MMAO9559L Intelligent, Motion-Sensing
Platform Software Reference Manual

o
oV o
oS
ote
28
E‘.“-.E--‘-";'u: ;\f’ o

Efficient Solutions
by Freescale

Devices Supported:
MMA9559L

Document Number: MMA9559L SWRM
Rev. 0.1, 03/2012

L

=~ freescale

Xtrinsic

How to Reach Us:
Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road

Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7

81829 Muenchen, Germany

+44 1296 380 456 (English)

+46 8 52200080 (English)

+49 89 92103 559 (German)

+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd.
Headquarters

ARCO Tower 15F

1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064

Japan

0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd.
Exchange Building 23F

No. 118 Jianguo Road

Chaoyang District

Beijing 100022

China

+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140

Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@ hibbertgroup.com

Information in this document is provided solely to enable system
and software implementers to use Freescale Semiconductor
products. There are no express or implied copyright licenses
granted hereunder to design or fabricate any integrated circuits or
integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes
without further notice to any products herein. Freescale
Semiconductor makes no warranty, representation or guarantee
regarding the suitability of its products for any particular purpose,
nor does Freescale Semiconductor assume any liability arising
out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical”
parameters that may be provided in Freescale Semiconductor
data sheets and/or specifications can and do vary in different
applications and actual performance may vary over time. All
operating parameters, including “Typicals”, must be validated for
each customer application by customer’s technical experts.
Freescale Semiconductor does not convey any license under its
patent rights nor the rights of others. Freescale Semiconductor
products are not designed, intended, or authorized for use as
components in systems intended for surgical implant into the
body, or other applications intended to support or sustain life, or
for any other application in which the failure of the Freescale
Semiconductor product could create a situation where personal
injury or death may occur. Should Buyer purchase or use
Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold
Freescale Semiconductor and its officers, employees,
subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney
fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was
negligent regarding the design or manufacture of the part.

Freescale, the Freescale logo, CodeWarrior, ColdFire, and the
Energy Efficient Solutions logo are trademarks of Freescale
Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. Xtrinsic is a
trademark of Freescale Semiconductor, Inc.

All other product or service names are the property of their
respective owners.

© 2012 Freescale Semiconductor, Inc. All rights reserved.

-+

> freescale"

Contents

11

1.2
1.3
1.4

2.1
2.2

2.3

2.4

2.5

2.6

3.1
3.2
3.3
3.4

4.1

4.2

Chapter 1 About this Document

OV IV W . o o e 7
1.1 PUIPOSE .o 7
1.1.2 AUAIENCE . .. 7
1.1.3 DOCUMENt STIUCIUIE e et et e e 7

Terms and aCrONYMSottt et 8

CONVENLIONS . . . oo e e e 9

REfEIENCES . . . 10

Chapter 2 Firmware Overview

Firmware elements and functionality i 11

Memory and CPU USAgeottt e e e e e e e 12
2.21 Flash memory 12
2.2.2 RAM 12
2.2.3 Supervisorstack usage 13

Hardware SUDPOIt 14
2.3.1 Frameinterval COUNer e 14
2.3.2 Analog Front ENd (AFE) 15
2.3.3 Stopmode control 17

Eventsand scheduling e 18
241 EVENIS . oo 18
2.4.2 Initialization 21
2.4.3 Interrupts and critical SECHIONS i e 22

FIFOS 24
2.5.1 Instantiate FIFO 25
2.5.2 Initialize FIFO 25
253 Pushdataontothe FIFO i 26
254 Popdataoffthe FIFO e 27
255 Resetthe FIFO e 27
2.5.6 Other FIFO funCtions e 28

PO BT 28

Chapter 3 User Code Example

Header . . . 31

User exception handler 32

Usertrap handler 35

USEI MaAIN . . e e e e 37

Chapter 4 Functional Details

Memory and CPU USAgeo ittt et e e e e 39
4.1.1 Supervisorstack 40

Hardware SUDPOIto 42
4.2.1 MaACIOS . . ottt it 42

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 3

Section Number Title Page

4.2.1.1 #define NUM_SENSOR_AXIS5 i 42
4.2.2 EnUMeErations 42
4.2.2.1enumafe _csr_options t 42
4.2.2.2enumframerate t 44
4.2.3 Data StruCtUre 45
42.3.1mma9559 afe data t......... 45
4.2 4 FUNCHONS ...t e e e e e e 46
4.2.4.1 framerate_t mma9559 framerate_set(framerate_trate) 46
4.2.4.2 void mma9559 afe conversion_start(void) 47
4.2.4.3 void mma9559 afe interrupt_clear(void) 48
4.2.4.4 void mma9559 afe raw_sensor_data_get(intl6 *data_ptr) 49
4.2.4.5 voidmma9559 afe raw_sensor_data_trim(int16 *trim_ptr, int16 *data_ptr)
50

