

June 2009 Doc ID 15773 Rev 1 1/85

UM0708
User manual

STM8Sxxx
three-phase BLDC motor control software library V1.0

Introduction
This user manual describes the brushless direct current motor (BLDC) scalar software
library, a scalar control firmware library for 3-phase permanent-magnet (PM) motors
developed for the STM8Sxxx microcontrollers.

ST STM8Sxxx 8-bit microcontrollers come with a set of peripherals that makes them
suitable for performing both PM and AC induction motor scalar control.

The present document describes the STM8Sxxx software library developed to control
trapezoidal driven PM motors in both open loop and speed control mode. These motors may
be equipped with three Hall sensors or may be sensorless. The control of an AC induction
motor equipped with tachogenerator is described in the UM0712 user manual.

The BLDC motor software library is made of several C modules, and is fitted out with STVD
workspace. It is used to quickly evaluate both the MCU and the available tools. In addition,
when used together with the STM8/128-MCKIT motor control starter kit and a PM motor, a
motor can be made to run in a very short time. The BLDC library also eliminates the need
for time-consuming development of low level drive and speed regulation algorithms by
providing ready-to-use functions that let the user concentrate on the application layer.
Moreover, it is possible to get rid of any speed sensor thanks to the sensorless algorithm for
rotor position reconstruction based on BEMF detection.

A prerequisite for using this library is basic knowledge of C programming, PM motor drives
and power inverter hardware. In-depth know-how of STM8Sxxx functions is only required for
customizing existing modules and for adding new ones for a complete application
development.

www.st.com

http://www.st.com

Contents UM0708

2/85 Doc ID 15773 Rev 1

Contents

1 Features . 8

1.1 Performance line STM8S features . 8

1.2 Access line STM8S features . 10

1.3 BLDC software library V1.0 features (CPU running at 16 MHz) 11

1.4 Development tools . 12

1.4.1 Toolchains . 12

1.4.2 Programming tools . 12

1.5 Reference documents . 13

2 Introduction to STM8S BLDC control . 14

2.1 Introduction to BLDC theory . 14

2.1.1 Rotor synchronization . 15

2.1.2 Rotor speed regulation . 15

2.1.3 Bus voltage modulation . 15

2.2 Rotor speed measurement . 16

2.3 Commutation delay and demagnetization time . 17

2.4 Detection of BEMF zero crossings . 18

2.4.1 Sampling during PWM signal on-time . 18

2.4.2 Sampling during PWM signal off-time . 19

2.4.3 Dynamic BEMF sampling method . 20

2.5 Fast demagnetization . 21

2.6 Setting the delay coefficient accordingly a specified curve 23

2.7 Startup strategy in sensorless mode . 24

2.7.1 Alignment phase . 24

2.7.2 Ramp-up phase . 25

2.8 Active brake . 26

3 Running the demonstration program . 27

3.1 User interface structure . 27

3.2 Document conventions . 28

3.3 Welcome message . 28

3.4 Help menus . 28

UM0708 Contents

Doc ID 15773 Rev 1 3/85

3.5 Main menu - target and measured rotor speed . 29

3.6 User interface sub-menus . 30

3.6.1 Sub-menu overview . 30

3.6.2 Changing rising and falling delays . 31

3.6.3 Setting the current reference and duty cycle . 31

3.6.4 Configuring the speed regulator . 31

3.6.5 Changing the demagnetization time . 32

3.6.6 Displaying the measured current, DC bus voltage and heatsink
temperature . 33

3.6.7 Additional options: fast demagnetization, toggle mode, and auto-delay 33

3.6.8 Fault messages . 35

4 Getting started with the STM8S BLDC firmware 37

4.1 Application state machine . 37

4.1.1 Description of the states . 37

4.1.2 Description of the state machine operation . 38

4.2 Library architecture . 39

4.2.1 Virtual registers . 40

4.2.2 Virtual I/Os . 40

4.2.3 Drive structure . 41

4.3 Low-level control . 42

4.3.1 Using the advanced control timer peripheral (TIM1) 42

4.3.2 Using the ADC . 44

4.3.3 Hall sensor management . 47

4.3.4 Dissipative brake . 51

4.4 High level control . 52

4.4.1 BLDC scalar control . 52

4.5 Virtual timers . 53

4.5.1 Using BLDC virtual timers . 53

4.5.2 Virtual timers related functions . 54

5 Designing an application using the BLDC software library 55

5.1 Customizing the BLDC software library parameter file 55

5.1.1 BLDC configuration file (MC_BLDC_conf.h) . 55

5.1.2 BLDC motor parameters (MC_BLDC_Motor_Param.h) 56

5.1.3 BLDC drive control parameters (MC_BLDC_Drive_Param.h) 56

5.1.4 Hall sensor parameters (MC_hall_param.h) . 63

Contents UM0708

4/85 Doc ID 15773 Rev 1

5.1.5 Control stage parameters (MC_ControlStage_param.h) 64

5.1.6 Power stage parameters (MC_PowerStage_Param.h) 66

5.1.7 Microcontroller clock definition (MC_stm8s_clk_param.h) 68

5.1.8 Microcontroller specific BLDC drive parameters
(MC_stm8s_BLDC_param.h) . 69

5.1.9 Port pins definition parameters (MC_stm8s_port_param.h) 72

5.1.10 Hall parameter microcontroller interfaces (MC_stm8s_hall_param.h) . . 72

5.2 Setting up the system when using a brake resistor 73

6 Library functions . 75

6.1 Function description conventions . 75

6.2 Modules description . 75

6.2.1 High level MC modules . 75

6.2.2 Low level MC modules . 81

Appendix A Additional information. 83

A.1 DAC configuration . 83

A.2 Motor control related CPU load. 83

A.3 STM8 motor control builder GUI . 83

Revision history . 84

UM0708 List of tables

Doc ID 15773 Rev 1 5/85

List of tables

Table 1. ROM and RAM requirements . 12
Table 2. Fast demagnetization table. 23
Table 3. Document conventions . 28
Table 4. Virtual registers. 40
Table 5. Virtual I/Os . 40
Table 6. BLDC Drive structure . 41
Table 7. TIM1 channel output configurations . 43
Table 8. Capture/compare enable bit register configuration . 43
Table 9. Hall sensor commutation table for Shinano motor . 50
Table 10. BLDC virtual timers . 53
Table 11. Debug pins description . 62
Table 12. External filters . 70
Table 13. Hall sensor filters . 73
Table 14. Workload. 83
Table 15. Document revision history . 84

List of figures UM0708

6/85 Doc ID 15773 Rev 1

List of figures

Figure 1. BLDC motor control sequence (first three steps) . 14
Figure 2. Shinano motor BEMF signal . 14
Figure 3. Current mode . 16
Figure 4. Step time measurement sensorless drive. 17
Figure 5. BEMF and phase current synchronization . 17
Figure 6. Demagnetization time . 18
Figure 7. Sampling during the on-time. 19
Figure 8. Sampling during off-time. 20
Figure 9. Dynamic BEMF sampling method implementation . 20
Figure 10. Three phases bridge and stator windings. 21
Figure 11. Demagnetization between step 1 and step 2 . 22
Figure 12. Demagnetization between step 2 and step 3 . 23
Figure 13. Rising/Falling delay computation accordingly a specified curve . 24
Figure 14. Alignment phase . 25
Figure 15. Starting sequence. 26
Figure 16. Menu structure and navigation . 27
Figure 17. BLDC drive welcome message. 28
Figure 18. Help menu . 29
Figure 19. Main menu - Target speed and measured speed. 29
Figure 20. Selecting the target speed . 29
Figure 21. User interface sub-menu . 30
Figure 22. Field selected for edition. 30
Figure 23. Changing rising and falling delays . 31
Figure 24. Control variables. 31
Figure 25. Configuring the speed regulator proportional and integral terms . 32
Figure 26. Configuring the speed regulator tuning derivative term: demagnetization time 32
Figure 27. Current measurement . 33
Figure 28. DC bus voltage and heat sink measurements . 33
Figure 29. Enabling/disabling fast demagnetization and toggle mode options 34
Figure 30. Auto-delay option . 34
Figure 31. Fault message shown in case of undervoltage. 36
Figure 32. Main motor control state machine. 38
Figure 33. Firmware architecture: high-level/low-level interface . 39
Figure 34. STM8S BLDC library organization . 39
Figure 35. Timer output control signals . 43
Figure 36. Current regulation/limitation . 44
Figure 37. Synchronization between TIM1 and ADC. 45
Figure 38. Synchronous and asynchronous ADC conversion . 45
Figure 39. Synchronous conversion . 46
Figure 40. Asynchronous conversions. 47
Figure 41. TIM2 peripheral used for Hall sensor management . 47
Figure 42. Step time measurement for sensored drive . 48
Figure 43. Shinano motor Hall sensor configuration- 120 °, clockwise direction 49
Figure 44. Shinano motor Hall sensor configuration- 120 °, counter-clockwise direction 49
Figure 45. Hall sensor configuration- 60 °, clockwise direction . 50
Figure 46. Hall sensor configuration- 60 °, counter-clockwise direction . 50
Figure 47. High level BLDC drive. 52
Figure 48. Transduction curve between the temperature sensor and the ADC converted 68

UM0708 List of figures

Doc ID 15773 Rev 1 7/85

Figure 49. Brake resistor circuit . 74

Features UM0708

8/85 Doc ID 15773 Rev 1

1 Features

1.1 Performance line STM8S features
● Core

– Advanced STM8 core with Harvard architecture and 3-stage pipeline

– fCPU up to 24 MHz setting, 0 wait state at fCPU ≤ 16 MHz.

– Extended instruction set

– Maximum 20 MIPS performance at fCPU = 24 MHz

● Memories

– Program memory: up to 128 Kbytes Flash; with 20 year data retention at 55 °C
after 10 kcycles

– Data memory: up to 2 Kbytes true data EEPROM; with 300 kcycle endurance

– RAM: up to 6 Kbytes

● Clock, reset and supply management

– 2.95 to 5.5 V operating voltage

– Flexible clock control, 4 master clock sources:

Low power crystal resonator oscillator

External clock input

Internal user-trimmable 16 MHz RC

Internal low power 128 kHz RC

– Clock security system with clock monitor

– Power management:

Low power modes (Wait, Active-halt, Halt)

Individual peripheral clock switch-off

– Permanently active, low consumption power-on and power-down reset

● Interrupt management

– Nested interrupt controller with 32 interrupts

– Up to 37 external interrupts on 6 vectors

● Timers

– 2x 16-bit general purpose timers, with 2+3 capture/compare channels (input
capture, output compare, or PWM)

– Advanced 16-bit control timer

4 capture/compare channels (input capture, output compare, PWM (edge or
center-aligned mode)), single pulse output mode

3 complementary outputs with adjustable dead-time insertion

Hardware fault protection (Break input)

Flexible synchronization

– 8-bit basic timer with 8-bit prescaler

– Auto wake-up timer

– 2 watchdog timers: Window watchdog and independent watchdog

UM0708 Features

Doc ID 15773 Rev 1 9/85

● Communications interfaces

– High-speed 1 Mbit/s active CAN 2.0B interface

– UART with clock output for synchronous operation, LIN master mode

– LIN 2.1 compliant UART, master/slave mode, automatic resynchronization

– SPI interface up to 10 Mbit/s

– I2C interface up to 400 Kbit/s

● 10-bit analog to digital converter (ADC) with up to 16 multiplexed channels

● I/Os

– Up to 68 I/Os on a 80-pin package including 18 high sink outputs

– Highly robust I/O design, immune against current injection

● Development support

– Embedded Single Wire Interface Module (SWIM) and Debug module (DM) for fast
on-chip programming

– Non intrusive debugging

Features UM0708

10/85 Doc ID 15773 Rev 1

1.2 Access line STM8S features
● Core

– 16 MHz advanced STM8 core with Harvard architecture and 3-stage pipeline

– Extended instruction set

● Memories

– Program memory: up to 32 Kbytes Flash; with 20 year data retention at 55 °C after
10 kcycles

– Data memory: up to 1 Kbytes true data EEPROM; with 300 kcycle endurance

– RAM: up to 2 Kbytes

● Clock, reset and supply management

– 3.0 to 5.5 V operating voltage

– Flexible clock control, 4 master clock sources:

Low power crystal resonator oscillator

External clock input

Internal user-trimmable 16 MHz RC

Internal low power 128 kHz RC

– Clock security system with clock monitor

– Power management:

Low power modes (Wait, Active-halt, Halt)

Individual peripheral clock switch-off

– Permanently active, low consumption power-on and power-down reset

● Interrupt management

– Nested interrupt controller with 32 interrupts

– Up to 37 external interrupts on 6 vectors

● Timers

– 2x 16-bit general purpose timers, with 2+3 capture/compare channels (input
capture, output compare, or PWM)

– Advanced 16-bit control timer

4 capture/compare channels (input capture, output compare, PWM (edge or
center-aligned mode)), single pulse output mode

3 complementary outputs with adjustable dead-time insertion

Hardware fault protection (Break input)

Flexible synchronization

– 8-bit basic timer with 8-bit prescaler

– Auto wake-up timer

– 2 watchdog timers: Window watchdog and independent watchdog

● Communications interfaces

– UART with clock output for synchronous operation, Smartcard, IrDA and LIN mode

– LIN 2.1 compliant UART, master/slave mode, automatic resynchronization

– SPI interface up to 8 Mbit/s

– I2C interface up to 400 Kbit/s

● Analog to digital converter (ADC)

UM0708 Features

Doc ID 15773 Rev 1 11/85

– 10-bit, ±1 LSB ADC with up to 10 multiplexed channels, scan mode and analog
watchdog

● I/Os

– Up to 38 I/Os on a 48-pin package including 9 high sink outputs

– Highly robust I/O design, immune against current injection

● Development support

– Embedded Single Wire Interface Module (SWIM) for fast on-chip programming

– Non intrusive debugging

1.3 BLDC software library V1.0 features (CPU running at 16 MHz)
The BLDC software library source code is available free of charge if it is used in an end-
application based on ST products.

The main library features are the following:

● Supported BLDC modes (trapezoidal 6 step method):

– Sensorless mode: back EMF voltage on the non-energized phase is monitored
and used to trigger the commutation events

– Sensor mode: Hall sensors trigger the commutation events.

– Voltage mode: PWM duty cycle is set directly via 16-bit PWM generator.

– Current mode: internal current loop and external voltage reference are used jointly
to maximize the current in motor windings. The PWM duty cycle is automatically
managed by the current feedback loop output.

– Open loop operation

– Closed loop operation: Proportional integral (PI) regulator, 1 to 255 ms sampling
time.

– DC bus voltage measurement

– DC bus brake resistor management

– Heatsink temperature measurement

– Fault handling including overcurrent (shunt resistor network required), DC bus
overvoltage/undervoltage, heatsink overtemperature.

– User interface with LCD and joystick

– Two-channel virtual DAC functionality for real-time tracing of software variables

– Firmware compatibility with STM8S motor control builder GUI (see Section A.3)

Features UM0708

12/85 Doc ID 15773 Rev 1

● Required ROM/RAM: Table 1 gives the ROM and RAM requirements. These values
include non-motor control related code implemented for demonstration purposes, such
as ADC management, or software time bases. They serve as a rough guide since the
code size produced can be smaller or larger depending on the chosen memory model.

1.4 Development tools
The BLDC software library has been fully validated using the STM8/128-MCKIT motor
control starter kit. This kit also includes a Raisonance R-Link hardware debugger which
makes it an ideal solution to start a project and evaluate with the BLDC software library.

As a consequence, it is recommended to acquire the STM8/128-MCKIT to quickly
implement and evaluate the BLDC library.

1.4.1 Toolchains

The BLDC library has been compiled using COSMIC C-toolchains, running under ST Visual
development release 4.1.2 (STVD). Free IDE and demonstration versions of third party
toolchains can be found at http://www.st.com/mcu under Support/Downloads.

A complete software package consists of:

● An integrated development environment (IDE) interface: STVD (free download
available on internet).

● A third party C-compiler: Cosmic (a free 16K size-limited evaluation versions can be
obtained upon request. This version is sufficient to compile all standalone firmware
configurations.

The choice of the C toolchain is left to the appreciation of the user. Only COSMIC
compilers are fully supported, and the dedicated workspace compatible with STVD can
be directly opened in the root of the library installation folder
(STM8_STVD_COSMIC.stw, STM8_STVD_COSMIC_BLDC.stp).

