

Technical Interface

Description

Version 2.4.1 – 28.04.2015

 Mobility Data Marketplace Page 2

Table of Contents

1 Introduction .. 6

1.1 Preamble ... 6

1.2 Structure of the Document... 6

1.3 Referenced Documents ... 7

1.4 List of Abbreviations .. 8

2 Overview of the MDM Platform Components .. 10

3 Formats .. 12

3.1 DATEX II .. 13

3.2 Container Format ... 14

4 Interfaces of the MDM Broker System ... 15

4.1 Use of Interfaces .. 16

4.1.1 Data supplier .. 18

4.1.2 Data client ... 18

4.2 HTTPS Interface ... 19

4.2.1 Data supplier .. 19

4.2.2 Data client ... 22

4.3 SOAP Interface ... 26

4.3.1 Data supplier .. 26

4.3.2 Data client ... 30

4.4 OTS 2 Interface .. 34

4.4.1 Procedure .. 34

4.4.2 Features ... 34

4.4.3 DATEX II compression for OTS 2 .. 34

4.4.4 OTS 2 Publish ... 35

4.4.5 OTS 2 Subscribe ... 38

5 Certificate-based M2M Communication .. 41

5.1 Tasks of the Security Component ... 41

5.2 Note on Server Name Indication ... 42

5.3 Applying for a Machine Certificate .. 42

5.4 Installing a Machine Certificate and Issuer Certificate 43

5.5 Authentication of the MDM Platform as Web Client 43

5.6 Authentication of Data Supplier/Data Client Web Clients 44

 Mobility Data Marketplace Page 3

6 Exceptions and Error Messages ... 45

6.1 Exception - Unchanged Data ... 45

6.2 Error Messages with SOAP Requests .. 45

6.3 Error Messages with HTTPS Requests .. 45

6.4 Error Handling in the Context of OTS 2 Protocol 45

6.4.1 Session setup.. 45

6.4.2 Order .. 46

6.4.3 Data delivery .. 46

6.4.4 General .. 46

7 Examples ... 47

7.1 HTTPS Interface ... 47

7.1.1 Data Supplier Client Pull HTTPS (Container) ... 47

7.1.2 Data Supplier Publisher Push HTTPS (Container) 47

7.1.3 Data client Client Pull HTTPS (DATEX II) ... 48

7.1.4 Data client Client Pull HTTPS (Container) .. 48

7.2 SOAP Interface ... 48

7.2.1 Data Supplier Publisher Push SOAP (DATEX II) 48

7.2.2 Data Supplier Client Push SOAP (Container) .. 49

7.2.3 Data client Client Pull SOAP (DATEX II)... 50

7.2.4 Data client Client Pull SOAP (Container).. 50

7.2.5 Data client Publisher Push SOAP (DATEX II) .. 50

7.3 OTS 2 Interface .. 51

7.3.1 Protocol example SOAP ... 51

8 Annex A ... 60

8.1 Use of Client Certificates for HTTPS Communication with

Servers That Require a Certificate-based Authentication 60

8.2 Use of Client Certificates for the Communication with SOAP

Web Services That Require a Certificate-based
Authentication .. 66

9 Annex B ... 70

9.1 Processing the p12 File for Apache Server Configuration 70

 Mobility Data Marketplace Page 4

List of tables

Table 1: Referenced documents .. 8

Table 2: List of abbreviations... 9

Table 3: Overview of the MDM platform components ... 10

Table 4: Overview of the interfaces of the MDM broker system 16

Table 5: MDM operation modes ... 17

Table 6: Request/Response between the data supplier system and the MDM
platform with the Client Pull HTTPS ... 21

Table 7: Request/Response between the data supplier system and the MDM
platform with the Publisher Push HTTPS ... 22

Table 8: Request/Response between MDM platform/data client system with
Client Pull HTTPS ... 24

Table 9: Request/Response between the MDM broker system/data client
system with Publisher Push HTTPS .. 25

List of figures

Figure 1: Components of the MDM platform ... 10

Figure 2: Container Format Overview .. 14

Figure 3: Interfaces between data supplier, broker system and data client 15

Figure 4: Webservice Data supplier system/MDM broker system: DATEX II
Client Pull .. 26

Figure 5: Webservice Data supplier system/MDM broker system: Container
Client Pull .. 27

Figure 6: Webservice Data supplier system/MDM broker system: DATEX II
Publisher Push .. 28

Figure 7: Webservice Data supplier system/MDM broker system: Container
Publisher Push .. 29

Figure 8: Web service MDM broker system/Data client system: DATEX II
Client Pull .. 30

Figure 9: Web service MDM broker system/Data client system: Container
Client Pull .. 31

Figure 10: Web service MDM broker system/Data client system: DATEX II
Publisher Push .. 32

Figure 11: Web service MDM broker system/Data client system: Container
Publisher Push .. 33

Figure 12: Structure of a binary-coded OTS 2 dataAny-PDU 35

 Mobility Data Marketplace Page 5

Figure 13: Sequence diagram OTS 2 communication between data suppliers
and MDM ... 36

Figure 14: Sequence diagram OTS 2 communication between data clients
and MDM ... 39

Figure 15: Overview of the security architecture ... 42

Figure 16: File <sammeldatei.pem> .. 71

Figure 17: File <sammeldatei.pem> .. 73

 Mobility Data Marketplace Page 6

1 Introduction

1.1 Preamble

The Mobility Data Marketplace (MDM) aims at supporting the exchange
of data between data suppliers and data clients using interfaces. At the
same time, it is a central portal with collected information about

available online traffic data of individual data suppliers. Thus, the MDM
platform allows its users to offer, find and subscribe to online traffic-

related data without the necessity of any time-consuming search for
relevant data and a complex technical and organisational coordination

between data clients and data suppliers. The data exchange is handled
via standardized interfaces. In conclusion, the business processes
should be simplified for all parties involved and the potential of existing

data sources should be exploited.

This interface description is aimed at potential data suppliers and data

clients. It is presupposed that knowledge in the implementation and
operation of SOAP web services [SOAP] or HTTPS client/server
architectures are provided in order to use the interfaces of the MDM

system.

The interfaces offered by the MDM platform can be used by the data

supplier systems and data client systems to access the services of the
platform. These services for data collection or deliveries are provided
by using defined and unified URLs [URL] and require a certificate-

based client authentication via HTTPS [HTTPS]. For this client
authentication, X.509-compliant certificates are used [PKI]. They are

issued by the operator of the MDM platform. The data transfer between
the MDM platform and the data supplier or data client systems can be
supplied via SOAP-based web services or simple HTTPS-GET/POST

requests. In addition, the transmission by [OTS2] protocol is provided.

When transmitting data between the MDM platform and the data

supplier systems, both GZIP-encoded (i.e. compressed) and
uncompressed HTTPS requests and responses are supported. The data
transmission between the MDM platform and the data client systems

always takes place using GZIP-encoded HTTPS requests and
responses. If SOAP is used for transmission, the WS security standards

must be adhered to. This includes a transfer of the security token and
possibly the signature of the message.

1.2 Structure of the Document

This document is divided into the following sections:

o Section 1 provides a brief overview, the referenced documents
and the list of abbreviations.

o Section 2 describes the components of the MDM system.

 Mobility Data Marketplace Page 7

o Section 3 handles the available data formats.

o Section 4 describes the interfaces of the MDM platform for M2M

communications.

o Section 5 describes the measures which secure the M2M

communication.

o Section 6 shows possible messages that might occur with faulty

requests to the interfaces.

o Section 7 contains XML examples for SOAP and HTTPS requests
in DATEX II and container format and an example of the use of

OTS 2.

1.3 Referenced Documents

[Source] Publisher

[BHB]

MDM User Manual, V1.2

http://service.mdm-portal.de/doc/MDM-

Benutzerhandbuch.pdf

[DatexIIPSM] DATEX II V2.0 Exchange Platform Specific Model

[DatexIIPull] DATEX II V2.0 Pull wsdl

[DatexIIPush] DATEX II V2.0 Push wsdl

[DatexIISchema] DATEX II XML Schema 2.0

[DatexIISDG]
DATEX II v2.0 Software Developers Guide, Version

v.1.2

[DatexIISpec]

Includes the following documents, which are available

to all registered users for download under

http://www.datex2.eu:

[DatexIIPSM], [DatexIISDG], [DatexIIUserGuide]

[DatexIIUserGuide] DATEX II v2.0 User Guide v.1.2

[GZIP]

RFC 1952 (Mai 1996)

GZIP File Format Specification Version 4.3,

http://tools.ietf.org/rfc/rfc1952.txt

[HTTP/1.1]

RFC 2616 (Juni 1999)

Hypertext Transfer Protocol -- HTTP/1.1

http://www.ietf.org/rfc/rfc2616.txt

[HTTPS]

RFC 2818 (Mai 2000)

HTTP over TLS

http://www.ietf.org/rfc/rfc2818.txt

[MCS]
MDM Container format specification

http://www.mdm-portal.de

http://service.mdm-portal.de/doc/MDM-Benutzerhandbuch.pdf
http://service.mdm-portal.de/doc/MDM-Benutzerhandbuch.pdf
http://www.datex2.eu/
http://tools.ietf.org/rfc/rfc1952.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2818.txt
http://www.mdm-portal.de/

 Mobility Data Marketplace Page 8

[Source] Publisher

[OTS2]

OTS 2 Specification OTS Communication

Version 02-02-09

http://www.opentrafficsystems.org

[OTS2DIN]

DIN SPEC 91213-1 Open Traffic Systems –

OTS 2 Interface Specification – Part 1:Introductory

remarks for decision makers; January 2011

DIN SPEC 91213-2 Open Traffic Systems –

OTS 2 Interface Specification – Part 2: Technical

specification for implementers; February 2011

[PKI]

RFC 2459 (January 1999)

Internet X.509 Public Key Infrastructure Certificate and

CRL Profile

http://www.ietf.org/rfc/rfc2459.txt

[SOAP]
SOAP Version 1.2

http://www.w3.org/TR/soap12-part1/

[URL]

RFC 1738 (December 1994)

Uniform Resource Locators (URL)

http://www.ietf.org/rfc/rfc1738.txt

[X.509v3]

ITU-T Recommendation X.509 (1997 E):

Information Technology - Open Systems

Interconnection –

The Directory: Authentication Framework, June 1997.

http://www.itu.int/rec/T-REC-X.509-199708-S/en

Table 1: Referenced documents

1.4 List of Abbreviations

Abbreviation Explanation

BASE64 BASE64 describes a method of encoding 8-bit binary data

into a string that consists only of readable code page-

independent ASCII characters.

BASt Bundesanstalt für Straßenwesen (Federal Highway

Research Institute)

DE German

GMT Greenwich Mean Time

GUI Graphical User Interface

HTTP Hypertext Transfer Protocol

HTTPS Hypertext Transfer Protocol Secure

http://www.opentrafficsystems.org/
http://www.ietf.org/rfc/rfc2459.txt
http://www.w3.org/TR/soap12-part1/
http://www.ietf.org/rfc/rfc1738.txt
http://www.itu.int/rec/T-REC-X.509-199708-S/en

 Mobility Data Marketplace Page 9

Abbreviation Explanation

ID Identifier

IIS Microsoft Internet Information Services

IT Information Technology

JSSE Java Secure Socket Extension

M2M Machine-to-Machine

MDM Mobility Data Marketplace

MDV Metadatenverzeichnis (metadata directory)

OTS Open Traffic Systems

PAS Publicly Available Specification

PKI Public Key Infrastructure

PSM Platform Specific Model

RC Release Candidate

RFC Request for Comments

SDG Software Developers Guide

SNI Server Name Indication

SOAP Simple Object Access Protocol

SSL Secure Sockets Layer

TLS Transport Layer Security

URL Uniform Resource Locator

UTF UCS Transformation Format

WS Web Server

WSDL Web Services Description Language

XML Extensible Markup Language

XSD XML Schema Definition

Table 2: List of abbreviations

 Mobility Data Marketplace Page 10

2 Overview of the MDM Platform

Components
The MDM platform consists of four components that fulfill different

roles.

Figure 1: Components of the MDM platform

Component Description

Security component Via the security component, the data client

system/data supplier system can be authenticated to

use the services.

