



# Errata to MPC857T PowerQUICC<sup>™</sup> User's Manual Rev. 0

This errata describes corrections to revision 0 of the *MPC857T PowerQUICC User's Manual* (order number: MPC857TUMAD/D, Rev. 0).

This document contains information on a new product under development by Motorola. Motorola reserves the right to change or discontinue this product without



| Section | #/Page | # |
|---------|--------|---|
|---------|--------|---|

**10.10.1, 10-28** In Figure 10-24, the reset value of the RTCSC should be replaced with the following:

0000\_0000\_000x\_00xx.

**11.1.3.1, 11-3** Add the following note:

### NOTE:

The PLL loss of lock detection does not have a specification for the detection threshold. Therefore it should used solely as a debug tool and not in production systems. Characterization of the threshold value over temperature and operating voltages has shown that the threshold can be triggered when clock out to clock in phase differences is 1.8 ns. or more.

**11.3.1.1, 11-9** Add BBE (boot burst enable) to bit 2, and CLES (core little endian swap) to bit 15 of Figure 11-8 and add the following description to Table 11-3:

### Table 11-3. Hard Reset Configuration Word Field Descriptions

| Bits | Name | Description                                                                                                   |
|------|------|---------------------------------------------------------------------------------------------------------------|
| 2    | BBE  | Boot Burst Enable<br>0 The boot device does not support bursting.<br>1 The boot device does support bursting. |
| 15   | CLES | Core Little Endian Swap. Defines core access operation following reset.<br>0 Big Endian<br>1 Little Endian    |

### 12.1, global

Table 12-1. Add the following signals:

B7 M\_CRS

H18 M\_MDIO

V15 M\_TXEN

H4 M\_COL

W15 M\_TX\_CLK

For a complete listing of VDDL, VDDH, and GND, see the document MPC857T Family Hardware Specifications (MPC857TEC/D). The information provided in the Hardware Specification supersedes all information found in the MPC857T UM.

**14.2.2.3, 14-8** Replace Table 14-2 with the following:

# Table 14-2. XFC Capacitor Values Based on PLPRCR[MF]

| MF Range             | Minimum Capacitance        | Recommended Capacitance    | Maximum Capacitance        | Unit |
|----------------------|----------------------------|----------------------------|----------------------------|------|
| $1 \le (MF+1) \le 4$ | XFC = [(MF+1) x 580] - 100 | XFC = [(MF+1) x 680] - 120 | XFC = [(MF+1) x 780] - 140 | pF   |
| (MF+1) > 4           | XFC = (MF+1) x 830         | XFC = (MF+1) X 1100        | XFC = (MF+1) x 1470        | pF   |

### **15.4.1,15-9** In Figure 16-5, replace the reset values of BRx with the following:

xxxx\_xxxx\_xxxx\_xxxx\_xxxx\_xxx00\_0000.

In Figure 16-6, replace the reset values of the first five nibbles of BR0 with xxxx\_xxxx\_xxxx\_xxxx\_xxx, and add the following footnote:

Since the base address values are unknown at reset, to ensure proper operation, program the base address before programming the Option Register.

**15.4.2, 15-11** In Figure 16-7, replace the reset values of ORx with the following:

xxxx\_xxxx\_xxxx\_xxxx\_xxxx\_xxxx\_xxx0.

Replace the text after Figure 16-7 with the following:

At reset, OR0 has specific default values and is read-only, as shown in Figure 15-8. After reset, OR0 becomes R/W.

**15.4.4, 15-14** In Figure 16-10, replace the reset values of the first two nibbles of MxMR with the following:

xxxx\_xxxx

**15.4.5, 15-15** In Figure 16-11, replace the reset values of the MCR with the following:

xx00\_0000\_x000\_0000\_xxx0\_xxxx\_00xx\_xxxx.

**15.4.6, 15-16** In Figure 16-12, replace the reset values of the MDR with the following:

**15.4.7, 15-17** In Figure 16-13, replace the reset values of the MAR with the following:

xxxx\_xxxx\_xxxx\_xxxx\_xxxx\_xxxx\_xxxx\_xxxx.

