
UNIVERSITY OF ALASKA ANCHORAGE

College Engineering

Computer Science and Computer Engineering

Home Alarm System With Raspberry Pi

by

Gabriel A. Pérez Cortés

Supervisor:

Prof. Kirk Scott, PhD

A CAPSTONE PROJECT SUBMITTED TO THE DEPARTMENT ENGINEERING
, AT UNIVERSITY OF ALASKA ANCHORAGE, FOR THE

DEGREE OF COMPUTER SCIENCE.

Anchorage AK, March 2015.

© Copyright 2015
by

Gabriel A. Perez Cortes

gaperezcortes@alaska.edu

Version 0.0

Abstract

The target of this capstone is to present a new new take on a home alarm system. The
development focuses on making an open source implementation with the use of a Raspberry Pi. My
work focuses on bringing a flexible and low-cost approach to a home alarm system which can also be
controlled from a remote android device via Internet without the user needing to do much on his/her
side. The requirements, hardware, and tools needed are explained. The presented system needs to
endure indefinite use and be reliable.

The scope of the project relies on following the agile methodology and management to ensure
iterations are made every so often. In a chronological manner, all the important pieces of the project
are done until enough of the system is up and running to make iterations until a full system is
complete. A lot of the system has been tested for performance, issues, so as the project and testing has
progressed there have been several problems encountered, things learned the easy and the hard way.
With all the testing made there have been some conclusions pointing towards the production of a new
version that takes different angles with some aspects.

v

Contents

1 Introduction 1
1.1 Introduction . 1
1.2 Overview . 2
1.3 Hardware . 3
1.4 Tools . 11

2 System Integration and Modeling 7
2.1 System Overview . 7
2.2 Hardware Components . 8
2.3 Software Design Overview . 9
2.4 Agile Methodology . 11

3 Design and Testing / User Interface 12
3.1 User Interface . 12
3.2 Design . 14
3.3 Testing both User Interface and System. 15
3.4 Agile Management . 16

4 Setup And User Manual 17
4.1 Introduction . 17
4.2 Installing the OS 18
4.3 Post OS Install . 18
4.4 Setting Up The Alarm System . 20
4.5 Using The Alarm System . 21

5 Concluding The Project 22
5.1 Summary And Reasons . 22

 5.2 Application To Field . 23
 5.3 Alternate Paths, Future Development, And Final Thoughts . 23

vi
i

List of Figures

1.1 Simple System Diagram. 2
1.2 Raspberry Pi Model B. 3
1.3 Arduino Mini. 4
1.4 ATtiny85. 4
1.5 433 MHz receiver and transmitter. 4

2.1 Hardware Setup. 8
2.2 RPi Hardware Connections. 8
2.3 RF Transmitter Connections. 9
2.4 Estimated Timeline of the Project. 9
2.5 Qt Creator's UI Designer. 11

3.1 A Traditional Home Alarm System. 13
3.2 The First Iteration of the GUI. 14
3.3 Flowchart of System's Logic. 14
3.4 Uptime Testing for CPU load and errors. 15
3.5 A Valgrind Positive Memory Leak Example. 16

4.1 Raspi-config. 18
4.2 Getting to WiFi Configuration . 19
4.3 Armed . 21
4.4 Disarmed . 21

xiii

ACKNOWLEDGEMENTS

Thanks for the help, Dr. Scott. You have taught me plenty of programming and pointed me in
the right direction to continue honing my skills as a computer scientist.

CHAPTER 1. INTRODUCTION

Chapter 1

Introduction

1.1 Introduction

This project will be a home alarm system. It will be made using a Raspberry Pi, an RF receiver, some

RF transmitters. The primary purpose will be to alert the homeowners with some kind of sound and

maybe push notifications to registered Android devices. It will be entirely open-source and will be

released under the GNU GPL.

Home break-ins are a common crime in today's world. When a person breaks into a house, having an

alarm could easily deter the criminal from continuing their crime. Alerting a homeowner is crucial

when they're in their own home allowing for a better handle on the current situation.

