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Introduction

Computer Aided Engineering (CAE) focuses on the application of physical-mathemati-
cal-numerical models to solve real-world multiphysics engineering problems. The
past decade has been a period of rapid progress for CAE. The area of possible appli-
cations has been expanded and numerical methods have become increasingly sophis-
ticated and adapted to exploit the available computational power of modern micro-
processors. In particular, nowadays CAE-methods play a key role in the industrial
product development process and help to

e Speed-up the development cycle of products.

e Optimize the product performance.

Develop a thorough understanding of the underlying physical-chemical processes.

Visualize device functionality not accessible through experiments.

Support the decision making process at different product development stages.

¢ Eliminate potential failures and identify pitfalls.

In general, the design of a physical-mathematical-numerical model for the solution of
an engineering multiphysics problem by CAE tools is a creative and often challenging
task. For practical applications, simple recipes usually do not exist. Rather, it is the
combination of physical insight, a sound basis in mathematics and last but not least
comprehensive modeling experience that leads to the correct model and strategies
for model validation, respectively. Often a problem can be described by a network
model on a high level of abstraction. However, when it comes to understand the
physical behavior and properties of system components, the modeling approach is
often expressed by formulating governing equations consisting of the following parts.

e Conservation Laws: Exist for quantities such as mass, number of molecules, elec-
trical charge, momentum and energy. Conservation laws are universal, i.e. they are
independent of the materials considered and they always need to be satisfied. As
an example, the conservation laws in fluid mechanics are the mass and momentum
balances, of which former is also known as the continuity equation. In thermody-
namics, the energy and entropy balances additionally come into play. These balance
equations are also known as the first and second laws of thermodynamics.

5
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e Material Laws: Balance equations by themselves are insufficient for a complete
problem description, i. e. they usually contain more unknowns than available equa-
tions. Furthermore, they often contain unknowns such a flux-quantities that cannot
be directly measured. However, it turns out that further relationships exist between
these unknownes, i. e., they are not independent of each other. These relationships
are called material laws or constitutive equations. As the name suggests, they do
not hold universally, but only for particular materials or material classes, such as
the class of ideal gases or the class of incompressible fluids.

e Boundary Conditions: Are required to cut-off a model, i.e. to separate the model-
ing domain from its surroundings. The number of boundary conditions required is
determined by the degree (highest derivative) of the governing equations involved.
Often, the solution strongly depends on the chosen boundary conditions and an
improper choice may render the results useless, irrespective of the numerical accu-
racy. Using the wrong boundary conditions means that the model is incorrect or its
connection to the exterior world is not correctly specified.

Combining these ingredients together, we obtain a coupled system of governing equa-
tions belonging almost exclusively to the class of partial differential equations (PDEs).
In light of the specific geometries and boundary conditions that appear in realistic
problems and the complexity of material laws, it is no surprise that analytical solutions
to these problems can rarely be found. This in turn, motivates the use of numerical
tools. In particular, the SESES software package allows for the numerical simulation
of complex physical problems in various fields of applications as

Micro-Opto-Electro-Mechanical systems.

Magnetic field and eddy current simulations.

Piezoelectric actuators and sensors.

Electrochemical processes (fuel cells, batteries).

Microfluidics (microreactors, membranes, flow sensors).

Thermal transport by convection, conduction and radiation.

Semiconductor devices.

Almost all of these equations can be coupled and solved together thus allowing the
modeling and analysis of complex multiphysics problems. A rather complex example
for an application of SESES is the numerical simulation of fuel cells, where the Navier-
Stokes equations, the kinetics of the electro-chemical reactions and heat generation
are all coupled together. The major effects here are the production and consumption
of species and heat on the one hand and the separation of charges across the electro-
chemical double layer at the triple phase boundary on the other hand. This conversion
process from chemical into thermal and electric energy strongly couples the different
transport phenomena.

The syntax requirements for the input files, the numerical methods and the physical
models for the different application fields are described in detail in the SESES user



SESES Tutorial September 2012 7

manual. While the user manual serves as reference for everyday use, this tutorial rep-
resents a step-by-step introduction to solve design and optimization problems. The
basic concepts are explained with the help of typical application examples. Several
selected SESES features and postprocessing techniques, allowing the information ob-
tained with the numerical simulation to be passed to other applications, such as Mat-
lab or Excel, will also be illustrated. Thus, the reader of this tutorial will learn how to
use SESES to solve engineering problems by describing them in mathematical terms
(modeling), executing the numerical calculations (simulating), analyzing the data in a
useful format (postprocessing) and how to generate new designs (optimizing).



Chapter 1

Getting Started

In this chapter, the reader will learn the basics of SESES. We will start by reviewing the
SESES environment and after presenting some basic strategies for multiphysics mod-
eling, a first example is presented to check a correct running environment. Although
the example is not thoroughly explained, it serves as an introduction on how to use the
SESES Front End program, how to run a numerical computation and how to visualize
numerical results. Afterwards, we will present a second example in more detail by
explaining the meaning of the input statements used to describe the modeling prob-
lem as well as the statements required to compute and display numerical solutions.
We then continue to review the basics of SESES by presenting and explaining with
simple examples the most common features that a user frequently applies when solv-
ing engineering problems. As an example, we review how to define algebraically a
mesh of finite elements or how to solve non-linear governing equations. However, for
a complete review of all available features and possibilities, the user manual should
be consulted.

1.1 The SESES Environment

Fig. 1.1 shows a schematic overview of the simulation environment. The basic con-
cepts, the Front End and the computational Kernel programs are thoroughly docu-
mented in the manual, here they will be briefly discussed and illustrated with an ex-
ample. The Seses and SesesSetUp files are input files and for convenience, they
may all be defined in a single container file. The modeling problem is specified inside
the initial section of the Seses file, while numerical computations, data extraction,
post-processing and similar tasks are specified in the command section. In the op-
tional SesesSetUp file, settings of the Front End program are stored. The Data files
contain the simulation data used to visualize numerical results. Please note, that the
use of an input container file has the advantage that it can be either processed by the
Front End program or executed as a script file or passed as argument to the Kernel
program in a command-line fashion without invoking the Front End.

The Front End program is an interactive GUI program for the definition and visualiza-
tion of simulation domains, finite element meshes and numerical results. Within this
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Figure 1.1: Schematic overview of the SESES simulation environment.

application, it is possible to edit the input file, to graphically construct a 2D mesh , to
start a simulation in the background and to visualize numerical results, as shown in
the Fig. 1.3, 1.4, 1.5. The computational Kernel program is a batch oriented program
reading the input file and generating results by sending information to the output
stream or by writing data files.

Modeling Strategy

We briefly discuss here the solution approach common to many design and optimiza-
tion problems. The numerical modeling process can be subdivided into the following
tasks:

e Geometry Specification: The geometrical domain relevant to the problem must
be identified. Check if geometrical symmetries exist that allow a reduction of the
computational effort.

e Physical Model Specification: Identify the governing equations relevant to the
problem. Check if the governing equations and their variables are coupled among
each other. If yes, decide on the solution algorithms.

e Calculation: Launch the calculation and inspect the convergence and accuracy of
the results. For validation, check if similar but simpler problems with analytical
solutions exist.

e Postprocessing: Post-process the numerical results for data extraction and visual-
ization.

e Optimization: Modify the problem specification in order to find a design leading
to improved device performances.

This solution approach is reflected in the structure of the input file. Namely, the initial
section is structured in parts as follows:



10 SESES Tutorial September 2012

e Parameter definition: Parameters can be defined for use in the material laws and
geometry definitions.

e Material definition: Materials are defined by specifying material laws and param-
eters that are responsible for the physical properties.

o Geometry definition: The problem geometry and dimension is specified.

e Material mapping: Materials are assigned to local or global domains of the defined
geometry.

e Boundary condition (BC) definition: The boundary conditions for the problem
domain need to be specified which basically consider the interactions with the
outside world i.e. where no modeling is performed.

e Minimum Refinement Level: The refinement level selects the number of refine-
ment steps starting from the initially coarse mesh. A minimum refinement level
can be set.

The command section contains the following important parts:

e Solution procedure: The computation of numerical solutions.

e Accuracy: Adaptively refine the computational mesh to obtain solutions with en-
ough accuracy.

e Post-processing: Writing of computed fields into a graphics data file Data for
visualization inside the Front End program and generation of relevant data for
further post-processing tasks.

This typical structure of the input files is displayed with the help of comments in the
tutorial examples included within the distribution. The input files are written in an
input description language whose keywords are highlighted in blue and comments
in violet inside the text editor. In case of syntax errors, the first invalid input line is
highlighted in red. For detailed informations on the input syntax, please consult the
manual explaining the syntax requirements with the help of railway diagrams.

Starting the Front End program

The Front End program can be launched by clicking the executables g2d or g3d inside
a browser or by entering in a shell the command g2d <file> or g3d <file> with
an optional file name. If the input file is not specified, you can open one by selecting
the open & button. However, if the associations for the file endings .s2d , .s3d and
the executables g2d, g3d are set appropriately, the most common way to start the
Front End program is by clicking on the input file inside a browser.

To illustrate the navigation, simulation and visualization, we shall next consider a
simulation example of a lake with a dam. The situation is depicted in Fig. 1.2 and the
input file is found at example/Dam.s2d . For this problem, we want to compute and
visualize the mechanical stress and displacement in the 2D cross-section of the dam
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Figure 1.3: The Front End program showing
the dam example example/Dam.s2d

caused by the water pressure of the lake. Upon opening the input file, the Front End
program will look like Fig. 1.3, showing the mesh geometry of the problem with a
legend of assigned materials on the lower left corner.

Viewing and Editing the Input

We may want to inspect the content of the input file, namely the problem description
and commands for the solution algorithm, by starting the text editor with the edit
button has shown in Fig. 1.4. Within the editor, syntax highlighting causes syntax key-
words to appear in blue, comments delimited by (x and ) in violet and the remaining
text in black. The syntax examples in this tutorial, however, are reproduced without
syntax highlighting. The input file of our first example is a container file starting with

cat > Seses <<EOF

ending with

Finish

EOF

and defining the input file. Optionally, a similar section defining the input SesesSet-
Up file may follow containing settings for the Front End program. The input container
tile ends with a section only used when the input file is used as a shell script. Here the
Kernel k2d is started to run the simulation.

### Running Seses
k2d

Starting a Calculation and Viewing the Results

Rather than walking through all the details of this example, we proceed by comment-
ing how to compute and display numerical results. Regardless of the active graphics
or text mode, pressing the run button € will start the calculation. We may now return
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Figure 1.5: Graphical visualization within the
Front End pogram showing the computed
mechanical displacement.

to the graphics mode as displayed in Fig. 1.3, by pressing the graphics button 4. Here
the geometry of the 2D problem is displayed. The boundary of the dam with the lake
water is on the left-hand side, whereas the basis of the dam is at the bottom of the
figure.

The content of the graphics window is updated manually by pressing the right mouse
button or the graphics button b4 or automatically by enabling automatic updates with
the button #. In the graphics mode, we can now inspect the computed fields by map-
ping the field values to the problem geometry. This visualization is launched with
the field control e, opening up a panel showing a list of computed fields available
for display, see Fig. 1.5. Select the toggle and either the mechanical displace-
ment or the stress in the choice menu. After selecting the field the
graphics window will look like Fig. 1.5. The cross-section of the dam is now colored
according to the displacement values with the color legend given on the right side of
the figure. Optionally, one can select the option causing the calculated dis-
placement itself to be applied to the geometry. However, the mechanical displacement
is negligible small relative to the dimensions of the dam so that to visualize the defor-
mation, one has to choose a multiplicative factor of ca. 1000 with the dialog.
If the field is selected for visualization, then the graph reveals that the highest
stress occurs at the lower left corner of the the dam, which faces the water.

You may wish to rerun this simulation with different parameters. For instance, find
out which parameter values can be modified to give a mechanical displacement that
is no longer negligible but leads to a significant distortion of the dam geometry due to
the water pressure of the lake.

1.2 Building Your First Model

In the example of the previous section, the reader was introduced to navigating in
the Front End program and running a simulation. In the next introductory example
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Figure 1.6: Illustration of the electrostatics problem for which a SESES simulation is being built
and its representation in SESES.

found at example/ElStatTip.s2d , we will walk through the process of building a
complete model, i.e. of writing an input file. We will document on how to implement
the approach discussed in the section about the modeling strategy.

For this purpose, let us consider a 2D dielectric domain with two electrical contacts
where an electrical bias is applied to. Our model shall correspond to the cross-section
of a tip near a substrate surface at ambient air conditions, both contacted electrically
as in the tunneling mode of a scanning probe microscopes, see Fig. 1.6. We wish to
calculate the electrical potential and the corresponding electric field, denoted by the
SESES keywords Phi and Efield ,respectively. We start our problem specification by
writing the initial section of input file, which has the same structure as explained in the
previous example. Although the syntax statements may follow in arbitrary order, we
will consistently use the sequence introduced in the earlier section about the modeling
strategy. Since we will not define parameters for this example, the first statement is
the definition of the material between the tip and the sample surface, namely air
MaterialSpec Air

Equation ElectroStatic
Parameter Epsiso 1

We name our material Air and specify it as a dielectric material with an isotropic
dielectric permittivity Epsiso of value 1 as in vacuum and correspondingly enable
the electrostatic equation computing the potential field Phi . The unknown Phi is
called a degree-of-freedom field, in short a dof-field. Next, we define a 2D domain
consisting of a mesh with 2 x 2 macro elements with the statements

QMEI 2 1E-6 QMEJ 2 1E-6

The QMEI and QMEJkeywords are followed by the number of elements in the rect-
angular mesh in z and y direction, respectively, and the size of each mesh element in
these directions. The syntax is

QMEI n dx

with n being the number of elements and dx the size of each element. Frequently one
defines the total length parameter xlen and substitutes xlen/n  for dx. Moreover, the
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rectangular mesh can be transformed to other geometries with the help of mathemat-
ical maps and the Coord statement. Since we defined a simple and coarse mesh with
only 4 elements but expect the electrostatic potential to vary strongly, for instance near
the tip, we choose a mesh refinement level of 3 with the statement

MinimumRL 3

Therefore, each macro element is subdivided 3 times such that each original element
is replaced by 8 x 8 elements. In order to specify the electrical contacts, we define the
mathematical boundary conditions (BC) with the BCstatement as follows

BC Tip 1 0 JType 1 Dirichlet Phi 1 V
BC Substrate 0 2 IType 2 Dirichlet Phi 0 V

We name our boundary conditions Tip and Substrate . To define the BC geometry
we use the keywords JType and IType to state that a mesh segment between 2 mesh
nodes in j- and i-direction is specified, respectively. For instance for the horizontal
Substrate , we specify the starting node (0,2) and a length of 2 in the i-direction thus
defining a boundary segment between the nodes (0, 2) and (2, 2). Among the different
types of BCs, we select here the Dirichlet BC allowing to prescribe the value of a
dof-field on the boundary. For applying an electrical bias of 1 V between the contacts,
we therefore use Dirichlet Phi 1 V at the Tip and Dirichlet Phi 0 V at the
Substrate . The Finish  statement tells the parser to stop reading the initial section
of the input file.

We now proceed with the command section in which the solution method is specified.
The statement

Solve Stationary

asks for the stationary rather than unstationary solution to be computed. Since we
solve for the single dof-field Phi and the problem is linear no other statements are
required to compute a solution. Lastly, we can export the computed dof-field Phi and
the electrical field Efield  obtained from the relation E® = —V® to the graphics data
file Data with the statement

Dump Phi Efield

In summary, we have generated the following input container file and once read by
the Front End program, it will display the picture in Fig. 1.6.

cat > Seses <<EOF
MaterialSpec Air
Equation ElectroStatic
Parameter Epslso 1
QMEI 2 1E-6 QMEJ 2 1E-6

MinimumRL 3

BC Tip 1 0 JType 1 Dirichlet Phi 1 V
BC Substrate 0 2 IType 2 Dirichlet Phi 0 V
Finish

Solve Stationary
Dump Phi Efield
Finish
EOF

k2d
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Figure 1.7: Calculated electrostatic potential and electric field upon application of a bias of
1V between tip and substrate. The electric field is displayed with absolute values and arrows
indicating the direction.

A simulation is started by pressing the run button €. Runtime information will be
displayed in the standard output and for this example the graphics data file Data
will be generated. We may now investigate the simulation results by switching to
the graphics mode with the graphics button 4 and opening the field control panel
with the button ld,. Selecting the toggle and the electrostatic field Phi in the
choice menu generates the content of Fig. 1.7. Obviously, the electrostatic potential
transforms gradually between the two BC segments. In addition, we may also want to
inspect the electric field by selecting Efield . The vector field direction can be visu-
alized by selecting the option in the dot control 4. Note that the vector
tield direction is always perpendicular to the equipotential field lines and the highest
electric field is located at the end of the tip facing the substrate surface. However,
the value at the endpoint of the tip is strongly mesh dependent since for this simple
model, the electric field is singular at this point.

1.3 Graphical Visualization

Although the SESES manual describes the Front End GUI program in details, for a
beginner it is not always straightforward to find out the actions and doings required
to visualize something. We have already presented some examples on how to display
numerical fields so that here we mainly discuss how to choose a view, which is a
task independent from the displayed content. For a 2D domain, this is not all that
difficult since the default view shows the whole domain at once. However, for a 3D
domain, this is not generally the case and one typically wishes to adjust the viewing
angle and look from behind, look inside a device or limit the view for very complex
structures. This will be explained in the following and the user is advised to open
some 3D examples for practice and follow the instructions to quickly get acquainted
with the tools.

For a 3D visualization, one of the most important tools is the capability to choose
another viewing position i.e. to rotate or to move the displayed object. For this task
one has to select the toggle button g or #it. By moving the mouse while keeping the
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Figure 1.8: Illustration of some graphical visualization tools available in the Front End pro-
gram. Rotating and reducing the mesh domain to be displayed (left), cutting through the
mesh domain along an arbitrary plane (middle) and zooming (right).

tirst button pressed, you change either the viewing angle or the viewing position and
you can quickly toggle between both choices by pressing the second button.

In order to look inside a 3D domain, there is the possibility to make a planar 3D-cut
of the domain. This is done by selecting the toggle button &} and pressing the first
mouse button to define the origin of the cutting plane. While keeping the mouse
button pressed, you change the normal of the plane by moving the mouse and you
shift the plane along its normal with the mouse wheel. To reset the 3D-cut view, just
press the mouse button on a point not on the displayed object.

There are two possibilities to restrict the view. The first and most common one is to use
the mouse wheel to zoom in and out. To reset the zoom, press once the reset button
9. A second possibility to restrict the view is given by selecting a subdomain of the
macro element mesh. This is done by clicking on the domain button & which opens a
control panel to select combinations of user defined domains.

These tools for selecting a view are summarized in Fig. 1.8. Once you have found a
proper view, you can save the settings by pressing the state button g# which opens
up a control panel and then press the button [STORE STATE |. Each time you double click
on the reset button &2, your default settings will be restored. If you press the button
[WRITE STATE |, your settings will be written in the SesesSetUp file and restored each
time you newly start the Front End program.

1.4 Animation

The Front End program offers the possibility to display animated sequences of numer-
ical results. A prerequisite for an animation is a graphics file with multiple data slots.
A slot is the data written in a single write operation and multiple slots are defined
by appending data to a previously created file. Any type of numerical result can be
animated supposed the data has been written to a graphics file. The choice of the in-
dependent parameter that effectively changes its value during animation is left to the
user. For example, it may be the time or some other freely defined parameter.

Animation is typically used to quickly visualize the changes in the numerical solution
due to different parameter values. In the example example/ParamStudy.s2d a
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Figure 1.9: Construction process for meshes with local refinement and circular shapes.

sequence of calculations is performed using different values of the pressure from 0 to
PMax For each computed solution, a write operation is performed to write the values
of temperature, displacement and stress fields to the graphics data file Data. The
relevant input lines are the following

Define
Press = 1 ( * pressure (MPa) *)

Dump AtStep 1 Temp Disp Stress

Solve Stationary ForSimPar Press At 0 Step PMax/10#9

Note, that the sequence of these statements does matter. In particular, the statement
Dump AtStep 1 ... to write the data for each computed solution must be defined
prior computing solutions with the Solve ...  statement. When viewing the results
of our example in the draw window, an animation can be selected by choosing the
option when one of the Temp, Disp or Stress field has been selected for
visualization. A scrollbar is also available to go through the individual calculated data
slots.

1.5 Preprocess Mesh Definition

Mesh generation is an important task and sometimes also a time consuming task, per-
formed either with a preprocessing-static or algebraic-dynamic approach. For com-
plex geometries and if the domain’s shape is given and not part of the modeling prob-
lem, the preprocessing method is generally preferred. Here with the help of the built-
in 2D mesh builder or another CAD and FE preprocessing tool, one creates a static
mesh which is imported afterwards. For an external preprocessor, one can use the con-
venience routine ReadMesh to import unstructured meshes defined by the common



18 SESES Tutorial September 2012

element-node data format. In this section, we shortly present useful tips when work-
ing with the built-in 2D mesh builder. You can experiment with its functionality and
basic geometrical shapes with the example found at example/MeshBuilder.s2d

and shown in Fig. 1.9. As a rule of thumb try to use a divide and conquer approach
to construct the mesh, it is faster. As first example, since meshes are quickly refined,
it is better to start working with coarse meshes. Secondly, since single mesh pieces
are quickly joined together, try to exploit symmetries and start with one-quarter or
one-half geometries. With cut&paste, mirroring and joining operations, the complete
geometry is then quickly obtained.

We want to apply these simple rules for constructing meshes with local refinement
and with a circular shape. The construction process is shown in Fig. 1.9 from left
to right. As first, by selecting the insert task [}, a rectangular quad with just few
macro elements is defined. Start drawing the quad with a double click defining the
tirst boundary node, the other boundary nodes are defined by a single click and the
last boundary node with a final double click. If something goes wrong, click on the
undo button 4 or press of the ctrl-z key combination and start again. As second,
some nodes need to be moved at the correct position. Either with the insert task [*; or
with the affine task & and option £, click and hold down the first mouse button to
select a node and drag it to its new position. As next, one has to join together macro
element edges to define more generic shapes than simple quads. With the join task
[P and the join always option Bl click and hold down the first mouse button on a
edge and drag it over the edge to be joined until a snap takes place. Correctly joined
edges are marked afterwards with a thick blue line. Be sure that edges drawn with a
thick red line are just shown on the boundary and not inside the mesh. In this latter
case, the two macro elements with a common thick red edge have not been joined and
therefore the two macro elements are not topological neighbors, but there is a split
hole in-between.

To create a mesh with local refinement as shown in the first three rows of Fig. 1.9,
one applies recursively the constructed mesh. As first the mesh is duplicated by
copy&paste. Within the insert task [} or the affine task &7 and move option f#, se-
lect the mesh to be copied and either click the copy B and paste [ buttons or press
the ctrl-c and ctrl-b key combinations. The paste operation places the buffered object
more or less at the actual pointer position. The copied mesh is automatically selected
and you can move it at the correct position by picking and dragging one of its edges
or nodes. As second, a macro element is deleted in the copied mesh and the original
mesh is inserted in the created hole or indentation. Macro elements are deleted within
the insert task [, the affine task & or whenever no task is enabled by selecting the
macro element followed by a click of the cut button §§ or by pressing the ctrl-x key
combination. To insert the original mesh in the created hole or indentation, with the
join task [M and join fit option ¥, select the boundary to be joined, then pick one of its
edge and drag it over the corresponding edge of the hole or indentation until a snap
takes place. An automatic fitting of the inserted mesh is performed here. Again be
sure that that just edges on the boundary are drawn with a thick red line are, other-
wise click on the internal red edge to join it with its neighbor.

To create a mesh with a circular shape, one has first to define a NURBS curve with
the curve task ;4. This button is also a pulldown menu allowing the select the initial
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drawing of a Bézier or NURBS curve. Due to symmetries, we just draw 90° arcs so
that only two controlling points are necessary here. These are the starting and end
arc points which are defined with a double click. By default these two points are
connected by a straight line and to define a circular arc, open the arc panel /1 and set
an angle of 90°. Be sure you have selected a NURBS and not a Bézier curve, since this
latter cannot exactly represents a circular arc. If not the case, select the two controlling
points and apply the rational segment option . After a curve has been defined, one
has to attach macro element nodes to the curve. With the attach task },, pick a macro
element node, drag it over the curve until a snap takes place and move the node along
the curve at the correct position. Attached nodes are marked afterwards with a thick
blue point.

At the end one can quickly perform a uniform refinement with the split task III. Se-
lect the whole mesh and pick a single edge of the selection. These simple shapes are
easily combined together to form more complex meshes. Here, it is better to work
with unrefined and coarse meshes and to perform the uniform refinement just as last
operation on the whole mesh. The construction process is almost the same as for the
basic shapes. With copy&paste operations, selections are duplicated and with the join
task [M combined together. Here, you may first need to mirror the duplication along
the z- or y-axis before joining, which is done by affine task & and the affine panel ££.

1.6 Algebraic Mesh Definition

If the computational domain is non-constant and for example if its shape should be
optimized, then working with a mesh constructed by a preprocessor is not well suited,
since such meshes are hardly modified afterwards. For an automatic search of the op-
timum, better suited is to have a functional dependency of the domain’s shape from
some free parameters. For this algebraic method, the computational domain is con-
structed functionally with the help of the QME| QMEJand QMElstatements defining
an initial rectangular mesh and followed by a sequence of Coord statements defining
geometrical maps for the node coordinates. The maps are defined by a functional ex-
pression of the latest node coordinates represented by the built-in variables x,y,z and
the subdomain where the geometrical map is applied. Although this algebraic method
is very flexible, one first needs to know the actual node coordinates and secondly the
search of the proper geometrical map is not always a simple task. Here, several rect-
angular blocks of macro elements can be defined, individually transformed and later
joined together with the statement JOINME to form a complex geometry. This is often
more convenient than defining just one huge rectangular block and by deleting macro
elements with the DeleteME statement.

Some 2D examples

In this section, we present some simple examples of defining 2D meshes with the
help of geometrical maps. In the first example, we start with a rectangular mesh of
dimension IX *xly and of nx*ny elements. We then translate a subdomain in the left
half of our domain along the z-axis and rotate a subdomain of the right half about the
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rotation center
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Figure 1.11: Manual mesh di-
mensioning according to a ge-
ometrical sequence.

Figure 1.10: A mesh created with two Coord statements to
perform a rotation and a translation and a DeleteME state-
ment to create the void space.

angle angle with two Coord statements. A void space is created by deleting some
elements with the DeleteME statement. Our final mesh is shown in Fig. 1.10 and it
has been created with the statements

Define angle=PI1/10
QMEI nx=8 (Ix=20)/nx
QMEJ ny=4 (ly=10)/ny
Coord x+1 y block(l 2 1 2)
Coord Ix/2 + cos(angle) * (X-Ix/2) - sin(angle) * (y-ly/2)
ly/2 + sin(angle) * (x-Ix/2) + cos(angle) *(y-ly/2)  block(5 7 1 3)
DeleteME block(5, 7, 1, 3)

Our next example illustrates a mesh defined using a function to adjust the width of

neighboring elements according to a geometrical sequence. We first start by defining

a 1D mesh nx x 1 with elements of side length 1. For domain z-coordinate = € (0, nx),
we then change its value according to the function ®(z)

i B(z) = { 10(1 — exp(—x log(2)) for x > nx /2

’ 10(1 — exp((—nx + z)log(2)) forz < nx/2

with the statements

QMEI nx=20 1 (* nx must be even =)

QMEJ ny=1 20

Coord 10 *(1-exp(-x  *l0g(2))) y block(0 nx/2-1 0 ny)
Coord 10 * (1+exp((-nx+x) *l0g(2))) y block(nx/2+1 nx 0O ny)

The resulting mesh is shown in Fig. 1.11. This type of mesh dimensioning with large
variations in the element size is used when one knows in advance that a high density
of elements is required somewhere to accurately compute solutions. Although an ex-
perienced user may easily locate these critical regions, as for example around corners,
tips and boundary layers, this information is not always available or simply the task
to devise suitable element meshes may be clumsy. Therefore one generally resorts to
automatic procedures to create computational meshes as will be illustrated in some
examples of this tutorial.
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Figure 1.12: Example of the 2D geometrical maps with bumpand sphere .

Predefined geometrical maps

The flexibility of algebraic approach defining geometrical maps to change the initial
rectangular shape is counterbalanced by the fact that one has to find the proper map
to obtain the shape of choice. To simplify this task and for commonly used geometries,
the standard distribution provides the include file Homotopic.sfc  defining several
useful geometrical maps. For instance, this file contains the definition of a rotation
function called rot and rotating mesh elements about the origin. Thus, in the input
tile of the example of Fig. 1.10, one may simply use the statements

Include "Homotopic.sfc"
Coord x+1 vy block(1 2 1 2)
Coord (Ix,ly)/2+rot(x-Ix/2,y-ly/2,angle) block(5 7 1 3)

to obtain the same geometry. The next example is a little more involved and uses
the function bump for graded translation on the first 10 x 10 block and the function
sphere on the second 10 x 10 block to create the shapes of Fig. 1.12 with the following
statements

Include "Homotopic.sfc"
QMEI 10 dx=1.1 QMEJ 10 dy=1.1
Coord coord+(1,2)  *bump(x,1 *dx,4 *dx,6 *dx,9 *dx,1)
*bump(y,1 *dy,4 *dy,6 *dy,9 »dy,1) block(Block 0)
QMEI Start 12 10 dx=0.9 QMEJ Start 1 10 dy=0.9
Coord sphere(coord,5 *dx+12,5 *=dy+1,1) block(Block 1)

In the remainder of this section, we will describe the actions of some functions defined
inside Homotopic.sfc  and apply them to a 3D rectangular 10x10x 10 macro element
mesh. These are the statements to start with

Include "Homotopic.sfc"
QMEI 10 1 QMEJ 10 1 QMEK 10 1

The mesh distortion is then performed with the Coord statement and the functions of
Homotopic.sfc . It is surprising, that with only a few well defined functions com-
bined together, many different geometries are easily obtained.
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Figure 1.13: Direct scaling, rotation with rot and combination with affine

Translating, rotating and scaling

These geometric maps are generally directly defined using the available vector algebra
once the translation vectors, the rotation matrices and the scaling factors are known
and so the role of Homotopic.sfc  is limited to provide utility functions to easily
define rotation matrices. In particular, the function

Routine double rot[T1](double val[T1],double alpha,doub le axis[T1])

defines a rotation of the vector val around the axis axis of angle alpha and returns
the rotated vector. The rotation axis does not need to be a normalized vector. If the
rotation is not with respect to the origin, then one calls rot by first subtracting the
rotation point which is again added after the call. This is done by the function affine
for the rotation center cen with an additional single scaling of the coordinates by fac
as follows

Routine double affine[T1](double val[T1],double cen[T1] ,double fac[T1],
double alpha, double axis[T1])

return cen+rot((val[0]-cen[0]) * fac[0],
(val[1]-cen[1]) *fac[1],
(val[2]-cen[2]) * fac[2],alpha,axis);

Direct scaling and first example of Fig. 1.13:

Coord 10.0+(x-10.0)  *0.7,8.5+(y-8.5)  *1.8,+1.5+@z-15) 1.2 block(8 10 8 10 0 10)

Rotation with rot and second example of Fig. 1.13:

Coord rot(coord-(9,9,0),P1/8,0,0,1)+(9,9,0) block(8 10 8 10 0 8)

Affine map with affine  and third example of Fig. 1.13:

Coord affine(coord,5,5,0.5, 0.4,0.8,1, PI/4,0,0,1) bloc k(4 6 46 07)
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Gradual mapping

It is sometimes useful to gradually apply a geometric map in order to obtain smooth
results and for this purpose simple shape functions are required. We have defined the
ramp function

Routine double ramp(double val,double type)

as the function R(v) with R((—o0,0]) = 0, R([1,00)) = 1 and otherwise continuous
between on [0, 1] with the degree of smoothness determined by the parameter type .
With this function, we can define the bump function

Routine double bump(double val,double v[4],double type)

as B(v) = R((v —w)/(v1 — 19))(1 = R((v — 12)/(v3 — 12))) with values B((—o0, 1] U
[v3,00)]) = 0, B([v1,12]) = 1 and the previous ramp behavior between [vy, 1] and
[v1,12]. This bump function is typically used to apply a full map within the interval
[v1, 2] but only gradually in the intervals [vy, 1], [12, v3] and not at all outside [vy, v3].
A last useful shape function is the following double triangle function, zero outside
[—1, 1], antisymmetric with respect to the origin and with the maximum of 1 at vmax
Routine double triangle(double val,double vmax)
double aval=abs(val);

return (val<0?-1:1) * (aval<vmax?aval/vmax:aval<1?(1-aval)/(1-vmax):0);

}

which is used to define the function

Routine double dilat(double val,double c,double sc,doubl e sm,double d)

return val+(d-sc) * triangle((val-c)/sm,sc/sm);

The dilat  function leaves the point ¢ and region outside the interval [c — sm, ¢ + sm)
invariant, it maps this interval onto itself and the points ¢ & sc are moved to ¢ £ d and
it is typically used to construct pyramidal geometries.

Shifting and stretching with bumpand first example of Fig. 1.14:

Coord coord+(1.5,1,-3) *bump(x,1,4,6,9,1) *bump(y,1,4,6,9,1) *
bump(z,-1,0,9,10,1) block(1 9 1 9 0 10)

Shifting and stretching with dilat  and second example of Fig. 1.14:

Coord x,dilat(y,5,5,4,x/2+0.5),dilat(z,5,5,4,x/2+0.5 ) 1

Shifting and stretching with dilat  and third example of Fig. 1.14:

Macro ZD { ((z-1)/8 *3+2) }

Coord dilat(x,0, 5,4.9,@zD),dilat(y,0, 5,4.9,@ZD),z blo ckO4 04 19
Coord dilat(x,0, 5,4.9,@zD),dilat(y,10,5,4.9,@ZD),z bl ock(O 4 6 10 1 9)
Coord dilat(x,10,5,4.9,@ZD),dilat(y,0, 5,4.9,@ZD),z bl ock(6 10 0 4 1 9)
Coord dilat(x,10,5,4.9,@zD),dilat(y,10,5,4.9,@ZD),z b lock(6 10 6 10 1 9)

DeleteME block(4,6,0,10,1,9)||block(0,10,4,6,1, 9)
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Figure 1.14: Gradual shifting and stretching.

Spherical geometries

The basic function used to define spherical geometries is given by

Routine double sphere[T1](double val[T1],double cen[T1] ,double mp)

which gradually maps any cube surface centered at cen into its in-sphere depending
on the morphing parameter mp If mp= 0 the cube surface is left unchanged and

for mp= 1 we obtain the in-sphere. To obtain a ball centered at cen, just apply this
function to a whole cube centered at the same point with mp= 1. The next function

Routine double spheremix[T1](double val[T1],double cen[ T1],double rs,
double rq,double type)

uses the function sphere with a non-constant morphing parameter to gradually maps
cube surfaces into in-spheres. For rs <rq , if the half-side of the cube is larger thanrq ,
the cube surface is left invariant and for values less than rs , you will get exact spheres
so that you actually obtain a ball in a cube. For rs >rq, the role is reversed and you
obtain a cube in a ball. The parameter type determines the ramp used to gradually
apply the morphing parameter.

A cube is gradually transformed with respect to the xz-coordinate, first example of
Fig. 1.15:

Coord sphere(coord,5,5,5,x/10) 1

A ball in a cube, second example of Fig. 1.15:

Coord spheremix(coord,5,5,5,2,4,2) block(1 9 1 9 1 9)

A cube in a ball, third example of Fig. 1.15:

Coord spheremix(coord,5,5,5,3,2,1) block(1 9 1 9 1 9)

Cylindrical geometries

The cylindrical maps are equivalent to the 2D spherical maps and for each sphere
function there are three X, y, or z versions corresponding to the yz-, zz-, xy-planes
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Figure 1.15: Sphere examples with sphere and spheremix .

Pry
SSRseis -
TR -
ESSSRRRAANY =
S o
ARRAES T

Figure 1.16: Cylindrical geometries with cylx,cyly,cylz

where the 2D sphere functions are applied. Since no new concepts are meet here, we
limit ourself in giving application examples with function calls and graphical output.

First example of Fig. 1.16:

Coord cylx(coord,5,5,1) block(2 7 0 10 0 10)

Second example of Fig. 1.16:

Coord cyly(coord,5,5,0.5) block(1 9 3 10 1 9)

Third example of Fig. 1.16:

Coord cylz(coord,5,5,1) block(0 10 5 10 0 10)
DeleteME block(2, 8, 5, 8, 0, 10)

First example of Fig. 1.17:

Coord cylxmix(coord,5,5,3,5,2) 1

Second example of Fig. 1.17:

Coord cylymix(coord,5,5,3,5,2) 1

Third example of Fig. 1.17:
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Figure 1.18: Cylindrical geometries with cylxmix,cylymix,cylzmix

Coord cylzmix(coord,5,5,1,2,2) 1

Coord cylzmix(coord,5,5,5,2,2) block(0 2 0 10 0 10)
Coord cylzmix(coord,5,5,5,2,2) block(8 10 0 10 0 10)
Coord cylzmix(coord,5,5,5,2,2) block(3 7 0 2 0 10)
Coord cylzmix(coord,5,5,5,2,2) block(3 7 8 10 0 10)

First example of Fig. 1.18:

Coord cylxmix(coord,5,5,5,2,1) 1

Second example of Fig. 1.18:

Coord cylymix(coord,5,5,5,2,1) block(0 10 4 10 0 10)

Third example of Fig. 1.18:

Coord cylzmix(coord,5,5,5,2,1) block(0 10 0 10 0 7)

1.7 Non-Linear Algorithms

This section illustrates some of the available features when solving non-linear prob-
lems. A linear problem is solved in one single step by finding the solution to the linear
system of equations obtained when discretizing the governing equations. Non-linear
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problems, instead, are generally solved iteratively based on the solutions of single lin-
ear steps. Although for very large linear systems, iterative methods may as well be
used to find their solutions, in the sequent we will consider the linear step as a black
box and we will focus on the non-linear iteration. We start the discussion with the
example example/NonLin.s2d and the simple linear 1D thermal problem for the
temperature 7'(z)

V.(kVT) =1 with 2 € (0,1) and T(0) = T(1) = 0.

The analytical solution for a heat conductivity of x = 1 is simple T' = 22/2 — x/2. A
solution to this problem is computed with the statement Solve Stationary . Before
computing the solution, we have added a print statement to improve the understand-
ing of the textual output.

Write "@@@ Solving for the first time:"
Solve Stationary

The output for this solution step will be something similar to

Solving for the first time: AbsResid. Temp=9.64e-02

After printing our label, during the solution step the program writes the L*-norm of
the residuals or out-of-balance values for the temperature equation we are solving for.
Since SESES identifies our thermal equation as linear, a single linear step is performed.
By repeating the solution step a second time, one obtains

Solving for the second time: AbsResid.Temp=1.71le-16
Solving for the third time: AbsResid.Temp=2.10e-16

The values of the residual norm depends on internal scaling factors of the governing
equations and so a priori its absolute value may not say much. However, in this ex-
ample, we see that when solving the for second and third time, the value is almost
15 orders of magnitude smaller than the first time and it does not change much with
the third step. With the second and third step, the temperature value is already the
solution of the governing equation and so the residuals are numerically zero. Due
to the limited size of the number representation in computer memory, a numerical
zero is almost never an algebraic zero and must always be interpreted with respect to
numerical values being computed. The machine precision ¢ is defined as the largest
number such that 1 + ¢ = 1 holds and for common applications we have ¢ ~ 10715
which explains the drop of 15 orders of magnitude in the residual norm between the
tirst and second solution step.

The convergence behavior can also be characterized with respect to increment norms
i.e. the change in the numerical solution. Increment norms have the advantages to be
easier to interprete since their reflect the change of the independent variables solved
for and not the dependent out-of-balance values of the governing equations. We there-
fore repeat the previous example, by printing the L?-increment norm.

Solve Init

Convergence { write(" AbslIncr.Temp=%.2e\n",Absincr.Tem p); return 1; }
Write "@@@ Solving for the first time:"

Solve Stationary

Write "@@@ Solving for the second time:"

Solve Stationary

Write "@@@ Solving for the third time:"

Solve Stationary
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As first step, we initialize again to zero the solution in order to destroy the previ-
ously computed one. Then we substitute the default printing statement displaying
the residual norm with a statement printing the incremental norm of the temperature.
This is done by defining a user convergence criterion and by embedding a call to the
write  function. Since the problem is still linear, the criterion always returns 1 mean-
ing unconditional convergence. As last, we solve as before three times and obtain the
following output.

Solution newly initialized

@@@ Solving for the first time: AbsIncr.Temp=1.86e+00

@@@ Solving for the second time: Absincr.Temp=6.60e-16
@@@ Solving for the third time: Absincr.Temp=1.77e-16

The numerical behavior is the same as before, but now we can state that the tempera-
ture is computed up to a precision of 10715, This is the precision of the numerical solu-
tion when solving the discretized governing equations, which is by far much smaller
than the precision with respect to the exact analytical solution of the governing equa-
tion.

Now that we have acquainted some feeling on norm values for numerical solutions
of the linear thermal problem, we change its character and turn it into a non-linear
problem. Here, we define the thermal conductivity to be a function of the temperature
k = k(T) = 1+ T and try to compute a solution.

MaterialSpec Silicon Parameter Kappalso 1+Temp W/(m * K)
Convergence ( * restore default *)

Write "@@@ Solving the non-linear problem:\n"

Solve Stationary

After restoring the default convergence criterion, this time the output will be some-
thing similar to
@@@ Solving the non-linear problem:

AbsResid. Temp=8.73e-01
AbsResid. Temp=5.52e-02

AbsResid. Temp=1.26e-04
AbsResid. Temp=6.58e-05
AbsResid. Temp=3.41e-05
AbsResid. Temp=1.77e-05
@@@@ SESES SOFT ERROR: Coupled (Newton-Raphson) loop did not converge

SESES recognizes the new problem to be non-linear and so it automatically starts a
Newton’s iteration consisting of linear solution steps. The convergence of the resid-
ual norm is low and since after 15 steps the convergence criterion is not fulfilled, the
Newton’s algorithm gives up and returns. The coupled Newton’s algorithm, how-
ever, converges in the vicinity of a solution quadratically but only if the derivatives of
the residual equations with respect to the solution are available. For this problem, we
have specified the heat conductivity to be a function of the temperature, but SESES
is not designed to figure out the derivative. Actually with some programming effort
it would be possible to obtain the derivative either in analytical form or numerically
by difference. However, the former method is rather complex and may result in long
and complex analytical expressions to evaluate while the latter may be numerically
unstable. For these reasons, we do not try to obtain the derivative from the function
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itself but the user should specify the derivative in order to get the correct convergence
behavior. We thus provide the derivative and try to solve again the non-linear thermal
problem.

MaterialSpec Silicon Parameter Kappalso D_Temp 1+Temp,1 W /(m * K)-W/(m * Kx K)
Write "@@@ Solving with exact derivative:\n"
Solve Stationary

This time we obtain a quadratic convergence behavior.

@@@ Solving with exact derivative:
AbsResid. Temp=9.64e-02
AbsResid. Temp=8.73e-01
AbsResid. Temp=2.06e-01
AbsResid. Temp=3.42e-02
AbsResid. Temp=1.61e-03
AbsResid. Temp=3.74e-06
AbsResid. Temp=1.56e-11

The default convergence criterion is a value of 10~° for the residual norm and when-
ever the norm value is less than this tolerance, the Newton'’s iteration is successfully
ended. This convergence criterion, however, can be specified as a function of any com-
putable norm and the actual iteration number niter . Since for our thermal problem
an accuracy of ~ 1072K for the temperature may be considered as acceptable, we
solve again by setting the new convergence criterion. We also visualize the conver-
gence rate by using the built-in function quot to obtain the quotient of the function
value in the previous iteration

Write "@@@ Solving with reduced accuracy:\n"

Convergence { write(" Step %2.0f Absincr.Temp=%e Rate=%e\ n"
niter,Absincr.Temp,quot(Absincr.Temp)); return Absinc r.Temp<1l.E-2; }

Solve Stationary

For our reduced accuracy requirement, only 5 solution steps are now required.

@@@ Solving with reduced accuracy:
Step 1 Absincr.Temp=1.855581e+00 Rate=inf
Step 2 Absincr.Temp=8.451505e-01 Rate=4.554640e-01
Step 3 Absincr.Temp=3.025883e-01 Rate=3.580289e-01
Step 4 Absincr.Temp=5.419181e-02 Rate=1.790942e-01
Step 5 Absincr.Temp=1.994451e-03 Rate=3.680355e-02

The effort required to solve a non-linear problem based on the full solution of lin-
earized problems is the number of iteration times the almost constant effort to solve a
single linear problem. Even for weak non-linear problems, the number of iterations re-
quired is generally in the order of 5 to 10 which makes the solution of non-linear prob-
lems computationally much more expensive. However, by changing the approach
of solving the underlying linear problems, one can effectively solve at least weakly
non-linear problems with little more effort than a single linear one. For optimized
algorithms, the total effort is then determined by the character of the non-linearity.
Devising optimized algorithms principally differs whether we are using a direct or an
iterative linear solver. We present here a speed-up method based on the utilization
of a direct linear solver which is also the solver used per default. However, methods
are also available for iterative linear solvers. The general property of direct solvers is
that the cost of solving a second linear system with the same matrix as the first system
but a different right-hand-side vector can be done with much less effort then when
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solving for the first time. This is because the numerical factorization of the system
matrix is by far much more expensive than the final backward-forward substitution
which has to be done for each different right-hand-side vector. In the first computed
non-linear example, we have seen that with a wrong derivative the convergence rate
of Newton’s algorithm is slow and generally linear but the iteration may soon or later
converges towards the convergence criterion. Fast algorithms are therefore obtained
by updating the derivative and its inverse just when the convergence rate is slow and
this implies avoiding factorizing the system matrix. We just keep the matrix computed
in one of the previous steps. At each linear iteration step, we just update the residual
values and this only implies changing the right-hand-side vector of the linear system
to be solved. In SESES, this behavior is achieved by defining fast-increments meaning
that the linear system matrix of the previous step is not to be changed.

In order for this example to converge by computing the derivative just in the first
step, we need to cut the increments in the first step. In general, the increments com-
puted by the Newton algorithm far from the solution are overestimated and can eas-
ily lead to divergence. In this example, by taking just one third of their values with
setincr(Incr/3) , divergence in the following steps is avoided. After the first step,
we specify for 100 times the computation of fast increments with ReuseFactoriz
and again we are forced to divide their values by 4 in order to avoid divergence. Al-
though some tricks were necessary to avoid divergence, the algorithm converges with
a slow rate but each single step is fast since the linear system matrix is factorized just
in the first step.

Write "@@@ Solving with fast increments:\n"

Convergence { write(" Step %2.0f Absincr.Temp=%e Rate=%e\ n"
niter,Absincr.Temp,quot(Absincr.Temp)); return AbsRes id. Temp<l1l.E-15; }
Increment setincr(Incr/3) ReuseFactoriz setincr(Incr/4 ) #100

Solve Stationary

For this small 1D example running very fast, the speed-up when using fast increments
is not clearly identifiable, but for 2D and 3D large problems it will.
@@@ Solving with fast increments:

Step 1 Absincr.Temp=1.855581e+00 Rate=inf

Step 2 Absincr.Temp=2.489984e-01 Rate=1.341889e-01
Step 3 Absincr.Temp=5.581262e-02 Rate=2.241485e-01

Step 25 Abs]ncr.Temp=4.052745e-15 Rate=3.768345e-01
Step 26 Absincr.Temp=2.515550e-15 Rate=6.207028e-01
Step 27 Absincr.Temp=1.509828e-15 Rate=6.001977e-01

From the output, we see that the derivative computed in the first step is good enough
to reach convergence although with a slow rate and by cutting the increments. If the
convergence rate is too slow or if divergence shows up, then one has to update again
the derivative. It is possible to do it on a static base by specifying the computation of,
for example, once standard increment followed by three times fast-increments and by
repeating this cycle. However, it is also possible to do it dynamically with the help of
increment control.

Write "@@@ Solving with increment control:\n"

Increment  Standard setincr(Incr/3)
ReuseFactoriz Control quot(AbsResid. Temp)>0.171:0
Standard Control -1

Solve Stationary
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Figure 1.19: A cylindrical roof under pres-

sure. Figure 1.20: Load-displacement curve for the

cylindrical roof under pressure load.

In the first step of this example, we compute standard increments and divide them
by 3 to reduce initial overshooting. We then define fast increments and if the conver-
gence rate falls below 0.1 , we update again the derivative by performing a full linear
step. This is achieved with the Control statement allowing to jump back and forth
between the different increment directives. The first increment directive Standard
setincr(Incr/3) is executed just once at the beginning, then the second directive
ReuseFactoriz  takes place and the control function is evaluated to eventually jump
to another directive. Here, if the convergence rate is below 0.1, we jump to the next
directive Standard which performs a full linear step and jumps back to the second
directive.

@@@ Solving with increment control:

Step 1 Absincr.Temp=1.855581e+00 Rate=inf

Step 2 Absincr.Temp=2.489984e-01 Rate=1.341889e-01
Step 3 Absincr.Temp=1.545840e-01 Rate=6.208232e-01
Step 4 Absincr.Temp=1.635748e-02 Rate=1.058161e-01
Step 5 Absincr.Temp=5.149250e-03 Rate=3.147948e-01
Step 6 Absincr.Temp=3.002182e-05 Rate=5.830330e-03
Step 7 Absincr.Temp=3.765816e-07 Rate=1.254360e-02
Step 8 Absincr.Temp=4.923727e-09 Rate=1.307479e-02
Step 9 Absincr.Temp=6.560768e-11 Rate=1.332480e-02

Step 10 Absincr.Temp=8.815400e-13 Rate=1.343654e-02
Step 11 Absincr.Temp=1.189537e-14 Rate=1.349385e-02
Step 12 Absincr.Temp=5.359217e-16 Rate=4.505298e-02

From the output, we can see the speed-up in the convergence rate as soon as we per-
form a full linear step updating the derivative and its inverse.

1.8 Continuation Methods

This section illustrates some of features available in SESES when computing families
of solutions depending on user parameter. We will go through the discussion by pre-
senting the example example/ContMethod.s2d of a cylindrical roof under a pres-
sure load from above as displayed in Fig. 1.19. We will compute different solutions for
different values of the applied pressure on the roof, i.e. a family of solutions parame-
terized by the pressure representing our simulation parameter. We assume longitudi-
nal invariance of the mechanical structure so that beam elements can be used and we
perform the analysis in a small strains but large displacements framework. This re-
sults in a non-linear problem that must be solved for each applied load. By zero load,
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we have zero mechanical displacements and by increasing the load the roof starts to
bend inwards. By further increasing the load, we reach the snap-through point char-
acterized by the fact that locally no other solution exists for higher values of the load.
If we want to find solutions with still larger displacements, we have to reduce the load
but we also have to avoid turning back on our solution path. At this limit point, the
mechanical structure becomes instable and will snap-through the next stable solution
with the same load value. We will not perform here a dynamic analysis, but limit our-
self to compute static solutions, although some of them may be unstable. We will see
how limit points are hard to pass by and present methods to successfully compute the
load-displacement curve.

Without discussing the details of non-linear mechanical models, not so important for
an understanding of this example, the input file defines the roof geometry, material
properties and models to enable a non-linear mechanical analysis and the pressure
load as a boundary condition. To compute a family of solutions depending on the
pressure load, we define the global variables load and control , but for the moment
we will just consider the first one in order to specify a pressure load with the help of
the Pressure BC. The definition of a global variable, let us choose its value before
computing a solution. Therefore we start computing some solutions for values of
load =1,2,3,4,5.

Write "@@@ Computing solutions for different loads\n"
Convergence (Absincr.Disp<l.E-12)?1:

(nlter>=15)?failure("Too many iterations"):0
Solve Stationary ForSimPar load At O Step 1#5

Since the mechanical displacement is mainly in the vertical direction and the problem
is non-linear, we have chosen the convergence criterion solely based on the conver-
gence of the vertical displacement and a maximal number of 15 iterations. In the
Solve Stationary statement, we select the simulation parameter load and define
5 steps with an increment of one. Six different solutions will be computed starting
with a null value of the pressure load.

For this non-linear problem, the derivative of the residual equations with respect to
the unknowns representing the displacement field are computed exactly, so that the
Newton iteration converges quadratically. We may apply the techniques presented
in the previous section using fast-increments to speed-up the computation, but here
we present another method using a predictor-corrector technique. When a family of
solution is computed with respect to a parameter and the dependency is smooth, one
can use a Taylor expansion to approximate a solution for a new value of the parame-
ter. This predicted solution is then corrected by starting the non-linear solution algo-
rithm. Since we are closer to the solution less iterations are required and a speed-up
is obtained. Actually Taylor expansions are not practical to use since they require the
derivatives of the solution with respect to the parameter. Therefore, they are com-
monly replaced by polynomial or rational extrapolation close related to Taylor ex-
pansions and continued fractions. By repeating the previous solution and enabling
extrapolation we effectively perform less iterations.

Write "@@@ Computing predicted solutions\n®
Solve Init

Extrapolation Rat_2_2

Solve Stationary ForSimPar load At 0 Step 1/2#10
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In this example, we have used quite a high degree of rational extrapolation in order
to reduce the computational cost at the expense of increased memory requirements
needed to store the computed solutions. However, there are many examples, where
high degree extrapolation is not better than low degree and can even be detrimental
and this is especially true for polynomial extrapolation.

The pressure load of load =5 is not large enough to reach the snap-through state,
therefore we may decide to increase further the load and compute additional steps.

Write "@@@ Computing further solutions\n"
Extrapolation NoExtrapolation
Solve Stationary Skip Step 1/2#10

Since at the actual value of the simulation parameter load =5, the solution has already
been computed in the last solution step, we use the Skip option to skip computing
again this solution. At the pressure load of load =7, Newton’s algorihtm slows down
and needs much more initial iterations to reach the basin of quadratic convergence. At
the load of load =8, it does not converge anymore and the solution process is stopped.
As discussed previously, no solutions exist for this pressure load close to the actual
computed solution. Since many mechanical structures, due to their limited elasticity,
do not survive a dynamical snap-through process, knowing the maximal value of the
pressure is equivalent to determine the ultimate collapse point. We may combine
here the impossibility to find solutions with a try&error technique to determine the
maximal load. This method is expensive and not optimal from a computational point
of view, but it is easy and simple to use. We approach the maximal load by below with
an adaptive incremental procedure. As soon as a solution is successfully computed we
increment the load, otherwise we restart the computation with a smaller incremental
step. The step length will converges toward zero and when small enough we stop the
computation.

Write "@@@ Computing limit point by try&error\n®
Convergence (Absincr.Disp<l1.E-12)?1:
(nlter>5|lisnan(Absincr.Disp))?failure(""):0
Solve Stationary At 6 Step 0.5, step#100 Failure step<lE-3? 0:step/2

Within the convergence criterion, we set the failure criterion for Newton’s algorithm
as a maximal of 5 iterations and at the same time we catch NaN values showing up in
the displacement norm. With the Solve Stationary statement and the Failure
option, we set the response directive whenever a failure condition is meet inside New-
ton’s algorithm. If the case, the incremental step of the pressure load is halved and if
less than 1073 we stop.

By conveniently changing the simulation parameter and predicting the solution, it
may be possible to pass the limit point and reaches the snap-through point. However,
it is not easy to follow the path in the unstable region since by reducing the simulation
parameter one generally turns back on the solution path. In order to easily obtain the
displacement-load curve, one has to let making the changes of the simulation param-
eter to load control algorithms. Here, the simulation parameter becomes a dependent
and thus controlled variable and a new independent variable must be introduced to-
gether with an additional equation connecting the solution, the load and the new in-
dependent controlling variable. The additional equation determines the type of load
control applied and a common choice is spherical or cylindrical load control. The
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change of solution and load together with a proper norm definition must be the same
as the change of the new controlling variable. Load control is not only used to com-
pute and pass limit points, but also in general as replacement for simple continuation
methods. Load control has the property to stabilize the continuation methods and so
larger steps can be taken. Load control methods require the derivative of the resid-
ual equations with respect to the simulation parameter begin controlled. In SESES,
this derivative is by default computed by numerical difference, it can be computed
exactly but then must be defined explicitely. For this example, the default difference
algorithm works nicely, but there may be times where an exact definition is necessary.
In order to use load control, a second simulation parameter, playing the role of the
new independent variable, must be defined and used similarly and in replacement of
the simulation parameter without load control. In our example, the new simulation
parameter is control . This parameter will control the length of each new step by
considering displacement and load together.

Write "@@@ Computing with load control\n"
Solve Init
Dump AtStep 1 Disp
Write AtStep 1 File "plot" Text "%f " load Lattice point "%f\n " -Disp.Y
Convergence { double ok=(AbsIncr.Disp<1.E-12);
write("  Absincr.Disp=%.2e\n",AbsIncr.Disp);
if (ok) write(" @load %f control %f\n",load,control);

return ok; }
Increment  Standard ReuseFactoriz #3
LoadControl Spherical(Facincr 1E3/sqrt(2); Predic step; load)
Extrapolation Quadratic

Define load=0
Solve Stationary ForSimPar control Step 5#25

By running this example, we first start all over again and so we reinitialize the dis-
placement to zero with Solve Init  and the pressure load with Solve Define
load=0 . We write data for graphical visualization and to display the displacement-
load curve of Fig. 1.20. Under load control, the user specifies the controlling variable
control , whereas the changes of the controlled pressure load load are made by the
load control algorithm. In order to follow the changes of the pressure load, we print
its value at the end of each solution step together with the Convergence statement.
The load control algorithm is specified with the Increment LoadControl state-
ment and the Spherical  function corresponds to spherical load control. This func-
tion requires the specification of the parameter load to be controlled, a scaling factor
Faclncr  for weighting the contribution of displacement and load with respect to the
step length of control  and a prediction function Pred for the controlled parameter
used to speed-up the computation.