**16.4, 16-8** Replace sections 16.4, and 16.4.1 through 16.4.3 with the following:

# **16.4 Programming Model**

This section describes the PCMCIA interface programming model. Generally, all registers are memory-mapped within the internal control register area. The registers in Table 16-7 control the PCMCIA interface.

| Name     | Description                                 |
|----------|---------------------------------------------|
| PIPR     | PCMCIA interface input pins register        |
| PSCR     | PCMCIA interface status changed register    |
| PER      | PCMCIA interface enable register            |
| PGCRA    | PCMCIA interface general control register a |
| PGCRB    | PCMCIA interface general control register b |
| PBR[0-7] | PCMCIA base registers 0–7 (per window)      |
| POR[0-7] | PCMCIA option registers 0–7 (per window)    |

# Table 16-7 PCMCIA Registers

# 16.4.1 PCMCIA Interface Input Pins Register (PIPR)

Status of inputs from the PCMCIA card to the host (BVD, CD, RDY, VS) is reported to the PIPR, shown in Figure 16-3. PIPR is a read-only register; write operations are ignored.

| Bit   | 0                                                  | 1                           | 2    | 3     | 4     | 5          | 6          | 7     | 8  | 8 9 10 11 12 |    |    | 12 | 13 | 14 | 15 |
|-------|----------------------------------------------------|-----------------------------|------|-------|-------|------------|------------|-------|----|--------------|----|----|----|----|----|----|
| Field | CAVS1 CAVS2 CAWP CACD2 CACD1 CABVD2 CABVD1 CARDY — |                             |      |       |       |            |            |       |    |              |    |    |    |    |    |    |
| Reset |                                                    |                             |      |       |       | Undef      | ined       |       |    |              |    |    |    |    |    |    |
| R/W   |                                                    |                             |      |       |       | R          |            |       |    |              |    |    |    |    |    |    |
| Addr  |                                                    |                             |      |       | (IMMI | R & 0xFFFF | =0000) + 0 | k0F0  |    |              |    |    |    |    |    |    |
| Bit   | 16                                                 | 17                          | 18   | 19    | 20    | 21         | 22         | 23    | 24 | 25           | 26 | 27 | 28 | 29 | 30 | 31 |
| Field | CBVS1                                              | CBVS2                       | CBWP | CBCD2 | CBCD1 | CBBVD2     | CBBVD1     | CBRDY |    |              |    | _  | _  |    |    |    |
| Reset |                                                    | Undefined                   |      |       |       |            |            |       |    |              |    |    |    |    |    |    |
| R/W   |                                                    | R                           |      |       |       |            |            |       |    |              |    |    |    |    |    |    |
| Addr  |                                                    | (IMMR & 0xFFFF0000) + 0x0F2 |      |       |       |            |            |       |    |              |    |    |    |    |    |    |

Figure 16-3. PCMCIA Interface Input Pins Register (PIPR)

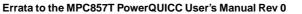
Table 16-8 describes PIPR fields.

| Table | 16-8. | PIPR | Field | Descriptions |
|-------|-------|------|-------|--------------|
|-------|-------|------|-------|--------------|

| Bits  | Name   | Description                               |
|-------|--------|-------------------------------------------|
| 0     | CAVS1  | Voltage sense 1 for card A                |
| 1     | CAVS2  | Voltage sense 2 for card A                |
| 2     | CAWP   | Write protect for card A                  |
| 3     | CACD2  | Card detect 2 for card A                  |
| 4     | CACD1  | Card detect 1 for card A                  |
| 5     | CABVD2 | Battery voltage/SPKR_A input for card A   |
| 6     | CABVD1 | Battery voltage/STSCHG_A input for card A |
| 7     | CARDY  | RDY/IRQ of card A pin                     |
| 8–15  | —      | Reserved, should be cleared.              |
| 16    | CBVS1  | Voltage sense 1 for card B                |
| 17    | CBVS2  | Voltage sense 2 for card B                |
| 18    | CBWP   | Write protect for card B                  |
| 19    | CBCD2  | Card detect 2 for card B                  |
| 20    | CBCD1  | Card detect 1 for card B                  |
| 21    | CBBVD2 | Battery voltage/SPKR_B input for card B   |
| 22    | CBBVD1 | Battery voltage/STSCHG_B input for card B |
| 23    | CBRDY  | RDY/IRQ of card B pin                     |
| 24–31 | _      | Reserved, should be cleared.              |