Some statistics:

In 2013, there were an estimated 8,632,512 property crime offenses in the nation.

In 2013, the rate of property crime was estimated at 2,730.7 per 100,000 inhabitants.

1

CHAPTER 1. INTRODUCTION

Of all property crimes in 2013, larceny-theft accounted for 69.6 percent. Burglary accounted for 22.3

percent and motor vehicle theft for 8.1 percent.

Property crimes in 2013 resulted in losses estimated at $16.6 billion.

This project is intended for those Raspberry Pi, tech savvy, and DYI enthusiasts. This alarm system is

intended as an open source project, therefore, people will be able to use this and modify to their liking

for a do their own project with its own features. Maybe we could see expansions of the project with

additions such as security cameras, automated control of house lights, locks, etc.

1.2 Overview

The Raspberry Pi will the main component here for the user. It will be connected to a 433 MHz

receiver, a WiFi module, and a touchscreen (eventually). The receiver will be able to get signals from

any 433 MHz transmitter. These transmitters are each connected to an Attiny85. This microcontroller

will send via the transmitter a specific code (like a unique ID) for differentiation purposes when

received by the host. The wireless communication can be used enabled for internet communication

2

Figure 1.1: Simple System Diagram

CHAPTER 1. INTRODUCTION

between Android devices and the Raspberry Pi. Both will handle messages via PubNub. For ease of

use, the only thing needed by the devices is the PubNub application's publisher and subscriber keys;

consequently, the user will not need to handle any network-side configurations such as setting a static

IP address in the router's DHCP, and port forwarding. PubNub allows for encrypted messages, so

security between the devices will not be a problem. The Android client will be able to control the alarm

system (locking, unlocking, modifying certain settings) from anywhere with an active internet

connection.

1.3 Hardware

Raspberry Pi (model B)

The Raspberry Pi is a computer the size of a credit card that was developed in the UK by the Raspberry

Pi Foundation which costs 35 USD. It's intention was to promote computer science in schools. The RPi

model B has a 700 MHz single-core

processor with ARMv6 architecture

with 512 MB RAM. It has a low power

consumption of 3.5 watts, uses SD

cards for non-volatile memory. Its video

outputs can be done via RCA or HDMI

(preferable for obvious reasons). Some

of the operating systems this device can

run are Linux distributions (Raspbian,

Debian, Fedora, Arch), RISC,

FreeBSD, and NetBSD. The RPi shines

due to its cheap cost and big

community, but the best feature it has to offer is its GPIO (General Purpose Input/Output). It opens a

whole new world of opportunities to DIY hobbyists. Some of the many projects out there include home

automation, home media centres, personal servers (HTTP/FTP/SMTP), cloud storage, phones, time-

lapse cameras, jukeboxes, karaoke machines, 3D printers, drones, and robotics.

3

Figure 1.2: Raspberry Pi Model B

CHAPTER 1. INTRODUCTION

Arduino Mini

The Arduino Mini is a ATmega328 microcontroller based on the ATmega168. It comes with 14 digital

I/O pins,8 analog Input Pins, 32 KB flash memory, 2 KB SRAM, and a clock speed of 16 MHz. Its

primary purpose in this project will be to program the ATtiny85 microcontrollers. The Arduino Mini

could be used for the same purpose as the ATtiny85's, but it turns out that these are much cheaper in

comparison.

ATtiny85

The ATTiny85 is a high performance / low power microcontroller. It comes with 6 GPIO (General

Purpose Input/Output) pins, 8KB of memory, 512B of SRAM, and has a clock speed of 20 MHz. This

chip is low cost and with low power consumption (between 2.7-5.5 volts) it can execute powerful

commands, so it has a great balance of power consumption vs performance. Excellent to pair up with a

transmitter and send bits of info.

433MHz RF

For development purposes a

433MHz RF receiver with 433MHz

RF transmitters will be used. A pair

of a receiver/transmitter can be

found online relatively cheap ($2-3

on eBay).