1.9 External Post Processing and Controlling

This section illustrates how SESES can be interfaced with other software tools to ana-
lyze or visualize simulation data or to control numerical computations. First, a general
method for exporting the numerical data is presented and then examples for postpro-
cessing the data with mathematical and plotting tools, including Mathematica and
Gnuplot are given. We also discuss how to create an external control system with Mat-
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Lab that uses feedback from simulation results and launches SESES in batch mode in
order e.g. to automate the search for an optimized design.

Let us first discuss how to store simulation data in a multicolumn ASCII format for
subsequent import in other software tools. We shall illustrate this with the cantilever
microactuator example example/EIThermMech.s2d . Analogous to the previous
example discussed in the context of animation, we run a Solve Stationary state-
ment with the sweep specification for the parameter cur according to

Solve Stationary ForSimPar cur At 0.005 Step 0.005#4

Here we compute five solutions starting with a current of 5mA and with increments
of 5mA.

For plot post-processing, we want to create a column table with the current values in
the first column, the z- and y-displacement of the cantilever tip in the second and third
column and in the last column the average temperature of the device. The first table
row is reserved for a comment and the vertical size of the table is given by the number
of solution steps i.e. the number of different current values. These are the statements
used to create our table and they must be defined before the Solve statement.

Lattice tip node(nx ny/2)

Write  File "curve"
Text "#current (A)\tx-displacement (m)\ty-displacement (m) temp (K)\n"

Write AtStep 1 File “"curve" Append
Text "%.3f\t" cur
Lattice tip "%.3e\t%.3e\t" Disp.X Disp.Y
Text "%.3\n" integrate(Temp)/integrate(1)

Solve Stationary ForSimPar cur At 0.005 Step 0.005#4

In order to obtain the displacement values at the tip, we have first to define a lattice
where numerical fields can be evaluated. We do this with the Lattice  statement
followed by the lattice name and the lattice points, here a single point located at the
cantilever tip. To write the first comment line to our data file named curve ,we use the
Write statement followed by a format string and the output file specification. Within
the string, we use the tabulator \t and the newline character \n. At each value of the
swept current, we append to the output file the value of the current, of the displace-
ments Disp.X Disp.Y  at the tip and the averaged temperature. The average value
is computed with the built-in function integrate . The format strings "%.3f \t"
and "%.3e \t" following the Text and Lattice keywords specify floating point (f)
and engineering (e) notation, respectively, with a precision of three digits. As column
separator, we choose the tabulator \t . The generated file curve reads

#current (A) x-displacement (m) y-displacement (m) temp (K )
0.005 3.879e-08 1.316e-06 303.281
0.010 1.552e-07 5.265e-06 313.125
0.015  3.491e-07 1.185e-05 329.531
0.020 6.206e-07 2.106e-05 352.499
0.025 9.697e-07 3.290e-05 382.030

and may now be used for plotting with third-party software. Another popular file
format for data is the comma-separated format with the suffix .csv for the MS Excel
application. To generate such a format, one just needs to use a comma instead of a
tabulator inside the format string.
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Cantilever Microactuator

4e-05 : : Cantilever Microactuator
x-displacement
3.56.05 y-displacement --—------
8- 107
3e-05 =
_ E
£ 2.5e-05 £ 7
= 2 S 6 10
E 2605 g
8 8 4-107
S 15605 Q
£
16-05 2- 1077
5e-06
0 e 0.005 0.01 0.015 0.02 0.025
0.005 0.01 0.015 0.02 0.025 0.03 current (A)

current (A)

Figure 1.22: Plot of the microactuator tip dis-

Figure 1.21: Plot of the microactuator tip dis- placement generated by Mathematica.

placement data generated by Gnuplot.

Plotting with Gnuplot

Gnuplot is a freely distributed scientific plotting software available for Linux and Win-
dows. The following commands can be entered interactively in the Gnuplot mode or
be pasted in the settings file script.gnu

set terminal postscript color 20

set output "curveplot.ps”

set title "Cantilever Microactuator”

set xlabel "current (A)"

set ylabel "displacement (m)"

set xzeroaxis

set yrange [0:4e-5]

set grid

plot "curve" using 1:2 title "x-displacement" with lines,\
"curve" using 1:3 title "y-displacement" with lines

A PostScript file named curveplot.ps is then created by running the command
gnuplot script.gnu . Here the second and third column of the data file curve is
plotted against the first column. The resulting graph is shown in Fig. 1.21.

SESES allows to specify the content of a command line to be executed in line with the
numerical computations so that it is possible to launch postprocessing tasks as soon as
the numerical data is available. The command line can extend over multiple lines with
the help of the backslash escape character. To launch the previous plotting command
within SESES, one uses the statement

System gnuplot script.gnu

Plotting with Mathematica

Mathematica is a mathematical software by Wolfram Research Inc. useful for linear
algebra, analysis, graphical visualization and programming. The content of our data
file curve can be read with the ReadList command and stored in a Mathematica
variable of the same name and plotted with the following statements.

file = OpenRead["curve"];
Skip[file, String];
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curve = ReadList[file, Number, RecordLists -> True];

Closef[file];

ListPlot[Map[{#[[1]], #[[2]]} &, curve], Frame -> True, PI otJoined -> True,
FrameLabel -> {'current (A)", "displacement (m)"},
PlotLabel -> "Cantilever Microactuator”, PlotStyle -> Hue [1],

GridLines -> Automatic, DefaultFont->"Helvetica"]

The Skip command skips the first line of the data file that contains comments, i.e.
the columns labels. With the ListPlot ~ command, the plot shown in Fig. 1.22 is
generated.

Controlling with Matlab

Matlab is a mathematical software tool by MathWorks Inc. addressed to scientists and
engineers for both mathematical calculations and communication to measurement in-
strumentation. Here, we shall discuss how to create an external control system with
Matlab that uses simulation results obtained by launching the SESES kernel in batch
mode. The most straight forward approach is to write to and read from intermedi-
ate SESES files. Within Matlab we can generate a file named MatLab 2_SESESto be
loaded by SESES with an Include statement, afterwards we run the SESES calcu-
lation and let SESES write a result file SESES2_MatlLab to be read by Matlab. The
Matlab code for our simple interaction example reads as follows.

clear all; close all;

% Transferring some data to SESES

par=-0.5;

fid=fopen('MatLab_2_SESES’,'w’);
fprintf(fid,'Define par = %20.12e \n’,par);

fclose(fid);

% Invoke SESES
dos ('.../k2d example.s2d’);

% Read the SESES results
fidl=fopen('SESES_2_MatLab’,’r’)
res = fscanf(fidl,'%s’)
fclose(fid1)

eval(res);

Comment lines in Matlab start with % To invoke a command line statement, Matlab
provides the command dos. At the end of the above example, the simulation results
are read from the file SESES2_MatLab and evaluated within Matlab. With the help
of such an approach it is possible, for instance by using optimization code available
within Matlab, to implement a search for input values producing an optimized result.
Such optimization algorithms may be helpful whenever systematic parameter sweeps
are too time consuming and possibly not independent of each other. This simple ap-
proach has the drawback that a new instance of SESES is stared each time. If may not
be so and with the help of e.g. named pipes, it is possible to write some simple code
implementing a master-slave communication channel to be compiled into dynamical
libraries and to be loaded both by Matlab and SESES.



Chapter 2

Application Examples

In this chapter, we present collected SESES examples ranging from single field linear
problems to more complex multiphysics non-linear coupled problems. All examples
discussed here are found in the examples directory of the distribution and can be run
without any SESES license. This allows the user to visualize all numerical results by
its own and to verify or eventually criticize our assertions. All examples are explicitely
kept small in size in order to run on commonly used PC hardware.

2.1 Thermal strain

In this example example/ThermStrain.s2d , we present a 2D thermal induced
mechanical displacement by focusing on setting up the boundary conditions. An
isotropic material with induced thermal strain is characterized by the Poisson ratio v,
Young modulus E and the coefficient of thermal expansion c. In this example, a cube
of side length ¢ = 1m with a = 17x107%, v = 0.3, E = 200x10° N /m? will be subjected
to a temperature change of d1" = 14 K. By restricting the free expansion on portion of
the boundaries, a stress s will be produced in the material. For the unidirectional case,
this behavior can be characterized by the following equations
e:%:adT, s:Eg:Ee.
14 14

In our example, we constrain the displacement on three side faces of the cube as shown
in Fig. 2.1. The material of the left edge is not allowed to move up or down i.e. the y-
movement is clamped, the bottom edge is not allowed to move in the z-direction and
the right edge cannot move in the y-direction. These boundary conditions have the
following consequences. The top left corner is free to move in the z-direction and the
top right corner can freely move in the y-direction. The lower left corner is very limited
in its movement in both directions. In this corner, we expect the largest total stress.
Fig. 2.2-2.3 show the z- and y-displacement, respectively, whereas Fig. 2.4 shows the
absolute displacement. An enlargement factor, in our case 200, needs to be set to
visualize the small displacements. When displaying the stress field, one observes the
largest stress in the lower left corner as predicted. The stress field matches the strain
tield in the following sense: small strain = large restriction = large stress.

38
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Alternatively one can select other boundary conditions. As an example one can fix
the cube so that it can freely expand and no stress is induced. In conclusion, starting
the simulation with very simple, preliminary models helps to get an intuitive under-
standing of the physics behind the problem considered.

2.2 Designing a Hall Sensor

This example presents the design and optimization of a Hall sensor device. The Hall
sensor consists of a rectangular silicon Hall sensor element as displayed in Fig. 2.5.
The sensor is manufactured with a 3 micron CMOS process. Two voltage contacts
are placed on two opposite sides and an external voltage is applied to induce a cur-
rent flow. The silicon device is properly doped to act as a resistor. On their way
through the device, the charge carriers are deflected in an external magnetic field by
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Figure 2.5: Hall sensor layout with Jy: sensor cur-
rent, B.: outer magnetic field in z-direction and
Uttan: measured Hall voltage.

the Lorentz force and accumulate on the lateral sides. By placing two contacts on the
lateral sides, a potential difference can be measured called Hall voltage. The lateral
Hall contacts are usually realized with highly doped thin adjacent regions to achieve
optimum Ohmic contact behavior. The modeling of our Hall device starts by posing
the problem in mathematical terms. Physical models of varying complexity and de-
gree of sophistication are available. Here we use a simple single carrier model able to
correctly characterize the device electrically. The semiconductor drift-diffusion model
or even more complex models may be used but do not necessarily improve the results
for this Hall device. The single carrier model is based on the solution of the current
conservation law for the current density J

V-J=0for x €. (2.1)

The material law for charge transport is given by
_ qoteNe

1+ pe2B?

with ¢o the elementary charge, ¢ the electric potential, B the outer magnetic field,

tte the charge carrier mobility and n. the carrier density. We assume here the carrier
density to be equal to the doping concentration.

(=Vo — peVe x B), (2.2)

For our Hall device, the domain boundary 02 is partitioned according to the electrical
contacts
00 = 00N U 00y, U0y, U, UdSe, ,

with 0Q¢, ¢, the two current contacts, 0Q g, m, the two Hall contacts and 092y the re-
maining boundary. On 92y no electric current is flowing out of the device, on 0Q¢, c,
the potential is given and on the Hall contact Q2 , g, the potential is floating, constant
and no current is flowing. This physical situation is represented mathematically by the
following BCs

J - nfoa, =0,

Plone, =0,

¢|8QCQ = Vapplied 5

faQHl,Hz J-dn=0 and ¢|sq,, ,, = const.

(2.3)



SESES Tutorial September 2012 41

From the theory of boundary value problems, the governing equation (2.1), together
with the material law (2.2) and the BCs (2.3) is a well posed problem with a unique
solution for the electric potential ¢.

For an ideal Hall plate of infinite length with a vanishing Hall contact width, the Hall
voltage is a function of the current density .Jy and the magnetic field B, according to

JoB.b _ ,UeBzVappliedb

qone a

Utan = (2.4)
For a real device, we have to consider the finite device length a and contact width w
as given in Fig. 2.6. A possible optimization goal would be the requirement that the
discrepancy of the measured Hall voltage be less than 10% of the ideal case by choos-
ing the device length a as small as possible. Another important optimization step is
the minimization of the offset Hall voltage relevant for the device precision. This is
the Hall voltage measured when the external magnetic field is zero B, = 0 and is
determined by slightly misaligned Hall contacts introduced by the CMOS fabrication
process. Other studies requiring a 3D model may include the influence of the device
thickness or a magnetic field B not orthogonal to the sensor plane.

In the following, we will limit ourselves to a 2D model and obtain the device character-
istics as function of the geometric parameters as device length, device width, contact
dimension and contact misalignment.

The SESES input file for this Hall sensor problem can be found at example/Hall
Sensor.s2d . The geometry of the device and the definition of the contacts is shown
in Fig. 2.6. The device is fully parameterized with the help of user variables.

Define

width =5 ( * um *)

length = 20.0 ( * um *)

contw =20 ( * um *)

misalign = 0.2 ( * um )

bfield =1 ( * Tesla )
mobil = 0.1265 ( * mex 2/(V *s) *)
vapplied = 1 ( * V)

The governing equation (2.1) and the material law (2.2) are selected by defining mate-
rial Silicon  as follows
MaterialSpec Silicon

Equation OhmicCurrent Enable

Parameter SigmaUns HallRes(Sigmalso QO *1.0e24 *mobil S/m;

BfieldZ bfield T;
MobHall  mobil m * 2/(V *s)) Slunit

The BCs for the voltage and Hall contacts (2.3) correspond to Dirichlet ~ and Float-
ing BCs.

BC Voltl 0 0 JType ny Dirichlet Psi 0 V

BC Volt2 nx 0 JType ny Dirichlet Psi vapplied V

BC Halll nx0 O IType nx1 Floating Psi 0 A
BC Hall2 nx0 ny IType nx1 Floating Psi 0 A

This single field boundary value problem is linear with respect to the dof-field Psi

and a solution is computed by selecting an automatic mesh refinement as shown in
Fig. 2.7. For a non-vanishing magnetic field or a misalignment, the solution is sin-
gular at the corner of the Hall contacts. Here the automatic mesh refinement would
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Figure 2.8: Example of a calculated electro-
static potential field in the Hall sensor.

never stop to refine due to the singularities. However, the local singular behavior has
little influence on the overall device performances and we can stop refining around
the singularities. In practice, refinement of singularities is characterized by a small
number of new elements each time we refine and the parameter MinFractionElmt

is used to stop refinement when the fraction of new and actual elements undergoes
the given limit.

Store AtStep 1 CurrentAver(Continuous 1;FreeOnRef)=Curr ent

Remesh AtStep 1 MaxNoEImt 20000 MinFractionElmt 0.05

Refine ErrPsi(epsilon) Global
Solve Stationary

The figure of merit for the Hall sensor is the Hall-voltage which is written to the output
together with some model parameters.

Write
"Magnetic field %e T\n" bfield
"Misalignment ~ %e um\n" misalign
"Hall ideal %e V\n"  mobil *bfield »vapplied =*width/length
"Hall voltage %e VAn" Halll.Psi.Shift-Hall2.Psi.Shift

Here are some results obtained by running SESES for different parameter values. The
discrepancy of the Hall voltage with the ideal case is of ca. 25% which can be reduced
by augmenting the length-width ratio. With a misalignment of just 0.2 ym, we have
an offset Hall voltage almost as large as for no misalignment and a magnetic field of
1T.

Magnetic field 1.000000e+00 T
Misalignment ~ 0.000000e+00 um
Hall ideal 3.162500e-02 V
Hall voltage 2.455195e-02 V

Magnetic field 0.000000e+00 T
Misalignment ~ 2.000000e-01 um
Hall ideal 0.000000e+00 V
Hall voltage 1.880438e-02 V

Magnetic field 1.000000e+00 T
Misalignment ~ 2.000000e-01 um
Hall ideal 3.162500e-02 V
Hall voltage  4.333158e-02 V

The electrostatic potential field Psi corresponding to the calculation with the third
parameter set is plotted in Fig. 2.8.
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Figure 2.9: A double layer cantilever heated
by a current flow.

time 0

Figure 2.10: Computed temperature with the
hottest spot at the cantilever’s tip.

2.3 Electrothermally Driven Cantilever Microactuator

This example presents the modeling of a cantilever heated by a resistor as displayed in
Fig. 2.9. By applying a voltage between the contacts Vj and Vypplied @ current will flow
in the aluminum layer and Joule’s heat dissipation will heat up the cantilever. Due to
mismatch in the thermal expansion coefficients of the aluminum and silicon layer, the
thermal induced strain will bend the cantilever. This example is not a proper real ex-
ample, but serves the purposes of explaining the modeling of a multiple field coupled
problem. Is it kept as simple a possible, so that we just perform a 2D simulation and
use the bare minimum of details.

The SESES input file for this cantilever problem can be found at example/EITherm
Mech.s2d . In a first step we define the material properties for bulk silicon. For
this material we are going to compute the temperature and the mechanical displace-
ment but since bulk silicon is an insulator no current flow is computed. The isotropic
thermal induced strain is defined with the parameter Alphalso of the the built-in
LinElastlso defining a linear isotropic elastic law. The thermal strain is made a
function of the temperature, we assume it vanishes at the environment temperature of
300K and is a linear function of the temperature, i.e. we use a first order approxima-
tion for the thermal strain.

MaterialSpec Silicon
Equation  ThermalEnergy Elasticity Enable
Parameter Kappalso 150.0 W/(m * K)
Parameter StressOrtho LinElastlso(Emodule 190 GPa; Poiss onR 0.3;
Alphalso 2.3e-6  *(Temp-300)) Slunit

The cantilever is a thin structure and care must be taken when computing the mechan-
ical displacement since low order finite elements do not perform well. Two options
are available here, either one uses higher order finite elements or special structural
elements for beams and shells. We follow the second approach and define a new ma-
terial SiliconShell inheriting from Silicon  all physical properties but using shell
elements of type ElasticShellJ to compute the mechanical displacement. Actually
since we are solving a 2D problem, the elements will be beam elements.

MaterialSpec SiliconShell From Silicon
Equation ElasticShellJ Enable
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Next we define the material properties of the aluminum layer. For this conducting ma-
terial we solve also for the electric field responsible for heating the cantilever. The dis-
sipated Joule’s is defined as the source of thermal heat with the statement Parameter
Heat JouleHeat .The mismatch in the thermal expansion coefficient with respect to
silicon of one order of magnitude induces a large inhomogeneous thermal strain caus-
ing the cantilever to bend if the temperature is not 300 K. Since the aluminum layer is
a thin layer, we use here the same finite elements used for the thin silicon layer. In a
real structure, we may not use aluminum as resistor, otherwise large dissipation will
be found at the connecting wires. We may still use aluminum for its large expansion
coefficient but electrically insulated from a doped silicon channel acting as resistor.

MaterialSpec AluShell From Silicon

Equation  ThermalEnergy OhmicCurrent ElasticShellJ Enabl e
Parameter Heat JouleHeat() W/m ** 3

Parameter Kappalso 235.0 W/(m *K)

Parameter Sigmalso 2.1e5 S/cm

Parameter StressOrtho LinElastlso(Emodule 69 GPa; Poisso nR 0.333;

Alphalso 2.3E-5 *(Temp-300)) Slunit

The device is defined as a stack of two thin layers made of silicon and aluminum
attached to a bulk of silicon material.

Define

cur=0.01 ( =* for one um depth  *)

nx0=4 nx1=4 nx=nx0+nx1

ny0O=4 nyl=4 ny=ny0 =x2+nyl
QMEI nx0 50/nx0 nx1 300/nx1
QMEJ ny0 50/ny0 nyl 10/nyl ny0 50/ny0
Coord coord *1E-6 1

DeleteME block(nx0, nx, O, ny0)
DeleteME block(nx0, nx, ny-nyO, ny)
Material AluShell block(nx0, nx, nyO, nyO+1)

Material SiliconShell block(nx0, nx, nyO+1, ny-ny0)

The BCs fix mechanically the bulk silicon material and embed it in a thermal bad at
300 K. Two electrical contacts are defined at the extremes of the aluminum layer and
the total amount of current is prescribed. This value is to be considered for a default
device’s depth of 1 m. For this device, the source of heat is the dissipated Joule’s heat
in the aluminum layer and the sink of heat is represented by the thermal bad attached
to the bulk silicon. Black body radiation all along the device’s boundary is also a sink
of heat and may be defined with a Neumann BC, but due to the limited temperature
variation can be neglected.

BC Plus nx ny0 JType 1 Floating Psi -cur *1E6 A

BC Minus nx0 nyO JType 1 Dirichlet Psi 0 \%

BC Support 0 0 JType ny 0 O IType nx O ny IType nx

Dirichlet Disp 0,0 m
Dirichlet Temp 300 K

Although this example involves a coupled computation with the thermal, electric and
mechanical fields, a closer analysis shows that the coupling scenario is unidirectional
and the fields can be computed sequentially. If the electric conductivity of aluminum
is considered independent from the temperature and the mechanical displacement,
the electric potential can be exactly computed in a first step without knowledge of the
other fields. Note that if this assumption is reasonable for aluminum, it may not hold
for semiconductors where the electric conductivity can be strongly temperature’s de-
pendent. Analogously, if the thermal conductivity is independent from the displace-
ment, the temperature can be exactly computed as a second step. Here, we use the
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Figure 2.11: Computed mechanical displacement (left) and strain (right) in the cantilever.

electric field computed in the first step to evaluate the Joule’s heat. Electric potential
and temperature are then used in a third step to compute the mechanical displace-
ment. In this problem, however, we just use the temperature to evaluate the thermal
strain, the electric potential is only used in the second step. To compute a solution
with the least amount of time, we therefore define three blocks solving for the poten-
tial, temperature and displacement fields. The system automatically detects that all
three blocks define linear equations and so no block convergence criteria must be de-
fined and a single block iteration will be done. When multiple blocks are defined, the
default solution behavior is to solve each block once and then exit which will correctly
solve our unidirectional coupling problem.

BlockStruct Block Psi Block Temp Block Disp
Solve Stationary

When solving for the mechanical displacements, SESES will additionally solves for the
mechanical rotations within the shell elements defined for the thin cantilever, whereas
for the bulky part, we use standard displacement volume elements. At the inter-
face between these two types of elements, additional kinematical constraint equations
must be satisfied among the various mechanical dofs, but they are set automatically
so that the mechanical rotations are somewhat hidden to the user except for the speci-
tication of Dirichlet BCs. For illustration of the results, the temperature field Tempcan
be displayed together with the mechanical displacement as shown in Fig. 2.10. The
hottest spot is at the outermost region of the cantilever, while the greatest heat flux is
located at the anchor of the cantilever. The displacement and strain fields are shown
in Fig. 2.11.

24 Heat Conduction in a Cylindrical Stick

Heat issues are of common interest since they occur in many distinct application fields
and in general are the result of coupled effects. Thus it is worthwhile to consider a
basic heat problem here in order to get familiar with the relevant simulation concepts.
Let us consider a cylindrical aluminum stick of total length 125 cm and a diameter of
4cm being cooled at one end and heated by a gas burner at the other end. For an
overview of the experimental setup see Fig. 2.12. Essentially, the elongated geometry
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Figure 2.12: Sketch of the horizontal alu-
minum stick heated on the right and water
cooled on the left side.
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Alu Heating Cooling Transfer

Figure 2.13: 2D model for the heated stick
with cooling on the left and heating on the
right.

of the stick suggests a simplification to a 1D problem and so we will first present an
analytical solution to a simplified 1D problem. As a next step, heat radiation loss at
the stick surface is considered and an analytical solution method is proposed. Then a
model for a 2D case and lastly a 3D case are calculated in order to refine the simulation
results and make them comparable to experimental data of the stick in transient and
steady-state.

Analytical model in 1D

In one dimension, the heat equation reads

dT 42T
PPy a2 T

with T" the temperature, s the heat conductivity, ¢ the heat density rate, ¢, the spe-
cific heat capacity and p the specific density. As a first approach let us consider the
stationary equation with a heat loss proportional to the local temperature

d>T
da?
with a a phenomenological heat loss coefficient. As boundary conditions, we choose

T(0) =Tyt and F(L)=h, (2.6)

-k = —Oé(T - Tref) ) (25)

with T} the temperature of the cooling water at + = 0, F = —xVT the heat flux
and h a measure of the heating power at x = L. The general solution is a particular
solution to the inhomogeneous equation that we simply choose as 177 = T} plus the
homogeneous solution which can be found with the help of the Ansatz Ty (z) = Ce?®.
Back substitution yields the characteristic polynomial and the general form
KN —a=0 — AL = :t\/g — Ty(z) = CLeM™ 4 Che7 2.7)
with the two coefficients C; and C determined by the boundary conditions (2.6). At
x = 0, we obtain Cy = —C7 = —C and since d7/dz = h/k at z = L, we find C =
h/(kA2 cosh(AL)) with A = \/a/k. The solution to (2.5)-(2.6) is therefore
T($) = TI($) + TH(I‘) = Tref +

sinh(Ax) . (2.8)

h
2kA cosh(AL)
The larger the heat transfer coefficient a the stronger the temperature profile devi-
ates from the linear solution obtained for o — 0. In other words, o determines the
curvature of the temperature profile.
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Building a 2D model for the heated stick

We shall start with a 2D model of the heated stick which will be used to calculate the
time-dependent temperature at selected points as well as complete temperature pro-
tiles. The input file can be found at example/HeatStick.s2d . These calculations
will be compared to measurement data acquired at the slots indicated in Fig. 2.12.
The mesh of the 2D model is shown in Fig. 2.13. In order to get accurate simulation
results, one needs to consider heat loss by radiation and convective transport apart
from the cooling and heating boundary conditions mentioned above in (2.6). In heat
problems, it is common to introduce a phenomenological heat transfer coefficient «
as the proportionality factor between the heat change and the temperature difference
with respect to a reference point of temperature 7.

% = OéA(T - Tref) ) (29)
with A being the surface area. The transfer coefficients for convection can be derived
tabulated figures of merit that depend on the specific geometry and surrounding ma-
terial. In the section discussing a 3D model, we will also introduce heat radiation and
consider a realistic value for the heat transfer coefficient. In our model heat transfer is

defined with the following statements

BC Transfer OnChange 1 OnBC Heating Disable OnBC Cooling Dis able
Neumann Temp D_Temp tcoeff *(-refTmp+Temp),tcoeff W/m xx 2-W/(m *+ 2% K)

with the reference temperature refTmp . We note that since the Neumann BC depends
on the temperature itself, one needs to supply the derivative of the temperature dof

field with the D_-Tempstatement in order to enable a successful Newton'’s algorithm.
The cooling conditions enforced with water flow through the left end of the heated
stick is implemented with a simple Dirichlet boundary condition

BC Cooling 0 0 JType 1
Dirichlet Temp refTmp K

The heat source located at the right end of the stick is defined as follows

BC Heating nx-5 1 IType 1
Neumann Temp -(time<=toff?heaterflux:0) W/(cm ** 2) ( * time-dep. heating *)

where a (test?true:false) statement was constructed to implement switching off
the heat source after the time toff . The duration of the time-dependent simulation
is set with the parameter period and the turn-off time toff is set to half this time
interval. The time-dependent simulation is defined with the statement

Dump AtStep 1 Temp(Title ("TIME=%g\n",time)) TempDiff(Ti tle ("TIME=%g\n",time))
Solve Unstationary At 0 Step period/npts Until period

The first line above makes sure that the temperature and heat flux fields are stored
in the Data file at each time step. For a heating parameter of h = 160 W/cm? some
time-dependent temperature fields during heating are shown in Fig. 2.14. The lower-
most distribution corresponds to the steady state. In Fig. 2.15 some temperature fields
during cooling ¢t > t.g are shown. Note that the color scale is normalized for each
instance in time and therefore cannot be compared directly.
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Figure 2.14: Temperature fields at different
times after turn-on during heating (temper-
ature scale not shown).
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Figure 2.15: Temperature fields at different
times after turn-off during cooling (temper-
ature scale not shown).
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Figure 2.16: Steady-state temperature profile
in the stick for two distinct heating powers
and simulations with adjusted heating pa-
rameter h (W/m?). The prediction by the 1D
analytical model is shown for comparison.

Figure 2.17: Time-dependent temperature at
different positions on the aluminum stick.

Let us now compare the simulation results with measured data sets of temperature
profiles and transients. For this purpose four points along the aluminum stick were
defined with Lattice  statements whose temperature is written to a file during the
calculation. Moreover a line was defined along the stick along which the temperature
profile was recorded. In Fig. 2.16, two measurements with distinct heating intensities
are shown that can be reproduced successfully by our 2D simulation by adjusting the
heating parameter h, denoted by heaterflux . For the simulation shown in this fig-
ure, the heat transfer coefficient tcoeff ~ was set to 100 W/(m? K). This value seems
quite large but includes a correction factor due to the reduced surface area in the 2D
model. The reduced surface area results from the 2D model dimensions that were de-
termined by the requirement of identical volume as in the real geometry, thus leading
to a surface area smaller by a factor of 11 with respect to the real cylinder surface. The
exact value of tcoeff ~ will be discussed in more detail in the next section on a 3D
model of the heated stick. In addition, the analytical solution of (2.8) is also plotted.
The factor of sinh representing the heating intensity was adjusted. By contrast, the
prefactor in the argument, A = \/a/xk where a corresponds to our parameter tcoeff
was calculated as 0.021 cm~! using a = 10 W/(m?K) and x = 235 W/(m K).

Keeping the simulation parameters fixed, we can now consider the time-dependent
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Figure 2.18: Time-dependent temperature Figure 2.19: Time-dependent temperature
profiles during heating. profiles during cooling.

temperature at 4 selected points on the stick, denoted by T10, T21, T31, T41. The
transient behavior is shown in Fig. 2.17 during a 200 minute time window. The heat
source was switched off after 100 minutes. Fig. 2.17 exhibits good agreement between
measurement and simulation during the heating cycle. However, after turn-off the
temperature drops significantly faster in the simulation. In addition we can compare
the time-dependent temperature profiles during heating as well as cooling. The for-
mer is shown in Fig. 2.18. The data plotted in constant time increments demonstrates
that the heat conduction is fast initially but slows down when approaching steady
state.

Building a 3D Model for the heated stick

In the previous 2D approach, we have achieved satisfactory agreement with measure-
ment data by assuming convective heat transfer only and by adjusting the two param-
eters heating intensity heaterflux ~ and the transfer coefficient tcoeff . The former
adjusts the resulting temperature scale and the latter the curvature of the temperature
profile. With the optimum value tcoeff=100 , the data is reproduced nicely. How-
ever, a closer look into the heat transfer literature reveals that typical values for « are
around 5 to 20 W/(m?K). In particular, the convective heat transfer coefficient is de-
termined by the Nusselt number Nu through o = Nu/d where d is the characteristic
length scale, in our case the cylinder diameter. For horizontal cylinders, the Nusselt
number is given by

2
0.387 Ra0-167

Nu= 0.6 + )
(14 (%)0.563)0.296

(2.10)

where both the Prandtl number Pr and the Rayleigh number Ra depend on material
parameters of the surrounding air. For our geometry the convective heat transfer co-
efficient is calculated as 10.1 W/(m?K). We note that this value is in good agreement
with the value of 100 W/(m?K) used in the 2D model if the surface reduction factor is
considered. We shall now keep this value fixed and in addition consider heat transfer
by radiation. The Stephan-Boltzmann radiation law states

dQ

T cc A(T* —T1,), (2.11)
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Figure 2.20: 3D SESES Model of the heated
stick shown from below with cooling on the
right and heating on the left.

time O

Figure 2.21: Example of calculated temper-
ature distribution in 3D assuming both con-
vective and radiative heat transfer.

where we have introduced the Stephan-Boltzmann constant o and the emissivity e.
The emissivity is a unitless material parameter between 0 and 1 and for a given ma-
terial varies depending on the surface quality such as the roughness. For aluminum a
typical value above room temperature is 0.25. The new heat transfer boundary condi-
tion considering both convective and radiative loss thus reads

BC Transfer OnChange 1 Neumann Temp
D_Temp tcoeff =*(-refTmp+Temp)+sigma *eps=*(-(refTmp ** 4)+Temp** 4),
tcoeff+sigma  *eps* 4 Tempe 3 W/me 2-W/(m »* 2x K)

As for the geometry, a 3D model is derived with only minor corrections from the 2D
one. For our cylindrical stick, we keep the z-axis parallel to the stick and choose the
z-axis perpendicular to z and y. By use of the cylinder homotopy routine we can thus
define the 3D stick geometry and the resulting geometry is illustrated in Fig. 2.20.

QMEI nx xlen/nx
QMEJ ny ylen/ny
QMEK nz=ny (zlen=ylen)/ny

Coord cylx(coord,ylen/2,zlen/2,1) *1E-2 1

With the heat flux now chosen as 60 W/m?, we calculate the stationary distribution
shown in Fig. 2.21. The heated spot on the stick is pointing upward in this figure. With
the refined 3D model, we expect the data to be reproduced more accurately which is
confirmed in the comparison of Fig. 2.22. The curvature of the temperature profile is
now matched more closely to the measured data. Note that the temperature drops at
distances exceeding 102.5 cm since the stick is heated at this location. As for the tran-
sient behavior, the 3D model gives comparable results as the 2D model, see Fig. 2.23.
With the 3D model the temperature decay is matched somewhat closer.

The last simulation aspect to be discussed here is the thermal expansion resulting from
the heat distribution calculated above. For this purpose the thermal expansion coef-
ficient Alphalso and the displacement field Disp needs to be defined and enabled,
respectively. The following statement inserted in the command section defining the
calculation sequence is also required.

BlockStruct Block Temp Block Disp

To fix the cooled left end of the aluminum stick, we set the z-component of the dis-
placement field to zero in the boundary condition
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Steady-state Temperature Profile

Temperature Transients at 4 Positions

51

400 — ; ; ; ,
experiment 1 + 300 - Ti0exp O i
350 | experiment 2 X T21exp X
simulation 2D, h=130 T T31exp X
simulation 2D, h=160 - e 250 | 7 & Tatexp + |
300 [ simulation 3D, h=60 £ \ T10 sim 3D
. simulation 3D, h=75 . \ ;2] sim 38 ,,,,,,,,,,
< H < \ 31sim3D
s 250 ® 200 \\ T41sim3D —— |
=1 5 \
F 200 - &
[ [
o Q.
S 150 | gEg
100
50 =
0 . . . . .
0 20 40 60 80 100 120

distance (cm) time (min)

Figure 2.22: Comparison of the 3D simula-
tion results with the previously shown tem-

Figure 2.23: Comparison of the 3D simula-
tion results with the previously shown tran-
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Figure 2.24: Calculation of the displacement
due to thermal expansion in the aluminum
stick.
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Figure 2.25: Calculation of the displacement
profile in z-direction due to thermal expan-
sion.

BC Cooling 0 0 0 JKType ny nz
Dirichlet Temp refTmp K
Dirichlet Disp.X 0 m

The resulting total elongation of the stick is the value of the displacement field z-
component at the right end of the stick. For our example with h = 60 W/(m? K) and
an expansion coefficient of Alphalso = 2.310° K1, we get an elongation of 3 mm.
The displacement profile is shown in Fig. 2.25 and is essentially the integral of the
temperature profile times the expansion coefficient. From the solution of the simple
1D analytical model (2.8), one would thus predict a hyperbolic cosine function for this
z-displacement profile.

In conclusion we have demonstrated the use of SESES to model the temperature dis-
tribution and thermal expansion in a heated aluminum stick by considering both con-
vective and radiative heat loss. The simulation results were compared successfully
with experimental data in transient and steady state.
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Piszoelectric Sampie E Figure 2.27: Illustration of image acquisi-
S i tion artefact in scanning probe microscopy.

Figure 2.26: Schematic overview of a scanning
probe microscope (SPM) showing the detection
principle for measuring the tip sample interac-
tion.

2.5 Image Acquisition in Scanning Probe Microscopy

In scanning probe microscopy (SPM) a tiny and sharp tip scans across a surface while
the tip-sample interaction is monitored. The signal of this interaction allows the se-
quential construction of an image of the sample surface to be investigated. Two dis-
tinct operating principles for scanning are used: constant-height and constant-distan-
ce. In the former principle, the tip height is kept constant and the varying signal
is recorded. In contrast, for the constant-distance mode an electronic feedback loop
adjusts the z-position to ensure constant tip-sample distance and the z-position is
recorded. The most common measurement principles of the tip-sample interaction
are the atomic force employed in atomic force microscopy (AFM) and the electronic
tunneling current used in scanning tunneling microscopy (STM).

In this tutorial example, the operation of SPMs shall be simulated in order to illus-
trate the different operating principles and the limitations for the lateral resolution. In
particular, a virtual experiment with a sample surface shall be carried out in order to
study the acquired surface image with regards to the tip geometry. In mathematical
terms, the acquired image is the convolution of the tip geometry and the surface to-
pography. With simplified models we shall calculate the electrostatic field between a
metallic tip and a conducting sample surface and interprete this quantity as a measure
of the resulting tunneling current. In a real STM experiment the geometry of the tip is
not that critical since the tunneling current depends exponentially on the tip-sample
distance. Thus, the outermost atoms of the metallic tip maintain the tunneling current
and are thus responsible for the lateral resolution. A schematic overview of the scan-
ning probe setup is shown in Fig. 2.26. In most commercial SPM setups, the tip holder
is kept fixed while a piezo moves the sample relative to the tip in order to scan the
sample surface. A method for simulating the surface scan and the dependence of the
tip geometry will be discussed next.
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Figure 2.28: Left: 2D simulation domain of sinusoidal tip and surface. Right: Calculated
electrostatic potential distribution between tip and sample.

Numerical model of a tip-sample geometry

In the introductory example of the first chapter Chapter 1 Getting Started a simpli-
tied SPM geometry with a vertical line segment as tip and a flat sample surface, both
defined as boundary condition of an electrostatics problem, was presented. As a first
refinement to that two-dimensional model, the example example/SpmSine.s2d  de-
fines the tip geometry as well as the sample surface with a sinusoidal function. Since
both the tip and the surface contour are assumed perfectly conductive, it suffices to
implement the medium in between them as the modeling domain. In particular, we
may start with a single rectangular macro element and just change the upper (tip) and
lower (substrate) domain boundary by applying a sine function to distort the regular
geometry. The result is shown in Fig. 2.28 together with an example of a computed
electrostatic potential.

Let us now consider a unidirectional scan across the surface during which we shall
record the electric field at the tip end. We can perform such a scan by moving the sub-
strate in x-direction relative to the tip. A simulation parameter xoff was introduced
for this purpose. The command section of the input file thus reads as follows.

Dump AtStep 1 Phi Efield

Write File "tip_1Dscan_s"@@{tshape}"n"@ @{nsteps}".txt "
Text "speriod=%.2f sheight=%.2f tshape=%.2f theight=%.2 f\n"
speriod sheight tshape theight
"xoff (nm) Efield (V/m) Phi (V)\n"

Write AtStep 1 File "tip_1Dscan_s"@ @{tshape}'n"@@{nstep s}.txt" Append
Lattice tip "%.3e %.3e %.3e\n" Xxoff *|x Efield Phi

Solve Stationary ForSimPar xoff At 0 Step 0.01#nsteps

The file name contains the tip shape parameter tshape and the number of incre-
mental scan steps nsteps . The 3-column data file obtained can now be plotted with
Gnuplot.

In scanning probe experiments the acquired images are subject to artefacts caused by
the non-ideal tip geometry. In general the acquired signal is a convolution of the tip
geometry and the substrate topography. This effect is schematically shown in Fig. 2.27
in a constant-distance acquisition mode. Depending on the sharpness of the tip, the
acquired image reveals more or less structure of the surface topography. The simplest
simulation scan is performed in constant-height mode. The shape of the tip can be
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Figure 2.30: Plot of the calculated tip-sample

Figure 2.29: Simulation of the image acqui-  nteraction using exported 2D simulation
sition artefact caused by non-ideal tip shape ~ data. Contour lines are drawn in the zy-
with d the width of the tip. projection plane.

varied by the tshape parameter. For a small tshape parameter the tip is sharp and
the resulting field correspondingly high. Thus, if the electric field is taken as a measure
for the substrate topography, one gets a stronger apparent topography modulation.
This effect is shown in Fig. 2.29 for three different tshape values.

As a next step, we discuss the extension example/SpmSine.s3d  of the above model
to 3D in order to perform a 2D surface scan in constant-height acquisition mode. The
2D geometry has been extended to 3D in a simple way. The shape of the tip is cho-
sen rotation symmetric around the z-axis, its radial shape is determined by a cosine
function and its lateral xy-position has been parameterized with two user parameters
xoff and yoff . The solution procedure is as before, but since with the ForSimPar
parameter sweep option of the Solve Stationary statement only one parameter
can be swept, we have used two preprocessor nested loops and the statement Define
to update the simulation variables xoff and yoff as follows

For i From O To nsteps

{

For j From O To nsteps

Define xoff=@i *sweep=Ix/nsteps, yoff=@] * sweep* ly/nsteps
Solve Stationary

Write File "tip_2Dscan.txt" Append
Lattice tip "%.3e %.3e %.3e\n" xoff yoff Efield

(* separates data blocks for gnuplot *)
Write File "tip_2Dscan.txt" Append "\n"

}

At the end of the inner loop we add a line feed to the data file in order to separate row
data. The exported simulation data is easily visualized using the Gnuplot software
and the necessary files and commands are also included in the example. The resulting
graph for a 2D scan within a 400 x 400 nm? region is shown in Fig. 2.30.
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Figure 2.31: Circuit diagram of the voltage U(x,t) and current J(x,t) along a wire.
2.6 Cross Talk and Telegraphy

Electric signals running along parallel wires cross talk to each other, i.e. part of the
signal in one wire is transferred to the other wire. The phenomenon might be conduc-
tive, capacitive or inductive in nature and is treated in text books under the name of
equation of telegraphy. Fig. 2.31 shows the situation and the analytical description is
summarized by the following equations

U(z,t) — Uz + da, t) = RI(z,t)dz + L2200 qe — 90 — Ry 4 1,97
(2.12)
J(x,t) — J(z + dz, t) = GU(z,t)dz + C2Z&N qz — 01 — qU 4 Y,

with U, J the voltage and current along the wire and R, L, G, C the resistance, induc-
tance, conductance and capacity pro unit of length of the wire. Combining (2.12) to-
gether, we arrive at the following equation of telegraphy for the voltage U

o*U ou o*U

= LG)— + (L

Pl = (RG)U + (RC + LG) Fy + (LC)—- 5T
The solutions are damped, harmonic waves propagating along the cable with the
damping constant 42 = (R + iwL)(G + iwC) and impedance

Z(w) = U(w)/J(w) = V/(R+iwL)/(G + iwC) . (2.13)

In this tutorial example example/CrossTalk.s2d , we are going to compute the
capacity C and the inductance L for two ideal cylindrical parallel wires and compare
the values with analytical results. In doing this, we also briefly present the theory of
transversal modes in transmission lines. The conductive cross talk is not considered,
since we assume perfect electrical insulation between the wires, i.e. G = 0. The ideal
case is characterized by ideal conductors with R = 0, where the current is flowing
over the surface of the wires. Therefore the current flow in the wires does not need to
be considered and the damping caused by the physical non-zero value of R does not
enter the computation of L and C'. For this ideal case, we are therefore left to solve the
Maxwell’s egs. in the free space surrounding the wires where all currents and charges
are zero. Non-zero currents and charges will just show up just at the surface of the
wires. In signal theory and for linear systems, it is customary to perform a harmonic
analysis, where the participating fields have complex values and the time dependency
is taken to be of the form (e)(t) = (e) exp(iwt). For this setup, the Maxwell’s Eqgs. read

VB=0, VE=0, VXE+iwB=0, VxB —iwieE =0. (2.14)
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The particularity of transmission lines with two or more wires compared to waveg-
uides with one single wire, is that for the former a signal can be transmitted at any fre-
quency, whereas for the latter there is a cutoff frequency below the one no signal can
pass through. The modes with zero cutoff frequency are transversal modes, so called
TEM modes, where the longitudinal components of E and B are zeroie. E, = B, =0
and just for these modes we seek here solutions of (2.14). Because of the z-invariance,
we may as well consider the z-dependency to be of the form (.)(z) = (.) exp(ikz) and
construct general z-dependent solutions by superposition of these spatial modes. With
these assumptions and the property jpeg = 1/c?, the Maxwell’s Egs. (2.14) yield the
dispersion law k& = w/c and result in the equations [1, 2]

0E, OE,

n oE, OFE
ox oy

=0, e 8y””=o,cBy=—Ex,ch= . (2.15)

i.e. the magnetic field B is given by the rotating clockwise the electric field E by 90°,
the electric field E = —V® is given by solving the 2D Poisson equation V.V® = 0 and
the signals are transmitted with light velocity c.

We now want to compute the inductance L and capacity C for our transmission from
the solution of (2.15) in order to obtain the impedance (2.13). From the definition of
C and L we have Q = CV and 0V/0z = L0J/0t resulting in V = cLJ with @ the
total charge, J the total current and V' the potential on the surface of one wire when
the second one is grounded. The total charge () and current J are given by the surface
integrals

Q:eo/ E.nds, Jzﬂgl/ B.tds, (2.16)
6Qwirc Qwirc

with n the outward normal and t the unit tangent to the boundary 0€;... But since
the magnetic field is a rotation of the electric field times ¢, we actually have J = cQ.
The product of inductance and capacity is therefore a constant LC' = 1/c? independent
from the wire’s shape and the impedance is given by

RC + iw/c?
2() = | T

Following [3], for two parallel cylindrical wires, the exact value of the capacity is given
by
(2.17)

with €, = 8.85x10712 C2/(Nm?), ¢ the length of wire, d the distance between the wires
and r the wire’s radius.

Results and Conclusion

In the initial section of the input file, we define the two wires of radius » = 0.1m
separated by a distance of d = 2m together with the surrounding air. To solve for
the electro static problem (2.15) , we enable the equation ElectroStatic and set the
value of the electric potential to 0V and 1V on both wires. The value of the potential
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Figure 2.32: Electro scalar potential Phi be-

tween two charged cables, Figure 2.33: Electric field absolute value |E|.

on the exterior boundary should be set to represent an infinite domain and a homo-
geneous Neumann BC is the preferred choice. Fig. 2.32-Fig. 2.33 show the computed
potential and electric field distribution. The total charge (2.16) on the wire is computed
with the statement

Write "Charge %e (%e)\n"
Wirel.Phi.Flux,-integrate(Bound Wirel; Dfield.X * Normal.X+Dfield.Y * Normal.Y)

whereas the first value being computed internally over residual assembling is gen-
erally more precise than the second one computed by direct integration. From the

charge, we obtain a capacity of C' = 8.08 pF compared to the analytical value (2.17) of
C =9.3pF.

It is possible to compute the inductance and capacitance of more complex structures
following the procedures discussed above and so the impedance Z according to (2.13).
Using the EddyHarmonic model, it is also possible to include the effects of frequency
dependency of material laws and thus to model non-ideal transmission lines. Once the
dispersion relation is know for the full spectrum, we may as well perform a spectral
analysis on e.g. rectangular shaped signals and follow their dispersive evolution when
traveling along the line.
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2.7 Variable Gap Sensor

The physical principle of variable gap magnetic sensors is based on the variation of an
air gap within a magnetic circuit. These sensors may be realized by winding a coil on
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a C-shaped magnetic core as shown in Fig. 2.34. A displacement change of a magnetic
armature leads to a change in the inductance L of the coil and therefore the electric
impedance can be used as a measure for the armature displacement. Variable gap
sensors show some advantages in the measurement of small displacements. They are
highly sensitive with a resolution of less than 1 nm [1] and the maximum non-linearity
typically is given as 0.5% [2]. They are used for non-contact applications and can be
used to measure angles in a form as shown in Fig. 2.35 with a rotating disk of variable
thickness. In this example, simple formulas for estimating the inductance of the angle
sensor as a function of design parameters are derived followed by a comparison with
more precise finite element models considering scattering effects within the air gap.

Estimating the magnetic inductance

For induction phenomena, the displacement current term 9;D within the Maxwell’
equations can be neglected, hence to estimate the inductance L, we can work with the
Maxwell” equations V x H = jeong and V x E + 9,B = 0. By considering an oriented
surface F' with boundary 0F and normal n, their integral form after application of
Stoke’s theorem reads

H-ds:/jcond-dn and E'ds:—g/B-dn. (2.18)
oF F oF ot Jp

By considering the surface /' = A as shown in Fig. 2.36, from the first integral in (2.18),
we obtain

N.r:jqu-dSZ?{,rlB.ds, (2.19)
0A 0A

with IV the number of coil windings and I the coil’s current. The normal component of
the magnetic induction B is continuous across the boundary between air and magnetic
material, hence to a first order we can assume |B| to be constant along the closed path

0A resulting in
NI~ |B|COI‘O <lcore + d(a) + h - d(a)> .
Hcore Hdisk Ho

with b, d(«) as defined in Fig. 2.36 and lcore the lenght of the magnetic core with large
permittvity ficore. By considering the surface F' = S¢ore to be a section of the core and
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Figure 2.37: Magnetic field around disk.

that here the induction field B due to the high permittivity is almost constant, from
the second integral in (2.18), we obtain
0B

l
U=N j{ E-dS%—NSCOW_%_NZSCOYC< core
ot Heore  Hdisk Ho

d(@)  h—d(o) “tdl
dt’
BSCOI'C

with U the induced coil’s voltage. Since the inductance L is defined by the relation
U = —L dI/dt, we have

(2.20)

1
R e s

Hcore Hdisk Ho

Numerical model

The hand formula (2.20) for the inductance L has been derived by considering the in-
duction field |B| to be constant along the integration path 0 A, see Fig. 2.36. Within the
air gap, see Fig. 2.37, this may be a crude approximation and therefore for comparison
purposes, a numerical model is developed including 2D scattering effects within the
air gap. The input file for this example can be found at example/AngSens.s3d . The
shaded simply connected 2D computational domain € = Q¢ore U Qgigk U Qair shown in
Fig. 2.36 is chosen such that there is no current j = 0 and therefore V x H = 0 holds
in Q. This condition implies the existence of a scalar magnetic potential ¢ in 2 with
H = V¢. Together with the Maxwell’s equation V.B = 0, we obtain the Poisson equa-
tion V.(uV¢) = 0 to be solved with 11 = ficore in core Qeore, it = pgisk in the disk Qgisi
and g = pg in the air ,;,. On the two surfaces 902N Qeore = 920U, we set Dirichlet
BCs with constant values of ¢ = 0 and ¢ = A a free parameter. On 92— (0QpU0; ) we
use homogenous Neumann BCs with B -n = 0. This problem is solved with 2nd order
elements by enabling the equation MagnetoStatic2  requiring the definition of the
material parameter Mue.Val defining the relative permittivity p/uo and by setting
the above Dirichlet BCs for the dof-field MagnPot .

By splitting the evaluation of (2.19) in two parts, with the contribution from the core
as before, but now with a numerical contribution from our computational domain 2,
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we have

lC
NI= [ Hedst [ Vords= Bl S A,
OANQeC OANQN

core
with [¢,,, the length of the core outside the computational domain. The value |B|core

can by approximated by the average

1Blcore ~ S(;nlre / B-dn= S(;nlre-’r(A) )
o0

with F(A) the BC flux directly available as SESES output. Due to the linearity of
the problem, we have F(A) = F(1)A so that NI = (Sl ol S F(1) + 1)A and
evaluation of the second integral in (2.18) now yields

d dA 16, F(1) “Lar
= _N— B. = _N 1—:—N2 1 core 1 @l
v dt /Core dn ]:( ) dt ]:( ) <Scoro,ucoro i > dt ’

resulting in the inductance

I Seore ) "
I = N2 Score < core + C01“6> )
Hcore -F(l)

It is apparent that the relative error between both approximations of L tends to zero
with l¢ore — 00 and so we limit ourselves by comparing the different terms within the

denominator
SCOI‘O ZCOI‘C - lC d h —_
(S /(M=) ) o)),
]:(1) Mcore Hdisk 2%

where a value of R = 1 implies equivalency. From the textual output generated by
running the example, it is apparent that with a value of R ~ 0.5 the scattering of the
magnetic field in the air cannot be neglected and that by rotating the disk, this large
error is also not constant. Formula (2.20) is therefore a crude approximation and it is
also expected that a 3D simulation will further improve the value of L considerably.
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2.8 Modeling of a micro-reed switch

Micro-reed relays with a magnetostatic operating principle were further miniaturized
during the last years. These electrical switches provide the galvanic separation of the
control and load circuit, so they are of special interest in micro system engineering
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] d Figure 2.39: Schematic drawing of a micro-reed re-

lay, [3].

Figure 2.38: Detail view of a micro-reed re-
lay. Components manufactured according
to this process are 2 x 1.4 x 0.75mm? in
size.

applications [1]. Magnetostatic sensors are particularly valuable for portable applica-
tions because they require little energy or space, they are sealed and can withstand
high mechanical stresses. The reed switches currently found on the market are made
of two ferromagnetic overlapping metal blades placed in a glass tube [2]. One of the
blades is fixed to the substrate and the other one is free to bend down and to touch the
fixed blade in order to close the contact, see Fig. 2.38-2.39. The magnetic and mechan-
ical forces acting on the bendable lamella are shown in Fig. 2.40. The mechanical force
Fineen is represented by the flat surface, it is a linear function of the contact distance
and it does not depend on the magnetic field. The magnetic force Fy,,s is a nonlinear
function of the contact distance and the magnetic field. Both forces are at the inter-
section of both surfaces in equilibrium. If the magnetic force drops below the value
at the point 3, then the relay opens and enters the new equilibrium state as indicated
by point 4. If the external magnetic field is increased and exceeds the value at point 1,
then the relay closes again. The mobile lamella snatches down and the new equilib-
rium state is indicated by point 2. An optimal relay is characterized by a low value of
the magnetic field necessary for closing the contact. The switching hysteresis is repre-
sented by the path along the points 1, 2, 3 and 4 and for a reliable operation of the
relay, it is important for the hysteresis not to be too small in order to prevent a flutter
of the contact at the time of switching.

Mathematical model

For this micro-reed relay, the mathematical model is represented by the magnetostatic
equations obtained from the Maxwell’s equations with the assumptions of stationarity;,
zero charges and zero electrical fields. The equations to be solved for the magnetic
field B and H-field are given by

VB=0, VxH=1J,,

with Jg a given external current. If we assume that no electrical current flows in the
lamellas, then Jy = 0 since no current flows in vacuum. The relation V. x H = 0
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Figure 2.40: Magnetic force and mechanical force as function of the contact distance and the
magnetic field B.

expresses the fact that the H-field can now be given as the gradient of a magnetic po-
tential H = —V© and by using the constitutive relation B = ;/H, a Poission equation
for the magnetic potential © is left to be solved

V.(po pr VO) =0, (2.21)

with 1 = popr(H), 1o the vacuum permeability and p, = i, (H) the relative perme-
ability in general a non-linear function of H = |H|. For this switch, we are mainly
interested in the magnetostatic forces acting on the lamella responsible for turning
on/off the switch and two methods are available here. The first method is based on
computing the magnetic energy inside in the domain €2 given by

W= / B(B)dV, (2.22)
Q
with E(B) the magnetic energy density [4]
B
E(B) = / H(B')-dB'. (2.23)
0

Let d represents the distance between the lamellas and view this value as an indepen-
dent parameter. The energy becomes a function of this parameter W = W (d) and for
small changes d’ = d + dd, we can write to a first order W (d') = W (d) + (0W)/(9d)dd.
The change in energy (0W)/(0d)dd can now be interpreted as the work done by the
total force acting on the lamellas times the displacement and so

ow

F=-"_"
ad

(2.24)
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Figure 2.42: Saturation of the magnetic field B for large
Figure 2.41: Ring coil with air gap. values of the H-field.

can be interpreted as the component of this force along the displacement. This method
requires to compute two solutions for small different values of d and obtains the force
by numerical difference of the magnetic energy. If the magnetic energy density £(B)
is too complex to compute, there is an alternative based on computing the B- and
H-field only. Taking the derivative of (2.22)-(2.23), we obtain

AW = [H(B)-ABdV + |, E(B) AdV (2.25)
= [, H(B)-ABdV +A [, sH-BdV. (2.26)

Since the parameter d changes the domain’s shape, we have to consider also the pos-
sible change in the integration domain, formally denoted by AdV'. It seems that still
we need to know the energy density E(B), however, we may well assume that the
ferromagnetic material just undergoes rigid body deformations without mechanical
strain and therefore AdV = 0 on the lamella’s domain Q. Just in vacuum Q/Q, there
is a change in the domain, but there we have E(B) = H - B/2.