# 16.4.2 PCMCIA Interface Status Changed Register (PSCR)

The contents of PSCR, shown in Figure 16-4, are logically ANDed with the PER to generate a PCMCIA interface interrupt. Writing zeros has no effect; writing ones clears the corresponding interrupt state.


| Bit   | 0           | 1           | 2          | 3           | 4           | 5            | 6            | 7      | 8       | 9           | 10          | 11      | 12–15 |
|-------|-------------|-------------|------------|-------------|-------------|--------------|--------------|--------|---------|-------------|-------------|---------|-------|
| Field | CAVS1_<br>C | CAVS2_<br>C | CAWP_<br>C | CACD2_<br>C | CACD1_<br>C | CABVD2_<br>C | CABVD1_<br>C | -      | CARDY_L | CARDY_<br>H | CARDY_<br>R | CARDY_F | —     |
| Reset |             |             |            |             |             | Und          | defined      |        |         |             |             |         |       |
| R/W   |             |             |            |             |             | I            | R/W          |        |         |             |             |         |       |
| Addr  |             |             |            |             | (11         | MMR & 0xFF   | FF0000) + 0  | )x0E   | 8       |             |             |         |       |
| Bit   | 16          | 17          | 18         | 19          | 20          | 21           | 22           | 2<br>3 | 24      | 25          | 26          | 27      | 28–31 |
| Field | CBVS1_<br>C | CBVS2_<br>C | CBWP_<br>C | CBCD2_<br>C | CBCD1_<br>C | CBBVD2_<br>C | CBBVD1_<br>C | -      | CBRDY_L | CBRDY_<br>H | CBRDY_<br>R | CBRDY_F | —     |
| Reset |             |             |            |             |             | Und          | defined      |        |         |             |             |         |       |
| R/W   |             | R/W         |            |             |             |              |              |        |         |             |             |         |       |
| Addr  |             |             |            |             | (1)         | MMR & 0xFF   | FF0000) + 0  | )x0E   | A       |             |             |         |       |

# Figure 16-4. PCMCIA Interface Status Changed Register (PSCR)

Table 16-9 describes PSCR fields.

# Table 16-9. PSCR Field Descriptions

| Bits  | Name     | Description                                                               |
|-------|----------|---------------------------------------------------------------------------|
| 0     | CAVS1_C  | Voltage sense 1 for card A changed                                        |
| 1     | CAVS2_C  | Voltage sense 2 for card A changed                                        |
| 2     | CAWP_C   | Write protect for card A changed                                          |
| 3     | CACD2_C  | Card detect 2 for card A changed                                          |
| 4     | CACD1_C  | Card detect 1 for card A changed                                          |
| 5     | CABVD2_C | Battery voltage/SPKR_A input for card A changed                           |
| 6     | CABVD1_C | Battery voltage/STSCHG_A input for card A changed                         |
| 7     | —        | Reserved, should be cleared.                                              |
| 8     | CARDY_L  | RDY/IRQ of card A pin is low. Device and socket interrupt.                |
| 9     | CARDY_H  | RDY/IRQ of card A pin is high. Device and socket interrupt.               |
| 10    | CARDY_R  | RDY/IRQ of card A pin rising edge detected. Device and socket interrupt.  |
| 11    | CARDY_F  | RDY/IRQ of card A pin falling edge detected. Device and socket interrupt. |
| 12–15 | _        | Reserved, should be cleared.                                              |
| 16    | CBVS1_C  | Voltage sense 1 for card B changed                                        |
| 17    | CBVS2_C  | Voltage sense 2 for card B changed                                        |
| 18    | CBWP_C   | Write Protect for card B changed                                          |
| 19    | CBCD2_C  | Card detect 2 for card B changed                                          |
| 20    | CBCD1_C  | Card detect 1 for card B changed                                          |
| 21    | CBBVD2_C | Battery voltage/SPKR_B input for card B changed                           |
| 22    | CBBVD1_C | Battery voltage/STSCHG_B input for card B changed                         |
| 23    | —        | Reserved, should be cleared.                                              |