In addition, the STM8S motor control builder GUI allows to customize these libraries
according to your application (see Section A.3). This makes the first implementation of this
library significantly easier (see Section 5: Designing an application using the BLDC software
library).

1.4.2 Programming tools

In order to program an MCU with the generated .S19 file, you should also install the ST
Visual Programmer software (STVP), and use a SWIM programming interface (Raisonance
RLink). The STVP tool provides an easy way to erase, program and verify the code
programmed in the MCU. Go to http://www.st.com for information on STVP and RLink.

Table 1. ROM and RAM requirements

Configuration ROM (Kbytes) RAM (bytes)

Sensorless open loop 7.08 310

Sensorless closed loop 7.62 324

Sensor open loop 6.92 314

Sensor closed loop 7.46 328

UM0708 Features

Doc ID 15773 Rev 1 13/85

1.5 Reference documents
● Application note AN1129 – PWM management for BLDC motor drives using the

ST72141

● Reference manual RM0016 – STM8S microcontroller family

● Datasheet – STM8S103xxx Access line, 16 MHz STM8S 8-bit MCU, up to 8 Kbytes
Flash, integrated EEPROM,10-bit ADC, timers, UART, SPI, I²C

● Datasheet – STM8S105xx Access line, 16 MHz STM8S 8-bit MCU, up to 32 Kbytes
Flash, integrated EEPROM,10-bit ADC, timers, UART, SPI, I²C

● Datasheet – STM8S20xxx - Performance line, 24 MHz STM8S 8-bit MCU, up to 128
Kbytes Flash, integrated EEPROM,10-bit ADC, timers, 2 UARTs, SPI, I²C, CAN

● Datasheet – STM8S903K3 - 16 MHz STM8S 8-bit MCU, up to 8 Kbytes Flash, 1 Kbyte
RAM, 640 bytes EEPROM,10-bit ADC, 2 timers, UART, SPI, I²C

● User manual UM0379 – MB459 motor control evaluation board

● User manual UM0712 – STM8S three-phase ACIM motor software library V1.0

● PM0044 – STM8 CPU programming manual

● User manual UM0144 – ST Assembler-Linker

● User manual UM0036 – ST Visual Develop (STVD)

● User manual UM0482 – STM8/128-EVAL evaluation board

● UM0709 – STM8S-MCKIT motor control starter kit

Introduction to STM8S BLDC control UM0708

14/85 Doc ID 15773 Rev 1

2 Introduction to STM8S BLDC control

2.1 Introduction to BLDC theory
A brushless three phase motor is composed by a fixed part made of a set of three windings
called stator, and a mobile part containing an internal permanent magnet called rotor.

In BLDC motor control, the electrical cycle is subdivided into six commutation steps. For
each step, the bus voltage is applied to one of the three phase windings of the motor while
the ground is applied to a second winding. The third winding remains open. The successive
steps are executed in the same way except that the motor phase winding changes to
generate a rotating stator field (see Figure 1).

A BLDC motor has a trapezoidal BEMF (Back electromagnetic force) induced into the motor
phase windings. The BLDC drive is also called trapezoidal control because of the shape of
the phase current. The maximum performance in terms of efficiency and minimum torque
ripple is achieved if the motor is intrinsically built as BLDC. Figure 2 shows the BEMF signal
for the BLDC Shinano motor included in the STM8/128-MCKIT.

Figure 1. BLDC motor control sequence (first three steps)

Figure 2. Shinano motor BEMF signal

UM0708 Introduction to STM8S BLDC control

Doc ID 15773 Rev 1 15/85

2.1.1 Rotor synchronization

The BLDC drive is a synchronous control drive. This means that the maximum of the
efficiency is achieved if the commutation between two consecutive steps is performed only
when the rotor is in the right spatial position. This corresponds to the position where the
BEMF signal and the phase current are synchronized.

Two methods can be implemented to perform the rotor synchronization:

● Sensored drive

The first method uses position sensors, usually Hall sensors, to measure the rotor
position.

● Sensorless drive

The other method is based on the BEMF. It analyzes the zero crossing of the floating
phase BEMF signal to establish the commutation point. The match between the BEMF
signal of the floating phase with respect to the motor neutral point (or star point) is used
to generate the commutations between two consecutive steps in order to achieve the
rotor synchronization.

2.1.2 Rotor speed regulation

In addition to the synchronization with the rotor, the BLDC drive can control the rotor speed
to compensate for eventual load variations. In this case the drive it is called “closed loop
drive”.

If the BLDC synchronous drive does not perform rotor speed control, the drive is named
“open loop drive”. In this case the final rotor speed is affected by load variations.

2.1.3 Bus voltage modulation

Normally the BLDC drive is performed by applying a PWM signal to modulate the bus
voltage. This is implemented by using one of the following control method:

● Current mode

The control variable is the phase current. Current regulation is achieved by setting the
current level through a PWM signal and by using an external RC filter to set the
comparator threshold. A dedicated microcontroller input driven by the output of the
comparator is used to switch off the PWM signal used for current regulation. The turn-
on is synchronized with then PWM period (see Figure 3).

● Voltage mode

The control variable is the phase voltage. Voltage regulation is achieved by fixing the
duty cycle of the applied PWM signal. Current limitation level is set either by an external
resistor voltage divider or by a PWM signal filtered by the RC circuit.

Introduction to STM8S BLDC control UM0708

16/85 Doc ID 15773 Rev 1

Figure 3. Current mode

2.2 Rotor speed measurement
When the motor is running, the rotating magnetic field of the rotor induces a BEMF signal in
the stator windings. If the motor is intrinsically sinusoidal or trapezoidal, the induced BEMF
signals are periodic, and their frequency is proportional to the frequency of the motor turns.
The proportional coefficient is the number of motor pole pairs.

The motor speed can consequently be calculated by measuring the frequency of the BEMF
signals as shown in Equation 1:

Equation 1

The measurement of the rotor speed is performed by counting the time delay between two
consecutive zero crossings of the BEMF signal. This computation is also called “step time
measurement”. It is implemented in the BLDC firmware by means of a software counter
managed by the timer update interrupt service routine (TIM1 UPD ISR). The TIM1 UPD ISR
routine is executed during each PWM period.

The precision of the step time measurement is always proportional to the PWM period since
zero crossings are sampled only once during each PWM cycle, with the resolution of the
closest cycle.

Moto rpm() BEMFfreq 60×
PolePairs

--=

UM0708 Introduction to STM8S BLDC control

Doc ID 15773 Rev 1 17/85

Figure 4. Step time measurement sensorless drive

2.3 Commutation delay and demagnetization time
Since the BLDC drive is a synchronous drive, the main objective of the drive is to ensure
that the rotor position remains synchronized with the stator magnetic field. It is possible to
demonstrate that the maximum efficiency of the drive is obtained by keeping the magnetic
field of the stator with a 90-degree spatial advance with respect to the rotor magnetic field.
This can be achieved by keeping the zero crossing in the middle of each step (see Figure 5).

Figure 5. BEMF and phase current synchronization

The commutation delay is the delay equal to a half step time, between the zero crossing and
the step commutation.

The BEMF signal can be measured only after the current of the floating phase has reached
zero. Otherwise the free wheeling diode would clamp the floating terminal voltage or the bus
voltage to ground depending on the current direction.

As a consequence, a delay time, called demagnetization time, must be respected after the
commutation, to wait for the floating phase current to reach zero. The method used to
manage the demagnetization time is usually called “software demagnetization”. It consists

P

Introduction to STM8S BLDC control UM0708

18/85 Doc ID 15773 Rev 1

in adding a delay between the commutation instant and the end of the demagnetization
(start of next BEMF zero crossing detection).

The demagnetization delay is expressed as a percentage of the step time (see
Section 3.6.2). It is computed using the mean value of two successive step time
measurements.

Figure 6. Demagnetization time

2.4 Detection of BEMF zero crossings
Zero crossing points must be identified to achieve sensorless BLDC drive. Zero crossing
points indicate the instant when the BEMF signal becomes equal to the motor neutral
voltage.

During the on-time (T-on) of the PWM signal applied to the high side switch, the motor
neutral voltage becomes equal to the bus voltage/2 (see Section 2.4.1).

During the off-time (T-off) of the PWM signal applied to the high side switch, the motor
neutral voltage becomes 0 V (see Section 2.4.2).

The zero crossing can consequently be detected both during the on- and the off-time of the
applied PWM signal. Refer to Section 2.4.1 and Section 2.4.2 for a detailed description of
sampling methods during PWM signal on- and off-time.

2.4.1 Sampling during PWM signal on-time

It is recommended to perform the sampling during the T-on when 100% of the duty cycle
applied is required.

During T-on of the PWM signal applied to the high side switch, the motor neutral point is
equal to the bus voltage/2. If this value is above the maximum voltage allowed by the
STM8S ADC converter, it is necessary to divide the phase voltage before feeding the signal
into the ADC, and to convert the bus voltage to reconstruct the neutral point. This value is
used as a threshold for the zero crossing (see Figure 7).

Detection of the zero crossing is performed by comparing the BEMF converted scaled value
with the converted scaled value of the bus voltage (neutral point reconstruction).

Z: Zero Crossing
C: Commutation
D: End of demagnetization

Z ZC C DD Z

Step time measurement

Phase current

PWM period

Software counter

Z: Zero Crossing
C: Commutation
D: End of demagnetization

Z ZC C DD Z

Commutation
delay

Phase current

PWM period

Software counter

Demagnetization
time

Commutation
delay

Demagnetization
time

UM0708 Introduction to STM8S BLDC control

Doc ID 15773 Rev 1 19/85

Figure 7. Sampling during the on-time

2.4.2 Sampling during PWM signal off-time

During T-off of the PWM signal applied to the high side switch, the motor neutral point
becomes equal to ground so that the BEMF value can be directly converted by using the
ADC (ST patented method).

The sampling point inside the PWM period is set by using TIM1 channel 4 to trigger the ADC
conversion.

The detection of the zero crossing point is performed by comparing the converted value of
BEMF to a fixed threshold. The default value of this threshold is 0.2 V.

Figure 8 gives a description of the sampling during T-off sequence.

Introduction to STM8S BLDC control UM0708

20/85 Doc ID 15773 Rev 1

Figure 8. Sampling during off-time

2.4.3 Dynamic BEMF sampling method

If the value of the duty cycle to be applied is known in advance (for instance when no current
regulation or limitation is required), the sampling method to be applied (sampling during T-
off or T-on) can be set on the fly according to the duty cycle value. This is achieved by using
three voltage dividers driven by GPIO pins as shown in Figure 9.

This method allows both to minimize BEMF partitioning (sampling during off-time) for low
duty cycle applied (low speed), and to get 100% of duty cycle (high speed).

Figure 9. Dynamic BEMF sampling method implementation

UM0708 Introduction to STM8S BLDC control

Doc ID 15773 Rev 1 21/85

2.5 Fast demagnetization
The reverse voltage on the winding can be increased to speed up the floating phase
demagnetization. This is achieved by applying the PWM signal to the appropriate high or
low side switch transistor. If the PWM signal is not applied to the right transistor, the free
wheeling diode applies a voltage in the same direction as the current to be demagnetized,
thus slowing down the demagnetization process. Refer to application note AN1129
referenced in Section 1.5: Reference documents.

The following description assumes that the three phase bridge is similar to the one shown in
Figure 10, and that the difference between the forward voltage drop of the free wheeling
diode and the conduction drain source voltage drop of the power switches is negligible.

Figure 10. Three phases bridge and stator windings

Figure 11 shows the transition between step 1 (T1-T4 closed) and step 2 (T1-T6) closed. In
this case the current that flows out of phase B has to be demagnetized.

Phase B terminal will be clamped to +HV by the free wheeling diode D3. The neutral point is
HV/2 during T-on.

If the PWM signal is applied to the high side switch T1 during the T-off, the neutral point will
be clamped to GND by the D2 free wheeling diode. As a consequence, the phase B winding
will be demagnetized with an equivalent PWM voltage between HV and HV/2.

If the PWM is applied to the low side switch T6 during T-off, the neutral point will be clamped
to HV by the D5 free wheeling diode. The phase B windings will consequently be
demagnetized with an equivalent PWM voltage between HV/2 and GND. The reverse
voltage applied to the windings is lower than in the first case.

To speed up the demagnetization of B windings between step 1 and step 2, the PWM
control signal should consequently be applied to the high side switch T1.

Introduction to STM8S BLDC control UM0708

22/85 Doc ID 15773 Rev 1

Figure 11. Demagnetization between step 1 and step 2

Figure 12 shows the transition between step 2 (T1-T6 closed) and step 3 (T3-T6) closed. In
this case, the current that flows through phase A has to be demagnetized.

Phase A terminal will be clamped to GND by the free wheeling diode D2. The neutral point
is HV/2 during T-on.

If the PWM is applied to the high side switch T3 during T-off, the neutral point will be
clamped to GND by the D4 free wheeling diode. As a consequence, phase A winding will be
demagnetized with an equivalent PWM voltage between HV/2 and GND.

If the PWM is applied to the low side switch T6 during T-off, the neutral point will be clamped
to HV by the D5 free wheeling diode. Phase A windings will consequently be demagnetized
with an equivalent PWM voltage between HV and HV/2. The reverse voltage applied to the
windings is higher than in the first case.

The PWM control signal should consequently be applied to the low side switch T6 to speed
up the demagnetization of A windings between step 2 and step 3.

In conclusion, to accelerate the demagnetization the PWM signal should be applied to the
low side switch during the step when the demagnetizing current is flowing from the bridge to
the motor phases. Refer to Table 2 for a description of the firmware implementation.

UM0708 Introduction to STM8S BLDC control

Doc ID 15773 Rev 1 23/85

Figure 12. Demagnetization between step 2 and step 3

2.6 Setting the delay coefficient accordingly a specified curve
It is important to select the most adequate delay coefficients to run a BLDC motor in
standalone closed loop mode and achieve a given target speed.

For each target speed, these values should be recorded in a table which will be used by the
STM8S firmware. It is recommended to collect data for four speeds: the minimum and
maximum speeds specified, plus two intermediate speeds. The STM8S firmware then
makes a linear extrapolation of delay coefficients between the four specified speeds to
ensure smooth operation.

Once the data are collected, edit the MC_BLDC_drive.h file and fill in the fields dedicated
to the rising/falling delay coefficients calculation (see Section 5.1.3: BLDC drive control
parameters (MC_BLDC_Drive_Param.h)).

Once the motor runs, rising/falling delay coefficients are computed following a linear curve
between Freq_min and F_1, F_1 and F_2, F_2 and Freq_max (see Figure 13).

Table 2. Fast demagnetization table

Step
Switches
(HS+LS)

Demagnetizing current
PWM applied for fast

demagnetization

Step 1 T1+T4 Current C (from bridge to motor) Low side (T4)

Step 2 T1+T6 Current B (from motor to bridge) High side (T1)

Step 3 T3+T6 Current A (from bridge to motor) Low side (T6)

Step 4 T3+T2 Current C (from motor to bridge) High side (T3)

Step 5 T5+T2 Current B (from bridge to motor) Low side (T2)

Step 6 T5+T4 Current A (from motor to bridge) High side (T5)

Introduction to STM8S BLDC control UM0708

24/85 Doc ID 15773 Rev 1

Figure 13. Rising/Falling delay computation accordingly a specified curve

1. Freq_min, F_1, F_2, and Freq_max are electrical frequencies, with 0.1 Hz resolution. For example F_1 =
1234 means F_1 = 123.4 Hz).

2. Rising and Falling curve can be different.

2.7 Startup strategy in sensorless mode
To perform sensorless control, the BEMF signal inducted by the rotor field in the stator
windings must reach a detectable amplitude. Since the amplitude of the BEMF signal is
proportional to the rotor speed, the motor cannot be synchronized using the BEMF detection
strategy if the rotor speed is lower than a specific threshold.

It is important to underline that the detection is performed on the BEMF zero crossing and
not on the BEMF peak value. However, to achieve a good zero crossing detection precision,
the BEMF signal slope must be sufficiently steep during the zero crossing.

The BEMF level increases proportionally with the speed. As a result, the BEMF signal slope
becomes more and more steep in the proximity of the zero crossing, and the synchronous
driving (using the BEMF detection) can be applicable. It is consequently important to
implement an asynchronous startup strategy that brings the motor up to the required speed.