Metadatenverzeichnis

(metadata directory)

The metadata directory is used to manage all

information relevant to MDM platform and provides a

number of organisational services.

Broker system The broker system handles the actual processing of

the data packets and it is, therefore, the focus of this

interface description.

Administration The administration is realized by means of a web-

based user interface (GUI), see [BHB]

Table 3: Overview of the MDM platform components

 Mobility Data Marketplace Page 11

The following communication and application scenarios are supported
by the MDM platform:

o Interested parties as well as data clients and data suppliers can
communicate with the metadata directory by using the web GUI,

in order to access services, such as researching or registering.
To view or edit certain content of the metadata directory, an

authentication must first be run throughout the MDM platform
security component.

o Following an authentication via the security component, the data

client and data supplier systems can establish an M2M
communication with the broker system to deliver or request

data.

 Mobility Data Marketplace Page 12

3 Formats
In order to exchange mobility data between the broker system and the
data supplier and data client systems, the following data formats are
specified:

o The MDM platform supports the XML-based format DATEX II by
means of native interfaces to allow rapid utilization of the

platform using standard-compliant DATEX II implementations.

o In order to create a generic interface independent from any
specific format, a new data format is provided for transmission.

With the so-called container format any XML and binary data
can be transmitted.

The validity of the data is checked and logged upon delivery of a data
packet to the MDM broker interface. For this purpose, the schema file

is based on the URL that is stored in the publication description. For
publications in DATEX II format, it is the responsibility of the data
supplier to provide the correct file schema. For publications in

container format, the standard schema is already made available
under a generally valid URL. Please, reference this URL in the

"schemaLocation" attribute of your XML data packets to provide data
clients with an automatic validation of the packets. The MDM accepts
the data packets independent of the validation result and delivers them

to the data clients even if the result is negative.

 Mobility Data Marketplace Page 13

3.1 DATEX II

DATEX II is a European standard for exchanging mobility data. Basic

knowledge of DATEX II specification is required for this section
[DatexIISpec]. For the MDM interface, the DATEX II specification is
used in version 2.0.

DATEX II defines XML structures for the exchange of mobility data. The
underlying scheme can be viewed under http://www.datex2.eu/. The

payload must be defined on the basis of this scheme. DATEX II
determines not only a standard for the structure of the payload, but
also regulates the exchange process. The latter is described in detail in

chapter 4.

The underlying documents on which DATEX II is based are listed in

chapter "Referenced Documents"[DatexIISpec]. The structure of the
DATEX II payload is not relevant to the MDM platform, as the latter
transfers the data unchanged and does not process the data in any

way.

DATEX II not only provides for the dispatch of complete data packets,

but also for sending updates to previous versions. This DATEX II option
is not supported by the MDM platform: Both the data supplier system
and the MDM broker system must always send complete data packets.

This means that each packet contains all records of the relevant
publication that are known to the data supplier. These records are

valid at the time of packet sending. It is therefore not possible to send
only changes to the "last known" state. This may seem to be a
disadvantage, but it is a requirement that is essential to the

preservation of the MDM system scalability. The disadvantage of this
partial redundancy is tacitly accepted, as it is taken into account by the

scalable architecture of the platform and the performance of modern
ICT infrastructure. It should be borne in mind that the MDM platform
diminishes the burden of scalability of the data suppliers.

http://www.datex2.eu/

 Mobility Data Marketplace Page 14

3.2 Container Format

In addition to the DATEX II standard mentioned in the previous
section, another XML-based model for the transmission of data is
supported by the MDM platform. This container format called data

format has been specially created for the exchange of data via the
MDM. The schema of the data format is found in the container format

specification [MCS]. In addition to the actual payload that is contained
in a body element, the data format allows more structural information
to be transmitted in a header element. This information is particularly

used to control the communication process.

Figure 2: Container Format Overview

In order to keep the model flexible, the format and content of the body
element is not specified. Thus, not only data in XML format can be
transported in containers, but also binary data.

 Mobility Data Marketplace Page 15

4 Interfaces of the MDM Broker System
The MDM broker system takes the role of the client or the role of the
server as an intermediary between the data supplier system and the
data client system, depending on the situation:

o As a client, the broker system can request data from the data
supplier or the data supplier can - on his own initiative - send

the data to the broker system.

o As a client, the data client can on its part request data from the
broker system or the broker system can send - on its own

initiative - the data to the data client.

Figure 3 shows the possible paths that are available for data packet

transmission between the data supplier and the broker system on the
one hand and the broker system and the data client on the other.

Figure 3: Interfaces between data supplier, broker system and data client

The data packets received or sent by the broker system must be in
DATEX II format or in self-defined container format.

The transmission protocols HTTPS and SOAP via HTTPS are supported
for each format. For the format DATEX II, the OTS 2 protocol is also
supported.

The following table shows what communications are supported. The
section in which the relevant communication is described -

distinguished by the data supplier and data client systems - is
mentioned for each data format (DATEX II / container),
communication pattern (Client Pull / Publisher Push) and protocol

(HTTPS, SOAP, OTS 2), if supported.

 Mobility Data Marketplace Page 16

It is additionally indicated whether the data supplier or data client
system acts as a client or as a server towards the MDM. Client here

means that the system makes enquiries to the MDM or actively
establishes the connection to it.

On the other hand, server means that the system is contacted by the
MDM and must answer its enquiries. In this case, an external network

access to the system to be connected to the MDM, must be allowed.

 Data supplier system Data client system

HTTPS SOAP

OTS 2

HTTPS SOAP

OTS 2

DATEX II Client

Pull

4.2.1.1

Server

4.3.1.1

Server

- 4.2.2.1

Client

4.3.2.1

Client

-

Publisher

Push

- 4.3.1.3

Client

4.4.4

Client

- 4.3.2.3

Server

4.4.5

Client

Container Client

Pull

4.2.1.2

Server

4.3.1.2

Server

- 4.2.2.2

Client

4.3.2.2

Client

-

Publisher

Push

4.2.1.3

Client

4.3.1.4

Client

- 4.2.2.3

Server

4.3.2.4

Server

-

Table 4: Overview of the interfaces of the MDM broker system

If the SOAP method is used, the WSDL of the broker service can
generally be queried at the service endpoint that is specific to the

relevant publication or subscription using the ?wsdl request.

4.1 Use of Interfaces

When using the HTTPS or SOAP protocol, there are three different

modes of operation for the exchange of data, all of which are
supported by the MDM platform:

 Mobility Data Marketplace Page 17

Mode Description

Client Pull The communication is initiated by the client (MDM

broker system to data supplier or data client

system to MDM platform) and the data is sent as

a response.

Publisher Push Periodic The communication is initiated by the publisher

(data supplier system to MDM platform) at timed

intervals.

Publisher Push on

Occurrence

The communication will always be initiated by the

publisher (data supplier system to MDM platform

or MDM broker system to data client) if the data

changes.

Table 5: MDM operation modes

The OTS 2 protocol [OTS2] works session-based and by publish-

subscribe (data subscription). It differs from the other interfaces
provided by MDM.

The valid specification of the OTS 2 protocol including associated

schema and WSDL files can be obtained from the OTS website [OTS2].
The available content complies with the DIN SPEC (PAS) 91213

[OTS2DIN].

The use of the MDM OTS 2 interface requires a client that implements

the OTS 2 protocol stack. Since OTS 2 has a higher complexity than
the other interfaces provided by MDM due to its extensive capabilities
(only partially required for the MDM interface) its use must be weighed

carefully.

The use will particularly be rewarding if other OTS 2 interfaces are

operated or planned in the client system or if the advantage of the
push mode is used for data clients. This advantage consists of the
ability to transfer - without delays caused by additional latency by

polling - MDM data in push mode, without having to implement a
server that makes an opening of its own network necessary for

external access (for the MDM) (see chapter 4.4.5). Thus, the data
client is supplied as soon as possible. It does however not open its
network to the outside as in the corresponding (Push) HTTPS and

SOAP protocol options of MDM.

OTS 2 uses only DATEX II as data model, as described in this

document or in [DatexIISpec]. Regarding the dispatch of complete
data packets (as opposed to the dispatch of changes), the descriptions
in chapter 4.4.2 shall apply. Compression is applied only for the actual

payload, not for the OTS 2 protocol part (see chapter 4.4.3).

 Mobility Data Marketplace Page 18

4.1.1 Data supplier

Towards the data supplier (the publisher), the MDM broker system

appears as a subscriber who receives the data packets. The broker
system can assume the role of a server or a client, depending on the

procedure.

When using the OTS 2 protocol, the broker system takes the role of an

OTS 2 distributor, the data supplier system takes the role of an OTS 2
publisher.

4.1.2 Data client

Towards the data client (the subscriber), the MDM broker system

appears as a publisher who provides the data packets. The broker
system can assume the role of a server or a client, depending on the
procedure.

When using the OTS 2 protocol, the broker system takes the role of an
OTS 2 distributor, the data client system takes the role of an OTS 2

subscriber.

 Mobility Data Marketplace Page 19

4.2 HTTPS Interface

4.2.1 Data supplier

4.2.1.1 Client Pull HTTPS (DATEX II)

As with the client pull exchange process, the MDM broker system
requests the data supplier system periodically to deliver its data to the

MDM platform. The time interval used must be configured in the
metadata directory when configuring the data services. For this

exchange, the points C1-C12 from the Simple HTTP Server Profile of
the [DatexIIPSM] shall apply.

It should be noted that the additional, optional rules do not apply. The

options for authentication (C13, C14, C17) do not apply, as they are
obsolete when using the HTTPS method that is compulsory for MDM.

C18-C27 do no longer apply, since the options relate only to the
optional provision of DATEX II data in file format, which is not
applicable to MDM.

4.2.1.1.1 Request to data supplier

The MDM broker system sends an HTTPS GET request to the data

supplier system from which the data is to be collected. The MDM
platform is able to identify the data supplier systems that have
subscribed to a pull method, and to send requests to them at defined

intervals.

Via the MDM administration component, the data supplier must enter

the publication-specific server URL in the publication configuration.

The broker system sends the request with an "If-Modified-Since"
header field whenever the data supplier system had set the header

field "Last-Modified" in its response (see [HTTP/1.1]). The data
supplier system should always set this header field to enable the MDM

platform to use this feature. As a result, the transfer of already
collected data packets can be prevented.

Example:

If the response of the previous data packet contains the following
header line

Last-Modified: Sat, 29 Oct 1994 19:43:31 GMT

the next data packet will be requested with a request, which contains

the following header line:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

 Mobility Data Marketplace Page 20

4.2.1.1.2 Response to the MDM platform

After receipt of the request, the data supplier system must generate

an HTTPS response whose message body consists of the requested
DATEX II data. Pursuant to [DatexIIPSM] section 4, the response has

the content type "text/xml; charset=utf-8" and should be available as
GZIP encoding.

The MDM broker system accepts this data and stores it in a packet
buffer. A previous data packet, if it still exists, will be replaced.

4.2.1.2 Client Pull HTTPS (Container)

The MDM broker system prompts the data supplier system to
periodically deliver a packet for a publication to the MDM platform. The

time interval used must be configured in the metadata directory when
configuring the data services.

4.2.1.2.1 Request to data supplier

The broker system sends an HTTPS GET request to the data supplier

system. As a parameter, the publication ID of the publication for which
a data packet has to be delivered is handed over to the MDM.

Via the MDM administration component, the data supplier must enter

its URL in the publication configuration.

The URL of the data supplier system from the publication configuration

is complemented by appending the publication ID:

Example:

Data supplier configured in metadata directory as URL for pickup:

https://<DG-Maschine>/<context>

The ID of the associated publication is 2000002. This results in the

following URL for the request by the MDM broker system:

https://<DG-Maschine>/<context>?publicationID=2000002

4.2.1.2.2 Response to the MDM platform

The data supplier system must respond to the request with an HTTPS
response. The content type of the response must be of the type

"text/xml" and should be available as GZIP encoding. Non-compressed
content can also be processed by the MDM platform. The message
body has to include the requested data packet. The standard HTTP

status codes [HTTP/1.1] must be used, whereby the explanations
described in Table 6 shall apply.

