PanelD esignes - Panels1.pnl (Section 121)

|r=a|tar s« (a2 s&]Mi"'F—ler S = e = |
£ | e 2|76 o i @ | N I =l ||jh RN

Parts tree pane
(Section 1.2.2)

Eile Edi View Tooks Window Help

Layout window
(Section 1.2.4)

z1- 1] Panels1
= 3 [Panell
1=1 Labell
=t Groupl
% RadioButtonl
3 RadioButton2
3 LightButtor
1 LightButton2
= LightButton3
1=§ Buttonl
1= Button2
£3 Bulton3 bd|

= Source code edit window
o e gﬂﬁt?ﬂ?l (Section 1.2.5)

00004 END

oo0ns

DOOCS DEF Buttond EASED()
ooDO7

=/ Property =
Mame Panell

Type Panel I
FG . Black

DOOCE END
_v_l GOOOO
i 00010 EF RadioButtoni_CLICKED
Properties pane e [PEF RadioButton1_f 0
(Section 1.2.3) 00012 END
= iq
ﬂ compiling... i
- PANELCOMPILER 1.0.0 i
[C:\My Documents\Panelsi.pnl] <@ Compller messages pane
completet — Errors O, Warnings @ (Section 1.2.6)
TS I
Ready Kewasl T T,

Panel Designer Screen Layout



1.2.1 Tool Bars

The editor provides the following handy tool bars for creating TP panel data.

(1) Main tool bar

This provides the following buttons.

= v o G 7

Name Description

O New Create a new TP panel file.

= Open... Open an existing TP panel file.

= Save Save the current file to disk, overwriting any older version
there.

& Cut Move the contents of the selected range to the system
clipboard.

Copy Copy the contents of the selected range to the system
clipboard.

B Paste Insert the clipboard contents at the current cursor position.

K7 Undo Reverse the effects of the last operation.

u Redo Undo the last undo operation--in other words, repeat the
last operation.

=] Print Print the current screen.

? About Display the About screen indicating the editor's version
number, etc.

(2) Zoom grid tool bar

These buttons change the Layout window magnification, toggle the grid display on and

off, etc.
Qo' O
Name Description
QG Zoom Change the magnification ratio for the selected region.
¥, | Cancel Zoom Cancel zooming and return the Layout window to the
standard (100%) magnification.
4™ Pan Shift the display screen in the specified direction.
Grid Toggle the grid display on and off.
Lk | Snap Toggle automatic grid positioning on and off.




(3) Layout tool bar

These buttons assign uniform positioning, spacing, or size to the selected parts.

WMol |E2sHMial®

Name Description
i Align Top Align along the upper edge.
#} Align Middle Align vertical centers.
ol Align Bottom Align along the lower edge.
= Align Left Align along the left edge.
=} Align Center Align horizontal centers.
= Align Right Align along the right edge.
! Space across Standardize horizontal spacing.
I Space down Standardize vertical spacing.
= Same width Standardize width.
gl Same height Standardize height.
B | Same size Standardize size.

(4) Parts tool bar

Most of these buttons select a part to add to the panel layout in the Layout window.

8 a2 |[MMEF o NOO| @ & | &
Name Description
& New panel Create a new panel layout.
ls Select parts Select a part pointed with this cursor.
Aa | Label Add part: label.
abl | Text box Add part: text box.
12 Numerical Add part: numerical input box.
value input
box
[™ | Group box Add part: group box.
@ | Radio button Add part: radio buttons.
Check box Add part: check box.
= Push button Add part: push button.
= llluminated Add part: illuminated push button.
push button
] Pilot lamp Add part: pilot lamp.
*. | Line Add part: line.
] Rectangle Add part: rectangle.
) | Oval Add part: oval.
Function key Add part: function key.
& | Timer Add part: timer.
g2 | Compile Translate the corresponding TP panel file into executable
format.




(5) Move tool bar

These buttons move parts around the panel layout and within the file's part hierarchy.

L HRbE =

Name Description
T3 | Front Move to the top layer.
Ty | Back Move to the bottom layer.
[ | Forward Move forward one layer.
[y | Backward Move backward one layer.
f | Nudge up Move up.
Simultaneously holding down the Shift key moves 5 pixels
each time.
@ | Nudge down Move down.
Nudge left Move left.
Nudge right Move right.




1.2.2 Parts Tree Pane

This displays the current file's panels and parts in tree format.

(1) Parts Tree pane
The following figure shows a sample Parts Tree pane.

Double-clicking on a part displays its panel layout.

2l xl
B2 | &
=[] Panelzl
=] Parel |
=F Buttond
=% LabeN
= fEF Panel2
=% Groupl
=% PRadicButtonl
I RadioButton?
(2) Parts tool bar
This provides the following buttons.
o2 | &
Name Description
& | Layout form Specify the Layout window as target.
= Source form Specify the Source Code Edit window as target.
& | Layout window Display the target window specified above.
Erase panel Delete a panel layout from the TP panel data.




1.2.3 Properties Pane

This accesses the position, size, and other properties for a part.

The list of properties depends on the part type. For further details, see Section 1.5.1

"Property Lists."

1.2.4 Layout Window

i g [
=l| Property =
b Buktonl
' Type FE
b 350
i 170
Width 200 |
Height an
FG | R
B3 |:| aray
GEroup ] LI
Name
Component name

Properties Pane

This window is for designing teach pendant TP panel screen software by placing parts
on this screen and then adjusting their positions and sizes with the cursor keys or
rubber band drag operations.

Clicking on the Display source code icon displays the corresponding Source Code Edit

window.

Display source code icon

m Layoul - Panell

_ol=l|

Condihion

@ Cption 1
# Ootion2

Layout Window

Layout window
(client area)




1.2.5 Source Code Edit Window

This window is for assigning action source code to events associated with the parts on
the current panel layout.

(1) Source Code Edit window tool bar
(2) Part list box

(3) Event list box

B Source - Panell

|8 [Button1 =] [RELEASED All====2 4
= OO0 ;I
00002 DEF Buttoni_CLICKED()
Dooa= ‘fiction when Button1 is clicked
0004 set ID[128]
00005 run PRO188
0o00s run PRO118
Oooar run PRO128
DDOCE END
]
00010 DEF Buttoni_RELEASED()
ooot ‘fiction when Button1 is released
0001z reset I0[128]
00013 kill PRO188 *» (4) Action source code block
00014 kill PRO118
00015 kill PRO128
DDO4E END
OO0 7
<] o
Source Code Edit Window
(1) Source Code Edit window tool bar
& |PL ~| [REFRESH ~lEE=n 4 #4
Name Description
i Layout window Display the corresponding panel layout.
i= Indent Shift the selected lines one tab position to the
right.
= Outdent Shift the selected lines one tab position to the
left.
= Comment out Comment out the selected lines.
= Undo comment block Cancel commenting out for the selected lines.
A Bookmark Toggle bookmark on the current source code
line.
“% Next bookmark Move the cursor to the next bookmark.
% Previous bookmark Move the cursor to the previous bookmark.
% Clear bookmarks Cancel all bookmark definitions.
ik Find and replace Find the specified string and optionally
replace it.

Note: Setting a bookmark on a code line displays a square marker ([:]) to its left.

10



(2) Partlist box

Select the part for which to assign action source code.

(3) Event list box

This lists the events available for the selected part. Selecting one automatically
generates the corresponding skeleton action source code block on the editor screen.

Example: Skeleton action source code block for pressing Button1
DEF Button1_CLICKED()

END

(4) Action source code block

Flesh out the skeleton with action source code.

Example: Action source code block for pressing Button1
DEF Button1_CLICKED()

Set 10[128] "turn 1/O variable #128 ON
Run PRO100 "run PRO100
END

1.2.6 Compiler Messages Pane

This displays progress and other messages from the compiler as it compiles the TP
panel data.

Double-clicking on an error message line displays the corresponding source code in a
Source Code Edit window.

Compiling... -
PAHELCOMPILER 1.8.8
[C:AWIHDOWS\DesktopyPanelsd . pnl]

C W WINDODWS DesktopyPanelst . pnl]
: Ho(1) : Pname{panell1) : Line{4) :cannot cast

o o

Feady |><3 41'|“f3 3':| | | | o

SE

Compiler Messages Pane

11



1.2.7 Menus

This section lists the editor's menus and menu commands.

(1) File
Menu Command Description
| New Create new TP panel file.
= Open Open an existing TP panel file.
Close Close the current file, first displaying the dialog box for
saving if current file edits have not been saved.
= Save Save the current file to disk, displaying the dialog box for
saving if the file is new.
Save As... Save the current file to disk under a new name.
= Print... Print the contents of the current window: Layout or Source
Print Preview... Display a print image on the screen instead of sending
data to the printer.
Printer Setting Display the dialog box for specifying printer settings.
Import... Read panel layouts from another TP panel file.
Most recently This section lists the last few TP panel files saved.
used files
Exit Close the editor.
(2) Edit
Menu Command Description
Undo Reverse the effects of the last operation.
Redo Undo the last undo operation--in other words, repeat the
last operation.
% Cut Move the contents of the selected range to the system
clipboard.
Copy Copy the selected parts or string to the system clipboard.
B Paste Insert the clipboard contents at the current cursor position.
Delete Delete the selected parts or string.
4 Find Display the dialog box for finding (and optionally
replacing) the specified string.
(3) View

Menu Command

Description

Tool bar

Status bar

Toggle display of tool bars.

Toggle display of status bar.

Tree bar
(Parts tree)

Property bar
(Property)

Toggle display of the Parts Tree pane.

Toggle display of the Properties pane.

Panel layout

Display the corresponding panel layout.

Snap to grid

Toggle the grid display on and off.

Toggle automatic grid positioning on and off.

12




Menu Command

Description

Zoom Normal

Zoom Percent

Cancel zooming and return the Layout window to the

standard (100%) magnification.

(50%, 75%, 100%, 200%).

Change the magnification ratio for the Layout window

4) Tool

Menu Command

Description

Options...

Compile

Translate the corresponding TP panelfllelntoexecutable

format.

Specify the compiler output version.

(5) Window

Menu Command

Description

Arrange lcons

up the screen.

Align the icons for minimized windows in the lower left

corner of the main editor window.

Close Close the currently selected window.

Close all Close all open editor windows.

windows

Cascade Display all open windows with the same size and
overlapped with only their title bars visible.

Tile Display all open windows as individual rectangles dividing

List windows Display a list of all windows.
(6) Help
Menu Command Description
Help Display the editor's help file.
? About Panel Display the About screen indicating the editor's version
Designer number, etc.

13




1.3 Creating and Modifying Panel Layouts
1.3.1 Adding Parts

Adding parts to a panel is a three-step procedure.

(1) Open the Layout window

To create a new panel, choose the File|[New menu command or press the tool bar
button New panel.

To modify an existing panel layout, select the Layout form button on the Parts tool bar
and double-click on the corresponding Layout window icon or press the Display panel
button.

(2) Select a part

Selecting a part from the Parts tool bar displays the part mark at the current cursor
position in the Layout window.

(3) Add the part
Clicking in the Layout window adds the part with the default size at that location.

Note: Dragging the part at this point then adjusts the size.

1.3.2 Modifying Panel Layouts

The following methods are available for modifying part positions and sizes in Layout
windows.

(1) Moving parts

1) Drag the part with the mouse (whenever the move cursor is visible)
2) Use a cursor key

3) Use the Move tool bar

4) Modify the position properties x and y

(2) Changing size

1) Drag part frame's rubber band

2) Modify the properties width and height

3) If multiple parts are currently selected, use the Layout tool bar buttons for
standardizing spacing and size

(3) Aligning

If multiple parts are currently selected, use the Layout tool bar buttons for centering
parts or aligning them along the specified edge.

Note: For function keys, the property Index automatically determines the position and
size.
(4) Changing layers

Select the part to reorder and either choose Move on the right-click menu or press a
button in the tool bar's Order section.

Note: Changing the part order automatically updates the Parts Tree pane accordingly.

14



1.3.3 Changing Part Properties

The Properties pane provides facilities for modifying the parts name, color, and other
properties.

1.3.4 Deleting Panel Layouts

Select the panel layouts to delete on the Parts Tree pane and press the Delete panel
button.

1.3.5 Importing Panel Layouts from Another TP Panel File

Use the following procedure to import panels from another TP panel file, with
extension .pnl.

(1) Use the File|Import menu command to specify the source TP panel file.

(2) Select the panel layouts to import from the list for the file and press the Import
button to add them to the Parts Tree pane.

15



1.4 Adding Action Source Code

A Source Code Edit window is for specifying the events to take in response to a
CLICKED, RELEASED, or other state change event associated with the corresponding
part on the panel layout.

1.4.1 Writing Action Source Code
(1) Open the Source Code Edit window
Use one of the following methods to open the Source Code Edit window for the part.
1) Double-click on the part in the Layout window.
2) Select the part in the Layout window and press the Display layout button.

3) Select the panel layout on the Parts Tree pane, make sure that the Source form
button is pressed, and press the Display panel button.

(2) Select the part

Check whether the part appears in the Part list box at the top of the Source Code Edit
window. If it does not, select it with the list box.

(3) Select the event

The Event list box gives the events available for the selected part. Selecting one
automatically generates the corresponding 3-line action source code block skeleton on
the editor screen.

Example: Skeleton action source code block for pressing Button1
DEF Button1_CLICKED()

END

(4) Add action source code
Flesh out the skeleton with action source code.

Example: Action source code block for pressing Button1

Example: Action source code block for pressing Button1
DEF Button1_CLICKED()

Set 10[128] "turn I/O variable #128 ON
Run PRO100 "run PRO100
Run PRO200 " run PRO200

END

1.4.2 Checking (Compiling) Action Source Code

Compile the action source code just written to check for syntax, typing, or other errors.
Progress and other messages from the compiler appear in a pane near the bottom of
the main editor window. Double-clicking on an error message displays the
corresponding source code in a Source Code Edit window.

16



1.5 Miscellaneous

1.5.1 Property Lists

The following table lists the position, size, and other properties that can appear in the

Properties pane.

Note: The list displayed in the Properties pane depends on the part type.

Name Description Notes

name Name Unique identifier for the part

type Part type This is fixed for each part.

X x-coordinate Reference position relative to the x- and y-axes within the teach

y y-coordinate pendant screen's drawing range

width Width Width in pixels relative to the reference corner (X, y)

height Height

fg Foreground color Specify these colors with the list box.

bg Background color

group Group number Group number to which the part belongs

active Active/inactive setting | Select with the list box.

style Display style Select with the list box.

caption Display string String to display on part surface
Note: Use the Ctrl+Enter key combination to insert a line break in
multiline text.

fsize Font size 0: Super small, 1: Small, 2: Medium, 3: Large

justify Caption positioning 0: Center, 1: Right-justified, 2: Left-justified

thickness Line width Line thickness in pixels
Note: The 0 setting produces flood fill.

myGroup Group number Unique to a particular group box

state State Select ON, OFF, or other state with the list box.

value Input value Unique to numerical input boxes

text Input text Unique to text boxes

index Function number Unique to function keys

interval Interval Unique to timers

timeout Timeout limit Applicable when no button, line or any other parts are selected.

(A single timeout property per TP panel file can be defined.)

release-mode

RELEASED event
execution condition

Applicable when no button, line or any other parts are selected.
(A single release-mode property per TP panel file can be defined.)

[Version 2.32 or later]

1.5.2 Event List

The Event list box is for selecting a CLICKED, RELEASED, or other state change
event associated with the part.

Note: The events available depend on the part type.

Event Description
CLICKED Button pressed
RELEASED Button released
TIMER Interval elapsed
REFRESH Screen refreshed
INITIALIZE Initializable TP panel opened [Version 2.32 or later]
DONE OK button pressed [Version 2.32 or later]

17




1.5.3 Action Source Code Syntax

Action source code blocks consist of two kinds of statements:

(1) TP panel control commands

Chapter 4 gives TP panel control language syntax; Section 5.1 "List of TP Panel
Control Commands."

(2) Read/write access to part properties

Note: The properties available depend on the part type.

Such accesses use the standard dot notation: part_name.property.

Example 1: Reading the current state for radio button RadioBtn

DEFINT iState
IState = RadioBtn.State

Example 2: Setting button width to 200
Button.Width = 200

1.5.4 Sending Data to Controller

Use WINCAPSIII to send the created TP panel data to the controller. Before data
transfer, WINCAPSIII compiles the last saved data. If the TP panel data is being edited,
therefore, be sure to save any data modifications before data transfer.

1.5.5 Important Note on Radio Buttons

Makes sure that only one, the default, has ON in its state property. The editor does not
check sets of radio buttons for multiple ON settings. Sending such data to the controller
produces a TP panel screen with multiple ON settings exactly as specified.

18



Chapter 2 Creating TP Panels

Chapter 1 gave an overview of the procedures for arranging objects (parts) on panel
layouts using mouse operations on the computer screen, assigning action source code,
and adjusting their size, position, color, and other properties.

This chapter gives the detailed procedures for creating TP panels. The teach pendant
provides a clean slate on which to display such user-specified panel layouts. A folder
can have only one TP panel file specifying a series of such panel layouts.

2.1 Configuring Teach Pendant

2.1.1 Enabling TP Panel Operation

Step 1

Add support for TP panel operation to the teach pendant with the following procedure.

From the teach pendant top screen, press [F6 Set]|—[F7 Options.]|—[F8 Extnsion]
—I[F5 Input ID] to display the following screen.

M & © 0 vesomr | Jotnt wo o] 1%

System Extension ( Key : 39 Tnput ID Number

[ option e

4 | 5| 6 |+

1 2 3

@ CANCEL OK

OK: Take in new entry, Cancel: Discard new entry G20
® -~ | |

19



Step 2 I Type the password "1453" and press the OK button to display the list of additional
functionality available.

R @ 0 wes | s nere[ 1w

yptem Extension § Hey : .:-‘:l_ Input 10 Musber

QQ@@ weax | Jatnt untlulT

F5:Tnput 1D For new function. F4:Remove Function. o
) a.l l ml Inpt.l.‘ll.'ll

Step 3| Press the OK button to return to the top screen and confirm that the F5 label now
reads Panel.

M oe @ 1 wer | soint wovol[ 1

illmlmlﬂml IJﬂlPuull Set

Press [F5 Panel] to start the TP panel screen software.

Note: Enabling TP panel operation disables the RC5-compatible TP panel operation
assigned to F9.