A classical BLDC motor startup sequence consists of 2 phases:

1. The Alignment phase

2. The ramp-up phase

2.7.1 Alignment phase

During the alignment phase, the rotor is put in a specified position before running the motor.
To do this, the power switches must be set to a specific configuration corresponding to a
predetermined position of the stator vector. This configuration is not an ordinary position but
it is the intermediate position between two steps (for example between step 6 and step 1 if
you want to start the next phase with step 1). Moreover this configuration has the
particularity to energize the three windings to generate a more important flux (see
Figure 14).

Freq_min Freq_maxF_1 F_2

Rising_Fmin
Falling_Fmin

Rising_Fmax
Falling_Fmax

Rising_F_1
Falling_F_1

Rising_F_2
Falling_F_2

UM0708 Introduction to STM8S BLDC control

Doc ID 15773 Rev 1 25/85

Usually the high side switch (T1) is controlled by a PWM signal with a duty cycle that
increases following a ramp. The current limitation sets the maximum current that flows into
the motor during the alignment phase.

Figure 14. Alignment phase

2.7.2 Ramp-up phase

The second phase is the ramp-up phase. It is performed to accelerate the motor up to the
required speed that allows the BEMF zero crossing detection. To do this, an asynchronous
sequence of steps must be applied to the motor. This sequence of steps generates a
rotating stator field that will accelerate the rotor up to the target speed. The strength of the
applied torque is usually controlled applying a fixed duty cycle or controlling the direct
current that flows into the motor.

When the rotor speed is sufficient to detect the BEMF zero crossing, the synchronization
mechanism is enabled. This mechanism it is also called “auto-commutation mode”.

Then according to the configuration of the speed loop regulation, one of the following
strategy is applied:

● In speed closed loop configuration, the speed regulation is not applied until the
measured rotor speed reaches the required threshold. The control variable remains
constant until this condition is met (see Figure 15). The startup output condition is
validated only when the minimum rotor speed is measured.

● In speed open loop configuration, the startup output condition is validated when the
drive is switched to auto-commutation mode.

If no BEMF zero crossing is detected until the end of the synchronous sequence the
Startup failed fault message is displayed on the LCD (see Section 3.6.8).

Note: Before each motor startup, a bootstrap sequence ensures that the bootstrap capacitor used
by the high side driver will be recharged. This operation is performed by closing the three

Introduction to STM8S BLDC control UM0708

26/85 Doc ID 15773 Rev 1

low side switches for the time required to charge the capacitors. In the BLDC firmware, a
duration of 5 ms is implemented.

Figure 15. Starting sequence

2.8 Active brake
The BLDC firmware features the Active brake option. This function switches on the active
brake of the motor by injecting a DC current into the motor phases.

This is performed by applying the same configuration as during the alignment phase (see
Figure 14). The high side switch (T1) is controlled by a PWM signal with a fixed duty cycle.
Current limitation is always performed to prevent the current flowing through the motor to
exceed its maximum value.

The active brake is kept for a fixed time that can be configured through the firmware.

Caution: If the active brake is switched on while the motor is running, the extra energy generated by
the motor is flowed into the bus voltage and may cause overvoltage. In this case it is
recommended to use the active brake in conjunction with the dissipative brake function (see
Section 4.3.4).

UM0708 Running the demonstration program

Doc ID 15773 Rev 1 27/85

3 Running the demonstration program

The BLDC motor control software library includes a demonstration program which allows
driving a Shinano motor in sensorless mode.

A user interface has been developed to display drive variables, and customize the
application by changing parameters, and disabling/enabling options in real time.

The interface is composed of:

● A 2x15 character LCD screen

● A joystick (see Table 3 for the list of joystick actions and conventions)

● A push button (Key button)

3.1 User interface structure
The demonstration program user interface is based on a circular navigation menu, with
submenus, item selection and back capability.

Figure 16 shows the menu structure.

To navigate the help menus and sub-menus, perform the following actions as required:

● RIGHT: navigates to the next menu or sub-menu on the right.

● LEFT: navigates to the next menu or sub-menu on the left.

Figure 16. Menu structure and navigation

Running the demonstration program UM0708

28/85 Doc ID 15773 Rev 1

3.2 Document conventions

3.3 Welcome message
After the MB459B is powered on or reset, a welcome message is displayed on the LCD
screen to inform the user about the release of the firmware code loaded on board. Refer to
Figure 17 for the BLDC drive welcome message.

Figure 17. BLDC drive welcome message

3.4 Help menus
After a few seconds, the LCD screen displays the first help menu (see Figure 18). The user
can then navigate to the next help menu by pressing the joystick RIGHT, or go back to the
previous help menu by pressing the joystick LEFT.

The KEY button can be pressed anytime to start and stop the motor. When the KEY button
is pressed, the user interface is automatically switched to the main menu, regardless of
which menu is selected.

Table 3. Document conventions

Keyword User action

UP Joystick pressed up

DOWN Joystick pressed down

LEFT Joystick pressed to the left

RIGHT Joystick pressed to the right

JOYSEL Joystick pushed

KEY Press the KEY push button

UM0708 Running the demonstration program

Doc ID 15773 Rev 1 29/85

Figure 18. Help menu

3.5 Main menu - target and measured rotor speed
To enter the main menu, press the joystick RIGHT one more time from the Help menu 3.

The main menu allows to set the target rotor speed and display the measured speed (see
Figure 19). The main menu function is the same as the other sub-menus except that the
system is automatically switched to the main menu when the motor is started or stopped.

Figure 19. Main menu - Target speed and measured speed

1. To set the target rotor speed, press JOYSEL when the Targ.rpm function is active (
displayed and blinks).

2. After pressing JOYSEL, the arrow changes in to a double arrow to indicate that the
value can be changed (see Figure 20).

3. Press the joystick UP and DOWN to increase and decrease the value.

Figure 20. Selecting the target speed

When the motor is still, enter a negative target speed to run the motor in the opposite
direction.

��

��

�
�

�

Targ.rpm ↕
Meas.rpm �

xxxxx
xxxxx

Running the demonstration program UM0708

30/85 Doc ID 15773 Rev 1

3.6 User interface sub-menus

3.6.1 Sub-menu overview

Each sub-menu of the user interface is composed of two fields, which are in turn composed
of one label, one value and the corresponding unit (see Figure 21).

The field can either be editable or read-only:

● An editable field can be selected and modified by the user when the cursor is
displayed near the field.

● A read-only field is used to display a value. The user can neither select it nor modify it.

Figure 21. User interface sub-menu

To select and modify and editable field, the following steps are required:

1. Press the joystick UP or DOWN to navigate between the editable fields of the sub-
menu. The cursor blinks when the field is active.

2. Then press JOYSEL to select the active field. The cursor changes to .

3. Change the value by pressing the joystick UP or DOWN. (see Figure 22).

4. To exit from edit mode, press JOYSEL again or change sub-menu.

Figure 22. Field selected for edition

Press the joystick LEFT or RIGHT to navigate between sub-menus.

Each sub-menu is related to a specific issue of BLDC motor control. The following sections
provide a detailed description of the sub-menus. Users with less experience in BLDC motor
control are advised to jump to Section 4: Getting started with the STM8S BLDC firmware.

�

�

UM0708 Running the demonstration program

Doc ID 15773 Rev 1 31/85

3.6.2 Changing rising and falling delays

To enter this sub-menu, press the joystick RIGHT from the main menu.

This sub-menu allows to set the falling and rising delay coefficients expressed in 1/255 of
percentage. 255 correspond to 100% of the step time. If the auto-delay function is enabled,
this sub-menu displays the current values of the delay coefficients applied.

Contrarily to the main menu in which only the Targ.rpm field is editable, both fields can be
selected and modified.

Figure 23. Changing rising and falling delays

3.6.3 Setting the current reference and duty cycle

The current reference and the duty cycle are the control variables related to the current
mode and voltage mode, respectively. Refer to Section 2.1 for a detailed description of the
control variables.

This sub-menu features two fields:

● The current reference

The current reference is expressed in Ampere using a 2.1 fixed point format. This field
is used:

– To set the current reference in open loop current mode configuration

– To display the applied current reference in closed loop current mode.

● The duty cycle

This field is used:

– To set the applied duty cycle in open loop voltage mode

– To visualize the applied duty cycle in closed loop voltage mode.

Figure 24. Control variables

Note: These fields can be modified only if the related control method (current mode for current
reference and voltage mode for duty cycle) is enabled in the firmware and the closed loop is
not set. Modifications in current reference or duty cycle will be taken into account if the
corresponding mode is not selected.

3.6.4 Configuring the speed regulator

When the firmware is configured in speed closed loop mode, the user can adjust the speed
regulator parameters while the motor is running. The speed regulator implemented can be a
proportional-integral (PI), or a proportional-integral-derivative (PID) regulator. The regulator

�
�

�
�

Running the demonstration program UM0708

32/85 Doc ID 15773 Rev 1

acts on the control variable minimizing the error between the target speed and the
measured speed.

Figure 25 shows the speed regulator sub-menu. It allows to change the proportional term
(Speed KP) and the integral term (Speed KI) of the speed controller.

Figure 25. Configuring the speed regulator proportional and integral terms

The speed regulator type (PI or PID) can be selected using the following define statement
included in the MC_BLDC_Drive_Param.h header file:

● #define SPEED_PID_TYPE PI // (unit none)

Select a PI speed regulator

● #define SPEED_PID_TYPE PID // (unit none)

Select a PID speed regulator. In this case, the derivative term is set through the Speed
KD field of the sub-menu shown in Figure 26.

Figure 26. Configuring the speed regulator tuning derivative term: demagnetization
time

Note: 1 Changing the Speed KD field has no effect if the speed controller is of PI type.

2 Changing the Speed KP, Speed KI, Speed KD has no effect if the firmware is configured in
speed open loop.

3 The controller coefficients actually applied are the ratio between the values (ranging from 0
to 255) configured by the user through the sub-menus, and the division factors defined in
the MC_BLDC_Drive_Param.h header file:

#define SPEED_KP_DIVISOR 128 // (unit none)
#define SPEED_KI_DIVISOR 512 // (unit none)
#define SPEED_KD_DIVISOR 16 // (unit none)

3.6.5 Changing the demagnetization time

To adjust the demagnetization time, use the sub-menu shown in Figure 26. It is
recommended to set a demagnetization time high enough to allow the discharge of the
current inside the floating phase. This parameter is a percentage of the step time (see
Section 2.3: Commutation delay and demagnetization time).

�
�

�
�

UM0708 Running the demonstration program

Doc ID 15773 Rev 1 33/85

3.6.6 Displaying the measured current, DC bus voltage and heatsink
temperature

The firmware measures several power stage output characteristics (see Section 4.3.2:
Using the ADC):

● The direct current that flows into the motor.

● The DC bus voltage level

● The heatsink temperature

Direct current

The sub-menu shown in Figure 27 displays the measured value of the direct current
together with the current reference.

The Curr ref field assumes different meanings according to the configuration of the
firmware:

● In closed loop current mode, it corresponds to the current reference computed by the
speed regulator.

● In open loop current mode, this is the current reference set by the user in the sub-
menu.

● In voltage mode, it is not used for the drive.

Figure 27. Current measurement

DC bus voltage level and heatsink temperature

The sub-menu shown in Figure 28 displays the measured DC bus voltage level (BUS DC),
and the heatsink temperature (Heatsink). BUS DC is the rectified input voltage express in
Volt, while Heatsink is the temperature expressed in °C and measured by the negative
coefficient temperature (NTC) resistor placed on the power stage close to the heatsink of
the power switches.

Figure 28. DC bus voltage and heat sink measurements

3.6.7 Additional options: fast demagnetization, toggle mode, and auto-delay

Additional options have been implemented in the firmware:

● Fast demagnetization

● Toggle mode

● Auto-delay

These options can be enabled or disabled in real-time through the user interface.

�
�

Running the demonstration program UM0708

34/85 Doc ID 15773 Rev 1

Fast demagnetization

The sub-menu shown in Figure 29 can be used to enable/disable the fast demagnetization
(FastDemag) option.

The following steps are required:

1. Press the joystick UP or DOWN to select the FastDemag field.

2. Then press JOYSEL to activate it

3. Push the joystick UP or DOWN to switch the option from enabled to disabled, and vice
versa.

Refer to Section 2.5 for more information concerning fast demagnetization.

Toggle mode

To enable/disable the toggle mode, use the same sub-menu and sequence as for fast
demagnetization (see Figure 29).

When the toggle mode is enabled, the absolute value of the target speed is kept but with a
complemented sign to allow the user to run the motor alternatively in clock wise and counter
clock wise direction each time the motor is restarted.

Figure 29. Enabling/disabling fast demagnetization and toggle mode options

Auto-delay

The sub-menu shown in Figure 30 can be used to enable or disable the auto-delay option.
Refer to Section 2.6 for more information regarding this option.

Figure 30. Auto-delay option

FastDemag ON/OFF
Toggle ON/OFF

�
�

�

UM0708 Running the demonstration program

Doc ID 15773 Rev 1 35/85

3.6.8 Fault messages

This section provides a description of the fault messages that can be displayed on the LCD
screen when using the BLDC firmware together with the STM8/128-MCKIT.

There are seven different fault sources when using the BLDC firmware in conjunction with
the STM8/128-MCKIT:

● Overcurrent

A low level was detected on the PWM-peripheral-dedicated pin (BKIN). This means
that either the hardware overtemperature protection or the hardware overcurrent
protection has been triggered.

● Overtemperature

An overtemperature was detected on the dedicated analog channel. The threshold
(NTC_THRESHOLD_C) and the related hysteresis (NTC_HYSTERESIS_C) are
specified in the MC_PowerStage_Param.h header file.

● Bus overvoltage

An overvoltage was detected on the dedicated analog channel. The threshold
(MAX_BUS_VOLTAGE) is specified in the MC_PowerStage_Param.h header file.
This fault message is available only if the DISSIPATIVE_BRAKE define statement is
commented (default status) in MC_PowerStage_Param.h.

If the DISSIPATIVE_BRAKE define statement is uncommented, it is assumed that a
resistor with a high power dissipation capability was connected in parallel to the bus
capacitors through a switch. In this case the over voltage does not generate a fault
event because the resistor is supposed to be able to dissipate the excess of voltage
across the bus capacitors. For more detailed information on brake resistor
management see also section Section 4.3.4: Dissipative brake.

● Bus undervoltage

The DC bus voltage is below 18 V DC. This threshold is specified in the
MC_PowerStage_Param.h header file by the MIN_BUS_VOLTAGE parameter.

● Startup failed

This fault message displays only when SENSORLESS is uncommented. It signals that
no startup output condition was detected during motor ramp-up. Refer also to
Section 2.7: Startup strategy in sensorless mode.

● Speed feedback error

An error on the speed/position feedback was detected.

● Motor running error

This fault can occur if the firmware is configured in sensor mode. It will be reported if
the user tries to start the motor when it is not still.

Figure 31 shows a typical error message.

Running the demonstration program UM0708

36/85 Doc ID 15773 Rev 1

Figure 31. Fault message shown in case of undervoltage

To indicate the fault which occurred to the user, the ‘FAULT OCCURRED’ message remains
displayed even if the source of the fault has disappeared.

The ‘FAULT CONDITION’ message is displayed only when the fault condition is present.

If several fault events occur simultaneously, they are displayed in the LDC one after the
other.

If all fault sources disappear, pressing the KEY button causes the main state machine to
switch from the fault to the idle state.

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 37/85

4 Getting started with the STM8S BLDC firmware

4.1 Application state machine
The motor control firmware library was developed around the state machine showed in
Figure 32. The state machine is implemented in MC_StateMacchine.c module. it is
composed by the following states: Reset, Idle, Start init, Start, Run, Stop, Wait, Fault and
Fault over.

4.1.1 Description of the states

Reset

The system is in Reset state once after the main reset. It is used to perform the main
initialization.

Idle*

When the state machine goes into Idle state, the motor is stopped and the system waits for
a startup to be executed.

Start init

The Start init state is executed at every restart of the motor. It is used for specific
initialization.

Start*

In this state the motor ramps.

Run*

After the end of the startup phase, the motor is in normal Run state. The user can interact
with the system, change parameters in real-time, or issue a stop request.

Stop

The motor is in Stop state each time the motor needs to be stopped.

Wait*

The system is in Wait state when the motor is stopped. It remains in this state till the
required condition for a new restart is present.

Fault*

The system goes into Fault state when an error condition occurs. It remains in this state as
long as the fault condition is present.

Fault over*

When the fault condition has disappeared, the system remains in Fault-over state to indicate
which error occurred, and waits for a user action.