 Mobility Data Marketplace Page 21

Description

Request GET /anfrageServlet?publicationID=2000002 HTTP/1.1

Host: Data supplier host

Accept-Encoding: GZIP

Response HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: xx

<container>

…

</container>

Statuscodes Standard HTTP1.1 Statuscodes [HTTP/1.1]

The following status codes have a particular meaning:

- 400: No publication parameter has been given

- 404: Publication parameters could not be assigned

Table 6: Request/Response between the data supplier system and the MDM platform with the
Client Pull HTTPS

4.2.1.3 Publisher Push HTTPS (Container)

The data supplier system has to send a data packet for a publication to
the MDM broker system.

4.2.1.3.1 Request to the MDM broker system

The data supplier system must send an HTTPS POST request with a
message in container format to the MDM broker system. In this

process, the publication ID in the header element and the payload in
the body element of the container message must be delivered .

The URL of the broker system is constructed as follows:

https://<BASt-MDM-Broker-Server>/BASt-MDM-Interface/srv/container/v1.0

Example:

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/container/v1.0

 Mobility Data Marketplace Page 22

4.2.1.3.2 Request to data supplier

In response to the request, the data supplier system receives an

HTTPS response. The message body is empty. The standard HTTP
status codes [HTTP/1.1] may be used as status codes, whereby the

explanations described in Table 7 shall apply.

Description

Request Request POST/data delivery HTTP/1.1

Host: mdmhost

Content-Type : text/xml

Accept-Encoding: GZIP

<container>

…

</container>

Response Response HTTP/1.1 200 OK

Status

codes

Standard HTTP1.1 Status Codes [HTTP/1.1]

The following status codes have a particular meaning:

- 400: No publication parameter or no data has been given

- 404: The publication parameter could not be assigned or the

publication is no longer valid

Table 7: Request/Response between the data supplier system and the MDM platform with the
Publisher Push HTTPS

4.2.2 Data client

4.2.2.1 Client Pull HTTPS (DATEX II)

With the client pull exchange process, the data client system must
prompt the MDM broker system to transfer the data.

4.2.2.1.1 Request to the MDM platform

The data client system must send an HTTPS GET request to the URL of

the MDM platform. Due to the subscription ID, the associated packet
buffer and the data packet are determined.

The URL of the broker system is constructed as follows:

https://<BASt-MDM-Broker-Server>/BASt-MDM-

Interface/srv/<Subskriptions-

ID>/clientPullService?subscriptionID=<Subskriptions-ID>

 Mobility Data Marketplace Page 23

Example:

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/2000000/clientPullService?subscriptionID=2000000

The broker system supports requests that have an "If-Modified-Since"
header field. For this purpose, the responses of the broker system

always contain the header field "Last-Modified" (see [HTTP/1.1]). If the
data client system wants to use this feature, it must always transmit

the value from the last Last-Modified header field. As a result, the
transfer of already collected data packets can be prevented. It is
strongly recommended that you implement this feature on the data

client side.

Example:

If the response of the previous data packet contains, for example, the
following header field

Last-Modified: Sat, 29 Oct 1994 19:43:31 GMT

the next data packet must be requested with a request that contains
the following header field:

If-Modified-Since: Sat, 29 Oct 1994 19:43:31 GMT

4.2.2.1.2 Response to data client

The MDM broker system generates an HTTPS response after receipt of
the request. For this purpose, the associated packet buffer and the

appropriate data packet will be determined on the basis of the
subscription ID. The content of the data packet is sent to the data

client in the body of the response. Pursuant to DATEX II Client Pull
HTTP profile [DatexIIPSM] section 4, the response has the content
type "text/xml; charset=utf-8".

4.2.2.2 Client Pull HTTPS (Container)

With the client pull exchange process, the data client system must

prompt the MDM broker system to transfer the data. Which
subscription is affected has to be specified by a request parameter.

4.2.2.2.1 Request to the MDM platform

The data client system must send an HTTPS GET request to the MDM
platform. As a parameter, the subscription ID of the subscription for

which a data packet has to be delivered is handed over to the MDM.

The URL of the broker system is constructed as follows:

https://<BASt-MDM-Broker-Server>/BASt-MDM-

Interface/srv/container/v1.0?subscriptionID=<Subskriptions-ID>

 Mobility Data Marketplace Page 24

Example:

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/container/v1.0?subscriptionID=2000000

4.2.2.2.2 Response to the data client system

The MDM broker system generates an HTTPS response after receipt of
the request. The standard HTTP status codes [HTTP/1.1] can be used,

whereby the explanations described in Table 8 shall apply. The content
type of the response is of the type "text/xml" and is sent GZIP-
compressed. The message body of the response consists of the

requested data packet.

Description

Request Request GET

/BASt-MDM-

Interface/srv/container/v1.0?subscriptionID=2000000

HTTP/1.1

Host: mdmhost

Accept-Encoding: GZIP

Response Response HTTP/1.1 200 OK

Content-Type: text/xml

Content-Length: xx

<container>

…

</container>

Statuscodes Standard HTTP1.1 Statuscodes [HTTP/1.1]

The following status codes have a particular meaning:

- 204: No data packet in the packet buffer for subscription

- 400: No subscription parameter

- 404: None or no longer valid subscription to the subscription

parameter found

Table 8: Request/Response between MDM platform/data client system with Client Pull HTTPS

4.2.2.3 Publisher Push HTTPS (Container)

The MDM broker system sends a data packet of a subscription to a
data client system.

 Mobility Data Marketplace Page 25

4.2.2.3.1 Request to the data client system

The MDM broker system sends an HTTPS POST request to the data

client system in which the subscription ID is delivered in the header
element and the payload in the body element of the container

message.

Via the MDM administration component, the data client must enter its

URL in the subscription configuration.

4.2.2.3.2 Response to the MDM platform

The data client system must respond to the request with an HTTPS

response.

The message body is empty. The standard HTTP status codes

[HTTP/1.1] may be used as status codes, whereby the explanations
described in Table 9 shall apply.

Description

Request Request POST/data delivery HTTP/1.1

Host: Data client host

Content-Type : text/xml

Accept-Encoding: GZIP

<container>

…

</container>

Response Response HTTP/1.1 200 OK

Status

codes

Statuscodes Standard HTTP1.1 Statuscodes [HTTP/1.1]

The following status codes have a particular meaning:

- 400: No subscription parameter or no data has been given

- 404: Subscription parameters could not be assigned

Table 9: Request/Response between the MDM broker system/data client system with Publisher
Push HTTPS

 Mobility Data Marketplace Page 26

4.3 SOAP Interface

4.3.1 Data supplier

4.3.1.1 Client Pull SOAP (DATEX II)

As with the Client Pull SOAP exchange process, the MDM broker
system requests the data supplier system to deliver its data to the

MDM platform.

4.3.1.1.1 Offering a web service

The data supplier system must provide a web service that is defined
according to the DATEX II Pull WSDL [DatexIIPull]. Null is thereby
expected as input. As output, the MDM broker system gets in return

the requested data in DATEX II format.

Figure 4: Webservice Data supplier system/MDM broker system: DATEX II Client Pull

Via the MDM administration component, the data supplier must enter
its URL in the publication configuration.

4.3.1.1.2 Calling up a web service

The MDM broker system provides a web service client that is defined

according to the DATEX II pull WSDL [DatexIIPull] to invoke web
services. This web service must return data according to the schema
[DatexIISchema].

The broker system identifies the data supplier systems that have
subscribed to a pull method, and the associated service endpoints in

the metadata directory and periodically calls them up according to the
configured publication frequency. The data received after the call is
cached in corresponding packet buffers for delivery to potential data

clients. A previous data packet, if it still exists, will be replaced.

4.3.1.2 Client Pull SOAP (Container)

As with the Client Pull SOAP exchange process, the MDM broker
system requests the data supplier system periodically to deliver its

 Mobility Data Marketplace Page 27

data to the MDM platform. The time interval used must be configured
in the metadata directory when configuring the data services.

4.3.1.2.1 Offering a web service

The data supplier system has to offer a web service that expects as

input the parameters publication ID and time stamp with the date of
creation according to the elements of the container model schema. The

data supplier system must generate and return a data packet in the
container format for the transferred publication ID.

Figure 5: Webservice Data supplier system/MDM broker system: Container Client Pull

Via the MDM administration component, the data supplier must enter
the service endpoint in the URL attribute of the publication

configuration.

4.3.1.2.2 Calling up a web service

The MDM broker system provides a web service client that is defined
according to the container format specification [MCS] to invoke web

services.

The broker system identifies the data supplier systems that have
subscribed to a pull method, and the associated service endpoints in

the metadata directory and periodically calls them up according to the
configured publication frequency. The data received after the call is

cached in corresponding packet buffers for delivery to potential data
clients. A previous data packet, if it still exists, will be replaced.

4.3.1.3 Publisher Push SOAP (DATEX II)

With the Publisher Push exchange process, the data supplier system
must deliver the data to the MDM platform on its own initiative. In this

process, an appropriate SOAP interface must be used. Whether the
data is event-based (on occurrence) or periodically generated and
delivered to the MDM platform is irrelevant to the operation of the

 Mobility Data Marketplace Page 28

MDM broker system. The mechanism for the exchange is the same in
both cases.

4.3.1.3.1 Offering a web service

The MDM broker system provides a web service that is defined based

on the specification DATEX II Push WSDL [DatexIIPush]. The data to
be supplied is expected as input. As output, the data supplier system

gets in return confirmation data in DATEX II format.

The output consists of an acknowledgement of receipt.

Figure 6: Webservice Data supplier system/MDM broker system: DATEX II Publisher Push

In the broker system, the ID of the publication, the data packets
belong to, is entered in the URL of the service endpoint.

The URL is structured as follows:

https://<BASt-MDM-Broker-Server>/BASt-MDM-Interface/srv/<publication

ID>/supplierPushService

Example:

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/2000002/supplierPushService

4.3.1.3.2 Calling up the web service

The data supplier system has to provide a web service client that is
defined according to DATEX II Push WSDL [DatexIIPush] to call up the

web service. The web service must deliver the data to the publication-
specific service endpoint of the MDM broker system. The MDM broker

system accepts this data and stores it in a packet buffer. A previous
data packet, if it still exists, will be replaced.

4.3.1.4 Publisher Push SOAP (Container)

With the Publisher Push exchange process, the data supplier system
must deliver the data to the MDM platform on its own initiative. In this

process, an appropriate SOAP interface must be used. Whether the

 Mobility Data Marketplace Page 29

data is event-based (on occurrence) or periodically generated and
delivered to the MDM platform, is irrelevant to the operation of the

MDM broker system. The mechanism for the exchange is the same in
both cases.

4.3.1.4.1 Offering a web service

The MDM broker system provides a web service, which expects - as
input - the data structure of the container format filled with the
publication ID in the header element and a data packet in the body

element, and returns a status message as output.

Figure 7: Webservice Data supplier system/MDM broker system: Container Publisher Push

4.3.1.4.2 Calling up the web service

The data supplier system must provide a web service client in
accordance with the container format specification [MCS]. This client

serves to launch the web service.

The SOAP endpoint of the broker system is as follows:

https://<BASt-MDM-Broker-Server>/BASt-MDM-Interface/srv/container/v1.0

Example:

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/container/v1.0

 Mobility Data Marketplace Page 30

4.3.2 Data client

4.3.2.1 Client Pull SOAP (DATEX II)

With the Client Pull SOAP exchange process, the data client system
must prompt the MDM platform to transfer the data to the data client

system.

4.3.2.1.1 Offering a web service

The MDM broker system provides a web service that is defined based
on the specification [DatexIIPull]. As input, the subscription ID is
expected here in the URL, as output, the data client gets in return the

requested data in DATEX II format. Based on the transmitted
subscription ID, the MDM platform can identify the corresponding

packet buffer and the data packet.

Figure 8: Web service MDM broker system/Data client system: DATEX II Client Pull

4.3.2.1.2 Calling up the web service

The data client system must provide a web service client that is

defined according to the specification [DatexIIPull] to invoke web
services. The corresponding subscription ID must be carried in the URL

as input parameter.