### Table 16-9. PSCR Field Descriptions (Continued)

| Bits  | Name    | Description                                                               |
|-------|---------|---------------------------------------------------------------------------|
| 24    | CBRDY_L | RDY/IRQ of card B pin is low. Device and socket interrupt.                |
| 25    | CBRDY_H | RDY/IRQ of card B pin is high. Device and socket interrupt.               |
| 26    | CBRDY_R | RDY/IRQ of card B pin rising edge detected. Device and socket interrupt.  |
| 27    | CBRDY_F | RDY/IRQ of card B pin falling edge detected. Device and socket interrupt. |
| 28–31 | _       | Reserved, should be cleared.                                              |

# 16.4.3 PCMCIA Interface Enable Register (PER)

Setting a bit in the PER, shown in Figure 16-5, enables the corresponding interrupt.

| Bit       | 0           | 1           | 2          | 3           | 4           | 5            | 6            | 7      | 8             | 9             | 10            | 11            | 12-15 |
|-----------|-------------|-------------|------------|-------------|-------------|--------------|--------------|--------|---------------|---------------|---------------|---------------|-------|
| Field     | CA_EV<br>S1 | CA_EV<br>S2 | CA_EW<br>P | CA_EC<br>D2 | CA_EC<br>D1 | CA_EBV<br>D2 | CA_EBV<br>D1 | _      | CA_ERDY<br>_L | CA_ERDY_<br>H | CA_ERDY_<br>R | CA_ERDY<br>_F | —     |
| Rese<br>t |             |             |            |             |             | 0000_        | 0000_0000    | _00    | 000           |               |               |               |       |
| R/W       |             |             |            |             |             |              | R/W          |        |               |               |               |               |       |
| Addr      |             |             |            |             |             | (IMMR & 0    | xFFFF0000    | 0) +   | - 0x0F8       |               |               |               |       |
| Bit       | 16          | 17          | 18         | 19          | 20          | 21           | 22           | 2<br>3 | 24            | 25            | 26            | 27            | 28-31 |
| Field     | CB_EV<br>S1 | CB_EV<br>S2 | CB_EW<br>P | CB_EC<br>D2 | CB_EC<br>D1 | CB_EBV<br>D2 | CB_EBV<br>D1 | -      | CB_ERDY<br>_L | CB_ERDY_<br>H | CB_ERDY_<br>R | CB_ERDY<br>_F | -     |
| Rese<br>t |             |             |            |             |             | 0000_        | 0000_0000    | _00    | 000           |               |               |               |       |
| R/W       |             |             |            |             |             |              | R/W          |        |               |               |               |               |       |
| Addr      |             |             |            |             |             | (IMMR & 0    | xFFFF0000    | D) +   | 0x0FA         |               |               |               |       |

# Figure 16-5. PCMCIA Interface Enable Register (PER)

Table 16-10 describes PER fields.

# Table 16-10. PER Field Descriptions

| Bits | Name    | Description                                                                                                 |
|------|---------|-------------------------------------------------------------------------------------------------------------|
| 0    | CA_EVS1 | Enable for voltage sense 1 for card A changed. Setting this bit enables the interrupt on any signal change. |
| 1    | CA_EVS2 | Enable for voltage sense 2 for card A changed. Setting this bit enables the interrupt on any signal change. |
| 2    | CA_EWP  | Enable for write protect for card A changed. Setting this bit enables the interrupt on any signal change.   |
| 3    | CA_ECD2 | Enable for card detect 2 for card A changed. Setting this bit enables the interrupt on any signal change.   |
| 4    | CA_ECD1 | Enable for card detect 1 for card A changed. Setting this bit enables the interrupt on any signal change.   |