The second method is based on Maxwell’s stress tensor, it is more general and allows
to compute the mechanical tractions on any portion of the lamella boundary whereas
the first method just yields total forces for a given and prescribed displacement. It is
therefore possible to perform a coupled magnetostatic-mechanical analysis and to fol-
low in details the dynamic of the switch process. The magnetic force per unit volume
in the ferromagnetic material is J x B = (V x H) x B, integration over the lamella’s
volume 27, application of Gauss theorem and after some algebra, we obtain

F:/ JxBdV = 7-dn, (2.27)
Qr oy,

with 7; = (B;H; — 1/26;;B - H) the Maxwell stress tensor for the magnetostatic case
and a scalar permeability. The total force acting on a lamella is now given by a surface
integral over the lamella boundary 9€);, and therefore the term 7-n with n the outward
normal can be interpreted as the mechanical tractions acting locally on the surface. It
is to be noted that if only the total force is of interest, then the volume 27, can be taken
as any volume around the lamella, since in vacuum J = 0 and V.7 = 0 and therefore
the integral’s value is invariant.

It is possible to get a rough estimate of the magnetic force by considering a magnetic
ring core of cross-section A, length L and with an air gap of d, see Fig. 2.41. By dis-
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carding all volume effects and by considering just the fields along the centerline of the
torus, from the relation V.B = 0 follows a constant magnetic field B = |B| along this
line. In order to compute the magnetic force, we need to consider the magnetic energy
as function of the air gap d. The volume of the ferromagnetic material is constant and
since B is constant as well, the magnetic energy stored in the ferromagnetic material
does not depend on d. The only contribution stems from the magnetic energy stored
in the air gap which is given by Wya, = d A B2/(240) and derivative with respect to
d as of (2.22) yields the force Fyn.s = AB?/(2u). This force grows quadratically in B
but just for small B values since afterwards volume and saturation effects will limit
the growth, as schematically shown in Fig 2.40.

Numerical model

We present here some numerical results for the micro-reed relay and the SESES input
file can be found at example/MicroRelay.s3d . Most of the Initial section is
concerned with the construction of the macro element mesh for the relay and vacuum
region. For the ferromagnetic material, we use the material law

H:uasim (Ninit - Nasim) + Bsat///init

B(H)=H
( ) H (,uinit - ,uasim) + Bgat

, (2.28)

with Bs, the magnetic field value where saturation starts to act and pinit, ftasim the
slopes of the B-H-curve for zero and co-values
I}Tiino ggf) = Minit and ngnoo aB(H) = Hasim -

For this model shown in Fig. 2.42 for By = 0.88T, pinit = 12000 and ftasim = 1, we
can easily obtain the inverse relation H = H(B) and the energy density integral (2.23)
in analytical form. In SESES this material law is defined through the material param-
eter Mue, requiring the relative permeability 1, = pg ' H~'B(H) and its logarithmic
derivative H 0y, /OH. The relay is embedded in a homogeneous external magnetic
field with only a z-component and so on the bottom face of the rectangular domain
we set the magnetic potential © to zero and on the top face we prescribe the magnetic
field B, which may be done with either a Neumannor a Floating  BC. To compute
the force on the relay with the surface integral (2.27), we define the boundary of the
bendable lamella with the statements

BC SurfaceReed Restrict material(Vacuum) OnChange materi al(ReedlL)
BC SurfaceCheck Restrict material(Vacuum) OnChange mater ial(Vacuum)

It is important to use the Restrict  option to only select the boundary part external
to the lamella, since it is in the vacuum region that we want to perform the numer-
ical integration. The second boundary SurfaceCheck selects the whole vacuum’s
boundary and it is used to check the accuracy of the surface integral. We end up the
Initial section by defining postprocessing routines for computing the Maxwell’s
stress tensor and magnetic energy density.

In the Commandsection we define the solution algorithm and post-processing tasks.
The ferromagnetic material law is non-linear and so we set up a non-default conver-
gence criterion to stop Newton’s algorithm and to speed-up the computation we reuse
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the factorized linear system for six consecutive linear steps. Fig. 2.43 shows a solution
of the magnetic potential and the magnetic field is shown in Fig. 2.44. Afterwards we
compare several methods to obtain the magnetic force acting on the bendable lamella.
The first method is the Maxwell’s stress tensor method of (2.27), the second method
is a numerical improvement of the first one and can be used whenever the integrand
function is divergence free, which is always the case for the Maxwell’s stress tensor in
vacuum. The third method is the energy method of (2.24) requiring the magnetic en-
ergy density (2.23) and the fourth and fifth methods are the energy methods of (2.25)-
(2.26). All energy methods require a second solution computed for a slight change of
the distance parameter. The fourth method requires to backup the magnetic field and
volume weights used for numerical integration and the numerical integration must
be self-programmed with the help of the built-in routine traverse . The fifth method
is a hybrid between the third and fourth methods and does not require to backup the
volume weights since in vacuum we work with the magnetic energy density.

Solve Stationary
Define ForceO=integrate(Bound SurfaceReed; MagnTractio n())
Forcel=residual( Bound SurfaceReed; MagnStress())
ZeroCO=integrate(Bound SurfaceCheck; MagnTraction())
ZeroCl=residual(Bound SurfaceCheck; MagnStress())
EnergyO=integrate(MagnEnergy())
Energyl=integrate(Domain material(Vacuum); MagnEnergy Lin())
Store BfieldBack=Bfield, WeightBack=VolWeight
Solve Stationary ForSimPar LDisp At LDisp+LEps
Write
Bexternal = %e\n LDisp = %e um\n" BExt LDisp
ForceStressO = %E N Accuracy = %E\n" Force0[2], ZeroCO0[2]
ForceStress1 = %E N Accuracy = %E\n" Forcel[2], ZeroC1[2]

ForceEnergy0 %E N\n" 1E6 *(EnergyO-integrate(MagnEnergy()))/LEps
ForceEnergyl = %E N\n"

{ ForceZ=traverse(MagnDeltaEnergy()); return 1E6 * ForceZ/LEps; }
ForceEnergy2 = %E N\n"

{ ForceZ=Energyl-integrate(Domain material(Vacuum); Ma gnEnergyLin())

+traverse(Domain !material(Vacuum); MagnDeltaEnergyMa t());
return 1E6 =+ ForceZ/LEps; }

The accuracy of the stress tensor methods can be approximately obtained by inte-
grating the divergence free integrand over the vacuum surface SurfaceCheck . The
results for a single run are as follows

7.838263E-08
-6.623098E-08

ForceStressO = 1.073258E-06 N Accuracy
ForceStressl = 1.402041E-06 N Accuracy

ForceEnergy0 = 1.432143E-06 N
ForceEnergyl = 1.432908E-06 N
ForceEnergy2 = 1.428980E-06 N

The most inaccurate method is generally the first one, whereas the third, fourth and
fifth methods are in general the most accurate and stable ones, they all should give
the same results up to some numerical cancellation. The discrepancy here is caused
by the fact the our deformation is not actually a truly rigid body deformation since
some lamella’s elements are actually streched. The second method is quite close to the
energy methods but in general tends to give lower force values.
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2.9 Skin and Proximity Effect

Skin and proximity effect belong to the class of eddy current problems in electromag-
netism where time dependent magnetic fields induce electrical currents in conducting
wires. For an AC driven current in a wire, the harmonic magnetic field generates
eddy currents but with opposite direction of the driving one so that the current tends
to flow within a thin layer at the surface of the wire. This is the classical skin effect
and it is dissipative in nature so that the wire effective resistance is larger than the one
for a DC current and grows with the square root of the frequency. Due to the reduced
current flow, the inductance of the wire will be smaller at higher frequencies. When
multiple wires are close together as for example in a coil, on each wire acts the skin
effect, but it is also true that the magnetic field created by each wire will reduce the
current flow in the other wires. This disturbance is called proximity effect due to the
fact that the wires are close together and they disturb each other. The proximity effect
is also dissipative in nature, but differently from the skin effect the effective resistance
of the wire grows quadratically with the frequency and it is dominant at low frequen-
cies. As an example, already at audio frequencies, resonant circuits with high quality
factors need to consider effective resistance values for coils. In this example, we are
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going to investigate the skin and proximity effect in wires and coils and from finite el-
ement computations derive effective values for resistance and inductance. For a single
straight wire, a 2D computation is well suited, but for coils an exact analysis would
require a 3D computation. This is still a very expensive operation, but if one is ready
to accept a small analysis error then valid 2D formulations are available and will be
presented.

General Theory

Starting from the Maxwell’s equations, one arrives at the eddy current equations by as-
suming zero displacement currents ;D = 0, which for good conductors are typically
small and therefore can be neglected. For an harmonic analysis at a fixed frequency,
we may use the complex notation with a time dependency of the form (.)(¢) = (.)e™?,
which save us from directly integrating the governing equation with respect to time.
Within the conducting wire, we have the material law J = ¢E and by considering a
homogeneous conductivity o, from the property V.J = 0, we obtain VE = 0. With
these assumptions and for a 2D domain, one then derives the following governing
equations

Vu 'VA, —iwoA, + Jy, =0, (2.29)

with A = (0,0, A, ) the vector potential to be computed and Jy = (0, 0, Jy) the driving
external current both complex quantities. The resulting magnetic field is given by
B = V x A and the electric field by E = —0,A = —iwA. The effective current has only
a non-zero z-component J = (0,0, J,) given by

J, = Jos — iwo A, . (2.30)

Let us assume we want to compute the skin effect on a straight circular wire of ra-
dius 79, a problem with a known analytical solution, see [1]. We start by fixing the
frequency w, choose a large enough 2D domain (2 to represent the whole plane and
define in the middle the cross section of the wire with a constant conductivity of o.
On the boundary 012, we apply BCs that best represent an infinite domain and on the
wire we apply a driving harmonic electrical field Epe™ constant over the cross sec-
tion. Without loss of generality, we may assume Ej to be real. For a wire length of /,
the applied voltage at the wire ends will be V' = (Eye™! which is also constant over
the cross section. The impedance of the wire is given by Z = V/I with I the total wire
current computed by the integrals

I:/ JZdA:/ M‘lB-dl:/ L IVA, -dn. (2.31)
wire Owire Owire

By splitting the real and imaginary parts of Z(w) = R(w) + iwL(w), we obtain the
effective resistance R(w) and inductance L(w) both depending on the frequency w

- l E()%(Ie_iwt)

Cx —iwt
R— wL:—gEO\g([e )

TiE , TiE (2.32)

For a single wire, one knows in advance that the inductance per unit of length is infi-
nite and a computation just yields the value of R whereas L grows with the logarithm
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of the computational domain size. In general and for 2D computations, just for a sys-
tem of straight wires with a total zero current is the inductance finite. Therefore for
a single wire, one is limited at computing the internal inductance by excluding the
contribution from the free space. This is also easily done analytically. Substitution
of (2.30) into (2.29) and by considering rotational symmetry, we obtain the Bessel’s eq.
(02 +r710, + a?)J, = 0 with a? = —iwpgo. The solutions are Bessel’s functions and
with the BC J, (1) = 0 Ege™?, we have

Jo(ar)
Jo(arg)

J. = oFEy et with Jo(x) = Y 12—

m>0 (

Computing the integral (2.31) and insertion into (2.32) yields the values

_ ¢ — JO(QTO) _ 14 . — Jo(arg)
e \/57”’005% [\/_Jé(aro)} g \/5777“005\5 [\/_Jé(am)} ’ 233

with 6 = /2/(wppo) the skin depth and J|) the derivative of .Jy. The DC values are
R ={/(ror})and L = uo/(87).

Now that we have seen how to compute resistance and inductance values of a straight
wire, we want to do the same for an air coil with N-windings. Here the matter is a
little bit more involved since only 3D computations can truly compute the magnetic
field in a coil, however, these computations are too expensive for our purposes and
we therefore look for valid 2D alternatives. The main idea is to consider the coil as
a rotational symmetric structure by neglecting the spiral nature of the wire and by
considering the windings as separate independent wires. In doing this, we assume
each wire to be a ring carrying the same total current I = Ipe™!. The solution of our
coil problems then consists in determining which cross sectional electric field Ep;e™!
need to be applied in each wire ¢ = 1... N so that the wire current is equal to I.
Differently from before, we now prescribe the driving current instead of the voltage
and without loss of generality we may assume I to be real. If we assume the driving
electric field Ey; to be constant over the i-th wire cross section then to a first order
approximation the total voltage can be expressed as a sum of path integrals along the
center of the rings with radius R;

N
V=21 R;Epe™". (2.34)
=1

Clearly by taking another path within the rings other results are obtained since the
path length is different. This is slightly incorrect and a better model is to consider
the driving voltage Vp;e™! constant on a wire cross section instead of the electric field
Ep;e™" which results in an electric field FEy; = Vy;/(27r) inversely proportional to
the radius coordinate r. So the native variables to be determined are now the wire
driving potentials Vj; and the question remains how to compute them ? Since the
whole formulation is linear, the eddy currents induced by a wire into the other ones
add linearly with all other contributions and the fields Vj, can be obtained by solving
the following N-problems. For each i-th problem with i = 1... N, set the following
probe voltage Vj;; = ;5 on each wire j = 1... N and compute the resulting wire
current Gj; for j = 1... N. The potential fields Vj; to be applied to obtain the current
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Iy in each wire are then given by solving the complex linear system of equations with
the conductance matrix G

N
> GiVoj =Ipfori=1...N, (2.35)
j=1

and effective resistance and inductance are computed as

N N
R=I"Y R(Vo), wL=1">  S(Vi) (2.36)
i=1 =1

Numerical Results

In a first example example/Skin.s2d  , we compute the internal resistance and in-
ductance of a straight circular copper wire for a frequency range of 0 — 25kHz. The
skin effect will limit the current approximately to a layer of thickness § which need to
be resolved by the computational mesh. For copper, we have o = 56x10° s/m, result-
ing in § ~ 0.4mm at 25kHz. Having defined the geometry and a fine enough mesh
near to the boundary, we enable the equation EddyHarmonic for eddy harmonic anal-
ysis. The driving voltage is applied by defining the external current Current0.Z  as
Jo = oEy within the wire. At the wire boundary, the current should be J; at any
frequency resulting in homogeneous Dirichlet BCs for the dof-fields Az and iAz . We
define the frequency as a simulation parameter frequency and compute several so-
lutions in our frequency range with the statement

Solve Stationary ForSimPar Omega Skip Step 1 Omega +x 0.95 Until 25000 *2*PlI

At each solution step, we compute the total current (2.31), resistance and inductance
after (2.32) which are plotted in Fig. 2.45 together with the analytical values (2.33).

Write AtStep 1
"f=%e Hz, 1=(%9.2e,%9.2e)=%9.2e A, R=%9.2e Ohm, L=%9.2e H\ n"

double c[2]=integrate(Current.Z,iCurrent.Z);
c2=(c[0] =c[O]+c[1] = *c[1]);
return Omega/(2 *Pl),c,sqrt(c2),c[0]/c2,-c[1]/(c2 *Omega);

In a second example example/Proxi.s2d , we compute an air coil with N-windings
at the single frequency w = 27 x 100kHz. The finite element mesh is constructed
automatically starting from generic parameters like the number of wires, the wire di-
ameter and the free space between the wires. Because the wire diameter is small with
respect to the skin depth, we do not need to construct a finer mesh around the inner
wire boundary. The construction of the mesh is the most complex part of this example
and the other definitions are similar to the previous example, except that here we have
to define the rotational symmetry. Around the coil, we have a cladding of free space
which ideally should extent to infinity and on its boundary we have to set BCs for the
dof-fields Az and iAz . Here we use the built-in function Infinity as replacement
for homogeneous Neumann or Dirichlet BCs which better models an infinite domain.
For this built-in to work properly, we have defined the coordinate origin in the middle
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Figure 2.45: Internal resistance and inductance values of a straight circular wire compared
with analytical values.

of the left side. On the symmetry axis, the proper BCs are homogeneous Dirichlet. In
a series of N-linear problems, we set up the complex conductance matrix G;; in order
to compute the driving voltages Vp;. In order to easily apply the driving voltages,
we have defined for each wire a corresponding domain of definition Wire<i> with
i =0...N — 1 which are also used to compute the integral (2.31) for the wire current.

For j To nWind-1

{
MaterialSpec Coil Parameter Current0.Z domain(Wire@j) *sigma/(2 *Plxx) A/m #x 2

Solve Stationary

Define { For i To nWind-1

{ VAL=integrate(Domain domain(Wire@{i}); Current.Z,iCu rrent.Z2);
MAT[@{2+ nWind * (2 *i+0)+2 =*j+0}]= VAL[O];
MAT[@{2+ nWind * (2 *i+0)+2 *j+1}|=-VAL[1];
MAT[@{2+ nWind * (2 *i+1)+2 *j+0}|= VAL[1];
MAT[@{2+ nWind * (2 *i+1)+2 =j+1}]= VAL[O];

bl

}

From the library NmBlas.dll , we use the routine InvMatDotVec to solve the linear
system (2.35) with the conductance matrix stored in the global variable MATand to
obtain the driving voltages stored in SOL This library is supplied together with the
SESES binaries and its source code is available for reference in the include directory.
Since SESES just works with real numbers, the conductance matrix MAThas actually a
dimension of 2N x 2NN and solution SOLand right-hand side vector RHSa dimension
of 2N. The complex matrix inversion is simply obtained by storing instead of the
single complex coefficient G;;, the 2 x 2 real matrix

%Gij —%Gij
%Gij %G”

and for a complex vector component v;, the two real components (Rv;, Sv;).

Define
{ double R=0, wL=0;
InvMatDotVec(MAT,RHS,SOL);
For i To nWind-1
{ write("Driving voltage[%.0f]=(%e %e) V\n",
@i, SOL[@{2 *i}],SOL[@{2 =*i+1}]); R=R+SOL[@{2 =*i}]; wL=wL+SOL[@{2 +*i+1}]; }
write("R=%e Ohm, L=%e H\n",R, wL/(2 * Pl = frequency));
}

The effective resistance and inductance are given by (2.36) as the sum of the real and
imaginary part of the driving voltages, since our computations are done with I = 1.
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These values are written to the output together with the single driving voltages for
each wire and the following is the result.

Driving voltage[O
Driving voltage[l
Driving voltage[2

1=(2.006826e-02 9.018853e-03)

)
Driving voltage[3]

]

]

]

]

2.001835e-02 9.859638e-03)
2.006826e-02 9.018853e-03)
2.214240e-02 1.120095e-02)
Driving voltage[4]=(2.214240e-02 1.120095e-02)
Driving voltage[5]=(2.431755e-02 1.057987e-02)
Driving voltage[6]=(2.425840e-02 1.153813e-02)
Driving voltage[7]=(2.431755e-02 1.057987e-02)
R=1.773332e-01 Ohm, L=1.320940e-07 H

<LK

For visualization purposes in a final linear step, we compute the solution when all
driving voltages Vj; act together.

MaterialSpec Coil

Parameter Current0.Z ( For i To nWind-1 { SOL[@{2 *i+0}] *domain(Wire@{i})+ }
0) *sigma/(2 *Pl*x) A/m %« 2
Parameter iCurrent0.Z ( For i To nWind-1 { SOL[@{2 *i+1}] *domain(Wire@{i})+ }

0) *sigma/(2 *Pl*x) A/m *x 2
Solve Stationary

Although we solve several linear problems, the frequency is constant and so the linear
system matrix. The linear problems just differ in a different right-hand side vector
so that if we use a direct solver the linear matrix need to be factorized just once at the
beginning. Keeping the factorized matrix in memory is done by defining the following
statement at the beginning.

Increment ReuseFactoriz

As result, the time expenditure required to solve the N-linear problems is almost the
same as to solve a single problem. Clearly if the number N of windings is large, then
a large amount of finite elements are required to spatially resolve each wire which
therefore is the major limiting factor.
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2.10 Steel Hardening

Steel can be thermally treated to change and give it important properties as hard-
ness, softness or to remove internal stresses generated by fabrication processes. Many
treatments are available which include normalizing, anealing, hardening and temper-
ing. Normalizing and anealing involve heating the steel above its critical temperature
value, followed by holding this temperature for some time and a final cooling. This is
done to remove internal stresses or to soften the steel. By anealing, the steel is slowly
cooled in the furnace, whereas by normalization the cooling process takes place in the
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Figure 2.46: Computational mesh lo-
cally adapted to resolve the boundary
layer.

Figure 2.47: Heat boundary layer in-
duced by the skin effect.

air. Hardening involves heating the steel to its normalizing temperature followed by
a rapid cooling in a fluid as oil or water. In this way, the steel becomes very hard but
also brittle. By tempering the steel is reheated to remove the brittleness created by the
hardening process. If a furnace with controlled temperature is generally used for these
thermal treatments, for small volumes an alternative is represented by a coil with AC
current surrounding the steel object to be treated. By induction, eddy currents are
generated and their power dissipation will heat up the steel.

From a numerical model as presented here, one can expect to answer questions as the
temperature distribution in the steel, the dynamic behavior or the ability to optimize
the coil geometry towards some given design goals. In this example, in order to re-
duce the complexity and to avoid 3D computations, we are going to assume rotational
symmetry of the steel object and steady state conditions. Due to the elicity of the wire
windings, this symmetry never holds for the coil, so that we make use of the proximity
approximation as discussed and applied in the previous example. The computation
of the eddy currents is done in the same way, hence we quickly review this matter and
mainly present the thermal problem.

To solve the eddy current problem, we assume an harmonic excitation and a linear
system, therefore allowing us to work with complex variables and fields all with an
implicit time dependency of ¢! with w the harmonic frequency. By the rotational
symmetry, we use cylinder coordinates (p, ¢, z) and the problem consists in computing
the azimuthal component A, of the vector potential A given a driving electric field Eg.
The current is then given by j4 = cEy = O‘(Eg + E(iz)nd) with E(iz)nd = —0iAy = —iwAy
the induced electric field and o the electric conductivity. By symmetry, the other vector
components of A, E, j are all zero. For a coil with N-winding, by neglecting their elic-
ity, we consider separately the N-rings and for each ring we assume a constant voltage
on each radial cross section. Hence for generic applied voltages V; along the whole cir-
cumference with i = 1... N the wire index, approximately on each wire cross-section
we have the driving electric field E9, = V;/(2mp). These fields induce currents and
the wire currents are given by evaluating the integrals I; = [, jsdA over the wire
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cross-sections §2;. However, a consistent solution is first given when there is the same
current in each wire thus constraining the possible values of V;. Such a solution can be
computed by first solving N-problems with j = 1... NV the problem index and driving
potentials V;; = d;; where ¢;; is the Kronecker’s symbol. By post evaluating the wire
currents G;;, the driving potentials V; to be applied for an overall consistent current
in each wire of I are given by solving the linear system Zjvz GV =1

By assuming the electric conductivity o to be independent from the temperature, once
we have solved the eddy current problem, we can compute the temperature by defin-
ing the heat source as the Joule’s dissipated heat. For a time harmonic analysis,
this heat source is given by time averaging the real parts of current density jse™*
and electric field Eze™! over a harmonic cycle T = 2rw~!. By considering that
7! fOT cos(wt) sin(wt)dt = 0 and 7! fOT cos(wt)?dt = T! fOT sin(wt)?dt = 1/2, we
obtain

g =T [T R(Gse™) - R(Egei?) dt
=7t fOT(S‘Ejd) cos(wt) — Fjg sin(wt)) - (REg cos(wt) — SEy sin(wt))dt
= (Rjy - REy + Sy - SEp) /2 = (Jg, Eo) ,

where as last we have used the definition (a,b) = (RaRb + Jab)/2. As one would
expect, the total dissipated heat in the wires and in the steel is the nothing else than

the supplied AC power W = [, ~qdV =27 [, qpdA = = (1,V) with V = SN Vi In
fact, the solution of the eddy problem V x !V x A = j with Coulomb gauge VA =0

and rotational symmetry implies solving the scalar equation V- p~ ' "1VapA, = —ji
with Vy = (9,, 0.), so that for the induced electric field Elnd we have

W= 27 [ (jg, EFV)pdA
= —2mw [, (V2- p‘lu_IVQpA¢,iA¢>p dA
= —27w [,( Vz p‘ LT VapRA) (pSAg) — (Vo - p~ '™ 1V2pdA¢)(p§RA¢)]dA
= 27waagu Vzpﬁfﬁ%)(d%) (V2pSAg) (RAg)] - d
+271w [ p7" u H(V2pRA)(V2pSAy) — (V2P\5A¢>)(V2/7§RA¢)]C1A
= 21w [y 1 [(V2pRAG) (SAy) — (V2pSAy)(RAg)] - dn =0,

since the last boundary integral is zero by the symmetric choice of boundary condi-
tions. Hence for the total dissipation, we obtain

W= [, s Ey)(2mp)dA
= Jqo (g: (E3 + ER9))(2mp)dA
= fQ <jd>= (E¢27TP)>dA
= L fo, e ViydA = S (L) = (1, V).

A steady thermal problem is solved to compute the temperature of the steel. The tem-
perature of the surrounding air and wires is not considered, instead at the interface
between steel and air we use the linear mixed boundary condition F - n = a(T" — Tyi,)
with F the thermal flux and n the normal to the boundary. The coefficient « includes
here thermal radiation and heat transfer to the surrounding air with an ambient tem-
perature of Ty;,. This mixed BC is enough to stabilize the thermal problem thus making
it unique solvable.

This example is found at example/Hardening.s2d . The computational mesh has
been constructed with the built-in mesh generator and is shown in Fig. 2.46. Due to the
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Figure 2.48: Drawing of the metal sheet fab-
rication.

Figure 2.49: 40kHz alternating current of
50 A in the four copper turns give rise to a
ditch in the liquid metal. The metal ditch
radius is 0.5 cm deep, to be compared with
(2.37).

rotational symmetry, the left edge of the domain must be located at « = 0. Further, it is
important to correctly resolve the boundary layer caused by the skin effect as shown
in Fig. 2.47 for the dissipated heat. The problem is defined in a way that given the
coil current I € C, we solve the consistent eddy problem to compute the coil voltage
V' € C which is followed by the thermal computation. On the output, as show below,

CURRENT-WIRE0=(3.000000e+02,1.439329¢e-11) A
CURRENT-WIRE1=(3.000000e+02,2.026934e-11) A
CURRENT-WIRE2=(3.000000e+02,2.239964e-11) A
CURRENT-WIRE3=(3.000000e+02,2.508244e-12) A
TOT-DISSP-HEAT-0=7.8354381554594045e+02 W
TOT-DISSP-HEAT-1=7.8354381554478482e+02 W

we check the consistency condition for the current / on each wire and that the com-
putation of the total dissipated heat can indeed be computed either by the relation
W =27 [, qpdA or W = (I, V) which are equivalent to machine accuracy.

211 Eddy Current Repulsion

The fabrication of thin metal sheets by solidification of the liquid metal between ro-
tating cylinders has not attained industrial production yet. Fig. 2.48 shows the idea
of the sheet fabrication. For a successful industrial production, several technical prob-
lems have to be surmounted. One such problem is the confinement of the liquid metal
at both ends of the cylinders. Eddy current forces have been suggested to prevent
the leak of the liquid metal at the end of the cylinders. Experimental studies indicate
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large repulsion forces between a liquid metal bath and a copper rod subject to alter-
nating current. Fig. 2.49 demonstrates the electromagnetic repulsion between liquid
bismuth-tin and a copper rod carrying 40 kHz AC current. The ditch in the liquid is
about 0.5 cm deep. For a half cylinder shaped ditch in the liquid with the dimensions
r = 0.5cm and ¢ = 1 m and the density p = 8700 kg/ m? we calculate after Archimedes
principle a buoyancy force of

1 m
Fhuoyancy = P (§r27r€) 981 5 = 34N. (2.37)

To expand the experimental data to different excitation frequencies and currents, the
following model calculations have been performed. The result of (2.37) will serve for
validation of the computations. The repulsion principle and its SESES model could
then be applied to design the turns of a coil, which prevents the leak of the liquid
metal at the end of the rotating cylinders in Fig. 2.48.

Implementation of the Model

A two dimensional model is used to describe the experimental situation of Fig. 2.50.
The input file example/Repulsion.s2d is divided in four parts. The first part com-
prises the definition of parameters and dimensions, as well as the material properties.
In particular, the magnitude of the electrical field in the rod along the z-axis is spec-
ified with the copper properties. The electrical field is given as the quotient of the
maximum DC current, that copper can stand and the DC conductivity of copper. To
vary the total current, the value of the electrical field can be increased by a factor
CurrCorr . In order to resolve details of the conductor and its close surrounding, the
mesh has been additionally refined in the central region via the parameter nn. Note
the distinction between logic coordinates (integer numbers) and absolute coordinates
(real dimensions). This distinction is important for the geometrical transformation in
part two. Part two defines the mesh and the geometry, as well as the minimum refine-
ment level for calculation. The homotopic transformation of the rectangular geometry
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Figure 2.52: Left: skin effect at 40 kHz AC excitation. Only the outer shell of the copper rod
carries current. Right: magnetic field lines in the vicinity of the copper rod at 40 kHz alternating
electrical field.

of the copper rod and its close surrounding to a spherical geometry is optional. The
effect of the statements

Include "Homotopic.sfc"

Coord sphere(coord,(ax2+ax3)/2,(ay2+ay3)/2,1) block(n x1 nx4 nyl ny4)

is shown in Fig. 2.51. In part three, the space is filled with material and the boundary
conditions are defined. The vector potential A is chosen to be zero at the domain’s
boundary. This implies that no magnetic field lines cross the boundary. Finally part
four is the command section and performs the FEM computations and prepares the
graphical visualization of the results. The total force on the rod as well as the total
electrical current in the rod are computed as integral of output fields and displayed.

Discussion and Validation of the Data

The left of Fig. 2.52 shows the skin effect of 40 kHz alternating current through the
rod. A total current of 50 A yields the magnetic field lines in the right of Fig. 2.52.
SESES calculates an induced electromagnetic force of ~ 1.28 N on the rod. This value
is smaller than the estimated buoyancy force of 3.4 N given by (2.37). However nor the
exact current through the rod, nor the detailed shape and dimensions of the ditch in
the liquid metal are well known. The difference between the computed and estimated
repulsion force is therefore not surprising. Fig. 2.53 plots the exponential current de-
cay as a function of the rod penetration depth. The penetration length has been cal-
culated with (2.38). SESES also calculates an exponential current decay, however with
a superimposed oscillation, see Fig. 2.53. The origin of this oscillation is not yet clear.
For sure it is not influenced by mesh refinement.

2 2
d(w) =,/ - — 0.33mm. 2.38
@ =\ mow \/1.2566x10—6 5.7x107 - 40103 - 27 i (2:38)
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Figure 2.53: Skin effect for 40 kHz AC current in the copper rod is plotted as a function of the
penetration depth. The computed data is compared with the analytical expression of the skin
effect.

2.12 The total and reduced formulation of magnetostatic

In electrical machineries as well as in many sensors and micro devices one is often
interested in computing magnetostatic forces caused by the flowing of time-constant
electrical currents Jy which by the Biot-Savart’s law generate an induction field B and
by Lorentz’s law forces on moving charged particles. The starting point for comput-
ing magnetostatic forces is therefore the knowledge of the magnetic induction B. For
efficiency reasons, this magnetostatic problem is generally solved numerically by com-
puting either a total or a reduced magnetostatic potential © determining the B-field
by differentiation. The most generic formulation is based on computing the reduced
potential ©,.q, however, it may be that the problem to be solved is numerically un-
stable and strongly affected by numerical cancellation so that one has to resort to a
formulation combining together both the reduced and total magnetic potential. It is
exactly this combination of potentials which makes the problem a little bit involved
and this contribution aims to clarify this situation. We start with the formulation of the
magnetostatic problem characterized by solving the subset of the Maxwell equations

VB=0, VxH=J,, (2.39)

for the induction field B, the magnetic field H and for a given external time-constant
current Jy having the property V.Jy = 0. Induction and magnetic fields are assumed
to be related by the constitutive relationship B = yH with i the permeability. In order
to have a numerically attractive formulation, we would like to solve this problem by
computing a single scalar potential, which however, requires an irrotational i.e. curl-
free governing equation which is not yet the case for (2.39). For the moment, lets
assume we are working in empty space Q = R3 with y = pp = 47 x 1077 Vs/m.
Then the solution for the H-field in (2.39) is well known and given by the Biot-Savart
integral

Hps(x) = i /]R 3 JO(B& i(;‘g_ ) v, (2.40)
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The major idea behind the magnetostatic reduced formulation is to split the H-field in
two parts H = Hp + H;, one consisting of the known Biot-Savart integral Hy = Hpg
having the property V x Hy = Jg and the irrotational part H; to be computed by a
scalar formulation and taking into account material and bounded domains effects. In
fact, for the H;-field we now have V x H; = 0 so that a reduced magnetic scalar po-
tential ©,¢q can be defined with H; = —V©O,q and insertion into V.B yields a Laplace
equation

V'(:uvered —pHp) =0, (2.41)

to be solves for ©,.q on a domain 2. The term reduced formulation originates from
the fact that the magnetic potential O,.q only determines the irrotational part H; =
—V0O,cq of the H-field and a total formulation is present whenever the magnetic po-
tential fully determine the magnetic field H = —V O, which automatically implies
Jo = 0 within . In this latter case, the excitation of external currents must be included
within the BCs on 02 when solving for ©.. A total formulation can always be turned
into a reduced one by defining Hj as the Biot-Savart field of the current J, external to
the domain (2 thus eventually simplifying the setting of BCs.

Let us get acquainted a little bit with both the reduced and total formulations and for
a case with Jy = 0 let present an analytical solution. The problem we are going to
investigate consists of a ball of radius r, and permeability ;1 = popiel immersed in
a constant magnetic field of Hy = e, x 1 A/m generated by external currents. The
solution for either the total O, or reduced ©,.4 potential is given by

frel = 1 zri|x|™2 for |x| >
ércd = Zii i_ % and étot = érod -z (242)

z for |x| <y

Hrel +2

Since V.Vz = 0 and V.Vz|x|™® = 0, we have V.VO;o: = 0 and Oy is indeed a mag-
netostatic solution if the normal component of B and the tangential component of H
are continuous on the sphere |x| = r;,. Using spherical coordinates with |x| = p and
z = pcos(#), for a generic function g = f(p) cos(¢) we have V.g = 0,f(p) cos(f)e, +
f(p)p~tsin(f)eg. With H = — V6O, we see that the tangential component H x n =
H - ey is continuous if Oy is continuous and the normal component B-n =B -e, is
continuous if ua,,(l)tot is continuous which is indeed the case. Since within the ball
|x| < 1, both the B- and H-fields are constant, even for a non-linear permeabil-
ity prel = prel(JHJ|) is Oo; a solution provided |H]| is a solution of equation [H| =

(Nrol(‘HD - 1)/(:“1‘01(’1_1‘) + 2)'

This solution is rotational symmetric and the accompagning SESES example can be
found at example/TotRedFormul.s2d . In order to compare the numerical solution
with the exact analytical one, we use exact BCs. For the total formulation, we just set
a Dirichlet value of O, on 99 and for the reduced formulation, we set the Dirichlet
value O,.4 and define the Hy-field as e, x 1 A /m by specifying the material parameter
HfieldO . For moderately values of 1) > 1 both formulations yields the same results
and convergence with respect to mesh refinement is according to the theory i.e. for
first and 2nd order when using H'(Q2) conformal elements selected with the equation
statement MagnetoStatic ~ or MagnetoStatic2

Even for very large values of ji,¢], the total formulation is very stable, however, not the
reduced one. The problem lies in the cancellation of the terms 1VO,q — pHy within
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the divergence operator of (2.41) and this shortcoming will be even more pronounced
for non-linear problems with ¢ = p(|H|). For computing this analytical solution, the
obvious result is to use the total formulation, however, in practice seldomly we have
Jo = 0 on all © and a reduced formulation is therefore required. The solution to this
dilemma is given by combining both the reduced and total formulations and by noting
that in empty space and generally also in conductors we have p,,) = 1 whereas for the
magnetic materials with /¢ > 1, we generally have Jg = 0. However, the reduced
formulation with p,,; = 1 is not at all critical and yields stable numerical results so
that we can continue to use it, just within the magnetic material we have to use the
total formulation thus avoiding the before mentioned problem related to numerical
cancellation. In order to proceed, we split our domain in two parts 2 = Q,eq U Qyot,
assume Jy = 0 on Qy and first compute the reduced magnetic potential ©,.4 in all
2. Within Q¢ and because Jy = 0, the Hy-field is a gradient field and so locally
there exists a potential field ©g with Hy = —VO,. If we additionally assume the
domain Q, to be simply connected or has simply connected components Qi ; with
Qiot = U; Qior, we can write

0= [ Hy-dy. (2.43)
y(x~x%;)

with x;,x € Q! , and v(x ~ x;) any path on Qi joining x to the fixed point x;. In
summary, we can write

V.(uVOred — tHy) = V.(uVOieq + pVO() = V.uVOiot = 0 for x € Qo s
V'(1uv®1"ed - /LHO) =0 for x€ Qeq,

and since the Hy-field is generally the Biot-Savart field of (2.40), the potential © is
also a well-known function of the problem. Now let us drop the subscripts red and tot
on the magnetic potential ©, then we have to solve the equations

V.uVO =0 for x € Qo
V(MV@ — MHO) =0 for x€ Qe )

which are equivalent to the previous ones if at the interface boundary 0Qipter = Qrea N
Qot, We assume the magnetic potential © is a double valued function and undergoes
a jump of ©( expressing the difference between a total and reduced formulation. The
point here is that from a numerical point of view is quite simple to apply a well de-
fined jump on an internal boundary when computing a scalar potential and in doing
so we can easily combine the total and reduced magnetostatic formulation. For our
analytical example, we have ©y = —z and this value can be used as a jump value on
the sphere |x| = 7}, if one want to solve for the total formulation within the ball and a
reduced one outside. When defining a jump BC, we can decide on which side of the
jump the dof-values are defined, so that on the other side their values are obtained by
adding the jump value. Since within the sphere the magnetic potential tends to be flat,
it is better to define here the dofs which in our example is done by

BC jump Restrict material(Sphere) OnChangeOf 3 4 * material(Sphere)+material(Air)

In a general case, the value of the jump O to be prescribed at the interface boundary
OQinter is not known analytically but must be evaluated numerically. We can directly
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Figure 2.54: The magnetic potential for the analytic solution of (2.42) computed with the total,
reduced and total-reduced formulation.

arrive at an expression for ©¢ by inserting (2.40) into (2.43) and thus obtaining an
integral expression for this Biot-Savart potential as a function of the external current
Jo. This is indeed possible and the resulting expression is given in the SESES manual.
However, its numerical evaluation is rather delicate and error prone and therefore its
usage is discouraged. A better approach is obtained by considering that the value
of the jump Oy on Qi is a potential field on Q. satisfying the Laplace equation
V.Hy = —V.VO( = 0 and having the Neumann BCs Hy - n on 0Qipe,. Fixing the value
of O on a single point of each simply connected component of €2, makes the solu-
tion of this problem unique. Therefore in practice the solution of the magnetostatic
problem with a reduced and total formulation is generally preceeded by the computa-
tion of the jump Oy by solving a linear Laplace problem. The solution of ©g at 0Qinter
is then stored in memory with the help of a boundary user field jumppot and used
as a jump value when solving for the reduced-total formulation which is done in our
example by

BC jump Neumann MagnPot Normal.Y *MUE@mue T
BC fix Dirichlet MagnPot 0 A

Solve Init

Solve Stationary

Store jumppot=MagnPot

BC jump Jump MagnPot -jumppot A

All these four approaches, i.e. total, reduced, total-reduced with Biot-Savart potential
as jump and total-reduced with jump computation by a Laplace problem are com-
puted by the given SESES example. The magnetic potential solution is displayed in
Fig. (2.54) and the example reports the maximal numerical error of the solution. The
magnetic potential is computed accurately by all formulations, however, for values of
p > 10, the reduced formulation wrongly computes the H- and B-field within the
ball.

Rel. Perm. 1.000000e+25

Total MagnPot-error 5.581309e-02 Bfield-error 2.474931e -01 3.233611e+00
Reduced MagnPot-error 8.527405e-01 Bfield-error 1.08123 6e+11 9.095459e+10
Tot-Red-0 MagnPot-error 5.581309e-02 Bfield-error 2.474 931e-01 3.233611e+00
Tot-Red-1 MagnPot-error 6.601821e-01 Bfield-error 2.805 619e+00 5.698386e+00

One can argue that so large permeability values never show up in practice and indeed
this total-reduced formulation is generally not required in the case of a large but con-
stant permeability. However, this may be a necessity whenever we have a non-linear
material law p = p(|HJ).
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For large problems, even when the permeability ;» does not cause numerical instabili-
ties, for practical reasons one also resorts to this reduced-total formulation. The reason
is that for a given current Jy, the computation Biot-Savart integral (2.40) has to be per-
formed at each integration point of each element belonging to the meshing of 2 and
this is a very CPU intensive computation which is better avoided. And indeed this is
possible if one chooses €,.q as the minimal domain containing the support of Jy and
so that Qo = ©/Qyeq is simply connected. Then Hy and thus the Biot-Savart integral
must only be evaluated within 2,4 and on 0Qiuter-

2.13 The scalar and vector formulation of magnetostatic

The magnetostatic solution of Maxwell’s equation is an important topic in the design
and development of electrical machineries driven by magnetostatic forces. Basically
this problem formulation computes on a domain 2 C R? the magnetic induction B
and the magnetic field H starting from a given time-constant current Jy having the
property V.Jy = 0 and a given permeability u specifying the material law B = pH. It
is interesting to know, that this static model may also be used to find low frequency
approximations of the computational more expensive time-dependent eddy current
model and therefore good optimized solution algorithms are of large interest. The
magnetostatic model can either be solved by computing a scalar or a vector potential,
both determining the magnetic field by differentiation and both having their draw-
backs and advantages. However, a considerable increase in flexibility is first obtained
by combining both formulations thus allowing to devise better optimized solution al-
gorithms. Here, the price to pay is a more complex problem specification and this
contribution aims at explaining the different available choices. The scalar formulation
is generally the preferred one, but has the drawback that one cannot directly specify
the current source Jy. Instead, one has first to define the associated Biot-Savart field

Hps(x) = ﬁ /R 3 JO(ﬁiS"; Y)av,, (2.44)

and then solve the equation
v‘(NVGrod - ,UHBS) =0, (245)

for the reduced scalar potential ©,.q with B = p(Hpg — VO,.q). Rare are the cir-
cumstances when the Biot-Savart field Hgpg is known analytically and so one has
to evaluate the integral (2.44) numerically which may be critical and imprecise for
x € supp(Jp). Also this integral over the volume of supp(Jp) has to be evaluated
on many points of (2, generally taken as the element integration points of the mesh,
which therefore can be computationally quite expensive. Another drawback of the
scalar formulation is its instability for non-linear material laws p = p(|H|) stemming
from the subtraction of the term pHpgg in (2.45), forcing the user to combine a total
and reduced potential formulation. These drawbacks are partially eliminated by the
vector formulation solving the equation

Vxpu'VxA=Jy+VxHy, (2.46)
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for the vector potential A with B = V x A. The additional numerical work required
to compute the vector field A instead of a scalar field ©,¢q is compensated by the
fact that one has more flexibility and one can directly specify the current Jy. This
requires an element mesh fine enough to have a good approximation of the current J
within €2, but the previous Biot-Savart approach by defining Jo = 0 and Hy = Hgg
is still available. This vector formulation is also the one required when computing
approximations of the time-dependent eddy-current model, since it requires the A-
field on supp(Jy).

Mixing the scalar and vector formulation

By choosing a domain Q. with supp(Jg) C Qyec and assuming Qe CC €2 then on
Qree = (£2/ec)° where the current is vanishing Jo = 0, we do not necessarily have to
compute the Biot-Savart field Hgg. In fact, the reduced formulation can be replaced by
computing the total scalar potential O, with H = —V©,; and by solving the Laplace
equation

V-MVGtot =0. (247)

Both the reduced formulation in Q. and total formulation in ¢, can be coupled and
solved together by defining proper interface BCs on 0y... Here however our major
intent is to get rid of the Biot-Savart field and therefore on Q.. we do not solve for the
reduced potential ©,.q but for the vector potential A. In doing this several questions
arise.

e We need to define interface BCs on 02y connecting the scalar formulation on Qe
and the vector formulation on Q...

e Since the domain Q.. is generally not simply connected, the potential O is gen-
erally not a function but a multi-valued function.

e What about uniqueness and accuracy of the coupled solution ?

The answer to the first question is obtained from the Maxwell’s equations requiring
the normal component of B and the tangential component of H to be continuous.
Let n be the normal to the boundary 0€2,.. between the current domain Q.. with
B =VxAand H=/"'V x A and the free space domain Q. with B = yH and
H = Hy — VO,. The equality of the normal component B - n of B gives u(Hy —
VOiet) -n = (V x A) - n and the one of the tangential component H x n of H gives
(Hp— VOipt) xn = (" 1VxA)xnor (u7 1V x A—Hy) xn = —V6Oy, x n. Following
the SESES manual, these conditions are satisfied by setting the following Neumann

BCs
(V X A) -n for @tot s

VO, xn for A. (2.48)

In order to solve our linear problem with a single linear step, also the correct deriva-
tives should be specified for these interface BCs.

It is interesting to note that both Neumann BCs together may result in a global sym-
metric contribution. Let H;(x) and H;(x) be the shape functions associated with the
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dof-fields © and A, i.e. wehave © = ), H;0; and A = ) . H; A; with ©; and A; the
unknowns of the problem to be solved. The residual contributions of both Neumann
BCs (2.48) are given by

R} = — [ig. Hi- (VO xn)dA
H; x VO)-ndA

and
R = [y Hi(VxA)-ndA
= foa..l V X (H;A) — VH; x Al -ndA
B o (HiA) -ds — [, VH; x A-ndA

= —faQVCCVHZ'XA'ndA

since the condition Qy.. CC 2 implies 00y, = 0. Therefore these two linear contri-
butions are given by

Z Q; / (H; x VH;) -ndA (2.49)
aQVCC
and
Z A; / (VH; x H;) -ndA (2.50)
Ovec

and are seen to be anti-symmetric. This fact may be used to symmetrize the linear
system, however, if iterative solvers are used, the convergence rate may be slower
than solving non-symmetric matrices which, however, per default have positive semi-
definite diagonal blocks.

The answer to the second question is two folds. The most simple one is to avoid at the
beginning a non-simply connected domain by choosing an enlarged domain 2. and
thus getting closer to a full vector formulation with .. = 2. The second one is given
by selecting surface cuts Cj, i = 1... N in Qe so that the domain Qgimple = Qfree/ Ui Ci
is simply connected and therefore O, is a simple function on Qgipple. On each cut Cj,
one then defines a possible constant jump A; for the potential O, determined as
follow. For a point on Cj, let be 7; a path in Qgnple joining this point. By applying
Stoke’s theorem on any surface S; with boundary 05; = v;, we have

/Jo dn—/ V x H - dn "2 H-dl:—/V@wt~d1:—Ai,
S; Vi i

and so the constant A; is given by the total current crossing the surface S; N Q.. Since
VJo=0in Qand V x H = 0 in Qpe, we see that the jump value A, is actually
invariant with respect to the choice of Cj, 7; and S;. Further, although the potential
has a jump, the physical field H = —V O, is well defined on Qgee.

Since this example is not meant to be a mathematical treatise on existence, unique-
ness and approximation error of solutions, the third question is answered by doing
numerical experiments.
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Preprocessing

Basically, we want to compute solutions without the need to evaluate the Biot-Savart
integral (2.44) and therefore on .. we solve for the vector formulation (2.46) and
the current J needs to be specified fulfilling the solenoidal condition V.Jy = 0. For
simple geometrical shapes, one may look for analytical expressions, but this approach
is generally avoided for the following reasons. As first, the user needs to construct a
FE mesh with good approximation properties with respect to Jy and at the end one
does not really know which are the discretized current values. Secondly, nothing can
be said about the discretized solenoidal property which generally does not hold any-
more. Now since the mesh must be in anyway adapted to the geometrical shape of
supp(Jp), on this mesh the preferred way is to compute the current numerically in-
stead of specifying it analytically. The first reason is that this preprocessor step is
generally much faster then the magnetostatic solution itself, since one just needs to
solve the current flow model on the domain supp(Jp). Secondly, since the current is
computed by a numerical model, the meaning of the property V.Jy = 0 at the discrete
level is well defined, although it only holds in a weak form. Therefore the problem
specification starts by defining the domain supp(Jy) to compute the current defined by
the material law Jg = oE with ¢ the electric conductivity and E the static electric field.
In the electrostatic, we have V x E = 0 and so we can define the electric potential ¥
with E = —VU and from V.J, we are left to solve the Laplace equation V.(c VW) = 0
by choosing BCs for U i.e. the applied voltage at the electrical contacts.

Model specification

When solving the vector formulation (2.46) in SESES, we have the choice of either us-
ing the nodal elements of H ()3 or the edge elements of H(curl, (). Edge elements
directly discretize the curl-curl operator of (2.46) which has a large null-space and so
without an additional fixing reducing the number of redundant dofs, the discretized
linear system is singular. In order to have solutions, the right-hand-side must be con-
sistent and must lie in the image space of the linear map, a failure condition detected
e.g. by the non-convergence of iterative linear solvers. For edge elements, this implies
that the current computed by the preprocessing step must be first projected on a well-
defined functional space and at the present this rather technical step must be done by
the user. On the other side, the usage of nodal elements with the correct choice of BCs
results in a regular linear system. These elements should not be used when on some
regions the permeability is different from i, since they enforce an unphysical conti-
nuity of A. This will not be the case for our example and also we like the possibility
to have unique solutions in order to work with a robust direct linear solver, an appre-
ciated feature when doing numerical experiments on small sized problems. Therefore
in this example, we are going to use nodal elements for the discretization of A and a
direct solver, but we will notice the necessary changes when using an iterative solver.

The SESES input file for this example can be found at example/ScalVecFormul

.83d . The Initial section is divided in two parts, the first one defining the geome-
try. The user has to define the ME domain Vectord representing supp(Jo) and where
the electrical current J is computed by the electrostatic model. In addition, the user
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defines the ME domain Vector used either to make the remaining domain Q4. sim-
ply connected or as a cladding layer around supp(Jp). This domain is then added to
VectorJ to form the domain ... where we solve for the vector formulation (2.46)
with nodal elements. For large problems requiring an iterative solver, you should
use edge elements instead. With the macro NWIRE the user defines the number of
closed wires and for each i-wire, ¢« = 1 ... NWIREone needs to define four ME domains
CutLJ<i> , CutRJ<i> , CutLP<i> , CutRP<i> . The intersection of the first two do-
mains defines the wire’s cut-section where we apply the driving electrostatic voltage
and measure the current, the intersection of last two must defines the cut surface used
to apply a possible magnetostatic potential jump. Finally the macro bcGround must
specify a grounding point for each wire. If other current configurations are chosen,
then just this geometry section needs to be changed.

In the second part of the Initial section, we define the three materials Vectord ,
Vector , Scalar , we declare the element field currentO  to store the current com-
puted in the preprocessing step and define the BCs. The material VectorJ is used to
compute the electrostatic current Jy and has a non-zero conductivity of o = 5.8x107
A/(V xm). In the materials Vector] , Vector we will use the vector formulation
(2.46) and in Scalar , the scalar one (2.47). On the domain boundary 02, we define
both the scalar and vector potential to be zero. With the macro bcGround , we define
all wire’s grounding points and for each wire together with some logical ME opera-
tions, we define a one-sided boundary to apply a jump BC of 1V for the electrostatic
potential ¥. Again with logical ME operations, we define the two one-side boundaries
of 00y used to define the interface Neumann BCs of (2.48). For the magnetostatic po-
tential ©, we have

Macro A_DOT_N__DA(A)
((@A[0] *Normal[0]+@A[1] *Normal[l][+@A[2] *Normal[2]),Normal)

BC bcl Restrict material(Vector)+material(VectorJ)
OnChangeOf 2 3+*material(Scalar)+material(Vector)+material(\VectorJ)
Neumann MagnPot D_Bfield SetAlways
{ return @A_DOT_N__DA( Bfield) *(-1); } Slunit Symmetric Linear HideFlux

The value of V x A is not available as a model parameter to specify the BC value but
this is nothing else as B which is therefore used for the specification. This interface BC
is a linear function of the computed primary field A and therefore it is important to
correctly specify the field-derivative in order to get the solution in a single linear step.
So for the numerical BC, we specify the value B-n together with the B-field derivatives
given by n. The additional minus sign with respect to (2.48) has to do with a change
of sign of the normal n and the following technicality. For a boundary surface defined
inside the computational domain €2, we have the choice on which side we want to
evaluate the BC value which is done by defining a one-sided BC boundary. Since the
vector potential A is not defined within the domain 4. of the scalar formulation, we
are forced to define and evaluate the BC on the other side inside Q... However, here
the magnetostatic potential © is undefined and the default behavior will not set this
BC value expect if using the additional option SetAlways . Generic Neumann BCs
with derivatives are considered as generic non-linear functions of the primary fields
yielding non-symmetric matrices to be solved. The Linear option just asserts the lin-
earity of the BC thus helping SESES to select the correct solution algorithm and the
Symmetric option asserts the symmetry of the resulting matrix. From (2.49)-(2.50),
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Figure 2.55: The computational domains 2. solving for the vector potential A.

we know that the overall contributions from the interface BCs are anti-symmetric, al-
though the single element contributions are not. In order to have an overall symmetric
system and thus less computational work, the following symmetrization is possible.
The linear system arising from this scalar-vector formulation can be characterized by
the following block structure

A ©

A( 4D, -

The diagonal blocks A, B are symmetric positive definite matrices stemming from the
discretization of the vector and scalar potentials A, ©. The coupling between both
formulations is uniquely defined by the D matrix stemming from the interface BCs
(2.49)-(2.50). By changing the sign of the second block row, we obtain a symmetric
matrix and this is accomplished with the following statement

GlobalSpec Parameter MagnPotEqgScaling -1

This symmetrization just works for a direct solver, but may lead to an unacceptable
slow down of an iterative solver and therefore is not used per default and must to be
enabled. In a similar way, we define the second interface Neumann BCs for A

Macro A_CROSS_N__DA(A)

((@A[1] *Normal[l2]-@A[2] *Normal[1]), 0, Normal[2],-Normal[1],
(@A[2] *Normal[0]-@A[0] *Normal[2]),-Normal[2], 0, Normal[0],
(@A[0] *Normal[1]-@A[1] *Normal[0]), Normal[1],-Normal[0], 0)

}
BC bc2 Restrict material(Scalar)
OnChangeOf 2 3+ material(Scalar)+material(Vector)+material(VectorJ)
Neumann Afield D_MagnPotGrad SetAlways
@A_CROSS_N__DA(MagnPotGrad) Slunit Symmetric Linear Hid eFlux

The Commandsection solves the preprocessing step to compute the current Jo and
various magnetostatic formulations to compute the magnetic induction B.

Numerical results

In order to compare the numerical solutions, we use a large empty space ;1 = 1o as our
domain (2 so that for given a current J, the solution is given by the Biot-Savart inte-
gral (2.44). The integral is computed by the built-in routine BiotSavart by evaluat-
ing the integrand at the integration points of supp(Jy) so that the result is just accurate
for points outside supp(Jp). Fig. 2.55 shows the five computational domains €. used
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Figure 2.56: The magnetic field Euclidian norm |B| at the wire’s boundary and on its interior
together with directional cones.
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Figure 2.57: The z-component of the magnetic induction H along the symmetry axis.

for the vector formulation. The domain size for the vector formulation only decreases
from left to right and so the computational cost, but the whole domain (2 as well as
the finite mesh and Jg are identical in all five cases. The first case uses a full vector
formulation Q2 = Q. without scalar magnetic potential. The second and third cases
use a cladding layer around supp(Jg). The second and the fourth cases enlarge the
domain Q. to be simply connected. The third and fifth cases do not have a simply
connected domain Q... and require a jump definition for the magnetostatic potential.
The value is available as BC characteristics from the solution of the electrostatic prob-
lem and is stored in the global variable bcCurrent@i specifying the jump BC value
by the statement

For i From 1 To @NWIRE

Write "Current%.0f=%e A\n" @i, bcCurrent@i=bcOne@i.Psi. Flux
}

Fig. 2.56 shows the magnetic induction around 9€2.. and on the wire’s interior. Since
we are in empty space, the magnetic induction is continuous and so for a more precise
representation, we have used a smoothing procedure averaging the contribution from
neighbor elements. All five cases yield very similar results. Fig. 2.57 shows the z-
component of H along the symmetry axis through the wire’s center. Here one sees
that the most precise formulation is the full vector formulation which is also the most
expensive to compute when using a direct solver.

We end these numerical experiments by noting, that among all five models just the
first one results in a regular linear system. You may check this fact by setting the
variable displaymatcond  and thus running some Maple code on the linear system
matrix written to the file /tmp/mat by the statement

Info LinearMatrix Format "%.17e " MatrixFile "/tmp/mat" Hi deBC
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When using both the scalar and vector formulation, there are excess of dofs at the
interface 0Qye. Which are not eliminated internally. In this case, the direct solver is
still capable of computing the correct solution, but attention since this may not always
be the case as for example when just computing an half, quarter or eighth of this
symmetric solution. Also do not except the same symmetry for the vector potential A,
which however must be the case for B and H.