The SOAP endpoint of the broker system is as follows:

https://<BASt-MDM-Broker-Server>/BASt-MDM-

Interface/srv/<Subskriptions-ID>/clientPullService

Example:

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/2000000/clientPullService

4.3.2.2 Client Pull SOAP (Container)

With the Client Pull SOAP exchange process, the data client system
must prompt the MDM platform to transfer the data to the data client
system.

 Mobility Data Marketplace Page 31

4.3.2.2.1 Offering a web service

The MDM broker system provides a web service, which expects - as

input - a subscription ID and a timestamp (includes the creation time
of the request). The data is returned as output in the container format.

Figure 9: Web service MDM broker system/Data client system: Container Client Pull

4.3.2.2.2 Calling up the web service

The data client system must provide a web service client in accordance
with the container format specification [MCS]. This client serves to
launch the web service.

The SOAP endpoint of the broker system is as follows:

https://<BASt-MDM-Broker-Server>/BASt-MDM-Interface/srv/container/v1.0

Example:

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/container/v1.0

4.3.2.3 Publisher Push SOAP (DATEX II)

With the Publisher Push exchange process, the MDM broker system
delivers the data to the data client systems on its own initiative. In this

process, an appropriate SOAP interface must be used. Whether the
data is event-based (on occurrence) or periodically generated and
delivered to the MDM platform is in this case irrelevant; the

mechanism for the delivery to the data client is identical.

4.3.2.3.1 Offering a web service

The data client system must provide a web service that is defined
according to the specification [DatexIIPush]. The data to be supplied is
expected as input. As output, the MDM platform gets in return

 Mobility Data Marketplace Page 32

confirmation data in DATEX II format .The format of the input
parameter corresponds to the DATEX II scheme [DatexIISchema].

Figure 10: Web service MDM broker system/Data client system: DATEX II Publisher Push

4.3.2.3.2 Calling up the web service

The MDM broker system provides a web service client that is defined
according to the [DatexIIPush] to invoke the web services of the data

client system. Via the MDM administration component, the data client
must enter its service endpoint in the subscription configuration.

The broker system identifies the data client systems and launches a

corresponding web service call.

If the data transfer could be successfully completed, the broker system

would then expect a confirmation message from the data client
system:

<D2LogicalModel:d2LogicalModel modelBaseVersion="2"

xsi:schemaLocation="http://datex2.eu/schema/2/2_0/

DATEXIISchema_2_2_0.xsd"

xmlns:D2LogicalModel="http://datex2.eu/schema/2/2_0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<D2LogicalModel:exchange>

 <D2LogicalModel:response>acknowledge</D2LogicalModel:response>

 </D2LogicalModel:exchange>

...

</D2LogicalModel:d2LogicalModel>

4.3.2.4 Publisher Push SOAP (Container)

With the Publisher Push exchange process, the MDM broker system

delivers the data to the data client systems on its own initiative. In this
process, an appropriate SOAP interface must be used. Whether the
data is event-based (on occurrence) or periodically generated and

delivered to the MDM platform is in this case irrelevant; the
mechanism for the delivery to the data client remains identical.

 Mobility Data Marketplace Page 33

4.3.2.4.1 Offering a web service

The data client system must provide a web service that is defined on

the basis of the specification [MCS]. A data packet of the type
container format must be accepted as input and, as output, a status

message must be delivered.

Figure 11: Web service MDM broker system/Data client system: Container Publisher Push

4.3.2.4.2 Calling up the web service

The MDM broker system provides a web service client that is defined
according to the container format specification [MCS] to invoke the
web services of the data client system. Via the MDM administration

component, the data client must enter its service endpoint in the URL
attribute of the subscription configuration.

The broker system identifies the data client systems and launches a
corresponding web service call.

If the data transfer could be successfully completed, the broker system

would then expect a status message from the data client system:

 Mobility Data Marketplace Page 34

4.4 OTS 2 Interface

4.4.1 Procedure

For delivering or retrieving data, the external client must initially
establish a session with the OTS 2 server of the MDM platform.

In response, a data order (subscription) takes place within the session

by the intended recipient (data client or MDM). The data transmitter
(MDM or data supplier) will then transmit the required data within the

existing session automatically and continuously (without any further
queries) until the order is completed.

4.4.2 Features

The methods of the OTS 2 activity layer used for communication with
the MDM include ATie, ASubscribe (for data clients) / ASnippet (for

data suppliers), AUnsubscribe and AUntie. The used method calls
comprise onATied, onASnippet (for data clients) / onASubscribe (for
data suppliers), onAUnsubscribe and onAUntied. The data contents

application, subscriptionAny and dataAny are transported.

Only the OTS 2 protocol range, which enables the transmission of any

up-to-date DATEX II packages by subscriptionAny, will therefore be
needed. Singular queries and commands are not used. Historical data
cannot be obtained from the MDM. In addition, special requests to read

out the current state and then subsequent changes are not supported.
Therefore, data packets coming from the data suppliers must always

describe the complete current state.

The data clients cannot retrieve any selection of objects belonging to a
service. The data packets are always completely submitted (MDM

subscription). If necessary, data suppliers should split their data
offering into several publications, in order to enable the data clients to

subscribe to only a subset of the available data services.

4.4.3 DATEX II compression for OTS 2

On the data client side, the MDM basically provides compressed data.

In contrast to the use of HTTPS and SOAP protocols, only the DATEX II
payload is compressed in the case of OTS 2 and not the complete

OTS 2 package. If the package is considered at HTTP level, it will then
constitute an uncompressed packet. Given the specific requirements

regarding the processing time of data packets through the MDM and
the relatively long computation time required for the compression of a
single data packet, it has been decided that only the DATEX II payload

would be transmitted compressed and the subscription-specific
individual OTS 2 frame would be transmitted uncompressed. Thus, the

 Mobility Data Marketplace Page 35

MDM can also submit a once compressed data packet to a number of
data clients using OTS 2.

For this purpose, an OTS 2 snippet of the type acDataAnyType (other
types are not used) includes a BASE64Binary-encoded binary package,

which contains the DATEX II package in GZIP-compressed form.

The binary package is embedded in a <binary> element. The attribute

type of the <binary> element identifies the type of data transferred
and it is here provided with "base64BinaryDatex2Gzip".

This results in the following structure within an OTS 2 snippet:

<dataAny>

 <binary type="base64BinaryDatex2Gzip">

 PGQyTG9naWNhbE1vZGVsIHhtbG5zPSJodHRwOi8vZGF0ZXgyLmV1L3NjaGVt...

 </binary>

</dataAny>

Figure 12: Structure of a binary-coded OTS 2 dataAny-PDU

To restore the original DATEX II package, a data client must first
decode the content of the <binary> element from the dataAny snippet

using BASE64Binary and then decompress it using GZIP.

In addition to classic compression at HTTP level, OTS 2 data suppliers
can also use this variant of compression during delivery; the use of

this method is recommended.

4.4.4 OTS 2 Publish

When using the OTS 2 protocol, the data supplier takes the role of an
OTS 2 publisher.

Depending on the MDM publication, a separate connection has to be

established to the designated service endpoint (OTS 2 method ATie).

The URL of the service endpoint is structured as follows:

soap.tls://<BASt-MDM-Broker-Server>/BASt-MDM-OTS2-

Interface/pub/<publicationID>

 Mobility Data Marketplace Page 36

Example:

soap.tls://service.mac.mdm-portal.de/BASt-MDM-OTS2-

Interface/pub/2004000

The connections are usually maintained - as long as possible -
permanently (and not rebuilt, e.g. every minute). The authentication

takes place only when establishing a connection (see below).

The following Figure 13 shows an example of a sequence with a

connection establishment, order by the MDM, data delivery by the
client (here are just two deliveries indicated) and a connection
terminated by the client (a disconnection in the reverse direction by

the MDM would also be possible). The data supplier (client) is located
on the left side.

 sd MDMPublisher

MDM Server

(Distributor)

:OTSActivity User

Server :OTSAcitivity

Layer

Client :OTSAcitivity

Layer

Client (Publisher)

:OTSActivity User

Interne

Kommunikation

zwischen

Anwendung und

OTS 2-Stack

Kommunikation zwischen

MDM-Client und MDM-Server

Interne

Kommunikation

zwischen

Anwendung und

OTS 2-Stack

ref
Close

ref
Unsubscribe

ref

Subscribe

ref

Activ e Open

ATie(uri,callbackObject,config,application)

onAAccepted(uri,remoteUri,sessionId,config,application)onATied(remoteUri,sessionId,config,application)

ASubscribe(sessionID,subscrID,subscrName,subscription)

onASubscribe(sessionID,subscrID,subscrName,subscription)

ASnippets(sessionID,subscrID,data)

onASnippets(sessionID,subscrID,data)

ASnippets(sessionID,subscrID,data)

onASnippets(sessionID,subscrID,data)

AUnsubscribe(sessionID,subscrID,reason)
onAUnsubscribe(sessionID,subscrID,reason)

AUntie(sessionID,reason)
onAUntied(sessionID,reason)

Figure 13: Sequence diagram OTS 2 communication between data suppliers and MDM

4.4.4.1 Connection establishment

By using its machine certificate, the data supplier system has to
establish a TLS connection in the direction of MDM with the OTS 2
protocol connection "SOAP/HTTP with TLS encryption" (OTS 2 method

ATie, "soap.tls:" is in the URL schema field).

For the implementation of the certificate transmission, please refer to

chapter 8.1 (Use of Client Certificates for HTTPS Communication with
Servers That Require a Certificate-based Authentication).

 Mobility Data Marketplace Page 37

The data supplier must set the following special features in the
configuration information:

o "a_publisher=1" (indicates that it is a data supplier)

o "a_c_datex_any_mdm=1" (encodes the specific conditions for

the use of OTS 2 protocol in MDM)

o "t_targetURI" with the complete target URI, e.g.

"t_targetURI=soap.tls://service.mac.mdm-portal.de/BASt-MDM-
OTS2-Interface/pub/2004000" (is internally required by the
MDM server OTS 2)

To establish a connection, see also [OTS2] chapter 7.6.4.1 and
7.6.4.2.

4.4.4.2 Order

Pursuant to OTS 2 protocol, after a successful connection
establishment (OTS 2 method call onATied) the data supplier has to

wait until the MDM places an order (OTS 2 method call onASubscribe).

This order has the type acSubscriptionAnyType. The data to be

provided is already determined by the selection of the service endpoint
in MDM and it is therefore not specified in the order.

For the order, please see also [OTS2] chapter 7.6.7.1 and 7.6.7.2.

4.4.4.3 Data delivery

The data supplier regularly delivers his data after receipt of the order

(OTS 2 method ASnippet). The data supplier is responsible for the
transmission of data packets to MDM in the agreed delivery frequency
(pursuant to the configuration of the data services in the metadata

directory).

The data packets must use the type acDataAnyType. The data therein

is expected to be a DATEX II package, or (recommended) a BASE64-
encoded and GZIP-compressed DATEX II binary package (see chapter
4.4.3).

For the data delivery, please see also [OTS2] chapter 7.6.7.3 and
7.6.7.4.

4.4.4.4 Connection termination

An existing connection can be again terminated by either side (OTS 2
methods AUnSubscribe to terminate the order or data delivery and,

then, AUntie to terminate a connection).

Connections will be terminated by the MDM only if a publication or a

subscription is set out in an inactive mode from the administration
(metadata directory), or if the MDM server is shut down (e.g. for
maintenance purposes).

 Mobility Data Marketplace Page 38

In the case of a connection termination (OTS 2 method call
onAUntied), the client receives, in the first case, the reason "MDM

Service Disabled" in the field "reason" and, in the second case, the
reason "MDM Server Shutdown".

If the data supplier wants to terminate the connection, it will have to
provide an appropriate justification in the "reason" field, e.g. "MDM

Client Shutdown" or "MDM Client Restart" to create detailed log
messages.

To establish a connection, see also [OTS2] chapter 7.6.5 and 7.6.8.

4.4.5 OTS 2 Subscribe

When using the OTS 2 protocol, the data client takes the role of an

OTS 2 subscriber.

Depending on the MDM subscription, a separate connection has to be
established to the designated service endpoint (OTS 2 method ATie).