4.2.4.6 void mma9559 afe trimmed_sensor_data_get(int16 *trim_ptr) 51
4.2.4.7 void mma9559 afe csr_set(afe_csr_options_toptions) 52
4.2.4.8 afe_csr_options_t mma9559 _afe _csr get(void) 53
4.2.4.9 void mma9559 afe offsets_set(intl6 *data_ptr) 54
4.2.4.10 void mma9559 afe offsets_get(intl6 *data_ptr) 55
4.3 Eventsandscheduling e 56
4.3.1 MaACIOS .o ittt e e 56
4.3.1.1 #define EVENT_BITFIELD(b) ((events_t)(1<<b)) 56
4.3.2 ENUMEIAtIONSttt e 57
432.1enumidle_config t 57
4.3.22enumidle bits t 58
4.3.3 Data StrUCIUIreS o 60
4.3.3.1mmad559 idle t 60
4.3.3.2mmad5s59 vars t 61
4.3.4 FUNCHONS e e e e 62
4.3.4.1 mma9559 vars_t* mma9559 vars_addr_get(void) 62

4.3.4.2 events_t mma9559 events_set clear(events_t set_events,
events_tclear_events) 63
4.3.4.3 int mma9559_events_find_first(events_tevents) 64

4.4 FIFOs
441

4.3.4.4 int mma9559_ events_find_next(events_t events, int current_event) .. .65
4.3.4.5 void mma9559 idle_use_stop_config(idle_config_t config, idle_bits_t bits)

66
4.3.4.6 void mma9559 idle(void) 67
4.3.4.7 int mmag559_interrupts_disable(void) L. 68
4.3.4.8 void mma9559 interrupts_restore(intstatus) 69
4.3.4.9 int mma9559 user_trap0(int dO, int d1, int d2, void *a0, void *al) 70

4.3.4.10 int mma9559 user_trapl(int dO, int d1, int d2, void *a0, void *al)71
4.3.4.11 int mma9559 user_trap2(int dO, int d1, int d2, void *a0, void *al)72
4.3.4.12 int mma9559 user_trap3(int dO, int d1, int d2, void *a0, void *al)73

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

Section Number Title Page

4.4.1.1 #define FIFO_STRUCT(max_entries, bytes per_entry) struct { uint32 rs-

vd[2]; uint8 data[max_entries * bytes_per_entry]; } 74
4.4.2 Data SUUCIUIES . . . o e e e 75
4421 mma9559 fifo t 75
4.4.3 FUNCHONS e e e e e 76
4.4.3.1 int mma9559 _fifo_init(volatile mma9559 fifo_t *fifo_ptr, events_t events,
unsigned int max_entries, unsigned int bytes_per_entry) 76
4.4.3.2 void mma9559 fifo_reset(volatile mma9559 fifo_t *fifo_ptr) 78
4.4.3.3 int mma9559 fifo pop(volatile mma9559 fifo t *fifo_ptr, uint8 *data_ptr,
unsigned int entries) o 79
4.4.3.4 int mma9559 _fifo_push(volatile mma9559 fifo_t *fifo_ptr, uint8 *data_ptr,
unsigned int entries) o 80
4.4.3.5 int mma9559 fifo_entries_used(volatile mma9559 fifo t *fifo_ptr)81
4.4.3.6 int mma9559 fifo_entries_free(volatiie mma9559 fifo t *fifo_ptr) 81
4.5 Other funNClioNS e e e 82
451 ENUMErAtiONSttt 82
45.1.1 enumboot_options_t 82
45.1.2enummmf func t. 83
4.5.2 Data StUCIUIESot e e e e 84
4.5.2.1 mma9559 device info_t......... 84
45.22unionrmf return t 85
4.5.3 FUNCHONS e e e e 86
4.5.3.1 void mma9559 boot_options_set(boot_options_t option) 86
4.5.3.2 int mma9559_ device _info_get(int length, mma9559 device info_t *addr)
87
4.5.3.3 void* mma9559 rom_command(rmf_func_t func_id, void *addr) 88
4.6 JIRTIEr ... 89
4.6.1 Data StrUCIUIreSo 90
4.6.1.1 mmads59 coef t 90
4.6.2 FUNCHONS e e e e 91
4.6.2.1 int16 mma9559 iir_filter(int16 input, const mma9559 coef _t *coef,
void *buffer) 91
4.6.3 Typedefs 92
4.6.3.1 typedef struct mma9559 coef t mma9559 coef t................. 92