20



2.1.2 Specifying the Start Mode of TP Panel Screen Software

[Version 2.32 or later]

Note: For Version 2.31 or earlier, see Section 2.1.3 "Automatically Displaying TP Panel

Screens."

The teach pendant provides the following setting for specifying the start mode of TP

panel screen software.

The four choices of the start mode parameters are available by the combination of
"what starts TP panel screen software--booting the controller or pressing [F5 Panel]"

and "which TP panel screen appears first" as listed below.

Start Mode of TP Panel Screen Software

Path of TP panel

b) TP panel screen specified by "Start-Panel
Path"

Start mode screen that
parameter should appear a) "What starts TP panel screen software" R c
; emarks
"0: Panel Start |first b) "Which TP panel screen appears at the start"
Setting" "1: Start-Panel
Path"
0 -- a) Pressing [F5 Panel]
b) Current directory* of the Program List
1 To be specified |a) Booting the controller Select this parameter
b) TP panel screen specified by "Start-Panel to run TP panel
Path" screen software
when the controller
or boots.
a) Pressing [F5 Panel]
b) Current directory* of the Program List
2 To be specified |a) Pressing [F5 Panel] Select this parameter
b) TP panel screen specified by "Start-Panel to display the TP
Path" panel screen
predetermined
without changing the
current directory.
3 To be specified |a) Booting the controller or Pressing [F5 Panel]

W @ sws

*The "Current directory of the Program List" refers to the following.

| Jainl Ill'!i’ iz

PO Tes Yes

here.

Eranbie

e L] o Yes

Bock l Hoxt I Swdnl I-H.ui.du‘l nupuul Config.

Comicel? Closie this windod

=)

The current directory is displayed

21




Step 1 || Press [F6 Set]—[F7 Options.]—[F9 Panel] to display the following screen.

Parameters relating to the start
mode of TP panel screen
software

mmﬁ-m ﬁ:tmmh
o o ma | dea | sen -“Tmml

Step 2I Set the "0: Panel Start Setting" parameter to any of 0 to 3 (defined on the previous
page).

Step 3| Ifthe "0: Panel Start Setting" parameter is any of 1 to 3, specify the directory where
the desired TP panel screen is located, to the "1: Start-Panel Path" parameter.

Example: \TEST
As shown above, delimit the path with backslash "\". This example calls up the TP
panel screen located in the "TEST" folder.

If the "1: Start-Panel Path" parameter is not specified, the root directory (folder at the
top of the directory tree structure) applies.

Note 1: The "1: Start-Panel Path" parameter can only specify a path. If more than one TP panel screen is
defined, the one that is located at the top when complied with Panel Designer will be displayed at the start of
TP panel screen software.

- Pressing this changes the order of TP
panels.

The TP panel at the top of the directory
tree structure appears when the controller
boots.

Note 2: After the teach pendant panel screen is switched to a different one located in the Start-Panel Path
(or in the current directory of the Program List) with the PAGE_CHANGE command, exiting from the TP
panel screen software and restarting it calls up the last TP panel screen.

However, after the teach pendant panel screen is switched to a different one located in the path other than
the Start-Panel Path (and the current directory of the Program List), doing the same calls up the TP panel
screen located in the Start-Panel Path (or in the current directory of the Program List) just as when the
controller boots.

22




2.1.3 Automatically Displaying TP Panel Screens [Version 2.31 or earlier]

Note: For Version 2.32 or later, see Section 2.1.2 "Specifying the Start Mode of TP
Panel Screen Software."

The teach pendant provides the following setting for automatically displaying TP panel
screen software when the controller boots.

Step 1 || Press [F6 Set]—[F7 Options.]—[F9 Panel] to display the following screen.

M oel @ weeer | uere][

Panel Selbing

#: Ponel Auto stort Setting(@:Dissble 1:Enable) |
I J

Cancel | L |

F5: Change the selection. OK: Exit with (i
e alosiiveloul ol |

Step 2 I Set the first setting to 1 to enable automatic loading and the second (path) to the
folder containing the TP panel screen software.

Step 3| Test by rebooting the controller.
Note: An error message on the teach pendant screen blocks automatic display.

23



2.1.4 Specifying the Close Mode of TP Panel Screen Software
[Version 2.32 or later]

The teach pendant provides the following setting for exiting the TP panel screen
software.

Close mode parameter

"2: Operation Panel Close Mode"
0 SHIFT + CANCEL (default)

Pressing the Cancel key with the Shift key held down exits the TP

panel screen software.

1 SHIFT + CANCEL + Password

Pressing the Cancel key with the Shift key held down and entering the
password exits the TP panel screen software.

The password should be specified with the password entry parameter
"3: Mode1: Password."

2 CANCEL
Pressing the Cancel key exits the TP panel screen software.

Close mode

Press [F6 Set]—[F7 Options.]—[F9 Panel] to display the following screen.
e I g |

Step 1

P Specify the close mode of TP panel
screen software.

Taril |
| P e e smlotion, B Dy wth =7}
o o] e | w I-l-l"."Tb--l

Set the "2: Operation Panel Close Mode" parameter to any of 0 to 2.
0: SHIFT + CANCEL

1: SHIFT + CANCEL + Password (Proceed to Step 3.)
2: CANCEL

Step 2

password to the "3: Mode1: Password" parameter.
Note: The password entry range is from -2147483648 to 2147483647.

When you attempt to exit the TP panel screen software by pressing the Cancel key
with the Shift key held down, the password entry window appears as shown below.
You need to enter the password and press the OK button. If the password entered
here matches the one preset to the "3: Mode1: Password" parameter, the TP panel
screen software exits.

Tip: If you forget the password, enter 273958314 to exit the TP panel screen
software.

O W @ 1 swa | e wavaf[

Step 3| If the "Operation Panel Close Mode" parameter is set to 1, enter an arbitrary




2.1.5 Hiding the Shortcut Button [Version 2.6 or later]

You can hide the SHORTCUT button to prevent it from being pressed inadvertently
when the TP panel screen is active.

RN N T

SHORTCUT button

Step 1 || Press [F6 Set]—[F7 Options.]—[F9 Panel] to display the Panel Setting screen.
Q @ wiah [;1 VH-60836 A | Joint W @ TG|IT

Panel Setting

: Panel Start Setting

: Start-Panel Path

: Operation panel close mode

M1 a0 '
SHMOUE T P asswoT o

: "SHORT CUT"disable

Cancel | OK

F5: Change the selection, OK: Exit with saving M)

Step 2 || Select [4: “SHORTCUT” disable] and change the parameter by pressing [F5
Change.].
Pressing the OK button enables the setting.

Parameters for [4: “SHORTCUT” disable] on the Panel Setting screen
Parameter Description Remarks

Display the SHORTCUT button when the TP panel
screen is active

Hide the SHORTCUT button when the TP panel
screen is active

[ ] A‘ Back | Next | Jump Tol | Change.

0 Default

25



2.2 Using Parts

2.2.1 Parts and Their Functions

The following table lists the 14 part types available for building TP panel screen

software.
Parts
Part Function Refer to:

(1) | Button Functions as a push button. Section2.2.6 [1]
(2) | Label Displays text. [2]
(3) | Pilot lamp Indicates on/off setting. [3]
(4) | Numerical input Accepts a numerical value from the ten-key pad. [4]

box
(5) | Text box Accepts text from the keyboard. [5]
(6) | Check box Turns setting on and off. [6]
(7) | Radio button Selects from a group of mutually exclusive choices. [7]
(8) | Group Provides mutually exclusive operation for a group of [8]

radio buttons.
(9) | Function key Configures a teach pendant function key (F1 to F12) [9]
for use as a push button.

(10) | Timer Triggers action source code at a fixed interval. [10]

(not shown below)
(11) | Line Displays a straight line. [11]
(12) | Oval Displays a circle or oval. [12]
(13) | Rectangle Displays a square or rectangle. [13]
(14) | lluminated push Combines push button and pilot lamp operation. [14]

button

(not shown below)
Sample TP Panel Screens

(8) Group (7) Radio buttons  (6) Check boxes

sy

W |.. |_H

(2) Label

(5) Text box
(13) Rectangle

- Otvesrk B

(4) Numerical input box

(1) Button

1o 4|

7 /)
(9) Function keys sl ] 1

(3) Pilot lamp (11) Line (12) Oval

26



2.2.2 Specifying Action Source Code for Parts

Aparton a TP panel screen responds to button presses and other events by executing
action source code that reads or modifies part properties and performs other
operations.

Action Source Code Syntax

An action source code block has the following structure.

DEF object event
desired operations
END

Selecting an object and an event in the editor automatically generates a skeleton
consisting of the first (DEF) and last (END) lines. The developer needs only supply the
source code specifying the desired response.

The table below lists the possibilities.

Note: The events available depend on the part type.

Event Description
CLICKED Button pressed
RELEASED Button released (See Section 2.2.3.)
TIMER Interval elapsed
REFRESH Screen refreshed
INITIALIZE [Version 2.32 or later] Initializable TP panel opened
DONE [Version 2.32 or later] OK button pressed

Action Source Code Statements

Action source code blocks consist of two kinds of statements: TP panel control
commands and read/write accesses to part properties. Accesses use the standard dot
notation: part_name.property.

For a list of part properties and possible values, see Section 3.3.4 "Object Properties."

Action source code blocks can use global variables of type integer, float, double, or
string, local variables, and folder variables.

27



2.2.3 Specifying the RELEASED Event Execution Condition [Version 2.32 or later]
2.2.3.1 Release-mode property added

The release-mode property is added to the property screen, making it possible to
specify the RELEASED event execution condition. The property provides the following

setting.
Release-mode parameter The RELEASED event executes: Remarks
Even if a press on the part is released outside Default in Version 2.32
0 - Post Event
the part. or later
1 - No Event Only when a press on the part is released Fixed to this setting in
within the part. Version 2.31 or earlier

Specifying the RELEASED event execution condition

0o b e [ e

=] L B & T ¢ L i iR
P T el ._Tq = - R Release the press on the part within the part.
: = : . . . (1 - No Event)

_— Release the press on the part outside the
part by sliding your finger on the screen
surface. (0 - Post Event)

Release-mode property

Note: The release-mode parameter can be contained, one per panel file. Changing the parameter applies
to all parts containing the RELEASED event.

28



2.2.3.2 Notes on using the RELEASED event

The RELEASED event cannot be executed if any other screen appears on the current
TP panel screen. The following example using the push-button shows the detail.

B What blocks the execution of the RELEASED event

If any of the following conditions arises when the push-button is being pressed, the
RELEASE event cannot be executed.

(1) When an error occurs.
(2) When the PRINTMSG command displays the message.
(3) When the PAGE_CHANGE command switches TP panel screens, using the timer.

If blocking the execution of the RELEASED event with the above conditions raises a
problem, use a workaround in your program as shown on the next page.

If any of the following conditions arises, releasing the

Push-button being pressed push-button does not execute the RELEASED event:

(1) When an error occurs.

O W@ ] e | s wene]] =

e o | ]

(2) When the PRINTMSG command displays the message.

(3) When the PAGE_CHANGE command switches TP
w—- panel screens, using the timer.

PR TR R T |

29




B Program example requiring a workaround

The program example given below turns I/O [128] on only when the push-button is
being pressed, so it requires a workaround. (While 1/0 [128] is on, the external
equipment operates.)

Only when the push-button is being pressed, 1/0 [128] is on. Program example

DEF PBl_CLICKED()
set I0[128]

END

DEF PBl_RELEASED()
reset I0[128]

END

B Workarounds to the occurrence of errors

(1) Workaround 1

With the supervisory task mode or its extension being enabled, run the following
supervisory task that causes a fail-safe operation (that is, turn 1/0 [128] off) if an error
occurs. (Refer to the SETTING-UP MANUAL, Chapter 3, Sections 3.4.10 and 3.4.11.)

Program TSR1
DEFINT ERRCODE

INITWAITERR 'Initialize WAITERROR data.
WHILE 1
ERRCODE=WAITERROR 'Wait until an error occurs.
IF GETERRLVL (ERRCODE)>1 'If Level 2 or higher error occurs,
RESET I0[128] "turn I/0[128] off as fail-safe operation.
INITWAITERR 'Initialize WAITERROR data.
ENDIF
WEND

END

(2) Workaround 2

Use a supervisory task that monitors the deadman switch (Enable switch) state and
add such a process that turns I/O [128] on or off when the deadman switch is pressed
or released, respectively. Accordingly, if an error occurs, releasing the deadman switch
causes a fail-safe operation (turn 1/0 [128] off).

(3) Workaround 3

Modify the program to turn I/O [128] on for the specified time length when the
push-button is pressed and to cause no change when the push-button is released. This
produces inching-like motion.

Also change the PRINTMSG and PAGE CHANGE commands to turn I/O [128] on or
off when the switch is pressed or released, respectively.

30



2.2.4 INITIALIZE Event [Version 2.32 or later]

The INITIALIZE event can be added to each panel. It is used to initialize the TP panel
layout.

The INITIALIZE event will be called when any of the following conditions arises.
(1) When pressing [F5 Panel] starts the TP panel screen software.

(2) When booting the controller starts the TP panel screen software.

(3) When the PAGE_CHANGE command switches the TP panel screen.

Step 1 || Select a TP panel file, and the INITIALIZE event only becomes available.

Selecting the INITIALIZE event automatically generates a skeleton consisting of the
first (DEF) and last (END) lines as shown below.

DEF Panel_INITIALIZE()

END
O Wi a v \
3 = n Select a TP panel file.
od —
—— i _tl- Select INITIALIZE event.
n;-ln_-'_ | = i .
bl : o p—
LU = I P HITITT f+———f-#— Action source code block
Tim == S N
T —
-, .-

Step 2| Flesh out the skeleton with action source code.
Note: The PAGE_CHANGE command cannot be used for this source code.

31



2.2.5 DONE Event [Version 2.32 or later]

The DONE event is added to the "Numerical input box" and "Text box." Pressing the
OK button on the numerical input box or the text box executes the DONE event.

+—— Pressing OK executes the DONE event.
Pressing CANCEL produces nothing.

Example: Numerical input box

Step1 Select one of the numerical input boxes and select the DONE event.
The action source code block in the following skeleton will be executed.

DEF NB1_DONE()

END Select one of the numerical input boxes.

Select DONE
event.

weca| [EF NEI_[ONE()
aue 10:MET. Ve lum
30 'I:}II

The action source
code block

tig= Pl 1
Troe i executes.
3 | e
(B W
<o &
L

DONE event example: "IO=NB1.Value"

In this example, pressing the OK button sets the property value of the selected part
to a global variable.

32



2.2.6 Part Descriptions
[ 1] Button

This part has two events: CLICKED and RELEASED.

Button Example

The following example illustrates the procedure for creating two buttons: one (labeled
"I/O operation") that turns I/O variable #24 on as long as it is pressed and another

(labeled "Program_run") that runs a program (Sample pro).

Step 1

Create a panel layout with two buttons.

The buttons can go anywhere within the boundaries of the teach pendant screen.

All parts, not just buttons, have a unique name providing read/write accesses to part
properties from the part itself as well as other parts on the same TP panel. The editor
uses as its default Button plus a number, but the developer is free to change names.

The following example simply uses the default names: "Button1" and "Button2."

Tio ot Vw Toch ok

[CoRdmeo . @ % [arbea

L O I =

| i MeFose \OC @d i & |aPalhlh B ome|
SE

e

= [} Parels!
Y Parwll
= Busond
£ e

3| = Ligend - Faneall

Je!

HEE

T [ e e e T

'H]hwhr-' *
f-m ;F‘E
I_:-:_ LY
¥ |50
lwan |1
— | pay
- -
i h. T -

=

ha sl Il weidr

33




Step 2 I Label the buttons by changing their caption properties.

Tie G Vew Tech idon o -
SR -~ B B I ST A W RS =
| i MeFose \OC @d i & |aPalhlh B ome|
— — =8 & Lo - Pannll F =
o8 rs [E
= [ Parelst HIF =
Y Parwll
= Busond
1 s
= . P
I e Et-m-m_ﬁﬁ_ &
= Misc
-
|5t [2-H
Justy |0 Corter ————
‘ i o |k1 . } } _“.I_.m‘
EW""MA#W'- S S
Peady RBEOr T F

Step 3| Adding action source code

A button has separate action source code blocks for the events CLICKED and
RELEASED. The following example shows how to add action source code for these
two events.

Double-clicking the button labeled "I/O operation" opens an empty Source Code Edit
window.

Tie B Vaw Toch Widow fisk -
” I ~ R VI _al_g‘__!"-:; B, ||_._ Wl |
[ R = e e = e A [ e M|

=l | T ol
=
N P e O e

e
-
[=
L]
il
=
L
it
l:n.
4

e

= ] Parels! &
Y Parwll

=3 Raitent

Bl Bumnz

]l.... o [ 5w - Panwll

| '& [[ounam +]/[cuckeD
~ ooaoi | |

= 1=l
i.ﬂ.l_lmn [ 2+ wokie snd Erabledd 2
| § = HenLaigle (52 J

<
1j¢)_spwerabion

=

=

g

- ]
[0 Certer = B )
| Ditplaped bext i the component:

{ .

oot : BN BT =T &

2

34



Step 4

Start by adding action source code to turn 1/O variable #24 on when the button is
pressed. Selecting the combination Button1 and CLICKED from the Part and Event
list boxes at the top of the Source Code Edit window automatically generates the
corresponding 3-line action source code block skeleton on the editor screen.

X ou ok
L‘*Hi“ﬂfﬂlﬂ=-Jilt]l[%~ﬁ,1r"**|~"-=-' ([

P = A A == mdﬁj“hwqm.u. e |
[EElFE " :

.: 03 Pareht

Y Parwll
3 et
1 Bweon

=]/[cucken

OO0 pEF Buttant_CLICKED{)
F

PR Fm
Lo e

|l;ﬂj,um Tl .J.nm 5 :. \“ﬂg_ ul H$|E t:!.g..-n L
Teomris s

[Coe-

£ Bl

B Buten?

OOO0C pEF BuLtomT_CLICKED(}

0| <t 1o [2w]) CEhgual {170 24y Curns 0W,
DESCH

i i

35



Step 6| Similarly add action source code to turn I/O variable #24 off when Button1 is
released (RELEASED) and to run a program (Sample pro) when Button2 is pressed
(CLICKED).