The URL of the service endpoint is structured as follows:

soap.tls://<BASt-MDM-Broker-Server>/BASt-MDM-OTS2-

DeliveryService/sub/<subscriptionID>

Example:

soap.tls://service.mac.mdm-portal.de/BASt-MDM-OTS2-

DeliveryService/sub/2035000

The connections are usually maintained - as long as possible -

permanently (and not rebuilt, e.g. every minute). The authentication
takes place only when establishing a connection (see below).

The following Figure 14 shows an example of a sequence with a
connection establishment, order by the client, data delivery by the
MDM (here are just two deliveries indicated) and a connection

terminated by the client (a disconnection in the reverse direction by
the MDM would also be possible). The data client (client) is located on

the left side.

 Mobility Data Marketplace Page 39

 sd MDMSubscriber

MDM Server

(Distributor)

:OTSActivity User

Client (Subscriber)

:OTSActivity User

Client :OTSAcitivity

Layer

Server :OTSAcitivity

Layer

Interne

Kommunikation

zwischen

Anwendung und

OTS 2-Stack

Kommunikation zwischen

MDM-Client und MDM-Server

Interne

Kommunikation

zwischen

Anwendung und

OTS 2-Stack

ref
Close

ref
Unsubscribe

ref

Subscribe

ref

Activ e Open

ATie(uri,callbackObject,config,application)

onAAccepted(uri,remoteUri,sessionId,config,application)onATied(remoteUri,sessionId,config,application)

ASubscribe(sessionID,subscrID,subscrName,subscription)

onASubscribe(sessionID,subscrID,subscrName,subscription)

ASnippets(sessionID,subscrID,data)
onASnippets(sessionID,subscrID,data)

ASnippets(sessionID,subscrID,data)

onASnippets(sessionID,subscrID,data)

AUnsubscribe(sessionID,subscrID,reason)
onAUnsubscribe(sessionID,subscrID,reason)

AUntie(sessionID,reason)
onAUntied(sessionID,reason)

Figure 14: Sequence diagram OTS 2 communication between data clients and MDM

4.4.5.1 Connection establishment

By using its machine certificate, the data client system has to establish
a TLS connection in the direction of MDM with the OTS 2 protocol
connection "SOAP/HTTP with TLS encryption" (OTS 2 method ATie,

"soap.tls:" is in the URL schema field).

For the implementation of the certificate transmission, please refer to

chapter 8.1 (Use of Client Certificates for HTTPS Communication with
Servers That Require a Certificate-based Authentication).

The data client must set the following special features in the

configuration information:

o "a_subscriber=1"“ (indicates that it is a data client)

o "a_c_datex_any_mdm=1" (encodes the specific conditions for
the use of OTS 2 protocol in MDM)

o "t_targetURI" with the complete target URI, e.g.

"t_targetURI=soap.tls://service.mac.mdm-portal.de/BASt-MDM-
OTS2-DeliveryService/sub/2035000" (is internally required by

the MDM server OTS 2)

To establish a connection, see also [OTS2] chapter 7.6.4.1 and
7.6.4.2.

 Mobility Data Marketplace Page 40

4.4.5.2 Order

Pursuant to OTS 2 protocol, the data client must place his order

(OTS 2 method call ASubscribe) after a successful connection
establishment (OTS 2 method call onATied).

The order has the type acSubscriptionAnyType. The required data is
already determined by the selection of the service endpoint in MDM

and it is therefore not specified in the order.

It is recommended to enter the MDM publication name into the field
"subscrName" of the OTS 2 order and the MDM publication ID into the

field "topic". All other optional fields in the OTS 2 order shall not apply.

For the order, please see also [OTS2] chapter 7.6.7.1 and 7.6.7.2.

4.4.5.3 Data delivery

After having placed the order, the data client regularly receives the
MDM data (OTS 2 method call onASnippet). MDM shall always provide

new data packets in the context of a push method as soon as the data
arrives to MDM from the data supplier.

The data packets are of the type acDataAnyType. The data is supplied
as BASE64-encoded and GZIP-compressed DATEX II binary package
(see chapter 4.4.3).

For the data delivery, please see also [OTS2] chapter 7.6.7.3 and
7.6.7.4.

4.4.5.4 Connection termination

An existing connection can be terminated by either side (OTS 2
methods AUnSubscribe to terminate the order or delivery data and,

then, AUntie to terminate a connection).

Connections will be terminated by the MDM only if a publication or a

subscription is set out in an inactive mode from the administration
(metadata directory), or if the MDM server is shut down (e.g. for
maintenance purposes).

In the case of a connection termination (OTS 2 method call
onAUntied), the client receives, in the first case, the reason "MDM

Service Disabled" in the field "reason" and, in the second case, the
reason "MDM Server Shutdown".

If the data client wants to terminate the connection, it will have to

provide an appropriate justification in the "reason" field, e.g. "MDM
Client Shutdown" or "MDM Client Restart" to create detailed log

messages.

To terminate a connection, see also [OTS2] chapter 7.6.5 and 7.6.8.

 Mobility Data Marketplace Page 41

5 Certificate-based M2M Communication
The security component of the MDM platform requires a certificate-
based data exchange between the data supplier system and the
platform, on the one side, and between the platform and the data

client system, on the other.

This chapter begins with an overview of the functions of the security

component and, then, describes the steps to be taken by the data
suppliers and the data clients to request certificates and set them up
for M2M communication.

The certificate is created following a request and then sent to the data
supplier/data client by e-mail. The password that is required for

signature is sent by fax.

The data supplier system/data client system must finally integrate the

certificate into their IT infrastructure, so that the data exchange with
the MDM platform can be authenticated.

5.1 Tasks of the Security Component

The security component is responsible for the realization of the safety

aspects of the MDM platform. This includes, in particular, the
authentication of data supplier systems and data client systems, which

want to communicate with the MDM platform.

Before the data packets arriving at the MDM platform can be accepted,
their origin must be checked. This includes the authentication of the

data supplier system that is associated with the data packet using a
digital certificate. Each data supplier system must have a valid

certificate to be used for login at the platform. The security component
authenticates the certificate sent by the data supplier system within
the MDM platform.

Before a data packet can be sent to a data client system, the identity
of this data client system needs to be checked. Each data client system

must authenticate itself to the MDM platform using a digital certificate.
The security component authenticates the certificate sent by the data
client system within the MDM platform.

The confidentiality of communications between the data supplier
system and the MDM platform, on the one hand, and the MDM

platform and the data client system, on the other hand, must be
ensured by an exclusive use of an SSL/TLS transport encryption.

The security component requires standards-compliant [X.509v3]

certificates for authentication; see also [PKI]. The certificates must be
technically involved in the HTTPS connection to the data client and

data supplier systems via a client-side, certificate-based connection
establishment. The presented certificates are checked for validity and
whether they are blocked or not.

 Mobility Data Marketplace Page 42

Figure 15: Overview of the security architecture

The SSL module 1 in Figure 15 sends a certificate request to the

sender for predefined URLs, checks the validity of the obtained
certificate and then verifies whether it is blocked or not. Afterwards, it
forwards the certificate to the security component of the MDM

platform.

5.2 Note on Server Name Indication

The SSL implementation JSSE in Java 6, used in the MDM platform,

supports no Server Name Indication (SNI), see:

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6985179

This means that data suppliers for the client pull method and data
clients for the publisher push method cannot use any virtual server for

M2M communication. Each registered machine can represent only a
unique IP address.

5.3 Applying for a Machine Certificate

The operator of the MDM platform mediates between the data supplier

or data client systems and the certificate issuer. Therefore, data
suppliers and data clients apply - when registering - for one or multiple

machine certificates via the administration GUI of the MDM platform.
The certificate is however sent to them by the certificate-issuing
organization and not by the operator of the MDM platform.

To request a machine certificate, you must already be registered on
the MDM platform with your organization.

How to apply for a machine certificate on the MDM platform is
described in [BHB].

 Mobility Data Marketplace Page 43

5.4 Installing a Machine Certificate and Issuer

Certificate

Note: The installation for IIS is described in chapter 9.1.

In the Apache Web server, integrate the machine certificate as follows:

SSLCertificateFile /usr/local/apache2/conf/ssl.crt/server.crt

Enter the associated private key as follows:

SSLCertificateKeyFile /usr/local/apache2/conf/ssl.crt/server.key

In addition, you must install the issuer certificate on the web server:

SSLCACertificateFile /usr/local/apache2/conf/ssl.crt/ca-bundle-

client.crt

The certificate is encrypted by using the key with the password that

has been sent to you via fax. Use the password to decrypt.

For more information on these directives, please see the mod_ssl

documentation:

http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcertificate
file

http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcacertifica
tefile

Note: If you get the machine certificate and the issuer certificate
within a common p12 file, you must extract both certificates from this

file and then install them. The relevant instructions are provided in
chapter 9.1

5.5 Authentication of the MDM Platform as Web

Client

If the MDM platform acts as a web client in the M2M communication, it
will then authenticate with its server certificate, provided that the web

server has enabled this option on the data supplier or data client side.
Data supplier and data client systems should enable this option and
verify the certificate to determine that the requests were actually

disposed of by the MDM platform.

The CA certificates required for verification can be downloaded from

http://hilfe.mdm-

http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcertificatefile
http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcertificatefile
http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcacertificatefile
http://httpd.apache.org/docs/current/mod/mod_ssl.html#sslcacertificatefile
http://hilfe.mdm-portal.de/fileadmin/user_upload/Dokumente/Hilfeseite/MDM_CA-Cert.zip

 Mobility Data Marketplace Page 44

portal.de/fileadmin/user_upload/Dokumente/Hilfeseite/MDM_CA-
Cert.zip and must be stored in the data supplier or data client systems.

Note: Do not use the MDM server certificate for verification. It is
changed on a regular basis.

5.6 Authentication of Data Supplier/Data Client Web

Clients

If the data supplier or data client systems act as a web client in the
M2M communication, the web client must then authenticate to the

MDM platform by using its machine certificate. The platform will accept
requests only from systems that are registered in the metadata
directory. Based on the certificate, the machine can be assigned to the

organization. Furthermore, it can be checked whether the organization
is the owner of the publication or subscription for which data exchange

is to take place.

It should be noted that the server certificate of the MDM has been
issued to the MDM broker by the MDM's own CAs. Therefore, the

server certificate should be checked on the client side against the CA
certificates, which can be downloaded under: http://hilfe.mdm-

portal.de/fileadmin/user_upload/Dokumente/Hilfeseite/MDM_CA-
Cert.zip

In the Annex A, you will find a Java code example that demonstrates
the use of client certificates both for the communication with a SOAP

web service as well as for a web server via HTTPS.

http://hilfe.mdm-portal.de/fileadmin/user_upload/Dokumente/Hilfeseite/MDM_CA-Cert.zip
http://hilfe.mdm-portal.de/fileadmin/user_upload/Dokumente/Hilfeseite/MDM_CA-Cert.zip
http://hilfe.mdm-portal.de/fileadmin/user_upload/Dokumente/Hilfeseite/MDM_CA-Cert.zip
http://hilfe.mdm-portal.de/fileadmin/user_upload/Dokumente/Hilfeseite/MDM_CA-Cert.zip
http://hilfe.mdm-portal.de/fileadmin/user_upload/Dokumente/Hilfeseite/MDM_CA-Cert.zip

 Mobility Data Marketplace Page 45

6 Exceptions and Error Messages

6.1 Exception - Unchanged Data

If a DATEX II client pull request uses the header field "If-Modified-
Since", and if there are no more recent data packets than those
already gathered, an HTTP status code 304 = "Not-Modified" will be

generated. The same shall apply if no data is not yet available.

6.2 Error Messages with SOAP Requests

Error messages with SOAP requests are reported as SOAP faults.

Here, the error message in the "faultstring" of the following SOAP
response is sent:

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <S:Fault xmlns:ns4="http://www.w3.org/2003/05/soap-envelope">

 <faultcode>S:Server</faultcode>

 <faultstring>...</faultstring>

 </S:Fault>

 </S:Body>

</S:Envelope>

6.3 Error Messages with HTTPS Requests

If no SOAP request is available, the error message will be sent with
HTTP 503 and content type "text".