| Bits  | Name      | Description                                                                                                              |
|-------|-----------|--------------------------------------------------------------------------------------------------------------------------|
| 5     | CA_EBVD2  | Enable for battery voltage/SPKR_A input for card A changed. Setting this bit enables the interrupt on any signal change. |
| 6     | CA_EBVD1  | Enable for battery voltage/STSCHG_A input for card A changed.                                                            |
| 7     | _         | Reserved, should be 0.                                                                                                   |
| 8     | CA_ERDY_L | Enable for RDY/IRQ of card A pin is low                                                                                  |
| 9     | CA_ERDY_H | Enable for RDY/IRQ card A pin is high                                                                                    |
| 10    | CA_ERDY_R | Enable for RDY/IRQ card A pin rising edge detected                                                                       |
| 11    | CA_ERDY_F | Enable for RDY/IRQ card A pin falling edge detected                                                                      |
| 12–15 | _         | Reserved, should be 0.                                                                                                   |
| 16    | CB_EVS1   | Enable for voltage sense 1 for card B changed. Setting this bit enables the interrupt on any signal change.              |
| 17    | CB_EVS2   | Enable for voltage sense 2 for card B changed. Setting this bit enables the interrupt on any signal change.              |
| 18    | CB_EWP    | Enable for write protect for card B changed. Setting this bit enables the interrupt on any signal change.                |
| 19    | CB_ECD2   | Enable for card detect 2 for card B changed. Setting this bit enables the interrupt on any signal change.                |
| 20    | CB_ECD1   | Enable for card detect 1 for card B changed. Setting this bit enables the interrupt on any signal change.                |
| 21    | CB_EBVD2  | Enable for battery voltage/SPKR_B input for card B changed. Setting this bit enables the interrupt on any signal change. |
| 22    | CB_EBVD1  | Enable for battery voltage/STSCHG_B input for card B changed                                                             |
| 23    | —         | Reserved, should be 0.                                                                                                   |
| 24    | CB_ERDY_L | Enable for RDY/IRQ of card B pin is low                                                                                  |
| 25    | CB_ERDY_H | Enable for RDY/IRQ card B pin is high                                                                                    |
| 26    | CB_ERDY_R | Enable for RDY/IRQ card B pin rising edge detected                                                                       |
| 27    | CB_ERDY_F | Enable for RDY/IRQ card B pin falling edge detected                                                                      |
| 28–31 | —         | Reserved, should be 0.                                                                                                   |

**33.5.1.3, 33-21** The final sentence in this section should be replaced with the following:

The Fast Ethernet Controller is described in Part VII, Chapter 43, "Fast Ethernet Controller (FEC)."

**35, 35-1** Remove this sentence:

When not in ESAR mode, the MPC857T remains backwards compatible to the classic SAR ATM operation of the MPC860SAR.

| Section #/Page # | Changes                                          |
|------------------|--------------------------------------------------|
| 42.1,42-1        | Remove this from the feature list:               |
|                  | Back compatible with MPC860SAR UTOPIA muxed bus. |
| Ch. 43, global   | FEC (Fast Ethernet Controller)                   |
|                  | R_FSTART should show bits 16-31 as address 0xED2 |
|                  | X_WMRK should show bits 0-15 as address 0xEE4    |
|                  | X_WMRK should show bits 16-31 as address 0xEE6   |
|                  | R_CNTRL should show bits 0-15 as address 0xF44   |
|                  | R_CNTRL should show bits 16-31 as address 0xF46  |
|                  |                                                  |

DigitalDNA is a trademark of Motorola, Inc.

The PowerPC name, the PowerPC logotype, and PowerPC 603e are trademarks of International Business Machines Corporation used by Motorola under license from International Business Machines Corporation.

Information in this document is provided solely to enable system and software implementers to use PowerPC microprocessors. There are no express or implied copyright licenses granted hereunder to design or fabricate PowerPC integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application. Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out d, directly or indirectly, any claim of personal injury or death sasociated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

#### Motorola Literature Distribution Centers:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 5405; Denver, Colorado 80217; Tel.: 1-800-441-2447 or 1-303-675-2140; World Wide Web Address: http://ldc.nmd.com/

JAPAN: Nippon Motorola Ltd SPD, Strategic Planning Office 4-32-1, Nishi-Gotanda Shinagawa-ku, Tokyo 141, Japan Tel.: 81-3-5487-8488 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd Silicon Harbour Centre 2, Dai King Street Tai Po Industrial Estate Tai Po, New Territories, Hong Kong

World Wide Web Address: http://sps.motorola.com/mfax INTERNET: http://motorola.com/sps

Technical Information: Motorola Inc. SPS Customer Support Center 1-800-521-6274; electronic mail address: crc@wmkmail.sps.mot.com. Document Comments: FAX (512) 933-2526, Attn: RISC Applications Engineering.

World Wide Web Addresses: http://www.motorola.com/PowerPC http://www.motorola.com/coldfire http://www.motorola.com/Coldfire