Note: The states marked with an asterisk are executed continuously until an event occurs (user
action or fault condition).

Getting started with the STM8S BLDC firmware UM0708

38/85 Doc ID 15773 Rev 1

4.1.2 Description of the state machine operation

Each state corresponds to the execution of the related state machine function. The change
of state is performed according to the value returned by that state machine function.

The returned value of a state machine functions can be one of the following:

● State remain: no change in the state is required by the state machine function.

● Next state: the natural flow of the state machine is followed (for example, Idle -> Init
start -> Start -> Run). The natural flow is symbolized by green lines in Figure 32

● Optional jump: a path deviation caused by user action occurred (for example Start ->
Stop). The optional jumps are symbolized by blue lines in Figure 32.

● Error condition: a fault condition occurred (for example Startup failed,
overtemperature). The error conditions ar symbolized by red lines.

Each state machine function make calls to the related drive functions, to the user interface
interaction functions, and to the error check functions. It executes the action on the basis of
the outputs of these functions.

Figure 32. Main motor control state machine

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 39/85

4.2 Library architecture
The STM8S BLDC library has been logically divided in three different parts:

● MC_FWLIB_SCALAR - containing the high-level motor control modules.

● STM8_FWLIB - containing the STM8 standard libraries.

● STM8_MC_FRAMEWORK - containing the low-level motor control routines.

Figure 33. Firmware architecture: high-level/low-level interface

Each part is in turn divided into is divided in three sublevels like shown in Figure 34:

● Inc folder - containing the prototype definitions (.h files)

● Src folder - containing the implementation files (.c files)

● Param folder - containing the configuration files (.h file). The configuration files contains
all the required define statements allowing to customize the motor control drive. Param
folder is not present for the STM8_FWLIB.

Figure 34. STM8S BLDC library organization

STM8_MC_FRAMEWORK

MC_FWLIB_SCALAR

STM8_FWLIB

Dev ice d ep en d an t

Dev ice in d ep en d en t

High level

Low level

Vir tual registers Drive st ructureVir tual I / Os

STM8_STVD_COSMIC.stw
STM8_ACIM
STM8_BLDC

MC_FWLIB_SCALAR
Inc
Param
Src

STM8_FWLIB
Inc
Src

STM8_MC_FRAMEWORK
Inc
Param
Src

Getting started with the STM8S BLDC firmware UM0708

40/85 Doc ID 15773 Rev 1

The high-level modules contain the device-independent algorithms, while the low-level
modules contain the hardware-dependent code. It means that only the low-level modules
interact directly with the peripherals and the interrupt service routines of the microcontroller.
The high-level modules interact with the low-level modules mainly through three interfaces
(see Figure 33):

● The virtual registers

● The virtual I/Os

● The drive structure

4.2.1 Virtual registers

The virtual registers are composed of two sets of 8-bit and 16-bit registers. Refer to Table 4
for a description of the virtual registers implemented in the BLDC firmware.

4.2.2 Virtual I/Os

The virtual I/Os are low-level functions called by the high-level modules. For instance if an
high-level module want to set a GPIO high-level output as test pin, it should call the virtual
I/Os out8(VDEV_OUT8_LED_1, LED_ON) instead of driving directly the microcontroller
register. The virtual I/Os are summarized in Table 5.

Table 4. Virtual registers

Name Size Description

VDEV_REG8_HEATSINK_TEMPERATURE 8 bits Contains the measured heat sink temperature.

VDEV_REG16_HALL_COUNTS 16 bits
Contains the step time measured with the Hall
sensors. It is expressed as a number of PWM
periods.

VDEV_REG16_BEMF_COUNTS 16 bits
Contains the step time measured with the BEMF
detector. It is expressed as a number of PWM
periods.

VDEV_REG16_BLDC_DUTY_CYCLE_COUNTS 16 bits
Contains the number of timer counts of the control
variable.

VDEV_REG16_BOARD_BUS_VOLTAGE 16 bits
Contains the measured bus voltage expressed in
Volts.

VDEV_REG16_HW_ERROR_OCCURRED 16 bits
Each bit represent an error condition which
occurred.

VDEV_REG16_HW_ERROR_ACTUAL 16 bits Each bit represent an actual error condition.

Table 5. Virtual I/Os

Name Description

out8(VDEV_OUT8_DISPLAY_FLUSH,none) This call is used to invoke a refresh of the LCD screen.

out8(VDEV_OUT8_DISPLAY_PRINTCH,none)
This call is used to refresh only the cursor displayed on
the LCD (for example blinking).

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 41/85

4.2.3 Drive structure

The drive structure contains the variable and parameters related to the motor and the drive.
The BLDC drive structure is show in Table 6.

out8(VDEV_OUT8_LED_1,command)

This call is used to drive the virtual LED 1 this is mapped
to a real H0 pin of the evaluation board.
The command can take the following values:

LED_ON: Set a high state to the output turning on the
related LED.
LED_OFF: Set a low state of the output turning off the
related LED.
LED_TOGGLE: Perform a toggle on the output
switching on if it is off and vice versa.

out8(VDEV_OUT8_LED_2,command)
Same as above but related to virtual LED 2 (H1 pin of
the evaluation board).

out8(VDEV_OUT8_LED_3,command)
Same as before but related to virtual LED 3 (H2 pin of
the evaluation board).

out8(VDEV_OUT8_LED_4,command)
Same as before but related to virtual LED 4 (H3 pin of
the evaluation board).

inp8(VDEV_INP8_USER_INPUT,none)
This call is used to get the input from the user interface
(Joystick and Key button)

Table 5. Virtual I/Os (continued)

Name Description

Table 6. BLDC Drive structure

Name Type Description

bSpeed_Control_Mode Variable enum
It specifies the speed control mode. It can be of two type
open loop or closed loop.

bCurrent_Control_Mode Variable enum
It specifies the current control mode. It can be of two type
current mode or voltage mode.

hMeasured_rotor_speed Variable (16 bits) It contains the measured rotor speed express in rpm.

hTarget_rotor_speed Variable (16 bits) It contains the target rotor speed express in rpm.

hDuty_cycle Variable (16 bits)
It contains the control variable for voltage mode (Duty cycle)
express in timer counts.

hCurrent_reference Variable (16 bits)
It contains the control variable for current mode (Current
reference) express in mA.

hCurrent_measured Variable (16 bits)
It contains the measured value of DC current express in
mA.

bFalling_Delay Variable (8 bits)
It contains the falling delay coefficient express in 1/255 of
the step time.

bRising_Delay Variable (8 bits)
It contains the rising delay coefficient express in 1/255 of
the step time.

bDemag_Time Variable (8 bits)
It contains the demagnetization time express in percentage
of step time.

Getting started with the STM8S BLDC firmware UM0708

42/85 Doc ID 15773 Rev 1

4.3 Low-level control
This section describes the implementation of the low-level drive, which is interfaced with the
microcontroller (peripheral, memory,...).

4.3.1 Using the advanced control timer peripheral (TIM1)

The BLDC drive can be achieved by using STM8S 16-bit advanced control timer (TIM1)
peripheral to generate the control signals for the inverter power switches as described in
Figure 35. The OCx output is connected to the high side switch while the OCNx output is
connected to the low side switch.

For a given step, four configurations are possible for each TIM1 channel output (see
Table 7).

hMinimumOffTime Variable (16 bits) It contains the minimum off time express in ns.

hBusVoltage Variable (16 bits) It contains the measured DC bus voltage express in Volt.

bHeatsinkTemp Variable (8 bits)
It contains the measured heat sink temperature express in
°C.

bFastDemag Variable (on/off)
It is used to enable or disable the fast demagnetization
option.

bToggleMode Variable (on/off) It is used to enable or disable the toggle mode option.

bAutoDelay Variable (on/off) It is used to enable or disable the Auto-delay option.

bMotor_Pole_Pairs Constant (8 bits) It expresses the number of motor poles pairs.

hMax_Speed Constant (16 bits) It expresses the motor maximum speed in rpm.

hPWM_Frequency Constant (16 bits) It expresses the PWM signal frequency in Hz.

bSpeed_PID_sampling_time Constant (8 bits)
It expresses the PID regulator interval of action in
milliseconds.

pPID_Speed Constant pointer Pointer to the speed PID structure.

hCurrent_Limitation Constant (16 bits) It contains the value of the current limitation express in mA.

Table 6. BLDC Drive structure (continued)

Name Type Description

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 43/85

Figure 35. Timer output control signals

The ability of TIM1 to generate complementary or independent channel outputs has been
used.

Independent or complementary channel outputs

To generate independent outputs, the right channel outputs must be enabled. This is done
by setting CCxE and CCxNE bits in the Capture/compare enable registers TIM1_CCERx
registers as shown in Table 8. The PWM mode is selected by setting the OCxM[2:0] bits of
the Capture/compare mode registers TIM1_CCMRx to PWM mode 1 (active in up counting
until the counter reaches the compare register).

Note: When two outputs of a timer channel are independent, one of the two outputs must be “off”.
In this case the pin output is no more driven by the timer and the pin polarity cannot be
configured by the OCxP bits. In this case the polarity of the correspondent GPIO pin must
be set according to the polarity required by the hardware.

Table 7. TIM1 channel output configurations

Output configuration High side Low Side Type of outputs

Phase floating Off Off

Independent
PWM signal applied to

the high side
PWM Off

PWM signal applied to
the low side

Off PWM

High side active On Off
Complementary

Low side active Off On

Table 8. Capture/compare enable bit register configuration

High side Low side CCxE CCxNE

Off Off 0 0

PWM Off 1 0

Off PWM 0 1

Getting started with the STM8S BLDC firmware UM0708

44/85 Doc ID 15773 Rev 1

To generate complementary channel outputs, both outputs must be enabled. This is done by
setting both CCxE and CCxNE bits in CCERx registers. Since no PWM is required on these
signals, the OCxM[2:0] bits must be configured to ‘forced active’ or ‘forced inactive’ to
activate the high side or the low side, respectively.

Refer to STM8S reference manual (RM0008) for a detailed description of TIM1 operation.

Current regulation/limitation

Current regulation and limitation have been implemented using the “clear enable” feature of
STM8S TIM1 advanced control timer. This feature allows the asynchronous turn off of the
PWM applied if a triggering signal is present on the dedicated ETR pin (external trigger).
This pin is driven by an external comparator that generates the trigger event when the
measured DC current is higher than the threshold.

The value of comparator threshold used for current regulation or limitation can be selected
using two jumpers in the daughter board (See Figure 36).

Three different sources can be configured:

● TIM2_CH2 output for sensorless control (current reference or current limitation)

● TIM1_CH4 output for sensored control (current reference or current limitation)

● Fixed voltage divider for both control (current limitation only)

So it is possible to free the resource needed to drive the threshold if only a current limitation
is required (Voltage mode) setting the fixed voltage divider.

Figure 36. Current regulation/limitation

4.3.2 Using the ADC

The STM8S 10-bit analog/digital converter (ADC) is used to achieve sensorless motor
control by performing BEMF zero crossing detection.

The BEMF sampling method implies that ADC sampling is performed at a specific position
inside the PWM period (see Section 2.4). This is essential not only to perform BEMF signal
sampling during on- or off-time, but also to specify the stabilization time between the
sampling and the turning on and off the PWM to avoid commutation noises.

This is done by synchronizing the STM8S ADC conversion with the PWM generated by
TIM1. TIM1 channel 4 is used to trigger the start of the ADC conversion (see Figure 37).

TIM1_CH4

TIM2_CH2

Fixed voltage
divider

Current feedback

TIM1_ETR

Daughter board
jumper setting

+

-

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 45/85

Figure 37. Synchronization between TIM1 and ADC

When the conversion is complete, the related interrupt routine is serviced. This routine
compares the converted value with threshold to determine if a zero crossing occurred:

● BEMF conversion during T-off: the threshold is fixed and can be customized by the user
using define statements (see Section 5.1.3: BLDC drive control parameters
(MC_BLDC_Drive_Param.h)).

● BEMF conversion during T-on: the sampling value it is compared with the motor neutral
voltage. The motor neutral voltage it is reconstructed starting from the bus voltage and
using a different ADC conversion.

Since the STM8S microcontroller features one single ADC peripheral, it is necessary to
configure it to perform all the remaining conversions plus extra conversions that may be
requested by the application. This is done by performing two ADC conversions for each
PWM period (see Figure 38):

● The first conversion is called synchronous sampling. It is triggered by the TIM1
OCREF4 signal to set the sampling point at the desired position inside the PWM
period.

● The second conversion is called asynchronous sampling. It starts at the end of the
interrupt routine executed after the first conversion.

Figure 38. Synchronous and asynchronous ADC conversion

TI M1

ADC

Outputs

PhA BEMF

PhB BEMF

PhC BEMF

ADC Trigger
TRGO = OC4REF

Getting started with the STM8S BLDC firmware UM0708

46/85 Doc ID 15773 Rev 1

Synchronous conversion

Inside each step (between C and C on Figure 39), the synchronous conversion is used for
different purposes.

It is dedicated for BEMF zero crossing detection only between the end of demagnetization
(D) and the effective “zero crossing” instant (Z). During the remaining time intervals, the
synchronous conversion can be used for other purposes inside each step. The interval
between zero crossing (Z) and commutation (C) has been dedicated for the current
measurement.

During this interval the direct current that flows into the motor is not affected by the switching
between two steps and current sampling is performed during the on time.

The remaining interval between the commutation (C) and the end of demagnetization (D) it
is left for the user. It is called “user defined synchronous conversion”.

Figure 39. Synchronous conversion

Asynchronous conversion

There is no guarantee that asynchronous conversion is performed during the T-on or T-off,
and it is not possible to set a delay with respect to commutations. As a consequence
asynchronous conversions are used for conversions that do not require sampling to be
performed at a specific point inside the PWM period, such as bus voltage level or the
heatsink temperature measurement. (see Figure 40).

A list of asynchronous conversions has been defined in the current firmware
implementation. It includes bus voltage sampling, heatsink temperature sampling, motor
neutral point sampling, plus one user defined conversion (called user defined asynchronous
sampling).

Note: Two distinct bus voltage dividers and samplings (bus voltage and motor neutral point) have
been implemented in the current implementation to maximize the resolution of the neutral
point reconstruction while keeping the compatibility with the power board present in the kit
(UM0379). It is possible to design a common voltage divider for bus voltage and motor
neutral point based on the final application and use only one sampling.

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 47/85

Figure 40. Asynchronous conversions

1. The start of conversion depends on the conversion and execution time of the first synchronous conversion.

4.3.3 Hall sensor management

When the firmware is configured for sensor drive, the rotor position and speed control are
performed by Hall sensors. These measurements are performed using the input capture
feature of the STM8S 16-bit general purpose timer (TIM2) (see Figure 41).

Before starting the drive, the status of the three Hall sensor inputs is read, and the
appropriate step to be applied is selected according to this configuration.

The polarity (expected edge) of the input signals is set as follows: if the value of the Hall
sensor signal is high, then the expected edge corresponding to this sensor is a falling edge
otherwise it is a rising edge.

Figure 41. TIM2 peripheral used for Hall sensor management

During each further capture, the step time measurement, the change of polarity of the
expected new capture of this channel, and the selection of the appropriate steps
(redundancy resynchronization) are performed.

As for sensorless drive, the capture of the Hall sensor signal is called “Z capture”. The
speed measurement is performed using a software counter that increases each PWM
period, stores its value each time a input Z capture occurs, and computes the rotor speed
starting from the delta between these values (see Section 2.2: Rotor speed measurement
and Figure 42).

The BLDC sensored drive is based on a commutation table that indicates the related step
configuration for each combination of the Hall sensor signals represented by bits H1, H2 and
H3 (see Figure 42). The BEMF signal is related to the Hall sensors signals. To achieve a
maximum efficiency, the step configuration must be synchronized with the Hall sensor
configuration. This synchronization is performed by the firmware accordingly to the
commutation table.

TI M2
Hall H1

Hall H2

Hall H3

Getting started with the STM8S BLDC firmware UM0708

48/85 Doc ID 15773 Rev 1

Figure 42. Step time measurement for sensored drive

The Shinano motor is provided with three Hall sensors spatially distributed at 120° to each
other, with a phase shift (electrical delta angle between maximum BEMF of phase A and H1
rising edge) of -60°. The corresponding graph of quantities of interest is given in Figure 43.