= PanniDimeignn - Paomlal

I i‘xﬁh F-fih'ﬁlﬂ rlmﬂquﬁll_ Tl |[rEE == e

|I;E]A-I:d1l Fal el == UL Ml e [T = AT H@m}nig' =R
— 2l sk
|fea E Ml
o .u.. = |
510 Pareki |
2 Y Pareell
& Buiont
e
bt I = B St
S —— 1 DEF DuLLﬂﬂT_ELIL"IEH{}
-l"“"' 13+ Vol grxd Kriadies = 08 sl fp[2u] “Uhgnal{ 10 20) turis BN,
 a I FMIIII} ST |
- I,
gilo] LU B But tond_NELEASER )
e’ resel la[¥h) *SEgnal{1/0 2h) Rturos OTT.
R CD
+ st )
Fin z-M S BEF Dutton2 CLICKED( )
Tore | e Fronge (LTS ¢
| 2unty 0+ Come _'ﬁ.‘w:-':.. E_Tun. samplepra ropran{sanplEpea) ruhs
+ e T Y

Step 7 1 When the panel layout is complete, save it to disk, and compile the file to check for
syntax, typing, or other errors.

fnnu T
}_ﬂ-]muhhh"h LR

e = sl
[cRmIFIZES
I=1er
S8 e

HuPonl

Em

& [Bunonz = ||eueren =JiE
il
COOOS pEF Rl Eund_GLIGKED] )
SEODEF gl in[:-'l:] “Llgral {140 2R} Furns BH.
e [HD
LR Rl
COCCS BEF Tk tond_RELERSED()
[ -y riEsEE inEﬂl]: “Slgnal{ 1/ 4} Eurns OFF .
Xt EHD
[=nnn "
SOOE BEF b Ean®_CLIERED] )
SO run samplepro ‘Progrand sanplegra) runs.
EO12END
[+ = 510
Fi Houmpiling... d
‘ad  PMMELGOMPILER 1.8.0
[y DacumsnbcyPanele1. pnl |
Complete?! - Crrors 0, Warnings o
-
T [ | z
Py 2= | =l = i vl

36



Step 8| If the compile operation is successful, download the results to the controller with
WINCAPSIIL

) & 5 0 w-eoax | Joint wo T ol 1%

I/0_operation Program_run

Step 9 Changing button properties

Color, position, and other button properties support read/write access from the part
itself as well as other parts on the same TP panel using the standard dot notation:
part_name.property.

For a list of part properties and possible values, see Section 3.3.4 "Object
Properties."

The following example changes the foreground color (.fg), background color (.bg),
display text (.caption), horizontal position (.x), and vertical position (.y).

Start by loading the editor, adding a button, and opening the corresponding Source
Code Edit window as above.

] PanelDesigner - Panels1

File Edit “iew Tools “Window Help
Dwl| ¥ =eoc(a|e ||as | o insn)E = =kH: =EE]
S AN E S EE N e
2 x| [ I ] S
a8 2 Els ¥ T
| o4 |80 120 |150 (200 [240 280 |320 360 |400 H0 ‘480 ;520 |5_50 500 [k
E|D Panels1
5 6 Panel | wete|l 1t
-3 Buttond e
g ButtanZ .
Bouce Panal RN
|& |[Buttont =] |[cuickep :
00001 =
= x| | 00002 DEF Button1_CLICKED() :
Active 3 - Yisible and Enabled ;I Egggi END .
Skyle 1 - Rectangle {30} . 0ooos
=l| Misc.
IO _operation
1
F3ize z2-M
Justify 0 - Center v|
Caption
Displayed text in the component
|
Ready % B[y 25 [ 4

37



Step 10

Type in the source code as shown below.

T U P Sk e e :
I S0 e R [ BT i g e el LR )
[P = S SR L
"E-.-l porwe e g _ : "m:.
T Farsis|
e =
-l
— =i .
. = = =] =] [euero EEIE P T
I =
£ s BEF Muttond_ELIEXED()
="""“ i SEE muttenl . fgeyellow “Hakes Foregruusi color pello,
:'rm‘] L] Rt Butteui.og-red “Hukirs bDochgrowsd colar red.
_.m& 08 putten) .capbion="Freused” “Changes ceptiom Lo “Fressed™,
- ‘ﬁ o puttent  a-Buttond msb@ “Hovee positien by B0 dots te clght siér,
s = Buttemi. g-Buttoni.getn “Mouws position g S0 O0CY o s
F.'-H"._. otm peFresh “Befresiies Botten )
s
g Curpd1ing, .. j
FHECLCOMPILER 1.0,0
[E:hHy Dotunmmb )\ Panelst pnd]
Complete? - Errors 8, Warnisge o -
L) .-iJ
Mol L0 T e e i

Save the edits,

Step 11

compile the file, and download the results to the controller as before.

e @ 0 wedr | owere[ uw

TP Panel Screen with Button Pressed

e @ 0 wedr | owere[ uw

38



[ 2] Label

This part simply displays text. It supports no events, so does not accept action source
code.

Label Example

The following example shows how pressing a button on the same screen can change
label properties.

Step 1| Load the editor and place a label and a button on the panel layout.

= [} Paneist
=) Farwil

3 Labwit

3 T

39



Step 2| Changing label properties

The label properties for display text, color, font size, and character position support
read/write access using the standard dot notation: part_name.property.

Changing the display text for the part named Label1 to "Off" requires the following
line.

Label1.caption="0Off"

Changing the foreground color to yellow, the background color to brown, the font
size to big, and the character position to left-justified requires the following lines.

Label1.fg=yellow Foreground color: Yellow
Label1.bg =brown Background color: Brown
Label1.fsize=2 Font size: Big

Label1 justify=2 Character position: Left-justified

Add the above to the skeleton created in the Source Code Edit window for pressing
Button1.

B E% Vi Taok v i )
(IR - RIS R E “l?m\.ﬂ.”— [ |IL‘||[:|.' ||||""_"1__.--- SIS
i

| A A = e e e
~zla
I=Ead i hals

= [ Pannist

= Farmll
B3 Labwil
{5t iy

wurce - Fanmll

= sl :: |ﬂ‘|IDumnl +||[cuickeD

ssttnnl B[ O DEE MurTaml GLIGHED()

P " | EEEEl - Labed) ccapl ion=0FF"

- = | P4 Lapeld.Tg-yellow

&2 | i CULOT Labeld .bg-hioun

240 || ooo%t Lamelv.Fsize-z

CONTT L ane it justiry -4
164 8 ekl FHn
] i [Fa TR
-

e == = ol
n b e l &
it J o

40



Step 3 Compiling this panel layout and downloading it to the controller produces the
following display when the button is pressed.

Before pressing button

Mo o@ 1 oweer | were|[

After pressing button

Mo o@ 1 oweer | were|[

41



[ 3] Pilot Lamp

This part has two display states (ON and OFF) and generates REFRESH events at
regularly scheduled intervals to allow visual monitoring of some state.

Lamp Example

The following example uses a lamp to monitor an I/O state.

Step 1| Load the editor and place a lamp on the panel layout.

Falﬂ -tl.r s

= 3 Paneist
~ 0 Farsil

3 Lightlistont

T yoet M
» B'.I
¥ &l
kb (E21]
P, L

42



Step 2

Adding action source code

This part generates REFRESH events at regularly scheduled intervals. Use these to
visually monitor I/O variable #25 by turning the lamp ON and OFF as appropriate. In
the Source Code Edit window, select the lamp's REFRESH event and add the
following line to the skeleton automatically created.

This statement means update the lamp state from the 10[25] state.

[ Vil Jooh dois L - . ——
[ e g [| ST T [ = S IS
[ R e e R == et ] e e S NI I

eI
= 3 Paneist
= Fansit
3 Lighfustont!
- = Pl
Ty _ =il | [UightRutton =] [REFRESH
’ & = Ora
bt oo | 00 BFF L ighiBul Lond AFFRESHL )
Types bl i ses o LightDuttont . state=io[zs]
X | 80 0004 DD
e — potoe
¥ #h

| conplliing. ..

A FAHELCUMPILER 1.0.01 3
[E:WMy DocumentshFanelsd.pnl | 24
Cumplete? = Frears 0, Waroiogs 0 -

| I-i: !ﬂ |

43



Step 3 Compiling this panel layout and downloading it to the controller produces the
following displays.

Lamp on

Mo o@ 1 oweer | were|[

Lamp off

Mo o@ 1 oweer | were|[

Step 4| Changing lamp properties

The procedures for accessing properties are the same as for all other parts.

44



[ 4 ] Numerical Input Box

This part is a button that displays a numerical value. Pressing this button switches the
pendant operation screen to ten-key pad input for directly updating that value.

This part has CLICKED and RELEASED events similar to those for buttons.

Note: In Version 2.32 or later, the DONE event is added to this part. For details, see
Section 2.2.5 "DONE Event."

Numerical Input Box Example
Step 1 || Load the editor and place a numerical input box on the panel layout.

(Optional) Specify an initial value.

"o Vi Jo i i
RE=E - RS- Y ﬁl?l]]ﬂ.ﬁ.ll—ﬂ REICE

T S I =

2| o sbl vl & unahuc-ﬂ_a e @ (utEkh e e
R

= [ Pansist
= Y Panell
51 il

Resdy i TENET T

Step 2 || Adding action source code

The procedures for adding action source code are the same as for buttons.

45



Step 3

Changing numerical input box properties

In addition to the color, position, and other properties that this part shares with
buttons, it has the unique properties of a floating-point value (.value) and display
format, decimal or hexadecimal (.style).

This example uses a button press on the same screen to read global string variable
#10 into a text box and store that value in global string variable #11.

Load the editor and place a numerical input box and button on the panel layout.

Open the Source Code Edit window, select Button1 and CLICKED to create the
action source code skeleton, and add the following lines.

The procedures for accessing properties are the same as for all other parts.

B Yew Tk edm beb -
_[]f‘:'n_l | &R ;j[-ii.x.gf_-"ﬂ:!:il: {1 TS N = e Sz |
| 5 ST 09 [ |
= el R
loRir iy s -
' I
=1 Panwlil
= ) Parett
B3 Mumesxct
1 Bidise
= e .
|7.:=., | Bt
Tm e
x [
i i::-:-
Wit o .
g (w0 2|[euckeD
= --!m ,,:] . :ﬂ::f': DEF MuEEanT L IEHED] )
HName - Mumerict  value-F[14]
Congorent rame 0004 F[ 1] -Humeried cvalues s
. 00N [
j Eompiling. .. j
k2 FANELCOMP ILER 1.0.0
| {E:'\.I’Iy I!ul.'ullﬂ'l‘sl'.\?.llll.-ls.-hpnl]
Completa? - Errors 0, Warnings B -
Fany o ] ) e

46



Step 1

Step 2

Step 3

[ 5] Text Box

This part is a button that displays a string. Pressing this button switches the pendant
operation screen to keyboard input for directly updating that string.

This part has CLICKED and RELEASED events similar to those for buttons.

Note: In Version 2.32 or later, the DONE event is added to this part. For details, see
Section 2.2.5 "DONE Event."

Text Box Example

Load the editor and place a text box on the panel layout.
(Optional) Specify an initial value.

Add action source code
This part has CLICKED and RELEASED events similar to those for buttons.

Changing text box properties

In addition to the color, position, and other properties that this part shares with
buttons, this part it has the unique property of a display string (.text).

This example uses a button press on the same screen to read global string variable
#10 into a text box and store that value in global string variable #11.

Load the editor and place a text box and button on the panel layout.

Open the Source Code Edit window, select Button1 and CLICKED to create the
action source code skeleton, and add the following lines.

The procedures for accessing properties are the same as for all other parts.

Textbox1.text=S[10]
S[11]=Textbox1.text

o Panalllangnes - Panelo] gnl

ENE*HIHIH%H#§_________|___\_”__________ R
IR - AL RN ‘i’-l“\ﬁkl'.lilllltll"'“l 1= |
|l'ﬂll TEERIE ;.r‘_—;..;_ 1] E=CER 1 g | e Wy |
—— alsf
oBsmir#
=3 Paneisl
£ Peren
B Twetosl
=
o Pty =
| Hsers |Besamt
|f:rr L m
| I-rio -
|3: e ],ﬂn}lnﬂ;unl | feucken
|— { e
| ek |m 5 S PEF DenEnadd BLIGKED{}
| Helght i e . 1-“ Texthoxt.text-5( 18]
|r-:, | R =llke a et §[11]Texthax. bext
e P B % EHD
Tﬂﬂﬁm‘
3 sangi Ling. .. -
r- FAHELCONPILER 1.0.0
[CzuMy DocumentsiFanelst.pal]
Complele! - Errors 0, Warnings 0 -
Al i
iy L T o e ;

47



[ 6 ] Check Box

This part toggles a setting between on and off. Access to this setting is via the property
state.

This part has other properties similar to buttons and labels.

Check Box Example
Step 1 || Load the editor and place a check box on the panel layout.

[ EHJ’M”HE\JJA]H‘IMIIQ&H_T@H' ‘n:!]l"ll‘ﬁ,ﬂﬂ.‘-}iﬁ":l MY S DE

=TT i

= [ Farmis]
gﬂ Paral]
5 Creckbou
B Creckbond
I [ Cheehband

Filen ]
| Aty 0= Cortaw 1B
rmimnmmm - FE
i i oy | =l e e e

Step 2 || Adding action source code
This part has CLICKED and RELEASED events similar to those for buttons.

48



Step 3| Read/write access to check box properties

This example shows how pressing a button on the same screen can update 10[24]
to 10[26] from a set of check boxes.

Add a button to the panel layout.

i B e o i Sl

e P Vot B

ma Evrw

o

49



Step 4| Open the Source Code Edit window, select Button1 and CLICKED to create the
action source code skeleton, and add the following lines for reading the check box
properties (.state).

I0[24] = checkbox1.state
I0[25] = checkbox2.state
I0[26] = checkbox3.state

Compile this panel layout, download it to the controller, and test.

2]

O PEF Buttont_CLICKED] )
GO i #h ) - chrekbon . state
oA 1025 ] -checkbox? state
GOl prh]-checkhoxd state
e EHD

gooat

50



[ 7 ] Radio Button

A group (described below) of these parts provides a set of mutually exclusive settings.

These parts have ON/OFF properties (.state) similar to those for lamps and check
boxes.

Radio Button Example

The following example uses radio buttons for three mutually exclusive settings.

Step 1| Load the editor and place a group with three radio buttons on the panel layout.

L '*"““*“l"“!ileﬂlﬂwl‘ﬂlmlllﬂuf'||- =
L=l e NOO B o @S

.ra|n.r|”

= 3 Paneist
- [Pl
3 SacBuson

£} Rodetitind
0 EadicBaen
ﬁ LT T

= propeny.

51



Step 2 I Set the property group for all radio buttons to the group number for the group to
ensure mutually exclusive operation of the radio buttons within the group. This
example uses group number 0.

] L L‘|In WO s T
|I | B e @ Rt H e

Step 3| Adding action source code
This part has CLICKED and RELEASED events similar to those for buttons.

52



Step 4

Changing radio button properties

Radio buttons have properties similar to those for buttons and labels.

This example shows how pressing a button (Button1) on the same screen can
update both the corresponding output (I0[24] to 10[26]) and a numerical input box
from the corresponding global float variable (F[10] to F[12]) based on the current
states of the radio buttons (RadioButton1 to RadioButton3).

Add the button and numerical input box to the panel layout.

53



Step 51 Open the Source Code Edit window, select Button1 and CLICKED to create the
action source code skeleton, and add the following IF statement branching on the
radio button properties (.state).

If radiobutton1.state=1 then
lo[24] =1
Numeric1.value = F[10]

Elseif radiobutton2.state=1 then
lo[25] = 1
Numeric2.value = F[11]

Elseif radiobutton3.state=1 then

lo[26] = 1
Numeric1.value = F[12]
End if

s e a. &
[[aldaaiia e = =

T E e e =)
o Gl e 7 |

: S =
: | =l I ®
. s 1 =1

= [ Pansii
= 3 Fansll
& EadoRuenn]
BT Padebumons
O3 EadioBunen
Gnam)
o Mureic)
£58 Bl
il = - Panell
SC S ﬁﬁ - HudinBullon =] [eucken
i |0 : i [EEia]
At 3 - Whible ard Erabled = 20050 DEF Radiobuttoni CLICHECD( )
— S000S i padiobuttond.state=1 then
e e ek 00054 tofz4] = 1
p=as = Lrra ) HMame e . wal e Fliu]
Buloni] e Fleeif Radiobol Bon2 csbale=1 LUhiss
A e 1o[25] = 1
= e Humeric .value = FEi1]
ZoM L0050 plseif Hadiobuttond.state=1 then
| P -l ; 030t tofzal - 1
2 T 1l 1] - 0T Humer e value = FJ12]
» el i Vo o : | B Rte  Emdif
S

ﬂ Conpiling. .. E{
= paMELCORPILER a0 =

) [z Hy Bocaments\Pamels1.pnd ] _ll:J
ned o

£

Compile this panel layout, download it to the controller, and test.

54



[ 8] Group

This part provides mutually exclusive operation for a set of radio buttons.

Group Example

The following example demonstrates mutually exclusive operation with two sets of
radio buttons.

Step 1 | Place two groups with three and four radio buttons respectively on the panel layout.

T T o T i 1
(T SE STl e @) w]][_f}_ﬁ [ 8 (D0 e 0

gl asnneroae nOo BT a8 MGk Uyes

|- ]
e |

= [} Pansis
= Y Facsll
f:[hluu.l'l

T Gioupd

o ST el

55



Step 2 I Assign group number 0 to Group1 and 1 to Group2.

ra|ﬂr]"‘||fi

= [ Pansit
SO rwe
5 Gl
1 Gioupd

= — = [ TR S

Ean e ] e el el

Step 3| Set the property group for all radio buttons to the group number for the group to
which they belong to ensure mutually exclusive operation within the group.

ra|ﬂr]"‘||fi

o8

S [ — I.%"l

e [0 il

56



[ 9 ] Function Key

This part resembles buttons in assigning captions to pendant function keys and action
source code to function key presses, but it lacks the position properties of other parts
because the pendant function keys have fixed positions, specified by number (.index).

Note: In Version 2.32 or later, the RELEASED event is added to this part.

Function Key Example

Step 1 || Load the editor and place the function key anywhere on the panel layout in the
Layout window. Note, however, that the final result will not appear at this position,

but on the corresponding function key on the teach pendant screen.

Specify "Next panel" as the display text (.caption) for the function key.