4

Figure 1.3: Arduino Mini

Figure 1.5: 433 MHz receiver (left) and transmitter (right)

Figure 1.4: ATtiny85

CHAPTER 1. INTRODUCTION

1.4 Tools

Arch Linux

Arch Linux is a Linux distribution composed mainly of free open-source software. Its minimalistic

approach makes it the perfect Linux to use with the Raspberry Pi due to the constraint in computing

resources. Since Arch comes bare-bones, it is up to the user set up the system from the ground up or use

a pre-built image; consequently, this makes Arch very flexible in terms of keeping the system light by

installing only necessary software.

LXDE

LXDE or Lightweight X11 Desktop Environment is a fast and lightweight desktop environment for

mainly Linux systems. Because LXDE uses less computer resources than most other desktop

environments, it is the best suited for the amount of computational power offered by the Raspberry Pi.

LXDE is so minimal on resources that it can be run on a Pentium II CPU and will take about 45 MB of

RAM on i386 machines, so a system with only 128 MB of memory can support it.

Qt4

Qt4 is a cross-platform toolkit mainly used for developing applications with graphical user interfaces.

The cross-platform aspect is made so little to no change needs to be done to the code for it to be

compiled and ran natively. Qt4 contains a full set of GUI widgets as a developer would expect from

any of the other well-known toolkits such as the ones provided in Visual Studio and Java. This is

available for commercial and open source licenses.

Qt Creator

A great cross-platform IDE to develop C++ applications that use Qt as a front-end GUI. It supports the

standard features of the better-known IDEs and comes packed with many tools that will help expedite

the development process. Qt Creator supports both the Qt4 and Qt5 toolkits.

433Utils

The 433Utils is an API designed to assist a developer in the usage of 433 MHz RF transmitters and

5

CHAPTER 1. INTRODUCTION

receivers with Arduino boards and the Raspberry Pi.

PubNub

PubNub is an easy-to-use realtime communications service. There is an API for all the major SDKs and

popular systems being used in the present.

Arduino IDE

An open-source IDE that facilitates writing code and uploading it to Arduino boards. The IDE is

written in Java and can run in Windows, Mac, and Linux systems.

6

CHAPTER 2. SYSTEM INTEGRATION AND MODELING

Chapter 2

System Integration and Modeling

2.1 System Overview

The system setup is relatively easy considering there's only three main components: a Raspberry Pi,

433 MHz RF receiver, and 433 MHz RF transmitter connected to an ATtiny85. The Raspberry Pi is

connected to the receiver on the left, which listens for signals sent by any 433 MHz RF transmitters.

These transmitters will send a message periodically out (a heartbeat). All the hardware communication

is handled by the software run by the Raspberry Pi and the GPIO.

The RPi plays the most important role as it's a small credit-card sized cheap computer that can perform

very powerful tasks. Having a 700 MHz processor, and GPIO allows for parallel tasks to happen. The

Raspberry Pi will be handle all the RF communications and facilitated with the use of the 433Utils by

reading the input provided by the RF receiver as a series of bits. A front-end GUI that contains some

input/output widgets responsible of carrying out commands by the user and visual responses. Also,

local TCP server and a PubNub relay running in parallel receive remote commands from any of the

android devices attached, and send messages to them when any event in the alarm happens such as

tripping, locking, unlocking.

The sole purpose of an Arduino Mini in this project is to program our ATtiny85 microcontrollers,

although, it could be used to handle the RF transmissions, if the RPi needed extra computing power.

7

CHAPTER 2. SYSTEM INTEGRATION AND MODELING

2.2 Hardware Components

Chapter 1.3 provides an introduction to the relevant hardware along with their specifications, prices,

common uses, and reasons to why they are used for this project.

The Raspberry Pi will supply power to the

RF receiver via its GPIO 5v and ground pins.

The communication between these two is

done with a single GPIO pin. The RF

transmitter and Attiny85 will both need some

kind of external power source. A battery

could be used, but for testing purposes an

external 5v power supply will be attached to

the breadboard. Data communications is also

done via a single GPIO pin from the

microcontroller.