Figure 43 is used as starting point to extract Table 9:

● The first column is the index of the table. It is made up of the seven configurations of
the three Hall sensor. It corresponds to the H status of Figure 43.

● The second column is shown for clarity but is not included in the final table. It
corresponds to H1, H2, and H3 configurations of the H status (see Figure 43).

● The third column is the related step coming from the relation between H status and
Step to be applied coming from Figure 43.

For example, if the configuration of the Hall sensor signals is H1 High, H2 High, and H3 Low,
the H status is 6 and the step to be applied is step 2.

Depending on the spatial distribution of the Hall sensors, some configurations may not be
allowed, such as configuration ‘000’ and ‘111’. In this case, the related step of the
commutation table will be ‘Invalid’ (see Table 9). See Section 5.1.1, and Section 5.1.4, for
information on how to customize Hall sensors.

The same procedure can be followed to compute the Hall sensor commutation table
required for counter-clockwise direction, or for any other kind of sensor distribution such as
60 ° (see Figure 43, Figure 44, Figure 45, and Figure 46).

Z: Zero Crossing
C: Commutat ion

Z ZC C Z

Step t im e m easurem ent

Phase current

PWM per iod

Software counter

H1

H2

H3

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 49/85

Figure 43. Shinano motor Hall sensor configuration- 120 °, clockwise direction

Figure 44. Shinano motor Hall sensor configuration- 120 °, counter-clockwise direction

Getting started with the STM8S BLDC firmware UM0708

50/85 Doc ID 15773 Rev 1

Figure 45. Hall sensor configuration- 60 °, clockwise direction

Figure 46. Hall sensor configuration- 60 °, counter-clockwise direction

Table 9. Hall sensor commutation table for Shinano motor

H status H1 H2 H3 Step

0 000 Not valid

1 001 5

2 010 3

3 011 4

4 100 1

5 101 0

6 110 2

7 111 Invalid

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 51/85

4.3.4 Dissipative brake

Because of its physical construction, the BLDC motor is able to transform kinetic energy into
electrical energy just like a dynamo.

Under a limited number of conditions this property of BLDC motors has to be taken into
consideration to avoid possible damage to the hardware system. For instance, a dangerous
situation could arise when:

● The six inverter switches are opened and the motor is running at a speed higher than
the nominal one. In this case, the amplitude of the line-to-line BEMF generated is
higher than the nominal bus voltage.

● The control tries to brake. The energy is transferred from the load to the board.

Unless the used power system has regenerative capabilities, in both of these situations the
inverter bulk capacitor is charged. Furthermore, depending on the rotor speed (with
reference to the first situation) or on the amount of energy transferred (with reference to the
second situation), the voltage across the bulk capacitors could increase to a destructive
level.

A strategy for somehow dissipating the generated electrical energy is thus necessary.

Different methods could be implemented to do so, but one of them in particular, the
utilization of a brake resistor, is supported by the library presented in this user manual.

Caution: If the motor is operated beyond the rated speed, it is mandatory to use a regenerative power
converter or a brake resistance to prevent bus over voltage from damaging your board.

In the firmware this strategy has been implemented using the analog to digital conversion of
the bus voltage value to determine if a voltage level beyond the threshold is present in the
bus voltage. If this condition occurs and the brake management is enabled in the firmware
the “Over voltage” fault is not more generated instead the break control pin is driven to turn
on the external brake resistor in order to dissipate the extra energy.

If the brake resistor is active it is expected that the bus voltage level will decrease so its
value monitored, always with the ADC conversion, to detect the dissipative brake action
condition to stop.

If the value falls below a threshold the dissipative brake is stopped. In order to add a
hysteresis between the switching on and off the turn off threshold is reduced compared to
the turn on threshold.

See Section 5.1.6 for details on the enabling or disabling of this feature, and Section 5.2 for
details on the hardware setup required to use that feature.

Getting started with the STM8S BLDC firmware UM0708

52/85 Doc ID 15773 Rev 1

4.4 High level control
This section explains how to implement a high level BLDC drive algorithm independently
from microcontroller resources and peripheral.

4.4.1 BLDC scalar control

The high level BLDC drive algorithm interacts with the low level control to get the value and
reliability of the rotor frequency, and to set the control variables (duty cycle and current
reference), and the delay coefficient if the Auto-delay option is enabled.

The core of the high level BLDC drive consists of a 16-bit PID speed controller. The speed
measurement block makes the interface between the low level and the high level drive.
Starting from the feedback coming from the low level drive, it provides the rotor speed and
the related reliability.

When a sensorless control is performed, the speed measurement is not immediately reliable
at startup, and the drive operates in speed open loop with control variables configured
through by the user interface. As soon as the rotor speed measurement becomes reliable,
the speed loop is closed using the PID output. Starting from that control variable the low
level generates the output signal to drive the motor to the required speed according to the
value of the duty cycle to be applied (in voltage mode) or the level of current reference (in
current mode). The synchronization between the BLDC motor stator and rotor is also
performed by the low level drive.

In addition, the high level drive computes the delay coefficients starting from the predefined
curve (see Section 2.6) and using the measured rotor speed if it has been configured.

Figure 47. High level BLDC drive

UM0708 Getting started with the STM8S BLDC firmware

Doc ID 15773 Rev 1 53/85

4.5 Virtual timers
Virtual timers are high-level hardware-independent general purpose counters. These
counters are used to manage the execution of the code performed at specified time
intervals, such as speed regulation.

The implementation of these virtual timers is based on a physical layer that uses the STM8S
resources: the virtual timers are implemented using the TIM4 peripheral. TIM4 is configured
to generate an interrupt each millisecond, and is used as time base to update each Virtual
timer.

It is possible to use the virtual timers in two modes:

● Polling mode

In this case, the end of counting has to be check using a specific function call, and the
execution of the code is subject to the value returned by this function.

● Automatic mode

At the end of counting, the specified function is automatically executed.

The virtual timers are implemented in “one-shot”. This means the counting must be
restarted each time, whatever the mode.

A set of virtual timers is implemented inside each “drive firmware”. Each virtual timer is
dedicated to specific operations, and is identified by a name, VTIMx, where x is the number
of the virtual timer. The virtual timer names can be customized through a define statement.

Example

As an example timer number 0 can be named VTIM_KEY by using the following define
statement:

#define VTIM_KEY VTIM0

4.5.1 Using BLDC virtual timers

The list of virtual timers used by the BLDC drive is given in Table 10.

Table 10. BLDC virtual timers

Name Type Description

VTIM_KEY Polling

This virtual timer is used for two purposes:

It counts the duration of the welcome message.
It counts the time interval for the key repetition function.
When the joystick is set in one position or the button is
pressed, a fixed delay time (KEY_HOLD_TIME = 300 ms) is
respected before repeating this function
(KEY_REPEAT_TIME = 100 ms). This can be used to
increase or decrease a field value by keeping the joystick
pressed UP or DOWN.

VTIM_DISPLAY_BLINK Polling
This virtual timer is used to count the cursor blinking frequency
(DISPLAY_BLINKING_TIME = 300 ms).

VTIM_DISPLAY_REFRESH Polling
This virtual timer is used to count the LCD refresh frequency
(DISPLAY_REFRESH_TIME = 300 ms).

Getting started with the STM8S BLDC firmware UM0708

54/85 Doc ID 15773 Rev 1

4.5.2 Virtual timers related functions

Refer to Section 6.2.1 for the description of the functions using the virtual timers.

VTIM_USER_INTERFACE_REFRESH Polling
This virtual timer is used to count the delay time between the
visualization of the error messages when several faults occur
simultaneously. This delay is set by 1 s by the firmware.

BLDC_CONTROL_TIMER Automatic
This virtual timer is used to call the BLDC_drive function (see
Section 4.5).

DEV_DUTY_UPDATE_TIMER Automatic This virtual timer is used to update the low level register.

MTC_ALIGN_RAMP_TIMER Polling

This virtual timer is used for three purposes:

It counts the duration of the bootstrap phase (see
Section 2.7).
It counts the interval of the alignment ramp
(MTC_ALIGN_RAMP_TIMEOUT = 4 ms). This means that
the duty cycle is incremented each 4 ms starting from 0%
up to DEFAULT_ALIGN_DUTY_CYCLE during the
alignment phase.
It counts the duration of the active brake if that function is
enabled.

MTC_ALIGN_TIMER Polling
This virtual timer is used to count the duration of the alignment
phase (see Section 2.7).

ADC_SAMPLE_TIMER Automatic
This virtual timer is used to update the firmware variables
related to the ADC sampled values. ADC sampling is
performed every 10 ms.

HALL_CAPT_TIMEOUT_TIMER Automatic
This virtual timer is used to identify the rotor stall condition
when no more signal coming from the Hall sensor. This allows
to set the zero speed.

Table 10. BLDC virtual timers (continued)

Name Type Description

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 55/85

5 Designing an application using the BLDC software
library

Setting up an operational evaluation platform with a drive system based on the STM8/128-
MCKIT and a permanent-magnet motor is quite easy. The BLDC software runs on the
STM8S microcontroller on which the STM8/128-MCKIT is based.

This section explains how to quickly configure your drive system, and customize the library
accordingly (if needed).

The following steps are required to perform these tasks:

1. Gather all the information regarding the hardware: motor parameters, power device
features, speed/position sensor parameters, current sensors transconductance.

2. Use an IDE to edit the following high level parameters files present in the folder STM8-
MC_KIT\MC_FWLIB_SCALAR\param (see Figure 34):

– MC_BLDC_conf.h (see Section 5.1.1),

– MC_BLDC_Motor_Param.h (see Section 5.1.2),

– MC_BLDC_Drive_Param.h (see Section 5.1.3);

3. If the drive is performed using the Hall sensor, edit MC_hall_param.h parameter
header files (see Section 5.1.4);

4. Edit, using an IDE, the following parameter header files, if you hardware is different
from the STM8/128-MCKIT:

– MC_ControlStage_param.h (see Section 5.1.5),

– MC_PowerStage_Param.h (see Section 5.1.6);

5. It may be necessary to edit also the low level parameters header files present in the
folder STM8-MC_KIT\STM8_MC_FRAMEWORK\param:

– MC_stm8s_clk_param.h (see Section 5.1.7),

– MC_stm8s_BLDC_param.h (see Section 5.1.8),

– MC_stm8s_port_param.h (see Section 5.1.9),

– MC_stm8s_hall_param.h (see Section 5.1.10);

6. Re-build the project and download it on the STM8Sxx microcontroller.

Note: These modifications can be performed automatically using the
STM8S_MC_Firmware_Library builder (see Section A.3).

5.1 Customizing the BLDC software library parameter file

5.1.1 BLDC configuration file (MC_BLDC_conf.h)

The purpose of this file is to declare the compiler conditional compilation keys that are used
throughout the entire library compilation process to select which speed/position sensor is
actually used.

If this header file is not edited appropriately (no choice or undefined choice), you receive an
error message when building the project. Note that you do not receive an error message if
the configuration described in this header file does not match the hardware that is actually in
use, or in case of wrong wiring.

Designing an application using the BLDC software library UM0708

56/85 Doc ID 15773 Rev 1

The following define statement are used to choose Hall sensors or sensorless drive,
depending on your application requirements:

● #define HALL

Uncomment this define statement when three Hall sensors (60° or 120° distribution)
are used to detect rotor position and speed.

Also fill MC_hall_prm.h and MC_stm8s_hall_param.h (as explained in
Section 5.1.4 and Section 5.1.10)

● #define SENSORLESS

Uncomment this define statement when the BEMF detector is used to detect rotor
position and speed.

5.1.2 BLDC motor parameters (MC_BLDC_Motor_Param.h)

The MC_BLDC_Motor_Param.h header file contains the parameters related to the motor:

● #define MOTOR_POLE_PAIRS

Defines the number of motor pole pairs.

● #define MAX_SPEED_RPM

Defines the maximum rotor speed expressed in rpm.

5.1.3 BLDC drive control parameters (MC_BLDC_Drive_Param.h)

The MC_BLDC_Drive_Param.h header file contains the parameters related to:

● The general drive configuration and parameters

● The BEMF detector configuration and parameters

● The current regulation parameters

● Speed PID controller type, sampling time and initial values

● The optional features initial values and parameters

● The linear variation of delay coefficients according to the mechanical speed

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 57/85

General drive configuration and parameters

● #define SPEED_CONTROL_MODE CLOSED_LOOP

Uncomment this define statement to enable the speed closed loop operation.

● #define SPEED_CONTROL_MODE OPEN_LOOP

Uncomment this define statement to enable the speed open loop operation.

● #define CURRENT_CONTROL_MODE VOLTAGE_MODE

Uncomment this define statement to select the Voltage mode drive (see Section 2.1 for
details).

● #define CURRENT_CONTROL_MODE CURRENT_MODE

Uncomment this define statement to select the Current mode.

● #define TARGET_ROTOR_SPEED

Defines the mechanical rotor speed set point (expressed in rpm) at startup in closed
loop mode.

● #define PWM_FREQUENCY

Defines the switching frequency (expressed in Hz) of the applied PWM signal for all
configurations.

● #define DUTY_CYCLE

Defines the duty cycle percentage of the applied PWM signals in open loop mode.

● #define FALLING_DELAY and #define RISING_DELAY

Defines the values of falling and rising delay coefficients. These values are expressed
in 1/256 of the step time. For example the value should be 128 (50% of 256) to set the
delay coefficient to 50% of the step time.

Note: The MC_BLDC_Drive_Param.h contains two sections to set these parameters: one for the
sensorless configuration and one for the Hall sensor configuration. It is recommended to
edit the proper section to avoid undesired behaviors.

● #define DEMAG_TIME

Defines the duration of the demagnetization time. It is expressed as a percentage of
the step time.

● #define MIN_SPEED_01HZ

Defines the minimum speed of the measured rotor speed (sensorless configuration) at
which the closed loop is validated and the loop closed using the speed controller. This
parameter is used only for closed loop operations. It is expressed in tenth of Hz of the
electrical frequency.

● #define ADC_SAMPLE_TIMEOUT

Defines the frequency of the update of additional ADC conversions (Bus voltage,
heatsink temperature) express in milliseconds (see Section 4.3.2).

Designing an application using the BLDC software library UM0708

58/85 Doc ID 15773 Rev 1

BEMF detector configuration and parameters

● #define BEMF_SAMPLING_METHOD

This define statement is used to configure the BEMF sampling method. There are three
possibilities:

– BEMF_SAMPLING_TOFF: the BEMF detector is configured to perform the
sampling only during the off time of the PWM signal applied (see Section 2.4);

– BEMF_SAMPLING_TON: the BEMF detector is configured to perform the
sampling only during the on time of the PWM signal applied (see Section 2.4);

– BEMF_SAMPLING_MIXED: the BEMF detector is configured to perform the
dynamic selection of the sampling method based on the value of the duty cycle to
be applied. This selection is allowed only if the firmware is configured in Voltage
mode.

● #define SAMPLING_POINT_DURING_TOFF

This define statement is used when the BEMF sampling is performed during PWM off
time to define the sampling point. This parameter sets the advance of the BEMF
sampling point before the turn-on of the PWM signal. It is expressed in nanoseconds.

Note: A minimum time of 1.5 ms is required to perform the BEMF sampling using the STM8Sx
ADC peripheral.

● #define SAMPLING_POINT_DURING_TON

This define statement is used when the BEMF sampling is performed during PWM on
time to define the sampling point. This parameter sets the delay between the turn on of
the PWM signal and the BEMF sampling point. It is expressed in nanoseconds.

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 59/85

Note: 1 This delay is used as time filter for the turn-on noise commutation and must be set
accordingly to the hardware. It is possible to set a minimum PWM T-on time by configuring
properly the ETR filter when the current limitation or regulation is set (see Section 5.1.8).

2 The MC_BLDC_Drive_Param.h contains two sections to set these parameters: one for the
Voltage mode configuration and one for the Current mode configuration. It is recommended
to edit the proper section to avoid undesired behaviors.

● #define BEMF_RISING_THRESHOLD_V and
#define BEMF_FALLING_THRESHOLD_V

Defines the voltage thresholds used by the BEMF detector for the sampling-during-of-
time method. The first statement is used for the rising edge detection, while the second
is used for the falling edge detection.

● #define BEMF_SAMPLE_COUNT

Defines the numerical filter used by the BEMF detector. This means that ADC
conversions must cross N-times (N being BEMF_SAMPLE_COUNT) the threshold before
validating the zero crossing event.