6.4 Error Handling in the Context of OTS 2 Protocol

Different error situations, which may occur for an OTS 2 client, are
hereinafter described. For more information on the OTS 2 standard

errors (e.g. parameters included) can be consulted in [OTS2].

6.4.1 Session setup

If the required certificates are missing or invalid, an error of the type

1301 (TConnect failed) will be initiated on the client side. This is done
either by the method call onError or onRemoteError, depending on

whether the error is already detected on the client or on the server
side. In the field "reason" of the error, "Certificate error" is given as

reason.

If the certificates are inappropriate (valid, but e.g. not suitable for the
intended publication/subscription), an error 1301 (TConnect failed) will

 Mobility Data Marketplace Page 46

also be triggered. The field "reason" will then include "Certificate
inappropriate".

If you try to use an incorrect protocol connection (not soap.tls), an
error of the type 1001 (invalid URI) will be triggered by onError.

If the feature "t_targetURI" is missing in the configuration information,
an error of the type 5102 (rejected) will be triggered by

onRemoteError. The field "reason" will include "Feature t_targetURI
required".

If the feature "a_c_datex_any_mdm" is missing in the configuration

information, an error of the type 3301 (ATie failed) will be triggered by
onRemoteError. The field "reason" will include "Feature

a_c_datex_any_mdm required".

If the server does not accept any connections or is not available, an
error of the type 1301 (TConnect failed) will be triggered. The field

"reason" will include "Unavailable URI".

6.4.2 Order

If the order is of the wrong type (not acSubscriptionAnyType), an error
of the type 8709 (Subscription: invalid parameter) will be triggered. In
the field "par", you find the invalid type.

6.4.3 Data delivery

If a data delivery to the MDM is of the wrong type (not acDataAnyType

or not processable content), an MDM-specific error of the type 10001
will be triggered.

6.4.4 General

If there is no communication for a longer period of time and the
connection is in a timeout or if the connection is unexpectedly

interrupted for other reasons, an error of the type 1003 (Transport
connection lost) will be triggered.

If a data transfer fails, an error 1501 (TSendData failed) will be

triggered.

In both cases, the connection must be ended and, if necessary, a re-

establishment of the connection must be attempted.

An internal error of the MDM broker component is displayed with the
MDM-specific error of the type 10002.

 Mobility Data Marketplace Page 47

7 Examples

7.1 HTTPS Interface

7.1.1 Data Supplier Client Pull HTTPS (Container)

The publication ID must be provided as a parameter in the URL.

Request:

GET https://<DG-Server>/<Context>?publicationID=2053008

content-type: text/plain

accept-encoding: identity,gzip

Response:

<?xml version="1.0" encoding="UTF-8" standalone="yes" ?>

<container xmlns="http://ws.bast.de/container/TrafficDataService"

xmlns:ns2="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:ns3="http://www.w3.org/2000/09/xmldsig#">

 <header>

 <Identifier>

 <publicationId>2053008</publicationId>

 </Identifier>

 </header>

 <body>

 <binary id="test-id-bin" type="hexBinary">

 <![CDATA[]]>

 </binary>

 <xml schema="test-schema" id="test-id-xml">

 <n4:musterDatenRoot>

 <n4:trafficData origin="home" />

 </n4:musterDatenRoot>

 </xml>

 </body>

</container>

7.1.2 Data Supplier Publisher Push HTTPS (Container)

The publication ID is included in the XML data.

<?xml version='1.0' encoding='UTF-8'?>

<ns3:containerRootElementEl xmlns="http://www.w3.org/2000/09/xmldsig#"

xmlns:ns2="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:ns3="http://ws.bast.de/container/TrafficDataService">

 <ns3:header>

 <ns3:Identifier>

 <ns3:publicationId>12345</ns3:publicationId>

 </ns3:Identifier>

 </ns3:header>

 <ns3:body>

 <ns3:binary id="test-id-bin" type="hexBinary">

 Mobility Data Marketplace Page 48

 dGVzdC10ZXh0.

 </ns3:binary>

 <ns3:xml schema="test-schema" id="test-id-xml">

 <n4:musterDatenRoot>

 <n4:trafficData origin="home"/>

 </n4:musterDatenRoot>

 </ns3:xml>

 </ns3:body>

</ns3:containerRootElementEl>

7.1.3 Data client Client Pull HTTPS (DATEX II)

The request must contain no more data. The subscription ID must be

provided in the path of the URL and also as a parameter.

GET https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/2000000/clientPullService?subscriptionID=2000000

7.1.4 Data client Client Pull HTTPS (Container)

The request must contain no more data. The subscription ID must be
provided as a parameter in the URL.

Request:

GET https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/container/v1.0?subscriptionID=2000000

7.2 SOAP Interface

7.2.1 Data Supplier Publisher Push SOAP (DATEX II)

The publication ID must be provided in the path of the URL.

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/2000002/supplierPushService

<?xml version='1.0' encoding='UTF-8'?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <d2LogicalModel xmlns="http://datex2.eu/schema/2/2_0"

modelBaseVersion="2">

 <exchange>

<subscriptionReference>subscriptionReference</subscriptionReference>

 <supplierIdentification>

 <country>de</country>

 <nationalIdentifier>TestClient</nationalIdentifier>

 <internationalIdentifierExtension/>

 </supplierIdentification>

 </exchange>

 <payloadPublication xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance" xsi:type="SituationPublication" lang="DE">

 Mobility Data Marketplace Page 49

 <feedDescription>

 <values>

 <value lang="DE">test-test</value>

 </values>

 </feedDescription>

 <feedType>feedType</feedType>

 <publicationTime>2011-03-

02T10:36:34.336+01:00</publicationTime>

 <publicationCreator>

 <country>de</country>

 <nationalIdentifier>TestClient</nationalIdentifier>

 <internationalIdentifierExtension/>

 </publicationCreator>

 <situation version="0.1" id="GUID-Mattst-1299058594339">

 <overallSeverity>none</overallSeverity>

 <headerInformation>

 <areaOfInterest>regional</areaOfInterest>

 </headerInformation>

 <situationRecord xsi:type="AnimalPresenceObstruction">

 <generalPublicComment>

 <comment>

 <values>

 <value lang="DE"></value>

 </values>

 </comment>

 </generalPublicComment>

 </situationRecord>

 </situation>

 </payloadPublication>

 </d2LogicalModel>

 </S:Body>

</S:Envelope>

7.2.2 Data Supplier Client Push SOAP (Container)

The publication ID is included in the XML data.

<?xml version='1.0' encoding='UTF-8'?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns3:containerRootElementEl

xmlns="http://www.w3.org/2000/09/xmldsig#"

xmlns:ns2="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:ns3="http://ws.bast.de/container/TrafficDataService">

 <ns3:header>

 <ns3:Identifier>

 <ns3:publicationId>12345</ns3:publicationId>

 </ns3:Identifier>

 </ns3:header>

 <ns3:body>

 <ns3:binary id="test-id-bin"

type="hexBinary">dGVzdC10ZXh0.</ns3:binary>

 <ns3:xmlschema="test-schema" id="test-id-xml"/>

 </ns3:body>

 Mobility Data Marketplace Page 50

 </ns3:containerRootElementEl>

 </S:Body>

</S:Envelope>

7.2.3 Data client Client Pull SOAP (DATEX II)

The request must contain no more data. The subscription ID must be

provided in the path of the URL.

https://service.mac.mdm-portal.de/BASt-MDM-

Interface/srv/2000000/clientPullService

<?xml version='1.0' encoding='UTF-8'?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body />

</S:Envelope>

7.2.4 Data client Client Pull SOAP (Container)

The subscription ID is included in the XML data.

<?xml version='1.0' encoding='UTF-8'?>

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <ns3:pullContainerDataClientRequestEl

xmlns="http://www.w3.org/2000/09/xmldsig#"

xmlns:ns2="http://schemas.xmlsoap.org/ws/2002/07/utility"

xmlns:ns3="http://ws.bast.de/container/TrafficDataService">

 <ns3:subscriptionId>2000000</ns3:subscriptionId>

 </ns3:pullContainerDataClientRequestEl>

 </S:Body>

</S:Envelope>

7.2.5 Data client Publisher Push SOAP (DATEX II)

Expected response from the data client system:

<D2LogicalModel:d2LogicalModel modelBaseVersion="2"

xsi:schemaLocation="http://datex2.eu/schema/2/2_0/

DATEXIISchema_2_2_0.xsd"

xmlns:D2LogicalModel="http://datex2.eu/schema/2/2_0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<D2LogicalModel:exchange>

 <D2LogicalModel:response>acknowledge</D2LogicalModel:response>

 </D2LogicalModel:exchange>

...

</D2LogicalModel:d2LogicalModel>

 Mobility Data Marketplace Page 51

7.3 OTS 2 Interface

7.3.1 Protocol example SOAP

The procedure for using the OTS 2 protocol is exemplified in the
communication protocol of a data client.

For a data supplier, the process is essentially identical, except that the

order (aSubscribe) and the data delivery (aSnippets) are transmitted
in the reverse direction (the order is received over tGetR and the data

delivery is sent over tSend instead of vice versa, as shown in the
example).

7.3.1.1 Connection establishment

The subscription ID must be provided in the path of the URL and,
additionally, the URL as a configuration parameter t_targetURI.

Request (tConnect):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tConnect xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <clientId>ff97c2b4c0a8013800d902546789ad4c</clientId>

 <username/>

 <password/>

 <localTransportId>1</localTransportId>

 <timeout>100000</timeout>

 <neededConfig version="m_configListClient_C3X">

 <cfgs>

 <cfg>

 <name>t_targetURI= soap.tls://service.mac.mdm-portal.de/BASt-

MDM-OTS2-DeliveryService/sub/2035000</name>

 <min>0</min>

 <max>0</max>

 </cfg>

 </cfgs>

 </neededConfig>

 </tConnect>

 </S:Body>

</S:Envelope>

Response (tConnectR):

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header/>

 <env:Body>

 <tConnectR xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 Mobility Data Marketplace Page 52

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <config version="m_configListServer_S3A"/>

 </tConnectR>

 </env:Body>

</env:Envelope>

Request (tGet, tGetR Response s.u.):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tGet xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 </tGet>

 </S:Body>

</S:Envelope>

Request (sOpen via tSend, tSendR Response is empty):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tSend xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sOpenType">

 <neededConfig version="m_configListClient_C2X"/>

 </data>

 </tSend>

 </S:Body>

</S:Envelope>

Response (sOpenResponse via tGetR, tGet Request see above):

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header/>

 <env:Body>

 <tGetR xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <ds>

 <tSend>

 Mobility Data Marketplace Page 53

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sOpenResponseType">

 <sessionId>266419a0-1d02-11e1-a7c2-000c294483b2</sessionId>

 <config version="m_configListServer_S2A"/>

 </data>

 </tSend>

 </ds>

 </tGetR>

 </env:Body>

</env:Envelope>

Request (tGet, tGetR Response see below):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tGet xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 </tGet>

 </S:Body>

</S:Envelope>

Request (aTie via sMsg via tSend, tSendR Response is empty):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tSend xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sMsgType">

 <msg xsi:type="aTieType">

 <application xsi:type="acApplicationType">

 <appVersion>OTS2TestClient_V_1.0.0</appVersion>

 </application>

 <neededConfig version="configListCounterPart">

 <cfgs>

 <cfg>

 <name>s_layer</name>

 <min>1</min>

 Mobility Data Marketplace Page 54

 <max>1</max>

 </cfg>

 <cfg>

 <name>a_distributor_sub</name>

 <min>1</min>

 <max>1</max>

 </cfg>

 <cfg>

 <name>a_subscriber</name>

 <min>0</min>

 <max>0</max>

 </cfg>

 <cfg>

 <name>a_c_datex_any_mdm</name>

 <min>0</min>

 <max>0</max>

 </cfg>

 <cfg>

 <name>t_layer</name>

 <min>1</min>

 <max>1</max>

 </cfg>

 <cfg>

 <name>a_layer</name>

 <min>1</min>

 <max>1</max>

 </cfg>

 </cfgs>

 </neededConfig>

 </msg>

 </data>

 </tSend>

 </S:Body>

</S:Envelope>

Response (aTieResponse via sMsg via tGetR, tGet Request see above):

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header/>

 <env:Body>

 <tGetR xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <ds>

 <tSend>

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sMsgType">

 <msg xsi:type="aTieResponseType">

 <application xsi:type="acApplicationType">

 Mobility Data Marketplace Page 55

 <appVersion>GUI_OTS2_ActivityLayer_SRVTest_V_1.0.0</appVersion>

 </application>

 <config version="configListCounterPart">

 <cfgs>

 <cfg>

 <name>s_layer</name>

 <min>1</min>

 <max>1</max>

 </cfg>

 <cfg>

 <name>a_distributor_sub</name>

 <min>1</min>

 <max>1</max>

 </cfg>

 <cfg>

 <name>a_subscriber</name>

 <min>0</min>

 <max>0</max>

 </cfg>

 <cfg>

 <name>a_c_datex_any_mdm</name>

 <min>0</min>

 <max>0</max>

 </cfg>

 <cfg>

 <name>t_layer</name>

 <min>1</min>

 <max>1</max>

 </cfg>

 <cfg>

 <name>a_layer</name>

 <min>1</min>

 <max>1</max>

 </cfg>

 </cfgs>

 </config>

 </msg>

 </data>

 </tSend>

 </ds>

 </tGetR>

 </env:Body>

</env:Envelope>

7.3.1.2 Data order

In the field "topic", it is recommended to enter the MDM publication

ID.