2.14 Eddy currents in a linear system

The numerical characterization of a system of conductors, wires or coils with time-
varying currents is in the industrial developing cycle an important topic and may be
used to characterize e.g. inductive proximity sensors. For many problems of interest,
the geometry is truly 3D so that 2D models cannot be used and numerical expensive
3D computations have to be done. However, by assuming a system with a linear
response, the analysis performed within the context of linear theory simplifies the
problem at hand. Further, if just the low frequency range is of interest, we will show
some valid approximations to additionally reduce the computational work. Therefore
let 2 be a domain of R? and assume in 2 we have N closed and disjoint conductors
Qn CQ,Q2,NQ, =0 form #nand m,n = 1...N. Just within the conductor domain
Quire = Uy, we have a non-zero conductivity. For time-varying currents up to
some upper limit frequency, the eddy current model represents a valid submodel of
Maxwell’s equation, see [1] for a mathematical background, which is given by solving
the following equations in {2

VB=0, VXE+9B=0, VxH=J=0E, (2.52)

with E, H, B the electric, magnetic and induction field, o, p the conductivity and
permeability and the material laws B = pH, J = oE. By taking the divergence of
V x H = J, we also have V.J = 0. In order to simplify a little bit the matter and so
the computational work too, we assume a linear dynamical system. Since the above
equations are all linear with respect to the electro-dynamical fields, this implies linear
material laws and thus conductivity ¢ and permeability 1« can only be functions of the
coordinates. For the numerical solution of the above equations, several formulations
are available and the one adopted in SESES is based on the computation of the vector
potential A and the time-integral U = [ W dt of the scalar potential ¥ as primary fields.
In this case, we have B = V x A, —VV¥ = E + 0;A and the following equations are
left to solve

VX p'VxA+dcA+oVT)=0, §;V.(cA+cVT)=0, (2.53)

although the second one is implied by the first one by taking the divergence. In prac-
tice, when one has to apply voltages and measuring currents or doing the reverse,
the wires are not closed in 2 since they need to be connected to external measuring
equipment. From a numerical point of view, however, we may assume ideal contacts
where the measuring equipment has no influence on the system. In order to define
ideal contacts, for each conductor ,,, m = 1... N, we select a generic cross-section
Cy, with C,f, C;. being the two distinct oriented surfaces of C,,,. We then allow the
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potential ¥ to have a constant jump in its value when crossing this surface. The jump
value is given by the path integral

Vi = U(CH) — U(C) = — / VUdl - / (B + 9,A)dl, (2.54)
Ym TYm

with v, any directional path in €2, joining the surfaces C;}, ~ C,, at the same point.
The invariance of V;,, from the choice of C,, is given by the fact that a constant jump of
U does not change the gradient E = —VW. Since there is no current flowing through
the conductor boundary 0f2,,, and by considering V.J = 0 together with Gauss’s the-
orem, we see that the computation of the conductor current I,,, is also invariant from
the choice of C,,,. However, we have to consider the correct side in order to get the
correct sign and by the above choice of V;,,, we have

I, = / J-dn. (2.55)
i

It is customary to study the dynamic of a linear system by using the complex nota-
tion for all involved fields, with the real part representing the physical value and by
assuming a harmonic time-dependency of the form exp(iwt) which is always implied
and for conciseness not written explicitely. At each harmonic frequency w, our lin-
ear system is fully characterized by the impedance matrix Z(w) with V = Z(w)I and
V, I € CN being the voltage and current values at the contacts. From (2.54), we see that
at low frequencies w — 0, the impedance has a constant real part and an imaginary
part linear in w, showing the inductive character of the system. Therefore the complex
impedance is also written in the following form, splitting the real and imaginary parts
into a resistance matrix R and inductance matrix L

Z(w) = R(w) + iwL(w). (2.56)

Since the equations (2.52) are uniquely solvable, the impedance matrix is regular and
can be inverted. Therefore for numerical computations, we have the free choice in
selecting either V or I as independent variables but even a mix would be possible.
Because we solve for the primary fields A and ¥ = ¥/(iw), here the most convenient
way is to compute the admittance matrix Y (w) = Z(w)~! by choosing the contact
voltages as independent variables which are specified by setting Dirichlet and jump
BCs for W. The choice of the contact currents as independent variables is not so conve-
nient in this formulation, although possible. We then solve N-problems m = 1... N
by selectively setting the value V;,, = 1 on each conductor €2, and V;, = 0 on all other
ones 2,,n =1... N, m # n and then compute the N-current values in the conductors
by (2.55), yielding each time the m-column of Y (w).

In general the computation of eddy currents is delicate, although the equations to be
solved are linear. In particular, at high frequencies one has to pay attention to have
a good mesh resolution in the conductors, since by the skin effect, the current tends
to flow just beneath the conductor surface. For a planar conductor, the current skin
depth is given by 6 = \/2/pwo and since in our example we are going to use a copper
wire cross-section of 1 mm with o = 5.8x10” A/(V m) and just few elements, we see
that our numerical example will work up to wmax ~ 10kHz.
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Low frequency approximation

For our system of conductors, the time-averaged energy dissipation W =< RV -
RI >,= |f| . %Z(w)|f|/2 = |T7| . %Y(w)|17|/2 is just determined by the real part of
the impedance or admittance matrix. Since by a Taylor expansion of Z(w) or Y (w) at
w = 0, the real linear term in w is missing, at low frequencies the energy dissipation is
a quadratic function of w. If one is just interested in this quadratic term or in general,
in the first few Taylor coefficients of Z(w) or Y (w), these values may be computed
in a less expensive way than using the classical approach of computing several eddy
model solutions. We first note that for w = 0, the eddy model (2.52) decouples into
the electrostatic and magnetostatic formulations of Maxwell’s equation and as a con-
sequence, the computation of the Taylor coefficients, always involves real and smaller
linear problems to be solved with respect to a complex coupled solution of (2.53). For
our formulation, the most convenient approach is to compute the admittance matrix
Y (w) and so we are looking for its Taylor’s approximation

Y(w) = Z%Y(O)F = Yo+ Yiw+ Yoo + .. (2.57)
p>0 '

with Y, = Y (0) and which is based on computing the Taylor’s coefficients of the
conductor current (2.55)

DI (0) = / 3(0) - dn — / cOPE(0) - dn. (2.58)
Cr Crm
Up to the second order, the impedance Z(w) = Y (w) ! is related to (2.57) by
2
Z(w) =Yy — Yy Yy tw + 2 (VY )2 — Y0—1Y2Y0—1]% . (2.59)

The governing equations determining the derivatives 95 E(0) in (2.58) are obtained by
taking the w-derivatives in (2.52)

V x (PE(0) +ipdP tA(0)) =0, V x u~ 'V x 9P A(0) = 00PE(0). (2.60)

These equations build-up a recursion of linear problems with the property that the
two linear matrices involved are always the same, we just have different right-hand
sides. The recursion starts by computing E(0) and solves the electrostatic problem

V xE(0)=0,V.oE(0) =0 or V.oV¥(0)=0, (2.61)

for the potential ¥(0). Since the domains 2,,, n = 1... N are disjoint, we actually have
to solve N-linear problems for the scalar potential ¥,,(0) in each domain €2,,. From
(2.58), the Y'(0) matrix of (2.57) is a diagonal matrix given by

Y (0)n = /C 0B, (0)-dn. 2.62)

n

The next step in the recursion computes A (0) and solves the magnetostatic problem

V x u 'V x A(0) = J(0), V.A0) =0, (2.63)
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with the current J(0) = > J,(0) = >, 0E,;(0) computed by (2.61). By linearity,
we have A(0) = >, A, (0) with A, (0) the solution of (2.63) with source term J,(0)
instead of J(0). The major difference with (2.61) is that each singular problem for
A,,(0) has to be solved in €2 and not just in 2,,.

Without giving a proof, this magnetostatic solution can be used to compute the induc-
tance matrix L(w) of (2.56) at w = 0 which is actually the magnetostatic inductance L
determining the energy W. By assuming B = 0 on 02, we have

W zl/H-le/H-VxA:E/VxH~A:1/J-A
2 Jo 2 Jo 2 Jo 2 Jo

1 1 (2.64)
= §mzn/meAn: §mZannImIna
with )
Lo = / A (0) - T (0)dV . (2.65)
Ity Jo,

The next term in the recursion (2.60) computes J,,E(0) and solves
V x (0,E(0) +iA(0)) =0, V.oo,E(0) =0,

with the vector potential A(0) = >, A, (0) computed in (2.63). The source term A (0)
is pure imaginary and so the solution d,,E(0) as well. Therefore, we define the real
scalar field ® with i0,E(0) = —V® + A(0) determined by solving in each conductor
(2, the real equation

V.(oVP® —cA(0)) =0. (2.66)

By linearity, we have 9,E(0) = %" 0,E,(0) with J,,E,,(0) given by solving (2.66) with
source term 0 A,,(0) instead of 0 A (0). The solution of this problem is very close to the
electrostatic problem (2.61) and in fact we have the same linear matrices. From (2.58),
the 0,,Y (0) matrix of (2.57) is pure imaginary and reads

Y (0)m = /C 00,B,(0) - dn.

To compute the next coefficient 92Y (0), we need to solve for 9,,A(0), a problem similar
to the magnetostatic problem (2.63) and for 92 E(0), a problem similar to (2.66) but just
with other source terms. And so on for each additional Taylor’s coefficient of Y (w)
which are alternatively real and imaginary.

Model specification

When solving the eddy current model (2.53) in SESES, we have to take a decision, ei-
ther to use H(Q)? or H(curl, Q) conformal elements, the former also known as nodal
elements and the latter as edge elements. The edge elements are the natural frame-
work when working with the curl-curl operator of (2.53), since they do not enforce
the normal component of the vector field to be continuous and differently from nodal
elements, they are well suited to model sharp corners and sharp discontinuous ma-
terial laws, see [2, 4]. However, the eddy current formulation cannot be gauged with
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Figure 2.58: View of the two coils geometry.

Figure 2.59: The computational domain show-
ing the finite elements just on material bound-
aries.

edge elements and the linear system to be solved is singular. If the equations are as-
sembled in a consistent manner, this is not a drawback for iterative solvers. However,
the convergence rate is strongly influenced by the frequency, the electric conductivity,
the shape of the elements and optimization techniques used to reduce the number of
unknowns, e.g. symmetrization and the removal of the electric potential in the con-
ductors with constant conductivity. Therefore when using edge elements, the success
of the method is basically given by the convergence rate of the iterative solver and
the availability of a good preconditioner. On the other side, nodal elements suffer
from an inferior matrix conditioning, but the formulation based on nodal elements is
gauged and so the linear system to be solved is regular. Here a robust direct solver can
eventually be used for not too large problems with the advantage that optimizations
reducing the number of unknowns but not the accuracy will directly result in a speed-
up and that the time-expenditure does not change by varying the frequency w. For
this example, we have chosen a numerically robust formulation with nodal elements
and a direct solver so that one has to be careful when extending this problem with
regions of high permeability . >> 1.

When solving the eddy model (2.53) for a constant conductivity, we see that ¥ = 0
is a valid solution enforcing the Coulomb gauge V.A = 0 and so removing the elec-
tric potential ¥ from the solution process will speed-up the computation. Although
it is not possible anymore to specify the driving voltage at the wire contact, an alter-
native is available. In a preprocessor step, one solves the electrostatic problem (2.61)
by applying the driving voltage and the computed current Jj is used to define a stiff-
contribution to the current J = oE + Jg. If the electric potential is removed from the
solution, then it is also possible to symmetrize the linear system, thus obtaining a fur-
ther speed-up. Given the field approximation A;, = >, H; A; with H; the real shape
functions and A; € C the complex unknowns, for nodal shape functions one solves
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the complex linear equations
R; = / (VxH)p ™t (V x Ap) + ps H(VH) (VAL +iowH; - Ap]ldV =0, (2.67)
Q

with s, a constant average of ; on Q. By splitting real and imaginary parts and by
assuming . is real, we have the following real linear system

KA SA
RA [ A B

with the blocks 4;; = [,[(V x Hy)p™' - (V x Hj) + p; ' (V.H;)(V.H;)]dV and B;; =
Jo owH; - H;dV being symmetric matrices. This global non-symmetric matrix with
positive-definite diagonal blocks is the default assembled matrix, but we see that if
we change the sign of the second row block, a symmetric matrix is left to be solved.
Although we can apply these two optimization techniques to our example, our advice
is to keep the electric potential, otherwise there is no exact current conservation within
the conductors and the computed admittance or impedance matrices are in general
far less precise. In particular, the low frequency approximation does not agree with a
Taylor expansion of the discrete eddy current model.

The input file for this model can be found at example/Eddy.s3d . The initial sec-
tion is divided in two parts, in the first one we have the geometry definition. One
defines here the number of wires with the macro NWIREand for each i-wire, the three
domains Wire<i> , CutLeft<i> , CutRight<i> and a macro Corner<i> . The do-
main Wire<i> defines the wire itself. The domains CutLeft<i> , CutRight<i> are
used to define a wire cut-section in order to apply a potential jump and to compute
the current. The cut-section must be defined by the intersection of the two domains.
The macro Corner<i> must define a point within the wire and is used to ground
the potential at that point. This geometry section is the only one which needs to be
changed in case of other geometrical choices. For this example, we have chosen a
simple geometry with two coils as displayed in Fig.2.58-2.59.

The second part of the initial section constructs the computational domain and define
two materials Wire , AirEddy . The Wire material is the copper conductor with a con-
ductivity of ¢ = 5.8x10” A/(V m). Solving the harmonic eddy formulation (2.53) with
nodal elements is done by defining the material equation EddyCurrentHarmonic
Nodal . The AirEddy material is defined for solving (2.53) outside the conductors,
where we have o = 0. Here, we can assume ¥ = 0 and therefore we select the mate-
rial equation EddyFreeHarmonicNodal  not solving for the electric potential ¥. The
problem description is concluded by defining BCs. To compute the electric potential,
we define for each wire a point BC to fix and ground the potential and a section where
we apply a potential jump. This is the most neutral method to apply a driving volt-
age, since it does not define any equipotential surface within the wire. At the exterior
boundary 052, we define the Dirichlet BC A = 0 representing an infinitely extended
domain.

The command section solves several linear problems in order to compute the impedan-
ce matrix (2.56) and the low frequency approximation (2.59). Coefficients of the linear
system matrix (2.68) which are known in advance to be always zero are not defined
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within the sparse matrix format used by the linear solver. However, the zeroness of
many matrix coefficients actually depend on the user specifications in which case they
are always defined independently from their numerical value. In our case, the ma-
terial AirEddy has a zero conductivity o = 0, so that the off-diagonal block matrix
B of (2.68) has many zero entries. This default behavior is important for non-linear
problems, since the sparse format is build once at the beginning of the non-linear block
solution and here it is inconvenient to make the format dependent on the zeroness of
the coefficients in the first iteration, which may not be zero in later iterations. For our
example, however, we just solve linear problems and so it is safe to remove all zero or
numerical close-to-zero coefficients from the matrix which are detected when building
the sparse matrix. This non-default behavior is obtained with the statement

LinearSolver CoeffCutOff 0

which results in some speed-up. However, the most important speed-up is obtained
by keeping the factorized matrix when solving a sequence of linear problems with
an invariant matrix. The admittance matrix is computed by solving N-problems and
by applying separately in each wire a driving voltage. For the same frequency w, a
closer look shows that the linear matrix obtained by discretizing (2.53) is unchanged
and we just have different right-hand side vectors. Therefore, the most expensive nu-
merical operation of factorizing the system matrix must be done only once and the
N-problems are then solved by performing N-backward-forward substitutions which
are by far less expensive, see [5]. This non-default behavior is enabled with the state-
ment

Increment ReuseFactoriz

which tries, whenever meaningful, to reuse a previously factorized matrix.

As first, we compute the low frequency approximation by solving an alternate se-
quence of electrostatic (2.66) and magnetostatic (2.63) problems with the help of the
following command procedures.

Procedure double SolveElectroStatic()

{
MaterialSpec Wire Equation EddyFreeNodal Disable OhmicCu rrent Enable
BlockStruct Block OhmicCurrent ReuseMatrix electromat
Solve Stationary
For m From 1 To @NWIRE { Define CUR[@m-1]=v@m.Psi.Flux }
Store currentl(DofField Afield Psi; IpFrom FIELD)=Curren t
}
Procedure double SolveMagnetoStatic()
{
MaterialSpec Wire Equation EddyFreeNodal Enable OhmicCur rent Disable
MaterialSpec AirEddy Equation EddyFreeNodal Enable
BlockStruct Block EddyFree ReuseMatrix magnetomat
Solve Stationary
Store currentl(DofField Afield Psi; IpFrom FIELD)=Afield * Sigmalso
}

For both problems, the source term is an initial current and is defined by the material
parameters
MaterialSpec Wire

Parameter Current0 currentl A/m *x 2
Parameter Current0O0 currentl A/m *k 2
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We use here the element field currentl  as link between both formulations. At the
end of the electrostatic problem, we store in currentl  the computed current J and
at the end of the magnetostatic problem, we store the value of o A. This is a necessity,
since when solving e.g. the electrostatic problem by enabling the material equation
OhmicCurrent , afterwards the value of A from the previous magnetostatic solu-
tion is lost. Since we solve alternatively two different linear problems, the option
ReuseFactoriz  discussed above will not work here, since it requires the same block
matrix. However, we can use the back-storage of block matrices enabled with the
option ReuseMatrix <name> . Here at the beginning of a block solution, the back
stored matrix <name>is loaded in memory and stored back at the end of the block so-
lution so that the ReuseFactoriz  option will work again. The matrix back-storage
can be released with the statement

Misc ReleaseMatrix

The sequence of linear problems starts with the electrostatic problem (2.61) computing
in one single step all wire currents J,,,(0), m = 1...N. All these initial currents are
required later on to compute the inductance matrix L(0) by the energy method (2.65)
and therefore they are stored in the element field current0 . Afterwards, for each sin-
gle wire, we solve the sequence of electro- and magneto-static problems. We compute
here the admittance matrix (2.57) up to the second order and from (2.59) we obtain
the resistance R(0) and inductance L(0) matrices at w = 0. After the first magne-
tostatic solution, we can compute L(0) by the energy method (2.65) but the volume
integral (2.64) over {2 may be used as well. From the residual equations (2.67) together
with Aj, = 0 on 0}, it is possible to show that the same numerical values are obtained,
but just if we exactly have V.Aj, = 0, which is not generally the case. These resistance
and inductance matrices can also be obtained by solving the eddy current model (2.53)
at very low frequencies. A frequency value of w = 0 cannot be used, but the problem
is stable with respect to w — 0 and so we use w = 27x10~1% Hz. The result is that up to
machine precision, the two computed resistance matrices are the same as well as the
three inductance matrices.

The eddy current problem is solved with the statements

For n From 1 To @NWIRE

BC v@n Jump iVint -1/Frequency V  *s Natural Vint
Solve Stationary
Define For m From 1 To @NWIRE

(ADM[@{2* @NWIREmM-1)+2 *(n-1)+0}],ADM[@{2 * @NWIREm-1)+2 *(n-1)+1}])=
(* residual(Bound v@m;Current,iCurrent) *)
(-v@m.iVint.Flux,v@m.Vint.Flux)

}
BC v@n Natural iVint
}

For each wire, we set the driving voltage of 1V, solve the linear system and compute
the N-wire currents yielding each time, one column of the admittance matrix. Since
we solve for the time-integrated electric potential ¥ = ¥/(iw), a jump BC value of
—1/w is used for the dof-field iVint . Itis a must to use the BC characteristics for the
dof-fields Vint ,iVint to compute the conductor currents (2.55) or a valid alternative
is given by the built-in function residual , however, one should not directly evaluate
boundary integrals. This is the only available method, if one removes the electric
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Figure 2.60: Resistance and inductance matrix coefficients up to w = 27 x10° Hz.
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Figure 2.61: Resistance and reactance matrix coefficients compared with a second order low
frequency approximation.

potential ¥ from the solution process and the disappointing observation is that e.g.
the three presented methods to compute the inductance matrix at w = 0 will then give
different results with up to 20% discrepancies.

Up to machine precision, the computed resistance R and inductance L matrices of
the impedance (2.56) are symmetric and Fig. 2.60 shows the Ry, Ro1 and Lgg, Lo1 co-
efficients for a frequency sweep up to wmax = 27x10° Hz. Fig. 2.61 shows a perfect
agreement with the resistance Rog = %2y, Ro1 = RZyo and reactance Xog = IZy,
Xo1 = SZ0; coefficients compared with the values obtained from a second order ap-
proximation of the admittance Y (w) = Z(w) ™!
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2.15 Preconditioning eddy current systems

The modeling of multiphysics systems leads to the successive solution of generally
large but sparsely filled linear systems of equations. To solve these linear equations,
one has the choice between a direct solver based on a LU-factorization and requir-
ing a fixed amount of memory and floating point operations or an iterative solver
requiring a fixed amount of memory but running an iteration loop up to a satisfactory
convergence criterion is reached. Here the convergence rate depends on the condition
number p = |Amax/Amin|, With Apin and Apax the extreme eigenvalues of the system
matrix. For p = 1, we have the identity matrix and our linear system is easily solved,
but for increasing values p > 1, the matrix departs from the identity matrix and the
convergence rate slows down. Iterative solvers requires the storage of the system ma-
trix and some additional working vectors to run, whereas direct solvers requires much
more memory since many zero coefficients of the initial sparse system matrix become
non-zero during the factorization. For 3D applications, the memory and computa-
tional requirements are generally too large for direct solvers to be used and so one
has to resort to iterative solvers. Quite some iterative solvers can be found in numer-
ical libraries and used out of the box, however, they do not generally converge at a
satisfactory rate or may even diverge and therefore are not robust as direct solvers.
This problem can be partially overcome by preconditioning the linear system, i.e. by
solving a similar system much closer to the identity matrix in order to increase the
convergence rate and thus the robustness of the solution process. Clearly in order to
be effective, the associated similar system must be computed in a cheap way and one
major drawback is that optimized and very effective preconditioners are problem de-
pendent and need to be investigated and found for each application. But also within
a single application, the best known preconditioner may not be very robust and the
convergence rate may heavily depend on material parameters and the shape of the
elements both having a strong impact on the condition of the linear system.

In this example, we are going to study preconditioning techniques available for solv-
ing the harmonic eddy current problem both with nodal and edge elements. This
model is obtained from the Maxwell’s equations by dropping the displacement cur-
rent term, by using the time dependency (e)(t) = (o), complex field values, the
linear material laws J = oE and B = ;/H and is given by

VB=0, VXE+iwB=0, Vxu 'B=Jy+0E, (2.69)

with o the electric conductivity, i the permeability, w the frequency and J a possible
stiff driving current. From the property V.B = 0, we can define the vector potential
A with B = V x A. From the second equation in (2.69), we obtain the integrability
condition V x (E + iwA) = 0 for the scalar potential ¥ with —VV¥ = E + iwA. For
a piecewise constant conductivity o, one can show that it makes sense to assume a
globally zero scalar potential ¥ = 0 so that one is left with the single linear equation

V x 'V x A +iwcA =Jg, (2.70)

to be solved for the complex vector potential A. Since we have dropped the compu-
tation of the scalar potential VU, the stiff current Jy is generally used as the driving
source for the magnetic field. On a domain 2 C R3 with conductors ©,,,, m =1...N
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where o (€,,,) = const and o(2/U,, Q2,,) = 0, in a preprocessing step we apply voltages
to the conductors resulting in quasi-static stiff currents Jy. For w > 0, we then have
additional eddy currents J = Jg + 0E = Jo — iwo A induced by the time-dependent
magnetic field B = V x A.

When solving the eddy current problems in SESES, we have to take a decision, either
to use (H'(Q2))? or H(curl,2) conformal elements to approximate the vector potential
A, the former also known as nodal elements and the latter as edge elements. Then,
from a weak formulation associated with the PDEs (2.70) and by plugging nodal or
edge shape functions, we obtain a complex symmetric linear system of equations to be
solved whose solution give us A. The pro and contra of both finite element types have
already been discussed in the Example 2.14 and here we just remind that with nodal
elements, the system matrix is regular, but singular for edge elements if somewhere
in the domain Q we have o = 0. Although it would be natural to use a complex lin-
ear solver to solve for the complex vector potential A, in a multiphysics environment
where several real and complex dof-fields may be computed simultaneously in a cou-
pled manner, the most general solver is a real solver and complex dof-fields are simply
split in a real and imaginary part. This approach can double the memory usage but
from a numerical point of view is equivalent to a complex solution. In particular, since
the linear system obtained is complex symmetric, as explained in the Example 2.14, it
is possible to obtain a symmetric real system of the form

A B
g <B _A> , 2.71)

with A, B symmetric real matrices. For symmetric matrices, the iterative solver of
choice is the conjugate gradient method. In exact arithmetic and for positive definite
matrices, it converges in at most N-step with N the size of the system [1, 2, 3]. Our
real symmetric matrix (2.71) is not positive definite, but has pairs of real eigenvalues
of opposite sign, since if (A, (x,y)) is an eigenpair of S, then also (— A, (y, —x)). Despite
this fact, for our application the conjugate gradient generally converges smoothly, but
stalling cannot be excluded and in general the chances of failure can be reduced with
a good preconditioner.

We document here some numerical tests done with the model found at example/
EddyPrecond.s3d ,asimple voltage-driven rectangular coil as displayed in Fig. 2.62.
The electrical conductivity is ¢ = 5.8x107 A/(Vm) and the driving voltage is ap-
plied as stiff current Jo computed in a preprocessing step with the OhmicCurrent
model. The current is stored in a user field cur0 used to define the material parameter
iCurrent0 . The eddy current problem is then solved using the equations EddyFree
HarmonicNodal or EddyFreeHarmonic for nodal and edge elements. The typical
streamlines for the computed magnetic field are given in Fig. 2.63. In this example, we
want to study the impact of the frequency and the element shape on the performance
of the iterative solver. Therefore, the example is parameterized so as to freely change
the frequency w and the slenderness a = length/width of the rectangular elements
forming the coil.

Iterative solvers generally work both for regular and singular systems, if these latter
have a solution. For regular matrices, the condition number p gives us a first impres-
sion how good iterative solvers will work, not however for singular matrices since
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Figure 2.62: View of the single coil geometry.

99

Figure 2.63: Streamlines of the real part of the

magnetic field & B.
Frequency w | Slenderness o | # Iter-No P. | # Iter-Diag P. | #Iter-ILU(0) P.
1 1 86 86 14
1 100 21540 4554 81
107 1 92 92 16
102 100 29591 5235 84
10 1 162 160 10
10* 100 31597 5887 84

Table 2.1: Number of solver iterations to reduce the residual by a factor of 107%, as function of
the frequency w, slenderness factor o and for no, diagonal or the ILU(0) preconditioner. The
system matrix of size 19074 is for first order nodal elements.
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here we always have p = oco. For not too many elements, the condition number can
be computed in reasonable time so that for this example its computation is valuable in
determining how strongly badly shaped elements and the frequency can impact on the
convergence rate. Fig. 2.64 shows the condition number as function of these two pa-
rameters, one sees that badly shaped elements strongly worsen the condition number
as well as the frequency for good shaped elements. Table 2.1 lists in the third column,
the number of iterations required for the conjugate gradient to converge when work-
ing on the unamended system matrix of dimension 19074 and by requiring a reduction
of the initial residual by a factor of 107®. One can see a close correlation between the
condition number and the number of required iterations to converge. For large linear
systems, a number of iteration larger than a few percent of the matrix dimension can
be considered as a slow convergence.

The problem of the slow convergence for large condition numbers can be overcome
by preconditioning the original linear system Sz = b which is multiplied left and right
with the preconditioning matrices Peti, Pright Yielding the new system

S'(Pigne) = b with " = Py S Prigni and b’ = Pegib. (2.72)
The idea is for the preconditioning matrices to build a good approximation of the in-
verse, i.e. to have S’ ~ Id. We then apply the iterative solver to the system S’z’ =/
and since for the new condition number we have p(S’) = 1, we expect a fast conver-
gence. Since iterative solvers are generally initialized with = 0, we do not have to
perform the initial operation with the inverse 2’ = Pri_glhtx and at the end after having
computed the solution 2/, we obtain our solution as z = Pjigix’. This precondition-
ing technique is quite general, but clearly the success lies in the availability of cheap
preconditioner matrices Pleft, Pright and a good approximation property S’ ~ Id.

Running an iterative solver directly on a linear system obtained by the discretiza-
tion of some PDES should never be done. Instead, one should always use a diagonal
preconditioner which is very cheap to compute, does not require additional memory
and is always superior than no preconditioner at all. The preconditioner is given by
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Piett = Piight = D with D a diagonal matrix defined by D;; = 1/|S;|~! and has the
only requirement |S;;| # 0 which is always satisfied when discretizing PDEs. In our
example, Table 2.1 shows quite an improvement for this diagonal preconditioner, but
although this preconditioner can help, it is still not very robust and we have a large
variation on the number of iterations necessary to reach convergence.

Another very popular preconditioner is the incomplete LU factorization without fill-
in, in short notation ILU(0). It is defined as left preconditioner Pes = ILU(0) with
Piighty = Id. On a copy of the system matrix .S, one performs the LU-factorization by
discarding the fill-in, i.e. if a coefficient of the spare matrix S is zero, it will be zero
also in the factorized form S = LU ~ ILU(0). One knows that for an M-matrix, the
incomplete LU-factorization cannot fail [1], i.e. we will never get a zero pivot, but the
discretization of PDEs does not always yield M-matrices. Since the amount of fill-in
in the LU-factorization is dependent on the ordering of the equations, permutation of
the matrix can have a strong impact on the effectiveness of the ILU(0) preconditioner.

In our example, for nodal elements the system matrix is not an M-matrix, but we are
lucky and the ILU(0) preconditioner works quite well for first order elements with
good convergence rates for reasonable slenderness factors and frequencies, but only
if the real and imaginary dofs of a complex dofs are clustered together in the global
ordering of the dofs. Without this clustering, the ILU(0) preconditioner easily fails
and this is also the case when starting e.g. from an initial Cuthill McKee ordering and
by widely and randomly permuting the dofs but by keeping the pairs together. In
summary for first order nodal elements we have found a robust preconditioner, it is
very good in reducing the convergence’s dependency on the frequency and we just
have a noticeable dependency from the slenderness factor, see Table 2.1. The conver-
gence rate is so good that the problems to be solved are generally bounded by the
large memory requirements and not by the computational time. This is also true in
view of the fact that the solution time can be further reduced by parallelization and
multigrid methods, technologies not discussed here.

For nodal elements of second order and the ILU(0) preconditioner, the dependency
on the convergence rate from the frequency is again low but much more pronounced
for the slenderness factor with an impressive slow down, here an example for w = 1.

o ‘1 10 20 30 40 50 60 70
# Iter. ‘ 17 29 34 46 77 263 643 1838

As next we present a speed-up method similar to a two-cycle multigrid method, based
on the robustness of the ILU(0) preconditioner for first order nodal elements. If we
have some additional memory at our disposal, we can apply a technique known as
auxiliary preconditioning, where we use the solution obtained with first order ele-
ments to precondition the system of second order elements. On the same mesh and
with the same BCs, one can show that the system matrices Sg,st, Sond, Obtained with
element of first and second order are related by So,q = Sgs 117 with II a prolon-
gation matrix which is easily computed numerically. The left preconditioner is then
defined as Peg, = HS&;HT and its application yields

it Sana = S L T TS 117 (2.73)
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Freq. w | Slend. a | Pre 1-Post 0 | Pre 0-Post1 | Pre 1-Post 1 | Pre 2-Post 2

1 1 24(>500) 8(13) 6(12) 5(12)

1 100 >500(>500) 94(125) 67(93) 48(75)
10* 1 22(272) 8(15) 6(15) 5(14)
10* 100 >500(>500) 94(125) 67(93) 48(75)
10* 1 >500(>500) | >500(>500) 18(17) 13(15)
10* 100 >500(>500) 94(125) 67(95) 48(80)

Table 2.2: Number of solver iterations to reduce the residual by a factor of 10~%, as function
of the frequency w, slenderness factor ov and number of pre- and post-smoothing cycles. The
system matrix of size 72318 is for second order nodal elements and it is preconditioned by
the auxiliary preconditioner based on first order nodal elements. The auxiliary system of size
19074 is solved either with an exact LU or an ILU(0) preconditioner (value in parenthesis).

By considering the fact II7TI ~ Id, we then have Piog Sonq ~ Id. The theory is actually a
little bit more involved and in this form the method does not yet work. Before or after
applying Pis, one has to smooth the high frequencies of the numerical error in the so-
lution not seen by the element of first order and here the numerical approach is exact
the same as for multigrid methods. The classical smoother is the Gauss-Seidel method,
an iterative solver with less performance than the conjugate gradient but with excel-
lent smoothing properties [1]. In general, the smoother should also converge if used
as an iterative solver, but for this application where the system matrix is not positive
definite nor an M-matrix, the Gauss-Seidel solver promptly diverges. As smoother
cannot be used either and the fix is to apply the Gauss-Seidel smoother to the original
complex symmetric system. This can also be done on the real system by applying a
2 x 2 block Gauss-Seidel smoother mimicking the complex algebra.

The SESES approach to auxiliary preconditioning for this example is as follows. One
tirst assemble and backstore the system matrix for first order elements Sg,s, under the
name firstorder as well as the prolongation matrix IT with name proj

MaterialSpec Wire Equation EddyFreeHarmonicNodal Enable
MaterialSpec AirEddy Equation EddyFreeHarmonicNodal Ena ble
BlockStruct Block EddyFreeHarmonicNodal ReuseMatrix nod all
LinearSolver None Reordering ComplexCluster

Solve Stationary

Misc Matrix(Afield; FirstTo2ndOrder; proj)

In a second step, one assembles and solves the system for the second order elements
by enabling the auxiliary preconditioner composed by some pre- and post- complex
Gauss-Seidel smoothing cycles, the auxiliary system matrix firstorder , prolonga-
tion matrix proj and the choice of a solver for the auxiliary system.

MaterialSpec Wire Equation EddyFreeHarmonicNodal2 Enabl e
MaterialSpec AirEddy Equation EddyFreeHarmonicNodal2 En able
BlockStruct Block EddyFreeHarmonicNodal
LinearSolver CG Infolter 0 DiagPrecond Disable Reordering ComplexCluster
ConvergSolver (SITER=nSolverlter) * 0+NormR<1.0E-8 * NormRO MaxIter 500
Preconditioner Auxiliary(PreSmooth 2; PostSmooth 2; Comp lexSmoother;
Projector Afield.proj,iAfield.proj; Matrix nodall;
Precond ILU( =*ILU LU%))
Solve Init Solve Stationary

The auxiliary problem S;.!, can be solved either exactly, inexactly with a nested iter-
ative solver and its own preconditioner or inexactly by just applying once the auxil-
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iary preconditioner. We point out that if a nested iterative solver is used, the auxil-
iary solution is inexact and non-constant and the CG algorithm may not work well
anymore. A generalized CG algorithm with additional orthogonalization steps for a
non-constant preconditioner matrix can be used to fix the problem, but by our expe-
rience, this is not generally required. Smoothing plays an important role as given in
Table 2.2, where we have solved the auxiliary problem both with an exact LU and
(inexact) ILU(0) preconditioner and a variable number of pre- and post-smoothing
cycles performed before and after solving the auxiliary problem. By applying a suf-
ficient number of pre- and post-smoothing cycles, the number of iterations needed to
reach convergence is similar as for first order nodal elements. However, smoothing is
quite an expensive numerical operation with each symmetric Guass-Seidel cycle being
equivalent to two matrix-vector multiplications but not easily parallelized. A single
pre- and post-smoothing cycle looks to be an optimum.

For edge elements we have not yet found a robust preconditioner as for nodal ele-
ments of first order. The major reason is that since the system matrix S is singular,
the incomplete factorization generally fails. This unfavorable situation can be in part
saved by adding a small constant in the diagonal before performing the incomplete
factorization. This amendment, should be done on the diagonally scaled matrix i.e.
after diagonal preconditioning and the value of 0.05 seems to be an optimum. How-
ever, the overall performance and robustness is poor, but get better with increasing
frequency. The really bad performance at low frequencies may have its origin on a
light inconsistent right-hand side, which is generally the case for w = 0 and a given
stiff current. This failure should be further investigated and a consistent right-hand
side should be enforced by finding a field Hy with V x Hy = J( and using the term
V x Hj in the dicretization instead of the stiff current Jg, [4]

The good numerical results obtained for first order nodal elements and the ILU(0)
preconditioner can be again used to precondition the system matrix obtained for edge
elements with the auxiliary preconditioning method exposed above. The only dif-
ference is that we do not change the order of the finite element approximation, but
the type i.e. from edge elements to nodal elements. The ingredients are all the same,
just the prolongation matrix is different and here II represents the interpolation be-
tween nodal and edge elements. This auxiliary preconditioner suffers as the previous
auxiliary one whenever we have badly shaped elements and has the same poor per-
formance at low frequencies as the above ILU(0) preconditioner with diagonal shift.
We have used here a variant of the auxiliary preconditioner presented in [5, 6], since
this latter fails for the case ¢ = 0 and although mathematically quite reliable, on the
overall these two auxiliary preconditioners are generally inferior to the simple ILU(0)
preconditioner with diagonal shift.
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2.16 Harmonic Analysis of a Piezoelectric Crystal

Piezoelectric crystals find a broad application in technology, from LC oscillators to
sensors for pressure, force, acceleration as well as transducers and actuators for ultra-
sonic applications. The piezoelectric effect is a small physical effect coupling together
electric field and mechanical strain. Due to its small perturbation of the state at rest,
an analysis based on linear system theory is a good framework which is generally per-
formed in the time Fourier space i.e. the system is fully characterized by determining
its response to an external harmonic excitation over the full spectral range. In this ex-
ample, we present the fundamentals of the impedance theory for piezoelectric crystals
together with a computational example.

Impedance of a piezoelectric crystal

Let us assume the crystal to be at rest and in a unstressed state. By applying a pressure
somewhere on the crystal surface, a stress state is induced, mechanical displacements
are generated and charges are transported to the contacts. Due to the small magnitude
of the displacements, a linear theory for the governing equations can be used. If u is
the mechanical displacement and ¢ the electric potential in the crystal, then we have
the following local relations between mechanical and electrical fields

s = C-g(u) - g" E,
D = g-e(u + € E, 274)
with E = V¢ the electric field, D the dielectric displacement field, e(u) = ((Vu)T +
Vu)/2 the linearized strain tensor, u the displacement, s the stress tensor, € the dielec-
tric permittivity tensor, C the elasticity tensor and g the piezoelectric tensor. The gov-
erning equations of a dynamical mechanical system are in the linear theory of small
displacements given by pii + yi = V.s + f, with p the mass density, f the body force
and v a phenomenological damping factor proportional to the velocity u. By consid-
ering a vanishing body force and electric bulk charge, we have to solve the coupled

equations
pu+~yua\ [ Vs pu+yua \ u
(M5 )=(en ) o (") =2(2) e
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with D, a differential second order operator acting on the solution (u, ¢). In order to
get a solution of (2.75) for the material laws (2.74) and a harmonic voltage applied to
an electric contact, we use a technique based on the decomposition into homogeneous
eigen solutions and an inhomogeneous stationary solution, which prevent us from
explicitly integrating (2.75) with respect to the time. As first step, we look for solutions
of (2.75) with a time harmonic dependency of the form exp(iw,t) by using uniquely
homogeneous BCs for the mechanical and electrical problem and by considering v =
0. Insertion of the generic solution (u,(x), ¢, (x))T exp(iw,t) into (2.75) leads to the
solution of the following eigen problem

D2<;:>+w3<”3">=o, (2.76)

which has eigen solutions (1, ¢,,w?2),i = 1... o0 with positive eigenvalues w? form-
ing a base in the solution space of D,. By choosing the orthogonality relation with the
density p as weight, we can therefore write

< Upy,u, >= / Py - U dV = 0y - (2.77)
Q

It is to be noted, that the electric eigen solutions do no enter this orthogonality relation.
As second step, les us compute the following inhomogeneous solution

U o
Dy < o0 > =0, (2.78)

with the same type of BCs as before but with possibly inhomogeneous values. In par-
ticular, we assume the driving voltage to have a value of 1 V. A solution proposal
satisfying the same BCs of the inhomogeneous solution, but now with a driving volt-
age of V) exp(iwt) can be given in the form

( ; ) = ( ;g )voew +Zn:wn(t) < ;: > : (2.79)

with the time-dependent modal participation coefficients z,, to be determined. After
inserting the proposal (2.79) into (2.75), taking the scalar product with u,,, assuming
the cross coupling coefficients [, yu, - u,,dV to be zero for m # n, we arrive at the
equations for the z,,

Tn + Ynln + w%wn = Voei‘*’t(,/an2 — iYWw) , (2.80)
with
w2
A, =<up,u, >= el / e(ug) - s(u,)dV and ~, = / Yu, - u,dV . (2.81)
n JQ Q

The time-dependent solutions for the coefficients x,, are then given by

(wrzL — w2) — WYn

xn(t) = V()(Anw2 - Z"an)yn(w)ewm with yn(w) = (wz _ w2)2 + (wfy )2 :

(2.82)
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The piezo crystal is generally characterized by its impedance Z(w) = V(w)/I(w) =
V(w)/Q(w) with V the voltage, I the current and () the charge at the contact which is
given by the surface integral

Q=-— D-dn:—/ (e-E+g-e(u))-dn, (2.83)
690 690

with n the outward normal to the surface. If we denote by o and «,, the charge of
the inhomogeneous stationary solution and of the eigen solutions, then the contact’s
charge is given by

o0 [ee]
Q = Voope™* + Z T (t) = Voope™t + Vj Z o (Apw? — iypw)yp (w)e? .
n=1 n=1

In the appendix, we prove the equivalency a,, = w2A,, and therefore the impedance
for the piezo crystal is given by

aZw?
wp

Z(w)_l = iw(ap + Z( — Y Onw)Yn(W)) - (2.84)
n=1

In summary, in order to compute the impedance for the piezo crystal, one has first
to compute the inhomogeneous solution yielding the charge ag. Then one computes
a representative number of eigenpairs of the coupled system (2.76) and for each pair
one evaluates either the volume integrals A,, or the surface integral «,,. With the spec-
ification of the empirical damping constants v,,, the impedance (2.84) is fully specified
and can be plotted.

Near to a resonance frequency w ~ wy, in (2.84) we may just keep the dominating n-th
term. By considering w/w, ~ 1 and a zero damping 7,, = 0, the electric impedance
is given by an equivalent circuit with an LC series in parallel with a capacitor Cy and
values Cy = ag, L = o,%, LC = w,, 2. The impedance is therefore given by

Z(w) = 1 oy P —w? 1 w,%—wz
CiwCy CtCo _ 2 g 2, o3 2
1wl TOCo w WO wn+a__w
0

Computational example

In this example, we are going to compute the resonance frequency spectra of a PZT-
5A piezoceramic disk as published in [1] and the SESES input file can be found at
example/PiezoDisk.s2d . The paper also presents the same impedance theory, al-
though from the computational finite element point of view. In a first step, we define
the material PZT5A For this material, we have to enable the computation of the dis-
placement field and electric field, as well as the activation of the piezoelectric model.
For this analysis quadratic elements are best suited. In the definition of the material
parameters from the literature, one has to pay attention at the different direction of
the polarization axis. Since we are performing a rotational symmetric computation,
we have also to specify the material parameters for the azimuthal direction, i.e. the
ones normal to the computational domain.
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MaterialSpec PZTA5
Equation Elasticity2 ElectroStatic2 Enable
Model PiezoElectric Enable

In a second step, we define a simple geometry, fix the structure mechanically and de-
fine two electric contacts where the external voltage is applied. Because the electric
contacts are placed at the top and bottom of the disk, the disk is symmetric with re-
spect to the middle plane and only such modes can be exited. Therefore is enough to
compute half of the disk. The modeling starts by defining a coupled block structure
both for the inhomogeneous and the eigen solutions

BlockStruct Block Phi Disp

Afterwards we compute the coupled inhomogeneous solution with the potential set
to zero on one contact and to 1 V on the other one

Solve Stationary
Write "alphaO=%e\n" apply.Phi.Flux

and compute the total charge o at the contact. This charge is nothing else than the
SESES contact characteristic and can be accessed with the built-in symbol apply.Phi.
Flux . To compare the values of the «,, and A,, constants, we store the displacement
up and strain e(ug) fields under the name of Disp0 and Strain0O0 , that otherwise
would be lost by computing subsequent solutions.

Store DispO=Disp
Store Strain00=Strain

Because the electric solution does not participate in norming the solution, it is impor-
tant to start the eigen solver with a zero electric solution and therefore we initialize
everything to zero after computing the inhomogeneous solution.

BC apply Dirichlet Phi 0 V
Solve  Init

Afterwards one computes a representative number of eigenpairs

Solve EigenProblem nPair npair=48 Precision 1E-30

and for each computed eigenpair, we write to the output the value of the mechanical
frequency and the o, values computed with three different integral methods. Note
that in computing the domain integral, we have to consider the rotational symmetry
and that this postprocessing related to the mechanical modes, must be defined before
computing the eigenpairs and it will be applied to each computed eigenpair.

Write  AtStep 1

Text "[%-2.0f] frequency=%10.3e Hz alpha=%10.3e %10.3e %1 0.3e\n"
eigennum+1, sqrt(eigenvalue)/2/P1 apply.Phi.Flux

2x Pl x integrate(@MechEne(Strain00, Stress) * X)
2x Pl x integrate(@ScalP(Disp0,Disp) *X) * eigenvalue

The results are obtained in the form

[1 ] frequency= 4.956e+04 Hz alpha= 2.282e+01 2.282e+01 2.2 82e+01
[2 ] frequency= 1.281e+05 Hz alpha= 2.076e+01 2.076e+01 2.0 76e+01
[3 ] frequency= 2.016e+05 Hz alpha= 2.069e+01 2.069e+01 2.0 69e+01
[46] frequency= 1.184e+06 Hz alpha= 9.316e+00 9.316e+00 9. 315e+00
[47] frequency= 1.211e+06 Hz alpha= 3.597e+00 3.597e+00 3. 596e+00
[48] frequency= 1.222e+06 Hz alpha= 1.326e+00 1.326e+00 1. 325e+00
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Figure 2.65: The impedance |Z(w)| for the PZT5A disk of [1] without damping.

The first 10 frequencies well agree with the ones published in [1], with the higher
ones being close within a few percent. The cause is to be found in a too coarse mesh
used by [1] and our results well agree with the precise computations done by [2]. The
tirst two versions of the «,, values are the same but just if a small enough precision
Precision 1E-30  is selected when computing the eigenpairs. This value is gen-
erally smaller than the one required to achieve the same precision within the eigen
frequencies and with respect to this precision the more stable value is the second one.
The small discrepancy of the third version for high eigenvalues has origin in a low
order integration scheme not suitable for quadratic elements and all three values are
the same by increasing the accuracy of the integral’s evaluation. Simultaneously to the
generation of the above output, we also create the plot file Plot with the analytical
value of the impedance (2.84) for zero damping used to create Fig.2.65.

Analytical solution

In this section we present a 1D analytical solution and assume the piezo disc to have
a thickness L along the z-axis and use the material laws s = Ed,u + g0,¢ and D =
g 0,u — € 0,¢ with E the Young’s module, g the piezoelectric coupling coefficient and
e the dielectric constant. The governing equations (2.77) reduce now to the simple
form 0,s = pii and 9, D = 0 and we look for a solution with a clamped mechanical BC
u(0) = 0 at z = 0, a stress free BC s(L) = 0 at z = L, a grounded potential ¢(0) = 0 at
z = 0 and a time harmonic driving potential ¢(L) = Vpe™! at z = L. A straightforward
computation shows that the solution is given by

e sin(Az)
u g sin(A\L)+vL iw
( é > = ( Zin()\(z)-i-)l/t >V06 ! (2.85)
sin (A L)+vL
with A2 = (p/a)w?, o = E+ ¢g?/e, v = —Acos(AL) (1 + €E/g?) and the electric

impedance reads

Voeiwt  LA(1+%5) —tan(\ L)
—iwD iwe/\(1+z—§)

Z(w) = (2.86)

We may of course compute the same solution using the inhomogeneous and eigen so-
lutions decomposition as described previously. The eigen solutions u, (z)e™n! for the
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homogeneous BCs «(0) = 0, s(L) = 0 and ¢(0) = ¢(L) = 0 are computed by solving
the equation ad?u, + wlpu, = 0. The generic solution reads u,, = ko cos (A, 2) +
k1 sin (A, 2) with A2 = (p/a)w?. The potential ¢,, is found from the condition D =
const and reads ¢, = g/eu,, + kaz + k3. By applying the homogeneous BCs, we obtain

Un \ _ 4 sin (A\,2)
bn ) T\ L(sin(A, 2) — £sin(\, L)) )
with A\, n = 1. .. co the positive solutions of the equation

(1+ ;—f)xn L — tan(An L) = 0.

The constants A,, are choosen so that the functions are orthonormal < u,,u,, >=
dpm and so A, = 1/ \/ < sin (A\p2), sin (A, z) >. The inhomogeneous solution with BCs
u(0) =0,s(L) =0, ¢(0) =0and ¢(L) = 11is given by

(2)-3()

so that by considering zero damping, the solution (2.79) is given by

U . (N > w2<u0,un> Unp,
(¢)—[<¢0)+Z B <¢>

n=1

Voe't (2.88)

and the impendance by

, —1
‘/Oezwt )’ g2 0 w? )

which is the same as (2.86) although this is not easily seen except for the case w = 0.

Appendix

We want to prove here the equivalency of a;,, = w2A,,. We first note that if we solve
for V.F = 0 in © using a Dirichlet BC on 02y and natural BC otherwise, then we have
Jo Vf-FdV = 0 for any function f zero on dQ since [,, fF - dn = 0. From (2.78),
we are actually solving V.(C - e(ug) — g’ - Eg) = 0 and V.(e - Eg + g - e(up)) = 0
and therefore for f = u, we have [,e(u,) - (C - e(ug) — g' - Eg)dV = 0 and for
f = ¢n we obtain [, E, - (e - Eg 4+ g - €(up))dV = 0. Because ¢y = 1 on 9 and
V.((e-E,+g-e(u,)) =0onf, we can write o, = — fmo(e -E,+g-e(uy))po - dn =
o V(€ Byt g-e(u)é0)dV = fo(e Bntg-e(un)) BodV = [(—~E,-g-e(ug) +
e(u,) - C-e(ug))dV = [ s(uy) - e(ug)dV = w2 < up,up >= w2A,.
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2.17 Longitudinally Diode Pumped Composite Laser Rod

The following examples deal with solid state laser devices. A good introduction into
this field including set ups and pumping techniques is e.g. given in [1, 2, 3]. When a
solid state laser crystal is optically pumped by flash lamps or diode lasers only a part
of the pump light is converted to laser- or other radiation. The other parts acts as a
veritable space resolved heat source leading to a spatially varying temperature distri-
bution in the crystal. This temperature distribution will influence the laser behavior.
The three main effects are

o Thermal Dispersion: Due to the dependency of the refractive index of a material on
the temperature, the laser beam may be disturbed by its travel through the crystal.

o Deformation: Due to the temperature raise, the crystal will expand locally leading
to deformation of the crystal surface. The deformed surfaces will have a lens like
influence onto the laser beam traveling through the crystal.

e Stress and strain: Based on the local deformation stress and strain will occur in the
crystal. This may lead on the one hand to mechanical cracking of the crystal and on
the other hand to stress induced birefringence.

All these effects have a strong influence onto the behavior of a laser device by reducing
the output power and the beam quality. Methods have to be found to reduce these ef-
fects as e.g. adequate resonator design, improved cooling techniques or compensation
by external elements. Therefore a laser engineer must have the possibility to quantify
the influence of different technical improvements onto these effects for estimating the
laser performance during the development process.

Unfortunately analytical solutions only exist for some special cases as uniform pump-
ing [1]. For real devices, we have to resort to numerical methods. With SESES its pos-
sible to deduce both the distribution of temperature, stress, strain and crystal defor-
mation and to quantify its influence by calculating the Optical Path Difference (OPD)
and the birefringence.

To start a numerical simulation, we have first to know the pump power distribution
p(x) which acts at the same time as heat source in the crystal. To get the temperature
distribution, the steady state heat transfer equation has to be solved by considering
the cooling boundary conditions at the crystals surface. Here we are concerned with
Newton’s law of heat transfer

or

S h(Te —Tls) (2.89)

with « the heat conductivity, 7> the coolant temperature assumed to be constant, T'|s
the local crystal temperature on the surface S, n the local normal to the surface and h



SESES Tutorial September 2012 111

Thermally Loaded Crystal

Front

Thermally Loaded Crystal

Phas

Plane Phase Front

PD Integration Pathes

Figure 2.67: OPDy, integrated along differ-
ent paths parallel to the laser beam axes as a
function of the distance r to this axes.
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Figure 2.66: Lens like influence of a thermally
loaded laser crystal onto a traveling plane
phase front.

the heat transfer coefficient [4]. This boundary condition includes the cases of constant
boundary temperature (h — o0), insulated boundaries (h — 0) and convective heat
transfer (finite 7). Based on the computed temperature distribution 7'(x), the local
displacement field u(x) together with the corresponding stress tensor is calculated.
As the local deformations are expected to be small, the two fields 7'(x) and u(x) can
be treated as uncoupled.

Optical Path Difference (OPD)

The refractive index of a material depends on its temperature. This effect is known as
thermal dispersion and the change of the refractive index An as a function of the local
temperature can be written as

T
n—mnyg=An= g—; dT, (2.90)
To

with 7} the reference temperature where the refractive index ng of the material is de-
fined and On/JT the thermal dispersion coefficient. Because the speed of light in a
material directly scales with the refractive index following ¢’ = ¢/n, a plane wave en-
tering a thermally loaded crystal is disturbed during its travel through the crystal as
shown in the upper part of Fig. 2.66. This situation can be compared to the phase front
deformation caused by an ideal thin lens shown in the lower part of Fig. 2.66.

A valuable means to quantify this phase front deformation is the OPD. Let us assume
a homogenous material of length ¢ with the refractive index ny. The time a light ray
needs to travel through the crystal is given by

_ tno

At =
c

Within the same time, the light would travel a distance of ¢ At = ng ¢ in free space. We
therefore call /.,y = ng ¢ the optical length of the material. In our case the refractive



112 SESES Tutorial September 2012

index of the crystal depends on the local temperature and therefore varies along the
beam path following (2.90). We call this the disturbed case and the corresponding
optical length ¢/ .. The difference between the disturbed and the undisturbed case

opt*
opt — Lopt is the so called thermal OPD given by
‘ ¢ [ T(2)
/ on
OPDyp, = lopy — Lopt = [ An(z)dz = T a7 | d=z. (2.91)
0 0 To

This integral is evaluated along different paths parallel to the laser beam axes in the
thermally loaded crystal, as shown in Fig. 2.67. This leads to the OPDy(r) as a func-
tion of the distance r to this axes.

Another lens like effect, the end effect, is introduced by the bending of the front and
back surface of the crystal. This influence is summarized in the end effect optical path
difference OPD.yq and it is given by

l
OPDepa(r) = /(no —1)y/n-e-ndz, (2.92)
0

with e the mechanical strain tensor and n the normal vector tangent to the integration
path. In the case where the crystal surface acts at the same time as resonator mirror,
the factor (ng — 1) in (2.92) has to be replaced by ny.

The sum OPDyo; = OPDyy, + OPDgyq can be compared to the OPDjeps, produced by
an ideal thin lens of focal length fie,s given by

742

2flens '

The thermal lensing effect including both the thermal dispersion and end effect OPD
can in first order be described by the focal length of an averaged thermal lens. The
value of the focal length is obtained from a parabolic least square fit, using (2.93), to
the calculated OPDye (7).

OPDlenS(T) = OPDO -

(2.93)

Depending on the shape of the pump distribution, almost arbitrary OPD profiles are
possible. Especially for longitudinal pumping the thermal load is very inhomoge-
neous and the radial dependence of the OPD is far from being parabolic. The focal
length of the fitted lens is therefore not the same, whether the fit is performed over the
whole rod radius or just over a part of it. For the reminder of this example, the fit was
extended over one pump spot radius, as the laser beam is usually adjusted to meet its
size. Fig. 2.68 shows this situation.

Laser set up

This example presents the simulation of a longitudinally diode pumped laser rod with
undoped end-caps, used in novel laser devices. The SESES input file can be found at
example/LongRod.s2d . Fig. 2.70 shows a X-folded resonator as it is used to realize
diode pumping from both sides. The pumping radiation is focused through the two
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Deduction of the Averaged Thermal Lens
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Figure 2.68: Parabolic fit to the deduced
OPDyot over the extent . Figure 2.69: Nd:YAG laser rod with two un-
doped end caps.

folding mirrors directly into both sides of the laser rod as shown in Fig. 2.71. The fold-
ing mirrors have to be dichroic coated, e.a. highly reflective for the laser wavelength
and highly transmittive for the pump wavelength. The laser rod consists of a 1.1%
Nd doped YAG center part and two undoped end-caps as shown in Fig. 2.69. With-
out end-caps, longitudinal pumping leads to high temperatures and stresses on the
pumped surface going with a significant bending of it [5]. Undoped end-caps signif-
icantly reduce temperatures and stresses on the pumped surface and prevent surface
bending.