● #define DUTY_CYCLE_TH_TON

Defines the threshold of the duty cycle percentage used by the BEMF detector to
choose dynamically the sampling method. This parameter is used only if
BEMF_SAMPLING_MIXED method is selected.

If the instantaneous value of duty cycle if above this threshold, the BEMF sampling
during on-time is applied. Otherwise the sampling during off-time is applied;

● #define MINIMUM_OFF_TIME

Defines the value of the minimum off time (in nanosecond) required for the BEMF
sampling during the off-time. This parameter is related to the hardware and motor. It
depends on:

– The stabilization time between the turn-off of the switch till the end of commutation
noise.

– The duration of ADC sampling (minimum 1.5 µs).

This parameter also defines the maximum applicable duty cycle (Maxduty) to allow the
BEMF sampling during off time (see Equation 2):

Equation 2 Maximum applicable duty cycle for off time BEMF sampling

Maxduty 100 1 MINIMUMOFFTIME
PWM_FREQUENCY(Hz)

109
---×⎝ ⎠

⎛ ⎞–⎝ ⎠
⎛ ⎞×=

Designing an application using the BLDC software library UM0708

60/85 Doc ID 15773 Rev 1

Note: If the BEMF_SAMPLING_MIXED is selected as BEMF method, then the
DUTY_CYCLE_TH_TON must be lower than the maximum applicable duty cycle defined by
this parameter.

● #define ALIGN_DUTY_CYCLE

Defines the value of the duty cycle percentage applied during the alignment phase.

● #define RAMP_DUTY_CYCLE

Defines the value of the duty cycle percentage applied during ramp up.

● #define ALIGN_DURATION

Defines the duration (in millisecond) of the alignment phase.

● #define ALIGN_SLOPE

Defines the slope of the duty cycle (in milliseconds) during the alignment phase. The
duty cycle applied during the alignment phase starts from zero up to
ALIGN_DUTY_CYCLE, incremented each ALIGN_SLOPE milliseconds. The increment
is automatically computed from the other parameters.

● #define FORCED_STARTUP_STEPS

Defines the number of forced steps which are always performed during ramp-up before
starting the BEMF sampling.

Current regulation parameters

● #define CURRENT_REFERENCE

Defines the initial value of the current reference expressed in mA. This parameter is
used only in Current mode.

● #define CURRENT_LIMITATION

Defines the value of the current limitation expressed in mA. This parameter is used
both in Voltage and Current mode to set the maximum allowed DC current. This
parameter is not used during the alignment and ramp-up phases.

● #define STARTUP_CURRENT_LIMITATION

Defines the value of the current limitation (expressed in mA) used during the alignment
and ramp-up phases. This parameter is used both in Voltage and Current mode to set
the maximum allowed DC current.

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 61/85

Type of speed PID-controller, sampling time and initial values

● #define SPEED_PID_TYPE

This define statement is used to configure the type of speed controller. There are two
possible setting:

– PI - sets the proportional integral regulator

– PID - sets the proportional integral derivative regulator.

● #define SPEED_PID_SAMPLING_TIME

This define statement is used to select the speed regulation loop frequency. It is
expressed in milliseconds.

● #define SPEED_KP

This define statement is used to configure the proportional constant of the speed loop
regulation (16-bit value, adjustable from 0 to 32767).

● #define SPEED_KI

This define statement is used to configure the integral constant of the speed loop
regulation (16-bit value, adjustable from 0 to 32767).

● #define SPEED_KD

This define statement is used to configure the derivative constant of the speed loop
regulation (16-bit value, adjustable from 0 to 32767). This parameter is used only if a
PID controller has been selected.

● #define SPEED_KP_DIVISOR

This define statement is used to configure the scaling factor of the proportional gain for
the speed regulation loop (16-bit power-of-two value).

● #define SPEED_KI_DIVISOR

This define statement is used to configure the scaling factor of the integral gain for the
speed regulation loop (16-bit power-of-two value).

● #define SPEED_KD_DIVISOR

This define statement is used to configure the scaling factor of the differential gain for
the speed regulation loop (16-bit power-of-two value). This parameter is used only if
PID controller has been selected.

● #define SPEED_OUT_MAX

This define statement sets the positive saturation value of the speed controller output.
This value should be equal to the maximum value applicable for the control variable.

For Voltage mode, SPEED_OUT_MAX should be equal to the maximum value of timer
counter. It is related to the PWM frequency and CPU frequency (see Equation 3):

Equation 3 Maximum timer counter in Voltage mode

For Current mode, SPEED_OUT_MAX should be set to the CURRENT_LIMITATION
value.

MaxtimerFreq CPUFreq Hz()
PWMFreq Hz)()
--=

Designing an application using the BLDC software library UM0708

62/85 Doc ID 15773 Rev 1

Optional features initial values and parameters

● #define FAST_DEMAG

Defines the starting configuration of the fast demagnetization option (see Section 2.5).

1: Fast demagnetization enabled

0: Fast demagnetization disabled

● #define TOGGLE_MODE

Defines the starting configuration of the toggle mode option (see Section 3.6.7).

1: Toggle mode enabled

0: Toggle mode disabled

● #define ACTIVE_BRAKE

Uncomment this define statement to enable the active brake function (see Section 2.8).

● #define BRAKE_DURATION

If the active brake function is enabled, use this define statement to specify the duration
(in milliseconds) of the active brake action

● #define BRAKE_DUTY

If the active brake function is enabled, use this define statement to specify the
percentage of the applied duty cycle.

● #define AUTO_DELAY

Defines the starting configuration for the Auto-delay option. If this function is enabled,
the value of the delay coefficients are computed starting from a predefined curve (see
Section 2.6).

1: Auto-delay feature enabled

0: Auto-delay feature disabled

● #define RISE_FALL_DELAY_LINK

Comment this define statement to change the rising and falling coefficients
independently.

When left uncommented, the two coefficients are linked and have the same value if
changed by the user. This setting is not used if the Auto-delay function is enabled.

● #define DEBUG_PINS

Uncomment this define statement to enable the debug pins. When this feature is
enabled, the test pins are configured to generate in real time dedicated function of the
drive, such as C, D, Z, Auto switch, BEMF detection during on-time events. This is very
useful when debugging the application. Table 11 shows the signal output on the test
pins when the debug option is enabled. See also Section 5.1.8 for details on how to
configure the test pins.

Table 11. Debug pins description

Name Default pin Description

Z Event H0 This signal toggles each time a zero crossing event is detected.

C/D Events H1
In sensorless configuration, this signal shows a rising edge for
each commutation and a falling edge at the end of
demagnetization.

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 63/85

Linear variation of delay coefficients according to mechanical speed

If the Auto-delay function is enabled then the rising and falling coefficient will be computed
starting from a predefined curve. This curve is set by the user using the following defines.
These settings will not be used if the “Auto delay” function is disabled (see Section 2.6).

● #define Freq_Min

Defines the minimum frequency of the rotor speed curve. It is expressed in rpm.

● #define Rising_Fmin and #define Falling_Fmin

Defines the delay coefficients applied for rotor speeds lower than or equal to the
minimum frequency Freq_Min. All the delay coefficients are expressed as 1/256 of the
step time.

● #define F_1

Defines the motor speed for the first intermediate value of the curve (see Figure 13). It
is expressed in rpm.

● #define Rising_F_1 and #define Falling_F_1

Defines the delay coefficients for the first intermediate value of the curve.

● #define F_2

Defines the motor speed for the second intermediate value of the curve. It is expressed
in rpm.

● #define Rising_F_2 and #define Falling_F_2

Defines the delay coefficients for the second intermediate value of the curve.

● #define Freq_Max

Defines the maximum frequency of the rotor speed curve. It is expressed in rpm.

● #define Rising_Fmax and #define Falling_Fmax

Defines the delay coefficients applied for rotor speeds higher than or equal to the
maximum frequency Freq_Max.

5.1.4 Hall sensor parameters (MC_hall_param.h)

The MC_hall_param.h header file contains the parameters related to the Hall sensors.
These settings are used only in sensored configuration:

● #define HALL_SENSORS_PLACEMENT

Defines the Hall sensor distribution. It can be set to DEGREES_60 or to DEGREES_120.
The user can select the required sensor distribution and arrange the hall sensors
connection in order to reproduce the configuration described in the corresponding
figure (Figure 43, Figure 44, Figure 45, and Figure 46). In this case it is possible to use
the default values of HALL_SENSOR_STEPS_CW_xxx and
HALL_SENSOR_STEPS_CCW_xxx. Otherwise the user should edit the

Auto switch H2
This signal becomes high when the drive switches to Auto-
commutation mode (see Section 2.7).

BEMF sampling
during on time

H3
This signal becomes high when the BEMF sampling mode is
performed during the on time. Otherwise it is performed during
the off-time.

Table 11. Debug pins description (continued)

Name Default pin Description

Designing an application using the BLDC software library UM0708

64/85 Doc ID 15773 Rev 1

HALL_SENSOR_STEPS_CW_xxx and HALL_SENSOR_STEPS_CCW_xxx commutation
tables according to its own configuration.

● #define HALL_SENSOR_STEPS_CW_xxx and HALL_SENSOR_STEPS_CCW_xxx

These define statements set the Hall sensor commutation tables required for the drive.
Refer to Section 4.3.3 for details on the commutation table.

● #define HALL_MAX_SPEED_01HZ

Defines the rotor mechanical frequency above which speed feedback is not realistic.
This function can be used to discriminate glitches.

● #define HALL_MIN_SPEED_01HZ

Defines the rotor mechanical frequency below which speed feedback is not realistic.
This function can be used to discriminate too low frequencies.

● #define HALL_CAPT_TIMEOUT_MS

Defines the duration of the Hall sensor signal timeout in order to detect the zero speed.

● #define HALL_MAX_ERROR_NUMBER

Defines the number of speed error measurement occurrences before signaling the
error on speed feedback.

5.1.5 Control stage parameters (MC_ControlStage_param.h)

The MC_ControlStage_param.h header file contains the parameters related to the
control stage. These settings must be modified if the firmware is used with a customized
hardware different from the one of the kit, or to disable some library features in order to
reduce code size and CPU occupation:

● #define DISPLAY

Uncomment this define statement to select the control board LCD as display.

● #define DAC_FUNCTIONALITY

The DAC functionality is a debug option which can be used to analyze the behaviors of
up to two variables inside the code. The variables to be analyzed should not vary more
than 20 kHz. See Section A.1 for details on how to customize it.

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 65/85

Note: The DAC functionality cannot be set together with the dissipative brake option.

● #define TIM1_CHxN_REMAP

Uncomment this define statement to remap the TIM1_CH1N, TIM1_CH2N,
TIM1_CH3_N and TIM1_ETR pins. This remapping is necessary if the STM8S features
less than 80 pins.

● #define BKIN

Comment this define statement to disable the emergency input feature of the advanced
control timer.

● #define JOYSTICK

Comment this define statement to disable the joystick input.

● #define SET_TARGET_SPEED_BY_POTENTIOMETER

Uncomment this define statement to use the potentiometer RV1 available on the
MB631. This potentiometer allows to set the target rotor speed. In this case the rotor
speed cannot be modified using the joystick.

● #define AUTO_START_UP

Uncomment this define statement to disable the KEY button management. The motor
is start to run automatically few second after the reset.

● #define ENABLE_OPTION_BYTE_PROGRAMMING

Comment this define statement to disable in-application option-byte re-programming.

Note: Disabling this option allows to decrease the firmware size. In this case the option bytes can
be programmed off-line by using the STVP tool.

Designing an application using the BLDC software library UM0708

66/85 Doc ID 15773 Rev 1

5.1.6 Power stage parameters (MC_PowerStage_Param.h)

The MC_PowerStage_param.h header file contains the parameters related to the power
stage. These settings must be modified if the firmware is used with a customized hardware
different from the one of the kit, or to enable/disable unused library features.

● #define RS_M

Defines the value of the power board shunt resistor (in mΩ) used for the current
management.

● #define AOP

Defines the value of the voltage gains of the power board amplification stage used for
the current management.

● #define DISSIPATIVE_BRAKE

Uncomment this define statement to enable the dissipative brake function (see
Section 4.3.4). The next define statement must be edited when this feature is enabled.

● #define DISSIPATIVE_BRAKE_POL

This define statement is used to set the polarity of the dissipative brake signal. It should
be set according to the dissipative brake hardware implementation. This setting is not
used if the dissipative brake function is disabled. There are two available options:

– DISSIPATIVE_BRAKE_ACTIVE_HIGH: the braking action is triggered by a high
logic level of the dissipative brake control signal.

– DISSIPATIVE_BRAKE_ACTIVE_LOW: the braking action is triggered by a low
logic level of the dissipative brake control signal.

● #define BUS_VOLTAGE_MEASUREMENT

This define statement is used to configure the firmware to perform DC bus voltage
measurement. If the hardware does not support bus voltage measurement, or if you
want to disable this feature, leave this define statement uncommented. The bus voltage
will not be measured by the firmware, and will be assumed constant and equal to the
value specified in the next define statement.

● #define BUS_VOLTAGE_VALUE

Defines the constant value of the bus voltage if the bus voltage measurement feature
has been disabled. This setting is not used if the bus voltage measurement function is
enabled.

● #define BUS_ADC_CONV_RATIO

Defines the DC bus voltage partitioning ratio performed by the hardware to allow the
bus voltage measurement. This setting is not used if the bus voltage measurement
function is disabled.

● #define EXPECTED_MCU_VOLTAGE

Defines the reference value of ADC conversions. ADC conversions are usually
performed using a voltage reference that is identical to the microcontroller power
supply voltage (5 V). To increase the resolution, it is possible to design a customized
hardware that uses a lower ADC reference value. In this case
EXPECTED_MCU_VOLTAGE contains the required value used for the computation of
the converted values. The precision of the measurement can also be improved by
setting EXPECTED_MCU_VOLTAGE to the appropriate value. For example if the
microcontroller measured power supply voltage is 5.1 V, it is possible to set

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 67/85

EXPECTED_MCU_VOLTAGE to 5.1 to maximize the precision in the computation of the
converted values.

● #define MAX_BUS_VOLTAGE and #define MIN_BUS_VOLTAGE

These two values (expressed in Volt) set the bus DC voltage range. If the bus voltage
exceeds OVERVOLTAGE_THRESHOLD_V or is below UNDERVOLTAGE_THRESHOLD_V,
the corresponding error event is generated and is kept as long as the bus voltage
remains outside the allowed range.

In addition, if DISSIPATIVE_BRAKE is defined, an overvoltage event will be handled
by activating the brake resistor, and the corresponding error message will not be
issued.

● #define NTC_THRESHOLD_C and #define NTC_HYSTERIS_C

These two values (expressed in °C) are used to set the power device operating
temperature range (measured at heatsink). If the measured temperature exceeds
NTC_THRESHOLD_C, the corresponding error event is generated and is kept as long as
the measured temperature remains above NTC_THRESHOLD_C -
NTC_HYSTERESIS_C.

● #define TEMP_SENS_ALPHA, #define TEMP_SENS_BETA, and #define
TEMP_T0

These three values are used to characterize the transduction curve between
temperature sensor value (expressed in °C) and the ADC converted value. This curve
is assumed to be linear (see Figure 48).

● #define BKIN_POLARITY

When the firmware runs on a customized hardware, these define statements allow to
configure the polarity of the Break input. The polarity can be set to ACTIVE_HIGH or
ACTIVE_LOW.

● #define PWM_U_LOW_SIDE_POLARITY, #define
PWM_U_HIGH_SIDE_POLARITY, #define PWM_V_LOW_SIDE_POLARITY,
#define PWM_V_HIGH_SIDE_POLARITY, #define
PWM_W_LOW_SIDE_POLARITY and #define PWM_W_HIGH_SIDE_POLARITY

When the firmware runs on a customized hardware, these define statements allow to
configure the polarity of the PWM output. The polarity can be set to ACTIVE_HIGH or
ACTIVE_LOW.

● #define PWM_U_HIGH_SIDE_IDLE_STATE, #define
PWM_U_LOW_SIDE_IDLE_STATE, #define PWM_V_HIGH_SIDE_IDLE_STATE,
#define PWM_V_LOW_SIDE_IDLE_STATE, #define
PWM_W_HIGH_SIDE_IDLE_STATE, #define PWM_W_LOW_SIDE_IDLE_STATE

When the firmware runs on a customized hardware, these define statements allow to
configure the status of the PWM output during the idle state. The status can be set to
ACTIVE or INACTIVE.