Appendix A

Revision History
A.1 Changes Between Revisions 0 and 0.1 i e 93

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 5

Freescale Semiconductor, Inc.

Chapter 1 About this Document
1.1 Overview

1.1.1 Purpose

Thisreference manual describes the features, architecture and programming model of the MM A 9559L
Intelligent, Motion-Sensing Platform. This device incorporates dedicated accelerometer MEM S
transducers, signal conditioning, data conversion, and a 32-bit programmable microcontroller. For
information about the device's hardware, see the MMA955xL. Intelligent, Motion-Sensing Hardware
Reference Manual (MMA955xXLRM). (See “ References’” on page 10.)

1.1.2 Audience

This document is primarily for system architects and software application developers who are using or
considering use of the MMA9559L device in a system.

1.1.3 Document structure

This document combines afirmware overview with detailed functional documentation and sample user
code.

* “Firmware Overview”: Provides an overview of the device’s memory configuration and firmware
reguirements and explanations of the firmware’s basic functional blocks.

» “User Code Exampl€e’: Provides sample code that can be used as atemplate for creating user code.

* “Functiona Details’: Givesthe technical details of the firmware's macros, enumerations, data
structures, and functions.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 7

1.2 Terms and acronyms

AFE Analog Front End

AP Application Programming Interface
CcC Command Complete

Cl Command Interpreter

CMD Command

COCO Conversion Complete

CRC Cyclic Redundancy Check

DFC Data Format Code

EVM Evaluation Module

FIFO First In First Out (Data structure)
FOPT Flash Options Register

GPIO General-Purpose Input / Output
IR Infinite Impulse Response
MBOX Mailbox

MCU Microcontroller

MTIM Modulo Timer Module

PDB Program Delay Block

RCSR Reset Control and Status Register
SFD Start Frame Digital

TPM Timer Program Module

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

8 Freescale Semiconductor, Inc.

1.3 Conventions

This document uses the following notational conventions:

cleared/set

MNEMONICS
mMenoni ¢S
italics

0x0
Ob
REG[FIELD]

nibble
byte
word
longword
X

n

~

|
OVERLINE

When abit takesthe value O, it is said to be cleared; when it takesavalue of 1, it
issaid to be set.

In text, instruction mnemonics are shown in uppercase.
In code and tables, instruction mnemonics are shown in lowercase.

Italics indicate variable command parameters.
Book titles also areitalicized.

Prefix of Ox to denote a hexadecimal number
Suffix of b to denote a binary number

Abbreviations for registers are shown in uppercase. Specific bits, fields or ranges
appear in brackets. For example, RAMBAR[BA] identifies the base addressfield
in the RAM base-address register.

A 4-bit data unit

An 8-hit data unit

A 16-hit data unit

A 32-hit data unit

In some contexts, such as signal encodings, x indicates a*“do not care.”
Used to express an undefined numerical value.
NOT logical operator

AND logical operator

OR logical operator

Field concatenation operator

Indicates that asignal is active-low.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

1.4

References

MMA955xL Intelligent, Motion-Sensing Hardware Reference Manual (MMA955xLRM);
also see the MM A955xL. documentation webpage
The 1°C-Bus Specification, Version 2.1, January 2000, Philips Semiconductors

1°C-Bus Specification and User Manual, NXP Semiconductors Document UM 10204, Rev. 03 -
19 June 2007

ColdFire Family Programmer’s Reference Manual (CFPRM) Rev. 3, 03/2005, Freescale
Semiconductor, Inc.