T i N T o 0
[Lem s mBo &% |[an]EeE L;!I]'llﬂﬂ'ba-ﬂ e

[@ mabinad (& ® uaﬁl\.mﬂ B oade e BhRE e

= Laprul - Fanell

ElE R

= [} Pamt
= £} Facell
3 Funckinyl

57



Step 2 || Specify the desired function key number (0 to 9). This example uses #2.

m Panellesignes - Panell

ﬁiﬁﬁﬂlﬂwﬁ

eadsmaw & x| =S o

[0 e B PG

IFEIEEE

w0 [ren Bas HXSmE|

= L1 Paneti)
“ Y Panell

& Fiae

Mg | Eureiey]

Trim | FE

| it | My

[&uﬁ-dhnmuu iy

T T ]

Step 3| Adding action source code

This part differs from buttons and other parts in supporting only a single event
CLICKED.

This example responds to the key press by switching to a different panel, Panel2.

" S T | [ e e |
j_l | e | e -u-:l_? s=hAk ”_1*J_lli. 5@ |||““| = =l
—_—— 2l —
(=3 Rl I
].
= L1 Paneti)
) Panell
& Fiae
L OEF FunoKeyt GLIEKED()
O0Cd page_change panel?
L004 EHD
- Property
Naa [ A
r;-F- | FE
“ e
| it | My
[&uﬁ-dhnmhwnm
Fred oo i ol el el

Step 4 || Changing function key properties

This part differs from other parts in offering only a single property, caption. Access is
the same as for other parts.

58



[10] Timer

This part automatically triggers action source code for the TIMER event at the interval
specified by the property interval.

Timer Example

Step 1| Load the editor and place a timer anywhere on the panel layout in the Layout
window. Note, however, that the final result will not appear on the teach pendant

screen.

Step 2 I Changing timer properties

The main properties here are active, which controls (and indicates) timer status, and
interval, which controls event frequency.

This example uses buttons to enable and disable a timer which alternately switches
a pilot lamp on and off.

Load the editor and place a timer, two buttons, and a pilot lamp on the panel layout in
the Layout window.

El' E'i '1"-* Il (3
[Lsm xme o @0 ARG e D [T00 e s
(@ Aasblnal & F uj;lal‘-\ﬂﬂ B0 O I'—'l!ifltﬂhl B =
o] e T+ |
= |1 Pansist ]
=10 Pacel
B T
E1 Buenl
B3 Huiten
- ot
7 |k
— 2B
£ Lar J (=
Pize M . :
Justfy 0l Crnter _
L ] ¢
m ; EEMBI=TE =

59



Step 3| Adding action source code

Open the Source Code Edit window, select Timer1 and TIMER, create the action
source code skeleton, and add the following line to switch the lamp ON and OFF.

If Lightbutton1.state = 1 then
Lightbutton1.state = 0

Else
Lightbutton1.state = 1

End if

Add the following lines so that the CLICKED events for Button1 ("Start") and Button2
("Stop") respectively enable and disable the timer.

Timer1.active = 1
Timer1.active =0

(B E® View ook Wdowr  How

BN T AR A s
|[=43.| ol ] T A [ (0 5 ) | T

q
o £l g
. 1
- E Farel
=2 0
L Tl
B putort FOO0C pEF ButLond_GLICHER{}
B uen o Timer | actives 1
- I 0 el 1. ]
B Loeon : e
— O0T BEF Bubton? Gl IGHFR()
- f 0T fimerd.active=0
[ Faradl qA1E
=T ] - SO BET Timerd TIMER()
‘lm [Pt AT T LightlutEend .state=1 then
l,;,— s a oot Lightimttond state-i
T L LE I 3 BT
s Cvan -
'm .,'." = = G Ligmiputtond state=1
k ‘h ok Pl Emade
_}'. oo b 2tk e S5 e 4 b, AL RELN i, 1]
CLELL

g tompiling. ..
: PAMELCOWILER 7. 0.8
[E:\Hy DocusentsbPanelst.pnl]

-l
‘ Completel Crirars B, Warnings 0 -
th ]
!

60



[11]Line
This part draws a straight line with the specified pattern on the panel layout.

The parts line, oval, and rectangle are for drawing only. They support no events.
Nevertheless, other parts on the same screen can still change their properties.

Line Example

Step 1 I Load the editor and place a line on the panel layout.

Step 2 Changing line properties

Like all drawing parts, the main properties here are line type (.style) and line
thickness (.thickness).

The following example uses a button press to change line thickness and style.

Add a second line and a button to the panel layout.

||' SE KB a|?|||q.ﬂi.|]—ﬂ ED ]unnﬂnbaq BT 6 |
|| e sblsal (8 R maalxma Bl e Rt
rﬁlﬁtlri I apiid - FPamml1
= [ Panes1
= [ Fanell
& Linal
{51 Link2
O3 Builen
[ e v =l |}
Fi Wil =
s | Gy E
r::‘.]- 1+ Waible &
s 0 3ck B} -
- me =L
L
Faregrourd oolor ; | i L 1 ] Al
Resiy RS T T

61



Step 3| Open the Source Code Edit window and add the following action source code for
changing the line 1 thickness to 5 pixels and the line 2 style to dotted line when the
button is pressed.

o anelllsmegnes

[E=as s @i Rslln
([ AT i e o @ [

([T = e == |
S W |

loB [wizi#
[0 Parwint
2 Pareil
£ Lra
B L2
1 B ]
= C =] [cuicken
Fiw i _:J
: = SOOCS pEF Huttomd CLICKED()
- == F 053 Lined . thickness=5
! ooE Line? style=1
E‘W { muiteny O | D Y-
Lot e SR e ey
Fo—
E 410
L et
|| e 180

Compdling... =
FAHELCOMPILER 1.0.0 t
[l::'\.lly hwumn'l.:.\.l"]unh'l_pnl.]

nanpletet - Errors 6, l!.'n'l'lil'ig-t L]

. .'-#-I'_i— S
Rlaady e

Step 4 || Compiling this panel layout and downloading it to the controller produces the
following displays.

Before button press

Dd o wea | were]|

(I . . . . !
e o | 7 ¥ ¥ 0
After button press

Dd o wea | were]|

L0 [N S S S |

62



[12] Oval
This part draws an oval with the specified pattern on the panel layout.

The parts line, oval, and rectangle are for drawing only. They support no events.
Nevertheless, other parts on the same screen can still change their properties.

Oval Example

Step 1 I Load the editor and place an oval on the panel layout.

Step 2 Changing oval properties

Like all drawing parts, the main properties here are line type (.style) and line
thickness (.thickness).

The procedures for accessing properties are the same as for all other parts.

[ 13 ] Rectangle
This part draws a rectangle with the specified pattern on the panel layout.

The parts line, oval, and rectangle are for drawing only. They support no events.
Nevertheless, other parts on the same screen can still change their properties.

Rectangle Example

Step 1 I Load the editor and place a rectangle on the panel layout.

Step 2 I Changing rectangle properties

Like all drawing parts, the main properties here are line type (.style) and line
thickness (.thickness).

The procedures for accessing properties are the same as for all other parts.

63



Step 1

Step 2

[ 14 ] llluminated Push Button

An illuminated push button combines button and lamp operation. It therefore supports
CLICKED, RELEASED, and REFRESH events for adding action source code.

The property state gives the lamp's current state just as it does for lamps and check
boxes.

Illuminated Push Button Example

I Load the editor and place the button just as you would with a regular button.

Changing illuminated push button properties

The following example uses illuminated push buttons to run a program and display
an /O state. Pressing this button runs a program in the same folder. (This program
waits two seconds and then turns 10[24] on.) The lamp in the button tracks 10[24].

Add the necessary parts to the panel layout.

E'Etﬁlfﬂlltﬁlb
(Lol g me o &% (R h e [FD T 00 e T
|| e sblsal (8 R :::;EG|‘\E[ID Bl e Rt

ElE R

= [ Panes1
= [ Fanell
i3 LBidiond

m Lapiul = P el

'—|'_¢-,|h | nnrr.u'upr[’!'.l]
L
apbon YCTEE

Fiim Tzom

64



Step 3 || Adding action source code

This part supports three events for adding action source code: CLICKED,
RELEASED, and REFRESH. This example uses only two.

Ibutton1.state = io[24] ' copy 10[24] state into Lightbutton1

im} PanelDesigner - Panels1

File Edit “iew Toolz Window Help
Cwd|rme|eoale||a || iE = S s
IR EAS A e E T [ =
B - Layout - Panell -|0| =
IEENEARE 'J%
I a 40 ‘80 120 |1BD 200|290 220 |320 260 |4OU 440 |480 520 |5-BD ElDD E
PR AR AR NI I (DO O MO AU AN A e SO AU A
EID Panelz1 -
E--@Panel‘l T ] I@Z@ZZ@ZZ&ZIZZZZI ZZIZZZZlZZZZIZZHZGTBZl PR | S
T LBuiton T T S
% [
B Source - Panell 19 [=] B3
== |& |[LButtont -] |[rEFRESH
Style 1 - Rectangle (307 EEEE] _I
| Misc. 00002 DEF LButton1_CLICKED()
Caption LButtoni [nlululu:c} run PRO1
00004 END
[nlululula)
ESize Z.M | 00005 DEF LButton1_REFRESH()
- 00007 L Buttond.state=I0[24]|
Justify 0- Center 00002 END
Shake | LI 00009
Caption
Displayed text in the component iLI
Ready w B0y 200 i

Step 4 || Write the program to run using WINCAPSIII.

- prol_pac *

4 " ITITLE "TP Panel Sample
2 PROGRAM prol

3 de|ay 2000

3 =et io[24]]

5 and

i

Compile this and the panel layout, download them to the controller, and test.

65



2.3 Interfaces with PAC Language and System

Data exchange between the PAC language and the TP panel is via global and folder
variables.

The interface with the system uses the SYSSTATE command and /O variables.

2.3.1 Reading and Displaying PAC Variables

A TP panel can access PAC global and folder variables, but not local ones. Folder
variables require EXTERN declarations; global ones do not.

The following examples display such variables on TP panels.

Example Displaying Global Variables

Accessing a global variable uses array notation with the array name indicating the
type: | for integer, F for float, D for double, and S for string. Global integer variable #10,
for example, is 1[10].

The following example displays a global variable of each type in a numerical input box
(or text box for the string) when a button is pressed.

Step 1 | Load the editor and place a button, three numerical input boxes for displaying the
three numerical variables, and a text box for displaying the string variable on the
panel layout.

T £k Vw Toch T _
|Co@ame o &2 anye E0|TemRe s xanm
[ wsiuFFome \OO D2 - 00 ¢ il d e
—_ '-:iﬂ: & Layoud - Fanall
EolmiFlrs (i3
=13 P || e R o i
=0 Pl Gl m
=
1 Humeic
1 Hesree? - = =
51 Humericd i 0
==t
= Prepeity & 0
{ M | Do = M
T e oL i
Ix |20 | TedBoa
¥ 1y
e law
e £
Fii ) = A [
§ '..Bﬂ =l L
Dstplarved bt in the comosnent
o [ e el Y

66



Step 2 I Open the Source Code Edit window and add the following action source code for
when this button is pressed. This example copies global integer variable #10, float
variable #11, and double variable #12 to numerical input boxes and global string
variable #13 to a text box.

Numeric1.value = [[10]

Numeric2.value = F[11]
Numeric3.value = D[12]
Textbox1.text = S[13]

; Tei Wi -
Ilfl'_"“..-"ﬂ1} Iﬂhﬂln:u -ﬁlf]“ ﬁ'll—l--, I-'“|'I"I‘|]'fﬂ|']'|'- =] .-FJII';"'.JII
lelanwlie s smeinEeimE s a e o]s sz
r SlEElss
- Farslsl
En Pael |
£ Bl
M el
E gl =] [ctickep
51 Humericd | i
B Teetfice - B "'C""—_ DEF Duttond_CLICHEDE )
i : Lt OUO0T Hunerict.value-l]10]
OO Humeric?.ovaluses1[11]
LEEE™ Humericd valoe=T] 12]
maaE TexUBouw!.texl=-5[12]
OT0T BN
= meperty
Hame | Latent |
Trise Pu i Rl
X L £
¥ |40
Wil | ve
Heegdd [ fou
Fi | I et
m:&ﬁ'ﬁ&.&mﬁu

Step 3 Compiling this panel layout and downloading it to the controller produces a display
similar to the following when the button is pressed.

Dol wee fmmeordw

67



Example Displaying Folder Variables

Accessing folder variables in action source code for a button or other part requires first
declaring them with EXTERN plus a reserved word (DEFINT, DEFSNG, DEFDBL, or
DEFSTR) indicating the type. To access folder integer variable itest, for example, the
action source code must first declare it with the following statement.

EXTERN DEFINT itest

The following example displays a folder variable of each type in a numerical input box
(or text box for the string) when a button is pressed.

Step 1 || Load the editor and place a button, three numerical input boxes for displaying the
three numerical variables, and a text box for displaying the string variable on the
panel layout.

Note that the layout is identical to that for the global variable example above.

Step 2 I Open the Source Code Edit window and add the following action source code for
when this button is pressed. This example copies integer ITEST, float FTEST, and
double DTEST to numerical input boxes and string STEST to a text box.

EXTERN DEFINT ITEST

EXTERN DEFSNG FTEST
EXTERN DEFDBL DTEST
EXTERN DEFSTR STEST

Numeric1.value = ITEST
Numeric2.value = FTEST
Numeric3.value = DTEST
Textbox1.text = STEST

m Panelllesigner - Panels] pnl

Eie B M IM Wi Hoke _
(M@ Fa@ln- &?|.JA| r :::-I|r'+|.||-'~-1|-'.--.-:::rs[
||‘;1A.| T A e e = BT e R L & Sl
o= il
|EQ3 L e
|
2 | LA Iwmmmmmrmliql o 1
arwlal o
=1 I | HETH ] 11
. S S
B Mumenz
B e -
£ Mumed ] 5|,ﬂ .|B||1Iurll =] |cuicken
B Tenthan] m
3 | DEF Buttont_CLICHEDY )
alsl OO ERTERN DEFINT JTEST
] e EXTERN DEFSHE FTEST
_Ml % EXIEHM DEFDHL DTEST
e EXTERH DBEFSTR STEST
Farvs
G W SECE umerlcd . value-1TEST
H.'. ..'\..\-m TER N Humeric? .value-~FTERT
R e ""1'7 Humerich valueDIEST
T =k ] TexEhne] Fext-5TEST
Name il
| Camgarnn name iz
1 1 el
j Complling...
PRNELCOMPILER 1. 0.0
[E:yHy BocumentsyFanelst.pnl]
Completet - Errors B, Warnings 8
: 21 I
Hasy o - ] e i

68



2.3.2 Modifying PAC Variables

Modifying PAC variables is simply the write access counterpart of the read access
described in the preceding section.

Example Modifying Global Variables

The following example updates a global variable of each type from the corresponding
numerical input box (or text box for the string) when a button is pressed.

Step 1 || Load the editor and place a button, three numerical input boxes for specifying the
three numerical values, and a text box for specifying the string on the panel layout.

T £ Vw1
Ce@)

NN L e T
0 skl (& é-:i:i; NOolos ao @[tk @ e

[EalE e v e

= [ Pareh
E 3 Panell
=
1 Humenel
B Musnmee?
1 Humencd
e

69



Step 2 I Open the Source Code Edit window and add the following action source code for
when this button is pressed. This example copies the three numerical values to
global integer variable #20, float variable #21, and double variable #22 and the
string to global string variable #23.

[[20]=Numeric1.value
F[21]=Numeric2.value
D[22]=Numeric3.value
S[23]=Textbox1.text

|l wl FF o m = :mapiﬂ clgswmmlli oo
g |wiE T
= 3 Parwisl
=03 Pl
£ Fasterd
£ Hurmict =
B i = fecicken
H *
had Muieec) JOUCE pEF Buttonmd_CLICEEDL )
i =l |} | SODOs Yo -Muneric.value
IE.""""-'- : ¥ Q2] M e ? ovalue
e M_ B — TER I 23] ~Humer i3 value
Mg Sl : w000 gTe0]-TextDoxd . text
Type ol A |E SOCOT END
—— e — 1 coo0g |
i |l Foe -
e [
the companent | )
'-ﬂ Coumpiling. j“
FﬂNELI]ﬂFFII.tH 1.0.0
[€:\My Documents\Fanelsd.pnl] i
| I:unplete'l = Errors ¥, Warnings 0 o
Al ”

i
:
:
i
|
i
i

70



Step 1

Step 2

Example Modifying Folder Variables

Accessing folder variables in action source code for a button or other part requires first
declaring them with EXTERN plus a reserved word (DEFINT, DEFSNG, DEFDBL, or
DEFSNG) indicating the type.

The following example updates a folder variable of each type from the corresponding
numerical input box (or text box for the string) when a button is pressed.

Load the editor and place a button, three numerical input boxes for specifying the
three numerical values, and a text box for specifying the string on the panel layout.

Note that the layout is identical to that for the global variable example above.

Open the Source Code Edit window and add the following action source code for
when this button is pressed. This example copies integer ITEST, float FTEST, and
double DTEST to numerical input boxes and string STEST to a text box.

EXTERN DEFINT ITEST

EXTERN DEFSNG FTEST
EXTERN DEFDBL DTEST
EXTERN DEFSTR STEST

ITEST=Numeric1.value
FTEST=Numeric2.value
DTEST=Numeric3.value
STEST=Textbox1.text

E'l E* Maw 'IHJI h',hiﬂl*' el
|L_;..-H|,.‘- hﬂln; = f |[ Dh_ll_ ;:;: ) ik Sl SR N [ | |
H,i‘_‘[ Al |1 o e =i .-|_’|_i lﬂ |‘|ﬂ|||““ T :r‘
[ColFEEy E
= 11 Porelil = "-‘1“fﬂ”|‘”'“mmﬁw*’ R
= - ': ri& ¥ .' 'lh--i-lf-"’—‘“_'
nn [ m ﬁ r‘ Suuen - Famol) =
£ Humerc | !
" oo i Jﬂ_c,!Pu“nnl =] [cuckeD
Phanemd | Fiepieed -
E T:',',';;1 - | S pEF Huttond_CLICKEDL )
. — '.’ EOS EXTERM DEFIMI DI1EXT
1k [ 104 FXTFRH DEFSHE FTEST
= | Property = . " o000S . CXTCRM DEFDDL DTCST
| 1 000 CXTCRM DEFSTR STCST
[ Hamme [Tiana! 0o
Ty | Panal A0S ST -MuncricT . ualoe
= | == REE FTEST=Mumeric? cualore
il :-?—'?T ans BICST-Hunericd.value
P'L:J- | L i % et STEST-TextOoxd . test -
Tent ' ooz .
Tt of the componeck : o] F)
ﬁ Compi 1 dng |
E FANCLCOMPILER 1.0.00
| [C:wmy DocumentsyPanelsiopnl]
Conpletet - Errors 0, Warnings O -
Tieady L E=1 =T &

71



2.3.3 Reading I/O States

A TP panel can read robot controller I/O states via global 1/O variables or local 1/O
variables declared with DEFIO. We postpone discussion of the latter to the local
variable description below.