The heat source ¢(r, z) directly scales with the normalized but arbitrary shaped pump
distribution p(r, z). In the present case of longitudinal pumping, the pump radiation
is absorbed along the optical z-axes in the rod. Further, assuming the paraxial approx-
imation, the absorbed part only depends on the distance z to the rod surface and the
absorption coefficient a of the rod. These simplifications lead to the heat source

Q(r’ Z) =" F p(?", Z) ae s (294)
with P, the total incident pump power and 7 the fraction of pump power converted

to heat here. In this example we consider 7 = 0.4. For a focused laser beam, the radius
at the distance z from the beam waist wq reads

2
w(z) = w \/1 + <M2 % %) : (2.95)
T Wy

with A the pump beam wavelength, M? the beam quality factor and n the refractive
index of the crystal. For simplicity, we assume the pump distribution to be Gaussian
shaped so that p(r, z) reads

p(r,z) = 2 exp (— 2 > , (2.96)

with w(z) defined by (2.95).
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Figure 2.71: Pumping of the laser rod
through the two folding mirrors.

Figure 2.70: Laser rod in a x-folded resonator.

Model Specification

To keep the example as simple as possible, we perform a 2D rotational symmetric
simulation which is enabled with the statement

GlobalSpec Model AxiSymmetric Enable

Afterwards some geometrical parameters for the laser rod are defined followed by the
relevant pump beam parameters relating to the models (2.94), (2.95) and (2.96).

Define

P = 20 (* pump power / W *)
w0 = 0.250 *mm ¢ pump beam focus radius / m *)
M = 55 (* pump beam quality factor *)
lambda = 0.000809 *mm ¢ pump beam wavelength / m *)
ref = 1.82 (= crystal refractive index *)
alpha = 0.35/mm ( * crystal abs. coefficient / 1/m *)
P_Max = 20 (* maximum pump power / W *)
P_n =10 (* pump power steps *)
conv. =04 ( = fraction converted to heat *)

It is mentioned here, that the pump power P denotes the power per pumped side of
the crystal. The total pump power double side pumping therefore amounts 2P. In the
present example, we will perform a parameter study with increasing pump power.
The front and the back side of the rod are in contact with air, whereas the cylindrical
surface is assumed to be directly cooled by water. The heat flow through the surface S
of the rod defines the boundary condition. It is given by Newton’s law of heat transfer
(2.89) and the corresponding parameters h and T¢ for water and air are defined as

hair = 0.0015 ( * heat tr. coefficient to air *)
(* in W/(cm #x 2xK) *)
hwat = 1.0 (* heat tr. coefficient to water *)
(* in W/(cm #x 2xK) *)
Tair = 293 (* temperature of the surrounding air *)
Twat = 290 (* temperature of the cooling water *)

The section OPD calculation  concerns the parameters for the OPD evaluation. As
shown in Fig. 2.67 the OPD has to be evaluated along predefined paths by calculating
the integral (2.91) and equation (2.92). The number of paths parallel to the optical axis
of the crystal is defined with the parameter nrOPD. These paths are equally spaced
perpendicular to the axis from it to the distance rOPD. Each path starts at the longitu-
dinal coordinate IOPDO, has a length of IOPD and contains nlOPD integration points
for the OPD evaluation.
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Next the material parameters of Nd:YAG (NdYAQG and undoped YAG (Cap) are speci-
fied.

MaterialSpec Cap
Equation ThermalEnergy Elasticity Enable
Parameter StressOrtho LinElastlso(Emodule 307 GPa; Poiss onR 0.3;
Alphalso -1.78e-6 * (Temp-Tair)+1.65e-8 * (Temp* Temp-Tair *Tair)) Slunit

Parameter Refrac 1.82

Parameter Kappalso D_Temp 1.9e8/pow(log(5.33 *Temp),7.14)-331e2/Temp,
331e2/(Temp *Temp)-(1.9e8 *7.14)/
(Temp=pow(log(5.33 *Temp),8.14)) W/(m  *K)-W/(m * Kx* 2)

MaterialSpec NdYAG From Cap
Parameter Heat conv P+ (Pump(x,y,w0,M,lambda,alpha,ref)
+ Pump(x,-y+l,w0,M,lambda,alpha,ref)) W/m *x 3

We start with YAG and since we model both for the temperature and the mechani-
cal displacement, we have to enable their computation with the Equation statement.
The heat conductivity x and the thermal expansion §¢//; are functions of the temper-
ature 7" and following [6] we use the models

_ o 19x10% 331x10° W (2.97)
 (log(5.33T))" ! T mK?’ '
and 50
W= —1.78x107%(T — Tp) + 1.65x 1078 (T? - T3), (2.98)

with [T] = K. The parameters Emodule , PoissonR , and Refrac denote Young's
modulus F, the Poisson’s ratio v and the refractive index ny. The parameter DRefrac
denotes the change of the refractive index An as a function of the temperature fol-
lowing (2.90). Here, we assume the thermal dispersion 0n/0T to be a constant so
that (2.90) can be rewritten as An = (T — Ty)0n/0T. Next we define the Nd:YAG
material as inheriting all properties from YAG and by additionally defining the heat
source. The routine Pumpis a user routine defined following (2.94), (2.95) and (2.96).
The first call is for the pumping from the left side and the second call for the pump
beam from the right side of the rod. We then build the macro element mesh and map
two materials onto the macro element mesh.

The thermal and mechanical boundary conditions are then next. The front and the
back surface of the rod are in contact with air, defined by the boundary condition BC
Air . The cylindrical surface of the rod is assumed to be in direct contact with the cool-
ing water define by the boundary condition BC Water. As we have assumed a radial
symmetric situation, the longitudinal axis of the crystal is automatically fixed for de-
formations in the radial direction. Further we assume the rod to be free to expand.
Therefore we have only to fix one point of the rod for displacements in the longitu-
dinal direction. Therefore we fix the point in the center of the rod by the boundary
condition

BC Fixed 0 nytot/2 JType O Dirichlet Disp.Y 0 m

The command section of the input file starts with some settings concerning the used
solver and desired information on the output stream during execution of the kernel
program. Then several one-dimensional lattices for the OPD evaluation are defined
with a For loop statement. Here we define straight lines along the pump lasing direc-
tion where the local OPD will be integrated.
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For k From 0 To nrOPD
Lattice OPD_@k Index i=0..nIOPD (@k *rOPD/nrOPD,IOPDO0)+(0,IOPD) *i/nIOPD

The lattice names are numbered with the loop index k by OPD@Kk afterwards follows
the definition of the lattice index used to define the lattice points as equally distributed
along the lattice line. The corresponding parameters nfOPD and nlOPD were previ-
ously defined in the initial section. Before starting the simulation, the field Temphas
to be set to the temperature value of the surrounding air. Without the statement

Solve Init Temp=Tair

the SESES kernel will initialize the temperature to 0 K which is disadvantageous for
the simulation time and convergence. The next section specifies the solution algo-
rithm. In this example, we perform a parameter study for different pump powers and
the solution procedure looks as follows
For i From 1 To P_n
while (1)
{
Solve Stationary ForSimPar P At @i *P_Max/P_n
Store StressAver(Continuous 1;FreeOnRef)=Stress,
TempDiffAver(Continuous 1;FreeOnRef)=TempDiff
Remesh Refine ErrTemp(TErr) Global Refine ErrDisp(MEr) G lobal
if (REMESH) break;

}
Write File "OPD_"@@({i}".dat" Text
For k From 0 To nrOPD

"X-coord %e OPDtherm %e OPDexpan %e OPDtot %e\n" @k *rOPD/nrOPD,

resO=integrate(Lattice OPD_@k; 7.3e-6 * (Temp-Tair)),
resl=integrate(Lattice OPD_@k; Refrac *sqrt(Strain.YY * Strain.YY)),
resO+resl

}
Dump Temp Disp Stress If @i>1 { Append }

The two fields Tempand Disp are assumed bo be uncoupled and therefore they can
be computed separately. For each field the corresponding BlockStruct  and the au-
tomatic mesh refinement is set. Afterwards the field is calculated with the Solve
Stationary  statement. The corresponding pump power is set in the first Solve
statement by the expression ForSimPar P . For each computed solution, we then in-
tegrate the local OPD on the defined lattices by computing the contributions OPDyy,,
OPD¢pa and their sum OPDyoy = OPDyy, + OPDepq. Finally, the mesh, the computed
tields Tempand Disp and the derived field Stress are written to a data file for graph-
ical visualization.

Numerical Results

We have performed a parameter study for pump powers up to 20 W per pumped
side of the crystal in ten steps, with a pump beam waist radius of wy = 250 pm and
a M? factor of 55. The pump beam wavelength amounts to 809 nm, the absorption
coefficient of the YAG crystal is 3.5cm™! and 40% of the pump power is assumed to
be converted to heat. The corresponding heat distribution for a pump power of 20 W
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Figure 2.72: Temperature distribution in the
laser rod at a pump power of 20 W per side.
The temperature scale is given in K.
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Figure 2.74: Distribution of the highest prin-

Figure 2.75: Maximum tensile stress in de-
cipal stress component.

pendence of the pump power per side.

per side is shown in Fig. 2.72. The maximum temperature is located inside the crystal
and amounts to 150°C. Fig. 2.73 shows this maximum temperature for the whole
pump power range from 2 to 20 W. Despite the non-linear material parameter (2.97)
the raise of the maximum temperature goes linear with the pump power.

As mentioned at the beginning of this example, a too high stress may mechanically
crack the crystal. The stress forms a second rank tensor. With suitable coordinate
transformations the tensor can be diagonalized, i.e. the stress components are reduced
to the principal stress components. Positive and negative values denote tensile and
compressive stress, respectively. The largest positive value of the three remaining
diagonal elements therefore denotes the maximum tensile stress, which is a valuable
indicator for thermal crystal damage. Typical fracture limits for Nd:YAG are reported
in the literature and confirmed by the author to range from 130 to 260 MPa. Fig. 2.74
shows the distribution of the highest principal stress component. It is obvious the the
inner part of the rod is under compression whereas the outer part is under tension. The
maximum tensile stress is located on the rod axes at the surfaces of the crystal. Fig.2.75
shows this maximum tensile stress as a function of the pump power. It raises with the
pump power up to about 100 MPa at 20 W per side, which is below the fracture limit.
Due to the non linear thermal expansion (2.98) the maximum tensile stress shows a
small nonlinearity with respect to the pump power per side.

The focal length of the averaged thermal lens, following (2.93), is deduced from the
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Figure 2.76: Focal length of the averaged thermal lens as a function of the pump power per
side. Dots indicates the values obtained from the OPD data whereas the solid line represents
the hyperbolic least quare fit to this data.

OPD-data and plotted in Fig. 2.76. The figure indicates that the focal length of the
averaged thermal lens has a hyperbolic dependence on the pump power of the form
fav = Fsp/ Poump With Fy, the specific focal length. For this example, the specific focal
length is F, = 615 mmW.
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2.18 Thin-Disk Laser

Most diode pumped solid state lasers (DPSSL) suffer from strong thermal lensing ef-
fects, especially at high pump powers. The strong thermal lens is mainly induced by
high radial temperature gradients normal to the optical axis in the laser crystal. A
very efficient way to overcome this drawback is offered by the thin-disk laser concept.
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Figure 2.77: Optical scheme of a simple thin-disk

laser with quasi longitudinal pumping of the crys- ~ Figure 2.78: Representation of the elec-

tal. tric field E in direction of the principal
axes of the refractive index ellipsoid E,
and E..

There, a crystal disk with a thickness smaller than the diameter of the disk is mounted
with one of its faces on a heat think, see Fig. 2.77 which is high-reflectivity (HR) coated
for both the laser and the pump wavelength. Therefore the excess heat is removed via
this face. If we assume a large heat transfer coefficient over the hole area, a tempera-
ture field will be established in the crystal with the isotherms essentially normal to the
optical axis resulting in significantly reduced temperature gradients in this direction.
The disk can efficiently be pumped by laser diodes in a quasi-longitudinal scheme. To
increase the absorbtion of the pump radiation for a given thickness, multiple passes of
pump radiation through the disk must be used. This disk fits into the resonator as an
end mirror or as folding mirror. The design is suitable for lasers in the power range of
several watts to kilowatts. The power can be scaled by increasing the pumped diam-
eter of the disk at constant pump power density and/or by using more than one disk.
By employing the appropriate resonators and efficient cooling technologies, it is pos-
sible to achieve a high beam quality and a high efficiency simultaneously. This design
is particularly well suited for quasi-three-level systems such as Yb:YAG, because a low
mean temperature and a high pump power density are necessary for efficient opera-
tion. Therefore Yb:YAG was chosen as the preferred active medium but the thin-disk
concept is also suitable for a variety of other laser materials as e.g. Nd:YAG, Nd:YVO,
and Tm:YAG. Recently the thin-disk lasers of very high beam quality band high out-
put powers became industrial available. More literature about this concept can be
found in [1, 2, 3]. In the present example, we will explore the benefits of the thin-disk
laser concept and will analyze the stress induced birefringence called photo-elastic-
effect.

Birefringence

Birefringence is an involved matter and therefore we abstain from a detailed descrip-
tion, an introduction into this subject can be found in [4, 5]. Here we focus mainly
on the effect of birefringence induced depolarization. Fig. 2.78 shows the situation of
a linear polarized plane wave entering a depolarizing element. The refractive index
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is not uniform and is represented by an ellipsoid with the principle axes o0 and e. In
general, these principle axes do not coincide with the z- and y- axis of the laboratory
system. The electric field vector E can be represented by its components E, and E,
in directions of the principle axes of the ellipsoid. The refractive indices n, and n.
for these two components are different, and one component of the field vector E is
retarded with respect to the other when passing through this element. Therefore, de-
pending on n, and n. and the thickness of this element the polarization of this wave
is changed. When not a special thickness is chosen (\/2 or A\/4 plate), the wave is el-
liptically polarized after this element, see Fig. 2.80. The field vector of this exit wave
decomposes into a component in the primary direction E,,,; and into the perpendicu-
lar component Eycpo1. The latter gives the amount of the wave which is depolarized by
the element. Anisotropic laser crystals as e.g. Nd:YLF show a natural birefringence,
in contrast to isotropic crystals as Nd:YAG. This situation changes when the crystal is
heated. The thermal expansion leads to stresses and a local deformation of the crys-
tals lattice which leads to spatially varying stress induced birefringence, called photo-
elastic effect [6]. The optical anisotropic activity of a material is generally described by
the dielectric impermeability tensor B® which is the inverse of the permittivity tensor
e. If the medium is isotropic, we then have B? = ng 21d with ng the refractive index.
Under a deformation given by the strain €, the dielectric impermeability is changed
due to the photoelastic effect according to [6]

B=B"+P.¢, (2.99)

with P the photoelastic tensor. To investigate the depolarization effects of strain in-
duced birefringence, we follow the change of a plane wave Eq(z) exp(—i(wt — kz))
traveling in the z-direction which to a first order is given by

OEo(z) 2mi

00) _ 2 g 1), (2.100)

This equation is then integrated along the ray path and this is done by the post-
processing routine ApplyPol  for a small increment of dz.

The observation of the depolarized part of a linear polarized plane wave, traveling
through a pumped rod, is one possibility to analyze stress induced birefringence. The
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Figure 2.81: Top and side view of the crystal lattice axis
(a, b, and c) in case of a [1,1,1] cut cubic crystal.

Figure 2.82: Macro element mesh
after application of the cylz routine.

set-up is schematically shown in Fig. 2.79. A horizontal polarized plane wave enters
the pumped rod. Inside the rod the polarization is locally disturbed. After passing
the rod, a vertical polarizer transmits only the depolarized part of the wave, which is
observed on the screen. With SESES, the photo-elastic effect can be calculated and an
additional post-processing leads to the pattern of depolarized light as observed on the
screen in Fig. 2.79. To quantify this effect, its useful to calculate the relative amount of
depolarized light in a circle of radius » whose center is on the axis.

Model Specification

The file example/ThinDisk.s3d starts by defining some geometry parameters of
the thin-disk device with Yb:YAG as active material. We then define the cooling pa-
rameters represented by the heat transfer coefficients to air and water A, and hyat
as well as the absolute temperatures T},;; and Tyat. As we have chosen Yb:YAG, a
quasi-three-level system, as active material, only 15 % of the pump power is assumed
to be converted to heat. Furthermore, since we use a thin-disk, we take benefit of the
approximation that the pump power density is constant along the direction of the op-
tical axis. As we assume a radial symmetric pump distribution here, we only have to
specify the total absorbed pump power and the pump spot radius

w0 = 1.0E-3 ( * pump beam focus radius / m *)
P = 100 (* Pump power (W) *)
conv = 0.15 ( * fraction converted to heat *)

For isotropic material behavior and for the photo-elastic effect, we have to specify
the orientation of the crystal lattice with vectors a, b and c relative to the lab system.
Yb:YAG is a cubic crystal and is normally [1,1,1] cut. With z being the optical axis, we
will obtain the situation as shown in Fig. 2.81 in top- and side-view. In SESES we only
have to specify the z-, y- and z-components of the lattice vectors a and b, the vector
c is computed internally. From Fig. 2.81, we see that the z-component of a and b are

equal and given by
1

S 2.101
@ 3 (2.101)

The length of all axes in the top view of Fig. 2.81 equals y/2/3 and we obtain for the -
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and y-components

a; = \/?cos(oz) , by = \/§cos(a +5),
3 3 (2.102)
ay, = \/gsin(a) , by, = \/gsin(a + ).

For simplicity, we chose o = 0 and define

alpha = 0 *Pl/180 ( * angle between Projection of a and x *)
beta = 120 =PI/180 ( * Angle between Projection of a and b *)
ax = sqrt(2.0/3.0) * cos(alpha)

ay = sqrt(2.0/3.0) *sin(alpha)

az = sqrt(1.0/3.0)

bx = sqrt(2.0/3.0) * cos(alpha+beta)

by = sqrt(2.0/3.0) * sin(alpha+beta)

bz = sqrt(1.0/3.0)

After the defintion of the relevant problem parameters, we construct the mesh shown
in Fig. 2.82 and define the material properties. For Yb:YAG the photo-elastic coeftfi-
cients are not reported in the literature. We therefore use the values of the well probed
material Nd:YAG because the coefficients will mainly be given by the host material
YAG. These values are defined with respect to the crystal lattice whose orientation is
given by the vectors (2.101) and (2.102) and are to be transformed to the global system
with the built-in function TransformT4

Parameter Photo TransformT4(
TXXXX -0.029; T.YYYY -0.029; T.ZZZZ -0.029; T.XXYY 0.0091 ;
T.YYZZ 0.0091;T.XXZZ 0.0091; T.XYXY -0.0615;T.YZYZ -0.06 15;
T.XZXZ -0.0615; aDir ax,ay,az; bDir bx,by,bz)

The laser is pumped by choosing a homogeneous pumped cylinder distribution with
radius wy

Parameter Heat conv *P/(wO »wOx Pl +d_Disk) =*(sqrt(x *x+y*y)<w0?1:0) W/m * 3

As boundary condition, we assume the back surface of the copper heat sink to be in
contact with the cooling water and fixed to mechanical elongations; all other surfaces
are in contact with air and are free to expand. As final step of the initial sectin, we
define a routine to integrate eq. (2.100). The routine’s input is a polarization state
RePol , ImPPol and the outputis this state after the wave has traveled from the points
pO to p. What we are actually doing is the computation of the exponential function

E(z+ dz) = exp <?(B_l/2 — ndd)dz) E(z)

with the help of a spectral decomposion of B.

In the first part of the command section, we define the lattices on which the OPD and
the birefringence has to be determined. The lattices are equally spaced in a square
with the lower left corner at (—7pd, —7opd) and the upper right corner at (ropd, Topd)-
Every lattice starts on the back surface of the disk at the z-coordinate dcopper + dindium
and ends on the front surface of the disk with its direction parallel to the optical axis.
The number of integration points for all lattices is given by n,,q. The used parameters
nrOPD, rOPD and nOPDare defined in the initial section.
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For i From 0 To nrOPD
{ For j From 0 To nrOPD
{ Lattice OPD_@{i}_@{j} Index m=0..nOPD
(rOPD * (@i * 2/nrOPD-1),rOPD  *(@j * 2/nrOPD-1),d_copper+d_indium)
+(0,0,d_Disk) *m/nOPD
}
}

The next block defines the solution procedure where we first solve for the temperature
Tempand then for the displacement Disp . Finally we write out the temperature-, the
heat-flux, the displacement- and the stress-field.

Convergence 1
BlockStruct Block Temp Block Disp
Solve Stationary
Dump Temp TempDiff Disp Stress

In the last part of the command section, we compute for all lattices the optical path
difference (OPD) and the stress induced depolarization.

Write
Text "OPD X-coord Y-coord OPDtherm OPDend OPDtot
Text "Re(Ex) Re(Ey) Im(Ex) Im(Ey)\n"
For i From O To nrOPD { For j From 0 To nrOPD
{
Text "™ Pol=(1,0,0,0), f=0, pO=zero
Lattice OPD_@{i}_@{j} ™ f?Pol=ApplyPol(p0,coord,Pol): Pol,pO=coord,f=1

Text "(%.0,%.0f) " @i,@j
Text "%9.2e %9.2e %9.2e %9.2e %9.2e "
rOPDx (@i * 2/nrOPD-1),rOPD  * (@j * 2/nrOPD-1),integrate(Lattice OPD_@({i}_@{j};
DRefrac,Refrac  *sqrt(Strain.ZZ * Strain.ZZ),
DRefrac+Refrac  *sqrt(Strain.ZZ * Strain.ZZ))

Text "%9.2e %9.2e %9.2e %9.2e\n" Pol
Pl

Numerical results

For this simulation, we have chosen an absorbed pump power of 100 W and a pump
spot radius of 1 mm. The temperature distribution in the thin-disk is shown in Fig. 2.83.
The maximum temperature, localized in the center of the disks front surface, amounts
about 92°C. As we can easily see, the temperature gradients in the center part of the
disk are really into the direction of the optical axis. The temperature gradient becomes
strongly radial in the border range of the pumped region. This fact is also confirmed
by the direction of the heat flow, shown in Fig. 2.84. In the center part of the disk the
direction of the heat flow is parallel to the optical axis and in the border range the di-
rection of the heat flow becomes more and more radially. The temperature raise on a
radial straight line, starting in the center of the disk and located on the front and back
surface and in the middle of the disk, are shown in Fig. 2.85. The corresponding curves
are very flat up to a radius of about 0.75 mm which corresponds to 3/4 of the pump
spot radius. From a radius of 0.75 mm to 1.5 mm they drop significantly down and are
again flat for higher radii. Therefore we can expect a very weak thermal lensing in the
central part of the disk up to a radius of 0.75 mm.

The optical path difference (OPD) induced by the thermal dispersion and the end
effect is shown in Fig. 2.86. As expected, the OPD is very flat up to » = 0.75 mm.
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Figure 2.83: Temperature distribution in the
disk and its central, pumped with 100 W. The
maximum temperature amounts about 92 °C.
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Figure 2.84: Heat flow in the central part of
the disk. The cones denote the direction of
the heat flow.
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The corresponding focal lengths of the averaged thermal lens are fi;, = 29.1m and
fenda = 11.7m which is definitively extremely weak. Even when we deduce the focal
length of the averaged thermal lens over a radius of 1.25 mm the values rest weak with
fin = 12.6 m and fong = 5.2m.

Lets last have a look onto the stress induced birefringence by checking the amount
of local depolarization of a light ray following the corresponding lattice. As the lat-
tices are equally spaced in a square we get from this depolarized part the information
about the local depolarization of a homogenous beam traveling through the disk, see
Fig. 2.78. The result, with the well known Maltese cross, is shown in Fig. 2.87. We
can see, that depolarization is almost not existing inside the pump spot area and be-
comes much higher outside. We can determine the relative amount of depolarization
in a homogenous beam of radius r as follows. We summarize the relative depolar-
ization of each lattice inside the beam cross section and divide the obtained result by
the number of lattices inside this cross section. When we perform this for a varying
radius r we obtain the relative amount of depolarization as a function of the beam
radius r. A laser beam in the resonator passes the disk twice, because the back sur-
face of the disk acts as high reflecting mirror. Therefore we have to use a double forth
and back path to estimate the real depolarization of the disk. If the resonator contains
polarizing elements, this relative amount of depolarization can be interpreted as the
depolarization loss of the disk for this kind of resonators. The obtained result is shown
in Fig. 2.88. As we can see, the depolarization losses are extremely low in the range of
0.01% — 0.05%. When we chose a beam radius smaller than 0.75 mm, the depolariza-
tion loss only amounts to 0.002 % whereas the highest loss of 0.05 % is obtained for a
beam with radius » = 1.5 mm.

In summary we can say, that the thin-disk-laser represents a laser concept which can
really overcome the drawback of high radial temperature gradients. We have obtained
an extremely weak thermal lensing and almost no depolarization losses. The thin-
disk-laser concept is therefore very promising for the future.
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Figure 2.88: Depolarization loss of the disk
for a homogenous beam of radius r passing
the disk forth and back.

Figure 2.87: Depolarized part of a plane wave
traveling through the disk. The grey dotted
circle indicates the pump spot.
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2.19 Thermo Optically Self-Compensated Amplifier

The thermally induced lens in a laser rod is by far the most critical issue in the de-
velopment of high-power solid state lasers and limits the output power of lasers with
good beam quality (M? ~ 10...20) to a narrow power range. In the last example, we
have presented the thin-disk-laser design which is well suited to overcome this draw-
back. But this design is limited to quasi-longitudinal-pumping requiring high quality
diode pump modules and beam shaping optics. The pump radiation has to pass the
disk several times to guarantee a high absorbed part of the pump power in the thin
disk. In practice this is realized by a special and costly pump optics. Furthermore the
maximum pump power per disk is limited and for high power lasers two ore more
disks have to be used in one and the same resonator. The scaling of this design to
higher output powers requires therefore an additional effort. In contrast the scalabil-
ity of transversal diode pumped rods is much easier. In principal we only have to
increase the length of the laser rod and the pump modules. Also the requirements to
the beam quality of the pump modules and the beam shaping optics are much lower.
Therefore transversal diode pumping represents still attractive design for high power
solid state lasers.

In the present example we will introduce a new and very promising transversally
diode pumped laser design with an internal compensation of the thermally induced
lens. The design bases on the idea to take advantage of the thermal effects themselves
and to use a heated optical element as a compensating element [1, 2]. The thermal
lens in a rod is evoked by the temperature dependent refractive index of the laser gain
medium which mainly shows a positive thermal dispersion. In contrast some selected
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glasses, liquids and curing gels show a negative thermal dispersion, whose modulus
may be two magnitudes higher than for the laser gain medium. Let us cut a transver-
sally pumped laser rod into two parts and place between them a thin disk of such a
material, then this disk will quite exactly adopt the radial temperature distribution of
the rod. The negative thermal dispersion in the disk leads to a negative thermal lens
which will be much stronger than the ones in the two parts of the rod. Therefore such
a thin disk of suitable thickness should be able to mainly compensate the thermally
induced lens of the pumped rod. To guarantee a good contact of the thin disk and the
two parts of the laser rod on the whole surfaces, the most advantageous materials are
liquids or curing gels. Fig. 2.89 shows a scheme of this set up, called Thermo Optically
Self-Compensating Amplifier (TOSCA). The thin compensating disk is placed adjacent
between two laser rods. The main part of the rods and the compensating disk, in case
of a non hygroscopic material, are in direct contact with the flowing cooling water and
are transversally pumped pumped through this cooling water. For simplicity, we will
assume that the compensating disk shows no absorption at the pump wavelength.

Model Specification

With the present example example/Tosca.s2d , we will perform a parameter study
to obtain the optimal thickness of the thin compensating disk for a set of given geo-
metrical and pump parameters, where for simplicity we will perform just a rotational
symmetric simulation. Fig. 2.90 shows the simulated device consisting of two rods
and the compensating thin disk. The outer rod parts of the length /,,. are in contact
with the mount, see Fig. 2.89 and are therefore not directly cooled by water. Adjacent,
we have two parts of length /., which are directly cooled by water but not pumped
by diode radiation. The disk with thickness ., is located between the two pumped
rod parts of length ¢,,. These geometrical parameters together with the rod radius r
are defined at the beginning of the input file.

Define

luc = 1.0E-3 nl_uc =1 ( * uncooled length / m )
|_cup = 2.0E-3 n_cup =1 ( * cooled and unpumped length / m *)
I p = 20.0E-3 nl_p =10 ( * pumped length / m *)
r = 2.0E-3 nr =5 ( * rod radius / m )
nl_cp =4
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|_cpmin = 0.6E-3 ( * minimum length of compensator / m *)
|_cpmax = 1.3E-3 ( * maximum length of compensator / m *)
n_l_cp =3 ( = #steps in length of compensator *

For the parameter study, we have also to define the minimum and maximum thick-
ness of the compensating disk /¢, _min and £¢p_max, as well as the number of parameter
steps ny_cp. This section is followed by the definition of the element dimensions, co-
ordinates, node numbers of the mesh in the direction of the optical y-axis. As default
value for the thickness of the compensating thin disk we set 1 mm. This value will be
automatically changed during the parameter study. After the definition of the cooling,
refinement and OPD parameters, we start with the specification of the pump distribu-
tion. In the case of transversal pumping, we usually specify the total absorbed pump
power per length d P/dy from which the fraction conv (40% in case of Nd:YAG) is con-
verted to heat. Inside the rod, we assume a parabolic shaped pump distributionsee of

the type

% = pe(1 —ar?),
with p. the pump power density on the optical axis and a a decreasing factor, see
Fig. 2.91. If at the distance R along the rod’s radius, the power density drops to 1 p.
(we use here = 0.5), then we have a = (1 — n)/R?. The integrated pump power
density in a cross-section of the rod equals the pump power per length dP/dy so that

we have

2 dP

R
dP dP rm
e o rdrdp = — o= — -
//”dA”“’ iy T oI
0 0

The corresponding laser pump values are then defined as parameters.

dP_dy = 10 (* pump power per length / W/mm *)
conv = 04 ( ~ fraction of power converted to heat *)
eta =05 ( + power drop at radius *)
p_c = dP_dy *2/(Pl *r=*r=x(1+eta)) ( * power density on rod axes *)

As we have a unpumped- and pumped Nd:YAG part, we define the two materials
UP.NdYAGand P_NdYAG

MaterialSpec UP_NdYAG
Equation ThermalEnergy Elasticity Enable
Parameter StressOrtho LinElastlso(Emodule 307 GPa; Poiss onR 0.3;
Alphalso alpha(Tair)) Slunit
Parameter Refrac 1.82
Parameter DRefrac (7.3e-6) * (Temp-Tair)
Parameter Kappalso D_Temp kappa() Dkappa() W/(m * K)-W/(m * Kex 2)

MaterialSpec P_NdYAG From UP_NdYAG
Equation ThermalEnergy Elasticity Enable
Parameter Heat conv *p_c*(1-(1l-eta) *xxXI(r *r)) WIm * 3

For the pumped part, we only have to add the heat distribution, therefore we derive
the material P_.NdYAGfrom UP.NdYAGand additively define the heat distribution. We
further assume Sylgard 184 as compensator material and dedfine the following mate-
rial properties.

MaterialSpec Compensator
Equation ThermalEnergy Elasticity Enable

Parameter Refrac 1.43

Parameter DRefrac (-3.0e-4) * (Temp-Tair)

Parameter Kappalso 0.15 W/((m  *K)

Parameter StressOrtho LinElastilso(Emodule 20 kPa; Poisso nR 0.45;

Alphalso 0.25e-4  *(Temp-Tair)) Slunit
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After the definition of the material properties, we define the mesh and maps the ma-
terials to to mesh.
QMEI nr (r/nr)

QMEJ nyl (dyl/nyl) ny2 (dy2/ny2) ny3 (dy3/ny3) ny4 (dy4/ny4 )
ny5 (dy5/ny5) ny6 (dy6/ny6) ny7 (dy7/ny7)

CoordNonConst
Coord x y+(y-y3) =(l_cp-1) block(0 nxtot  nny3 nny4-1)
Coord x y+l_cp-1 block(0 nxtot  nny4 nytot)

The Coord statements are introduced due to the varying thickness /., of the com-
pensating disk which enforces a redefinition of the mesh for each solution step. As
thermal boundary condition, we assume the uncooled part as well as the front and
back surface of the rod to be in contact with air. The cooled part is of course in con-
tact with water. For the mechanical fixation, we assume the uncooled part, where the
mount is located, to be fixed for radial elongations and due to symmetry, we fix lon-
gitudinal elongations in the center of the rod, see Fig. 2.89. As last part of the initial
section, we define the rotational symmetry with the statement

GlobalSpec Model AxiSymmetric Enable

We start the command section with the definition of the information in the output
stream and the used solver

Info Refine HideBC
LinearSolver NonSymmetric

and define the lattices on which the OPD has to be calculated.

For k From 0 To nr_OPD
{ Lattice OPD_@k Index m=0.d_OPD (@k r_OPD/nr_OPD,0)+(0,@!_OPD) +*m/d_OPD
}

We then initialize the temperature field with the air temperature.

Solve Init Temp=Tair

We ingrain the solution procedure into a loop to perform the parameter study. For
each solution step, the automatic mesh refinement algorithm is used for the tempera-
ture and the displacement field. At the first Solve Stationary statement the cor-
responding thickness of the compensating disk is set by the ForSimPar statement.
Afterwards the fields Tempand Disp are calculated using the adaptive mesh refine-
ment algorithm and written out together with the Stress field. Finally the OPD is
calculated and written out to the file OPDi.dat

while (1)
{

Store StressAver(Continuous 1;FreeOnRef)=Stress,

TempDiffAver(Continuous 1;FreeOnRef)=TempDiff
Remesh Refine ErrTemp(TErr) Global Refine ErrDisp(MErr) G lobal
Solve Stationary ForSimPar |_cp At |_cpmin+@i * (I_cpmax-l_cpmin)/n_|_cp
if (REMESH) break;

}

Dump Temp Disp Stress If @i>0 { Append }

Write File "OPD_"@@i".dat" Text "rt OPDtherm\t OPDend\t O PDtot\n"
For k From 0 To nr_OPD

"%612.8e\t %12.8e\t %12.8e\t %12.8e\n" @k *r_OPD/nr_OPD,
integrate(Lattice OPD_@k; DRefrac,(Refrac-1) *sqrt(Strain.YY * Strain.YY),
DRefrac+(Refrac-1) * sqrt(Strain.YY * Strain.YY))
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Figure 2.91: Radial pump power

density profile. Figure 2.92: Temperature distribution in the center re-

gion of the device. The temperatures decreases in the
compensating disk, especially in the outer part. This
decrease is more pronounced in the case of thicker
disks.

Numerical results

We perform the simulation for a Nd:YAG rod of » = 2 mm radius, a pumped length of
¢, = 20mm, a cooled and unpumped length of /., = 2mm and an uncooled length
of ¢, = 1mm. We vary the thickness of the compensating disk in 0.1 mm steps from
0.6 mm up to 1.3 mm. The absorbed pump power per length amounts 10 W /mm which
corresponds to total pump power of 400 W. Fig. 2.92 shows the temperature distribu-
tion in the center part of the device for thicknesses of the compensating disk of 0.6 mm
and 1.3mm. We can see that, especially in the outer parts of the rod, the tempera-
ture distribution of the laser rods is not exactly transferred into the compensating disk
and decreases in the disk. This deviation becomes more pronounced for thicker disks.
From this we can expect, that the compensation of the thermal lens will not be optimal
in the outer part of the device. This assumption is confirmed by the OPD’s, as shown
in Fig. 2.93. The curvature of the OPD near the optical axis is concave for small thick-
nesses of the disk and becomes convex when the thickness is increased. Therefore
we have first a positive focal length of the thermal lens which becomes subsequent
negative with increasing thickness of the disk. For suitable thicknesses of the disk,
the OPD near the optical axis is almost constant and the thermal lens in this range
therefore vanishes. The OPD in the outer part of the device is not influenced by the
compensating disk, this is due to the fact the the outer part of the disk adopts the tem-
perature of the cooling water as we have previously seen in Fig. 2.92. From the OPD
data we can determine the focal length of the averaged thermal lens by a parabolic
fit. The fit was performed over the extension from r = 0 to r = 1.5 mm and the corre-
sponding results are shown in Fig. 2.94. The dioptric power of the averaged thermal
lens has a linear dependence from the thickness of the compensating disk. The linear
regression to this data leads to the optimal thickness of the compensating element of
dopt = 0.86 mm, for a dioptric power of 0.

In summary, the thermo optically self-compensated amplifier is a very promising de-
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Parameter Study
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Figure 2.94: Dioptric power of the averaged
Figure 2.93: OPD distributions as a function  thermal lens as a function of the thickness of
of the thickness of the compensating disk. the compensating disk (dots) and the corre-
sponding linear fit (solid line).

sign. It overcomes the drawback of strong thermal lensing and takes benefit of the
easy to manage and not costly technique of transversal diode pumping. In addition
the design rests easy scalable for higher output powers and is therefore very interest-
ing for industrial application.
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2.20 Shells or Thin mechanical structures

A shell is a curved thin-walled mechanical structure capable of supporting large loads.
This property stems from its curved nature and the ability to distribute internal trans-
verse loads towards in-plane loads at the edges of the shell. Shells are pervasive in
nature and as artefacts and include skulls, aortic valves, blood vessels, domes, silos,
tubes, cans, car bodies, balloons, etc. Because of their overall presence, many me-
chanical simulations will then actually deal with shell structures. A priori one may
think this task being as simple as performing a mechanical simulation based upon the
discretization of the 3D governing equations of continuum mechanics by some stan-
dard finite elements. However, this approach does not always work well when the
mechanical structure is shallow in one of the three directions, since low order finite
elements are numerically unstable here and solutions are affected by large errors, an
effect known as numerical locking. When numerical locking appears, the displace-
ment are underestimated and the stress is overestimated, i.e. the mechanical structure
is by far more stiff than in reality. The main reason of this failure is that thin mechani-
cal structures tend to bend and the resulting displacement is a third order function of



132 SESES Tutorial September 2012

the coordinates, badly approximated by first or low order finite elements.

Because the analytical solution of the 3D continuum mechanical equations is seldom
possible, except for some trivial cases, there has always been interest in obtaining more
tractable governing equations by model reduction. For shell structures and based
on physical sounded arguments stemming from the shallowness hypothesis, one can
make kinematic assumptions on the solution. The most prominent one is that straight
vertical fibers in the undeformed configuration, remain straight during any deforma-
tion. By considering the now constrained displacement, integration of the balance
laws in the transverse direction yields shell models and as particular cases plate and
beam models. With this approach, many analytical solutions have been obtained, see
for example [10] for linear axis-symmetric shells of revolution.

Numerical methods for shells may use the underlying shell models for their discretiza-
tion. At the present time, these shell models are mostly linear models where the dis-
placement just enters linearly into the governing equations. Among the most promi-
nent models, we have the linear model of Koiter for thin shells with zero transverse
shear strain and the linear Nagadi model for thick shells, [2, 5, 6]. For numerical appli-
cations, the Koiter model is used to a less extent, since it requires finite elements for the
Sobolov space (H'(2))? x H?(f2). Here the main drawback is that finite elements with
continuous derivatives as required by H?(2) are not easily constructed. Instead, the
Nagadi model requires finite element approximations in the standard Sobolov space
(H'(Q))5. Here similarly as for the discretization of the native 3D mechanical formu-
lation, standard finite elements for H'() are subject to numerical locking. However,
stable and locking free finite elements have been discovered for the particular cases of
plates [7, 3] and shells in the bending dominated state [4]. This stability is asserted by
proving the convergence rate to be independent from the thickness of the shell.

Even assuming that stable finite element based on the Nagadi shell model will be
sometimes discovered thus paving the way for robust numerical simulations of shells,
their usage for practical applications is somewhat limited. As first, just the geometric
linear case is generally considered, so that for large displacements, these linear shell
elements need to be amended e.g. by a corotational formulation not free of disadvan-
tages, see [8]. Secondly the kinematic behind the Nagadi model assumes a vanishing
transverse normal stress and no change in the shell thickness during the deformation.
As a result generic 3D material laws need to be amended for shells and mechanical
contacts on the upper and lower shell surfaces are not easily modeled numerically.

The engineering community is therefore pursing another approach to shell modeling
than the applied mathematical community which uses shell kinematic models. The
approach is based on the discretization of the native 3D non-linear continuum formu-
lation and by trying to fix first or low order finite elements to avoid numerical locking.
This trend started with the reduced integration approach [11] and the mixed MITC
plate elements [1] and has been further developed into what has become a solid-shell
approach. These finite elements just use displacement degree-of-freedoms at the top
and bottom of the shell, from the external point of view they are the same as standard
(H'(£2))3 solid elements but they are inherently anisotropic in the transverse direction
which is assumed to be shallow. The shallowness hypothesis is used to fix the various
locking numerical behaviors. The main advantage of this approach is that we can use
the same 3D material laws and the same boundary conditions as for solid elements.
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Figure 2.95: Shell displacements for snap-through and warp solutions.

Numerical example

For the solution of mechanical problems, SESES offers the choice between first and
2nd order solid elements and the solid-shell elements of [9], all ones either for the ge-
ometric linear and non-linear formulation and with generic 3D material laws. For a
practitioner is therefore of interest to know the range of applicability and properties
of the various finite elements, topics discussed together with the SESES file found
at example/ConicalShell.s3d modeling a conical shell. The shell is an axis-
symmetric shell of revolution, with isotropic linear material laws and with loads ap-
plied symmetrically. We use the geometric non-linear model allowing large displace-
ments to be computed. The shell is shallow in the topological K-direction so that the
three type of finite elements are easily selected by specifying either the Elasticity ,
Elasticity2 or ElasticShellSingleK equation model.

Although the problem formulation is fully symmetric with respect to the axis of rota-
tion, non-linear solutions may not be necessarily symmetric as for warp deformations
breaking the symmetry, so that a reduced 2D axis-symmetric approach only comput-
ing symmetric solutions is not followed here. However, to reduce a little bit the nu-
merical work, we just compute a quarter of the 3D shell by applying symmetric BCs
on the virtual cuts. In doing so, we cannot compute solutions with half-symmetry. The
bottom of the shell is fixed but can freely rotate on the bottom edge and on the top we
apply an increasing vertical downward traction. All three types of finite elements just
use Lagrange displacement degree-of-freedoms, therefore the BCs are independent of
the element type.

The conical shell starts to deform inward and after a while it approaches an unstable
snap-through region, see first row of Fig. 2.95. In a dynamical simulation, the shell will
snap-through and will start oscillating around the next stable solution. For stationary
computations, however, solutions around this turning point can only be computed
with the help of a load control algorithm. The particularity of this instability is that
increasing displacements are characterized by decreasing loads. By just changing the
load, we cannot pass the turning point, since by decreasing the load we go back on the
path of already computed solutions. Load control algorithms are devised to pass these
points, since they use another solution’s parameter than the load, typically something
related to the norm of the computed displacement. A brief overview is given in the
Section 1.7 Non-Linear Algorithms. By further increasing the displacement, we arrive
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Figure 2.96: Applied load versus displacement L>-norm for various finite elements and re-
finement levels.

at a bifurcation point where warp deformations show up, see second row of Fig. 2.95.
At the present time, no robust algorithms are implemented to pass bifurcation points
and so it is a matter of luck if we can pass these singular points and on which solution
branch we land afterwards. In particular, the warp solutions of Fig. 2.95 have been
computed with first order solid elements. As a rule of thumbs, low order elements
with few degree-of-freedoms are more robust when solving non-linear problems and
in this case they can easily jump over the singularity. This is not the case for the
2nd order solid elements or the solid-shell elements with many internal degree-of-
freedoms.

The geometry of the conical shell is easily defined as well as the definition of the linear
isotropic elastic law and BCs. To use a load control algorithm, we need to specify
the derivative of the global residuals with respect to the load parameter, in our case
the pressure load. By default, a difference method is implemented to compute this
derivative, however, in our example the load is applied as a Neumann Pres BCs
which enters linearly into the formulation. In this special case, as alternative to the
numerical difference, there is the possibility to exactly specify the derivative. One
has to define a second Neumann Presl BCs, with a value representing the derivative
with respect to the load parameter. The boundary for this second BC is not used and
can be empty.

BC Press 0 0 0 IKType nx nz Neumann Disp (0,0,load) Pa
BC Pressl Neumann Disp (0,0,1) Pa Disable

The declaration of the exact derivative is done by associating both BCs with the state-
ment

Increment DR_DSimPar Linear(BC Press.Pressl)

The family of solutions computed by the load control algorithm is shown in Fig. 2.96
up to the first warp solution with the applied load as function of the displacement
L*-norm. A reference solution has been computed with second order elements and
a homogeneous refinement level of 1 and the other curves are for solid-shell and first
order solid elements with a homogeneous refinement level of 0 and 1. The solid-shell
elements are in very good agreement with the most precise solution and the first order
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solid elements are not so dramatically worse. This is not so a critical example for nu-
merical locking since the elements are well shaped and the shell is rather thick. How-
ever, first order elements are by far less performant as soon as the thickness/size ratio
of the elements is getting worse. The solid-shell elements specified by the equation
ElasticShellSingleK always use displacement degree-of-freedom defined just at
the top and bottom of the shell independently from the number of elements defined
through the thickness. Therefore, the time spent within the linear solver is the same
as when using first order solid elements with a single element through the thickness,
which is the cheapest way to compute a solution. However, the overall solution time
is larger since solid-shell elements are more expensive to assemble. If not tremen-
dously slow, the time spent to compute elements is in general of little concern since
it grows linearly with the number of elements and therefore for large problems, the
linear solver time will always dominate the overall solution time.
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2.21 Plasticity Models

Plasticity theory plays an important role in metal forming and geophysics, where sim-
ple linear elastic laws cannot correctly reproduce mechanical deformations. Even for
infinitesimal strains, plastic models are non-linear, they depend on the history of the
deformations and may be on the overall quite involved, for an overview see e.g. [1]-
[2]. Since SESES accepts general non-linear elastic laws with the possibility to use user
defined element fields to implement the history dependency, a possible approach to
plasticity is to define models of interest within template files and use them on demand.
Although the generic user does not need to understand the model set-up and the de-
tails of plasticity theory, this approach has the advantage that one clearly see what the
models are doing and how they are written so that small adaptations and extensions
are readily implemented. In this example, we will discuss such an approach and com-
ment the steps required to define commonly used plasticity models for infinitesimal
strains. In particular, we will compute the 2D example of J>-flow with plane strain
presented in [3]. Because the SESES input is very basic, actually one has to specify the
stress and its derivatives with respect to the infinitesimal strain, there is quite some
work involved before ending up modeling a plastic flow, which however shows the
flexibility of such an approach.

General Theory

Plastic models are a particular class of hypoelastic models which are an extension
of elastic models. Within an infinitesimal theory of small displacements, an elas-
tic model consists in defining the stress s as a function of the linearized strain € =
(Vu + (Vu)T)/2 with u the mechanical displacement. The extension to a hypoelas-
tic model consists in specifying a stress flow s instead of s which introduces a time
dependency and the need for a time integration algorithm to be performed locally at
each point. The time, however, it is a pseudo time and intended is a slow mechanical
deformation where all inertial forces can be neglected. In this contribution, we will
not discuss details related to a particular choice of the time integration algorithm nor
of an automatic step selection, but we will use the implicit backward Euler algorithm
with a fixed time step to be defined by the user. This algorithm is first order accurate,
absolute stable and has been shown to be superior with respect to second order ones
for several plasticity models.

The basic assumptions used by phenomenological models of plasticity are that the
strain € = €° + &P can be decomposed in an elastic e and plastic e? part, there is an
energy function ¥(e¢, ¢) depending on the elastic strain e and some additional inter-
nal strain variables ¢ specifying the stress s = J.c¥ and the internal stress variables
q = —0; ¥ together with a yield function f(s,q) < 0 constraining the stress variables
(s,q) and where the flow of the plastic strain variables (€7, &) is defined as follow. If
f(s,q) < 0holds, we are in the elastic region and there is no plastic flow (¢7,£) = 0,
otherwise the plastic flow must maximize the plastic dissipation s - €’ + q - £&. This
maximum principle results in a yield function f being necessarily convex. Although
quite abstract, this problem formulation is mathematically well sounded and exis-
tence/uniqueness properties of solutions can be proven for some models, [5]. The
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above formulation is equivalent to the following Kuhn-Tucker equations where the
independent variables are (e, e?, §)

6P = N0sf , €= A0qf with fA=0, A <0. (2.103)

This is clear since if f < 0 we must have \ = 0 and so there is no plastic flow, otherwise
if f = 0 the above equations are just the classical Lagrange equations for the maximum
of a constrained functional.

Let us apply the backward Euler algorithm to the eqgs. (2.103) by performing a single
step. The starting point is therefore a time ¢,, with a know configuration of the in-
dependent variables (g,,,eh,¢,) and a time step At where we use the subscript n to
specify a time function evaluated at ¢,,. With the backward Euler algorithm, the solu-
tion for (&7, |, dn41) at t,41 = t, + At is computed by performing a single time step of
length At and using the time derivative evaluated at ¢,,;1. From (2.103), we therefore
obtain the system of equations

Efl-f-l = Eifz + A)\asfn-i-l )
gn—i—l = fn + A)\aqfn—i-l )
Sn+1 = OccV(eny1 — EZ—H? $n+i1) s
dn+1 = —35‘1’(€n+1 - EfLH, Ent1) s (2.104)
fn+1 S 07
fn-i—lA)‘ = 0,
A > 0,

with f,41 = f(Sp+1,9n+1) and AN = AAT. The value of the strain €p+1 at the new
time ¢, is considered know and determined by incremented solution u,;. The
common procedure used to solve the system (2.104) is first to assume that the plastic
flow does not change, i.e. A\ = 0 and from (2.104) we obtain the trial solution

Efz—i—l =eh, &1 =&n, Sni1 = Oee¥(ent1 —€h,8n), Ant1 = Qn - (2.105)

The important point here is that this solution satisfies f,,+1 < fiia Which is a property
following from the convexity of the yield function f, see [3, 4]. Therefore since f,, 1 <
0, if firial < 0, we must necessarily have AX = 0 and our trial solution (2.105) is actu-
ally the right solution at ¢,,; 1, otherwise we know that A\ > 0 and the unilateral con-
straint of (2.104) turns into simple a constraint and we have to find (e?, +1&nt1, 801,
dn+1,AN) so that

el = en+ANsfni1,

gn—i—l = gn + A)‘aqfn-i-l s

Sp+1 = 856\If(.€n+1 — E€L+1, £n+1) s (2.106)
Ani1 = —0:¥(enp1 —€b 1, 6nt1),

fn-i—l = 0.

For general plasticity models, this system of equations is solved with an iterative New-
ton’s algorithm generally started with the trial solution (2.105).

Jo-Flow with isotropic/kinematic linear hardening

For particular models, we can simplify the equations (2.106) and for linear models we
can find a closed solution as done for the following J>-flow example with hardening
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which is valid for a 2D plane strain, 2D rotational symmetric and 3D analysis, not
however for a 2D plane stress analysis. The energy function ¥ (e, &) = W,,, () +¥,,(§)
generally splits in a mechanical and plastic part. For the mechanical part, we assume
the most simple linear isotropic strain-stress law given by

s = 0V, (e) = ktr(e)Id 4 2udev(e) (2.107)

with &, p the bulk and shear modulus, tr(e) = ¢;; the trace of a tensor and dev(e) = e—
tr(e)Id/3 the deviator operator. For the plasticity model, we use the classical J>-flow
model with the von Mises yield function and isotropic/kinematic linear hardening

flsa) = Idev(s) il - /3oy — ),
() = LA +IRE,

with § = (&1,&2) and q = (q1,¢2),dev(q1) = 0 the strain-stress plastic variables and
oy, H, K three model’s constants. The von Mises yield function has the properties

. dev(s) — qp
—(in /2 = = ldev(s) — i
dqf =(—m,\/2), O0sf =n, with n |dev(s) —qi]’

which are readily verified and substitution into (2.104) yields the following equations

Efz—i-l = 6% + A)\nnH s

§nt1 = &+ AN—np41, \/E) )

Sp+1 = ktr(€n+1)1d + 24 dev(enH n—i—l) ,
ny1 = —(2HE& i1, Kéont1),

fn-i—l = 0.

In order to obtain a solution to these equations, we note that the normal vector n to
the yield surface f does not depend on any values at ¢,+; except for the strain ,,41
which is a know quantity

2M dev(€n+1 — EZ) —d1,n _ deV(Strial) —din
‘2N dGV(€n+1 - Eg) - an’ ’dev(strial) - ql,n‘ ’

Ny =

with
Strial = ktr(en41)Id + 2udev(e,41) — 2u el |
the stress of the trial solution (2.105). This decoupling is a property of the von Mises

yield function and does not hold for general models. A final evaluation of f,, 11 = 0
yields the value of A\

‘dev(strial) - an’ + \/%(O'y - q2,n) B ftrial
2u+2H + 2K 2u+2H + 2K’

AN =

In summary, the stress to be defined as input to SESES is given by s, 11 = Sgyia if
fuial < 0, otherwise by

ftrialnn—i-l
2u+3H + 3K

Sn+1 = Strial — 2/‘
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To obtain an optimal convergence behavior, we need further the derivative of the stress
sp+1 With respect to the strain €,,41. In order to keep the same notation, we compute
here directional derivatives D(e)[a] with respect to a vector a. By noting the properties
tr(dev(a)) = 0 and n,; - dev(a) = n,4 - a, after some algebra we obtain

D€n+1ftrial[a]) = 2un,g-a,
De, . swialla]) = ktr(a)ld +2udev(a),
d (-
De,pipsifa]) = 2pyfiefuna) (2.108)
A
Denﬂsn_,_l[a]) = k,‘tr(a)Id + 2,u (1 — ‘dev(sfgam)deV(a)
(2 )2 fria
~ 5 zirzR (L T v Pt (Mo -a).

Defining the model

Let us compute the plane strain perfect plastic example presented in [3]. The material
parameters are given by Young’s module Ey,oq = 7x 107 Pa, Poisson’s ratio v = 0.2,
yield stress 6y = /2/30y = /2/3 x 0.24x10° Pa and zero hardening H = K = 0
so that we also have ¢ = £ = 0. The bulk and shear modulus are defined by k£ =
Emod/(3(1—2v)) = 3.888x107 Paand yt = Enoq/(2(14 1)) = 2.916x 107 Pa. The SESES
input file for this problem can be found at example/J2Flow.s2d . In a first step, we
define an element field StrainP  to store the plastic strain ” at each integration point
and the global parameters BULK MODLAMEMURo define the bulk and shear modulus
k, .

ElmtFieldDef StrainP(DofField Disp)[T2Z]
GlobalDef Const BULK_MOD Pa
GlobalDef Const SHEAR_MOD Pa
GlobalDef Const YIELD Pa

We then define a routine PlasticStress to specify the material parameter Stress
Law defining both the local stress and the derivative with respect to the strain. For this
perfect plasticity example and fi;ia1 > 0, the stress is given by

Sp+1 = ktr(€n+1)1d +oyn,41,
and from (2.108) we have the derivative

dev(a) — n,41 - (ny41 - Q)

De, . sn+1]a] = ktr(a)ld 4 246y dev () —

At the end of this return mapping algorithm, we have to update the value of the plastic
strain according to
Jtrial Do 41

2u
If the step is elastic fiia1 < 0, we just define the isotropic and linear elastic law (2.107).
The geometry and BCs are defined according to the reference.

P — =P
En+1 =&y +

Numerical Results

Before computing a solution, we must allocate the plastic strain field with the state-
ment
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Figure 2.97: Displacement, shear stress and yield region for a vertical displacement of 0.007 m.

Store StrainP(RestoreOnFailure)=zero

otherwise its value will always be zero. The BCs have been defined to be time depen-
dent and the solution is computed in a series of stationary steps. The convergence of
Newton’s algorithm is optimal, but differently from the reference we need far more
steps to avoid divergence. However, by using linear extrapolation of the solutions
with respect to the pseudo time

Extrapolation Linear

the number of steps can be reduced to 10. Fig. 2.97 shows the displacement u, shear
stress s;, and yield region where f(s) = 0 holds for the solution at time ¢ = 0.07
corresponding to a vertical displacement of the upper edge of 0.07 m with the bottom
one being clamped in the vertical direction. An amplification factor of 20 has been
used to visualize the displacement on the computational domain.
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2.22 Necking of a circular bar

In this example, we extend the previous infinitesimal elasto-plastic model to the finite
strain case by considering the necking of a rod subjected to a large elongation. For de-
formations larger than 10 — 20%, the modeling of anisotropic plasticity is still an active
research field and open questions still remain, whereas the isotropic case is much less
controversial and is considered with this example. Here the theoretical framework
may get quite involved and the reader is referenced to [1]-[3]-[4] for additional back-
ground informations. When modeling elasto-plasticity at finite strain, basically two
different approaches are available. The first one is based on a priori additive decompo-
sition of the strain rate into a plastic and elastic part combined with a hypoelastic law,
whereas the second one is based on a multiplicative decomposition of the deformation
gradient into a plastic and elastic part combined with a hyperelastic law. In the case of
isotropy, both formulations can be shown to be equivalent. Historically the additive
decomposition was the first to be developed and it is still widely used in commercial
codes, whereas the multiplicative decomposition is considered more precise and bet-
ter supported by physical arguments. In the following, we present the multiplicative
approach for quasistationary elasto-plasticity in the form proposed by [5], where in-
finitesimal plastic models can be reused without changes and just some wrapper code
interfacing the numerical solver is different. However, the important assumption of
isotropy has to be made here, both for the elastic and plastic laws. In addition, we
have a restriction on the form of the elastic law, which however does not hold, if one
is ready to rewrite the infinitesimal plastic models.