8

Figure 2.1: Hardware Setup (RPi top, RF receiver left, RF transmitter with ATtiny85 right)

Figure 2.2: RPi Hardware Connections

CHAPTER 2. SYSTEM INTEGRATION AND MODELING

2.3 Software Design Overview

Timeline explained:

The timeline is split into each major component. The system logic and front-end GUI are estimated to

be the two biggest pieces of the puzzle. The extra portion is small useful additions that could be done as

long as time allows. Any mistiming or delays in development time will result in getting only the basic

product completed.

Components:

The system is broken down into several software components which almost all play an equally

important in role for the alarm:

A NodeJS relay server will be in charge of handling PubNub messages. It is relatively easy to set up

due to the simplicity NodeJS brings when handling websockets, APIs that use websockets. The reason

for setting up the PubNub server like this is because there's a library required by the C++ version of the

API, which is buggy and notorious for compiling issues, setup problems, and lack of documentation.

9

Figure 2.4: Estimated Timeline of the Project

Figure 2.3: RF Transmitter Connections

CHAPTER 2. SYSTEM INTEGRATION AND MODELING

A local NodeJS server that runs in parallel with the PubNub relay. This server will be in charge of

allowing a local connection from the Alarm System via TCP and forwarding messages to and from the

PubNub relay.

A portion of the system is in charge of handling the information received by the RF receiver attached to

the RPi. The heavy work is done by the 433Utils library found online for both RPi and Arduino. The

handler uses the 433Utils API to constantly read input provided by the RF modules.

The Graphical User Interface (GUI) is responsible for handling user input, and visual responses. The

basic GUI will contain a pin pad just like any alarm system would, and a status bar showing the current

state (locked/ unlocked/tripped). It will implement the MVC design pattern for code cleanliness and

ease of use.

The system logic is the core of the project and probably the biggest part for several reasons. It ties

together the graphical user interface, remote communications, RF handler. The logic is responsible for

handling commands from the GUI, accepting credentials, parsing remote commands, and if time

allows, extra functionalities such as system logging, and zones.

Useful Tools:

The Qt Creator is a full-scale Integrated Development Environment (IDE) built for designing software

written in C++ and Qt toolkits. This IDE provides a set of tools to expedite the development process:

A built-in User Interface (UI) designer which is very straight-forward and provides all of the Qt toolkit

widgets that are available for your particular version (Qt4 or Qt5). The UI file is incredibly easy to

import and get running into C++ code, however, the IDE creates this for the user on UI creation.

Qt Creator supports for creation of compiler profiles. Since Qt supports cross-compiling, if need be, a

the program could be compiled ahead of time for the Armv6 architecture used by the RPi or any other

supported architecture.

A built-in debugger that allows the user to see memory, jump in and out of methods, and step through

code line by line.

10

CHAPTER 2. SYSTEM INTEGRATION AND MODELING

Valgrind integrated into the IDE. This is a powerful tool that checks aids the developer to find any

misuse of memory (memory leaks) in C or C++ code. As long as the code is compiled with debug flags,

Valgrind can do its work and pinpoint the source of memory issues.

2.4 Agile Methodology

The Agile methodolody is adapted for the project development. Unlike older more traditional

development methods, Agile provides flexibility and direction throughout the products lifecycle. It

provides the ability to re-plan and optimize a code (iterations), unlike other methods which a product is

committed to before it's even coded. Due to all the flexibilities, a developer or development team

wouldn't crash and burn because something was miscalculated in the planning of the entire project,

unlike the waterfall method which relies on that every requirement will be identified and carefully

planned before any coding occurs. Iterations help evolve a product rather than just developing the given

project. Each iteration means a developer can look at the current stage of the product and plan any

changes, fixes, anything necessary to better the next, since development is much easier as it is hard for

any coder to envision the product's final stage from the very beginning.

11

Figure 2.5: Qt Creator's UI Designer

CHAPTER 3. DESIGN AND TESTING / USER INTERFACE

Chapter 3

Design and Testing / User Interface

3.1 User Interface

Explanation
User Interface is a very important aspect of this project. An alarm system needs some kind of interface
for the user/home owner to interact with. This system particularly won't use a membrane keypad with
some kind of basic LCD display, so a decent GUI will be developed to create a good user experience
that can be expanded with future updates. The goal is to eventually (most likely after the deadline due
to time constraints) a more-than-just-a-keypad full-blown GUI with settings, options, which will be of
an appropriate proportion for a medium-sized touchscreen.