Example Using Global I/O Variables

Accessing a global I/O variable uses array notation with the array name 10.

This example monitors global I/O variables #24 to #27 with lamps updated at regularly
scheduled intervals.

Step 1| Load the editor and place four lamps on the panel layout.

II:I.IJ -.-ﬁ!lﬁ] r ¥

= ] Farmhl
- R
o Lagthunan]
LaghEtutton.!
E Lighetiursant
0 Lonisumnd

r—

i ] ) ]

72



Step 2 I In the Source Code Edit window, select the REFRESH event for one lamp (This
example uses LightButton1.) and add the following action source code for copying
the /0 states to the lamps at regularly scheduled intervals to the skeleton
automatically created.

LightButton1.state = 10[24] ' copy I/O variable #24 state into LightButton1
LightButton2.state = 10[25] ' copy I/O variable #25 state into LightButton2
LightButton3.state = 10[26] ' copy I/O variable #26 state into LightButton3
LightButton4.state = 10[27] ' copy I/O variable #27 state into LightButton4

] m Tock einckw fleb
J] ur.'n e e ||"LK i "F' |l et = mfi_:-j
JLA' W n1||'l"1|||'P'F' _lii':"\ =, .I.Iﬂldl i 1‘f|ﬁj“““ i |r FHT
Eﬂr
:HJ A=
I 1|5 e T
= a I il | : v PR n-.l'..]i‘
=1
£ Lphifiuaond
£ Lahuions
X Lohifiirend
E3 Lignillriand
= i [rrsn == W v e
b el =
- - I SE05S el LightDuttomt HEFRCSHI)
g e LightRuttand, state-T0[ 4] ‘Lightiuttan gets state of (0]#8],
L. o Lo BOOES LhgnEruttemi S Late= 10 3% ] ‘Lightoebton? gets state of (0126 [«
ad I B st LightButtond . states 1[50 ] ‘LightDuctond gots state of TOJ26].
™ = S LRt bush st ate=TR[77] ‘Lightfultonk gebs sbafe of FO[27],
]':.J.-m |
L'.D!‘fﬂ:._ 7. (1
I ._ 0

73



2.3.4 Modifying I/O States
Use the SET and RESET commands to modify system 1/O states.

ON: SET IO[l/O number]
OFF: RESET IO[I/O number]

Example Modifying I/O States

The following example updates I/O variables #28 to #31 from the corresponding check
boxes when a button is pressed.

Step 1 || Load the editor and place four check boxes and a button on the panel layout.

f'[L.mx;lrnﬂ|-u:-mw]][m.mr—ﬂl===::z']']'['i:"'.iF'ﬂr|'| s e s Wk |
@ i (6 R casm\n-zalﬁr:s ol al@]}lhﬂ-uillr pi |
: alal

i

"aa|a;|r|“

_ﬁth1

ﬁ"ﬂF“ﬁi_ EEEE

74



Step 2 I Open the Source Code Edit window and add the following action source code for
updating the outputs from the check boxes.

I0[28]=Checkbox1.state
I0[29]=Checkbox2.state
I0[30]=Checkbox3.state
I0[31]=Checkbox4.state

" update /O variable #28 from Checkbox1
" update I/O variable #29 from Checkbox2
" update /O variable #30 from Checkbox3
" update 1/O variable #31 from Checkbox4

LS DFF Butrand_CLICKEDC Y
EEAEy Lop s | -rheckBoxt State "IFU[RE ] gets state of Chechbent,
wotd |af2e]-CheckBox? state "LAOEER] yels sbake ol EleeckBoxd.
A Tafanj-checkEnx® . state “T/nfa@} qets state af ChechBioRd.
wees 1EYT |-EhecHBoxN . State VIAOLEY ] gets state oF ChochBaNm.,
e ]

e

75



2.3.5 Reading System Status
The SYSSTATE command reads the system status.

For further details on this and other commands, see Chapter 5 "Command Reference."

Example Reading System Status
The following example lights a lamp when the controller is in automatic mode.

Step 1 || Load the editor and place a lamp on the panel layout.

': i&ﬂd T

=10 Parel
O Pt
1 LigfeBiaon

mwwu‘.w S P 1]

76



Step 2 I In the Source Code Edit window, select the lamp's REFRESH event and add the
following action source code for updating the lamp based on the mode data read
from the controller at regularly scheduled intervals to the skeleton automatically
created. (This example uses the default name LightButton1.)

DEFINT STAT, AUTOSTAT

STAT=SYSSTATE
AUTOSTAT = &H0010 AND STAT
IF AUTOSTAT = 0 THEN
LIGHTBUTTON1.state = 0
ELSE
LIGHTBUTTON1.STATE =1
END IF

': i&iﬂd R ?ﬂ;-t- 0

I

=10 Parel
O Pt
1 LigfeBiaon

3] [rerresn

"':':‘-"_ DEF LightButtomi REFRESH{ )
BEFINT STAT.AUTOSTAT

'r.\-'{‘-

STAT-SYEXTATE

AUTOETAT-RMBE10 AND STAT

IT AUTOSTAT-0 THEH
LigneHur Ean . stale=0

FLSE
Lightiuttont.state-1

1F

R T ] IR L e
- - o :
e || 1

L Y U

77



2.4 Switching TP Panels
The PAGE_CHANGE command switches the teach pendant screen to a different TP
panel in the same folder or even one in a different folder. It has the following syntax.

Same folder: PAGE_CHANGE panel_name
Different folder: PAGE_CHANGE path_name.panel_name
Root folder: PAGE_CHANGE \panel_name

2.4.1 Example Switching in Same Folder

The following example has three panel layouts in the same folder with two buttons on
each for freely moving between them.

Step 1 || Load the editor, create three panel layouts with two buttons on each, and label the
buttons for the two other panel layouts.

=BT R

=11 Pawk!
= B3 Fanstl
3 Wi

&
ety 5
ll.,.,.- inlm—d
! Tyme 2]
.x |z
Iy EL)
b— 3 o
gt |

:-i:lwtl-
[ ooy

=
B

Grisae 1L
B

0 = it el il des] _'.
| -

78



Step 2 I Open Source Code Edit windows for the panel layouts and add the appropriated line
from the following action source code to each button's CLICKED event.

PAGE_CHANGE PANEL1 ' switch screen to PANEL1
PAGE_CHANGE PANEL2 ' switch screen to PANEL2
PAGE_CHANGE PANEL3 ' switch screen to PANEL3

o P anall avignes - Panelal]
TR _ B i . B )
[Fw tae o @ ST e | = e = s |
([T e = g | LT e o W = j_'

IR

By O ———— e T e )
L1 e Crry | .- [
£ Buten B
B Paeil (SO pEY BeLUon _ULIGEED()
i WOOE pPage change PAMELE
Buttond e BN
n ' et
] ﬁ Bt :Il_:l,_:_!: BEF lutt,unk_ﬂl:l:l[r;:l
: e chi NHEL
£ Buno? oot g
= = = b
I | - 5'|Eﬁ [Buttuna =l
it 4 i m.'. DIV Duttond CLICKERC)
raﬁ” - DO Page_change PAHELY
Propesty | ooond gD
] Farel) ] L=
1 1 SR DIV Bettond _CLICKED( )
T e W Page_change PAMELE
g _F_!'.__ { ._!ulik | [
| il na W | R
ﬁ‘ " = g4l 1T
Cacten =|{[cuickEn
Trses, |0 ] -
o COOOS DI uktont_CLIGHED )
s Page_change FAMELY
[t ] ““
[=maa

COCEE DEF Wutton? L ICHED])
DT page_change PRHEL2

OO0 EHD

Compile the panel layouts, download them to the controller, and test.

79



2.4.2 Example Switching Between Folders

The following example has three panel layouts all in different folders in a 3-level
hierarchy with two buttons on each for freely moving between them.

Step 1 || Create the 3-level hierarchy with WINCAPSIII.

Load the editor, create three panel layouts, one at each level, with two buttons on
each, and label the buttons for the two other panel layouts.

W v G0

WINCAPS 1

B GR gos Buet Copen Qe gn D ke e

Gl

A

A Montor Communizstion Cifins

i &

[

Ag

RS Progmt VAEETT01 LT

¥

= =

|
o T

27808 |20 i

ST IR N e N LT

LR ]

s e Shat hes o

FY Y

Ve | e Maom

Mo Gtate Tioe Usage =
o o Exrtem nput Steg stop (d |
1 Syrteen nput Strobe sgrdl
r Syrtam rput Data s b

Sysborn irpuit Buts sres bl
+ Syd b rput Duls dres bt
| 31 5 - Evetam reut Conenard an

Step 2 | Open Source Code Edit windows for the panel layouts and add the appropriated line
from the following action source code to each button's CLICKED event.

PAGE_CHANGE FOLDER1.PANEL1 ' switch screen to PANEL1 in FOLDER1

relative to the current folder

PAGE_CHANGE FOLDER2.PANEL1 ' switch screen to PANEL1 in FOLDER2

relative to the current folder

PAGE_CHANGE FOLDER1.FOLDER2.PANEL1

PAGE_CHANGE \PANEL3

im PanelDesigner - Panels1

File Edit ‘iew Tadls

Windaow Help

' switch screen to PANEL1 in

FOLDER1.FOLDER?2 relative to the current
folder

' switch screen to PANEL1 in the root folder

using absolute folder reference

IS [=] E3

R e

| [ EEE = =

S A AR s == L L N

S|

[EENE =

B D Panels1
=53 Panell

=3 Buttanl
-} Button2

I=I| Property

Mame

Panell

Typa

Panel

Fa

. Black.

BG

. Cyan

I=1| Misc.

Caption

Caption

Displayed text in the component

[k

T

| 40

4001360 - 220[ 220 240[ 200 1601 120 20

Ready

= Layout - Panell
B Source - Panefll

”ﬁ |[Button2 =] |[cuicken L

00001

00002 DEF Button1_CLICKED()
00002 PAGE_CHANE FOLDER1.PANELA
00004 END

00005

O000S DEF Button2_CGLIGKED()

00007 PAGE_CHANGE FOLDER1.FOLDERZ.PANEL1
00008 END

s = I

80



Step 2

(continued)

929053 PEF Buttond_CLICKED()
02003 PREE_UCHANMGE ¥PANELY
EEVEEN ST

(200 8]

09000 DEF Button?_CLICHED{)

00007 PRGE_CIHANEE FOLDERZ .PAMCLA
00358 D

=0 -]

DOO0d DEF Buttont_GLICKEDL )
OSGSE PAGE GHAMGE ¥RNHEL Y]
[LECTEN =1

o007

R == =

Compile the panel layouts, download them to the controller, and test.

81



2.5 Flow Control

The TP panel control language has three types of flow control statements: conditional

branches IF... END IF and IF... THEN... ELSE..., SELECT... CASE, and iteration FOR...
NEXT.

The following sections give examples.

2.5.1 Conditional Branching
Example Using IF... END IF

The following IF statement example reads a global variable into a numerical input box if
an I/O condition is met.

Step 1

Load the editor and place a numerical input box and a button to trigger the test on
the panel layout.

Step 2 I Open the Source Code Edit window and add action source code updating the

numerical input box from global integer variable #10 only if I/O variable #24 is 1
when this button is pressed.

[Ji ..El|,~ B & o o alflu bﬁ.|_l_
”ﬂ|f.urri||1f|_,ﬁ'!'-j_-1_i =i

il |||' ARt N E SR = 2 |
SEEETE T

Ea_!ﬁ'iﬁ_| T + ” B Source - Manel]
— ] |u dﬁll CLICKED I
= Ug‘:' o T oo pEr Butkond GLIGHED() ﬂ
o AP OO00E IF 1O[2%)-THEHW

erdand HUMERIE .value=1]10]
[ FHI IF

[EYER FHD
(TEATaE

3 'mH-an.'th
1= Rﬂ.‘tb’ﬂe{ﬂ)

firk Pk

Compile the panel layout, download it to the controller, and test.

82



Example Using SELECT... CASE

The following SELECT... CASE example runs a different program according to the
value in a numerical input box when a button is pushed.

Step 1 I Load the editor and place a button and a numerical input box on the panel layout.

Step 2 I Open the Source Code Edit window and add the following action source code for the

button's CLICKED event.
DEFINT TYPE
TYPE = Numeric1.value
SELECT CASE TYPE
CASE 0
RUN PROO
CASE 1
RUN PRO1
CASE 2
RUN PRO2
CASE ELSE
RUN PRO10
END SELECT
[ R f"-]_;ﬂﬁl--if-_!]["z:‘-_’ﬁ;]]_rf' Hl ]“fiif--ii'-l'.ll;-l it A | il S [
S A A . R e ke e e e =l |
== ————— . [T oy
o YA ]
._:'-_?E":;eﬂ e T . =2
Hj_ Nun_ﬂl
I I']_‘,g__ljcﬂﬂ =] [eLicken
- . = |l - ﬁ: DEFIHT T‘.'PF-:
TIPS e
ke L bl cooor CASE W
Artin 3= Wi i Enatied m Eg:u“-."“
le '.tyh} ; | Reckangis (30) e :::::;::-I: E“EE";‘HH
]i rioct fum oo Ls [iH P02
Qo0 E UASE ELZE
LExiT4 RLUH PROTA
oM :;‘:-'-':I: EMD SELCCT
_Il:si;:'f _.ﬂ“.'.'nim C:DEI.‘ .
o 5 HEv® Rl

Compile the panel layout, download it to the controller, and test.

83



2.5.2 Iteration

Example Using FOR...NEXT

The following FOR... NEXT example counts the number of zero values in global integer
variables #0 to #99 when a button is pushed and displays the result in a numerical
input box.

Step 1 I Load the editor and place a button and a numerical input box on the panel layout.

Step 2 I Open the Source Code Edit window and add the following action source code for the

button's CLICKED event.
DEFINT COUNT,ZEROCOUNT=0

FOR COUNT =0TO 99
IF [COUNT] =0 THEN

ZEROCOUNT = ZEROCOUNT + 1

END IF
NEXT

NUMERIC1.VALUE = ZEROCOUNT

V. ik N Took i, t5"

T o ] e

||||1 YIS B W (A= )

Jﬂ|.‘d1ﬂ|l 1% |_“_11‘ ¥l T -li

R

= [ Parels?

= Parwl]
1 Bl

'Hﬂ =

. [ 3 Vit st Pt 2L
Sryle .rl Destange (30 -

e D L

CO00Z pEF Dutteoni _CLICKED()

CODOT DEFINT COUMT . ZEROCOUNT =0

[ m el ]
DD FUR COUHL=0 1 vy

| mexn IF I[CMIHT]=0 THFH
|'tize 2 & et FERNENHHT-ZERNCONNT = 1
| [ R EHD IF
Lntity L1} Ceroer = A 20008 HEXT
e - . CODAD HUMERDET . VALUE - 2ERDCULHI
Dy test v the cistipengnt 21| I |
. — muig
j conpiling. .. -
FAHCLCOWPILER ®. 0.0

Reay

[Gasky DocunentsyFanelsd.pnl]
Conplete! - Ervors W, Warnings o

84

Compile the panel layout, download it to the controller, and test.



2.6 Local Variables

The TP panel control language supports local variables of type integer, float, double,
string, and 1/O.

Declaring a variable inside an action source code block makes it local--that is,
accessible only that block.

DEF Button1_CLICKED()

DEF Button1_CLICKED()
DEFINT COUNT,ZEROCOUNT=0

FOR COUNT =0TO 99

IF IJCOUNT] = 0 THEN Valid range for COUNT and
ZEROCOUNT = ZEROCOUNT +1 |4——| ZEROCOUNT
END IF
NEXT

NUMERIC1.VALUE = ZEROCOUNT

END

Example Using Local Variables

The following example copies global variables into local ones when a button is pressed,
manipulates the local variables, and copies the results back to the original global
variables.

Step 1 I Load the editor and place a button on the panel layout.

85



Step 2 || Open the Source Code Edit window and add the following action source code for

* reading global integer variable #10 into a local integer variable, multiplying it by 10,
and writing the result back

reading global float variable #10 into a local float variable, multiplying it by 20, and
writing the result back

reading global double variable #10 into a local double variable, multiplying it by 10,
and writing the result back

reading global string variable #10 into a local string variable, adding "end," and
writing the result back

DEFINT ITEST

DEFSNG FTEST
DEFDBL DTEST
DEFSTR STEST

ITEST = [10]

FTEST = F[10]
DTEST = D[10]
STEST = S[10]

ITEST =ITEST * 10
FTEST = FTEST * 20
DTEST =DTEST * 10
STEST = STEST + “END”

[10] = ITEST

F[10] = FTEST
D[10] = DTEST
S[10] = STEST

m Pamellesigreer - Panals | ped
o ES Yew och ke Heb .
BT S E TS el
”ﬂ' R El g A = S
— ixls
[l@im iy & "
iI; T Fareint 1 G ]n_-l-]:!ll“ulll
Parall sceriah
= = LU BEF Bubtond_BLIGKEDE )
=R B
ooocd PEFINT [TEST
DLFSHE TTEST
e DEFOHL DTEST
wood PEFSTR STEST
ooed . [TEST=1[14]
2 WEOE  FTERT=F]1m]
aooin pTCET=Df14)
- = ";jj F -_l;lr_' STEST-5[ 18]
B [ * i
-I_ = = y OE  [TEST=1TEST=10
== ; Sooth FTEST-FTEST =20
| At 3 Wik ared Ernbeet ] S04E PTEST=DICST=10
ok lReiedeiE) :_ﬂ o k]
M i 4 il I1E]=1TEST
CATA,_ Corven : a0l F[10]-0TEST
. COO0 ppua]-0TEST
= el soexi  gfam]=STCEN
= = OO EHD
Captimn =1l EOGTS
Dessbaraed ot in 11 ccmpossnt “ER ¥
[41] LI
Rexy | i ] ] il

Compile the panel layout, download it to the controller, and test.