Isotropic plasticity at finite strain

LetQ C R3 be the domain of a body at rest. Under actions of some quasi-static external
forces, the body deforms and so let ¢ : Q — Q¢ = ¢(€2, t) be the unknown motion to be
computed, F = 0x/0X the deformation gradient with X € (2 a material point and x =
#(X,t) € Q? a spatial point. In the multiplicative decomposition, one postulates F =
F, - F, with F¢ and F}, the elastic and plastic parts of the deformation gradient. The
idea behind this decomposition is that for any small neighborhood U, of x € ¢(X),
by removing all tractions acting on OU, we have an elastic relaxation into a stress-
free configuration with a remaining irreversible plastic deformation F, a physical
effect known as spring-back. The stress-free intermediate configuration is labeled 2,
however, since in general F, nor F. are gradients, we cannot define the stress-free
configuration as Q2 = ¢P(£2) with ¢ = ¢¢o¢” but just through the action of F, or Fe. Let
for the moment assume, there is no plastic deformation F, = 0, then the whole elasto-
plastic formulation should turn into an elastic formulation with ) = Q. We use here a
generic hyperelastic law with the Cauchy stress s given by the derivative of an elastic
potential. Although material and spatial points are connected by the diffeomorphism
¢, the material description is required to formulate anisotropic material laws which
however is not the case in our example. Here, the second Piola-Kirchhoff (P2K) stress
S=JF_;!s-F.T with J = det F, is expressed by the derivative of an elastic potential
w(F¢) with respect to the elastic strain F. By considering objectivity, one necessarily
has a dependency of the potential from the symmetric right Cauchy strain C = F! - F,
and so we have S = 20w/9C = 0w/JE with the Green-Lagrange strain defined by
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E = (C — Id)/2. If we further restrict our attention to isotropic materials, then the
potential w can only be a function of the invariants of C which for this example are
taken to be their eigenvalues. Since C is positive definite, the eigenvalues are real and
positive and we can write the spectral decomposition in the form C = Y, M’N; ®
N; with \; € (0,00), A? the eigenvalues and N; the orthonormal eigenvectors. The
potential can now be expressed in the functional form w = w()\;). In order to evaluate
material laws expressed with respect to principal values, quite some numerical work
is involved in computing the eigenpair decomposition at every integration point and
so it may seem over Kkilling to use the spectral formulation for isotropic materials.
However, as we will seen, this is the only additional step required to upgrade an
infinitesimal plastic model to the finite strain case. For this goal, we introduce the
log-strains €; = log(\;) so that the stress is expressed by

— OUJ()\Z) 1 8A2 Ti — _
S =256 Z NHE Z e (2.109)

with 7; = 0., w. The push-forward of S on 0% defines the Kirchhoff stress 7 = F - S -
Fl = Jsgivenby 7 =}, 7;n; ®n; with n; = Fe - N;/); the orthonormal eigenvectors
of 7. For a material description used here by the numerical algorithms, the Kirchhoff
stress T or the intermediate P2K stress S is pulled-back on € from Q¢ or (2 resulting in

T
S = Z 12N @ N, (2.110)

with vectors N; = \F~! - n; = F;' - N; not generally orthonormal anymore. In
addition, we need a material description of the elasticity tensor S /JE, with respect to
the material Green-Lagrange strain E. As shown in the appendix, for the intermediate
configuration Q, we have

oS Tz>\2 —Tj)\? _ _ — — — —
1 g\ j

i#£]

8€jTi - 2Ti5ij _ _ _ _ (2.111)
ZTNi(@Ni@Nj@Nj.
i, (]

By considering that the plastic strain F, is frozen during the solution of a single time-
step and does not depend upon E, the relation 0S/JE follows from the above one by a
simple pull-back, i.e. by replacing the vectors N; with pulled-back ones N; = F; - N;.

We now need to identify a quantity representing the plastic flow and to formulate a
rate equation in the stress-free configuration ). By writing the spatial velocity gradient
in the form

ov . . :
l= o =F-F ' = FF 4+ Fe- By Fl Pl = 1o 41,

with le = FeF; Land l, =Fe¢- Fp -Fy LFSL, we may now identify the pull-back of 1,
given by L, = F}, - F;! as the plastic velocity gradient in Q where we have

L=F,' 1 Fe=F,' Fo+F, F ' =L+ Ly,
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with Le = Fo 1. F, the elastic velocity gradient in ). The rate of mechanical work or
stress power in the spatial configuration is known to be P = s:1 = s:sym(l). By just
considering the plastic part with respect to the volume of (2, we have

Pl =Js:1p, = Jtr(Fe-S-FL -Fe-L,-Fo')=S:(C-Lp) = (C-S):L,

By the assumption of isotropy, from (2.109) we see that the tensors C and S are coaxial,
therefore they commutes and the matrix C-S =S - C = (C - S)T is symmetric. So for
isotropy, the asymmetric part asym(Ly) = (L — L})/2 does not dissipate and does
not need to be specified. At this point we proceed as for the infinitesimal case, by ex-
pressing the plasticity law with respect to the stress-free configuration 2. We assume
there are some internal variables ¢ and ¢ related by a phenomenological law ¢ = ¢(&)
and that together with S, they uniquely determine the yield condition f(S, ¢) = 0 with
f a phenomenological convex yield surface. By considering the model of associative
plasticity based on the principle of maximal plastic dissipation, which is a generally
accepted model for hardening materials without softening, the evolution of the plastic
strain sym(C - L) and internal variables ¢ is normal to the yield surface and we have
the Kuhn-Tucker equations
_ of f . _ e

sym(C - Lp) = )\a—S £= )\ ¢’ A>0, f(S,q9) <0, Af(S,q) =0, (2.112)
with A the plastic multiplier to be determined by the additional consistency condition
Af(S,q) = 0. Since for isotropy C and S commutes, similarly we can obtain sym(C -
LT) — A5 f and since asym(L,) is unused, we can choose asym(L,) = 0 in order to
getsym(C - L) = C - Ly, and the property of C, Ly, 5 f being three coaxial matrices.

The push-forward of (2.112) gives 1, = Adf /97 and if the yield surface is just a func-
tion of the deviatoric stress dev(7) with dev(e) = (o) —Idtr(e)/3 the deviator operator,
then we have df /91 = dev[df(dev(r))/ddev(7)] and so tr(Dp) = Atr(df/d1) = 0.
For a matrix A, we have the relation ddet(A)/0A = det(A) - A~T and so the rate
of plastic volume is given by J? = (d/dt)detF, = thr(Fngl) = Jrtr(Lp) =
JPtr(Fe - Ly - Fgl) = JPtr(l,) = JPtr(Dp) = 0 showing that yield surfaces of the
form f(dev(7)) have an isochoric plastic flow which is typical for metal plasticity.

Before proceeding further, we have to decide which internal variables to use and as
first we note that since the implementation is working with the displacement u =
x — X as unknown, the total deformation F = F, - F, = 0x/0X is given as well
as C = FT . F. In (2.112), the time derivative is directly associated with the internal
variables &, so that it is natural to store and update £ instead of q. For the plastic flow,
the natural choice is to use F}, so that together with L, = F, -F,°, we have

of
98

By considering the pull-back df/dS = FY - df /07 - F,, and the relation F, = —F,, -
(d/dt)F,! - Fp, we also have

F,=\C 2 .F,. (2.113)

of
ar

Another possible choice as internal variables for the plastic flow are the symmetric
tensors C, = FJ, - Fp, or C,;! which are independent from any rotation associated

(d/dt)F,!' = —AF 1. = .F.F,!
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with Fp,. By considering the symmetry of C and df/8S, together with C, = —C,, -
(d/dt)C,' - Cp, from (2.113) we have
- o ~—1 Of 11 i1 Of _
1 1 1 T 1 1

(d/dt)C," = =2\F," - sym(C™ " - a—g) "Fp7 = —2\F - Ir ‘F-C,, (2114)
where the last equality just holds if we have sym(C~1-9f/9S) = C~1.9f/8S or equiv-
alently C=1 - 9f/9S = 0f/0S - C~!. This is indeed the case for isotropy, where f(S)
can only depend on the eigenvalues p; = 7;/A? of the spectral representation (2.109)
of S. The relation 9f/9S = (0f/0u;)N; ® N; shows that S and df/dS are coaxial
and from (2.109), this is also the case for C~! and S, therefore C~! and 0f/0S are
simultaneously diagonalizable and they commute.

Several numerical algorithms are available to integrate (2.114) and it is important to
note that they must all be formulated with respect to the fixed stress-free configuration
Q. By applying the first order implicit solution z,.1 = exp(a,+1)z, of 2(t) = a(t)z(t)
ont € [ty,tyt1] to (2.114), we obtain

Coni1 =F 1y - exp(—2AX0; fry1) - Frpg - Cpl, (2.115)

Since det(exp(A)) = exp(tr(A)) holds for any matrix A, see [2], if the plastic flow is
pressure insensitive f(7) = f(dev(7), then 0r f = dev(0rf) and tr(dev(9drf)) = 0, so
that there is exact numerical conservation of the plastic volume det(F},) = det(Cp) /2.
This condition is generally required on the onset for metal plasticity and it is the rea-
son for using here the exponential approximation. Now that we have performed the
time-integration, we can change the formulation to a spatial description, which is the
preferred one to formulate the plastic laws. From the relation A?F-N; = Fo-C-N; =
(Fe-Fl)-Fe-N;, we note that the elastic left Cauchy strain be = Fe-Fy = F-CI;1 FT =
>"; A?n; ® n; has the same eigenvalues of C and is coaxial with 7. As for the infinites-
imal case, for the time integration of the Kuhn-Tucker equations (2.112), we apply an
operator split based on a first trial step followed by a return-to-yield step, for details
see [5]. Let the deformation together with the internal variables (F,,, &, C;}n) be given
at time t,, together with a time step At. Attime ¢,y = t,,+At, the deformation F,,; is
known and we are therefore seeking (&,1, C;’ln 11)- If the trail principal stresses Ti;ai1,i
frial,i of the trial strain be tia1 = Fry1-Cpl, - Firy are
in the elastic range f(Tirai1) < 0, then (F11,&41 = &n, C;’ln 1= C;}n) is the solution
at t,41. Otherwise we have to solve the following system to determine be 11, {n41
and the plastic multiplier A\ = AAt

be,n-i—l = eXp(_zA)‘arfn-i-l) : be,triah

computed with the eigenvalues A

£n+1 = én + A/\8qfn+1 s
fn—i—l = f(T(be,n+1)7Q(§n+1)) = 07
and update the new values of £, and C;’ln 1 =F 1 benii -F;El. At this point, we

use the coaxiality of be, 7 and 0, f stemming from the isotropy assumption to proceed
turther in the solution of the above equations. Let use the unbold notation 7, ¢ for the
vectors 7; and ¢; = log()\;), i = 1...3. From the first equation, we see that be ;1 is
coaxial with by i, and by taking the log on both sides, we are left with

En+1 = _AAann—l—l + Etrial 5
Sn-l—l = fn + A)\aqfn-‘,-l )
fot1 = f(7(ent1),a(€n+1)) =0,
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which are formally equivalent to the equations of the infinitesimal case. If we do not
consider the trivial equation for &,41, we have to solve four equations for the un-
knowns A\ and ¢,,41, generally solved by a Newton-Raphson algorithm. In order to
compute the elasticity tensor in material coordinates (2.111), we need the derivatives
0.7 which in our case are actually 0., .., 7 and are computed as follows. Let 1 be a com-
ponent of £,4,1, by defining IT = (7,41, gnr1), X = (—€nt1,n+41), o = (—Etrials &n),
0f = (0r,0,4)f and the matrix G by the relation 0,11 = —G0,3, the first two equa-
tions are given by & = AX(9f)T + ¥ and by taking the n-derivative, we have G0, ¥ =
Z((0f)Y0,AN+0,%0) with Z = G(1+AN? fG) ™! = (GT1+ANG? f)~L. From f,,11 = 0,
we obtain 0, f,4+1 = 0fG0,X = 0 and by contracting the previous value of G0, on
the left with 0 f yields an equation for 9, A\ and the final result is

Z(0f)*(0f)Z
0N z0f)"

with the derivatives 0,7, found in the first row. Since the relation ¢ = ¢(&) is gen-
erally derived by a potential through differentiation, the matrix ¢ is symmetric and
so the matrices G and Z as well. The matrix G has a block diagonal format and if
this is also the case for 9% f, then Z is block diagonal too. By letting Z,, Z, be the two
diagonal blocks of Z and since 9,,Xo, = 0,&, = 0, we arrive at

O, = —Go, % = 8,50 — 20,50 ,

or, o- )T 220 f
Tl 0:f)" 22(0: ) —— (2.116)

agtrial B (an)ZT(an)T + (aqf)Zq(aqf)

For our strain-driven formulation, we assume that at the beginning of a time-step
tn+t1, the data is given (F,, 41, &, Cg}n) and one looks for (F,1+1,&,+1, C;,ln—i-l)' How-
ever, we know from objectivity arguments, that material laws can only depends from
right Cauchy strain C = FT . F and therefore a formulation working with the data
(Crt1,&n, C;}n) must be equivalent. The point here is that the strain C or E = (C —
Id)/2 is always given when evaluating material laws, not necessarily the deforma-
tion gradient F, since numerically the symmetrized strain forms may not be directly
obtained from F = 0¢/0X, but instead from internal variables. The eigen prob-
lem F - C;' - F' - n; = Mn; is equivalent to C;!' - FTF - F~' - n; = A2F! - n; or
C,' - C-N; = A’N;. Indeed the eigenvalues A} and eigenvectors N; is all what
is needed to evaluate any isotropic plastic laws, but now they are determined by a
non-symmetric eigen problems. By considering that C! is positive definite, the nu-
merical work is at most doubled. One can compute C,"° by spectral decomposition
by running a first symmetric eigen-problem and then use C;° to evaluate the second
symmetric eigen-problem C;%° - C- C5%° - N; = A?N; with N; = C;% - N;. The first
eigen-problem can also be replaced by a quadratically convergent Denman-Beavers
iteration directly computing C;°° and running a little bit faster.

Numerical model

Up to now the model has been kept quite general, the only assumptions have been
made are that of a multiplicative decomposition of the deformation, isotropic mate-
rial laws and the special choice of a first-order time-integration algorithm involving
an exponential map. The plastic models need now to be implemented in SESES as a
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material law for non-linear elasticity where one has to define the P2K stress S as func-
tion of the Green-Lagrange strain E together with the symmetric derivatives 9S/0E.
Since the relations (2.110)-(2.111) together with the spectral decomposition of b, are
model independent, we see that each isotropic plastic model just needs to define the
principal stresses 7 together with the derivatives 07/0e as function of the log-strains
e. For our example, we use the following quadratic potential

w = %A(Z g) + “(Z ?), (2.117)

i
with A, ;1 the Lame’s constants of the infinitesimal theory. For the stress, we have

7=0w/0z = XD _&)(1,1,1)" + 2ue = (ks ONE + 24 DEV)e,, (2.118)

i

with K = X + 2/3u the bulk modulus, ONE = (1,1,1)(1,1,1)T and DEV = Id —
(1/3)ONE or in tensor notation

T = Z 7in; @ n; = Idktr(e) + 2udev(e), (2.119)

2

with the log-strain tensor € = ), &;n; ® n; . For small strains C =~ Id, the log-strain
are g; = log(\;) = log(v/2v; + 1) ~ v; with v; = (A2 — 1)/2 the eigenvalues of the
Green-Lagrange strain E = (C — Id)/2 which is coaxial with C. Since \; ~ 1, we have
S = Id\tr(E) + 2uE which is the standard St. Venant-Kirchhoff isotropic material law
at infinitesimal strains. If a correct behavior is given at small strains, for extremely
large ones, the choice of (2.117) is questionable, however, we have to consider that the
appearance of yield will limit the elastic range. Because the stress (2.119) has the same
form of the infinitesimal case, previous infinitesimal plastic models can be reused here
without changes by just considering the principal log-strains ¢ instead of the infinites-
imal ones. In order to quickly comes to an end, we reuse here the von Mises .Jo-flow
model of the previous example just accounting for linear isotropic hardening

f(r,q) = IDEV(7)| — \/3(oy —q), q=—K¢,

with oy, K two material parameters. If for the trial stress 75 = 7(E4ia1) com-
puted by (2.118), we have fiia = f(Twial, ¢) < 0, then we return 7,41 = Tiyja and
OTp+1/0¢t1ia1 = Kk ONE + 2 DEV. Otherwise, we return

Tn+1 = Ttrial — 2#A)\Tl,

2
—Z(DEV —nnT) - %nnT,
T 2M+§K

= KONE+2uDEV — (2u)
8Etrial

with AN = fuia/(2p + %f(), 7 = |DEV(Tyia)| and n = DEV(7yia)/7. Clearly,
the relation 07,,41/0¢i. may also be obtained by the general method of (2.116), but
the algebra get a little bit involved. By noting that G, = ~ONE + 2 DEV and
DEV (7u41) is parallel to DEV (7yia1) with [DEV (7y41)| = 7 — 2uA)\, we have 0, f =
DEV(7u41)/|IDEV(my11)| = n' and 92f = |DEV(7ruy1)|7'(Id — nn")DEV = (7 —
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2uAN)"HDEV — nn') giving

Ty L
Z, = G, (d+AN2fG) ' =G, <Id+ 2uANDEV — nn )>

T —2uA\
LG, (Id - 2M£A(DEV - nnT)>
2
= ~ONE +2uDEV — M(DEV —nnl),
T

where we have used a non-trivial matrix identity to compute the inverse just holding
for a vector n with the properties |n| = 1 and DEVn = n as here the case. Together
with Z.0,f1 = 2un, 0, fZ,0.fT = 24 and aquqaqu = 2/3K, the formula (2.116)
yields the above result.

This elastic-plastic law together with the computations of an axis-symmetric rod sub-
jected to a large elongation and showing a typical necking behavior can be found at
example/Necking.s2d . The value of the plastic deformation Fj, is stored in the
element field CplnvMONeEF in the form of C, 1 _ 1d, the shift with the unit ma-
trix is used to avoid numerical cancellation at infinitesimal strains. The value of
the equivalent plastic strain £ is stored in the element field XiEF . The above rela-
tions 7,41, OTp41/0cria) together with the conditional update of the internal variables
are coded in the input routine J2FlowPrincipal , passed to the built-in routine
ElastLogStrain taking care of the interfacing relationships (2.110)-(2.111). To this
routine, we also pass the element field CpInvMONeEF used to compute the logarith-
mic strain ey,4a1,; = log(\;) before calling our plastic model. The update of the plastic

variables is done in the routine J2FlowPrincipal in the form of C;j1 - Id =

F 11 benir Fol —Id =3, exp(2e,11,) /A N; @ N; —Id and &,41 = &, + AX. The
updates are first stored in additional buffer element fields with suffix u, which are first
copied into the permanent ones at the end of a successful solution step.

In addition, we supply the routine J2FlowFiniteStrain which may be used as a
replacement to the built-in call of ElastLogStrain . It shows in details all numerical
operations done by ElastLogStrain and it is completely equivalent. This routine
computes the spectral decomposition of be t,ia1, performs a call of our plastic model
J2FlowPrincipal and implements the relations (2.110)-(2.111). The numerical point
of interest is the possible numerical cancellation in (2.111) when computing the term
(Ti)\? —7iA2) /(A2 — /\3) with A; — A;. In this case, we use a symmetrized Hopital’s rule
given by
)\iangj )\jﬁgin agiTj—FTi—i-Tj
;o an 2 '

The geometrical setup of this example is quite simple, we define an axis-symmetric
problem with a rectangular domain and set Dirichlet BCs on both ends of the rod to
prescribe the elongation. We then compute solutions incrementally by increasing the
displacement at the BCs with respect to a pseudo time and since the integration pro-
cess is quite stable, small or large steps yield similar results. The necking breakdown
is approached with a trial&error algorithm where the failure criterion is given by a
slow convergence rate. If failure occurs, the step is repeated with a lower increment
until the minimal value of 1x1071°.

Convergence { if (!finite(Absincr.Disp) || nlter>5) failu re("™);



148 SESES Tutorial September 2012

8 8 T T T T T

> 6 1

g 4t .

Q

g 20 ]

..w O - ]

[4] - i

g 2

3 4r 1

. . . > -6 L L L 1 Il
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else if (Absincr.Disp<lE-15) return 1,
else return O; write("™); }
Solve Stationary
Step 0.001,0.256,maxs=0.005, (step * 1.2>maxs?maxs:step  *1.2)
Until 1
Failure { return step<lE-10?0:step/2; }

The necking breakdown appears suddenly and without some sort of load control, nu-
merical instabilities prevent any further computations. The instability is due to the
rapid change in volume as shown by Fig. 2.99 where the displacement for the last
converged solution is shown in Fig. 2.98.

Appendix

To avoid an overloaded bar notation, let consider F, = Id and so N; = N;,. In order
to compute 0S/0E, we first note that by coaxiality of S and C = Id+ 2E, we have S =
>SN, @N;and C = 5, M?N; @ N; with S; = 7;/A? and >, N; ® N; = Id. The chain
rule gives S = (0S/JE) : 6E = (0S/0E) : §(C/2) so that by expressing the variations
S, 6C with respect to the base N; ® N, we obtain JS/0E with respect to the base
N; ® N; ® N, @ N;. Let e; be an orthonormal constant basis and write N; = Q - e; with
Q orthogonal, then Q-QT = Id or 6Q-QT+Q-0QT = 0and 6Q = —Q-5Q™- Q. As first,
we develop 0N; = §(Q-e;) = 6Q-e; = —Q-5Q"-Q-e; = Q-N; = Zj N;®N;-Q-N; =
> Qi Ny with @ = —Q- §QT and Qj; = N;-2-N; and note that € is anti-symmetric
since QT = —0Q-QT = Q-0Q"-Q-QT = Q-6QT = —Q. Assecond, for some values a,
wedevelop }; a;0(N;®N;) = 37, o (SN; @N;+N; ®@0N;) = 57, » Qi (N; N +N; ®
Nj) = Z N QNG+, Q5 N; QN = E” oy Qi (aj —a;)N; @ Nj. We therefore
have 6C = §Y, ?N; @ N; = >.(2000M)N; ® N; + > i Qi (N2 — )\?)Ni ® N; and
08 =6, SiN;®N; = 37, (0, Si00; ) N;@N;+3 7, (5, —5;)N;®N;. By noting that
N;®N; : 6C = 2);0); and fori # j we have (N; ®N +N;ON;) 1 6C = 2Q45(A5 - A7),
we see that

oS 0, S;
a_E:Z \;

i,j Z#J

S S;
)\2N @ON; @ (N; @ N; + N; @ N;),

resulting in (2.111) by considering S; = 7;/ )\?.
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Figure 2.100: Blisters created by deep-drawing of a laminate.
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2.23 Stamping and mechanical contacts

There are several methods to shape an industrial mass product, one of them is by
stamping a laminate made of a material showing a plastic behavior. The method is
used to give cars their body shape, for the production of cooking pans, beer cans, blis-
ters enclosing pharmaceutical pills as shown in Fig. 2.100, etc. Modeling the stamp-
ing or drawing process is an important task allowing precise statements to be made
about the final product as the shape, thickness, stresses, points of rupture or delami-
nation and so on. Important aspects of the modeling are the correct definition of the
plastic material laws and of the mechanical contacts between the stamp and the un-
derlying material. Since plastic laws are already discussed in other contributions, we
focus here on the modeling of the mechanical contacts and start with a clamped thin
laminate modeled by non-linear finite strain solid-shell elements together with a sim-
ple isotropic plastic law. To this initial configuration, we then add a moving stamp
impressing a shape to the laminate. We assume here the drawing process does not
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deform the stamp itself, the mechanical contacts just show up between the laminate
and the stamp and the process is so slow that inertial forces can be neglected. These
assumptions greatly simplify the solution of the problem, since the stamp’s rigid body
geometry is a mere input parameter known at any time, there are no self-contacts to be
considered and we need to solve a series of stationary solutions parameterized with
respect to a pseudo-time parameter determining the movement of the stamp.

The physics of mechanical contacts may be a complex matter and tribology is the sci-
ence describing the interactions at the contact surface. However, for the ideal cases
of a friction-less and sticky contact, the underlying physics is completely blended out
and replaced by pure kinematic conditions. There are some practical interests in these
two ideal situations, since they represent extreme cases with real contacts lying in-
between. For both cases, we have first the impenetrability condition of the bodies
involved. Then, if this condition occurs, for the friction-less case both bodies at the
contact surface glide without friction, for the sticky case they are as glued together.
No other physical laws are used here and the simple specification combined with ro-
bust solution methods makes these ideal contacts appealing for first quantitative esti-
mations. However, since in general the contact surface is unknown, its determination
is part of the problem solution which turns even a linear mechanical problem into a
non-linear one and generally it further slows down the convergence rate of non-linear
problems. It is important to note that the usage of sticky contacts always results in a
path dependent problem, not however so for friction-less contacts. In the following,
we will just consider the more common case of friction-less contacts which are also
more complex to implement numerically.

At the base of any contact algorithms, there is a fast algorithm checking the impenetra-
bility condition with the rigid-body, for every point x on the computational boundary
where a mechanical contact has been enabled. If this condition is violated, the contact
algorithm will then force the point x back on the rigid-body surface. To accomplish
this task, one first computes the closest point projection on the rigid-body surface x,
formally defined so that the vector x — x is parallel to the surface normal n at x¢. In
general this projection is not unique, however, it will be for points close enough to the
surface, with an upper bound for the distance depending on the surface curvature.
During the solution process and at each linear step, the friction-less contact algorithm
will then force any invalid movement x to stay on the plane having normal n and
passing through the point xy which is represented by the linear kinematic constraint

n-(x—xp) =0. (2.120)

Since the projection values n and x( will generally change at each iteration step, in
order to compute correct derivatives, we also require from the closest point projection,
the surface characterization at x( in form of two orthonormal tangent vectors t,, [t,| =
1, @« = 1,2 with n = t; x ty and the two main curvature coefficients k. with respect to
the tangent vectors.

An exact algebraic or inexact penalty method are two possible choices to enforce these
linear kinematic constraints. The algebraic method is more complex to implement
than the penalty one, however, the penalty method is ill-conditioned in its solution is
far less precise than the one of the exact approach. Both problems can be elegantly
studied within a continuum formulation, without yet considering any numerical dis-
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cretization of the governing equations, see [1, 2]. However, for simplicity and suc-
cinctness, we will assume the governing equations have already been discretized and
we are looking for methods applying the contact conditions directly on the discretized
form. Many discretizations of the governing equations of elasticity use pure displace-
ment Lagrange FEs, where at some selected sampling points X;, ¢ = 1... N, three
degree-of-freedoms u; = u(X;) € R? determine the displacement u(X) at X;. In turn,
the set of sampling points is determined by the finite element mesh and the chosen
degree of the approximation for u(X). Other FEs may add other dofs to determine
the displacement, as for example rotational dofs for shell elements. Here the numeri-
cal implementation of contact algorithms will be more complex and not so general, so
that it will be not considered here.

Penalty method

One advantage of the penalty approach to contact mechanics is that it does not neces-
sarily require any modifications of the underlying finite element implementation and
it is solely based on the specification of contact forces in form of tractions. By com-
paring the known stamp’s position with the actual computed displacements, as soon
the impenetrability condition of both bodies is violated, the penalty method adds stiff
forces T in the direction of the rigid-body normal n, in order to restore the impene-
trability condition. Actually this latter condition can only be satisfied approximately
and the degree of approximation is controlled by a penalty parameter. The dilemma is
that the better the impenetrability approximation is, the worse is the ill-conditioness
of the system to be solved and computing solutions will be slower and harder. For a
generic boundary point x = X + u with rigid-body projection x, let 6 be the actual
value of penetration defined by § = (x¢ — x) - n. The penalty method defines the trac-
tions as T = h(d)n with h() a stiff function having the properties 4(d < 0) = 0 and
h(d > 0) > 0. A good working example is h(J) = aé” witha > 1 and b = 2.

In order not to further slow down the non-linear solution process, we need to correctly
specify the traction’s derivatives 0, T with respect to the displacements u in order to
assemble a global exact Jacobi matrix and to guarantee a quadratic convergence rate
of the Newton iteration close to the solution. For this task, we need a second order
approximation of the surface at x( given by

s(p1,p2) = X0 + tapa + nkap? /2 + O(|(p1, p2]*)

with free parameters p, and an implied sum over the indices . The closest point
projection of any point x close to xq is approximately given by Xo(p1,p2) = s(p1,p2)
with po = (x —X0) - to (1 + dka) ™1 + O(|x — x0|?). By expressing the surface normal as

8p15 X 8p2S _ (tl —I—plkrln) X (tg —I—pgk‘gl’l)
|Opys X Opys| |OpyS X Op,s|
t1 X to + pokoty X n+ prkin X to + pipokiken X n _ n-— Pakata

|O0py 8 X Dp,s| 1+ p2k2 '

we have 0, fi|p,—0 = —kats and by the chain rule Ok = (9, 0)(0xpa) = —ka/(1 +
0ka)ta ®@t,. Ina similar way, we obtain 0xXg = (9p,X0)(0xPa) = —kata ®@t,. It follows

ﬁ(p17p2) -
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that  ® 0x(Xp,n) = 0 and therefore

OT  0Rh(5)  OR oh 95 o Oh 9%y —x)-n
u - ox - awO T e f T M T 5 T
Oh o

This short presentation of the penalty method uses a continuum approach so that the
tractions T actually define Neumann BCs for the elasticity equations. The underlying
FE software will then integrate these tractions over the contact boundary and add the
contributions to the dof-residual equations and map the traction derivatives to dof-
derivatives. This latter task will be more complex, if the FE discretization does not
solely use displacement dofs. For FEs with just nodal displacement dofs, the above
relations can be directly used to amend the nodal values at X;. Here the tractions
T; = T(x;) with x; = X; 4+ u; will be added to the right-hand side vector and the
derivatives 0T;/0u; to the matrix of the linearized system to be solved. The two meth-
ods yield slight different numerical results, which however can be compensated by a
little change of the penalty parameter.

To explain the ill-conditioness of the penalty approach, for simplicity let us consider
the direct nodal approach for the boundary node X; and associated three degree-of-
freedom u; with zero curvatures k, = 0. If § > 0, in practice one adds the 3 x 3 matrix
—n ® n(0;h) as diagonal subblock at the row and columns associated with u; and
h(d)n on the right-hand side. If the normal n has just a single non-zero componente.g.
n = e,, by just considering large values we have u;;(9sh) = h(d). This linear system
with a single unknown is regular and its solution u;, = —h(J)/0sh dominates the
global solution. Here the problem is not ill-conditioned at all since the penalty method
is equivalent to setting a priori Dirichlet BCs for u;, so that the penalty parameter can
be chosen very very large resulting in an exact Dirichlet BCs. However, when n has at
least two non-zero components, by considering large values in the global system, we
have the singular linear system —n®n(95h)u; = h(d)n. It cannot be solved singularly,
but has to be solved together with the global system. In this case, the problem is
ill-conditioned and the value of the penalty cannot be chosen to large, otherwise the
global solution is dominated by a singular system with infinitely many solutions.

Algebraic method

We shortly present an algebraic method to contact mechanics directly working on the
nodal displacement dofs u; of the discretized equations. When the nodal movement
x; = X; + u; violates the impenetrability condition, the constraint equation (2.120) is
added to the system and of the three degree-of-freedoms u;, one picks a slave and two
masters. The slave is generally the one with the absolute largest coefficient of the nor-
mal n, we assume here |n.| > |n,|, |ny| thus u;, is the slave degree-of-freedom and we
have the additional equation u;, = n; *(n-xg—n-X; — Nyt — nyuiy). Clearly adding
any constraint equation to an already uniquely solvable linear system, make the sys-
tem unsolvable. However, by considering that we are actually looking for solutions
which are saddle points of a functional, adding constraint equations is perfectly legal
and the method of the Lagrange multiplier tells us how to solve the new constrained
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Figure 2.101: Rotational symmetric shape of the ) o
upper and lower stamps. Figure 2.102: Radial shape consisting of

two lines and two parabolae and the four
regions for point projection onto the basic
shapes.

system. This can be done by amending the native system with simple algebraic oper-
ations performed on the rows and columns of the assembled matrix. After solving the
amended system, the linear constraint equations are fulfilled exactly. The solution of
this exact formulation is robust, however, it suffers from the fact that once applied, we
cannot say for sure if we have a contact point or not, i.e. if by releasing the glide con-
straint, the boundary point will violate or not the impenetrability condition. A brute
force method will combinatorially turn-on and off all glide constraints upon reaching
consistency with the impenetrability condition, an unfeasible approach. Much better
is to check if the rigid-body sets the contact point under tension or compression. Just
for compressive points we continue to apply the constraints, whereas for tensile ones
we release them. At the end of the non-linear solution, all contact points must be com-
pressive points and all other boundary points must not violate the impenetrability
condition. The question arises how to know if a contact point is under compression or
not, since at the discretization level the numerical stress is not at our disposal. How-
ever, we have the residual values R; associated with the degree-of-freedoms u;. After
a solution has been computed and thus after applying the contact constraints, the
residual values are always zero R; = 0. Therefore before amending the discretized
equations for the glide constraints, the residual values represent the sum of all forces
acting on the boundary point without considering the contacts. These residual values
are concentrated force resulting from integrating over the domain the governing equa-
tions with various a priori unknown weighting factors. The absolute value is therefore
of no meaning to us, not so its direction specifying the direction of the contact force
acted by the rigid body.

Closest Point Projection

A general approach to rigid-body contacts consist in approximating the contact sur-
face by low order multivariate polynomials which are then used to evaluate the closest
point projection. If the normal should be a continuous function, the global approxi-
mation must be C'! and for continuous curvatures C?-smoothness is required. This
general approach is the simplest to apply from the user point of view, but a good ap-
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proximation is memory intensive and requires well designed search algorithms. In
SESES, a C*-interpolation on a 2D tensor grid of 3D sampling points is available, but
even with a very large number of points, the curvature values may not be very close to
the exact values of an interpolated analytical function. This is due to the interpolating
character which must be C? and exact at the sampling points. If the rigid-body surface
is simple, then an analytical projection together with some well designed if-else state-
ments can be a valid alternative providing exact values of the projection and surface
characterization. In this contribution, we will present both approaches for a surface of
revolution consisting of two piecewise linear segments and two parabolae with global
C'-continuity as displayed in Figs. 2.101-2.102.

The most difficult part of the analytical projection algorithm consists in computing
the orthogonal projection to a generic 2D parabola F = (z,az?) withz € R, a > 0
and a generic point P = (P,, P,). By symmetry, we can assume P, > 0 and since for
P, = 0 we always have the projection (0,0), we can further assume P, > 0. The or-
thogonal projection is stated here as an orthogonality condition between the segment
P — F and the tangent (d/dz)F as (P — F) - (d/dz)F = 0 and resulting in the cubic
equation f(x) = 2a%2® + (1 — 2aP,)x — Pz = 0. Since f(0) < 0 and f(4+00) = 400,
we always have a solution for + > 0. For (1 — 2aP,) > 0, we have (d/dx)f(xz) > 0
so that f is monotone and just a single solution exists. For (1 — 2aP,) < 0, we have
(d/dx)f(0) < 0 so that the other two solutions, if they exist, they are necessarily nega-
tives. Therefore the projection for P, > 0is unique. To find the single positive solution
of f(z) = 0, we may use a simple Newton-Raphson iteration, but we have to avoid
getting close to a possible local minimum (d/dz) f (z) = 0 for z > 0. Initialization with
zo = /Py/a for P, > aP? and z¢ = P, otherwise, always avoids this critical region
and results in a robust monotone decreasing sequences z,+1 = xp,— f(x,)/(d/dz) f (xy)
with f(xp41) > 0, 241 < z, and 2,41 > 0.

For this analytical example, we can define a unique projection for any point x =
(z,y,2). By computing the radial value r = (2% + y*)°® and depending on which
region displayed in Fig. 2.102 the point (r,z) lies into, the point (r,z) is orthogo-
nally projected onto the radial shape, either trivially for the line segments or with
the algorithm presented above for the two parabola segments. The projection is al-
ways unique but is C! just for points close enough to the contact surface. Once
the radial projection has been computed, we additionally need to provide the or-
thonormal triads of tangent vectors and normal, as well as the main curvatures. By
parametrizing the surface as s(r,¢) = (rcos(¢),rsin(¢), g(r)) with g(r) the radial
shape of Fig. 2.102, the two unnormalized tangent vectors are given by t; = 0,5 =
(cos(¢),sin(¢),0rg) and to = Ogs = (—rsin(¢),r cos(¢),0). The normal is given by
n = (t; x tg)/[t; X ta] = (—cos(¢)0rg, —sin(¢)drg,1)/1/1 + 0,¢g>. The tangent vec-
tors are orthogonal and since (09,04s) - n = 0, the main curvatures with respect to the
normalized tangent vectors are given by k; = 82s - n/|t1|> = 82¢/(1 + (0,9)?)1® and
ko = 03s - n/[ta]* = (9rg)r~1 /(1 + (9-9)*)"°.

Numerical model

The numerical example of a blister forming process by deep-drawing of a elasto-
plastic laminate can be found at example/Laminate.s3d . Since the geometry of
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Figure 2.103: Initial and intermediary deformations with final state showing the spring-back
effect. Just half of the structure is shown.

the model is rotational symmetric and the material laws used in this example are
isotropic, a 2D rotational symmetric solution may do the job. However, we present
a 3D problem formulation, since in practice anisotropic plastic laws are needed thus
requiring 3D computations even for an initial symmetry of revolution. In addition
realistic computations will also require contact with frictions, instead of friction-less
ones as done in this example.

An initial rectangular laminate clamped at its border is all what is needed as initial
geometry, if the closest point projection is computed by the user. However, for a vi-
sual aid in the graphical representation, it is also useful to define the geometry of the
rigid-body stamps by dummy MEs where no numerical equation is ever solved, see
Fig. (2.103). An additional advantage is that one can right use the geometry of these
dummy MEs to compute the closest point projection numerically. This projection is
computed by the routine RigidIntersection , however, before calling it, one has
to declare the rigid-bodies with the statement

Misc RigidBody(StampDown Down, StampUp Up; Smooth)

The values StampDown-StampUp are the block ME numbers for the two stamps and
the Down-Up specifiers determine the contact surface of the hexahedral ME block. The
Smooth option activates cubic interpolation so that normal, tangents and curvatures
are continuous functions. In this example both the analytical and numerical approach
are used and compared. For the former, a series of input routines ParabolaProj ,
Profile ,StampCoord ,StampProj is defined evaluating the projection as described
previously. Typo errors in these user routines are not so easily discovered and within
comments some additional testing code that has been used is provided. The selection
of one of the two approaches is simply determined by the setting of a global variable.

At the input’s beginning, we have defined routines to be used by the penalty and al-
gebraic contact approach. Since they are pretty generic, they can be placed once inside
some input files to be included. For the penalty method, the routine PenaltyContact

is used to define the Neumann BCs and takes as input the data structure CONTACT
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specifying the closest point projection. This data needs to be set by the user or by
calling the routine RigidIntersection . Other ramp functions than the quadratic
one do not in general perform as well, so that the only free parameter for the penalty
method is the rigidity factor defined by the constant RIGIDITY . For the algebraic
method, we use the built-in BC routine Glide which applies the constraint equa-
tion (2.120) at any displacement dofs found at the BC surface. At the present time,
the routine just implements constant constraints so that if the values of the normal n
and n - xg depends upon x, quadratic convergence of the Newton iteration cannot be
guaranteed. Actually the routine applies the constraint just if one passes a non-zero
value of the normal and this decision is taken by the routine AlgebraicContact
which similarly to PenaltyContact  takes as input the data structure CONTACTWe
enable the constraint whenever the condition |§;| < 1x10"** ANDn-R; > 0 OR §; <
—1x107 is fulfilled with §; the distance of the boundary point x; to the contact sur-
face and R; the assembled residual forces at x;. If the boundary point was clamped
on the contact surface on the previous iteration, then we have |§;| < 1x 10~ and we
release the lock just if at x;, we have a tensile residual force n - R; > 0. Further, we
always enable the constraint, if the boundary point violates the impenetrability con-
dition §; < —1x107'4,

We use here the same isotropic plastic law of the example Necking of a circular bar
which we refer for further explanations. For the discretization, we use non-linear
solid-shell elements enabled with the equation ElasticShellSingleK and the mo-
del MechNonLin . Since these mixed FEs use internal variables and the Green-Lagran-
ge strain used to evaluate material laws is not directly computed from the deformation
gradient, the quasi-positivity condition > —1 of the Green-Lagrange strain eigenval-
ues is not given. The principal log-strain values cannot always be computed and NaN
values may be returned. In general this just happen by taking too large steps, so
that the condition of invalid log-strain values is checked within our material routine
J2FlowPrincipal

if (isnan(STRAINJ[O])|lisnan(STRAIN[1])|lisnan(STRAIN 2D
failure("LOGSTRAIN");

For Nan log-strain values, a failure message is fired and the solution step will be re-
peated with a smaller step value.

Friction-less contacts are path-independent and therefore do not destroy the symme-
try of the system. In particular, the derivative of the traction (2.121) is symmetric
so that the global system is symmetric as well. This condition is not detected auto-
matically and therefore we use the declaration LinearSolver Symmetric to force
a symmetric linear solver. We then solve a series of stationary problems by changing
the position of one stamp and at each step a Newton iteration is performed up to con-
vergence of the displacement’s increments, see Fig. (2.103). The step length is chosen
adaptively based on the convergence rates of the Newton iteration. At the end of the
inward movement, the stamp is retracted to its original position in order to observe
the spring-back effect. We note that for this particular geometry and depending on
the yield value for the plastic flow, the structure may buckle and our simple solution
method may not be able to pass this singular point.

For the penalty method, we have quadratic convergence, both with a closest-point
projection computed analytically or by interpolation. In the latter case, a slight degra-
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Tundish

Strand

Figure 2.104: Steel casting machine made by
SMS Concast Ziirich. Figure 2.105: Schematic view of steel cast-

ing.

dation of the convergence is noticed. The algebraic contact approach does not work
for this example. The problem lies in the sudden change of the constraint equations
at each iteration, so that the global residual equations are not continuous. The New-
ton iteration gets stuck in a dead-lock cycle of opening and closing constraints and
the convergence rate stales. The simple algorithm described above for enabling and
disabling the constraints, which generally works well for a simple half-space rigid-
body, needs to be amended. However, it is not clear if a robust method valid for any
geometric form can be found.
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2.24 Continuous casting of steel

The discover and the first production of steel started long time ago in Anatolia around
the 15th century BC and todays we are approaching a worldwide production of a bil-
lion of tons p.a. Around 1930, Siegfired Junghans developed a continuous casting
process for melted brass. Its application in the steel industry was advocated and pio-
neered by Irving Rossi who in 1954 founded in Ziirich the Concast company, now part
of the SMS group and a major supplier of steel casting machines. Since then, the con-
tinuous casting of steel in forms of billets, blooms and slabs has become the standard
production process. From a hot furnace, the melt is transferred into a tundish reservoir
allowing to continuously feed the casting machine. The melt is then drained into a
water-cooled copper mold, where the hot metal directly in contact with the mold so-
lidifies into a thin shell. Here, the mold may oscillates or may be lubricated in order to
prevent sticking. The thin solidified shell acts as a containment for the melt inside the



158 SESES Tutorial September 2012

now called strand. After exiting the mold, the strand is further cooled by water sprays
and its movement is redirected and supported by rolls. The cooling and solidification
process continues until the whole strand section solidifies and the strand can be cut
into fixed lengths. The steel is still very ductile and can be further formed into its final
shape by milling. Not only the chemical composition of the melt but the whole casting
process has a strong impact on the quality of the steel. As first one has to avoid the
breakout of the melt due to a broken shell at the exit of the mold, then a key point
is the minimization of the residual stresses in the strand due to thermal strains and
mechanical contacts by the rolls which may lead to cracks and so to a poor steel qual-
ity. Direct quality measurements in the production line are inherently difficult due to
the high temperatures and the moving strand. Therefore there is a major interest for a
numerical simulation of the casting process which should give qualitative answers on
temperatures and stresses of the strand.

We present here a numerical model for the continuous casting process from the exit
of the mold up to the cut of the strand possessing the major ingredients of a full fea-
tured simulation. In particular, we use simplified material laws, simple support for
mechanical contacts and a 2D modeling domain, but otherwise the model is pretty
complete. As first we note that within or after the mold the melt in the strand can be a
turbulent fluid due to the presence of magnetic stirrers. However, if we abstain ourself
from such complex situations and if the strand does not get in mechanical resonance,
the continuous casting of steel is a quasi-stationary or steady process with the shape,
temperature and stresses of the strand at a given spatial point being constant in time
and only during the start-up phase we have unsteady conditions. This initial phase
may be modeled as well, but it is not done here. As second we note that we have to
consider a coupled thermo-mechanical problem, however, due to the high tempera-
tures and the large amount of convected thermal energy, the heat production due to
mechanical inelastic deformations of the strand has little impact on the temperature
and can be neglected. Therefore the coupling is one-directional, one has first to de-
termine the temperature by solving the governing equation of energy transport and
then with known temperature profiles, one solves the governing equation of elasticity
to compute displacements and stresses. A correct computation of the temperature is
important for the subsequent mechanical problem. The most challenging part here are
correct values for the thermal conductivity and capacity, but otherwise the numerical
solution of the convected thermal transport is robust and standard. In the following,
we will not perform this step and instead we assume an unrealistic constant tempera-
ture of the strand.

Let us start with a Eulerian or spatial view of the casting problem as customary when
dealing with steady flow conditions. Momemtum conservation in spatial coordinates
x € Q) with Q the domain representing the strand yields the governing equations

pDyv =V.s+ 1, (2.122)

with p the mass density, v the velocity, s the stress, f the body force and D;(e) =
O¢(e) + V(e) - v the material derivative. Steel at high temperatures is a visco-plastic
material with an elastic and an inelastic response determined by a yield function f(s),
where the elastic region is characterized by values f(s) < 0. Differently from plastic
materials where we must have f(s) < 0 and values f(s) > 0 are forbidden, for visco-
plastic material values f(s) > 0 are permitted and the material will relax to the state
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f(s) = 01in a characteristic time. A common visco-plastic law is the following J,-flow

model
s = ktr(e)Id + 2u(dev(e) —gp),

fo=ldev(s)| - v/2/30y,
n = dev(s)/|dev(s)|, (2.123)

0 if f <0,

Diey, + (Viv)e, = Hp:{ fajr i f>0,

with ¢, the plastic strain, k the bulk modulus, i the shear modulus, 7 a relaxation
time, tr(e,) = 0, dev(e,) = €, tr(e) = ey the trace of a second order tensor and
dev(e) = € — Idtr(e)/3 the deviator operator. In the following we assume a constant
yield stress o, and so we do not consider any kinds of hardening. Evaluating the
material derivative D, together with the assumption V.v = 0 and the steady condition
J(e)/0t = 0, yields the following system of PDEs

pVv-v=V.s+f,

The first system determines the stress s and since the casting velocity is generally
small, the term pVv - v can be neglected. The second system determines the convected
plastic strain €, it is a system of first order hyperbolic PDEs coupled just by the right-
hand side II,,. The steady state condition implies that for II,, # 0 we must have v # 0,
otherwise there is a contradiction.

Our model formulation for continuous casting is almost complete, except that we
still have a spatial formulation and we do not yet know where to solve the equa-
tions (2.124). In other words, we do not know the exact shape of the spatial domain 2
and therefore an Eulerian or spatial solution approach typical of fluid dynamics can-
not be used. The matter is also a little bit more involved than for classical elasticity,
where with the help of the Piola identity the spatial formulation is pushed-back to ob-
tain a Lagrangian or material one with respect to a referential domain €. Due to the
continuous flow, a steady solution of a material formulation with respect to an initial,
stress-free referential system with particles at rest does not exist, since it would imply
infinite deformations. Therefore, to be able computing steady solutions of (2.124), we
need an Arbitrary Lagrange-Euler or ALE approach. There is nothing special about an
ALE approach and everything boil down in the definition of a referential stress-free
system with particles not necessarily at rest. This is the key point and the matter de-
pends on the problem at hand. Therefore, we assume a stress-free strand at the exit
of the mold and its free flow in space, with all mechanical loads turned off, will de-
termine our initial reference system . Due to the continuous flow, the shape of this
initial domain € is generally straight but there are molds specially devised to give
the strand an initial constant curvature.

Knowing the stress-free referential system €2y, we can push-back the spatial formula-
tion and start computing solutions by applying all mechanical loads present in the
casting process to obtain the deformation ¢ : Qy — Q = ¢(€) or equivalently
the shape of the strand. Depending on the layout of the casting machine and es-
pecially for strands with initial curvature, the referential domain €, and the spatial
one {2 may not be close and large deformations ¢ will result. This fact complicates
the numerical analysis a lot, since a geometric non-linear pushed-back formulation
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of the governing equation (2.124) needs to be used. However, with the assumption
of small strains, the formulation can be simplified by considering that the several
rolls of the casting machine set sharp bounds on the possible shape of the strand.
In other words, from the geometrical layout of the rolls, we can make a good guess
21 on the final shape of the strand and we can assume Q; ~ 2. The deformation
¢ = ¢o + u now consist of a known contribution ¢y from the stress-free referential
system to this initial-guess system ¢ : Q9 — Q1 = ¢o(€2) and an unknown but small
displacement u : 1 — Q = (x; + u)(21). Therefore, we are left to solve the same
equations of (2.124) now in the initial-guess system (2; and with an additional initial
strain g = (Vo + (Vo)T)/2 — Id to be added to e and representing the deformation

¢0 : o — 1 = do (o).

A possible solution approach for (2.124) consists in keeping the time derivative (0/0t)e,,
and by computing a series of mechanical solutions with the plastic strain €, directly
evaluated by the method of characteristics until a steady solution emerges. The draw-
backs are that convergence to the steady solution is slow and evaluating the charac-
teristics works well for analytical functions, not however for discretized ones, expe-
cially discontinuous ones. Here one needs some sort of artificial diffusion in upwind-
downwind direction and a careful analysis for a stable evaluation since one has also to
integrate the plastic strain rates. Another solution approach advocated here consists
in defining the plastic strain €, as dof-fields and solve the steady transport equations
Ve, - v = 11, with stabilized finite elements. To find a solution of the non-linear sys-
tem of equations (2.124), we can have a fully coupled algorithm solving all equations
together or a uncoupled algorithm solving iteratively for the displacement u and the
plastic strain €,. A priori, one cannot say which method will be faster, so we give
all partial derivatives associated with material laws required for a coupled solution
with optimal convergence rate. In our example, the body force f is a dead-load and
so the following partial derivatives Jc ¢ ,)Il, are required. SESES will then use in-

ternally these derivatives to solve the residual equations (R", R*») = 0 associated
with the degrees-of-freedoms (%, €,) using a Newton-Raphson algorithm with exact
derivatives d(R", R¢?)/8(i, ).

In order to keep the same notation, we give here directional derivatives D(e)[a] with
respect to a vector a. As first we note that since dev(ktr((e)Id) = 0, we have 0. fn =
—0e, fn and, then by considering the property n - dev(a) = n - a, after some algebra
we obtain

D, sla] = —2udev(a),
Dcsla] = ktr(a)ld +2udev(a),
—Dc,fla] = Dcfla] = 2pn-dev(a) =2un-a,
De,nfa] = Denla] = 2peviamnal,
—D., fnla] = D.fnla] = nD.f[a]+ fDcn[a].

Numerical model

The numerical example of a 2D the steel casting machine can be found at example/

Casting.s2d . The mold gives the strand an initial curvature and rolls are placed
so that the strand makes a turn of 90 degrees then straighten and proceeds horizon-
tally, see Fig. 2.106. This shape defines the computational domain ;. Without me-
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Mold Support.

Figure 2.106: The computational domain
with mechanical contacts.
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Figure 2.108: Plastic strain component €, ;..
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chanical loads, the strand shape will be circular and to consider the bending forces
straightening the strand, on the horizontal part of the domain, we define the strain
€22 = (Y — yo)/R with R the radius of the strand and y, the middle vertical posi-
tion. By just fixing the strand at the exit of the mold, this initial strain with a non-
linear geometric formulation will result in a circular strand of constant curvature R,
see Fig. 2.107. There are no predefined dof-fields for pure convected transport by a
velocity v , therefore the dof-fields StrainP  representing the plastic strain tensor ¢,
must be declared with the statement

ConvectDef StrainP[T2Z]

Afterwards we define the material laws as discussed previously and BCs with a clamp-
ed strand at the exit of the mould and as crude approximation also in the presence of
the rolls, which for simplicity are defined all along the straight zone. Here a slight
improvement of the Jy-flow model II,, = f(|dev(s)|)n is used by considering a rate
expressed in the form I, = f(|dev(s)|, |ep|)n. This new form allows e.g. for isotropic
hardening and the required derivatives Dsf, D, f readily follow from the two scalar
ones Djqey(s) f @and D) | f which are returned together with the rate f(|dev(s)|) by the
routine FlowRule .

For the solution algorithm and the dof-fields u and ¢,, we can choose between a fully
coupled or uncoupled algorithm, however, a coupled algorithm is generally required
due to the stiffness of the system. This is mainly due to the fact that for a velocity
v — 0 and if II,, # 0, then Ve, — oo and the problem does not have a solution. In
practice, smaller velocities will result in larger condition numbers of the linear system
to be solved and for a fixed length floating point format, there is a velocity lower
bound below the one no solutions can be computed. To improve the condition of
the system, one should check that the linear mechanical solution without plastic rates
should be smooth without any singularities in the stress. If the stress is singular, the
plastic rates I1,, are unbounded with strong gradients making the problem numerically
ill-conditioned and very hard or even unsolvable.

Fig. 2.106 shows for some arbitrary material parameters, the convected plastic strain
component €, .. This solution is obtained by first computing the linear mechanical
solution without plastic rates and then with a coupled algorithm by suddenly turning-
on the plastic rates. The plastic strain is always a continuous field due to the artificial
diffusion introduced when solving the convected transport equations with H*(Q) con-
formal finite elements. Fig. 2.109 shows the trace values of the stress. At the begin-
ning of the straight zone, we have singular stress values which are then convected and
smoothed down-wind. For a more realistic model, we have implemented the plastic
rate as presented by [1]. This model is solved by setting the variable MODELSIMPLE
to zero and it is apparent that the solution is now much more hard to compute. The
plastic rates are slowly turned-on by the homotopic parameter HOMO®nd the solu-
tion is found at HOMOTF- co. The step-length of HOMOTs chosen adaptively but due
to the large and increasing system condition, the homotopic process stops long be-
fore. This is an example showing that singular stress values generate very stiff and
ill-conditioned problems.



SESES Tutorial September 2012 163

Inlet

|
L

A

L

Figure 2.110: A rectangular flow channel.
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2.25 Hagen-Poiseuille Model of Viscous Laminar Flow

To introduce the basics of fluid flow, we present the Hagen-Poiseuille flow in a straight
channel as displayed in Fig. 2.110. This laminar viscous flow problem is one of the few
known analytical solutions of the incompressible Navier-Stokes equations. The flow
is characterized by a constant mass density p, a constant viscosity p, an inlet/outlet
at constant pressure P,/ P,,; with zero tangential flow v, = 0 and no slip conditions
v = 0 at the other boundaries. The 2D solution for an infinitely deep channel is given
by the flow velocity

v = B = Four) (W?—42?), ze[-¥,

S ], (2.125)

wf=

with L the channel length and W the channel width. The total mass flow at the in-
let/outlet correspond to the mass flow integral over the channel area

w
2 p(R - Pout)VV3
M = = . 2.126

/_% pudz 1201 (2.126)

The SESES input file for this Hagen-Poiseuille problem can be found at example/
PoiseuilleFlow.s2d . The initial section starts with the definition of the channel
dimensions, viscosity, density and pressure drop as user variables in order to parame-
terize the computation. These values correspond to an air flow channel of dimension
0.25 x 0.05 m?