IR Filter application note AN4464, Digital Filtering with MMA955xL

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

10

Freescale Semiconductor, Inc.

http://cache.freescale.com/files/dsp/doc/ref_manual/CFPRM.pdf?fsrch=1&sr=1
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=MMA9550L&nodeId=011269C10C&fpsp=1&tab=Documentation_Tab

Chapter 2 Firmware Overview

The MMA9559L device is a member of the Freescale MMA955xL intelligent, motion-sensing platform
family. Unlike the other members of the MM A955xL family—where the factory-programmed firmware
provides out-of-the-box operation—the MMA9559L only provides a lightweight infrastructure and
requires user-programmed firmware for the device to run anything other than the internal,
ROM-command-line interpreter.

This approach reduces the factory programmed firmware on the MMA9559L to only 2 KB of flash
memory, leaving the other 14 KB for customer firmware.

After an introduction to the firmware file, this chapter provides an overview of the firmware and related
hardware topics. The information is divided into the following functional categories:

e “Memory and CPU usage”

e “Hardware support”

» “Eventsand scheduling”

 “FIFOs’

* “Power”

These same categories are used in the following chapter, that provides functional details.

2.1 Firmware elements and functionality

The nma9559. h file contains the type and function declarations required to build custom user firmware
that can be loaded onto the Freescale MM A9559L device.

In order to use this device, CodeWarrior 10.1 or later with the MM A 9550 service pack must be installed
for development.

The MMA9559L device's built-in firmware provides the following basic functionality:

* Deviceinitiaization: This code clearsthe RAM within the MMA9559L and sets up the Exception
Vector Base Register, Vector Table, and the user and supervisor stack pointers. The firmware
enablesinterrupts and switches to User mode and jumpsto the function whose addressis stored in
the flash location 0x0000 _0800.

If the user flash memory is blank, the Freescale firmware resets back to the ROM command
interpreter.

* Exception vector handler: This code provides athin handler that is called whenever an exception
occurs (other than a Trap instruction). This handler saves the state of the volatile registers,
disables/masks the interrupts, switches to User mode, and then calls a user-supplied,
exception-handler function.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 11

The user-written user _excepti on_handl er () code returns abit field that sets bitsin the
mma9559 vars_t eventsfield. This can be used to control a smple execution loop in the user
firmware.

» Trap vector handler: Traps are software-triggered exceptions that can be issued by user firmware.
This code provides a set of functions that can be called by the user firmware. A set of four trap
exceptions arereserved for the user firmware that can register user-supplied trap handlersfor each
of them.

The contents of the mma9959.h header file may be used by customer firmware, but thisfile should not be
modified.
2.2 Memory and CPU usage

The Freescale firmware uses 2 KB of the MMA9559L device's 16 KB of flash memory and 384 bytes of
its2 KB of RAM.

2.2.1 Flash memory

The MMAO9559L has 16 KB of flash memory, located at the address range 0x0000_0000 to 0x0000_3FFF.
The flash space is assigned as shown in the following table.
Table 2-1. Firmware flash usage

Flash Region Size (bytes) Usage
0x0000_0000 to 0x0000_07FF 2048 | Freescale primary firmware, including the exception table.
0x0000_0800 to 0x0000_0803 4 | User firmware startup vector: Contains the address of the
user firmware startup code to execute.
0x0000_0804 to 0x0000_3FFB 14328 | User firmware image.
0x0000_3FFC to 0x0000_3FFF 4 | Optional Cyclic Redundancy Check (CRC) and default

Flash Options Register (FOPT) value.

The startup vector stored at 0x800 isused to locatethe _st ar t up() functioninthe user firmware. If this
vector is not OXFFFF_FFFF, the Freescale firmware jJumps to it after the firmware initialization is
complete. This vector is normally set in the vector table entry in the user project except i ons. c.

2.2.2 RAM

The MMA9559L has 2 KB of RAM, located at the address range 0x0080_0000 to 0x0080_07FF. This
space is assigned as shown in the following table.
Table 2-2. Firmware RAM usage

RAM Region Size (bytes) Usage
0x0080_0000 to 0x0080_00FF 256 | Variables for ROM code, trim and Freescale firmware
0x0080_0100 to 0x0080_077F 1664 | Space for user firmware variables, heap and user stack
0x0080_0780 to 0x0080_07FF 128 | Supervisor stack used by the Freescale firmware

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

12 Freescale Semiconductor, Inc.

The first section of RAM isreserved for use by the Freescale firmware to store variables used by the
firmware and the ROM functions.