Why The UI Works
The user interface follows an intuitive conceptual model built from the following:

Visual Affordance
For visual affordance the perceived and actual fundamental properties of the objects should determine
how they can be used. So anything put in the UI should match some kind of object the user is
acquainted with which in our case it resembles a typical alarm system.

Transfer Effects
The transfer effects are pretty obvious. An alarm system has a number pad along with some other
buttons that provide certain functionalities. This UI replicates exactly that for an intuitive, easy to use
experience.

Casuality
Casuality is some kind of representation of anything after an action. All the buttons in the UI provide a
visual feedback when pushed and will emit some kind of beeping sound, so the user definitely knows
something is going on. The panel in the top is there to show the status of the alarm system, therefore,
after any action done by the user, there will be an update message according to the alarm's current
status.

12

CHAPTER 3. DESIGN AND TESTING / USER INTERFACE

Visible Constraints
Because of the UI's basic structure, the user will be limited to only being able to push some buttons, but
won't really be able to do anything other than that.

Mapping
The natural mapping of the UI takes advantage of physical representations. The UI has a number pad
on the left side exactly how many other physical forms of keypads. The right side contains some self-
explanatory buttons. These button groups combined create a natural intuitive layout.

The user interface this project is using is done with the Qt 4 toolkit. The Raspberry Pi provides support
for this toolkit. Qt 4 was picked mainly due to preference, the software support for GUI creation and
use, and due to the widgets support Cascading Style Sheets (CSS) which provides the power to create
very nice look and feel for GUIs. The CSS support adds a lot of flexibility and removes the need to
programatically do changes to the visual aspects (i.e. widget aesthetic changes on events, formatting
the entire program to look uniform, program-wide fonts).
The intended use for this UI is for the user to be able to push buttons according to whatever action they
want to take. They shouldn't need to look at many instructions to get the system up and going. After all,
keeping it simple is usually the better choice. As a user, I wouldn't want to see cryptic messages, or
buttons that mean absolutely nothing.

13

Figure 3.1: A Traditional Home Alarm System

CHAPTER 3. DESIGN AND TESTING / USER INTERFACE

3.2 Design

Logic of the System
The design of the alarm system is meant to be as
straight-forward as possible. The figure 3.3 shows the
logical path the system goes through in order to
function. The NodeJS server contains the Pubnub logic
and a TCP server that waits for the alarm system that
connects to it locally. The next run independently from
each other, so these are multi-threaded. The alarm's
logic is updated via RF switches tripped, via GUI
updates (ie the user disables the alarm with the pin
number) or via a remote message pushed. When the
alarm is triggered, the alarm will sound, the GUI will
be updated, and a message will be sent via PubNub to
alarm the remote clients about the incident. Once the
user disarms the alarm, the model will become updated
along with stopping the alarm.

14

Figure 3.3: Flowchart of System's Logic

Figure 3.2: The First Iteration of the GUI

CHAPTER 3. DESIGN AND TESTING / USER INTERFACE

3.3 Testing both User Interface and System

Testing Overview
To verify that the system is working properly, a series of tests are going to be done. The GUI will be
tested for various inputs button presses, to see if any kind error arises. The RF transmissions will be
tested for correctness and fault. The alarm system itself is gonna be let running for an extended amount
of time to monitor system usage. The Valgrind tool will be used to check for memory leaks. All of these
test combined should be enough to prove that the alarm system is working properly.

There isn't much to test the GUI for because of its basic status. The GUI tests were done by testing all
the buttons. Constantly pushing input to see if anything can be found that is not desired. The buttons
will limit what a user can do. Preferable there should be no more option than the usual to avoid any
kind of problems that could render the running system inoperable.