Request (aSubscribe via sMsg via tSend, tSendR Response is empty):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 Mobility Data Marketplace Page 56

 <tSend xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sMsgType">

 <msg xsi:type="aSubscribeType">

 <subscrId>1322843092</subscrId>

 <subscrName>OTS2TestClient</subscrName>

 <subscription xsi:type="acSubscriptionAnyType">

 <topic>2035000</topic>

 </subscription>

 </msg>

 </data>

 </tSend>

 </S:Body>

</S:Envelope>

7.3.1.3 Data delivery

Request (tGet, tGetR Response see below):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tGet xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 </tGet>

 </S:Body>

</S:Envelope>

Response (aSnippets via sMsg via tGetR, tGet Request see above):

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header/>

 <env:Body>

 <tGetR xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <ds>

 <tSend>

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sMsgType">

 Mobility Data Marketplace Page 57

 <msg xsi:type="aSnippetsType">

 <subscrId>1322843092</subscrId>

 <data xsi:type="acDataAnyType">

 <dataAny xmlns:xs="http://www.w3.org/2001/XMLSchema"

xsi:type="xs:string"><binary

type="base64BinaryDatex2Gzip"

id="0">H4sIAAAAAAAAADTdCZYkOa5D0S3Z5Dbsf2PJ+xTZ/U//qswIdx

skigQB8H6f4/f7Xfdz7dd3/I59v87ffpzPfZy/69uf+zvO...</dataAny>

 </data>

 </msg>

 </data>

 </tSend>

 </ds>

 </tGetR>

 </env:Body>

</env:Envelope>

7.3.1.4 Cancellation

Request (aUnsubscribe via sMsg via tSend, tSendR Response is

empty):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tSend xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sMsgType">

 <msg xsi:type="aUnsubscribeType">

 <subscrId>1322843092</subscrId>

 <reason>OTS2TestClient closes</reason>

 </msg>

 </data>

 </tSend>

 </S:Body>

</S:Envelope>

7.3.1.5 Connection termination

Request (sClose via tSend, tSendR Response is empty):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tSend xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

http://schemas.xmlsoap.org/soap/envelope/
http://opentrafficsystems.org/OTS2
http://datex2.eu/schema/2_0RC2/2_0
http://otec-konsortium.de/OCIT-I_OITD
http://otec-konsortium.de/OCIT-I_OITD
http://www.w3.org/2001/XMLSchema-instance

 Mobility Data Marketplace Page 58

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sCloseType">

 <sessionId>266419a0-1d02-11e1-a7c2-000c294483b2</sessionId>

 <reason>End TestClient</reason>

 </data>

 </tSend>

 </S:Body>

</S:Envelope>

Response (sCloseResponse via tSend via tGetR, tGet Request not

shown):

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header/>

 <env:Body>

 <tGetR xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <ds>

 <tSend>

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <data xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:type="sCloseResponseType">

 <sessionId>266419a0-1d02-11e1-a7c2-000c294483b2</sessionId>

 </data>

 </tSend>

 </ds>

 </tGetR>

 </env:Body>

</env:Envelope>

Request (tDisconnect):

<S:Envelope xmlns:S="http://schemas.xmlsoap.org/soap/envelope/">

 <S:Body>

 <tDisconnect xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <transportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </transportId>

 <reason>close</reason>

 </tDisconnect>

 </S:Body>

</S:Envelope>

 Mobility Data Marketplace Page 59

Response (tDisconnectR):

<env:Envelope xmlns:env="http://schemas.xmlsoap.org/soap/envelope/">

 <env:Header/>

 <env:Body>

 <tDisconnectR xmlns="http://opentrafficsystems.org/OTS2"

xmlns:ns2="http://datex2.eu/schema/2_0RC2/2_0" xmlns:ns3="http://otec-

konsortium.de/OCIT-I_OITD">

 <rTransportId>

 <clientPart>1</clientPart>

 <serverPart>27</serverPart>

 </rTransportId>

 </tDisconnectR>

 </env:Body>

</env:Envelope>

 Mobility Data Marketplace Page 60

8 Annex A

8.1 Use of Client Certificates for HTTPS

Communication with Servers That Require a

Certificate-based Authentication

package com.ottensoftware.bast.http.ssl;

import java.io.BufferedReader;

import java.io.FileInputStream;

import java.io.InputStream;

import java.io.InputStreamReader;

import java.net.URL;

import java.security.KeyStore;

import java.security.SecureRandom;

import java.util.List;

import java.util.Map;

import java.util.zip.GZIPInputStream;

import java.util.zip.Inflater;

import java.util.zip.InflaterInputStream;

import javax.net.ssl.HostnameVerifier;

import javax.net.ssl.HttpsURLConnection;

import javax.net.ssl.KeyManager;

import javax.net.ssl.KeyManagerFactory;

import javax.net.ssl.SSLContext;

import javax.net.ssl.SSLSession;

import javax.net.ssl.SSLSocketFactory;

import javax.net.ssl.TrustManager;

import javax.net.ssl.TrustManagerFactory;

/*

 * This class demonstrates the use of client certificates for the communication

 * via HTTPS with servers requesting a certificate-based authentication.

 *

 *

 * Requirements:

 * The private key and the client certificate are available as PKCS12 file.

 * The password of the key file is known.

 *

 * The certificate of the server(s), with which connections are to be

established, are available as Java keystore file(1)

 *

 * (1) You can determine the certificates of the MDM platform using a browser,

or extract them from the PKCS-12 file using openssl.

 *

 * You create your own truststore file using:

 * <JAVA_HOME>\bin\keytool -import -trustcacerts -alias "own alias for the

holder of the certificate"

 *-file "Path to the certificate to be imported" keystore "file name of the

trusstore file"

 Mobility Data Marketplace Page 61

 *

 * Example: C:\Programme\Java\jdk1.6.0_22\bin\keytool -import -trustcacerts -

alias BUCServiceManagementCertificateAuthority

 * -file ./trustcerts/BUCServiceManagementCertificateAuthority.crt -keystore

mytruststore.jks

 *

 * Enter the keystore password: <With the first certificate, set your own

password. Use this password for all subsequent imports>

 * Enter the password again: <Password repetition>

 * The following is the output of the certificate to be imported:

 * Owner: EMAILADDRESS=dalbers@materna.de, CN=BUC Service Management SSL CA,

OU=BU

 * C Service Management, O=MATERNA GmbH, ST=North Rhine-Westphalia, C=DE

 * Originator: EMAILADDRESS=dalbers@materna.de, CN=BUC Service Management

Certificate Authority, OU=BUC Service Management, O=MATERNA GmbH, L=Dortmund,

ST=North Rhine-Westphalia, C=DE

 * Serial number: 9

 * Valid from: Thu Feb 03 12:00:52 CET 2011 until: Sat Feb 02 12:00:52 CET 2013

 * Digital thumbprint of the certificate:

 * MD5: 0A:DA:6A:FB:5B:AD:F7:31:77:BD:BB:8E:4C:C2:58:08

 * SHA1:

E8:4A:92:C2:05:65:15:78:E9:B6:C1:D7:53:FC:60:48:F4:E3:25:AB

 * Signature algorithm name: SHA1withRSA

 * Version: 3

 * Enhancements:

 * #1: ObjectId: 2.5.29.19 Criticality=true

 * BasicConstraints:[

 * CA:true

 * PathLen:0

 *]

 * #2: ObjectId: 2.5.29.15

Criticality=false

 * KeyUsage [

 * Key_CertSign

 * Crl_Sign

 *]

 * #3: ObjectId: 2.5.29.14

Criticality=false

 * SubjectKeyIdentifier [

 * KeyIdentifier [0000: 32 60 8E F6

A7 CE 7B 92 CB 28 0F AB 05 05 96 9A 2`.......(......0010: A2 95 CD 9A

....]]

 * #4: ObjectId: 2.5.29.31

Criticality=false

 * CRLDistributionPoints [

 * [DistributionPoint: [URIName:

http://ca.mbucqa.de/sslca.crl]

 *

 ReasonFlags: key compromise

 *

 CA compromise]

 * #5:

ObjectId: 2.16.840.1.113730.1.1 Criticality=false

 Mobility Data Marketplace Page 62

 *

 NetscapeCertType [

 *

SSL CA

 *]

 * #6:

ObjectId: 2.5.29.35 Criticality=false

 *

 AuthorityKeyIdentifier [

 *

 KeyIdentifier [0000: D9 D4 57 C9 3E 64 CC EA 37 18 37 5D EB C1 6B 89

..W.>d..7.7]..k.0010: FB 4B 89 B0 .K..]

 *]

 *

 *

 * Do you trust this certificate? [No]: Yes

 * Certificate was added to keystore.

 *

 *

 * @author Frank Rossol

 *

 */

public class TestClientCertHttpDatex2 {

 /**

 * returns an SSL connection by using client certificates to the specified

URL

 * @param urlString URL to which the connection is to be established

 * @return HttpsURLConnection Https connection

 */

 private HttpsURLConnection getSecureConnection(String urlString) {

 try {

 // Password of the P12 file

 String password="myKeyPass";

 // Password of the truststore file that contains the

certificates of the MDM platform

 String trustPassword="myTrustStorePass";

 // Type of keystore file

 String keyStoreType = "pkcs12";

 // Type of truststore file

 String trustStoreType ="JKS";

 // Load p12 file

 KeyStore keyStore = KeyStore.getInstance(keyStoreType);

 keyStore.load(new

FileInputStream("C:/MDMClient/java/SSL/privkey/myPrivateKey.p12"),

passwort.toCharArray());

 KeyManagerFactory kmf =KeyManagerFactory.getInstance("SunX509",

"SunJSSE");

 kmf.init(keyStore, passwort.toCharArray());

 // Load truststore

 KeyStore trustStore = KeyStore.getInstance(trustStoreType);

 Mobility Data Marketplace Page 63

 trustStore.load(new

FileInputStream("C:/MDMClient/java/SSL/myTrustStore.jks"),

trustPasswort.toCharArray());

 TrustManagerFactory tmf = TrustManagerFactory.getInstance("PKIX");

 tmf.init(trustStore);

 TrustManager tms [] =tmf.getTrustManagers();

 SSLContext sslcontext = SSLContext.getInstance("TLS");

 KeyManager[] km = kmf.getKeyManagers();

 SecureRandom random = new SecureRandom();

 // Initialize SSL context with keystore and truststore

instances

 sslcontext.init(km, tms, random);

 SSLSocketFactory sslfactory =sslcontext.getSocketFactory();

 HttpsURLConnection.setDefaultSSLSocketFactory(sslfactory);

 URL url = new URL(urlString);

 HttpsURLConnection con =(HttpsURLConnection)

url.openConnection();

 con.setSSLSocketFactory(sslfactory);

 HostnameVerifier hostnameVerifier = new HostnameVerifier() {

 // Here, install own name check of the server

 @Override

 public boolean verify(String hostname, SSLSession

session) {

 return true;

 }

 };

 con.setHostnameVerifier(hostnameVerifier);

 con.setDefaultUseCaches(false);

 return con;

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 return null;

 }

 /**

 * This function calls up DATEX2 data from platform

 */

 private void testClientPullHttpsDatexII() {

 String subscriptionId = "123456";

 // Server name under which the MDM platform is accessible.