Define
length = 0.25 ( * mx)
width = 0.05 * M *)
visco = 0.0008 ( * Paxs x)
density = 1000 ( * kg/m#x 3 *)
dp = 0.01 * Pa *)

massflow= density  »dp*width »width *width/(12 =*visco =*length)
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The simple rectangular channel geometry is defined with the next statements defining
a macro element mesh of 25 x 10 elements

QMEI Start -width/2 nx=5 width/nx
QMEJ ny=4 length/ny

The physical properties as well as the equations to be solved are defined with the
next statements. Here, we have to solve for the incompressible Navier-Stokes equa-
tions and to define the viscosity as well as the mass density. The mass density p does
not really enter the incompressible Navier-Stokes but it is used together with BCs
and therefore must be defined. The parameter PressStab is the penalty parameter
used to solve the mass conservation law. Since this equation is not an elliptic, it has
been stabilized with a second order dissipative term in the pressure proportional to
PressStab and its value should not be chosen too small or too large

MaterialSpec Air
Equation CompressibleFlow Enable

Parameter Density.Val density kg/m ** 3
Parameter Viscosity visco Pa *S
Parameter FlowStab zero

Parameter PressPenalty le-6 s

The defined material Air is then mapped on the whole domain with the statement

Material Air 1

The next statements define the BCs as stated at the beginning. Since the solution only
depends on the pressure drop, we define a value of 0 Pa on the outlet and the constant
pressure drop dp at the inlet

BC Inlet 0 0 IType nx
Dirichlet Pressure dp Pa
Dirichlet Velocity.X 0 m/s

BC Outlet 0 ny IType nx
Dirichlet Pressure 0 Pa
Dirichlet Velocity.X 0 m/s

BC NoSlip 0 0 JType ny nx 0 JType ny
Dirichlet Velocity 0,0 m/s

The next statements are part of the command section. Here the solution of the Navier-
Stokes equations is defined with the dof-fields for the pressure p and velocity v com-
puted all together in a single block. The Navier-Stokes equations are non-linear, how-
ever, the Hagen-Poiseuille we are solving is a linear problem and we just need to
perform a single block iteration

BlockStruct Block Pressure Velocity Convergence 1
Solve Stationary

Since for the Hagen-Poiseuille problem the analytical solution is known, it is of interest
to check the numerical error affecting the solution with the statement

Write "Error for Velocity %e %e\n"
maxvalue(Nodal;Velocity-(0,dp *(width *width-4 *x*X)/(8 =visco =length)))

By starting the computation, the textual output will look similar to
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> STATIONARY SOLUTION

-> SOLVING AT time= 0.0000e+00 STEP 0 (0.000000e+00)
FIELD: Pressure AbsResidNorm: 1.13e-10
FIELD: VelocityX AbsResidNorm: 0.00e+00
FIELD: VelocityY AbsResidNorm: 4.71e-06

<BC_data>
<BC Name=Inlet Type=Basic>
<Field= Pressure Flux= MassFlux TypeBC= Dirichlet > 0.5000 00002 kg/s
<Field= VelocityX Flux= ForceX TypeBC= Dirichlet > -2.8116 7505e-16 N
<BC Name=Outlet Type=Basic>
<Field= Pressure Flux= MassFlux TypeBC= Dirichlet > -0.500 000002 kg/s
<Field= VelocityX Flux= ForceX TypeBC= Dirichlet > 4.96040 282e-15 N
<BC Name=NoSlip Type=Basic>
<Field= VelocityX Flux= ForceX TypeBC= Dirichlet > -5.2249 7695e-15 N
<Field= VelocityY Flux= ForceY TypeBC= Dirichlet > -0.0005 N
</BC_data>

File Data written
The maximal error for VelocityX is 4.726968e-14
The maximal error for VelocityY is 1.950801e-13

From this output, we can see that the mass flow of 0.5kg/s at the inlet/outlet differs
from (2.126) by ca. 4%, the viscous flow exerts a total force of 0.0005 N on the channel
and the accuracy of the velocity is close to machine accuracy.

The precision of the velocity field seems surprising, if one considers the very limited
number of used elements and the error affecting the total mass flow. This type of
superconvergence is occasional and a little modification of the problem will remove
it. For the Hagen-Poiseuille problem and from the relation (2.126), we see that the
total mass flow and the pressure drop in the channel are equivalent for the problem
specification. In practice, however, the pressure at the inlet/outlet is unknown, so that
one prefer to specify the total mass flow. We can do this by a little amendment at the
inlet BC, where instead of setting the pressure, we define the total mass flow

BC Inlet IType 0 nx O
Pressure Floating massflow kg/s
VelocityX Dirichlet 0 m/s

Differently from the previous case, the maximal error in the velocity is now about 4%
and by changing the number of elements, you will see a linear convergence behavior.
The dramatical drop in accuracy is due to the fact that finite elements used to dis-
cretize the Navier-Stokes equations cannot reproduce the quadratic solution (2.125),
the relation (2.126) does not hold exactly and the superconvergence behavior is lost.

2.26 Blasius Plate Flow At Zero Incidence

Due to the non-linearity of the stationary incompressible Navier-Stokes equations,
Vv=0, p(v-V)v—uVv+Vp=f, (2.127)

with v the velocity, p the pressure, f the body forces, p, i the constant density and
viscosity, very few analytical solutions are known, see [1]. For small viscosities or
large Reynolds numbers, it is well known that solutions are characterized by thin lay-
ers around boundaries. These layers can be studied by solving the simplified Prandtl
boundary layer equations obtained by removing small terms after a dimensional anal-
ysis at large Reynolds numbers and solutions to these equations can be found e.g. in
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Figure 2.111: Velocity distribution for
v = 0.01 and computational mesh lo- Figure 2.112: Comparison of numerical and Blasius so-

cally adapted to resolve the boundary lutions at 2 = 0.5 for the kinematic viscosities v =
layer. 0.01,107%,107°6.

[1]. One of them is the 2D Blasius boundary layer flow over a flat plate at zero angle
of incidence with respect to a uniform stream of velocity Uy, at infinity. Although just
an approximation of the Navier-Stokes equations (2.127), this solution can be used to
test and calibrate Navier-Stokes solvers, which is what we are going to present in this
example.

Without going into the details of the Prandtl boundary layer theory, the Blasius solu-
tion for a plate located along the x-axis can be obtained as follow. For the Blasius prob-
lem we have f = 0 and by assuming a priori 9,p = 0, just the incompressibility condi-
tion 0, u+0dyv = 0 and balance of momentum in z-direction w0, u+vdyu = u(@%u—{—@gu)
need to be solved together uin order to the obtain velocity v = (u,v) with v = u/p the
kinematic viscosity. Within the thin boundary layer, we have 97u < d;u and therefore
the boundary layer approximation consists in neglecting the term 92u. The continuity
equation is automatically satisfied by working with a stream function ¢ (x,y) where
we have u = 0, and v = —J,% and hence we are left to solve the single equation

5y1/15:cy1/1 - axwa§¢ - Vag'l/J :

Blasius found a separation of variables by introducing the similarity variable n =
y\/Uso/(vz) and working with the Ansatz i(x,n) = \/Usovx f(n). By considering the
new independent variables (x,n) substitution yields v = U f/, v = \/Usov/(4x)(nf'—
f)and

U g4 25y =0

2z ’
so that we are left to solve the Blasius equation f”f + 2f"”" = 0 with the boundary
conditions f(0) = f’(0) = 0 and f’(c0) = 1. The first two conditions represent the
no-slip condition u = 0 on the plate and the last one the stream velocity u = (U, 0)
at infinity. Due to its non-linearity, this boundary value problem needs to be solved
numerically, as done for example with the program Maple and the input below by
considering 1 = 150 as infinity.

INFITY:=150: ODE:=2 = diff(f(e),e$3)+f(e) « diff(f(e),e$2)=0:
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SOL:=dsolve({ODE,f(0)=0,D(f)(0)=0,D(f)(INFITY)=1},t ype=numeric,maxmesh=1024,
approxsoln=[f(e)=e]):
plots[odeplot](SOL,[e,diff(f(e),e)],e=0..5);

Computations of the Blasius flow are done on a unit square domain for various kine-
matic viscosities and the input file can be found at example/BlasiusFlow.s2d

The boundary conditions for this incompressible solution are v = (1,0) at x = 0 and
y =1land v = (0,0) at y = 0, on the point (1,0) we fix the pressure p = 0 to avoid
floating values. The boundary layer at = 0 must be resolved by the grid in order to
obtain the correct solutions therefore as shown in Fig. 2.111, we use a geometrically
spaced mesh in the y-direction. By the setting of the boundary conditions, the velocity
is discontinuous at (0,0) and the pressure has a singularity there. Therefore to re-
solve this singularity we also use a geometrically spaced mesh along the z-direction.
The numerical and the Blasius solutions for the z-velocity component on the line at
x = 0.5 are compared in Fig. 2.112 for the kinematic viscosities v = 0.01,107*,1076.
For v = 0.01, the numerical solution has a clear overshoot caused by the mass conser-
vation and the setting of the BCs, however, the thickness of the boundary layer is for
both solutions the same. The mesh is chosen so that for v = 10~ it can still resolve
the boundary layer, not so for v = 107% which is then given by the thickness of the
tirst element. The drag on the plate of length [ is given by integrating the shear stress
component 7,

l l
Drag = b/ pdyuly—odz = buUss f”(0) / Oyndz = 2bpUse f"(0)\/ Usopuil
0 0

with b the thickness of the plate and f”(0) ~ 0.33205733. The numerical values agree
well with the analytical ones for thin boundary layers resolved by the computational
mesh.

The incompressible Navier-Stokes defined by the statement Equation Incompres-
sibleFlow Enable uses residual-based stabilization to circumvent the various in-
stabilities associated with a Galerkin discretization of the equations (2.127). In prac-
tice, to the residuals equations obtained by the classical unstable Galerkin discretiza-
tion, one adds the integrals of the strong residuals weighted by special test functions.
Since the strong residuals tends to zero, this stabilization method is consistent, how-
ever, the strong residuals can be freely scaled and therefore we always have free pa-
rameters to fit. A priori error analysis of the stabilized discretization schemes give
us the order of magnitude of these parameters, however, a fine tuning is generally
required for optimal numerical results. Here, the singularity at (0,0) of the Blasius
flow may be used to calibrate the incompressible Navier-Stokes solver. By refining the
mesh around this singularity, the calibration is performed by defining the stabilization
parameters through the material parameter FlowStab in order for a coarse mesh to
have approximately the same solution and by minimizing over- or under-shooting for
both the pressure and the velocity. The dependency of the stabilization parameters
from the velocity v and viscosity p is according to the theory [2], however, one needs
to calibrate the constant scaling factors. The proposed values are also used by the
default setting of FlowStab .
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2.27 Microfluidic Mixing in a Straight Channel

Microfluidics — a part of the microsystems domain — is about flows of liquids and
gases, single or multiphase, through microdevices fabricated by MEMS technology.
In microfluidics, the ability to mix two or more fluids thoroughly and in a reason-
able amount of time is fundamental to the creation of fully integrated on-chip micro-
electromechanical fluid processing systems. Effective mixing requires that the fluids
be manipulated or directed so that the contact area between the fluids is increased
and the distance over which diffusion must act is decreased to the point that complete
mixing is achieved in an acceptable amount of time. In macroscopic devices this is
generally done by using turbulence, three-dimensional flow structures or mechani-
cal actuators. As MEMS devices are fabricated in a planar lithographic environment,
design constraints mitigate against mechanical actuators or three-dimensional flow
structures. Instead, innovative static mixing concepts are pursued to increase the mix-
ing efficiency. The mixing efficiency of the classical T-junction mixer [2, 3], for exam-
ple, can be increased using the multiple splitting of streams [1] or through the use of
slanted wells [4].

Figure 2.113: Mixing of a fluid of species A with a fluid of species B in a straight channel.

This tutorial discusses the ability of SESES to accurately predict mixing phenomena
in microfluidic devices by considering the simplest possible design of a static mixer,
i.e. a straight channel with two inlets as shown in Fig. 2.113 where a fluid of species
A is mixed with a fluid of species B. Note that the transport of matter in the flow
direction is mainly by convection, whereas diffusion is the transport mechanism in
the cross-direction. We first present the stationary diffusion-convection equations for
a binary mixture and solve them analytically for our geometry. Thereafter, a SESES
model solving these equations by the Finite-Element (FE) method will be set up and
the numerical results will be compared with the analytical solution.
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Diffusion-Convection Equation

Consider first the mass-balance for some species o

O o Wa) =Tl (2.128)

with p, = m,/V the partial mass-density, W the local velocity and II,, the produc-
tion (or consumption) rate of «, respectively [5]. Since in general, the transport of «
happens by convection as well as by diffusion, we split W into its diffusive and con-
vective contributions. To specify the latter, consider the local mass-average velocity

v
w=Y "w,, (2.129)
a=1 P
with the total mixture density givenby p = >"" _, p, and v the number of species. W,

can now be expressed relative to W as W, = W + J,/p, with J, the diffusion-flux
of a and its insertion into (2.128) leads to

Ipa
% V. (pa W) + V., =1L, . (2.130)
From irreversible thermodynamics, we know that J, can be written as
v—1 B 5
o = Py — lta) 2.131
J BZ_l 7 Vel = 1) (2.131)

with 11, and 1153 the chemical potentials of species « and 5 and B, 3 a phenomenological
coefficient [5]. Consider now the particular case of an isothermal, incompressible fluid
mixture for which (7', p) = const. Then, the chemical potentials of all species are only
functions of concentrations ¢, = p,/p and J,, simplifies to

v—1

Jo == pDasVcs, (2.132)
B=1

with D,z the diffusion coefficient of « in 3 [5]. For a binary mixture of species A and
B, we have v = 2 and the diffusive flux J 4 follows from (2.132) as
Ja=—pDapV.ca = —DapV.pa. (2.133)

Since Y . _;Jo = 0, the diffusive flux of A is balanced by a reverse flux of B, i.e.
Jp = —J 4. Taking into account (2.133), the mass-balance of A follows from (2.130) as

)
%—I—VpAW—DABVZpA:Ha. (2.134)

For mass transport under steady-state conditions and in the absence of any chemical
reactions, eq. (2.134) further simplifies to

V.paW = DapVipa. (2.135)

By noting that for p = const the overall mass-balance reduces to V.W = 0, eq. (2.135)
takes its final form as W - Vp4 = DapV?p4 and division by p leads to the diffusion-
convection equation in terms of concentrations

W - Vey = DapViey. (2.136)
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Diffusion-Convection Equation for a Plug Flow

Consider a two-dimensional system in the Cartesian coordinates (z,y) and assume a
straight fluid flow in z-direction with a uniform velocity V,, = const, i.e. a plug flow.
In this case, eq. (2.136) simplifies to

Jca ey 03¢y

Vo—— =D — +t = - 2.137

ox AB < 022 © 0y? ( )

Now suppose the transport of A in z-direction is mainly by convection, the term

0%c4/02? can then be neglected with the result that
dc A (920,4

Vx— = DAB

o T (2.138)

For convenience, we introduce the dimensionless length-variable § = y/L, in the y-
direction together with the abbreviation

Dap

K= V.o (2.139)
so that (2.138) can be written as
Oca D%cy
— =K—. 2.14
Ox 07? (2.140)
This equation subjected to the following BCs
~ ~ OCA 86,4
calz =0,9) = 4(9), & =0, / =0, (2.141)
@ =00 =0 G| 5 s

represents a homogeneous boundary-value problem and can be solved by the method
of separation of variables [6]. Inserting the Ansatz c4(z,7y) = ©(z) ¥(g) into (2.140)
leads to

10, B Vg B 9
with m a constant and a particular solution for c4(z, y) is given by
calz,y) = e Km*e [C1 sin(my) 4+ Co cos(my)] . (2.143)
It follows from the BC (2.141b) that C; e =& m?z — (), which leads to C; = 0. Evaluation
of (2.141c) gives e~Km?z g, sin(m) = 0, which implies that m = 0,7, 27, ... = i ™ with

i = 0...00. The general solution for c4(x,9) then follows as the superposition of the
particular solutions,

calw,§) = Coo+ Y e KU 20y cos(im ). (2.144)
i=1

The coefficients C ; with i = 0...00 yet have to be adjusted to the BC (2.141a), i. e. they
have to be determined from

() =Cao+ Y Coycos(imy). (2.145)
=1
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Figure 2.114: Predictions of (2.148) for the concentration field along the straight channel shown
in Fig. 2.113 for K = 0.1m™".

Suppose ¢’ (9) is given by the square pulse

0 /~\ 17 0§Q§1/2,
cA(y)—{ 0 12<g<1. (2.146)

A Fourier-series analysis of ¢ (¢) leads to

1 2 )
C2 0— = and CQZ' = — sin <ﬂ> s (2147)
’ 2 ' X0 2

and insertion of (2.147a) and (2.147b) into (2.144) gives the final result
calz,y) = ! + i e—K(m)%i sin i cos(imy) (2.148)
AT, Y) = B — i D) Yy)- .

Fig. 2.114 shows predictions of (2.148) for the concentrations along our straight chan-
nel. For the parameter value K = 0.1m~! chosen here, the initial square pulse is
transformed into the uniform concentration of ¢4 = 0.5 during a distance of about x =
2.0m. Since the local cross-flow diffusion-flux is proportional to the local concentration-
gradient, the homogenization process is much stronger at distances closer to the inlets.

Model Specification

The input file example/DiffusionDuct.s2d starts with the statement

Species A B

defining the names for the considered species. Next, the geometry is defined

QMEI nx=40 (Ix=2.0)/nx
QMEJ ny=21 (ly=1.0)/ny

followed by the statements
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K = 0.1 (* K = D/(Vx xly"2) in 1/m *)
density = le3 ( * kg/m# 3 *)

diffCoeff = 1.0e-9 ( * Mk 2/ *)

velocity = diffCoeff/(K xly #x2) (* mls *)

mmolA = 1E-3 (* kg/m* 3 *)

mmolB = 1E-3 (* kg/ms# 3 *)

MaterialSpec  m_Fluid
Equation CompressibleFlow TransportA TransportB Enable

Parameter Density.Val density kg/m ** 3

Parameter Mmol.A mmolA kg/mol

Parameter Mmol.B mmolB kg/mol

Parameter  Diff { @DiagDiff2(diffCoeff * mmolAx» mmolB,A,B) } Slunit
Model TransConvDefined Enable

Parameter Rate D_A D_B D_AGrad D_BGrad @CONVECTION2(Rate, A,B,Velocity * density)
Material m_Fluid 1

to define and map the material mFluid . On its domain, the Navier-Stokes equations
are set up together with the species mass-balances. However, as will be discussed
later, when the velocity profile and the average pressure are given, only the species
mass-balances need to be solved. As last step, the inlet concentrations are defined as
Dirichlet ~ boundary conditions

BC b_inlet 0 0 JType ny/2-1 Dirichlet A 1.0 Dirichlet B 0.0
BC b_inlet2 0 ny/2 JType ny/2 Dirichlet A 0.0 Dirichlet B 1.0

Now that the initial section is complete, parameters that control the actual computa-
tion need to be given within the command section. First, we specify initial values for
the relevant fields A, B, Pressure ,Velocity.Y ,and Velocity.X

Solve Init A=0.5 B=0.5 Velocity=17?(velocity):(6 xvelocity  * (y/ly-(y/ly) ** 2)),0

Note that for Velocity.X  we allow for two different velocity distributions, either the
homogeneous plug flow or the parabolic Hagen-Poiseuille flow. Next, we define the
fields to be solved for using the BlockStruct ~ statement, set convergence criteria and
execute the actual calculation with Solve Stationary

ConvergGlobal  Absincr.A<1.E-12 && Absincr.B<1.E-12
BlockStruct Block A B

Solve Stationary

Finally, post-processing statements are added to write the concentrations at different
cross-sections to external files.

Numerical Results

Fig. 2.115 shows the concentration fields as computed by SESES for the cases K = 0.1
and K = 0.01, respectively. One sees that the mixing efficiency decreases for smaller
K-values. In Fig. 2.116, the same numerical results are compared with the analytical
solution. In general, there is an excellent agreement between the two methods and
the agreement becomes better for smaller K-values. The reason could be that in the
derivation of (2.148), the diffusion-transport has been neglected in the x-direction,
which is only valid when K < 1. Fig. 2.117 shows again the numerical results for
the plug flow but now compared with the results obtained for the parabolic Hagen-
Poiseuille flow. Note that for a slit, the Hagen-Poiseuille profile is given by

2
Y Y
T = aver - 3 2.14
Valy) = 61 L, (L)] (2.149)

Slunit
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Figure 2.115: Concentration fields in the straight channel for (left) X' = 0.1, and (right) K =
0.01, as predicted from the SESES model.

1.04
K=0.1
KK 0.001
(O E—
08, P
1.0
2.0
< 067 <
(8] Q
5 8 s
\ X‘- DD
o2 N K 00000
. XN X‘}K
0.0 SRR
0.0 0.2 0.4 0.6 0.8 1.0
y (m) y (m)

Figure 2.116: Concentration profiles over different cross-sections along the straight channel
shown in Fig. 2.113. The parameter values are (left) X = 0.1 and (right) K = 0.01, respectively.
Comparison of the analytical results based on (2.148) (shown as the lines) with the SESES
predictions (shown as the symbols).

where V,,.; represents the average velocity [7]. As expected, there is better mixing
in the Hagen-Poiseuille compared to the plug flow case. However, for K = 0.1, the
differences are rather small but become larger as K decreases.
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Figure 2.117: Concentration profiles at different cross-sections for K = 0.1. Comparison of the
already shown SESES results based on a plug flow (shown as the lines) with those based on a
Hagen-Poiseuille flow (shown as the symbols).
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2.28 Heat Transfer and Natural Convection in a Closed Cavity

Natural convection can be found nearly everywhere in nature. For example, the cir-
culation of the earth atmosphere and the global wind systems are mainly driven by
natural convection. In the presence of a gravity field, natural convection is initiated by
density differences in liquids or gases. These differences may be due to the presence of
different chemical species or due to temperature differences within the field of a pure
fluid. Natural convection also is important in numerous technical applications. In en-
gineering, natural convection plays e.g. an important role in the heating, ventilation,
and air conditioning of buildings as well as in the field of solar energy. A well-known
phenomena of natural convection can be found in living rooms where the air cools
down at cold surfaces, mainly at the windows. Due to the buoyancy forces the cold
air which is heavier than the warmer air in the room falls off to the floor. On the other
hand, the cold air is heated up again at the warm inner walls and at the hot surfaces
of the heating radiators. The interaction of heating (in the center) and cooling (at the
windows) produces an air circulation in the room. Human beings perceive this air
movement as a draught. Such a circulation can be found in any simple cavity where
one side is heated and the other side is cooled. The flow pattern which is established
can be seen from Fig. 2.118. The aim of this tutorial example is to develop a sim-
ple FE-model which reproduces natural convection flow patterns similar to the one
shown in Fig. 2.118. To set up the model consider the two-dimensional cavity shown
in Fig. 2.119. The cavity is heated from the left side with a temperature of T}, = 310K
and cooled from the right side with 7,5 = 300 K. The width and the height of the
cavity are chosen to be the same, i.e. h = s = 50x1073 m. To analyze convective heat
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insulation
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Figure 2.119: Geometry and boundary con-
ditions for the air filled cavity on which the

presented SESES model is based; width s =
Figure 2.118: Experimental investigation of 50,103 m, height 7 = 50x10~%m and Ra =
the flow pattern in a cavity where an exter- 1 8,105.
nal temperature gradient is maintained [1].

insulation

transfer phenomena, dimensionless numbers can be derived from similarity consid-
erations. These numbers characterize the type of flow field as well as the observed
heat transfer. In the case of natural convection, three numbers, the Nusselt number,
the Grashof number and the Prandtl number are sufficient to describe any situation
[3]. The Nusselt number Nu is a dimensionless form of the heat transfer coefficient «

defined as
%

Nu = —. (2.150)
K

It relates « to its limiting value in the case of pure heat conduction /L where  de-
notes the thermal conductivity and L is a characteristic length. The Grashof number
Gr represents the relation between buoyancy forces and viscous forces. It can be inter-
preted as the Reynolds number in natural convection problems and is defined as

gl a1

G .
8 v2 T

(2.151)
The parameter & is the characteristic length of the considered flow problem e.g. the
height of a heated vertical wall. Furthermore, g is the gravity constant, v is the kine-
matic fluid viscosity, T' = Thyiq and AT = Ty — Thuiq is the external temperature
gradient applied. Note that in the case of a cavity, the applied temperature difference
is AT = Thot — Tiola- The third dimensionless number considered is the Prandtl num-
ber, Pr, which represents the ratio of the thickness of the hydrodynamic to the thermal
boundary layer,

Pr=-=072 (2.152)
a K

Here p, ¢,, and a represent the dynamic viscosity, the heat capacity, and the thermal
diffusivity of the considered fluid, respectively. Note that for air, we have Pr ~ 0.7.
For natural convection problems, the heat transfer coefficient then can be expressed as

Nu = Nu(Gr, Pr). (2.153)
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It turns out that the type of flow field observed depends on another dimensionless
number, the so-called Rayleigh number Ra defined as the Grashof times the Prandtl
number

gh3 AT
va T
For Ra < 108, the fluid flow is always laminar. Note that at the present time, flow
simulations using SESES are restricted to laminar flow only. For setting up the prob-
lem, we therefore have to ensure that the applied temperature difference AT as well
as the characteristic length h are chosen such that the condition Ra < 10% is fulfilled.
For the situation of free convection at vertical walls, results from a large number of
experiments were combined to derive the following empirical relationship (see VDI-
Wairmeatlas [2])

Ra = GrPr = (2.154)

2
Nu = [0.825 +0.387 (Ra fl)l/ﬂ , (2.155)
1
_ . 2.156
. [1 n (0.1;192)9/16] 16/9 (2.156)

To evaluate the accuracy of the obtained SESES simulation results, they will be com-
pared with the above correlation. For this, to apply (2.155) to the cavity shown in
Fig. 2.119, AT as it appears in (2.152) is defined as AT = (Thot — Tcold)/2-

Setting up the problem

To boot up the calculations in two different modes, the input file example/FreeConv.s2d
starts by defining the control parameter TVAR

Define

TVAR =1 (*» 1: variable temperature, 0: variable mesh *)
IsysO = 50 =*1e-3 ( * minimum system dimension in m *)

nMax =3 (* number of solutions *)

daT =1 (* temperature increments *)

disys = 15 =*1e-3 ( * length increments in m *)

Isys = Isys0O ( * system dimension in m *)

Thot = TVAR?301:305 ( * hot plate temperature in K *)

Using the mode TVAR = 1, the temperature Thot of the hot plate is raised in incre-
ments of dT. Similarly, for IVAR=0 , the system dimension ISys is raised in incre-
ments of dIsys . This allows one to increase the Ra number — which depends on both,
the applied external temperature gradient, as well as on the system dimension — by
small increments (see Section 2.28 for details). The temperature on the hot side starts
with the value of 301 K in case of TVAR=1 The temperature is increased in 10 steps
(nMax=10) by temperature increments of 1K to its final value of 311 K. The temper-
ature of the cold side remains unchanged and is specified through the parameter TO
which is defined in the section physical parameters . The procedure is similar in
the case when the system dimensions are enlarged. There the initial system length of
Isys=50 =*1le-3m isincreased in increments of dlsys=15 =*1e-3m to its final value of
200+ 1e-3m.

The next paragraph deals with the system geometry. We consider a square domain
with a minimum size of IsysO and (nx,ny) macro element subdivisions in z- and y-
directions. To be able to change the system size within a single SESES run to the size
Isys , we apply a scaling transformation.
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QMEI nx=10 IsysO/nx QMEJ ny=10 IsysO/ny
CoordNonConst

Coord coord =*Isys/lsysO 1 ( * scale by a factor of Isys/IsysO *)

We next specify the physical parameters of air. First, SESES routines are defined for the
following properties of air: the heat capacity c,, the density p, the molar mass M, the
shear viscosity 1 and the thermal conductivity « as well as its derivative with respect
to temperature. As the reference state, air at a pressure of py = 105Pa and a temper-
ature of 7y = 300K is considered. Since we only allow & to vary with temperature,
all other material functions are evaluated at 7. The force vector in the momentum
balance is identified with the gravity force f = p(0, ¢,0)T acting in the y-direction.

GlobalSpec ( * global parameters *)
Parameter AmbientTemp T0 K
MaterialSpec fluid ( + fluid parameters *)
Equation CompressibleFlow ThermalEnergy Enable
Parameter FlowStab zero
Parameter Density IdealGas() Slunit
Parameter Mmol M_AIR() kg/mol
Parameter Viscosity Visco_AIR(TO) Pa *S
Parameter Kappalso Kappa_AIR(TO) W/(K *m)
Parameter Force D_Temp D_Pressure ( * buoyance y-force *)
Force. X =0;
Force.X_DTemp =0;
Force.X_DPressure=0;
Force.Y =Density.Val * gAccel;
Force.Y_DTemp =Density.DTemp * gAccel;
Force.Y_DPressure=Density.DPressure * gAccel;
}  Slunit

Parameter ThermStab zero
Parameter ThermConv  Cp_AIR(TO)  *Density.Val  *Velocity W/(m  #x 2xK)
Parameter ThermConvDVelocity Cp_AIR(TO) * Density.Val  J/(m wx 3% K)

Before we can start our simulation, a complete set of boundary conditions must be
defined. Since our simulation domain is the 2D cross-section through a closed box,
no-slip boundary conditions are applied to all four boundaries

BC zeroVelocity OnChange 1
Dirichlet Velocity 0,0 m/s ( * zero velocities at boundaries *)

In addition, the boundaries on the left/right are kept at the constant temperature of
Thot /TO

BC hotPlate 0 0 JType ny
Dirichlet Temp Thot K ( * temperature left plate = Thot *)

BC coldPlate nx 0 JType ny
Dirichlet Temp TO K ( * temperature right plate = TO *)

Note that SESES uses Natural boundary conditions when nothing is specified oth-
erwise. This means that the normal-component of the flux associated with a certain
field variable is set to zero. Since we do not specify explicit thermal conditions for the
upper and lower boundaries, this implies zero heat flux over these boundaries, which
is consistent with the boundary conditions shown in Fig. 2.119. With the specification
of the boundary conditions the initial section of the input file is now complete.
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Computation and postprocessing

The following section deals with the actual computation. The fields to be solved for
are defined within a single Block , and convergence criteria are set.
BlockStruct Block Pressure Velocity Temp

Convergence (Absincr.Temp<l.E-8 && AbsIncr.Pressure<l. E-5 &&

Abslincr.Velocity<1.E-10)?1:
(nlter>=15)?failure("too many iterations"):0

As mentioned earlier, the calculations can be performed in two different modes, one
where the temperature of the hot plate is raised in steps of dT (with TVAR = 1) and
the other one where the system size is raised in steps of dlsys (with IVAR = 0). For
each mode, separate instructions to control the calculations are defined to compute a
stationary solution.

Solve Init Temp=T0

Solve Stationary
If TVAR { ForSimPar Thot Step dT Until TO+dT * nMax }
Else { ForSimPar Isys Step dlsys Until IsysO+nMax *dlsys }

For the analysis of the simulation results, we add a number of post-processing state-
ments to write the desired information to external files. We first calculate the heat-
fluxes (per area) over the left and right boundaries, the resulting heat-transfer coeftfi-
cient and Nusselt number, as well as the Prandlt and Grashof numbers.

Im = Isys (* system dimension in m *)
A = Im=*1e-3 ( * cross-section in m"2 *)
gfluxC = coldPlate.Temp.Flux/A

gfluxH = hotPlate.Temp.Flux/A

alpha = gfluxH/(Thot-T0)

Nu = alpha *Im/Kappa_AIR(TO)

Pr = Visco_AIR(TO) *Cp_AIR(TO)/Kappa_AIR(TO) ( * Prandtl number  x)
Gr = gAccel *pow(Im,3) =*(Thot-T0)/(TO * pow(kinVisco,2))

Together with the material properties of air (already defined in the initial section), for
each run, these results are then written to external properties files.

Solution strategies

As explained in the introduction, the dimensionless Rayleigh number, Ra, character-
izes the flow regime that follows from exposing a fluid in a gravity field to an ex-
ternal temperature gradient. In our example where h = s = 50x1072m and AT =
Thot — Teold = 10K, this yields a Rayleigh number of Ra = 1.08x10° < 108, i.e. a
laminar flow field is achieved. If the height and width of the square cavity is enlarged
to a value of h = s = 200x10~3 m, the Rayleigh number increase to Ra = 6.9x10°,
i.e., it is now much closer to the Ra number of Ra = 108, where the transition be-
tween laminar and turbulent flow occurs. In an experiment, this would mean that
any disturbances which might occur in the flow need some time to be dampened by
viscous forces; eventually, these disturbances completely disappear. The numerical
simulation shows a similar behavior. However, a simulation under these conditions
is likely to fail. Convergence might not be achieved due to numerical errors which
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will not be dampened out during the iteration process. If the simulation is initiated
with the initial condition that the air is at rest (uin; = vin; = 0) and with a uniform
temperature field of Tini = (Thot — Tcola)/2 the solution process will only be successful
if the Ra number is significantly lower. In fact, the limit is around Ra = 10°. The con-
vergence problems for higher Ra numbers can be overcome by starting the simulation
from a previous, already converged solution. In this previous solution , the temper-
ature and velocity distributions were obtained on the same computational domain,
but for a smaller Ra number. There are two strategies to reduce the Ra number. The
first is to start with a similar geometry which is scaled down so that the factor h?® in
the expression for Ra is reduced. Alternatively, one starts with a smaller temperature
difference AT between the hot and cold plates which also reduces the value for Ra.
As mentioned, convergence may be achieved starting the simulation from air at rest
for a Ra number of Ra < 10°. After finishing the first simulation with a low value,
the Ra number has to be increased to its final value by enlarging the geometry or the
temperature difference step by step.

Comparison of SESES with CFX-TASCflow simulations and experimental
verification

Several results obtained from running the above described SESES file are shown in
following graphs. In Fig. 2.120, the velocity distribution as obtained from the SESES
simulation is compared with CEX-TASCflow [4] simulation results that were obtained
under identical conditions. There flow field predictions of the two simulation-tools
agree very well with each other. Note also that there is some similarity between the
simulated flow field and the experimental one shown in Fig. 2.118. The same good
agreement can be seen by comparing the temperature distributions obtained from
SESES and CFX-TASCflow simulations, shown in Fig. 2.121. Finally Table 2.3 com-
pares the values for the heat flux in horizontal direction obtained from the simula-
tions with the calculated value as obtained from (2.155). Again, there is satisfying
agreement between the different solutions.
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Figure 2.120: Calculated velocity field in cavity with SESES(left) and with CFX-TASCflow [4]
(right) for Ra = 10°.
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Figure 2.121: Calculated temperature field in cavity with SESES(left) and with CEX-TASCflow
[4] (right) for Ra = 10°.

SESES CFX-TASCflow [4] VDI-Wéarmeatlas [2]
Ra=10° 238 23.7 21.0 W /m?

Table 2.3: Comparison of the horizontal heat flux gyan in W/m? for Ra = 105.
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2.29 Calorimetric Flow Sensor

In this tutorial example the operating principle of a calorimetric flow sensor and its
implementation in SESES is discussed. Rather than focusing on the geometrical de-
sign of realistic flow sensors, we wish to illustrate a modeling method for this specific
microfluidic device that relies on the solution of the heat conduction equation with
forced convection.

Many different physical principles for measuring flow are employed in practice '. For
conductive fluids, an electromagnetic measuring principle based on the induced volt-

Isee, for instance, www.flowmeterdirectory.com



SESES Tutorial September 2012 181

Sensor 1 Heater Sensor 2

Figure 2.122: Geometry of a typical calorimet-

. Figure 2.123: Simulation domain with the
ric flow sensor.

boundary conditions highlighted.

Operation Mode Characteristics Application Comments
Constant ATy 1 = f(vg)  small fluid flows, no temperature
Power P gaseous media regulation necessary

Ty = f(vo) fluid flows
Constant ATy 1 = f(vo) small fluid flows temperature regulation

Temperature Ty
P = f(vg) medium fluid flows fast response

Table 2.4: Operating principles of the calorimetric flow sensor.

age in a magnetic field is employed. For microfluidic systems, the calorimetric flow
sensor principle is widely used. Such sensors contain a heater and two temperature
sensors that are in good thermal contact with the flow channel volume, see Fig. 2.122.
Typically, the sensor and heater pads are separated from the flow channel by a thin
membrane. If the medium is at rest, a symmetric temperature distribution around the
heater is expected and the two sensors, one upstream and one downstream from the
heater location, measure identical temperatures. For non-zero flow rates, however, the
temperature distribution is not symmetric any more. The difference of the two sensor
temperatures is then proportional to, and therefore a measure of, the flow rate. The
design of a specific sensor geometry will depend on the application of interest and
the sensor electronics at hand. The simulations documented here allow for efficient
sensor characterization prior to fabrication. In particular, a qualitative and quantita-
tive understanding of sensor operation is enabled by the simulation. We attempt to
illustrate what kind of questions might arise when developing a calorimetric flow sen-
sor [1]. Table 2.4 gives an overview of the operating principles commonly used with
calorimetric flow sensors.

Each operation mode has its benefits and drawbacks. For instance, in constant power
mode, a regulation of the temperature of the heater is not necessary but the sensor
signal will react slowly to an abrupt change in the flow rate. The simulation results
for different operating principles will be discussed below.
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Model Specification

Let us now build a SESES model of the flow sensor. Since we focus on the solution
algorithm and the operating principle, we choose a simple 2D model of the sensor
geometry and solve the heat transport equation only. Le. rather than solving a fully
coupled thermo-fluidic model, we shall solve the heat transport equation only and
prescribe the fluid flow independently as a parabolic velocity profile

4y2

) (2.157)

v=1(l—
where vy is the maximum speed at the center (y = 0) of the channel and d the height of
the channel. Equation (2.157) is the Hagen-Poiseuille law for viscous laminar flow, see
also the example on page 163. This simplification is justified whenever the tempera-
ture rise is relatively small and thus not changing the fluid properties themselves.

Let us discuss now the key parts of the input file example/FlowSens.s2d ~ provided
for this example. The geometry of our sensor is comprised of a horizontal fluid chan-
nel, a medium above (pyrex) and a medium below (plexy glass), see Fig. 2.123. The
temperature sensors and the signal analysis electronics are both located on the upper
side of the thin pyrex plate. For the fluid flow, we define the material Fluid solving
for the convective and diffusive heat transport.

MaterialSpec Fluid Equation ThermalEnergy
ElmtFieldDef veloc(DofField Temp; ForMaterial Fluid)[2]

MaterialSpec Fluid

Parameter Kappalso 0.585 WI/(K *Mm)

Parameter Density.Val rhoFl  kg/m *x 3

Parameter Enthalpy cpFl * Temp,cpFl,0 J/kg-J/(K *Kkg)-JI(K  »* 2xKkQ)
Parameter ThermConv Enthalpy.DTemp *Density.Val  xveloc W/(m ** 2xK)
Parameter ThermStab zero

The parameters stated above correspond to water. In order to consider the convec-
tive heat transport, we have to define the term pdrhv with the material parameter
ThermConv with h the enthalpy, p the density and v the flow velocity. The user ele-
ment field veloc is used here to store the velocity profile. Since for this flow sensor,
the convective flow is small with respect to the diffusive one, there is no need to use
streamline diffusion stabilized finite elements and therefore we set to zero the stabi-
lization term.

For the boundary of the simulation domain we formulate a heat transfer boundary
condition (not shown in the screenshot of Fig. 2.123)

BC Transfer OnChange 1 OnBC Heater Disable
Neumann Temp D_Temp alpha* (Temp-Tamb) alpha (W/cm *x 2)-W/(cm #** 2xK)

with a the heat transfer coefficient. The heater is specified either with a Dirichlet ~ or
a Neumanntype boundary condition, depending on whether we wish to operate the
sensor in constant heater temperature or power mode, also compare with Table 2.4.
To implement the constant power mode we write

BC Heater nnx3 nytot IType nnx4-nnx3
Neumann Temp -Power/(lc *hcb) W/um *+ 2
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Figure 2.124: Steady-state temperature fields for different flow rates at identical power of the
heater. The upper left shows the temperature field when the fluid is at rest, followed by exam-
ples of increasing flow rates.

where the negative sign prescribes the inward direction of the heat flux. The temper-
ature sensors have been defined as boundary conditions of Floating  type

BC SensUp nnx1+1 nytot IType nnx2-nnx1-2 Floating Temp 0 W
BC SensDown nnx5+1 nytot IType nnx6-nnx5-2 Floating Temp 0 W

and are visible in the graphics window. The temperature and the thermal flux (power)
at these boundaries will be exported for postprocessing.

In the command section we first initialize the velocity and we specify the temperature
field as the only dof field to be calculated, since the velocity field is prescribed and it
is stored in the user element field veloc

Store veloc=v0 *(1-4 »y=*y/(h *h)),0

Constant Heating Power Mode

For designing a realistic flow sensor, the geometry is optimized such that the sensor
characteristics are as desired for the application of interest. In particular, the relation
between the flow rate and the sensor temperatures for a given heater power range
needs to be analyzed. This relation will then be used for calibration in practice. First,
let us consider the situation when the fluid is not flowing for reference. For a non-zero
heating power and a zero flow, one expects a symmetric temperature field, as shown
in the left corner of Fig. 2.124. Steady-state temperature fields for increasing flow rate
are shown in the other examples of Fig. 2.124. The difference in the thermal conduc-
tivity is apparent in the contour lines traversing material boundaries. As expected, the
temperature field is moving downstream with increasing flow rate.

The sensor calibration curve is the curve relating the measurement signal and the
quantity of interest, i.e. the flow rate. In our example, we calculate the dependence
of the sensor temperature difference AT, | = T3 — T} on the mid-channel velocity
vo. Fig. 2.125 shows the dependence of AT5_; and the heater temperature rise above
ambient temperature ATy at a given power density applied to the heater. We note
that AT,_; exhibits a maximum value while ATy decreases monotonically with in-
creasing velocity in the channel. The slope of the AT5_; curve decreases and thus the
sensitivity of the sensor is reduced at higher velocities. The heating power influences
the flow rate range in which the sensor can be operated. As an example, Fig. 2.126
shows such a dependence for the same geometry as above.
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Figure 2.125: Sensor calibration curve relating the sensor temperature difference AT5_; (red)
and the heater temperature rise ATy (blue) to the velocity v in the center of the flow channel
in constant power mode (heating power P = 1073 W).
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Figure 2.127: Sensor calibration curve relat-
ing the sensor temperature difference AT»_4
(red) and the heater power to the velocity vy
in constant temperature mode (heater tem-
perature rise above ambient: ATy = 10 K).

Figure 2.126: Plot of the sensor temperature
difference ATy, 1 = Ty — T} (red) and ATy
(blue) versus the power applied to the heater
(velocity vo = 2 x 10~* m/s).

Constant Sensor Temperature Mode

As indicated in Table 2.4, an alternative measurement mode adjusts the heater power
density at constant heater temperature. For this mode one needs to measure the lo-
cal heater temperature and then regulate the heating power to maintain a constant
heater temperature. The sensor temperature difference A75_; and the heater power
is plotted in Fig. 2.127 versus the flow velocity vy. The temperature difference ATy_;
assumes a local maximum and decays at large velocities as in Fig. 2.125. By contrast,
the heater power density increases monotonically with increasing flow velocity.

Dynamic Response

For sensor applications, the dynamic response behaviour to a stepwise increase of
the flow rate is often critical. In order to simulate the time-dependent evolution of
the temperature field in the flow sensor, the thermal problem is solved dynamically
while the velocity field is kept constant. This method is justified, by arguing that heat
transport happens on a time scale much longer than the fluidic mass flow. Therefore,
we simply increase the magnitude of the velocity field at certain instants in time and
calculate how the temperature field evolves and approaches a new steady-state.

For instance, in constant power mode, we perform a calculation of the transient tem-
perature field for a series of flow rate steps. The flow rate staircase and the correspond-
ing unstationary solution of the temperature field is carried out with the statements

For i From 0 To nFlowSteps
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Figure 2.128: Dynamic response of the sen-
sor temperature difference AT5_; (red) to a
series of velocity vy steps (blue) in constant
power mode (p = 10 mW).
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Figure 2.129: Dynamic response of the sen-
sor temperature difference AT»_; (red) to a
series of velocity vy steps (blue) in constant
temperature mode (AT = 10K).

Define vO=@i/nFlowSteps *vOmax

Store veloc=v0 *(1-4 =yxy/(h *h)),0

Write AtStep 1 File "pdyn.txt" Append
"%12.10f " time+@i *tStop
"%12.10f " SensDown.Temp.Shift-Tamb
"%12.10f " SensUp.Temp.Shift-Tamb
"%12.10f " integrate(Bound Heater; Temp)/(Ic
"%.3e\n" vO0

*micron)-Tamb

Solve Unstationary At 0
Step tStop/50,automatic_step Until tStop Failure step/2

where we have used a loop for the different flow rate levels and the unstationary
temperature solutions. The average temperature at the heater boundary is calculated
using the integral of the temperature at that boundary condition. The transient sensor
temperatures are written to the file pdyn.txt . The resulting transient temperature
difference AT,_; is depicted in Fig. 2.128 and resembles the curve in Fig. 2.125, as
expected. At the first flow rate step the temperature field changes from a symmetric
to an unsymmetrical field as a function of time in a similar manner as depicted in
Fig. 2.124 for the different flow rates. For the constant heater temperature mode, the
sensor temperature transient A75_; is shown in Fig. 2.129. In this plot the approach
to steady state upon each flow rate step is faster than for the constant power mode.

As discussed above in the stationary simulation shown in Fig. 2.125, the heater tem-
perature can be used as the sensor signal in constant power mode. The transient
response of this signal is depicted in Fig. 2.130 with an monotonic decrease of the
steady-state values that is consistent with Fig. 2.125. Finally, we may also use the
heater power as the sensor signal if the sensor is operated in constant heater tempera-
ture mode. In this case, the power increases to the steady state values as can be seen
in the plot of Fig. 2.131. The plots of the dynamic responses show, that the constant
heater temperature mode allows for faster response at the cost of power regulation.

In summary, we reported a modeling method for the time-dependent thermal analysis
of flow-rate dependent heat transport in a calorimetric flow sensor with a straight
microfluidic channel. Some general measurement principles have been discussed with
the help of a simple 2D SESES model.
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2.30 Flow Around a Circular Cylinder

The flow around a circular cylinder has been the subject of intense research in the
past, mostly by experiments but also by numerical simulations and important findings
have been made. The flow situation is of relevance for many industrial applications,
e.g. tubes in heat exchangers, chimneys, towers, antennae, masts, cables and offshore
risers. The main interest is focused on the wake behind the cylinder and the forces on
the cylinder, as they may cause the cylinder to oscillate with a certain frequency. If this
frequency equals the eigen-frequency of the cylinder, the movement of the cylinder
will increase and a material failure due large tensions may occur.

Depending on the Reynolds number, the flow around the cylinder can roughly be
divided into five regimes. For very small Reynolds numbers up to 5, the flow is domi-
nated by viscous forces and the flow field is the same in front and behind the cylinder.
In the Reynolds number range from 5 to 48, the flow starts to separate behind the
cylinder forming two separation regions with recirculating flow. The length of the
bubbles increases with increasing Reynolds number. From Reynolds number 40 to
300, the vortices detach periodically from the cylinder and travel down stream. This
phenomenon is called the Karman vortex street. For higher Reynolds numbers, the
shedding of vortices becomes irregular and the flow becomes turbulent. At very high
Reynolds numbers, the vortices are shed periodically again. A detailed description of
the phenomenon of the flow around a circular cylinder can be found in [1].

In this tutorial, we will concentrate our interest to flow situations with Reynolds num-
bers ranging from 5 to 48. We will compare the calculated force, the length of the
bubbles and the pressure distribution on the cylinder surface to data obtained by ex-
periments and taken from [2]. The equations to be solved are the continuity and the
Navier Stokes equations. For a steady incompressible flow, the continuity equation
can be simplified as

V.v=0, (2.158)
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and the Navier Stokes equation as
p(v-V)v=—Vp+ uViv, (2.159)

with p the constant density, v the velocity, p the pressure and p the viscosity. These
equations can not be solved analytically for the flow field at hand. For our computa-
tions, we will consider a cylinder of radius 0.05 m and infinite length and can therefore
assume a 2D flow situation. We then define a domain of rectangular shape and di-
mensions 0.7 x 1.4 m? with the center of the cylinder placed at 0.55 m behind the flow
entrance and in the center of the domain width. The fluid is assumed to be air of den-
sity p = 1.156684 kg/m® and viscosity = 1.849830x107% kg/(ms). We compute two
flow fields with Reynolds numbers 23 and 45, where the Reynolds number is defined

as J
Re = 24 (2.160)
12
with d the diameter of the cylinder, u, the velocity of the undisturbed flow and v =

w/p the kinematic viscosity.

Model Specification

We start the problem specification of the input file example/FlowAroundCyl.s2d
by defining some user parameters to be used within algebraic expressions for pre- and
post-processing purposes.

DensityAIR = 1.156684E+00 ( * air density in kg/m3 *)
ViscosAIR = 1.849830E-05 ( * air viscosity in  kg/(m *S) *)
rCyl = 0.050 (* cylinder radius in m *)
CharLength = 2 *rCyl ( * characteristic length scale in m *)
NueAIR = ViscosAlIR/DensityAIR ( * Kkinematic viscosity in m"2/s *)
EpsP = le-2 ( * regularization parameter in s *)
TauHydro = CharLength™2/NueAIR  ( * hydr. time scale in s to est regul par *)
Reynolds = 23 (* Reynolds number  «)
Veloc = Reynolds *NueAIR/CharLength ( * mean flow velocity in m/s *)

The parameter epsP is a regularization parameter used to attenuate numerical noise,
see the SESES manual for further details. As second step, we define the problem’s
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geometry and an initial rectangular mesh is reshaped into a domain modeling the
circle and its exterior with the help of homotopic functions loaded with the Include
statement. Four domain’s boundaries Inlet , Outlet , SymmetryWalls , Cylinder
are defined representing the flow inlet, the flow outlet, the surface of the cylinder and
the upper-lower sides of the rectangular domain. This initial macro element is refined
manually around the cylinder and the result is shown in Fig. 2.132. With the next
statement, the material model for solving the stationary incompressible Navier-Stokes
equations is defined.

MaterialSpec m_AIR
Equation CompressibleFlow Enable

Parameter PressPenalty EpsP s

Parameter FlowStab zero

Parameter Density.Val DensityAIR kg/m *k 3
Parameter Viscosity ViscosAIR Pa *S

Before we start our simulation, the BC values must defined. The BCs for the side walls
of our channel are so called symmetry conditions, no fluid can cross the boundary and
the fluid can move along the boundary without experiencing friction (slip conditions).
The BCs for the cylinder surface are no-slip conditions with a zero flow velocity. At
the inlet, Dirichlet conditions are used to specify the flow velocity. Furthermore the
total mass flux must be specified through a pressure floating condition. The pressure
relative to the reference state is specified as a Dirichlet condition at the outlet.

BC SymmetryWalls Dirichlet Velocity.Y 0 m/s
BC Cylinder Dirichlet Velocity 0,0 m/s
BC Inlet Dirichlet Velocity Veloc,0 m/s
Floating Pressure -Veloc * DensityAIR  *Area kg/s
BC Outlet Dirichlet Pressure 0 Pa
Dirichlet Velocity.Y 0 m/s

In the command section of the input file, we define the fields to be solved, set a con-
vergence criteria on the velocity and call Solve Stationary to compute a steady
state solution

BlockStruct
Block Pressure Velocity
Convergence (MaxIncr.Velocity<1.E-12)?1:(nlter>100)? failure("):0

Increment Standard #3 ReuseFactoriz #30
Solve Stationary

Dump Pressure Velocity MassFlow

The Dump Pressure Velocity MassFlux statement defines the field variables to
be displayed in the SESES GUI. For the analysis of the simulation results, we need to
add post-processing commands to write the desired information to external files. This
will be explained in the next section.

Numerical Results

In order to check the accuracy of the results, we compare them to experimental data
available from [2]. In particular, we are interested in the force exerted on the cylinder
by the fluid flow. For a Reynolds number between 4 and 48, we expect two separation
bubbles behind the cylinder with small velocities. In order to get an impression of
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Figure 2.134: z-velocity at the center line be-

hind the cylinder. Figure 2.135: Bubble length as a function of

Reynolds number.

the size of these recirculation regions, we plot arrows indicating the direction of the
velocity. After zooming in, we notice two separation regions, as shown in Fig. 2.133.
To determine their size, we use the velocity distribution on the straight line running
through the center of the cylinder and pointing in the down stream direction. Behind
the cylinder, we expect a zero velocity on the cylinder’s surface and a negative velocity
along the line to the point where the recirculation area ends. Further down stream,
the velocity will steadily increase towards the value at the inlet. We therefore need
the values of the velocity behind the cylinder on a straight line running through the
center of the cylinder. To this end, we enter the statement

(* along channel center behind cylinder *
Lattice latl Index i=0..dataPoints (0.600 0.350)+(0.150 0 .0) *i/dataPoints

to define the location where the data is sampled. The straight line starts at (600, 350)
mm i.e. on the surface of the cylinder and stretches 150 mm in the z-direction. The
parameter dataPoints  specified earlier, defines the number of equally spaced data
points on the straight line. To obtain the numerical data on the lattice points for plot-
ting, we use a single Write statement

Write For i From 1 To 6

File "data"@@({i}".txt" Lattice lat@i "%.9E %.9E %.9E %.9E % 9E %.9E\n"
X y 2*Pressure/(Veloc™2 * Density.Val) Velocity norm(Velocity)
}

writing the x-, y-coordinates of the sampling point followed by the normalized pres-
sure, density or a velocity component. In Fig. 2.134, the results of the SESES calcu-
lations for Re = 23,45.7 are compared with the results obtained from CFX TASCflow
simulations. Notice the close agreement between these predictions. The length of the
separation region is the distance between the end of the cylinder where the x-velocity
is zero and the point where the graph of the z-velocity intersects the line of zero z-
velocity. We compared our results with data from [2], where the length of the separa-
tion bubbles were determined in an experiment by observation. Fig. 2.135 shows the
computed and the observed lengths of the bubbles, the agreement is very good for all
computations.
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Figure 2.136: Pressure distribution on the
surface of the cylinder.

As next, we compare the pressure distribution on the surface of the cylinder. As be-
fore, we first define a lattice of sampling points around the cylinder. The data points
are located on a circle with the distance dr away from the cylinder surface. The first
point is placed at the forward stagnation point of the cylinder and the last at the rear
stagnation point of the cylinder. Plotted is the dimensionless pressure coefficient ¢,
defined as
2

Cp = p—52 . (2.161)
The computed pressure distributions based on SESES and CFX TASCflow are shown
in Fig. 2.136. They are nearly identical and in fair agreement with the experimental
data. The discrepancy is due the size of our computational domain in the lateral di-
rection. In the experiment, the cylinder diameter is very small compared the channel
width, whereas in the simulation the cylinder blocks a considerable part of the chan-
nel cross section. This leads to increased velocities around the cylinder and in turn to a
higher stagnation pressure at 0° and to a lower pressure at 90° away from the forward
stagnation point.

The force exerted on the cylinder is given by evaluating on the cylinder’s surface, the
integral

Fy = / (Twal -1 — pm) - €, dA, (2.162)
S

with p the pressure, Tyan = p(Vv + (Vv)T) the wall shear stress, n the unit vector
normal to the cylinder and e, the unit vector in x-direction which coincides with the
main stream direction. In order to compare the results from the computations and the
experiments, the drag coefficient per unit length of the cylinder

2F,
=" 2.163
Cd pu2d’ ( )
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is calculated and the results for both Reynolds numbers Re = 23 and Re = 45 are
plotted in Fig. 2.137, together with results from CFX TASCflow. The coefficients of
both simulation are somewhat bigger than the experimental data from literature. This
is again due to the channeling effect of the lateral BCs, as explained above.
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2.31 Developing pipe flow with heat transfer

In this example, we consider the heat transfer in a pipe as it occurs in a heat ex-
changer or a boiler. In the case of a household boiler hot flue gas from a gas or fuel
oil burner passes through a number of vertical pipes. The water to be heated moves
freely around the pipes. The entry temperature of the flue gas is around 1000°C. The
pressure of the gas is assumed to be equal to the ambient pressure. We assume the wa-
ter temperature to be 30°C. The goal of this tutorial is to calculate the hydrodynamic
and the thermodynamic developing flow of the gas in the pipe.

As shown in Fig. 2.138, we consider a pipe with a circular cross section and a diameter
of d = 0.0513m and a length of L = 0.70m. The mass flow rate for a single pipe is
m = 0.73x1073 kg/s. The properties of the flue gas are assumed to be those of air.
In this case, with an absolute pressure of 1 bar at the pipe inlet, the density of the air
is p = 0.2737kg/m? which leads to an inlet velocity of v = 1.29m/s. The fluid is
entering the pipe with a top hat velocity profile. The velocity at the pipe surface is
zero and a boundary layer is developing as the fluid is moving through the pipe. As
the fluid passes through the pipe the boundary layer increases with increasing travel
length. After a certain length, the boundary layer fills the whole pipe cross section.
The entering gas has a uniform temperature of 7z = 1000°C. The wall temperature
is constant Ty = 30°C. A thermal boundary layer starts to develop and convective
heat transfer occurs. As the fluid flows through the pipe the physical properties of
the fluid are changing according to the local temperature. Thus the density increases
downstream of the entry cross section of the pipe, and as a consequence the mean
velocity decreases. ~ With the gas properties at the inlet, we calculate a Reynolds
Re = dv/v = 92.4 indicating a laminar flow regime. The hydrodynamic entry length
may be obtained from an expression of the form (see [1])
le,h

(= Dtam = 0.05Re, (2.164)

This leads in our case to a hydrodynamic entry length of z. ;, = 0.237m. The thermal
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entry length may be expressed as (see [2])

le
(#)lm = 0.05RePr, (2.165)

where Pr denotes the Prandtl number. Here the entry length is l.; = 0.171m. The

Prandtl number is defined as
vy

A Y
here v, ¢, and A denote the dynamic viscosity, the heat capacity and the thermal con-
ductivity, respectively. The decrease of the mean temperature due convective heat
transfer to the wall can be calculate using the equations given in the VDI Warmeatlas

[3]. The convection heat transfer coefficient can be computed using the Nusselt num-
ber

Pr = (2.166)

Nu= 22 (2.167)

where o, A and d denote the convection heat transfer coefficient, the thermal conduc-
tivity and the pipe diameter, respectively. According to [3], the Nusselt number is
computed as

Nu = f\’/Nu% +0.73 + [Nug — 0.73]3 + Nuj (2.168)
with
Nu; = 3.66, Nuy = 1.615 {/ Re prd Ny = (L)l/6 (Re Prg) (2.169)
! o 2 ' x’ s 14 22Pr x’ '

Based on the Nusselt number calculation and the computation of the convection heat
transfer coefficient, the mean fluid temperature distribution from the inlet to a certain
point downstream can be determined. The temperature distribution along the pipe
axis is shown for our case in Fig. 2.139.
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Setting up the problem

The SESES file for this example can be found at example/HeatPipe.s2d . In the
first part of the input file, the geometry is defined where the mesh is denser close to
the wall and at the inlet, as the velocity and the temperature gradients are large due
to the developing boundary layer.