The Tests
Turning off and on a transmitter
Testing the transmitters and receivers functionality and reliability by watching the input over-time and
testing the transmitters on and off periodically.

Uptime test
Tested the program by leaving it running for a many hours several time to test false alarm triggers,
memory leaks by running the top command and monitoring the Rpi's CPU load and memory usage, and
no random crashes later or runtime issues.

Testing CPU priorities
Tested the program for under different task priority levels along with the default. Even though the Rpi
won't be running anything other than the alarm system on top of some other OS/user processes, it is
still preferred for it to have priority over the
others to mitigate loss of missed RF
messages. The command used for this is
nice --10 {command} where --10 gives
priority over 0 the default (max priority =
-20, lowest priority = 19).

15

Figure 3.4: Uptime Testing for CPU load and errors

CHAPTER 3. DESIGN AND TESTING / USER INTERFACE

Verify Integrity of RF Transmissions
The RF transmitters and receivers are tested before being implemented into the project. After
programming the Attiny85's with the transmission code, an RF sniffer is run by itself to make sure there
are no hiccups in the messages being sent out. Each Attiny85 sends a different ID (ie 1000, 0111, etc...)
for identification, so ensuring unique ID's are sent is a must.

Valgrind
Valgrind is a very useful tool that helps the developer identify memory management and threading
problems. The tool is integrated with the Qt Creator to provide fast alongside Qt Creator, however, it is
used from the command line in the Rpi because the program is compiled with itself.

3.4 Agile Management

The agile coding methodology is an approach to developing software through iterations. Basically
writing code from a skeleton to a full-blown program through updates and changes. In comparison, the
agile management approach deals with an oversight of the project and the agile development team. So
the project manager will facilitate the agile process in the developing of a project by: capturing and
keeping track of data, analyzing it, and adjusting timelines accordingly; acting as a liaison between the
team and the customer; promotes good engineering practices. The manager has a leadership, not a
supervisor role.

16

Figure 3.5: A Valgrind Positive Memory Leak Example

CHAPTER 4. SETUP AND USER MANUAL

Chapter 4

Setup And User Manual

4.1 Introduction

This is a manual with the instruction on how to set up the alarm system with a Raspberry Pi.

You will need:

• Technical skills

• Patience

• A Raspberry Pi 2 B (preferably), or Raspberry Pi B/B+

• An SD card for your OS

• Some kind of way of connecting your SD card to a computer

• An Arduino Uno/Mini

• PiTFT 3.5” Touchscreen for Model B or B+ (Model B works with B+ and RPi2)

• An Internet connection

The guide will run you through installing the operating system, changing some necessary settings,

connecting to a wifi network, grabbing the necessary software, compiling, and running the project.

17

CHAPTER 4. SETUP AND USER MANUAL

4.2 Installing The OS

Get Raspbian

Raspbian is a Debian-based Linux distribution specifically made for the Raspberry Pi.

Download at: http://www.raspbian.org/RaspbianImages

Flashing image file to SD card

For Windows Systems:

Download Win32 Disk Imager at h ttp://sourceforge.net/projects/win32diskimager/ and flash the

image file to the SD card with the provided GUI.

For Linux Systems:

Use the dd tool from the command line to flash the image like in this example:

dd if=/path/to/image.img of=/dev/sdx bs=1M where if is the image file, of is the path to the SD

card (usually sdb, depending on how many other devices have been mounted prior)

4.3 Post OS Install

Raspbian Settings To Change

The first thing to do right after install is boot the system then log in with the default Raspbian

credentials.

Run the command sudo raspi-config

then this menu will show:

1. Select Expand Filesystem.

2. Select Change User

Password and change the

default password to

something else

3. Select Enable Boot to

Desktop/Scratch and then

select Desktop Log in as

18

Figure 4.1: raspi-config

http://www.raspbian.org/RaspbianImages
http://sourceforge.net/projects/win32diskimager/
http://sourceforge.net/projects/win32diskimager/

CHAPTER 4. SETUP AND USER MANUAL

user 'pi' at the graphical desktop. This will enable the Raspbian OS to automatically log in as

the user selected.