● #define HEAT_SINK_TEMPERATURE_MEASUREMENT

This define statement is used to configure the firmware to perform heat sink
temperature measurement. If the hardware does not support this feature, or if you want
to disable it, leave this define statement uncommented. The heat sink temperature will

Designing an application using the BLDC software library UM0708

68/85 Doc ID 15773 Rev 1

not be measured by the firmware, and will be assumed constant and equal to the value
specified in the next define statement.

● #define HEAT_SINK_TEMPERATURE_VALUE

Defines the constant value of the heat sink temperature if the heat sink temperature
measurement feature has been disabled. This setting is not used if the heat sink
temperature measurement function is enabled.

● #define PWM_LOWSIDE_OUTPUT_ENABLE

Comment this define statement to enable the control of the low side switches using
standard GPIOs instead of TIM1 outputs. In this case the GPIOs that are used must be
defined by changing the following define statements in MC_stm8s_BLDC_param.h
file:

#define LS_A_PORT

#define LS_A_PIN

#define LS_B_PORT

#define LS_B_PIN

#define LS_C_PORT

#define LS_C_PIN

Figure 48. Transduction curve between the temperature sensor and the ADC
converted

This curve represents Equation 4, where α is defined using TEMP_SENS_ALPHA, β is
defined using TEMP_SENS_BETA and T0 is defined using TEMP_T0.

Equation 4 Transduction equation

5.1.7 Microcontroller clock definition (MC_stm8s_clk_param.h)

The MC_stm8s_clk_param.h header file contains the define statements dedicated to the
microcontroller and its peripherals:

● #define STM8_FREQ_MHZ

This define statement is used to set the CPU frequency (express in MHz). It can be set
to 16 or 24. When it is set to 24 MHz, the firmware is configured to use the external

ADC α t×() β α T0×–+=

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 69/85

oscillator with 1 wait state Flash latency. Otherwise the internal oscillator is used with 0
wait state.

5.1.8 Microcontroller specific BLDC drive parameters
(MC_stm8s_BLDC_param.h)

The MC_stm8s_BLDC_param.h header file contains the define statements related to the
BLDC drive.

● #define RAMP_VALUExx

Defines the values of the ramp-up step durations. These values are pre-computed.
They are expressed in PWM periods. They can be customized through the
STM8S_MC_Firmware_Library builder (see Section A.3).

● #define PHASE_A_BEMF_ADC_CHAN, #define PHASE_B_BEMF_ADC_CHAN,
and #define PHASE_C_BEMF_ADC_CHAN

When the firmware runs on a customized hardware, these define statements allow to
configure the channels used to perform the BEMF samplings.

Note: Make sure that these pins are not used for other purposes inside the firmware, and are not
configured as outputs.

● #define ADC_CURRENT_CHANNEL, #define ADC_USER_SYNC_CHANNEL,
#define ADC_BUS_CHANNEL, #define ADC_NEUTRAL_POINT_CHANNEL,
#define ADC_TEMP_CHANNEL, and #define ADC_USER_ASYNC_CHANNEL

When the firmware runs on a customized hardware, these define statements allow to
configure the channels used to perform the other ADC samplings (see Section 4.3.2).

Note: Make sure that these pins are not used for other purposes inside the firmware, and are not
configured as outputs.

● #define CURRENT_FILTER

This define statement is used to configure the filter applied to the ETR signal. The ETR
signal is used to manage the current limitation/regulation in the BLDC drive (see
Section 4.3.1). This filter is used to prevent unwanted shutdown of the PWM signal
which may be caused by glitches. Using a larger filter may lead to a less precise current
control. It can also be used to define the minimum T-on of the PWM signal required for
BEMF sampling (see Section 2.4).

Table 12 gives the values of the allowed filters.

Designing an application using the BLDC software library UM0708

70/85 Doc ID 15773 Rev 1

● #define MCI_CONTROL_PINS, #define MCI_CONTROL_DDR, and #define
MCI_CONTROL_DR

When the firmware runs on a customized hardware, these define statements can be
used to configure the control pins which enable the dividers used for the BEMF
sampling during T-on (see Section 2.4).

The first define statement specifies the pins used for OR-ing the BITx which are used
(for example BIT4|BIT5|BIT6).

The second define statement specifies the port used, by replacing the x character in
the GPIOI->DDR string by the appropriate letter. If the port used is port I, set GPIOI-
>DDR.

The third define statement also specifies the port used. The value should be identical to
the second define statement, and the x character in the GPIOI->ODR string should be
replaced by the same letter of above.

Table 12. External filters

#define CURRENT_FILTER value
Filter for

F_CPU= 16 MHz

(in μs)

Filter for
F_CPU = 24 Mhz

(in μs)

CURRENT_FILTER_NOFILTER 0.0625 0.0417

CURRENT_FILTER_F_N2 0.1250 0.0833

CURRENT_FILTER_F_N4 0.2500 0.1667

CURRENT_FILTER_F_N8 0.5000 0.3333

CURRENT_FILTER_F2_N6 0.7500 0.5000

CURRENT_FILTER_F2_N8 1.0000 0.6667

CURRENT_FILTER_F4_N6 1.5000 1.0000

CURRENT_FILTER_F4_N8 2.0000 1.3333

CURRENT_FILTER_F8_N6 3.0000 2.0000

CURRENT_FILTER_F8_N8 4.0000 2.6667

CURRENT_FILTER_F16_N5 5.0000 3.3333

CURRENT_FILTER_F16_N6 6.0000 4.0000

CURRENT_FILTER_F16_N8 8.0000 5.3333

CURRENT_FILTER_F32_N5 10.0000 6.6667

CURRENT_FILTER_F32_N6 12.0000 8.0000

CURRENT_FILTER_F32_N8 16.0000 10.67

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 71/85

Note: Three different pins must be used on the same port.

● #define Z_DEBUG_PORT and #define Z_DEBUG_PIN

These define statement can be used to set the mapping between the Z event debug
signal (see Section 5.1.3) and the test pins (see Section 5.1.9).

The first define statement specifies the test pin which is used, by replacing the x
character in the DEBUGx_PORT string by the proper number. For instance if the debug
pin used is pin 0, set DEBUG0_PORT.

The second define statement also specifies the test pin by replacing the x character of
the DEBUGx_PIN string by the same number as in DEBUGx_PIN. This setting is not
used if the debug feature is not enabled.

● #define C_D_DEBUG_PORT and #define C_D_DEBUG_PIN

These define statement can be used to set the mapping between the C-D event debug
signal (see Section 5.1.3) and the test pins (see Section 5.1.9).

The first define statement specifies the test pin by replacing the x character in the
DEBUGx_PORT string by the proper number. For instance, if the debug pin used is pin
0, set DEBUG0_PORT.

The second define statement also specifies the test pin used by replacing the x
character in the DEBUGx_PIN string by the same number as in the first define
statement. This setting is not used if the debug feature is disabled.

● #define AUTO_SWITCH_PORT and #define AUTO_SWITCH_PIN

These define statement can be used to set the mapping between the debug Auto-
switch signal (see Section 5.1.3) and the debug pins (see Section 5.1.9).

The first define statement specifies the test pin by replacing the x character in the
DEBUGx_PORT string by the proper number. For instance if the test pin used is pin 0,
set DEBUG0_PORT.

The second define statement also specifies the debug pin by replacing the x character
of the DEBUGx_PIN string with the same number as in the first define statement. This
setting is not used if the debug feature is disabled.

● #define PWM_ON_SW_PORT and #define PWM_ON_SW_PIN

These define statement define the mapping between the BEMF-sampling-during-on-
time debug signal (see Section 5.1.3) and the debug pins (see Section 5.1.9).

The first define statement specifies the debug pin by replacing the x character in the
DEBUGx_PORT string by the proper number. For instance if the debug pin used is the
pin 0 set DEBUG0_PORT.

The second define also specifies the debug pin used by replacing the x character of the
DEBUGx_PIN string by the same number of the first define statement. This setting is
not used if the debug feature is disabled.

Designing an application using the BLDC software library UM0708

72/85 Doc ID 15773 Rev 1

5.1.9 Port pins definition parameters (MC_stm8s_port_param.h)

The MC_stm8s_port_param.h header file contains the define statements related to the
definitions of the pins and ports used for the motor control related signals:

● #define DEBUGx_PORT and #define DEBUGx_PIN

When the firmware runs on a customized hardware, these define statements can be
used to configure the ports and pins used for the debug signals.

The first define statement specifies the port: replace the x character in the GPIOx string
by the proper letter. For instance, set GPIOH if port H is used.

The second define statement specifies the pin: replace the x character in the
GPIO_PIN_x string with the proper number. For instance, set GPIO_PIN_1 if pin 1 is
used.

● #define KEY_UP_PORT, #define KEY_UP_BIT, #define KEY_DOWN_PORT,
#define KEY_DOWN_BIT, #define KEY_LEFT_PORT,
#define KEY_LEFT_BIT, #define KEY_RIGHT_PORT,
#define KEY_RIGHT_BIT, #define KEY_UP_PORT,
#define KEY_UP_BIT, #define USER_BUTTON_PORT,
#define USER_BUTTON_BIT

When the firmware runs on a customized hardware, these define statements can be
used to configure the ports and pins used for the user interface input signals (joystick
and button).

Define the port by setting the xxx_PORT define statements to GPIOx, where x
specifies the port. For instance, set GPIOH if port H is used.

Define the pin by setting the xxx_BIT define statements to GPIO_PIN_x, where x with
specifies the pin. For instance, set GPIO_PIN_1 if pin 1 is used.

● #define DISSIPATIVE_BRAKE_PORT, #define DISSIPATIVE_BRAKE_BIT

When the firmware runs on a customized hardware, these define statements can be
used to configure the port and pin used for the dissipative brake signal (see
Section 4.3.4).

In the first define statement, set the port by replacing the x character in the GPIOx
string with the proper letter. For instance set GPIOH if port H is used.

In the second define statement, specify the pin by replacing the x character in the
GPIO_PIN_x string with the proper number. For instance set GPIO_PIN_1 if pin 1 is
used.

5.1.10 Hall parameter microcontroller interfaces (MC_stm8s_hall_param.h)

The MC_stm8s_hall_param.h header file contains the define statement related to the
definitions of the pins and ports used to configure the Hall sensors. The pins are related to
TIM2 inputs.

● #define TIM2_CH3_REMAP

This define statement allows to remap TIM2 channel 3.

● #define HALL_FILTER

This define statement configures the filter applied to the Input capture filter used for the
Hall sensor signal. This filter is used to avoid false commutations caused by noise
glitches. Table 13 gives the values of the allowed filters.

UM0708 Designing an application using the BLDC software library

Doc ID 15773 Rev 1 73/85

5.2 Setting up the system when using a brake resistor
To make the MB459 board suitable for the management of a brake resistor, additional
components must be soldered on its wrapping area.

Figure 49 gives an example of circuit used for brake hardware implementation.

Table 13. Hall sensor filters

#define HALL_FILTER value
Filter for

F_CPU= 16 MHz

(in μs)

Filter for
F_CPU = 24 Mhz

(in μs)

HALL_FILTER_NOFILTER 0.0625 0.0417

HALL_FILTER_F_N2 0.1250 0.0833

HALL_FILTER_F_N4 0.2500 0.1667

HALL_FILTER_F_N8 0.5000 0.3333

HALL_FILTER_F2_N6 0.7500 0.5000

HALL_FILTER_F2_N8 1.0000 0.6667

HALL_FILTER_F4_N6 1.5000 1.0000

HALL_FILTER_F4_N8 2.0000 1.3333

HALL_FILTER_F8_N6 3.0000 2.0000

HALL_FILTER_F8_N8 4.0000 2.6667

HALL_FILTER_F16_N5 5.0000 3.3333

HALL_FILTER_F16_N6 6.0000 4.0000

HALL_FILTER_F16_N8 8.0000 5.3333

HALL_FILTER_F32_N5 10.0000 6.6667

HALL_FILTER_F32_N6 12.0000 8.0000

HALL_FILTER_F32_N8 16.0000 10.67

Designing an application using the BLDC software library UM0708

74/85 Doc ID 15773 Rev 1

Figure 49. Brake resistor circuit

1. The resistor should be carefully dimensioned in terms of both resistance and sustainable power.

2. In the MB459B the pin 23 of the MC connector (J7) that carries the signal for brake implementation is positioned close to
the wrapping area.

R1
1k R2

6.8k

R3
100 ohm 20W

R4

1k R5
1k

R6

220

R7
100k

Q1
BC557B

Q2

BC547B

Z1
STGF7NC60HD

+15V +15V Vbus

BRAKE_GPI O_PORT,
BRAKE_GPI O_PI N

UM0708 Library functions

Doc ID 15773 Rev 1 75/85

6 Library functions

6.1 Function description conventions
Functions are described in the format given below:

Some of these sections may not be included if not applicable (for example, no parameters or
obvious use).

6.2 Modules description
The firmware is composed of a set of modules that are logically subdivided in three groups:

● High level motor control (MC) modules

● Low level MC modules

● Standard library

The last two groups contain functions related to the microcontroller while the first group
contains hardware independent functions as described in Section 4.2.

6.2.1 High level MC modules

The high level MC modules are stored under the folder MC_FWLIB_SCALAR. They are
composed if the following modules:

● MC_BLDC_Drive: this module contains all the functions related to the electrical drive
and engine control (see Section : MC_BLDC_Drive.c module).

● MC_BLDC_Motor: this module is the “holder” of the drive structure. It contains all the
function used to interact (retrieve or set parameters) directly with the BLDC drive
structure, or to provide the reference of that structure for other modules.

● MC_BLDC_User_Interface: this module is the “holder” of the user interface specific
to the BLDC drive. It contains a function used to provide the reference of this structure
for other modules. The interaction with this structure is managed also by
MC_User_Interface.c.

● MC_User_Interface: this module is used to manage the user interface. The user
interface has been implemented using a joystick, a button, and an LCD display (see

Synopsis Lists the prototype declarations.

Description Describes the functions specifically with a brief explanation of how they
are executed.

Input Gives the format and units.

Returns Gives the value returned by the function, including when an input value
is out of range or an error code is returned.

Note Indicates the limits of the function or specific requirements that must be
taken into account before implementation.

Library functions UM0708

76/85 Doc ID 15773 Rev 1

Section 3.6). It interacts with MC_keys and MC_display modules. The user interface
is adapted to the drive by the MC_BLDC_User_Interface module.

● MC_dev: this module makes the interface between high level and low level modules.
For instance it initializes the low level modules by calling each specific initialization
functions (dev_clkInit, dev_portInit, etc...).

● MC_display: this module manages the display of the information on the 15 rows x
2 lines LCD. This module is developed over the low level virtual I/Os functions (see
Section 4.2).

● MC_Keys: this module manages the button and joystick (4 directions plus a center
button). This module is developed over the low level “virtual I/Os” functions (see
Section 4.2).

● MC_pid_regulators: this module manages all the application regulators. They can
be either PID or PI regulators. It is used to instantiate a regulator structure and to
execute it.

● MC_StateMachine: this module manages the main application state machine through
the StateMachineExec function that is used to execute the state machine.

● MC_vtimer: this module is used to manage the virtual timers as explained in
Section 4.5.2.

● Main: this is the main application firmware module. It is used to execute the state
machine in a infinite loop.

Note: The exhaustive description of the high level MC modules is out of the scope of this user
manual. Only the functions of the MC_BLDC_Drive and MC_vtimer modules will be
described in details.

MC_BLDC_Drive.c module

The high level BLDC drive module manages the calls to the state machine functions, and
interacts with the low level modules through the virtual registers and the drive structure.

The MC_BLDC_Drive.c functions are listed in the MC_drive.h header file:

● driveInit

● driveIdle

● driveStartUpInit

● driveStartUp

● driveRun

● driveStop

● driveWait

● driveFault
● BLDC_Drive
● GetSpeed_01HZ
● BLDCDelayCoefComputation

UM0708 Library functions

Doc ID 15773 Rev 1 77/85

driveInit

driveIdle

driveStartUpInit

Synopsis void driveInit(pvdev_device_t pdevice);

Description This function initializes local pointers to the virtual registers, drive
structure, and the other variables of interest required for the other
module functions.

The pointer to the drive structure is retrieved using the
Get_BLDC_Struct function of MC_BLDC_Motor module.

The function initializes the low level drive module by calling the
dev_driveInit(pdevice) function.