The second section of 1664 bytesisavailable for use by the user firmware. Thisincludes space for global
variables, the heap, and the user stack. The Freescalefirmwareinitializes the entire user variable and heap
region with the value 0, so that all global variables are initialized to 0.

Thelast section of RAM isreserved for the Freescale firmware to store the supervisor stack, whichisused
whenever the firmware isrunning. Theuser _excepti on_handl er () andthe

user _trap_handl er () functionsare called from the Freescale firmware, but are run in User mode,
using the user stack space rather than using the supervisor stack space.

2.2.3 Supervisor stack usage

The MMA955xL devicesuse aColdFirevl coreasthe CPU. This CPU containsa set of user registersand
aset of supervisor registers. When executing in User mode, only the user registersare accessible, but when
running in Supervisor mode, all registers are accessible. The ColdFire CPU enables separate stacks to be
used for User and Supervisor modes. The MMAO9559L firmware operates in Supervisor mode, but
switches back to User mode when executing any user firmware.

The ColdFire CPU usesthe A7 and alternate A7 registers to provide the stack pointer, so that the
MMAO9559L firmware only permits asingle level of interrupts to be processed, eliminating the risk of
reentrant code, and alimit is placed on the amount of RAM required for the supervisor stack. Interrupts
are disabled when the deviceisin acritical section or executing an MMA9559L firmware function, auser
trap call, or the exception handler.

However, the INT pin is a non-maskable interrupt that can always execute, even when the interrupts are
masked. The INT pin uses a special, lightweight interrupt handler that converts the non-maskable INT
interrupt to a maskable software interrupt. But in doing so, it consumes 12 bytes of stack space.

Usage of the supervisor stack space should be analyzed to ensurethat it does not exceed the reserved space,
otherwise it starts to overwrite the user stack space and may corrupt the user program.

For details on the different operational scenarios and the amount of stack space used by each function, see
“Memory and CPU usage” on page 39.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 13

2.3 Hardware support

User code can access the underlying functionality of the MMA955xL. hardware, but the MM A9559L also
provides functions to fully enable some key hardware capabilities. This section explains how these
functions can be used. For more details, see “Hardware support” on page 42.

2.3.1 Frame interval counter

The MMA955xL hardware is designed on aframe structure. Each frame starts when the FIC (Frame
Interval Counter) reaches the configurable frame-rate timer interval and creates a Start-of-Frame
exception. This exception can be used intheuser _except i on_handl er () to start a sequence of
activities to be executed in each frame.

The frame-rate interval is set by calling the function mma9559_f r aner at e_set () with one of the
following parameter values:
» FRAMERATE_NONE: Disablesthe FIC, preventing the device from waking up periodically.
* FRAMERATE_3906HZ: Configuresthe FIC to run at 3906 Hz
* FRAMERATE_1953HZ: Configuresthe FIC to run at 1953 Hz
* FRAMERATE_977HZ: Configuresthe FIC to run at 977 Hz
» FRAMERATE_488HZ: Configuresthe FIC to run at 488 Hz
* FRAMERATE 244HZ: Configuresthe FIC to run at 244 Hz
* FRAMERATE_122HZ: Configuresthe FIC to run at 122 Hz
* FRAMERATE_61HZ: Configuresthe FIC to run at 61 Hz
* FRAMERATE_30HZ: Configuresthe FIC to run at 30.5 Hz
* FRAMERATE_15HZ: Configuresthe FIC to run at 15.3 Hz
* FRAMERATE_8HZ: Configuresthe FICtorun at 7.6 Hz
* FRAMERATE_4HZ: Configuresthe FICtorun at 3.8 Hz
* FRAMERATE_2HZ: Configuresthe FICtorun at 1.9 Hz
* FRAMERATE_1HZ: Configuresthe FIC torun at 0.95 Hz
* FRAMERATE_POINT5HZ: Configuresthe FIC to run at 0.48 Hz
* FRAMERATE_POINT2HZ: Configuresthe FIC to run at 0.24 Hz
Setting the frame rate to FRAMERATE_NONE reduces the power consumption of the device to the

lowest level, because the clock to the FIC is disabled. The power consumption will generally increase as
the frame rate isincreased.

When theframeinterval isset to aframerate of FRAMERATE_NONE, the Start-of-Frame exception does
not occur to wake the device. The device can be awakened by the mailbox or INT pin exceptions.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

14 Freescale Semiconductor, Inc.

2.3.2 Analog Front End (AFE)

The hardware registers for the Analog Front End (AFE) cannot be directly accessed by user code. They
can be controlled and monitored through the functions provided in the Freescale firmware.