4. The Raspbian image by default will have a UK keyboard layout. Select Internationalisation

Options, then Change Keyboard Layout, and follow the options to choose the desired layout.

5. Once done making all the required/desired changes. Select <Finish>.

6. Enter sudo reboot to restart the Raspberry Pi (required for some changes).

Connecting To A WiFi Network

If the Raspberry Pi will be connected via

ethernet, then skip these steps.

We will need an internet connection in order

to download or update the packages available

for Raspbian, so follow these steps to connect

to your wireless network:

1. Access the WiFi Configuration tool

from the main menu.

2. Hit the Scan button to bring up a list of available networks.

3. Double click the desired network.

4. Click Connect.

Grabbing The Needed Software

There are several programs and libraries we will need to download and install to our OS before we can

do anything:

1. Open a terminal.

2. Update the repository versions with sudo apt-get update.

3. Upgrade the system with sudo apt-get upgrade.

4. Install the Qt4 compiler with sudo apt-get -y install qt4-qmake.

5. Install WiringPi to the system:

• Clone the WiringPi repository git clone git://git.drogon.net/wiringPi.

• Enter cd wiringPi to go into the directory of the cloned repo.

19

Figure 4.2: Getting to WiFi Configuration

CHAPTER 4. SETUP AND USER MANUAL

• Enter sudo ./build to build and install the library to your system.

• Enter cd to go back into your home directory.

Prep The PiTFT 3.5in

If you don't want have SSH enabled then leave this step for very last. Setting up a PiTFT Touchscreen

is fairly easy with the use of some scripts provided to facilitate job, removing the need for manual task.

Go to https://learn.adafruit.com/adafruit-pitft-3-dot-5-touch-screen-for-raspberry-pi for the

easy/advanced guides on how to get the screen up and running.

4.4 Setting Up The Alarm System

Setup The Code

1. Download the repository with git clone https://github.com/gaperezcortes/CSCE470.git.

2. Put your PIN in the code (no other way at the moment)

3. To setup remote access, set up the PubNub keys:

Open the Server.js file in the nodejs folder with the default text editor, or any other, and replace

the following your PubNub keys:

var pubnub = PUBNUB.init({

 publish_key : "pub-x-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 subscribe_key : "sub-x-xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx",

 ssl: true

});

4. Compile the code:

• Open a terminal

• Enter cd CSCE470 to go into the directory of the cloned project repository

• Enter make to compile all the code

• Go grab a cup of tea (or whatever beverage)

• Program is ready to be launched

• If desired run now the program (will use sudo since RF needs SU privileges to work) by

entering ./launcher into the terminal

20

https://github.com/gaperezcortes/CSCE470.git
https://learn.adafruit.com/adafruit-pitft-3-dot-5-touch-screen-for-raspberry-pi

CHAPTER 4. SETUP AND USER MANUAL

Autostart Program

The alarm system should be able to boot automatically as soon as the X server and desktop

environment are up and running. It would be unnecessary to start the alarm system manually and

basically renders it useless if for any reason the Raspberry Pi would reboot (power outage, manual

reboot, some kind of crash).

To enable the alarm system to autostart:

1. Add the launcher as a desktop shortcut to the autostart folder (~/.config/autostart)

2. Ensure that the RF receiver data pin is hooked up to the GPIO 27 also known as PIN 13 (RPi A,

B, B+, RPi2)

3. Reboot the system to verify alarm system boots on startup

4.5 Using The Alarm System

The alarm system is currently at its most basic state. It only allows for

enabling or disabling the alarm (more features to be implemented in the

future).

Arming The System

Press the Arm button.

Note: that once the system is armed, nothing can be done with it until it is

disarmed.

Disabling Armed/Tripped Alarm

Press on the buttons corresponding to the pin then press the pound sign. If the

wrong pin was input, press the pound sign to clear the buffer as nothing will

happen if on a wrong input.