 String mdmHost="service.mac.mdm-portal.de";

 String url = "https://" + mdmHost +"/BASt-MDM-

Interface/srv/"+subscriptionId+"/clientPullService?subscriptionId="+

subscriptionId;

 HttpsURLConnection con = null;

 try {

 Mobility Data Marketplace Page 64

 // Connect to server

 con = getSecureConnection(url);

 con.setRequestMethod("GET");

 con.setRequestProperty("Accept-Encoding", "gzip");

 con.setUseCaches (false);

 con.setDoInput(true);

 con.setDoOutput(true);

 con.connect();

 // Connection status

 int responseCode = con.getResponseCode() ;

 // Data retrieved successfully (HTTP-Server Code)

 if (responseCode == 200) {

 System.out.println("Get successful");

 }

 else if (responseCode == 400) {

 System.out.println("No subscription parameter or no data has been

given");

 }

 else if (responseCode == 404) {

 System.out.println("Subscription parameter could not be assigned or

the subscription is no longer valid");

 }

 else {

 System.out.println("Error: " + responseCode);

 // Content of error

 try {

 InputStream is = con.getErrorStream();

 BufferedReader rd = new BufferedReader(new

InputStreamReader(is));

 String line;

 StringBuffer response = new StringBuffer();

 while((line = rd.readLine()) != null) {

 response.append(line);

 response.append('\r');

 }

 rd.close();

 System.out.println(response.toString());

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 }

 InputStream is = null;

 // How does the transmission of content occur?

 String encoding = con.getContentEncoding();

 // Generate the required wrapper based on encoding

 if (encoding != null && encoding.equalsIgnoreCase("gzip")) {

 is = new GZIPInputStream(con.getInputStream());

 }

 else if (encoding != null && encoding.equalsIgnoreCase("deflate"))

{

 Mobility Data Marketplace Page 65

 is = new InflaterInputStream(con.getInputStream(), new

Inflater(true));

 }

 else {

 is = con.getInputStream();

 }

 // Read results

 BufferedReader rd = new BufferedReader(new InputStreamReader(is));

 String line;

 StringBuffer response = new StringBuffer();

 while((line = rd.readLine()) != null) {

 response.append(line);

 response.append('\r');

 }

 rd.close();

 System.out.println(response.toString());

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 finally {

 if(con != null) {

 con.disconnect();

 }

 }

 }

 /**

 * @param args

 */

 public static void main(String[] args) {

 TestClientCertHttpDatex2 tc = new TestClientCertHttpDatex2();

 tc.testClientPullHttpsDatexII();

 }

}

 Mobility Data Marketplace Page 66

8.2 Use of Client Certificates for the Communication

with SOAP Web Services That Require a

Certificate-based Authentication

package com.ottensoftware.bast.soap.ssl;

import java.net.URL;

import javax.xml.namespace.QName;

import eu.datex2.schema._2._2_0.D2LogicalModel;

import eu.datex2.wsdl.clientpull._2_0.client.ClientPullService;

import eu.datex2.wsdl.clientpull._2_0.client.ClientPullService_Service;

/*

 * This class demonstrates the use of client certificates for the communication

 * with SOAP web services that require a certificate-based authentication.

 *

 *

 * Requirements:

 * The private key and the client certificate are available as PKCS12 file.

 * The password of the key file is known.

 *

 * The certificate of the server(s), with which connections are to be

established, are available as Java keystore file(1)

 *

 * (1) You can determine the certificates of the MDM platform using a browser,

or extract them from the PKCS-12 file using openssl.

 *

 * You create your own truststore file using:

 * <JAVA_HOME>\bin\keytool -import -trustcacerts -alias "own alias for the

holder of the certificate"

 *-file "Path to the certificate to be imported" keystore "file name of the

trusstore file"

 *

 * Example: C:\Programme\Java\jdk1.6.0_22\bin\keytool -import -trustcacerts -

alias BUCServiceManagementCertificateAuthority

 * -file ./trustcerts/BUCServiceManagementCertificateAuthority.crt -keystore

mytruststore.jks

 *

 * Enter the keystore password again: <With the first certificate, set your own

password. Use this password for all subsequent imports>

 * Enter the password again: <Password repetition>

 * The following is the output of the certificate to be imported:

 * Owner: EMAILADDRESS=dalbers@materna.de, CN=BUC Service Management SSL CA,

OU=BU

 * C Service Management, O=MATERNA GmbH, ST=North Rhine-Westphalia, C=DE

 * Originator: EMAILADDRESS=dalbers@materna.de, CN=BUC Service Management

Certificate Authority, OU=BUC Service Management, O=MATERNA GmbH, L=Dortmund,

ST=North Rhine-Westphalia, C=DE

 * Serial number: 9

 Mobility Data Marketplace Page 67

 * Valid from: Thu Feb 03 12:00:52 CET 2011 until: Sat Feb 02 12:00:52 CET 2013

 * Digital thumbprint of the certificate:

 * MD5: 0A:DA:6A:FB:5B:AD:F7:31:77:BD:BB:8E:4C:C2:58:08

 * SHA1:

E8:4A:92:C2:05:65:15:78:E9:B6:C1:D7:53:FC:60:48:F4:E3:25:AB

 * Signature algorithm name: SHA1withRSA

 * Version: 3

 * Enhancements:

 * #1: ObjectId: 2.5.29.19 Criticality=true

 * BasicConstraints:[

 * CA:true

 * PathLen:0

 *]

 * #2: ObjectId: 2.5.29.15

Criticality=false

 * KeyUsage [

 * Key_CertSign

 * Crl_Sign

 *]

 * #3: ObjectId: 2.5.29.14

Criticality=false

 * SubjectKeyIdentifier [

 * KeyIdentifier [0000: 32 60 8E F6

A7 CE 7B 92 CB 28 0F AB 05 05 96 9A 2`.......(......0010: A2 95 CD 9A

....]]

 * #4: ObjectId: 2.5.29.31

Criticality=false

 * CRLDistributionPoints [

 * [DistributionPoint: [URIName:

http://ca.mbucqa.de/sslca.crl]

 *

 ReasonFlags: key compromise

 *

 CA compromise]

 * #5:

ObjectId: 2.16.840.1.113730.1.1 Criticality=false

 *

 NetscapeCertType [

 *

SSL CA

 *]

 * #6:

ObjectId: 2.5.29.35 Criticality=false

 *

 AuthorityKeyIdentifier [

 *

 KeyIdentifier [0000: D9 D4 57 C9 3E 64 CC EA 37 18 37 5D EB C1 6B 89

..W.>d..7.7]..k.0010: FB 4B 89 B0 .K..]

 *]

 *

 *

 * Do you trust this certificate? [No]: Yes

 * Certificate was added to keystore.

 *

 Mobility Data Marketplace Page 68

 *

 * @author Frank Rossol

 *

 */

public class TestClientCertDatex2 {

 /**

 * @return

 */

 public D2LogicalModel testClientPullService() {

 URL wsdlUrl = null;

 QName serviceName = null;

 String subscriptionId="123456";

 // Server name under which the MDM platform is accessible

 String mdmHost="service.mac.mdm-portal.de";

 ClientPullService cpsp = null;

 try {

 wsdlUrl = new URL("https://" + mdmHost + "/BASt-MDM-

Interface/srv/"+ subscriptionId +"/clientPullService?wsdl");

 serviceName = new QName("http://datex2.eu/wsdl/clientPull/2_0",

"clientPullService");

 ClientPullService_Service cps = new

ClientPullService_Service(wsdlUrl,serviceName);

 cpsp = cps.getClientPullServicePort();

 D2LogicalModel d2LogicalModel = cpsp.getDatex2Data();

 return d2LogicalModel;

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 return null;

 }

 /**

 * @param args

 */

 public static void main(String[] args) {

 // Path to the keystore file that contains the machine code

 System.setProperty("javax.net.ssl.keyStore",

"C:/MDMClient/java/SSL/privkey/myPrivateKey.p12");

 // Password of the keystore file

 System.setProperty("javax.net.ssl.keyStorePassword","myKeyPass");

 // Type of keystore file

 System.setProperty("javax.net.ssl.keyStoreType","pkcs12");

 // Path to the truststore file that contains the MDM certificates

 System.setProperty("javax.net.ssl.trustStore","C:/MDMClient/java/SSL/myTrustS

tore.jks");

 Mobility Data Marketplace Page 69

 // Password of truststore file

 System.setProperty("javax.net.ssl.trustStorePassword","myTrustStorePass");

 // Releases all SOAP communication for debugging purposes.

 System.setProperty("com.sun.xml.ws.transport.http.client.HttpTransportPipe.du

mp","true");

 try {

 TestClientCertDatex2 tc = new TestClientCertDatex2();

 tc.testClientPullService();

 }

 catch (Exception ex) {

 ex.printStackTrace();

 }

 }

}

 Mobility Data Marketplace Page 70

9 Annex B

9.1 Processing the p12 File for Apache Server

Configuration

The Apache server configuration cannot handle any files of the type
p12. For processing, manual steps that are described in the following

chapters are required:

Export first the keys and certificates. Run the following command in
the command prompt:

openssl.exe pkcs12 -in <p12-Datei> -out <sammeldatei.pem>

Example:

openssl.exe pkcs12 -in ehp.otten-software.de.p12 -out ehp.otten-

software.de.keyandcerts.pem

Enter the certificate passwords in the openssl environment:

>Enter Import Password: <Password from fax>

>MAC verified OK

>Enter PEM pass phrase: <Self-selected passphrase for the key>

>Verifying - Enter PEM passphrase: <Repetition of the self-selected

passphrase for the key>

 Mobility Data Marketplace Page 71

Open the file <sammeldatei.pem> with a text editor:

Figure 16: File <sammeldatei.pem>

Copy the part of

--- BEGIN RSA PRIVATE KEY ----

until

---END RSA PRIVATE KEY ---

to a new file named <server.key>

 Mobility Data Marketplace Page 72

Remove the passphrase to prevent that it is requested each time the
server is restarted:

openssl rsa -in <server.key> -out <server.key.nopass >

Example:

openssl rsa -in server.key -out ehp.otten-software.de.key

> Enter passphrase for server.key: <Enter the previously self-

selected passphrase>

>writing RSA key

Enter the generated .key file in the Apache configuration under the

following attribute:

SSLCertificateKeyFile

As a next step, split the certificates into two files. To do this, first open

the file <sammeldatei.pem> with a text editor:

 Mobility Data Marketplace Page 73

Figure 17: File <sammeldatei.pem>

Copy the server certificate into a new text file <server.crt>.

Enter this file in the Apache configuration under the following attribute:

SSLCertificateFile

Copy the remaining certificates into a new text file

<ca-cert-chain.crt>.

 Mobility Data Marketplace Page 74

Enter this file in the Apache configuration under the following attribute:

SSLCertificateChainFile

Enter the MDM client certificate incl. the certificate hierarchy under the

following Apache attribute:

SSLCACertificateFile

Example of an Apache configuration:

SSLCertificateFile "C:\Programme\Apache Software

Foundation\Apache2.2\conf\ssl\ssl.crt\ehp.otten-software.de.crt"

SSLCertificateKeyFile "C:\Programme\Apache Software

Foundation\Apache2.2\conf\ssl\ssl.key\ehp.otten-software.de.key"

SSLCertificateChainFile "C:\Programme\Apache Software

Foundation\Apache2.2\conf\ssl\ssl.crt\bast_cert_chain.crt"

SSLCACertificateFile "C:\Programme\Apache Software

Foundation\Apache2.2\conf\ssl\ssl.crt\bast_trust_chain.crt"