QMEI nx radius/nx
QMEJ ny length/ny
Routine double shift(double val,double v[2],double fac)

double f=(val-v[0])/(v[1]-v[0]); return val+fac * (V[1]-v[0]) *(-f o f+f);

}
Coord shift(x,0,radius,0.9) y 1
Coord x shift(y,0,length,-0.9) 1

The fluid considered is air with the temperature dependent physical properties. We
implement the temperature dependency by defining SESES routines which are taken
from a library database

Routine double Viscosity AIR[1](double T) {
(* Viscosity of air in (pa s) - temperature range: 250k - 2273k *)
return
3.4746851634130747e-7 + T  *(7.254574139642276e-8
+ Tx(-4.474301400558843e-11 + (1.5696157920120257e-14
- 1.2112463749591405e-18 *T)*T));

}
Routine double Kappa_AIR[1](double T) {

(* Heat conductivity of air in (w/(m k)) - temperature range: 30 Ok - 1500k *)
return
0.006292410832933179 + T *(0.00006858567183567118 +
(-3.7488608369754205e-9 - 1.2382966512126441e-12 *T)*T);

}

As we already noted, the problem at hand with reference to geometry and fluid flow is
symmetric with respect to the pipe axis. We can make use of this property by including
the statement

GlobalSpec
Model AxiSymmetric Enable

together with the specification of the physical properties.

Numerical Results

We like to see how the hydrodynamic and the temperature boundary layer develop.
For this purpose, we write the velocity and temperature profiles at various locations
along the length of the pipe. The statement

Write File "section.txt"
Lattice lat "%8.4f %8.4f %13.6f %13.6f\n" x y Velocity.Y Tem p

writes the z- and y- coordinate values, the y-component of the velocity and the tem-
perature to the file section.txt and the previous statement Lattice  defines the
points where the data is sampled. The profiles consist of eleven equally distributed
points on a straight radial line. These data can be plotted with a suitable program. The
velocity profiles at different locations along the pipe length are shown in Fig. 2.140.
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The profiles show a constant velocity at the entrance of the pipe, and a boundary layer
which has extended to about half the radius at z = 0.1 m. Atz = 0.2m the boundary
layer has almost penetrated the whole pipe cross section. This is in accordance with
the estimation of the hydrodynamic entry length. The maximum velocity at the pipe
center line is decreasing with travel length of the fluid. This is due to the temperature
reduction which in turn leads to a density increase and in the end to smaller veloci-
ties. In Fig. 2.141, temperature profiles at various locations along the pipe length are
shown. The development of the thermal boundary layer is also clearly shown. The de-
velopment of the temperature profiles proof that the thermal entry length is correctly
estimated.

If we like to compare our result of the numerical simulation with the calculation ac-
cording to VDI Warmeatlas, we must compute average temperatures. Here, we calcu-
late a mass weighted average of the temperature as
[ pvTdA
- [pvdA

which is formulated in the following way

<T> (2.170)

T_a = integrate(Bound b_pos0Oa;Temp *Velocity.Y  *x)/
integrate(Bound b_pos0a;Velocity.Y * X)

We consider a slice and calculate the energy balance for this control volume. The
diffusive heat transfer through the two cross sections and to the wall is computed. To
do this at different locations along the pipe, we define a loop as shown below

For i From 1 To noData-1

Define
T a = integrate(Bound b_pos@({i}a;Temp *Velocity.Y — *x)/
integrate(Bound b_pos@({i}a;Velocity.Y *X)
Tb = integrate(Bound b_pos@({i}b;Temp *Velocity.Y — *x)/
integrate(Bound b_pos@({i}b;Velocity.Y *X)
F_a = integrate(Bound b_pos@f{i}a;(TempDiff.Y) *  Pl*x)
F_b = integrate(Bound b_pos@({i}b;(TempDiff.Y) *  Pl*Xx)
F_c = integrate(Bound b_pos@(fi}c;(TempDiff.X) * 2% P| * X)
Lattice pos@{i}a node(nx,@{i} * dy)
Lattice pos@{i}b node(nx,@{i} *dy+1)
Write
Lattice pos@f{i}a "y=%6.3f Temp=%5.2f DFlux=%6.2\n" y T_a F a
Lattice pos@{i}b "y=%6.3f Temp=%5.2f DFlux=%6.2f" y T b F_ b

Text " %6.2\n" F_c
}

Fig. 2.139 compares the computed and estimated temperature distribution and one
can see that these errors are very small. The graph also shows that the computed
average temperature along the pipe is smaller than the estimated one. This means
that the heat transfer to the wall is larger in the simulation. Several effects may cause
these discrepancies. The Nusselt number calculation of the VDI Warmeatlas is based
on a large number of experiments. However, sensitivities studies has shown that the
inlet conditions influence the temperature distribution as well as the fluid properties.
In our estimation, we used fluid properties at the mean temperature of the inlet and
outlet of the pipe. We suspect that these effects then lead to the different temperature
distributions. In Fig. 2.139, the convection heat transfer coefficient is also shown. As
expected the coefficient is very high close to the inlet and drops to a value of a@ ~
3 W/m? downstream.
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2.32 Hot Spots in a Tubular Reactor

In this example, we show how SESES can be coupled with other simulation software.
As illustrated in Fig. 2.142, we consider a developing flow in a chemical reactor. The
open channel of the reactor has a circular cross section. Air at ambient temperature
enters the channel with a homogeneous velocity of 0.04m/s. A porous shell is placed
around the open channel with an annulus cross-section. A mixture of hydrogen and
water vapor enters the shell from the face surface and diffuses through the porous me-
dia. Oxygen from the air penetrates the porous material and reacts with the hydrogen
according to

2H, + Oy — 2H,0. (2.171)

The air flow is simulated based on the CFD-tool CFX-5 [1]. The resulting velocities
from this computation are written on a regular grid to files which are then imported
into SESES and used in combination with the diffusion, reaction and heat-transfer
calculations performed in SESES. A one-way coupling is considered here, i.e. no in-
formation of the SESES-computations are fed back to CFX-5. Use is made of the axial
symmetry to set up the geometry of the reactor. The Reynolds number of the free flow
in the open channel is small hence the flow regime is laminar. Due to the no-slip con-
dition at the interface of open channel and porous region, the velocity at the interface
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Figure 2.142: Sketch of the single channel of a catalyst converter.
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Figure 2.143: Velocity-profiles in the (left) main and (right) radial flow-directions at locations
along the open channel.

is zero. A boundary layer starts to develop. The development of the boundary layer
can be observed in Fig. 2.143a, where the velocity-component in the main flow direc-
tion is shown. The cross sectional area where the velocity is constant becomes smaller
at each position in the downstream direction. The transition from a plug flow to a
parabolic velocity profile causes the fluid to move also towards the channel axis. This
secondary flow is shown in Fig. 2.143b.

Model Specification

Within the initial section of the input file example/Reactor.s2d ,we first specify the
the four different species associated with the burning of hydrogen in air (2.171). The
species are defined with the help a macro list, which is useful later on for automatically
generating input statements.

Macro SPEC_LIST(M,A,B) { @M(HZ} ,@A,@B)@M(H20, @A, @B)@M(Q, @A, @B)@M(N2,@A,@B) }

Macro DEF_SPEC(X,AB) { @X
Species @SPEC_LIST(@DEF_SPEC,,)

Next, all geometry parameters are defined and an initial mesh is specified with the
QMEland QMEJstatements. To ensure a fine mesh between the regions of free and
porous flow, the homotopic function shift(...) is used to decrease the mesh-size
at this boundary. Within the next section, the SESES-routines
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Routine double u_veloc(double x, double y) FromData "u_vel oc.txt"
Routine double w_veloc(double x, double y) FromData "w_vel oc.txt"

are defined to specify the velocities within the free flow-region. Instead of giving their
functional forms, the velocity data is read from external files using the FromData
statement. In this example, the data has been generated from CFX-5 simulations of
a developing laminar flow. The so-defined routines u_veloc and w.veloc linearly
interpolate between the given discrete data points. In the next section, various op-
erational parameters are defined: reference temperature and pressure as well as the
mole-fractions of all species at the air and burning gas inlets, respectively. The next
section defines global and material parameters. As first we define the production rates
for the burning-reaction of hydrogen Hs+ 02 — 2H>0 with the help of several macros
following a common scheme used to define chemical reactions. This model relies on a
phenomenological kinetics formula for the species reaction rates II,

P+ P, Ah—TA
Il, = kM,v, g $1%12$O2 - 33%{20 eXp(TS

Pref ) '

with k the reaction rate, v, the stoichiometric coefficient for o, M, the species molar
mass, Ah the reaction enthalpy, AS the reaction entropy, P, a reference pressure
parameter and R the universal gas constant. Next, the global definitions

GlobalSpec
Model AxiSymmetric Enable
Parameter AmbientTemp TO K

are used to employ the rotational-symmetric model-description as well as the ambient
temperature. As next, we define the material parameters and models specifying the
physical-chemical model of the free flow-region mvoid .

MaterialSpec m_void
Equation CompressibleFlow ThermalEnergy
TransportH2 TransportH20 TransportO2 TransportN2  Enable
Parameter Density IdealGas(AmbientPress p0 Pa) Slunit
Macro Renew BURNH2_RATE { (1.0e+3) ( * mol/(s *m 3) =*) }
Macro Renew BURNH2_DH { (-2.48e5) ( * J/mol =)
Macro Renew BURNH2_DS { (-55.0) ( * J(K *mol) =*) }
Parameter RREA @BURNH2(RREA)

Here, the Equation statement activates the balance equation NavierStokes  for the
overall mass and momentum, the mass-balances H2 H20 O2 NZor each species as
well as the energy balance Temp Within the Parameter section, we define the ideal
gas density law and the producion rates for the hydrogen burning reaction by calling
the macro @BURNHBy newly defining macros before the macro call of @BURNHZ2ve
can redefine default parameters used by the macro ifself. The large negative enthalpy-
change indicates that the burning of hydrogen is strongly exothermic, i. e. it produces
a large amount of heat. The other Parameter statements define the following prop-
erties: the overall thermal conductivity Kappalso , the viscosity Viscosity  of the
gas mixture, the molecular weights Mmol<A>, the heat capacities Cp<A>and the pair-
wise diffusion coefficients Diff<A> _<B> of all species. Note that the properties of the
porous flow-region mreac are very similar to those of mvoid . To transfer the prop-
erties of mvoid to mreac , we use the statement mreac From m _void . In addition,
the material mreac contains the parameter-setting
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MaterialSpec m_reac From m_void
Parameter Kappalso 0.10 W/(m  *K)

to adjust the thermal conductivity to its value within the porous material. Finally,
the defined models are assigned to their computational domains using the Material
statement and boundary conditions are set. Here, we give the compositions and tem-
peratures at the air and burning gas inlets. With this, the SESES-model of the reactor
is complete.

What remains is to control and start the actual simulation and to specify the kind of
output generated. Both is done within the command section of the input file. We
start with the initialization of the various field-variables using the Init  statement.
As already mentioned, the velocity-fields within the free flow-region are imported
from CFX-5 simulations. We initialize those fields with the above defined functions
w_veloc(x,y) and u_veloc(x,y) . The temperature and pressure are set to their
reference values and the compositions on the regions of free and porous flow are
set to their values at the inlets. In SESES, this is accomplished using the function
material(<mat>) which is 1 on <mat> and 0 elsewhere. We then use the Remesh
statement to locally refine the mesh at the boundary between the regions of free and
porous flow. Once all initialization-parameters are set, Solve Init  performs the
actual initialization. The next statements

BlockStruct Block H2 H20 02 N2 Temp
Convergence Maxincr.H2<1le-7 && Maxincr.02<le-7 && Maxinc r.-Temp<le-4
Increment  Standard #2, ReuseFactoriz #10, Standard Contro I -1

Solve Stationary

defines the fields to be solved for, sets convergence criteria, an optimized solution
strategy and evokes the actual calculation.

Numerical Results and Discussion

Fig. 2.144 shows the axial and radial velocity-ditributions within the reactor as pre-
dicted from the CFX-5 simulations. At the inlet of the free flow-region, we have a

Figure 2.144: Velocity-distributions in axial (a) and radial (b) directions along the reactor; the
lighter the color, the higher the velocity.

uniform axial velocity of 0.040m/s. Due to the no-flow condition at the boundary
between the free and porous regions, the fluid slows down near that boundary. Con-
sequently, the continuity of mass leads to an increase of the velocity near the center,
with a maximum velocity of 0.075m/s at the outlet.

Since the considered burning of hydrogen is strongly exothermic, a substantial gener-
ation of heat occurs. This leads to a temperature increase within the reactor. Within
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the prorous region, the heat transfer is rather slow since it only happens by con-
duction and diffusion. Consquently, the thermal conductivity value of the porous
material has a large impact on the observed temperature distribution. This is illus-
trated in Fig. 2.145, where the reactor-temperatures are shown for for three differ-
ent thermal conductivities of the porous material. The lowest temperature of 300 K
is at the inlet (shown in dark blue). As expected, the small thermal conductivity of
k£ = 0.1W/(mK) leads to a hot spot within the porous region, with a peak temper-
ature of about 490 K (shown as the light yellow region). As the thermal conductiv-
ity increases, the temperature-distribution within the reactor becomes more uniform.
The concentration-distributions of Oz, N, Hy, and H»O along the reactor are shown

Figure 2.145: Temperature-distribution along the reactor for three different thermal conduc-
tivities of the porous material: (a) x = 0.1, (b) K = 1.0 and (c) k = 5.0 W/(m K).

in Fig. 2.146. Note that the distributions of oxygen and nitrogen look very similar.
This can be explained by the very small hydrogen-concentration, i.e. for hydrogen
burning, only small amount of oxygen are required. Due to this excess in oxygen, the
distributions of O3 and N are primarily influenced by the flow conditions and the gas-
diffusivities. However, the distribution of Hs is different in that the Hy-conversion —
which happens mainly at the boundary between the free and porous regions — creates
a strong Ho-flux in the radial direction.

Figure 2.146: Concentration-distributions along the reactor for: (a) Oz, (b) N», (c) Ha, and (d)
H>O.
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Figure 2.148: Computational domain with air
channels AIR (light blue) and insulator 1ISO
(yellow) representing the smallest repetitive
Figure 2.147: Section of the thermal insu- structure of our thermal insulation structure.

lation structure consisting of two insulation
walls with air channels and an air gap be-
tween the walls. Not shown is an offset of
18 mm in the depth location of the air chan-
nels between the two walls.

2.33 Effective Transport Parameters from Volume Averaging

In many complex technical devices such as fuel cells, a multitude of coupled physical
and chemical processes take place within the assembly: fluid flow, diffusion, charge
and heat transport, as well as electro-chemical reactions. For design and optimiza-
tion purposes, direct numerical simulation of the full 3D structure using CFD tools is
often not feasible due to the large range of length scales that are associated with the
various physical and chemical phenomena. However, since many fuel cell compo-
nents such as gas ducts, current collectors or thermal insulation assemblies are made
of repetitive structures, volume averaging techniques can be employed to replace de-
tails of the original structure by their averaged counterparts [1, 2, 3]. An efficient
approach is based on the following two-step procedure: first, for all repetitive struc-
tures, detailed 3D FE-simulations are performed to obtain effective parameters for the
transport equations. The complex structural information is thereby cast into effective
material properties. In a second step, these averaged quantities are used to simulate
the original 3D structure but now without all fine details, thereby decreasing the com-
putational cost.

In this tutorial, the volume averaging method will be illustrated for the thermal insula-
tion structure shown in Fig. 2.147. It consists of two insulation walls with air channels
and an air gap between the walls. An external pressure gradient causes an air-flow
from the left to the right. In addition, there is an external temperature gradient caus-
ing a heat conduction flow in the opposite direction. In the most simple case, i. e. when
the inertia-terms in the momentum balance are negligible, the internal resistance of a
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solid structure with respect to fluid flow is described by Darcy’s law [4],
Vp = —(w). (2.172)

Darcy’s law states that the average fluid velocity in a given direction is proportional
to the external pressure gradient that causes the fluid motion. The proportionality
constant is given by the ratio of the shear viscosity u to the permeability k. The shear
viscosity is a property of the considered fluid, whereas the permeability takes into
account geometrical details of the solid structure through which fluid flow happens.
To characterize the internal flow resistance of the thermal insulation assembly shown
in Fig. 2.147, we solve (2.172) for the permeability

_ kL.
k= =% (ws) . (2.173)

Here we have assumed that the main flow goes along the z-direction. Consequently,
k. can be obtained from a simple simulation, where for a given external pressure drop
Ap, the resulting average fluid velocity (w.) is determined. Using the integral version
of the continuity equation for steady-state flow 7, = A p (w,) with 1, the total mass
flux, eq. (2.173) can be re-written as

Ly,
Ap Ap’

k, = (2.174)

In this example, we will then show how to compute &, for the considered thermal
insulation assembly. With this information we are then able to approximate the flow
characteristics of the original structure by performing a simple simulation of an un-
structured porous material.

Similarly to the porous flow, the overall characteristics of an assembly with respect
to heat conduction can also be described by effective thermal conductivities. They
are obtained from Fourier’s law [4], VT = —(1/k)F stating that the heat flux F is
proportional to the external temperature gradient V7I'. The proportionality constant is
the inverse of the thermal conductivity « and solving for « gives

_ _q,sz

L= ) 2.17
K AT (2.175)
As for the permeability, we will then show how to compute «..

Model Specification

This numerical example can be found at example/VolAverage.s3d . To run the cal-

culations in different modes, some control parameters are introduced first. The the flag
permYN is set, the effective permeability of the considered structure is calculated ap-
plying an external pressure drop of dpress=12.0 . Similarly, when the flag condYN
is set, the effective thermal conductivity of the considered insulation structure is cal-
culated applying the external temperature gradient that results from the difference
between T_Hot=600 and T_Cold=350 .
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Define

permYN = 1 (* permeability for isothermal system *)
condYN = 0 (* thermal conductivity for stagnant system *)
dpress = 12.0 (* given pressure drop in Pa *)
T_Cold = 350 (* cold temperature in K *)
T_Hot = 600 (* hot temperature in K *)
T_ref = T_Cold+(T_Hot-T_Cold)/2 ( + reference temperature in K *)

As next, we construct a three-dimensional cube as the computational domain repre-
senting the smallest repetitive part of the structure shown in Fig. 2.147. To generate
the tubular air channels, we apply the homotopic function cylzS which transforms a
cube into a cylinder. Two materials representing air AIR and the insulation material
ISO are then defined and assigned to the computational domain, see Fig. 2.148.

We next specify the physical parameters. First,a number of SESES routines are defined
which provide the thermal conductivity of the insulation walls as well as the required
fluid properties of air. Note that for material AIR, the mass-, momentum- and energy-
balance need to be solved, whereas for ISO, only the energy-balance is required.

(* average heat capacity of air for conduction *)
Define Cp_AIR_ref = (CplTemp_AIR(T_Hot)-CplTemp_AIR(T_ Cold))/(T_Hot-T_Cold)
(* global specifications *
GlobalSpec
Parameter AmbientTemp T_0 = 293.15 K
(* air channels *)
MaterialSpec AIR
Equation CompressibleFlow ThermalEnergy Enable

Parameter FlowStab zero
Parameter Density IdealGas(AmbientPress 1e5 Pa) Slunit
Parameter Mmol M_AIR() kg/mol
Parameter  Viscosity Viscosity_AIR(Temp) Pa *S
Parameter PressPenalty le-5 S
Parameter Kappalso D_Temp Kappa_AIR(Temp)
KappaDTemp_AIR(Temp) W/(K *m)-W/(m * Kex 2)
Parameter ThermStab zero
Parameter ThermConv Velocity *Cp_AIR_ref *Density.Val W/(K  *m 2)
(* insulation material *)

MaterialSpec 1SO
Equation  ThermalEnergy Enable
Parameter Density.Val 1 Slunit
Parameter Kappalso D_Temp Kappa_CER_DURATEC(Temp)
KappaDTemp_CER_DURATEC(Temp) WI/(Km)-W/(m * Kxx 2)

Before we can start our simulation, a complete set of boundary conditions must be
defined. Depending on the mode in which we run the simulation - as specified
through the flags permYN and condYN — different sets of boundary conditions are
used. The boundary conditions BCfluidl and BCfluid2  specify the inlets and
outlet of the air-flow, respectively. In addition, when thermal simulations are per-
formed (condYN=1), the temperature boundary conditions BCwalll and BCwall2
are set at the outer surfaces of the insulation material. No-slip boundary conditions
have to be applied to all fluid-solid interfaces. These surfaces are elegantly deter-
mined using the OnChange material(...) statement, which specifies all surfaces
of a given material (in this case 1ISO).

BC BC_noFlow  OnChange material(ISO) ( * no flow at channel walls *)
Dirichlet Velocity 0,0,0 m/s

Finally, we give symmetry conditions with respect to the flow field in those air-chan-
nels, where only 1/4 of total the cross-section is considered. With the specification of
the boundary conditions the initial section of the input file is now complete.
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In the command section of the input file, we first perform a manual refinement of the
air channels, initialize the temperature field and run the solution procedure depending
on the setting of the flags condYN and permYN. At the end, we add post-processing
commands to write the desired information allowing us to compute averaged values
of permeability and conductivity based on (2.174) and (2.175).

Numerical Results

The content shown below is an excerpt of the output when running the example in
mode permYN=1.

(* input parameters

)

TO = 293.15 (K)

p_0 = 1.000e+05 (Pa)
dpress = 1.200e+01 (Pa)
(* properties of air *)

viscosity(293.15 K) = 0.0185 (cp)

(* calculated densities *)

densiFluid1 = 0.7306 (kg/m"3)
(* calculated mass fluxes *)

mfluxFluid1 = -2.997e-06 (kg/s)
(* calculated effective permeability *)
permEff = 1.111e-09 (M"2)

Based on (2.174), the permeability is calculated as

permEff = -1le3 =*Viscosity AIR(T_ref) * mfluxFluid1
*lengthZ/(areaXY  +densiFluidl  *dpress)

with mfluxFluidl the computed total mass flux. The small value k, = 1.111ex 10799

m? means that the insulation assembly exhibits a small flow-resistance. A similar in-

formative output is generated when running in mode condYN=1 to compute the av-
erage thermal conductivity .. Based on (2.175), the conductivity follows as

kappaEff = 1e3 =lengthz/(T_Hot-T_Cold) * qFluxWalll/areaXyY

with gFluxWalll  the computed total heat flux. As expected, the value of k, =
0.1448 W/(K m) lies in between those for air and the insulation material.
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Figure 2.149: View of the heat exchanger. Visible are two crossed channels which carry a hot
and a cold air flow (arrows).

2.34 Heat Exchange between Air Flows

Air temperature and humidity are key parameters for comfort as well as for many
fabrication processes. The heat exchange between cold and hot air flow plays an im-
portant role in temperature control. Fig. 2.149 displays a drawing of a heat exchanger,
which is commercially available. These heat exchangers consist of hundreds of crossed
channels for the hot and cold air flows, separated by thin metal sheets. The chan-
nels lay horizontally and have heights between 3 and 15mm. The efficiency of the
exchanger is expressed with the averaged ratio of hot and cold flows at the in- and

outlet
Tcold,out - Tcold,in

o=

)
Thot,in - Tcold,in

where values of ¢ = 0.5 are considered as good. For ISO certification, the efficiency of
heat exchangers needs to be measured. Efficiency predictions by model calculations
are difficult due to the complex and irregular channel shapes and turbulent air flows.
Air conditioning engineers, however, suggest, that the presence of turbulence plays a
minor role for the value of ¢. It seem to be the channel structure and dimensions, that
govern the ¢ value. When modeling just two channels, it is possible to calculate ¢ as a
function of channel thickness and compare the values to measurements.

Implementation of the Model

In order to simply the matter, we have modeled two air channels only with a given
rectangular flow profile. Implementing a more realistic parabolic flow profile in-
volves either coupled velocity calculations of many air slabs or a complicated param-
eterization of the flow profile. The numerical example can be found at example/
HeatExchanger.s3d , it defines a cold channel in the center and half a channel of
hot air above and below the cold channel, see the left of Fig. 2.150. In the Geometry
definition section, an initial rectangular geometry is transformed to a rotated rhom-
bus with the following statements

Include "Homotopic.sfc"
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Figure 2.150: Left: Computational domain with two air channels. Right: temperature profile

Coord coord+(0,-x3,0) * bump(x,ax2,ax3,ax4,ax5,1)
*bump(y,ay0,ayl,ay2,ay3,1)
block(nx0 nx7 ny0 ny4 nz0 nz5)

Coord coord+(0,x3,0) * bump(x,ax2,ax3,ax4,ax5,1)
* bump(y,ay3,ay4,ay5,ay6,1)
block(nx0 nx7 ny3 ny6 nz0 nz5)

In the input file, it is further important to define several blocks and domains in order
to define the velocity profile later on.

In the Material definition section, we define a user field velocity  to store the
velocity profile in the flow channels. The velocity is just initialized later on and not
directly computed. Therefore, only the temperature equation for conduction and con-
vection of heat need to be solved. For this heat exchanger model, the Péclet mesh
number is large and of the order ~ 10® so that one needs stabilized finite elements in
order to compute numerical solutions. Here streamline diffusion is automatically ap-
plied when defining the thermal convection with the material parameter ThermConv .
Without stabilization, in order to obtain smooth solutions a factor 10® larger artificial
diffusion would be otherwise required.

ElmtFieldDef velocity(DofField Temp)[3]

MaterialSpec air
Equation  ThermalEnergy
Parameter Viscosity 0.0000186 Pa *S
Parameter Kappalso 0.0262 WI(K * M)
(* cp=29/0.029 J/(K +kg) density=1.16 kg/m ** 3 k)
Parameter ThermConv  velocity *29/0.029 *1.16 W/(m ** 2+ K)

In the BC definition section, we define boundary conditions. The hot air flow is
set to a constant temperature of 305K at the inlet and to a constant but yet unknown
temperature at the outlet. A constant temperature profile at the boundary is attached
to the cold air flow as well. The temperature at the inlet is set to 280 K.

Results and Discussion

The right of Fig. 2.150 shows the calculated temperature distribution for a constant air
velocity of 2.5m/s, and for incoming air temperatures of 305 K and 280 K, respectively.
The temperature change of the air flow at the end of each channel yields the following
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According to our definition at the beginning of this example, this value corresponds
to a good heat exchange efficiency.

2.35 A first model of a SOFC fuel cell

In this example, we are going to model a simple solid oxide fuel cell. SOFCs are solid
state devices working at high temperature of 800 — 1100 °C, not requiring complex
catalytic reactions at the electrodes to run the electrochemical fuel oxidation which
may be hydrogen or carbon monoxide. In their simple form, they consist of a cathode
and an anode made of porous materials and in between a solid porous electrolyte,
see [1, 2]. Fuel cell modeling is in general a complex task involving chemical reac-
tions, current flow, mass flow and energy conservation. In this example, we consider
the combustion of hydrogen and focus on the chemistry of a 1D system at constant
temperature leaving out, for other examples, topics like convective flow, fuel delivery,
fuel recombination, temperature distribution and fuel cell optimization.

Our fuel cell system is depicted in Fig. 2.151, the hydrogen fuel is delivered at the
anode and oxygen is delivered at the cathode by an external pipe system not show in
the figure. Both gases diffuse towards the electrolyte and at its boundary, we have two
heterogeneous reactions taking place. At the interface between cathode and electrolyte
we have the reduction of oxygen, where electrons from the external circuitry combine
with the oxygen. The oxygen ions diffuse then towards the anode-electrolyte inter-
tface where the oxidation of hydrogen takes place delivering electrons to the external
circuitry. The stoichiometric coefficients of both reactions are given by

Oxidation of Hy : 2H, +20%~ — 2H,0 +4e,

Reduction of Oy : Oy 4+ 4~ — 202 . (2.176)

By closing the external circuitry a current starts flowing, because at the anode-electro-
lyte interface, the oxidation of hydrogen pumps carriers uphill resulting in a discon-
tinuous potential of ca. 1 — 1.2'V. This discontinuity, called the Nernst potential, is an
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expression of the difference in the free Gibbs energy between educts and products of
the heterogeneous reaction. It is an optimization task to minimize the electrical lost
within the fuel cell and have most of the Nernst potential available to drive the ex-
ternal load. The rates of the reduction and oxidation reactions (2.176) are the rates of
production and consumption of electrons at both interfaces and therefore proportional
to the normal current flow at the interface and given for the stoichiometric coefficients
of (2.176) and a unit of moles per surface and time by

j-n
4qNayo ’

rate = (2.177)

with j - n the electrical current normal to the interface anode-electrolyte, ¢ the elemen-
tary charge, N,y, the Avogadro’s constant and the factor 4 stemming from the stoichio-
metric coefficients of e~ in (2.176). The Nernst potential is actually the open circuit
voltage since as soon as a current flows, irreversible processes reduce this voltage bar-
rier. In general this voltage drop also called overpotential is a complex function of the
normal current, but for SOFC under normal working conditions, a linear dependency
is a good approximation and for the cell voltage we have
j-n

AV = AWUNernst — ? ) (2178)

with G a proportionality constant called the effective surface conductance.

Setting up the problem

In the previous section we have given all necessary details for the working of a SOFC
and we are now ready to set up a SESES example example/FuelCell.s2d corre-
sponding to our description. Although we are going to make a 2D simulation, our
model will be laterally invariant so that we are actually performing a 1D simulation
embedded in a 2D model. For this first example, we are going to model just a small
neighborhood of the electrolyte. Because of the small dimensions, we can consider the
temperature to be constant and the mass flow of the species to be diffusive since there
is no external pressure gradient driving a convective flow. As a further simplification,
we are not going to model the diffusion of oxygen ions O?~ in the electrolyte since
here the electrical drift current is dominant.

In summary, we have the following scenario. Our fuel cell consists of three materials,
the cathode, the electrolyte and the anode stacked above of each other. Each layer
has a thickness of 0.1 mm and the width and depth of the cell is 1 mm. Within the
cathode, we have the diffusion of oxygen so that we need to solve for the oxygen mass
flow there. At the top of the cathode, we supply oxygen and since we suppose there
is no shortage, we can assume a constant oxygen concentration corresponding to a
Dirichlet BCs. The oxygen diffuses towards the interface with the electrolyte, where
the oxygen’s reduction acts as a sink with a rate given by (2.177) and modeled by a
Neumann BCs depending on the normal electrical current. At the anode we have a
similar situation for the hydrogen, at the bottom of the anode we prescribe a fixed
hydrogen concentration with a Dirichlet BC and at the interface with the electrolyte
we have a sink of hydrogen modeled by a Neumann BCs with a rate of (2.177). At the
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anode-electrolyte interface, we have additionally the production of water steam, but
we assume the steam can freely escape through the anode and therefore does not need
to be considered. Over the whole device, we solve for the electric potential and set the
top of the cathode at ground. By the generated electrical field, electrons drift towards
the electrolyte. Here the potential undergoes a first jump due to the Nernst potential
of the oxygen reduction, however this value is small ca. 0.1 V and it is not considered
here at this point. At the interface electrons are replaced by negative oxygen ions
drifting and diffusing towards the anode. As noted before, in the electrolyte the ions
diffusion can be neglected so that we just solve for the drift current like within the
cathode and anode, just with another electric conductivity since now we have ions
instead of electrons. When the ions arrive at the interface with the anode, the potential
undergoes another negative jumps due to the hydrogen oxidation which is modeled
following (2.178) by a jump BC depending on the normal electrical current. Although
the Nernst potential AWyernst is a function of the educt and product concentrations, we
neglect this small non-linear dependency and use a constant value of AWnernst = 1.1V
so that we can also include here the neglected jump at the cathode-electrolyte interface.
At this interface, the ions are replaced again by electrons drifting towards the anode
contact and here we have two choices, either defining the contact’s voltage with a
Dirichlet BC for the electric potential, or the total current through the device with a
floating BC. We prefer the latter and set a value of 3mA /mm?, since a zero current
corresponds to a turned-off system, whereas for a full fledged non-linear model it is
not always clear which voltage corresponds to this state. It may also be useful to
connect both contacts with a resistive load, by defining the total current to be a linear
function of the floating potential. In summary, the materials are defined with the
statements

MaterialSpec Electrolyte
Equation OhmicCurrent Enable
Parameter Sigmalso 5 S/m

MaterialSpec Cathode From Electrolyte
Equation TransportO2 Enable
Parameter Sigmalso 1.2E4 S/m
Parameter Diff.02_02 1.0e-5 Kkg/(s * M)

MaterialSpec Anode From Electrolyte
Equation TransportH2 Enable
Parameter Sigmalso 3.0E4 S/m
Parameter Diff.H2_H2 1.0e-5 Kkg/(s * M)

and the boundary conditions with the statements

BC Cathode 0 ny IType nx
Dirichlet Psi oV
Dirichlet O2 x02

BC Anode 0 O IType nx
Floating Psi -current mA
Dirichlet H2 xH2

Define
NAVO = 6.02202E23
Ginv = 1/1.0E5

O2flux =-1/4 *mmolO2/NAVO/Q0
H2flux = 2/4 *mmolH2/NAVO/Q0

Macro CUR { (Current.X *Normal.X+Current.Y  *Normal.Y) }

BC OxyRedox Restrict material(Cathode) 0 nyO+nyl IType nx
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Neumann O2 D_Current O2flux *@CUR,(Normal,0) *O2flux kg/s/m »x 2-kg/(A *S)#3

BC HydOxid Restrict material(Anode) 0 nyO IType nx
Jump Psi D_Current 1.10-@CUR * Ginv,(Normal,0) *(-Ginv) V-V/(A/m *x 2)#3
Neumann H2 D_Current H2flux *@CUR,(Normal,0) *H2flux kg/s/Im  »x 2-kg/(A *sS)#3

Since for this simple model, the potential jump is just a function of the current, the
potential is independent from the chemistry and should be solved in a first step and
the mass flow equations for O,, H, in a second step. These two equations are also
uncoupled to each other, they just depend on the normal current flow at the anode-
electrolyte interface and so we can solve each equation in turn to get a solution of this
SOFC system. However, this 1D model is also very small that we may decide to solve
all equations together and since the full system is linear, just a single step is required.

Convergence 1
BlockStruct Block Psi H2 O2
Solve Stationary

Numerical Results

For this example, Fig. 2.152 shows the potential distribution along the vertical line.
The potential jump (2.178) is given by ~ 1.01 V and we have quite a large potential
drop within the electrolyte due to the small electric conductivity. Because of the small
vertical dimensions, the concentrations of Oz, Hy are almost constant and equal to
the ones set with the Dirichlet BCs. The current is overall constant and given by the
prescribed value at the floating BC for the potential. For this example, the only figure
of merit is the knowledge of the potential at the anode which gives us the electric
power supplied by the cell. This value is given by the computed potential shift at
the floating BC. A summary of these working conditions is given with the following
statement.

Write
Text "Potential=%.3f V Current=%.3f mA Power=%.3f mW\n"
-Anode.Psi.Shift, current, -Anode.Psi.Shift * current

As stated before, for this simple example the potential is completely independent from
the chemistry so that the figure of merit may be obtained by just solving for the poten-
tial. However, we have computed the Oy, H, concentrations so that if one defines the
Nernst potential as a function of these concentrations, one can right away study a full
coupled system. As a next step in refining the modeling of a SOFC, one should con-
sider the temperature dependency of the heterogeneous reactions and the fuel supply
which may decrease the reaction rates whenever a shortage occurs.

References

[1] J. LARMINIE, A. DICKS, Fuel Cell Systems Explained, Wiley, 2000.

[2] A. A. KULIKOVSKY, Analytical Modelling of Fuel Cells, Elsevier, 2010.



210 SESES Tutorial September 2012

2D Cathode Flow Field %

Local Interaction (1D) iii

interconnector

o e o e
cathode YYVYVY
2D Anode Flow Field
electrolyte
anode

gas inlet interconnector  Fjgure 2.154: The 2D+1D modeling

approach with 2D cathode and anode
Figure 2.153: View of a single layer in a SOFC stack domains and a 1D point-to-point cou-

system. pling.
2.36 A planar 2D+1D SOFC model

In this example, we further develop the previous tutorial example and go a step fur-
ther in the modeling of a solid oxide fuel cell (SOFC) system like the one shown in
Fig. 2.153. In particular, we are going to use a 2D+1D modeling approach which al-
lows us to avoid computationally intensive 3D calculations, without impairing too
much on the model’s quality, see Fig. 2.154. The anode and cathode are modeled sepa-
rately by 2D transport models accounting for multicomponent fluid flow and possibly
heat transport. The layer in between consisting of the gas diffusion layer (GDL) for the
cathode and the anode together with the electrolyte is modeled locally by a 1D model
connecting both the 2D cathode and anode domains point-to-point, i.e. each point
within the cathode is connected with a point at the anode through a point-to-point
transversal cross-coupling possibly accounting for porous flow, multicomponent dif-
fusion, heat transport, charge transport and electrochemical reactions. The definition
of the 1D model is completely left to the user and it is part of the input. Simple analyt-
ical or semi-analytical models are generally directly specified within the SESES input
syntax, however, there is also the possibility to solve sophisticated 1D problems by
tinite difference or finite element methods with the help of numerical routines embed-
ded in dynamic libraries to be loaded at run time. The question is of course if such
2D+1D models make any sense. It depends, but for SOFC and proton exchange mem-
brane (PEM) fuel cells where the lateral dimensions are order of magnitude larger than
the electrolyte and GDL layers together, they surely do. Because of the large ratio be-
tween thickness and lateral dimensions, you may assume that lateral transport within
the thin vertical layer may be neglected, with obvious advantages. The modeling of
the 1D vertical transport is completely decoupled from the 2D transport and so nu-
merical difficulties related to the large geometric ratios are avoided. Further no matter
how complex the 1D model may be, the overall cost is just given by its evaluation
growing linearly with the number of elements used by the 2D transport model. So
the limiting factor is always represented by the solution of the 2D transport problem
which is mainly determined by the number of dof-fields and the type of cross-coupling
between the cathode and anode domains. For this 2D+1D approach, there is a special
built-in model CouplinglD allowing to couple point-to-point two non-overlapping
domains through the right-hand-side of the modeling equation associated with some
dof-fields. The list of dof-fields which can be coupled is free and the implementation is
optimal in the sense that if the whole system to be modeled is linear, then the solution
is obtained with a single linear solution step. However, the computational work grows
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with the number of dof-fields involved in the cross-coupling, so that if the coupling
is weak, one may be faster in computing solutions by using a Gauss-Seidel solution
strategy and setting to zero some or all cross-coupling derivatives.

Mathematical model

Even for the simplified 2D+1D approach, there are many possible choices available
for the model’s complexity as e.g. the number of species involved, thermal depen-
dency, dynamic behavior so that even here, the computational expenditure may be
of concern. Therefore, we are not going to present in full details the modeling of a
SOFC system ready for production, but limit ourself to the main features. In partic-
ular, we make the isothermal assumption and assume a constant working temper-
ature of ' = 1223K. Extensions to include the temperature dependency are quite
straightforward, once the temperature dependency of the the material laws is known.
One just has to provide these dependencies and for fast convergence their deriva-
tives with respect to the temperature. We also are not going to consider to many
species, since they just increase the computational cost without necessarily improv-
ing the insight understanding. We thus consider the species Oy, N> at the cathode
and Hy, H2O, No, CO,COs at the anode. The 2D cathode and anode domains are ac-
tually two distinct flow channels, the cathode is an in-air flow suppling oxygen and
at the cathode we have a gas flow suppling hydrogen for a proper operation of the
the electrochemical reaction in the fuel cell. We assume both flows to be laminar and
irrotational, i.e. a potential flow, which allow us to use a simple linear model to com-
pute the velocity v and pressure p with the model equation PorousFlow . Within
both channels, additionally to the overall mass transport there is mixing of species
by diffusion, convection and possibly chemical reactions. Therefore for the cathode
we solve additionally for the equations TransportO2 , TransportN2 and at the an-
ode for TransportN2 , TransportH2O ,TransportH2 , TransportCO , Transport
CO2 Species convection is automatically considered by solving for the velocity v and
for species diffusion we use the Stefan-Maxwell diffusion law available in SESES with
the built-in model StefanMaxwellDiff . In order to work with the Stefan-Maxwell
model, we need to work with species mole-fractions z,, for the dof-fields and the con-
straint )z, = 1. Numerical solutions will satisfy this latter condition by a proper
setting of the BCs and if the sum of the species production rates I1,, is everywhere zero
> oo = 0, a fact proven in SESES manual. Actually, these 2D transport equations
should not only consider the transport in the air and gas channels, but also the lateral
transport in the underlying GDL of cathode and anode. However, being these GDL
layers made of solid matter, their contributions to transport may be neglected.

Due to the high temperature, the hydrogen at the anode may burn out if there are
some oxygen’s leftovers, but since we are excluding oxygen as species at the anode
this case does not apply. However, as an example, we will consider the so called
CO shift reaction CO + H,O — CO; + Hy with the following kinetic model relying
on phenomenological formulas. For species compositions far from thermodynamic
equilibrium, the forward rate expression is given by

E,
Ttwd = ko exp(— 7 T)wco : (2.179)
gas
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with Rg,s the gas constant, kg a pre-exponential factor and F, a typical activation
energy of the process. For the overall reaction rate we use ad hoc the expression

THTCOy (Ah—TAS
TCOTH,H0 RgasT

r=rwd- |1— ) (2.180)
with Ah the reaction enthalpy and AS the reaction entropy. While the expression (2.179)
is correct far from equilibrium in the forward direction, it is no longer correct near
thermodynamic equilibrium and (2.180) represents an amendment in order to attain
equilibrium. Even for compositions favoring moderately the reverse reaction, the ex-
pression seems to be acceptable since it assumes small negative values forcing the gas
composition back to equilibrium. Far form equilibrium with reverse reaction condi-
tions, the applicability is questionable since the reaction kinetics will almost certainly
fail to be correct. However, this condition will not be attained during sensible SOFC-
simulations. From the reaction rate (2.180) in unit of mole/s, we obtain the species
production rates as I1, = M,v,r with M, the species molar mass and v, the stoichio-
metric reaction coefficients and since mass is not created nor destroyed, we satisfy the
necessary condition ) | II, = 0.

Both gas and air channels are interleaved with nopples used to electrically contact the
anode and cathode surfaces. No convective transport is possible within the nopples,
so that here we just need to model the 2D conductive transport in the solid GDL. We
use here the same Stefan-Maxwell diffusion laws as for free convection but we scale
down all coefficients by a constant factor. However, as we will see later, underneath
the nopples and because of the 1D cross-coupling, the total mass production rate is not
zero. The governing equations for the species transport cannot take this into account
and so in order to collect together and not to loose this mass and to have a correct ac-
count on the mass flow, we still solve for the convective mass transport but by forcing
a slow velocity. Electrial current transport is also considered at the anode and cath-
ode by defining the model equation OhmicCurrent . Since it is not possible to set BCs
over an open domain just the nopple’s boundary is defined as an electrical contact and
within the nopples we use a large fictive electric conductivity to numerical enforce an
equipotential condition over the nopple’s area. A factor of 10 — 100 larger than usual
will do fine without impairing too much the numerical stability.

With the description of the 2D transport models for anode and cathode we are done
and we are left with the 1D point-to-point model specification. Several choices are
possible here, but it is also true that these 1D models are easily changed, adapted to
any particular situation and plugged-in without the need to change the structure of
the 2D transport model, so that for our purposes any 1D model will actually do fine.
Essentially we are going to use the same model of the previous tutorial example with
some adaption towards non-linearity. The 1D species transport within the GDLs as
well as the oxygen ions O?~ transport in the electrolyte are left unchanged. For the
potential jump at the anode-electrolyte interface, we now use a non-linear model

2R T
AT = AUNorst (Ta) — —22asinh(jF(z4)) , (2.181)

qNaVO
with j the positive current flow, ¢ the elementary charge, N,, the Avogadro’s con-
stant and where the Nernst potential Unenst (24 ) and the function F'(z,) are now de-
pendent from the species concentrations x, at the interface. The asinh dependency
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of the overpotential from the current j stems from the Butler-Volmer electrochemical
reaction model with an equal symmetry factor for anode and cathode and it is a gener-
ally accepted model. We also use the same model at the cathode-electrolyte interface
to model the potential jump for the oxygen’s reduction. For this simplified 1D sys-
tem, where we use constant diffusion coefficients without cross-coupling diffusion of
the species, it is not hard to write down the scalar governing equation r(j, p) = 0 for
the current j as function of the input parameters p' = (z%, x5, %, 1¢) representing the
species concentration and potential values at the borders of the anode and cathode
GDLs. The solution to this equation j = j(p) as function of p'is generally not avail-
able in analytical form and so we may use a bisection or Newton’s algorithm to find
the solutions. What is needed as input to SESES are the current values and species
production rates at the borders of both GDLs as function of the parameters p'together
with all non-zero partial derivatives. But since all production rates are directly pro-
portional to the current j, we see that actually all what we need is the current j and the
derivatives 0j/0p. The equation r(j, p) together with the partial derivatives 0r/9(j, p)
can be conveniently assembled symbolically and some Maple code is provided within
the input. If one uses a Newton’s algorithm to find solutions, then one just performs
the iteration j := j — r(j)/(0r/0j) up to convergence of j and at the end we have
07j/0p = —(0r/0p)/(0r/d7). In our case, this Newton’s iteration is initialized with
the analytical solution available when species diffusion is neglected and by taking
asinh(x) ~ z in (2.181).

What is left to do is the definition of the production rates and partial derivatives re-
quired by SESES as function of the computed values j, 9j/0p. This step only de-
pends on the stoichiometry of the electro-chemical reaction and it is therefore inde-
pendent from the particular 1D model used. However, we now come to an impor-
tant fact, which absolutely cannot be neglected and it is often a source of troubles
for beginners. The problem lies in the fact that oxygen in the cathode air channel
disappears in order to reappear at the anode side in form of O?~ ions before the
electrochemical reaction takes place. Nothing special but now the sums of the sin-
gle production rates at the cathode Il ythode = Ilo, + Iln, and at the anode I1,p0de =
g, +1 0+ N, +11co+1co, is not anymore zero, in other words mass disappears at
the cathode Il athode < 0in order to reappear at the anode 11,4 > 0, however we still
have Icathode + IHanode = 0. This is an inconsistency for the single 2D transport prob-
lems with the result that the constraint for the sum of the mole fractions at the cathode
o, + xn, = 1 and at the anode =y, + zH,0 + N, + £co + co, = 1 cannot be any-
more obtained by the numerical solutions which would require I¢athode = Hanode = 0.
In order to proceed, we need to amend the transport equations and in order to see
how this is done, we state the governing balance equations for the stationary mass
conservation and species transport

V- (pv) =1y,
V‘(paV):—V'ja—l—Ha,

with p, the species mass density, p = )_ p. the total mass density, j, the species
diffusion currents, II, the species production rates and II, = ) II, the total mass
production rate. In SESES, the above species transport equations are not solved in this
form, but they are transformed with the help of the first equation and by considering
the usual case Iy = 0. Without this assumption, we can repeat this algebraic step to
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The left-hand side of the species transport equation are actually the equations solved
by SESES, so that if IIj # 0 we need an amendment for the right-hand side. With
this amendment, we see that the sum of the new productions rates is always zero
thus assuring the validity of the constraint ) x, = 1 during the solution. It is to be
noted that it is well possible to compute mass and species transport problems with-
out requiring the mole fraction’s sum to be one. In fact, it is up to the user to enforce
this constraint by properly choosing correct BCs and production rates, however, if
this is not the case we cannot use anymore the StefanMaxwellDiff built-in model.
Clearly, if the mole fraction’s sum must be one and this constraint remains valid dur-
ing the solution, one mole fraction is completely redundant and in fact for speed-up
purposes we are not going to solve the transport equation for one judiciously chosen
species taken as No. However, some numerical amendments are then required which
however run much faster then the solution of one transport equation. If the amend-
ments of the right-hand side of the species transport equations are strictly required,
the one on the right-hand side of the total mass transport is not. In fact, one can argue
that in our case Iy does not have a strong impact on the velocity v profile and there-
fore a value of Il = 0 may be considered in order to completely decouple the total
mass flow from the other transport equations resulting in a computational speed-up.
However, since the coupling through a non-zero Il is weak, there is no need to specify
cross-coupling derivatives and therefore there is almost no slow down in considering
this type of coupling. For a correct account of the mass flow, we need to solve for the
mass transport everywhere where Il # 0 and this is include the area underneath the
nopples where virtually there is no convection at all.

Model specification

The SESES input file for this model can be found at example/SOFC2pl.s2d . For
the cathode and anode, we define two disjoint domains with the same geometry and
a total of four materials, see Fig. 2.155. Two materials are for the cathode and anode
flow channels and other two materials model the nopple’s area where convective flow
is almost turned-off. Some details about the material’s properties have already been
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discussed and are not repeated here. The thickness of the third dimension is set with
the statement

GlobalSpec Parameter Depth 0.75E-3 m

to be the same of the channel thickness of 0.75mm so that the computed mass flows
within the channels as displayed by the BC characteristics are effectively the real ones.
This however will yield wrong values for the electric current through the nopples
since this current do not need to be multiplied by the virtual thickness of the device.

In order to use the point-to-point domain cross-coupling, the cathode is defined as the
master domain and therefore for the cathode material we enable the built-in model

Model CouplinglD(BlockOffset 1; NoRow H2 H20 O2 CO N2 CO2 Pre ssure Psi;
Psi H2 H20 O2 CO N2 CO2 Pressure

The BlockOffset ~ model’s parameter is used to locate the slave domain i.e. the anode
domain within the ME mesh. In this example, the cathode is the whole ME-block
0 and the anode is the ME-block 1 so that we have a ME-block offset of one. The
parameter NoRowwill be discussed shortly. As last model’s parameter, we list the dof-
tields being cross-coupled together between the cathode and anode domains which in
our example are all defined dof-fields. This list is followed by the numerical values
of the right-hand-sides associated with the governing equations solved both on the
cathode and anode domains together with all non-zero cross-coupling derivatives. As
discussed previously, these numerical values are obtained by solving locally for a 1D
transport model using Newton’s algorithm to first obtain the electric current and then
by setting all required input values according to stoichiometry of the electro-chemical
reaction. For convenience, we have used Maple to generate once the rather lengthly
input text which is not shown here.

At the bottom of the cathode, we prescribe an air flux of ~ 0.0001 kg/(sm?) with a
floating BC for the pressure and fix the mole fraction’s value with Dirichlet BCs by
respecting the constraint ) | xz, = 1. At the top of the cathode, we do not prescribe
any BCs, so that convective flow will be free to leave the cathode, however, conductive
flow will be blocked. In a similar fashion, we set the BCs on the anode with a gas
flux of ~ 0.001kg/(sm?). Larger values of air or gas fluxes will impair or prevent
the convergence of the solution algorithm due to the coarse element mesh around
the nopples where the velocity field is forced to change direction. The dof-fields are
initialized in order to satisfying from the beginning the constraint ), 2, = 1 and they
are set to the values of the Dirichlet BCs.

As noted previously, since the mole fractions must sum to one, a species is completely
redundant and for speed-up it would be nice to remove this redundancy. As first we
have to choose the species to become the dependent species and as will be clear in mo-
ment, one should take the most inert one, in our case N,. One then proceeds exactly
as when computing solutions with N, and the problem specification is virtually un-
changed up to computing the numerical solutions. In general by transport problems
with more than one species, one solves for all species together in a single dof-field
block and here as first step one just drops the equation for the N, dof-field. However,
without any other contrivance, the constraint ) =, = 1 valid after initialization will
be immediately violated after the first Newton’s update. Therefore, at the end of each
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Newton’s step, we set up an off-block dof-field correction for N, to restore this condi-
tion. This is done with the Increment  directive and the built-in function setdof as
follow

Increment Standard

If 'WithN2
setdof(N2; 1-(Dof.02-Incr.02)-(Dof.H2-Incr.H2)-(Dof. H20-Incr.H20)-
(Dof.CO-Incr.CO)-(Dof.CO2-Incr.CO2));
}}# 3

The preprocessor switch If !WithN2  is used to enable/disable the direct computa-
tion of the N, dof-field within this example and the variable WithN2 is defined at the
beginning of the input. It is to be noted, that in order to compute this new value, we
need both the values of the other dof-fields and their block increments, since dof-field
values within setdof are values before the block dof-increments are subtracted to
the dof-fields. Also such an amendment makes only sense if without it, a solution
is computed satisfying the constraint ) z, = 1. Otherwise nothing will converge,
since the correction is actually inconsistent with the solution. Assuming that New-
ton’s algorithm for the solution of the residual equations ég(fa) = 0 for all species
converges quadratically, dropping the computation of one species and solving just for
Ry (Zor,@n,) = 0 with o/, 8" # Ny and by applying the off-block dof-field correction
for ¥y, generally leads to slow and/or non-convergence of Newton’s iteration. The
reason is that if we do not solve for Zy,, the native derivatives 8ﬁ/ 0%, are not ex-
act derivatives anymore since we are missing terms stemming from the dependency
in, =1 -3, To in R(Z, Zy,). For user defined derivatives within material laws,
the user may amend these values to obtain exact derivatives, however, this is not pos-
sible for the internal derivatives computed by SESES. Although an ideal quadratic
convergence of Newton’s algorithm will be unavailable, the situation is not so dra-
matic if we can still get good convergence rates. In order for this to happen, we have
to reduce to a minimum the dependency of the residual equations R(Z./, Zy,) from
the ', mole fractions. So the first step consist in the choice of the most inert species
N3 as redundant species which has the minimal impact on the reaction rates. The
second contrivance is a little more technical and has to do with the Stefan-Maxwell
diffusion law used for the transport process. Within this law, there is cross-diffusion
among all species and the diffusion matrix D,z is in general a full matrix. Therefore
the transport equation for each species is strongly coupled to the N, species and ne-
glecting this dependency will in general prevent convergence of Newton'’s iteration.
However, we know that solutions are invariant by addition of any constant row to the
diffusion matrix D,z. So the trick is to add those constant rows resulting in a zero
column D, y, = 0 which further reduce the N, dependency of the residual equations.
This trick is enabled with the option ZeroEntry N2 in the StefanMaxwellDiff
model and can only by used if we do not directly solve for N, otherwise numerical
instabilities arise. In fact, the flexibility available in the choice of the diffusion matrix
is used to obtain stable numerical computations when all species are solved together.
For this particular SOFC problem, the application of these two ideas lead to very ac-
ceptable convergence rates even without amending the user defined derivatives, but
we remind that in a very general case it may be necessary to compute all species to-
gether.

For this problem, a possible solution strategy is to solve for all dof-fields together ex-
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cept for the Ny mole faction with a fully coupled Newtow’s algorithm. The solutions
are quite smooth and non-linearities are weak so that we can speed-up the Newton's
iteration, by using a direct solver and reusing the factorized stiffness matrix for sub-
sequent iterations. This behavior is obtained with the option ReuseFactoriz  in the
Increment  statement and in our example is activated after three iterations with full
factorization. The implementation of the model CouplinglD is optimal in the sense
that for linear systems, just a single linear step is required for the numerical solution.
The price to pay is that the dof-fields on both the cathode and anode domains become
matrix connected and the cost for a linear solution step increases accordingly. This
may be a necessity for strongly coupled point-to-point domains to assure acceptable
convergence rates, but in our case the coupling is weak and we may neglect some
matrix connections between the dof-fields on both domains with the options NoRow
NoCol of the CouplinglD model. Note that the coupling function is left unchanged,
we are just discarding cross-coupling derivatives so that the convergence rate of New-
ton’s algorithm will further slow down, but each linear step will be cheaper. A numer-
ical investigation has shown that we can freely neglect all cross-coupling derivatives
except, in some circumstances, for the electric potential. This is indeed the case, if we
use a floating BC for the potential on a domain in order to set the total current flow,
since by neglecting the potential cross-coupling derivatives, the stiffness matrix be-
comes singular. However, we also see that since the nopples are quite close together
and the electric conductivity is large enough, the potential value at the cathode and
anode GDLs is almost constant and its computation is not really necessary. There is a
switch NoPsi to turn-off solving for the electric potential and in order to compute the
electric current, we define a user element field

ElmtFieldDef LocCur(DofField O2)

on the cathode where just the species O, is defined. Each time the model Coupling1D
is called, we then store in the element field LocCur the current value and at the end
of a computation, a user integral over the cathode’s domain

Write AtStep 1 "Voltage=%f V, Current=%e A, Power=%e W\n"

double totcur= If WithPsi { Apply.Psi.Flux/Depth; } Else
{ integrate(Domain domain(dm_Cathode); LocCur); }
return Voltage,totcur,totcur *\oltage;

will return the total current together with the fuel cell electrical power, as shown in
Fig. 2.156 and displaying a linear I-V characteristic. If the computation of the potential
field is enabled, the total current is available as the BC characteristic stored in the
variable Apply.Psi.Flux which, however, has been multiplied internally by the
virtual thickness of the device and need to be amended.
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