86



Chapter 3 TP Panel Control Language's Structural

Elements

3.1 Language Elements

3.2 Names

The TP panel control language has the following structural elements.

identifier Name distinguishing a structural element

variable Temporary storage for data

constant Data with a fixed value

operator Symbol indicating an operation on one or two values
expression Combination of structural elements yielding a value
command Built-in PAC language instruction

This section sets forth the TP panel control language's rules.
Names representing commands and variables must comply with the following rules.

e Names consist of letters, digits, and underscores. The first character must be a letter.
Note that there is no distinction between upper and lower case.

e The following characters cannot be used in identifiers: period, slash, backslash,
space, colon, semicolon, single quote, double quote, and asterisk.

e Certain characters are used as operators, so cannot be used in identifiers: +, -, *, /,
(,), etc.

e A space or other delimiter must separate a name from other words on either side.

e The maximum permissible length for a name is 64 characters.

87



3.3 Identifiers and Variables
3.3.1 Variables

Variables represent temporary storage for data. There are global variables, local
variables, and, for TP panel parts, object properties.

A global variable is accessible from all TP panel files.

A local variable is accessible only within the program defining it. Another program
running concurrently may define its own local variable with the same name, but the two
never interact because they are considered entirely separate variables.

An object property is accessible only within the TP panel file defining the object (part).

The following figure illustrates the relationships between parts objects and programs.

TP panel file (max. one per folder)

Data for TP panel #1 —— — Data for —
TP panel
#2
Objeot properly
Access
ngram #1 I Program #2 :
_ Mo access
Local varfable | - L»-" Local variable allowed

Mo access allowed

3.3.2 Global Variables

These have names consisting of one or two letters indicating the type--I for integer, F
for float, D for double, S for string, and 10 for I/O--and a number in brackets ([]). These
names are predefined by the system, so can be used without declarations.

I: integer, -2147483648 to +2147483647

F: single-precision floating point, -3.402823E+38 to 3.402823E+38

D: double-precision floating point, -1.7976931348623157E+308 to
1.7976931348623157E+308

S: string, up to 243 bytes long
[O: I/O line

Examples: I[1], F[1], D[1], S[1], 10[1]

88



3.3.3 Local Variables

These have the same types as global ones.

I integer -2147483648 to +2147483647

F single-precision floating point -3.402823E+38 to 3.402823E+38

D double-precision floating point -1.7976931348623157E+308 to
1.7976931348623157E+308

S string up to 243 bytes long

/1O I/O line

Alocal variable must be defined with a type declaration directive before it can be used.

Note: The TP panel control language does not share the PAC language's support for
indirect reference or post-positions.

3.3.4 Object Properties

Object properties provide read/write access to TP panel screen part internals using the
standard dot notation: part_name.property.

Examples:
(1) Change the caption for the part named Button1 to "Button”
(2) Read the state for the part named LightButton1 into 1[1]

The following table lists parts, their events, and their properties.

Object Properties for TP Panel Screen Parts

Part Type | Property Name | Type Meaning Notes
Button xandy I Upper left corner Position relative to the upper left corner of the
Events: coordinates drawing region. This corner must be within the
CLICKED, teach pendant drawing range.
RELEASED | width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative

means left or up of the reference corner;
positive, right or down.

fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:

Yellow
group | Group number Group to which part belongs
active I Visible and active 0: Invisible & inactive
settings Add 1 for visible and 2 for active.

Note that 3 is the only setting producing events.
(CLICKED and RELEASED).

style Display style 0: 2D rectangle, 1: 3D rectangle,
2: 2D oval, 3: 3D oval
caption S Display text String, max. 80 bytes
fsize | Font size 0: Tiny, 1: Small, 2: Standard, 3: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified

89



Part Type

Property Name

Type

Meaning

Notes

Label xandy I Upper left corner Position relative to the upper left corner of the
Events: coordinates drawing region. This corner must be within the
None teach pendant drawing range.
width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Active setting 0: Invisible, 1: Visible
caption S Display text String, max. 80 bytes
fsize | Font size 0: Tiny, 1: Small, 2: Standard, 3: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified
Lamp xandy I Upper left corner Position relative to the upper left corner of the
Events: coordinates drawing region. This corner must be within the
REFRESH teach pendant drawing range.
width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active [ Active setting 0: Invisible, 1: Visible
style I Display style 0: 2D rectangle, 1: 3D rectangle,
2: 2D oval, 3: 3D oval
caption S Display text String, max. 80 bytes
fsize | Font size 0: Tiny, 1: Small, 2: Standard, 3: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified
Note: This setting is ignored for style settings 2
and 3.
state State 0: Out, 1: On

90




Part Type

Property Name

Type

Meaning

Notes

Line xandy I Upper left corner Position relative to the upper left corner of the
coordinates drawing region. This corner must be within the
teach pendant drawing range.
width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Active setting 0: Invisible, 1: Visible
style | Display style 0: Solid line
1to 7: Dash (dashed line)
8 to 14:Dash double (alternate long and two
short dashed line)
thickness | Line thickness The 0 setting produces a line width of 2.
Numerical xandy I Upper left corner Position relative to the upper left corner of the
Input coordinates drawing region. This corner must be within the
Button teach pendant drawing range.
Events: width and Part dimensions in These define the corner opposite the reference
CLICKED, | height pixels corner (x, y): (x+width, y+height). Negative
RELEASED means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Visible and active 0: Invisible & inactive. Add 1 for visible and 2 for
settings active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).
style | Display style 0:2D,1:3D
caption S Display text String, max. 80 bytes
fsize | Font size 0: Tiny, 1: Small, 2: Standard, 3: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified
value D Input value Equivalent to variable of type double

91




Part Type | Property Name | Type Meaning Notes
Oval xandy I Upper left corner Position relative to the upper left corner of the
(Circle) coordinates drawing region. This corner must be within the
teach pendant drawing range.
width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Active setting 0: Invisible, 1: Visible
style | Display style 0: Solid line
1to 7: Dash (dashed line)
8 to 14:Dash double (alternate long and two
short dashed line)
thickness I Line thickness The 0 setting produces flood fill.
Rectangle xandy I Upper left corner Position relative to the upper left corner of the
coordinates drawing region. This corner must be within the
teach pendant drawing range.
width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Active setting 0: Invisible, 1: Visible
style | Display style 0: Solid line
1to 7: Dash (dashed line)
8 to 14:Dash double (alternate long and two
short dashed line)
thickness Line thickness The 0 setting produces flood fill.

92




Part Type

Property Name

Type

Meaning

Notes

Text Box xandy I Upper left corner Position relative to the upper left corner of the
Events: coordinates drawing region. This corner must be within the
CLICKED, teach pendant drawing range.
RELEASED | width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Visible and active 0: Invisible & inactive. Add 1 for visible and 2 for
settings active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).
style | Display style 0:2D,1:3D
caption S Display text String, max. 80 bytes
fsize | Font size 0: Tiny, 1: Small, 2: Standard, 3: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified
text S Input text Equivalent to variable of type string
Group xandy I Upper left corner Position relative to the upper left corner of the
coordinates drawing region. This corner must be within the
teach pendant drawing range.
width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Active setting 0: Invisible, 1: Visible
caption S Display text String, max. 80 bytes
fsize | Font size 0: Tiny, 1: Small, 2: Standard, 3: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified
thickness | Line thickness The 0 setting produces a line width of 2.
myGroup I Group number Number identifying group

93




Part Type

Property Name

Type

Meaning

Notes

Check Box

Events:
CLICKED,
RELEASED

xandy I Upper left corner Position relative to the upper left corner of the
coordinates drawing region. This corner must be within the
teach pendant drawing range.
width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Visible and active 0: Invisible & inactive. Add 1 for visible and 2 for
settings active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).
style Display style 0: 2D check box
1: 3D check box
2: 3D button
caption S Display text String, max. 80 bytes
Note: Specifying too long a string produces
string overlap on the button surface.
fsize | Font size 0: Standard, 1: Small, 2: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified
state I State 0: Off, 1: On

94




Part Type

Property Name

Type

Meaning

Notes

Radio xandy I Upper left corner Position relative to the upper left corner of the
Button coordinates drawing region. This corner must be within the
Events: teach pendant drawing range.
CLICKED, width and Part dimensions in These define the corner opposite the reference
RELEASED | height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Visible and active 0: Invisible & inactive. Add 1 for visible and 2 for
settings active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).
style Display style 0: 2D check box
1: 3D check box
2: 3D button
caption S Display text String, max. 80 bytes
Note: Specifying too long a string produces
string overlap on the button surface.
fsize | Font size 0: Tiny, 1: Small, 2: Standard, 3: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified
state I State 0: Off, 1: On
Function caption S Display text String
Key index | Function key 1to12
Events: number
CLICKED
Timer xandy Upper left corner Position relative to the upper left corner of the
Events: coordinates drawing region. This corner must be within the
TIMER teach pendant drawing range.
group | Group number Group to which part belongs
active | Active setting 0: Inactive, 1: Active
interval | Interval Spacing, in ms, between events

95




Part Type

Property Name

Type

Meaning

Notes

Illuminated
Push Button

Events:
CLICKED,
RELEASED,
REFRESH

xandy I Upper left corner Position relative to the upper left corner of the
coordinates drawing region. This corner must be within the
teach pendant drawing range.
width and Part dimensions in These define the corner opposite the reference
height pixels corner (X, y): (x+width, y+height). Negative
means left or up of the reference corner;
positive, right or down.
fg and bg | Foreground and 1: White, 0: Black, 1: Blue, 2: Green, 3: Cyan, 4:
background colors Red, 5: Magenta, 6: Brown, 7: Light Gray, 8:
Gray, 9: Light Blue, 10: Light Green, 11: Light
Cyan, 12: Light Red, 13: Light Magenta, 14:
Yellow
group | Group number Group to which part belongs
active I Visible and active 0: Invisible & inactive. Add 1 for visible and 2 for
settings active.
Note that 3 is the only setting producing events.
(CLICKED and RELEASED).
style Display style 0: 2D rectangle, 1: 3D rectangle,
2: 2D oval, 3: 3D oval
caption S Display text String, max. 80 bytes
fsize | Font size 0: Tiny, 1: Small, 2: Standard, 3: Big
justify | Caption positioning | 0: Centered, 1: Right-justified, 2: Left-justified
Note: This setting is ignored for style settings 2
and 3.
state State 0: Out, 1: On

3.3.5 Folder Variables

To access a folder variable declared by a PAC program in the same folder, a TP panel
file must first declare it with an EXTERN declaration.

Example: EXTERN DEFINT AAA ' declare folder variable with name AAA

Read/write access then uses the same syntax as normal variables.

Examples:
AAA = LightButton1.state '
I[2] = AAA

read lamp LightButton1 state into folder variable AAA
copy contents of folder variable AAA into global

variable 1[2]

96



3.4 TP Panel Program
A TP panel program consists solely of action source code blocks with the following

structure.

DEF Object_Event
desired operations
END

Selecting an object and an action in the editor automatically generates a skeleton
consisting of the first (DEF) and last (END) lines. The developer needs only supply the
source code specifying the desired response.

The table below lists the possibilities.

Note: The actions available depend on the part type.

Event Description
CLICKED Button pressed
RELEASED Button released
TIMER Interval elapsed
REFRESH Screen refreshed

For further details, see Section 2.2.2 "Specifying Action Source Code for Parts."

One TP panel program cannot access the local variables in another.

3.5 Data Types

The TP panel control language supports three types of data:

(1) String data (S)
A string can be up to 243 bytes long.

(2) Numerical data (I, F, and D)

There are three types here.

l: integer, -2147483648 to +2147483647

F: single-precision floating point, -3.402823E+38 to 3.402823E+38

D: double-precision floating point, -1.7976931348623157E+308 to
1.7976931348623157E+308

(3) I/O data (10)

I/O data expresses the I/O port status (ON/OFF) as a numeric value.

97



3.6 Type Conversion

Mixing data of different numerical types involves type conversion using the following
rules.

- Assigning a numerical value to a numerical variable of a different type involves first
converting that value to the target variable's type. (implicit casting)

- An expression mixing two numerical values of different types usually involves first
converting the one with lower precision to the type with higher precision. (promoting)

- The only exception to the preceding rule involves bitwise logical operators, which
always convert their operands to integers and yield integer results.

- Converting a floating point value to an integer rounds toward zero, yielding the first
integer between the original value and zero. Examples: 1.23 -> 1 and -1.23 -> -1.

- Assigning a double-precision floating point (double) value to single-precision (float)
one rounds the mantissa off to seven decimal digits.

3.7 Constants

A constant is an expression representing a fixed value.

The TP panel control language supports four types of constants: integer (1), float (F),
double (D), and string (S).

The following describes them individually.

(1) Integer constants

These cover the range -2147483648 to +2147483647.

There are two ways to specify them: in decimal and binary notation. There is no
hexadecimal notation.

Decimal Notation

These are integer constants specified in standard decimal notation.
Examples: 32767, -125, +10

Binary Notation

These are integer constants specified in a binary notation consisting of a prefix (&B)
and a string of binary digits (0 or 1). Using this binary notation, the valid range for
(32-bit) integer constants is &B0 to &B11111111111111111111111111111111.

Examples: &B110, &B0011

98



(2) Float constants

These are single-precision floating point constants with up to 7-digit mantissas over the
range -3.402823E+38 to 3.402823E+38.

There are two ways to specify them: in decimal and exponential (E) notation.
Examples: 1256.3, -9.345E-06

(3) Double constants

These are double-precision floating point constants with up to 15-digit mantissas over
the range -1.79769313486231E+308 to 1.79769313486231E+308.

There are two ways to specify them: in decimal and exponential (E) notation.
Example 1: 1256.325468

This has more than 7 decimal digits, so does not fit in a float.
Example 2: -9.345E-06

(4) String constants
These are constants consisting of up to 128 characters, enclosed in double quotes (").
Example: "PAC"

3.8 Expressions and Operators

Expressions evaluate to a value. An expression can be anything from a single
"element" (constant or variable) to an arithmetic formula combining such elements with
operators. The PAC language offers expressions for all data types that it supports. This
section describes operators and their operations on elements in expressions.

(1) Assignment operator (=)

An assignment statement "assigns" (copies) the result of evaluating the expression on
the right side of this operator to the variable on the left.

99



(2) Arithmetic operators

The following table lists these operators and gives their order of precedence during
expression evaluation.

Arithmetic Operators

Operator Description Order of Precedence
A Exponentiation Highest
- Unary minus 4
* ! Multiplication and division
MOD Modulus v
+ - Addition and subtraction Lowest

Sign of Division Results

Divisor
(right element) + 0 -
Left element
+ Error
0 Error
- - Error

(3) Relational operators

Relational operators compare two numerical values and return a Boolean result: 1 for
true and O for false. The archetypical use is as the conditional expression in a flow
control statement.

Relational Operators

Operator Description
= equal
<> not equal
< less than
> greater than
<= less than or equal
= approximately equal
>= greater than or equal

100



(4) Bitwise logical operators

These operators perform bit arithmetic (logical) operations on the bits of their
operands.

Note that operands are first converted to integers, if necessary.

Bitwise Logical Operators

Operator Description
NOT Invert
AND Logical product
OR Logical sum
XOR Mutually exclusive OR

Example: [1 = &B1100 XOR &B0101
The result is &B1001 because the bits differ only in the first and fourth positions.

(5) String operator (+)

This operator concatenates (joins) two strings.
Example: A="ABC" + "DEF"

String A becomes "ABCDEF."

(6) Order of precedence for arithmetic, bit arithmetic, and relational
operators

The following table gives the order of precedence for mixtures of these operators
during expression evaluation.

Operator Description Order of Precedence
A Exponentiation Highest
- Unary minus 4
* ! Multiplication and division
MOD Modulus
+, - Addition and subtraction
NOT Invert
AND Logical product
OR Logical sum
XOR Mutually exclusive OR v
=, <>, <, >, <=, >= Relational operators Lowest

When two operators have the same order of precedence, expression evaluation is
from left to right. To override this behavior, explicitly specify the order of evaluation with
parentheses,

101



Chapter 4 TP Panel Control Language Syntax

4.1 Statements and Lines

A TP panel control language program consists of lines with one statement per line. A
line can be up to 255 bytes long.

A statement is the minimum unit for PAC language programming. It consists of a single
command.

A command consists of the command name plus parameters specifying additional
information to the command.

4.2 Character Set

The TP panel control language uses ASCII letters, digits, and certain special
characters. It does not distinguish between upper and lower case.

These special characters consist of the arithmetic operators (+, -, *, and /) plus the

following.
comma (,): Delimiter for parameters
single quote ('): In-line counterpart of the REM command

double quote ("):  Beginning and end markers for a string constant
space: Delimiter before and after instruction name

4.3 Reserved Words

Command names, the MOD operator, and other words are reserved--that is, have a
preassigned function in processing the TP panel control language, so cannot be used
and names for variables, panels, etc.

TP Panel Reserved Word List

if, then, else, elseif, while, do, return, print, add_widget, msgbox, page_change,
set, reset, run, kill, suspend, suspendall, killall, caption, fg, bg, timeout,

defint, defsng, defdbl, defstr, defio, in, out, break, continue, var, def, pend,

for, refresh, extern, begin, end, wend, next, endif, status, str$, continuerun,

io, i, f, d, s, sysstate, curoptmode, time$, date$, timer, select, case, is, to,

deadmanstate, sprintf$, releasemode, pnlccver, chr$, step

102



4.4 Declaration Directives

These specify names and types for variables, constants, functions, and other items so
that the program can use them. There are three major types.

(1) Type declarations

These specify types for variables and constants.

Type Declaration Directives

Type Command Example
integer DEFINT DEFINT AA,AB
float DEFSNG DEFSNG BA,BB
double DEFDBL DEFDBL CA,CB
string DEFSTR DEFSTR DA,DB

They can also simultaneously initialize the variables.

Examples:
DEFINT AA=1 ' declare AA as an integer and initialize to 1
DEFSNG BB(10) ' declare BB as a float array with 10 elements

(2) Array declarations

Array declarations use type declaration directives specifying the number of elements.
All types except I/O variables support arrays.