21

Figure 4.3: Armed

Figure 4.4: Disarmed

CHAPTER 5. CONCLUDING THE PROJECT

Chapter 5

Concluding The Project

5.1 Summary And Reasons

Quick Summary

This alarm system uses a Raspberry Pi 2 which brings plenty flexibility and low power consumption

allowing this home security system to acquire plenty of potential and ability for later upgrading.

Changes can be made to the UI

Why C++ and not Python?

At first the project was going to be developed

with the use of Python 3. The reason for this

was preference. I already knew the Python 2.7 and 3 programming language and given all the libraries

that are provided with and contributed online by other developers, constructing functions (such as

sound, and socket programming) would be much easier to implement in contrast to C++. However, C+

+ was a must because some one of the libraries for dealing with RF communications was written in C;

although, there was a wrapper class for Python, but turned out to be buggy with some broken functions

as well. Even though C++ wasn't my strongest language, this project forced me learn more about it and

polish my skill, so it definitely was something profitable.

22

Figure 5.1: C++ or Python

CHAPTER 5. CONCLUDING THE PROJECT

5.2 Application To Field

The project is not meant to make a difference in the field of software as there is no research done.

However, with the completion of all the basic functionalities of this alarm system, users can take

advantage of the code provided to learn or use as an example on the Qt4 toolkit to learn on their own or

become familiarized with a toolkit that is not provided with the language itself such as Microsoft Visual

C#/C++, Java Swing/FX. This can help introduce Raspberry Pi enthusiasts to the capabilities of the

little credit card sized computer and how to use the GPIOs along with external hardware. Since it's all

open source and the repository will be available to anyone, a user can take upon him/herself to make

their own project with the use of the provided.

5.3 Alternate Paths, Future Development, And Final Thoughts

Things I would have done differently

The project currently implements the RF communications with the Raspberry Pi. Since version 2 has

much more computing power available, this isn't a problem. However, version 1 has very limited

computing power in comparison, so running the RF sniffer is very tasking to the point of introducing

errors to the system. To address this problem, and arduino handling the RF communications would

offload a lot of computational power allowing the Raspberry Pi 1 to run the alarm system flawlessly.

Future Additions

These are things that I would implement later on after the semester ends:

• Add system logging to keep track of any events that happened throught time

• Parameterizable features like declaring zones for transmitters

• Update the User Interface to allow for more implemented features

• Use an SMTP server to send text messages to a phone number in case of alarm trip

Final Thoughts

Constructing the Raspberry Pi Home Alarm System project was indeed fun. It allowed me to apply

many of the skills I've been taught and have learned on my own throughout my school years as a

computer science major, and to also prove myself as a software developer.

23

APPENDIX A

Appendix A

UML

APPENDIX B

Appendix B

Source Code

For the source code refer to:

• https://github.com/gaperezcortes/CSCE470/tree/RPi

https://github.com/gaperezcortes/CSCE470/tree/RPi

Bibliography

BIBLIOGRAPHY

[1] Property Crimes in the US 2013, http://www.fbi.gov/about-us/cjis/ucr/crime-in-the-
u.s/2013/crime-in-the-u.s.-2013/property-crime/property-crime-topic-
page/propertycrimemain_final

[2] Arduino Mini information, http://arduino.cc/en/Main/ArduinoBoardMini

[3] Raspberry Pi information, http://downloads.element14.com/raspberryPi1.html

[4] Attiny85 information, http://www.atmel.com/devices/attiny85.aspx

[5] Raspberry Pi projects, https://hackaday.io/projects/tag/raspberry%20pi

[6] Qt Creator Info, http://qt-project.org/wiki/Category:Tools::QtCreator

[7] Valgrind, http://valgrind.org/

[8] Node.js, http://nodejs.org/about/

[9] 433Utils, https://github.com/ninjablocks/433Utils

[10] The Agile Samurai (October 5, 2010)

[11] How to write effective Test cases, procedures and definitions, http://www.softwaretestinghelp.com/how-to-
write-effective-test-cases-test-cases-procedures-and-definitions/

[12] Agile Management, http://agilemethodology.org/

[13] Valgrind Quickstart, http://valgrind.org/docs/manual/quick-start.html#quick-start.mcrun

17