The other variables of interest are:
– Hertz to RPM conversion factor based on motor poles pairs,
– local pointer of speed PID structure,

– sampling time duration.

It also starts the BLDC_CONTROL_TIMER virtual timer which calls the
BLDC_Drive function every sampling time period (see Section 4.5).

Input pdevice: pointer to a structure containing virtual registers

Returns None.

Note It is called by the relative state machine function.

Synopsis void driveIdle(void);

Description The purpose of this function is to call the low level function relative to
this state and to update the local state variable DriveState.

Input None.

Returns None.

Note It is called by the relative state machine function.

Synopsis MC_FuncRetVal_t driveStartUpInit(void);

Description The purpose of this function is to reset the local drive variables, to
update the local state variable DriveState, and to call the low level
function relative to this state.

The local drive variable are:
– Validation of the measured speed flag (bValidatedMeasuredSpeed),

– Speed PID integral sum,
– Drivestatus: this variable is used to report a fault condition coming from the

BLDC_Drive function.

Library functions UM0708

78/85 Doc ID 15773 Rev 1

driveStartUp

driveRun

Input None.

Returns The returned value is the one coming from the low level function:
– FUNCTION_RUNNING: no state change is required by this function,

– FUNCTION_ENDED: the state change is requested by this function,
– FUNCTION_ERROR: an error condition occurs and must be reported.

Note It is called by the relative state machine function.

Synopsis MC_FuncRetVal_t driveStartUp(void);

Description The purpose of this function is to call the low level function relative to
this state and to update the local state variable DriveState.

Input None.

Returns The returned value is the one coming from the low level function:
– FUNCTION_RUNNING: no state change is required by this function,
– FUNCTION_ENDED: the state change is requested by this function,

– FUNCTION_ERROR: an error condition occurs and must be reported.

Note It is called by the relative state machine function.

Synopsis MC_FuncRetVal_t driveRun(void);

Description The purpose of this function is to call the low level function relative to
this state and to update the local state variable DriveState.

The DriveStatus is checked to detect fault condition coming from the
low level functions. If this condition is detected the return value is
FUNCTION_ERROR otherwise the returned value is the one coming
from the low level function.

Input None.

Returns – FUNCTION_RUNNING: no state change is required by this function,

– FUNCTION_ENDED: the state change is requested by this function,

– FUNCTION_ERROR: an error condition occurs and must be reported.

Note It is called by the relative state machine function.

UM0708 Library functions

Doc ID 15773 Rev 1 79/85

driveStop

driveWait

driveFault

Synopsis MC_FuncRetVal_t driveStartUp(void);

Description The purpose of this function is to call the low level function relative to
this state and to update the local state variable DriveState.

Input None.

Returns The returned value is the one coming from the low level function:
– FUNCTION_RUNNING: no state change is required by this function,
– FUNCTION_ENDED: the state change is requested by this function,

– FUNCTION_ERROR: an error condition occurs and must be reported.

Note It is called by the relative state machine function.

Synopsis MC_FuncRetVal_t driveStartUp(void);

Description The purpose of this function is to call the low level function relative to
this state and to update the local state variable DriveState.

Input None.

Returns The returned value is the one coming from the low level function:
– FUNCTION_RUNNING: no state change is required by this function,

– FUNCTION_ENDED: the state change is requested by this function,
– FUNCTION_ERROR: an error condition occurs and must be reported.

Note It is called by the relative state machine function.

Synopsis MC_FuncRetVal_t driveStartUp(void);

Description The purpose of this function is to call the low level function relative to
this state and to update the local state variable DriveState.

Input None.

Returns FUNCTION_ENDED is always returned indicating that a state change
is requested.

Note It is called by the relative state machine function.

Library functions UM0708

80/85 Doc ID 15773 Rev 1

BLDC_Drive

GetSpeed_01HZ

BLDCDelayCoefComputation

Synopsis void BLDC_Drive(void);

Description The purpose of this function is to:
– Update the speed measurement calling the GetSpeed_01HZ function,
– Validate it,

– Convert it into rpm,

– Manage the rotor direction based on the sign of the target speed,
– Call the delay computation BLDCDelayCoefComputation function if

required,
– Execute the speed regulation if required,

– Refresh the control variables

– Update the DAC values if required.

Input None.

Returns None.

Note This function is automatically called by the BLDC_CONTROL_TIMER
virtual timer at each sampling time period (see Section 4.5).

Synopsis u16 GetSpeed_01HZ(void);

Description The purpose of this function is to compute the measured rotor speed
using the values coming from the low level function. These values are
stored inside the virtual register of the related sensor (see Section 4.3
and Table 4).

Input None.

Returns Measured electrical rotor speed value express in tenth of Hz.

Note The value returned by this function is not already validated.

Synopsis void BLDCDelayCoefComputation(u16 Motor_Frequency);

Description The purpose of this function is to compute the delay coefficient
accordingly the predefined curve (see Section 2.6).

Input Mechanical rotor speed express in rpm.

Returns None.

Note The values computed are stored in the drive structure.

UM0708 Library functions

Doc ID 15773 Rev 1 81/85

MC_vtimer modules

vtimer_SetTimer

vtimer_TimerElapsed

vtimer_KillTimer

Synopsis void vtimer_SetTimer(VtimerName_t name,timer_res_t msec,void*
pCallback);

Description The purpose of this function is to initialize the virtual timer.

Input name is the reference to the virtual timer to be initialized. It can be a
mnemonic or a relative number.

msec is the duration of the virtual timer expressed in milliseconds.

pCallBack is the pointer to the function to be executed at the end of
the counting. It must be set to ‘0’ when the Virtual timer operates in
polling mode.

Returns None.

Synopsis u8 vtimer_TimerElapsed(VtimerName_t name);

Description The purpose of this function is to check the “end of counting” of a
virtual timer operating in polling mode.

Input Name is the reference to the virtual timer to be checked. It can be a
mnemonic or a relative number.

Returns ‘0’ if the time interval has not elapsed

‘1’ at the end of the counting of the requested virtual timer.

Synopsis void vtimer_KillTimer(VtimerName_t name);

Description This function stops a Virtual timer operating in automatic mode.
An “automatic” Virtual timer can be used to call a function at regular
time intervals. To do this inside the called function, the Virtual timer
must be reinitialized. The vtimer_KillTimer function is used to exit from
this loop.

Input Name is the reference to the virtual timer to be stopped. It can be a
mnemonic or a relative number.

Returns None.

Library functions UM0708

82/85 Doc ID 15773 Rev 1

6.2.2 Low level MC modules

The low level MC modules are stored in the folder STM8_MC_FRAMEWORK. They are
composed of the following modules:

● MC_stm8s_BLDC_drive: this module contains all the functions related to the low level
electrical drive and engine control.

● MC_stm8s_BLDC_it: this module contains all the interrupt service routines defined
inside the interrupt vector, available for the application, and not related to motor control
drive. The interrupt service routines used by the motor control firmware are defined
inside each module.

● MC_stm8s_clk: this module sets the microcontroller clock.

● MC_stm8s_DAC: this module manages the digital to analog function implemented for
debugging purposes. It uses TIM3 as described in Section A.1.

● MC_stm8s_display: this module contains the low level functions that interact with the
LCD display. This module has been developed on top of MC_stm8s_lcd module. The
exported function is dev_displayInit used to configure the hardware for the LCD display,
dev_displayClear that clears the LCD screen, dev_displayFlush that outputs on the
LCD the data already formatted by MC_display module, and dev_displayPrintch
used to refresh the cursor.

● MC_stm8s_keys: this module is used only to initialize the hardware (dev_keysInit)
since the low level functions that manage the keys are implemented inside the
vdev_ios.

● MC_stm8s_port: this module is used only to initialize the GPIOs of the microcontroller
that are used by the application.

● MC_stm8s_vtimer: this module is used to manage the low level virtual timers. It is
used only for the initialization of the hardware (dev_vtimerInit), and contains the TIM4
interrupt service routine.

● vdev_ios: this module is used to manage the low level input/output functionality (see
Table 5: Virtual I/Os).

UM0708 Additional information

Doc ID 15773 Rev 1 83/85

Appendix A Additional information

A.1 DAC configuration
The DAC functionality is implemented by using two (PD2 and PD0 pins) TIM3 output
compare channels, and by modulating the duty cycle of the generated 62.5 kHz PWM
signal. To properly filter the generated signals without introducing important delays on the
waveforms, it is recommended to use a appropriate first order low-pass filter (e.g. with a 1
kΩ resistor and a 33 nF capacitor). The two DAC outputs are used to monitor the measured
rotor speed and the control variable (controller output).

The DAC outputs can also be used to monitor two user-defined variables such as user_var1
or user_var2 (see example below). The MC_BLDC_Drive.c file must be modified as
follows:

#ifdef DAC_FUNCTIONALITY
dev_DACUpdateValues(DAC_CH_1,(u8)(user_var1));
dev_DACUpdateValues(DAC_CH_2,(u8)(user_var2));

#endif

Assuming that the DAC implemented has an 8-bit resolution, a suitable scaling factor should
be applied to user defined variables.

Note: The DAC cannot be used together with the dissipative brake function.

See Section 5.1.5 for details on how to enable the DAC.

A.2 Motor control related CPU load
Table 14 gives the percentage of the microcontroller workload required by the BLDC
firmware for the specified configuration.

A.3 STM8 motor control builder GUI
The STM8 motor control builder GUI is not part of the motor control kit. Please check
http://www.st.com/mcu/inchtml-pages-stm8.html for availability.

Table 14. Workload

Configuration Workload

Sensorless closed loop voltage mode 32%

Sensorless closed loop current mode 27%

Sensor closed loop current mode 16.6%

Revision history UM0708

84/85 Doc ID 15773 Rev 1

Revision history

Table 15. Document revision history

Date Revision Changes

25-Jun-2009 1 Initial release.

UM0708

Doc ID 15773 Rev 1 85/85

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.

All ST products are sold pursuant to ST’s terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2009 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

	1 Features
	1.1 Performance line STM8S features
	1.2 Access line STM8S features
	1.3 BLDC software library V1.0 features (CPU running at 16 MHz)
	Table 1. ROM and RAM requirements

	1.4 Development tools
	1.4.1 Toolchains
	1.4.2 Programming tools

	1.5 Reference documents

	2 Introduction to STM8S BLDC control
	2.1 Introduction to BLDC theory
	Figure 1. BLDC motor control sequence (first three steps)
	Figure 2. Shinano motor BEMF signal
	2.1.1 Rotor synchronization
	2.1.2 Rotor speed regulation
	2.1.3 Bus voltage modulation
	Figure 3. Current mode

	2.2 Rotor speed measurement
	Figure 4. Step time measurement sensorless drive

	2.3 Commutation delay and demagnetization time
	Figure 5. BEMF and phase current synchronization
	Figure 6. Demagnetization time

	2.4 Detection of BEMF zero crossings
	2.4.1 Sampling during PWM signal on-time
	Figure 7. Sampling during the on-time

	2.4.2 Sampling during PWM signal off-time
	Figure 8. Sampling during off-time

	2.4.3 Dynamic BEMF sampling method
	Figure 9. Dynamic BEMF sampling method implementation

	2.5 Fast demagnetization
	Figure 10. Three phases bridge and stator windings
	Figure 11. Demagnetization between step 1 and step 2
	Figure 12. Demagnetization between step 2 and step 3
	Table 2. Fast demagnetization table

	2.6 Setting the delay coefficient accordingly a specified curve
	Figure 13. Rising/Falling delay computation accordingly a specified curve

	2.7 Startup strategy in sensorless mode
	2.7.1 Alignment phase
	Figure 14. Alignment phase

	2.7.2 Ramp-up phase
	Figure 15. Starting sequence

	2.8 Active brake

	3 Running the demonstration program
	3.1 User interface structure
	Figure 16. Menu structure and navigation

	3.2 Document conventions
	Table 3. Document conventions

	3.3 Welcome message
	Figure 17. BLDC drive welcome message

	3.4 Help menus
	Figure 18. Help menu

	3.5 Main menu - target and measured rotor speed
	Figure 19. Main menu - Target speed and measured speed
	Figure 20. Selecting the target speed

	3.6 User interface sub-menus
	3.6.1 Sub-menu overview
	Figure 21. User interface sub-menu
	Figure 22. Field selected for edition

	3.6.2 Changing rising and falling delays
	Figure 23. Changing rising and falling delays

	3.6.3 Setting the current reference and duty cycle
	Figure 24. Control variables

	3.6.4 Configuring the speed regulator
	Figure 25. Configuring the speed regulator proportional and integral terms
	Figure 26. Configuring the speed regulator tuning derivative term: demagnetization time

	3.6.5 Changing the demagnetization time
	3.6.6 Displaying the measured current, DC bus voltage and heatsink temperature
	Figure 27. Current measurement
	Figure 28. DC bus voltage and heat sink measurements

	3.6.7 Additional options: fast demagnetization, toggle mode, and auto-delay
	Figure 29. Enabling/disabling fast demagnetization and toggle mode options
	Figure 30. Auto-delay option

	3.6.8 Fault messages
	Figure 31. Fault message shown in case of undervoltage

	4 Getting started with the STM8S BLDC firmware
	4.1 Application state machine
	4.1.1 Description of the states
	4.1.2 Description of the state machine operation
	Figure 32. Main motor control state machine

	4.2 Library architecture
	Figure 33. Firmware architecture: high-level/low-level interface
	Figure 34. STM8S BLDC library organization
	4.2.1 Virtual registers
	Table 4. Virtual registers

	4.2.2 Virtual I/Os
	Table 5. Virtual I/Os

	4.2.3 Drive structure
	Table 6. BLDC Drive structure (continued)

	4.3 Low-level control
	4.3.1 Using the advanced control timer peripheral (TIM1)
	Figure 35. Timer output control signals
	Table 7. TIM1 channel output configurations
	Table 8. Capture/compare enable bit register configuration
	Figure 36. Current regulation/limitation

	4.3.2 Using the ADC
	Figure 37. Synchronization between TIM1 and ADC
	Figure 38. Synchronous and asynchronous ADC conversion
	Figure 39. Synchronous conversion
	Figure 40. Asynchronous conversions

	4.3.3 Hall sensor management
	Figure 41. TIM2 peripheral used for Hall sensor management
	Figure 42. Step time measurement for sensored drive
	Figure 43. Shinano motor Hall sensor configuration- 120 °, clockwise direction
	Figure 44. Shinano motor Hall sensor configuration- 120 °, counter-clockwise direction
	Figure 45. Hall sensor configuration- 60 °, clockwise direction
	Figure 46. Hall sensor configuration- 60 °, counter-clockwise direction
	Table 9. Hall sensor commutation table for Shinano motor

	4.3.4 Dissipative brake

	4.4 High level control
	4.4.1 BLDC scalar control
	Figure 47. High level BLDC drive

	4.5 Virtual timers
	4.5.1 Using BLDC virtual timers
	Table 10. BLDC virtual timers (continued)

	4.5.2 Virtual timers related functions

	5 Designing an application using the BLDC software library
	5.1 Customizing the BLDC software library parameter file
	5.1.1 BLDC configuration file (MC_BLDC_conf.h)
	5.1.2 BLDC motor parameters (MC_BLDC_Motor_Param.h)
	5.1.3 BLDC drive control parameters (MC_BLDC_Drive_Param.h)
	Table 11. Debug pins description (continued)

	5.1.4 Hall sensor parameters (MC_hall_param.h)
	5.1.5 Control stage parameters (MC_ControlStage_param.h)
	5.1.6 Power stage parameters (MC_PowerStage_Param.h)
	Figure 48. Transduction curve between the temperature sensor and the ADC converted

	5.1.7 Microcontroller clock definition (MC_stm8s_clk_param.h)
	5.1.8 Microcontroller specific BLDC drive parameters (MC_stm8s_BLDC_param.h)
	Table 12. External filters

	5.1.9 Port pins definition parameters (MC_stm8s_port_param.h)
	5.1.10 Hall parameter microcontroller interfaces (MC_stm8s_hall_param.h)
	Table 13. Hall sensor filters

	5.2 Setting up the system when using a brake resistor
	Figure 49. Brake resistor circuit

	6 Library functions
	6.1 Function description conventions
	6.2 Modules description
	6.2.1 High level MC modules
	6.2.2 Low level MC modules

	Appendix A Additional information
	A.1 DAC configuration
	A.2 Motor control related CPU load
	Table 14. Workload

	A.3 STM8 motor control builder GUI

	Revision history
	Table 15. Document revision history