Note, however, that type declaration directives cannot initialize arrays.
Array subscripts start at 0.
An array can have up to three dimensions.

An array can have up to 32767 elements in total.
Example:
DEFINT CC(3,3,3) "declare CC as 3-dimensional integer array
(3) 1/0 variable declarations
These assign variable names to specific I/O ports.

I/0 Variable Declarations

Type Command Example
I/O variable DEFIO DEFIO PORT = BYTE, 104

103



4.5 Assignment Statements

An assignment statement "assigns" (copies) a value to a variable of some type.

There are two types.

Numerical: This assigns the result of a numerical expression to a numerical variable.
Example: D[2] = 3.14 ' set D[2] to 3.14

String: This assigns the result of a string expression to a string variable.
Example: S[2] = "DENSO™" set S[2] to "DENSO"

4.6 Flow Control Statements

Flow control statements change statement execution order.

There are three main types.

(1) Conditional branching

IF... THEN... ELSE and IF... END IF statements change execution flow based on
whether the specified condition is satisfied. Execution branches to the statements
following the THEN if the relational expression immediately following the IF evaluates
to TRUE (1) and to those following the ELSE otherwise.

(2) SELECT... CASE

Here execution branches to the CASE line matching the result of evaluating the
specified arithmetic expression on the SELECT line, executing the statement block
between that CASE line and the next one (or END SELECT line). If there is no such
match, execution branches to the CASE ELSE block.

(3) Iteration

Here execution of the statement block between the FOR and NEXT lines repeats as
long as the condition specified on the FOR line remains satisfied.

104



4.7 1/0 Control Statements

There are three types here.

(1) DI and DO control statements
These directly control 1/0 ports.

DI/DO Commands

Command Description
IN Read data from the 1/O port designated by an I/O variable.
ouT Output data to the 1/O port designated by an I/O variable.
SET Set an 1/O port to ON.
RESET Set an /O port to OFF.

(2) Teach pendant control statements

These control teach pendant screen 1/O.

Teach Pendant Commands

Command Description
MSGBOX Display message screen.
PAGE_CHANGE Display the specified TP panel.
REFRESH Redraw screen.

4.8 Task Control Statements

These control the multitasking of tasks other than the one containing the statement.

Task Control Commands

Command Description
RUN Create/initiate task.
SUSPEND Interrupt task.
KILL Delete task.
SUSPENDALL Interrupt all tasks.
KILLALL Delete all tasks.
CONTINUERUN Resume suspended task.

105




4.9 Functions

The following string functions are available.

String Functions

Function Description
STR$ Convert a value to a character string.
CHRS$ Specify a character using a numeric code.

4.10 System Information

The following commands return system information.

System Information Commands

Command Description
STATUS Obtain the program status.
CUROPTMODE Get the current operation mode.
SYSSTATE Get the system status of the robot controller.

4.11 Preprocessor

A preprocessor statement controls string substitution or file fetch in compiling
programs--that is, translating them into executable form.

Preprocessor Commands

Command Description
#define Define macro (symbolic name) for constant or string.
#include Insert the specified file at this point.

106




Chapter 5 Command Reference

5.1 List of TP Panel Control Commands

Classified by functions Commands Functions . .
4-axis 6-axis

Declaration Statements

Local Variable DEFINT Declare an integer type variable. The range of the ® ®
Integer integer is from -2147483648 to 2147483647.
Floating-point DEFSNG Declare a single precision real type variable. The O] O]

range of single precision real variables is from
-3.402823E+38 to 3.402823E+38.

Double-precision DEFDBL Declare a double precision real type variable. The ® ®
range of double precision real type variables is from
-1.79769313486231D + 308 to
1.79769313486231D + 308.

String DEFSTR Declare a character string type variable. You can ® ®
enter 247 characters or less as a character string.
I/0 DEFIO Declare an I/O variable corresponding to the ® O]

input/output port.

Flow Control Statements

Repeat FOR...NEXT Repeatedly execute a series of instructions ® O]
between FOR...NEXT sections.
Conditional Branch IF...END IF Conditionally decide a conditional expression ® ®
between IF...END IF.
SELECT CASE Execute a plural condition decision. ® ®
Input/Output Control
Statements
I/0 Port IN Read data from the 1/O port designated by an 1/0 ® ®
variable.
ouT Output data to the I/O port designated by an 1/0 O] O]
variable.
SET Set an I/O port to ON. ® ®
RESET Set an I/O port to OFF. ® ®
TP Panel MSGBOX Display message screen. ® ®
PAGE_CHANGE Display the specified TP panel. ® ®

Multitasking Control

Statements

Task Control RUN Concurrently run another program. O] O]
KILL Forcibly terminate a task. O] O]
SUSPEND Suspend a task. O] O]
SUSPENDALL Suspend all running programs except supervisory ® ®

tasks.
KILLALL Forcibly terminate all tasks except supervisory O] O]
tasks.

CONTINUERUN  Continue-run tasks. O] O]
DEADMANSTATE Obtain the current deadman switch state. O] O]

Constants

Built-in Constants OFF Set an OFF (0) value. ® ®
ON Set an ON (1) value. ©® ®
Pl Set a & value. © ©
FALSE Set a value of false (0) to a Boolean value. O] O]
TRUE Set a value of true (1) to a Boolean value. O] O]

Time/Date Control

Time/Date DATES$ Obtain the current date. © ©
TIME$ Obtain the current time. © )
TIMER Obtain the elapsed time. ® O]

107



Classified by functions Commands Functions . .
4-axis 6-axis

Functions
STR$ Convert a value to a character string. O] O]
CHR$ Convert an ASCII code to a character. © ©®
SPRINTF$ Convert an expression to a designated format and ® ®

returns it as a character string.

System Information

Operation Mode CUROPTMODE  Get the current operation mode. ® ®
SYSSTATE Get the system status of the robot controller. O] O]
STATUS Obtain the program status. O] O]

Preprocessor

Symbol Constants #define Replace a designated constant or macro name in ® ®

Macro Definitions the program with a designated character string.

File Fetch #include Fetch the preprocessor program. ® ®

108



5.2 Declaration Statements

DEFINT (Statement)

Function
Declare an integer variable within the range from —2147483648 to 2147483647
Format
DEFINT <Variablename>[=<Constant>][,<Variablename>[=<Constant>]...]
Explanation
This statement declares the variable designated by <Variablename> as the integer
type variable. By writing a constant after <Variablename>, initialization can be carried
out simultaneously with the declaration.
Multiple variable names can be declared at a time by delineating the names using ",".
Related Terms
DEFDBL, DEFSNG, DEFSTR
Example
DEFINT 1lix, 1liy, liz  'Declare lix, liy, and liz as integer type variables.
DEFINT lix = 1 'Declare lix as an integer type variable and set

'the initial value to 1.

DEFSNG (Statement)

Function

Declare a single precision real type variable.

The range of single precision real variables is from -3.402823E+38 to 3.402823E+38.
Format

DEFSNG <Variablename>[=<Constant>][,<Variablename>[=<Constant>]...]
Explanation

This statement declares a variable designated by <Variablename> as a single
precision real type variable. By writing a constant after <Variablename>, initialization
can be done simultaneously with the declaration.

Multiple variable names can be declared at a time by separating them with a comma

Related Terms
DEFDBL, DEFINT, DEFSTR

Example
DEFSNG 1fx, 1lfy, 1lfz 'Declare 1fx, 1lfy, and 1lfz as single precision real type
'variables.
DEFSNG 1fx = 1.0 'Declare 1fx as a single precision real type variables and

'set the initial value to 1.0.

109



DEFDBL (Statement)

Function
Declare a double-precision variable of type real.
The range of double precision real type variables is from -1.79769313486231D + 308
to 1.79769313486231D + 308.
Format
DEFDBL <Variablename>[=<Constant>][,<Variablename>[=<Constant>]...]
Explanation

This statement declares the variable designated by <Variablename> as a double
precision real type variable. By writing a constant after <Variablename>, initialization
can be performed simultaneously with the declaration.

Multiple variable names can be declared at a time by separating each variable name
by a comma (",").

Related Terms
DEFINT, DEFSNG, DEFSTR

Example
DEFDBL 1dx, ldy, ldz 'Declare 1ldx, ldy, and ldz as double precision real type
'variables.
DEFDBL 1dx = 1.0 'Declare 1ldx as a double precision real type variable and

'sets the initial value to 1.0.

DEFSTR (Statement)

Function
Declare a string variable.
You can enter 243 characters or less as a character string.
Format
DEFSTR <Variablename>[=<Constant>][,<Variablename>[=<Constant>]...]
Explanation
This statement declares a variable designated by <Variablename> as a character
string. By writing a constant after <Variablename>, initialization can be done
simultaneously with the declaration.
Multiple variable names can be declared at a time by separating each variable with a
comma (",").
Related Terms
DEFDBL, DEFINT, DEFSNG
Example
DEFSTR 1lsx, lsy, 1lsz 'Declare 1lsx, lsy, and lsz as character string type
'variables.
DEFSTR 1lsx = "DENSO" 'Declare 1lsx as a character string type variable and set

'the initial value to "DENSO".

110



DEFIO (Statement)

Function

Format

Explanation

Declare an I/O variable corresponding to the input/output port.

DEFIO <Variablename> = <I/O variable type>,<Port address>[,<Mask data>]

This statement declares a variable designated by <Variable name> as an /O variable.

<|/O variable type> Selects the type of the I/O variable. The I/O variable types include

<Port address>

<Mask data>

BIT, BYTE, WORD and INTEGER. Designate a range of 1 bit for a
BIT type, 8 bits for a BYTE type, 16 bits for a WORD type and 32
bits for an INTEGER type.

Designates the starting input/output port number.

In the case of an input port, the AND (product set) from input data
and mask data is taken.

In the case of an output port, the AND (product set) from output data and mask data is

output, however,
change.

Related Terms
IN, OUT, SET, RESET

Example
DEFIO
DEFIO
DEFIO
DEFIO
Notes

sampl = BIT, 1

samp2

BYTE, 10,

samp3 = WORD, 15

samp4 = INTEGER,

the output status of a bit where no mask has been set does not

'Declare sampl as a BIT type I/0 variable which starts from
'port 1. The return value of sampl becomes a 1l-bit integer
'of 1 or 0 that expresses the status of port 1.

&B00010000

'Declare samp2 with mask data as a BYTE type I/0

'variable which starts from port 10. The return value of
'samp2 becomes an 8-bit integer of 0 or 16 that expresses
'the status of port 10.

'Declare samp3 as a WORD type I/0O variable which starts
'from port 15. The return value of samp3 becomes a 16-bit
'integer of 0 to &Hffff which expresses the status of the ports
'from 15 to 30.

1

'Declare samp4 as an INTEGER type I/0 variable which
'starts from port 1. The return value of samp4 becomes a
'32-bit integer of 0 to &Hffffffff which expresses the
'status of the ports from 1 to 32.

For WORD and INTEGER, a port used as the MSB is assumed to be a sign bit.

The table below lists the allowable range of numeric values and pot numbers used as

the MSB.
WORD Allowable range of numeric values: -32768 to 32767
MSB port No.: Starting port address + 15
INTEGER Allowable range of numeric values: -2147483648 to 2147483647
MSB port No.: Starting port address + 31

111



5.3 Flow Control Statements

FOR...NEXT (Statement)

Function
Repeatedly execute a series of instructions between FOR...NEXT sections.
Format
FOR <Variablename> = <Initial value> TO <Final value> [STEP <Increment>]
NEXT [<Variablename>]
Explanation
This statement repeatedly executes a series of instructions between FOR...NEXT
according to the condition designated on the FOR line.
Set the initial value of the variable designated by <Variablename> for <Initial value>.
Set the final value of the variable designated by <Variablename> for <Final value>.
Set an increment value between the initial value and the final value for <Increment>.
Omitting STEP regards the increment as 1. No negative value can be specified for
<Increment>.
You can put another FOR...NEXT in one FOR...NEXT (referred to as a nested
construction).
In this case, a different variable must be used for each <Variablename>. Additionally,
one FOR...NEXT must be completely inside the other FOR...NEXT.
Example
DEFINT 1i1l
FOR 1il = 1 TO 5 'Repeat the process of FOR.NEXT 5 times.
NEXT 'Repeat.

112



IF...END IF (Statement)

Function
Conditionally decide a conditional expression between IF...END IF.
Format
IF <Conditional expression> THEN
[ELSEIF <Conditional expression> THEN]
[ELSE]
END IF
Explanation
The execution of a program is controlled with the condition of <Conditional
expression>.
If <Conditional expression> of an IF statement is true (except for 0), then the
statements between the IF...ELSEIF statement are executed. If the <Conditional
expression> is false (0), then <Conditional expression> of an ELSE IF statement is
decided. In the same manner as this, ELSEIF ELSE and ELSE...END IF are
executed.
Related Terms
IF... THEN...ELSE
Example
DIM 1il As Integer
IF 1i1 = 0 THEN 'When 1i1 is O,
PAGE_CHANGE PANEL1 'move to PANELL.
ELSEIF 1il = 1 THEN '"When 1il is 1,
PAGE_CHANGE PANEL2 'move to PANELZ2.
ELSEIF 1il = 2 THEN '"When 1il is 2,
PAGE_CHANGE PANEL3 'move to PANEL3.
ELSE 'When 1il is any other value,
PAGE_CHANGE PANEL4 'move to PANEL4.
END IF 'Declare the end to the IF statement.

113



SELECT CASE (Statement)

Function

Format

Explanation

Execute a plural condition decision.

SELECT CASE <Expression>
CASE <ltem>[,<Item>...]

[CASE ELSE]
END SELECT

This statement executes a series of instructions after CASE if the value of
<Expression> matches <ltem> of the CASE statement.

An arithmetic expression or character string can be designated for <Expression>.

Avariable, a constant, an expression or a conditional expression can be designated for
<ltem>.

A conditional expression can be designated as follows.

e <Arithmetic expression 1> TO < Arithmetic expression 2>

The result of <Expression> is checked if it is <Arithmetic expression 1> or higher, or if
it is <Arithmetic expression 2> or lower.

This statement cannot be used in the case of a character string.

¢ IS <Comparison operator><Arithmetic expression>
The result of <Expression> and the value of <Arithmetic expression> are compared.

In the case of a character string, <Comparison operator>is " =",
A CASE ELSE statement is executed if all CASE statements are not satisfied.
A CASE ELSE statement must be put before an END SELECT statement.

Related Terms

Example

IF...END IF

SELECT CASE Index 'Execute this command if the index value matches the CASE

'statement value.

CASE 0 'If the index is 0.
Buttonl.caption = "QO"

CASE 1 'If the index is 1.
Buttonl.caption = "1"

CASE 2 'If the index is 2.
Buttonl.caption = "2"

CASE 3 'If n the index is 3.
Buttonl.caption = "3"

CASE 4 'If the index is 4.
Buttonl.caption = "4"

CASE 5 'If the index is 5.
Buttonl.caption = "5"

CASE 6 TO 8 'If the index is 6 to 8.
Buttonl.caption = "6-8"

CASE IS > 9 'If the index is 9 or more.
Buttonl.caption = "9-"

END SELECT 'Declare the end of the plural conditional decision statement.

114



5.4 Input/Output Control Statements

IN (Statement)

Function
Read data from the I/O port designated by an I/O variable.

Format
IN <Arithmetic variablename> = <I/O variable>
Explanation
This statement assigns the I/O port data designated by <I/O variable> to the variable
designated by <Arithmetic variablename>.
The <I/O variable> is declared using a DEFIO statement or an /O type variable.
Related Terms
OUT, DEFIO
Example

DEFINT Lil, Li2
DEFIO sampl = INTEGER, 220 'Declare sampl as an INTEGER type I/O variable
'beginning at port 220.

IN Lil = sampl 'Assign the sampl data to Lil.

IN Li2 = I0[240] 'Assign the port 240 data to LiZ2.

OUT sampl = Lil 'Output the Lil data from the port declared in sampl.
OUT I0[240] = LiZ2 'Output the Li2 data from port 240.

OUT (Statement)

Function
Output data to the I/O port designated by an I/O variable.
Format
OUT <I/O variable> = <Output data>
Explanation
This statement outputs the value of <Output data> to the port address designated by
<I/O variable>.
<|/O variable> is declared using a DEFIO statement or I/O type variable.
Related Terms
IN, DEFIO
Example

DEFINT Lil, Li2
DEFIO sampl = INTEGER, 220 'Declare sampl as an INTEGER type I/0 variable
'beginning at port 220.

IN Lil = sampl 'Assign the sampl data to Lil.

IN Li2 = I0[240] 'Assign the port 240 data to Li2.

OUT sampl = Lil 'Output the Lil data from the port declared in sampl.
OUT I0[240] = LiZ2 'Output the Li2 data from port 240.

115



SET (Statement)

Function

Set an 1/O port to ON.
Format

SET <I/O variable>[,<Output time>]
Explanation

This statement sets the designated port in <I/O variable> to ON.

If <Output time> is designated a pulse is output. (The output time unit is ms.)

If <Output time> is designated the system does not proceed to the next instruction until
this time elapses. The specified output time value is the minimum output time while the
actual output time will change according to task priority.

Related Terms

RESET, DEFIO
Example

SET I0[240] 'Set
SET IO[SOL1] 'Set
SET IO[104 TO 110] 'Set
IF IO[242] THEN

RESET IO[240] 'Set
RESET IO[SOL1] 'Set
RESET IO[104 TO 110] 'Set
ENDIF

RESET (Statement)

Function
Set an 1/O port to OFF.
Format
RESET <I/O variable>
Explanation
This statement sets the
Related Terms
SET, DEFIO
Example
SET I0[240] 'Set
SET IO[241],40 'Set
SET IO[SOL1] 'Set
SET IO[104 TO 110] 'Set
IF I0[242] THEN
RESET IO[240] 'Set
RESET IO[SOL1] 'Set
RESET IO[104 TO 110] 'Set
ENDIF

BIT port 240 to ON.
port specified by I/O variable SOL1l to ON.
BIT ports 104 to 110 to ON.

BIT port 240 to OFF.
port specified by I/0 variable SOL1 to OFF.
BIT ports 104 to 110 to OFF.

port specified by <I/O variable> to OFF.

BIT port 240 to ON.

BIT port 241 to ON for 40 ms.

port specified by I/0 variable SOL1 to ON.
BIT ports 104 to 110 to ON.

BIT ports 104 to 110 to OFF.

port specified by I/0 variable SOL1 to OFF.
BIT ports 104 to 110 to OFF.

116



MSGBOX (Statement)

Function
Display message screen.
Format
MSGBOX <message_string>
Explanation
This statement displays the specified message, up to 60 characters long, on the teach
pendant's color LCD screen.
Related Terms
MSGBOX "Hello World !"
Notes

This statement does nothing in a CLICKED event source code block for parts
(numerical input box and text box) using pop-up windows.

PAGE_CHANGE (Statement)

Function
Display the specified TP panel.
Format
PAGE_CHANGE <panel_name> [, <folders_up>]
where
<panel_name> TP panel to display on the teach pendant's color LCD screen
<folders_up> Number of folder levels to step up to reach the folder containing the
specified TP panel
Explanation
This statement displays the specified TP panel on the teach pendant's color LCD
screen.
Example
page change panell 'Display specified TP panel

page change panell, 2 'Move up two folders and display panell in that folder

117



5.5 Multitasking Control Statements

RUN (Statement)

Function

Format

Run another program concurrently.

RUN <Programname> [(<Argument>[,<Argument>---])][,<RUN option>]

Explanation

Example

This statement allows the currently executed program to run a program designated in
<Programname>. However, the current program cannot run the program itself.

Only values are usable for <Argument>. Even if you specify reference pass, the
reference data will automatically be changed to values. But you cannot use local array.

For <RUN option>, there are PRIORITY (or P) and CYCLE (or C).

PRIORITY (or P)

Designates the priority of a program. If ignored, the default value of 128 is set. The
smaller the value, the higher the level of priority. The setting range is from 102 to 255.

Note: The priority over of the supervisory task cannot be changed.

CYCLE (or C)

Designates an alternate cycle (time of each cycle when a program is run repeatedly).
This option is expressed in msec. The setting range is from 1 to 2,147,483,647.

You cannot start any program that includes arguments when using the cycle option.

DEFINT Lil = 1, Li2 =2, Li3 = 3

RUN
RUN
RUN

RUN

RUN

sampl C=1000 'Runs sampl in parallel n (C=1000).

samp2 (Lil) 'Runs samp2 using the Lil argument in parallel.

samp3 (Lil,Li2), PRIORITY = 129
'Runs samp3 using the Lil and Li2 arguments in parallel
'(P = 129).

samp4 (Lil,Li2), PRIORITY = 150
'Runs samp4 using the Lil and Li2 arguments in parallel
'(P = 150).

sampb5(Lil,Li2,Li3), P = 120
'Runs samp5 using the Lil, Li2, and Li3 arguments in parallel
'(P = 120)

118



KILL (Statement)

Function

Forcibly terminate a task.
Format

KILL <Programname>
Explanation

This statement forcibly terminates the task (program) designated by <Programname>.
However, it cannot kill a program that contains the statement. If attempted, an error will
occur. To forcibly terminate a statement-containing program, use a STOP instruction.

Related Terms

SUSPEND
Example
RUN sampl 'Concurrently runs sampl.
KILL sampl 'Ends sampl.

SUSPEND (Statement)

Function
Suspend a task.
Format
SUSPEND <Programname>
Explanation
This statement suspends the processing of a designated task. However, it cannot
suspend a program that contains the statement.
Related Terms
KILL
Example
SUSPEND sampl 'Suspend task execution of sampl.

119



SUSPENDALL (Statement)

Function
Suspend all running programs except supervisory tasks.
Format
SUSPENDALL
Explanation
This statement suspends all tasks except supervisory tasks, makes them enter the
"Continue Stop" state, and turns off the "Robot-in-operation" output signal.
Related Terms
SUSPEND, KILLALL
Example
SUSPENDALL 'Immediately stop all tasks and enter "Continue Stop" status.

KILLALL (Statement)

Function
Forcibly terminate all tasks except supervisory tasks. (Functionally equivalent to the
"Program reset" command)
Format
KILLALL
Explanation
This statement forcibly terminates all tasks except supervisory tasks and turns off the
"Robot-in-operation" output signal.
Related Terms
KILL, SUSPENDALL
Example
KILLALL 'Terminate all tasks and enter the program reset state.

120



CONTINUERUN (Statement)

Function

Continue-run tasks.
Format

CONTINUERUN
Explanation

Restarts all continue-stopped tasks from the subsequent steps.
Related Terms

KILL, SUSPENDALL
Example

CONTINUERUN 'Restart all tasks.

DEADMANSTATE (Statement)

Function
Obtain the current deadman switch state.
0: OFF, 1: ON taka
Format
DEADMANSTATE
Explanation
This statement gets the current state of the deadman switch (Enable switch).
Example

IO = DEADMANSTATE 'Assign the current deadman state to IO.

121



5.6 Constants

OFF (Built-in constant)

Function
Set an OFF (0) value.
Format
OFF
Explanation
This statement sets an OFF (0) value in an expression.
Related Terms
ON
Example
1F I1 = TRUE THEN 'Set the Boolean value to true (1).
I1 = ON 'Set ON (1) to the integer variable.
ELSEIF Il = FALSE THEN 'Set the Boolean value to true (1).
I1 = OFF 'Set OFF (0) to the integer variable.
ELSE
D1 = PI 'Assign ® to the real variable.
ENDIF

ON (Built-in constant)

Function

Set an ON (1) value.
Format

ON
Explanation

This statement sets an ON (1) value in an expression.

Related Terms

OFF
Example
1F Il = TRUE THEN 'Set the Boolean value to true (1).
I1 = ON 'Set ON (1) to the integer variable.
ELSEIF Il = FALSE THEN 'Set the Boolean value to true (1).
I1 = OFF 'Set OFF (0) to the integer variable.
ELSE
D1 =P 'Assign m to the real variable.
ENDIF

122



PI (Built-in constant)

Function
Set a ©t value.
Format
Pl
Explanation
This statement returns a double-precision value of .
Example
1F I1 = TRUE THEN 'Set the Boolean value to true (1).
I1 = ON 'Set ON (1) to the integer variable.
ELSEIF I1 = FALSE THEN 'Set the Boolean value to true (1).
I1 = OFF 'Set OFF (0) to the integer variable.
ELSE
D1 = PI 'Assign ® to the real variable.
ENDIF

FALSE (Built-in constant)

Function
Set a value of false (0) to a Boolean value.
Format
FALSE
Explanation
This statement sets a value of false (0) to a Boolean value in an expression.
Related Terms
TRUE
Example
1F I1 = TRUE THEN 'Set the Boolean value to true (1).
I1 = ON 'Set ON (1) to the integer variable.
ELSEIF Il = FALSE THEN 'Set the Boolean value to true (1).
I1 = OFF 'Set OFF (0) to the integer variable.
ELSE
D1 = PI 'Assign ® to the real variable.
ENDIF

123



TRUE (Built-in constant)

Function

Set a value of true (1) to a Boolean value.
Format

TRUE
Explanation

This statement sets a value of true (1) to a Boolean value.

Related Terms

FALSE
Example
1F Il = TRUE THEN 'Set the Boolean value to true (1).
I1 = ON 'Set ON (1) to the integer variable.
ELSEIF I1 = FALSE THEN 'Set the Boolean value to true (1).
I1 = OFF 'Set OFF (0) to the integer variable.
ELSE
D1 = PI 'Assign m to the real variable.
ENDIF

124



5.7 Time/Date Control

DATES (System Variable)

Function
Obtain the current date.
Format
DATE$
Explanation
This statement stores the current date in the following format: "yyyy/mm/dd"
(year/month/day).
Related Terms
TIMES$
Example
defstr 1sl
1sl = DATES 'Assign the current date to 1sl.

TIMES (System Variable)

Function
Obtain the current time.
Format
TIMES$
Explanation
This statement stores the current time in the following format: "hh:mm:ss" (Time:
minute: second).
Time is displayed using the 24 hour system.
Related Terms
DATE$
Example
defstr 1sl
1s1 = TIMES 'Assign the current time to 1sl.

125



TIMER (System Variable)

Function
Obtain the elapsed time.
Format
TIMER
Explanation
This statement obtains the elapsed time, measured in milliseconds from the time, when
the controller power is ON (0).
Note: If the elapsed time exceeds 2147483647 milliseconds, the elapsed
time will be displayed from -2147483648 milliseconds.
Example

DEFINT 1il, 1i2, 1i3
1il = TIMER 'Assign the elapsed time from the reference time to 1il.

126



5.8 Character String Functions

STRS (Function)

Function
Convert a value to a character string.
Format
STR$ (<Expression>)
Explanation
This statement converts the value designated in <Expression> to a character string.
Related Terms
CHRS, SPRINTF$
Example
DEFSTR 1sl, 1s2
1sl = STR$(20) '"Convert 20 to a string and assign it to 1lsl.
1s2 = STRS$(1il) '"Convert 1lil to a string and assign it to 1s2.

CHRS (Function)

Function
Convert an ASCII code to a character.
Format
CHRS$ (<Expression>)
Explanation
This statement obtains a character with the character code of the value designated in
<Expression>.
Related Terms
STR$
Example
DEFSTR 1s1, 1s2
1sl = CHRS$ (49) 'Assign a character with the character code of 49 to 1sl.
1s2 = CHRS (&H4E) 'Assign a character with the character code of &H4E to 1s2.
PBl.caption = "program" + CHR$(13) + CHRS$(10) + "start"

'Use CR-LF combination as a line delimiter for captions.

127



SPRINTEFS (Function)

Function

Convert an expression to a designated format and returns it as a character string.
Format

SPRINTF$ (<Format>, <Expression>)
Related Terms

STR$
Example

SO = SPRINTFS$ ("% d",123) 'Assign "123" to SO.

128



5.9 System Information

CUROPTMODE (Statement)

Function
Get the current operation mode.
Format
CUROPTMODE
Explanation
This statement gets the current operation mode as a value (any of 1 to 4 shown below).
1: Manual, 2: Teach check, 3: Internal auto, 4: External auto
Example
I[1] = CUROPTMODE 'Get the current operation mode.

SYSSTATE (Statement)

Function
Get the system status of the robot controller.
Format
SYSSTATE
Explanation
This statement gets the system status of the robot controller. The status data differs
depending upon the I/O line assignment. Listed below are data that can be obtained.
Bit 0 Robot-in-operation signal
1 Robot failure signal
2 Servo ON signal
3 Robot initialization complete signal (in the 1/0 standard mode)
Robot power on complete signal (in the /O compatible mode)
4 Auto mode signal
5 External mode signal
6 Dead battery warning signal
7 Robot warning signal
8 Continue start permitted signal
9 SS mode signal
10 Robot stop signal
11 Enable Auto signal
12to 15 Reserved.
16 Program start reset signal (in the 1/0O compatible mode)
17 CAL complete signal (in the 1/0 compatible mode)
18 Teaching signal (in the 1/0O compatible mode)
19 Single-cycle end signal (in the I/O compatible mode)
20to 23 Reserved.
24 Command processing complete signal (in the 1/0 standard mode)
2510 31 Reserved.
Example
I[1] = SYSSTATE 'Get the system status of robot controller.

129



STATUS (Function)

Function
Obtain the program status.
Format
STATUS (<Programname>)
Explanation
This statement stores the program status of the program designated in
<Programname> using an integer.
Value Status
1 Running Executing
2 Stopping Stopping in progress
3 Suspend Suspension in progress
4 Delay Delay in progress
5 Pending Currently pending
6 Step Stopped Step stoppage in progress
Example
defint 1i1
1il1 = STATUS (sampl) 'Assign the program status of sampl to 1il using an integer.
Notes

This statement cannot obtain the status of its own.

130



5.10 Preprocessors

#define (Preprocessor statement)

Function

Format

Explanation

Example

Replace a designated constant or macro name in the program with a designated
character string.

#define <Symbol constant> <String>
or
#define <Macro name (Argument)> <Argument included character string>

This statement replaces <Symbol constant> or <Macro name> in the program with a
designated character string. In the case of a macro name, it is replaced with the
arguments already included.

<Symbol constant> or character strings of <Macro name> in
not replaced.

(double quotations) are

You must describe the #define statement on one line.

You must place 1 or more space characters between <Symbol constant> and <String>.
Do not place a space between a macro name and the parentheses of an argument.
<Symbol constant> and <Macro name> must be within 64 characters.

You can use a maximum of 2048 macro names in one program. There is no limitation
to the number of macro function arguments you may use.

#DEFINE NAME "Denso Corporation"

Sl =

'Assign "DENSO Corporation” to the symbol constant NAME.

NAME 'Assign "DENSO Corporation” to Sl1.

131



#include (Preprocessor statement)

Function
Fetch the preprocessor program.

Format
#include "[Path] filename"
#include <[Path] filename>

Explanation
This statement fetches the preprocessor program file, at a position where the #include
statement is placed. In the case of " ", if the path of the file is ignored the system
searches for the file in the current directory first and then the system directory. In the
case of < >, it searches only the system directory. If the path is designated with a full
path, it searches only in the directory designated.
You can include the #include statement for a file designated with the #include
statement. You can nest up to 8 levels.
The file extension available is H.

Example

#include "sampl.h" 'Expand the sampl.h file on this line.

132



RC7 CONTROLLER

Teach Pendant Operating Panel Editor
Panel Designer

User's Manual

First Edition February 2005
Fourth Edition  April 2009
Fifth Edition March 2010

DENSO WAVE INCORPORATED 3M**C

The purpose of this manual is to provide accurate information in the handling and operating
of the Panel Designer. Please feel free to send your comments regarding any errors or
omissions you may have found, or any suggestions you may have for generally improving the
manual.

In no event will DENSO WAVE INCORPORATED be liable for any direct or indirect damages
resulting from the application of the information in this manual.






	Foreword
	Contents
	Chapter 1 Panel Designer Overview
	1.1 Overview of Procedures for Creating TP Panel Data
	1.2 Editor Screen Functional Description
	1.2.1 Tool Bars
	1.2.2 Parts Tree Pane
	1.2.3 Properties Pane
	1.2.4 Layout Window
	1.2.5 Source Code Edit Window
	1.2.6 Compiler Messages Pane
	1.2.7 Menus

	1.3  Creating and Modifying Panel Layouts
	1.3.1 Adding Parts
	1.3.2 Modifying Panel Layouts
	1.3.3  Changing Part Properties
	1.3.4 Deleting Panel Layouts
	1.3.5 Importing Panel Layouts from Another TP Panel File

	1.4 Adding Action Source Code
	1.4.1 Writing Action Source Code
	1.4.2 Checking (Compiling) Action Source Code

	1.5 Miscellaneous
	1.5.1 Property Lists
	1.5.2 Event List
	1.5.3  Action Source Code Syntax
	1.5.4 Sending Data to Controller
	1.5.5 Important Note on Radio Buttons


	Chapter 2 Creating TP Panels
	2.1 Configuring Teach Pendant
	2.1.1 Enabling TP Panel Operation
	2.1.2 Specifying the Start Mode of TP Panel Screen Software [Version 2.32 or later]
	2.1.3 Automatically Displaying TP Panel Screens  [Version 2.31 or earlier]
	2.1.4 Specifying the Close Mode of TP Panel Screen Software [Version 2.32 or later]
	2.1.5  Hiding the Shortcut Button [Version 2.6 or later]

	2.2 Using Parts
	2.2.1 Parts and Their Functions
	2.2.2 Specifying Action Source Code for Parts
	2.2.3 Specifying the RELEASED Event Execution Condition  [Version 2.32 or later]
	2.2.4 INITIALIZE Event  [Version 2.32 or later]
	2.2.5 DONE Event  [Version 2.32 or later]
	2.2.6 Part Descriptions

	2.3 Interfaces with PAC Language and System
	2.3.1 Reading and Displaying PAC Variables
	2.3.2 Modifying PAC Variables
	2.3.3 Reading I/O States
	2.3.4 Modifying I/O States
	2.3.5 Reading System Status

	2.4 Switching TP Panels
	2.4.1 Example Switching in Same Folder
	2.4.2 Example Switching Between Folders

	2.5 Flow Control
	2.5.1 Conditional Branching
	2.5.2 Iteration

	2.6 Local Variables

	Chapter 3 TP Panel Control Language's Structural Elements
	3.1 Language Elements
	3.2 Names
	3.3 Identifiers and Variables
	3.3.1 Variables
	3.3.2 Global Variables
	3.3.3 Local Variables
	3.3.4 Object Properties
	3.3.5 Folder Variables

	3.4 TP Panel Program
	3.5 Data Types
	3.6 Type Conversion
	3.7 Constants
	3.8 Expressions and Operators

	Chapter 4 TP Panel Control Language Syntax
	4.1 Statements and Lines
	4.2 Character Set
	4.3 Reserved Words
	4.4 Declaration Directives
	4.5 Assignment Statements
	4.6 Flow Control Statements
	4.7 I/O Control Statements
	4.8 Task Control Statements
	4.9 Functions
	4.10 System Information
	4.11 Preprocessor

	Chapter 5 Command Reference
	5.1 List of TP Panel Control Commands
	5.2 Declaration Statements
	DEFINT (Statement)
	DEFSNG (Statement)
	DEFDBL (Statement)
	DEFSTR (Statement)
	DEFIO (Statement) 

	5.3 Flow Control Statements
	FOR…NEXT (Statement) 
	IF…END IF (Statement)
	SELECT CASE (Statement)

	5.4 Input/Output Control Statements
	IN (Statement)
	OUT (Statement) 
	SET (Statement) 
	RESET (Statement) 
	MSGBOX (Statement)
	PAGE_CHANGE (Statement)

	5.5 Multitasking Control Statements
	RUN (Statement)
	KILL (Statement)
	SUSPEND (Statement)
	SUSPENDALL (Statement)
	KILLALL (Statement) 
	CONTINUERUN (Statement)
	DEADMANSTATE (Statement)

	5.6 Constants
	OFF (Built-in constant)
	ON (Built-in constant)
	PI (Built-in constant)
	FALSE (Built-in constant)
	TRUE (Built-in constant)

	5.7 Time/Date Control
	DATE$ (System Variable)
	TIME$ (System Variable) 
	TIMER (System Variable)

	5.8 Character String Functions
	STR$ (Function) 
	CHR$ (Function) 
	SPRINTF$ (Function)

	5.9 System Information
	CUROPTMODE (Statement)
	SYSSTATE (Statement) 
	STATUS (Function)

	5.10 Preprocessors
	#define (Preprocessor statement)
	#include (Preprocessor statement)