The AFE can be configured using the mma9559_af e_csr _set () function that takes a single parameter
which combines one of each of the three configurable aspects of the AFE by OR-ing them together. The
three aspects and their configurable elementsinclude:

* G-mode range: Selects the G range operating mode by selecting one of the following:
— AFE_CSR_GRANGE_8G: Setsthe AFE to the +/-8g range
— AFE_CSR_GRANGE_4G: Setsthe AFE to the +/-4g range
— AFE_CSR_GRANGE_2G: Setsthe AFE to the +/-2g range
» Fourth-channel data source: Selects the source of the data for the fourth channel of the AFE:
— AFE_CSR_C4MODE_NONE: Does not measure anything with the ADC’s fourth channel

— AFE_CSR_CAMODE_TEMP: Usesthe ADC's fourth channel to measure the temperature
sensor

— AFE_CSR_C4AMODE_EXT: Usesthe ADC'sfourth channel to measure the external inputs
* AFE conversion mode: Setsthe number of bits for the AFE conversion:

— AFE_CSR_CMODE_10BIT: Performs a 10-bit ADC conversion, so the 6 LSBsisbe 0

— AFE_CSR_CMODE_12BIT: Performsa 12-bit ADC conversion, so the 4 LSBsisbe O

— AFE_CSR _CMODE_14BIT: Performs a 14-bit ADC conversion, so the 2 LSBsisbe 0

— AFE_CSR_CMODE_16BIT: Performsa 16-bit ADC conversion using all 16 data bits
For example, to configure the AFE to capture 10 bits of data in the 2g range, ignoring the fourth ADC
channel, the code in the following example would be used.

Example 2-1.

/1 Configure the AFE Control and Status Register
nMe9559 afe csr_set((afe_csr_options_t)(

AFE_CSR GRANGE 2G | /1l Use +/- 2 g range
AFE_CSR _CAMODE_NONE | /1 Measure X, Y, Z channels only
AFE_CSR CMODE_10BI' T /1 Use 10 bit conversion

The current AFE configuration can be read using the 9559 _af e_csr _get () function.

The AFE conversion is started by calling the mma9559_af e_conver si on_start () function. Thisis
normally called withintheuser _excepti on_handl er () when a Start-of-Frame exception occurs, but
the function can be called from anywhere in user code.

When the AFE completes the AFE sample, it creates a Conversion-Complete exception. The

user _exception_handl er () canrespond to thisexception by enabling asequence of operationsto use
the AFE data. Normally, this sequence is executed in the main execution level, rather than in the

user _exception_handl er ().

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 15

The AFE registers contain semi-trimmed dataval uesthat need to completetherest of thetrimming process
before they can be used. In most cases, theuser _except i on_handl er () respondsto the
Conversion-Complete exception by signaling an event and the code in the main execution loop reads the
trimmed AFE data using code similar to the following example:

Example 2-2.

mm9559 afe data t afe data; /1l Variable to hold the trimed AFE data

/! Read and trimthe AFE data
nmea9559 _afe_tri mmed_sensor _dat a_get (af e_dat a. dat a) ;

NOTE
The signaling of an event is described in more detail in “Events and
scheduling” on page 18.
In afew circumstances, it may be desirable to read the raw, semi-trimmed data values and then complete
the trimming later. Two situations where this might be useful are:

* A FIFOisbeingusedto passdatafromtheuser _excepti on_handl er () tothemainexecution
loop

» Thedatasamplesarebeing filtered and decimated before use. (Sincethetrim processin thisdevice
islinear, it is permissible to filter and decimate the semi-trimmed data and then trim the result.)

The FIFO case could be implemented with code like the following example:

Example 2-3.

/1 1n the user exception handl er
nMme9559 afe data_t raw data; /1 Variable to hold the sem -trimmed AFE data

case Vect or Nunber _Vconversi on_conpl et e:
/1 AFE conversion conpl ete exception
nme9559 afe raw sensor _data_get (raw data. data);
/!l Read sem -trimed AFE data
nmea9559 fifo push((nmm9559 fifo t*)&afe fifo, (uint8*)raw data.data, 1);
/1 store in a FIFO break;

/1 1n the main execution | oop

nMme9559 afe data_t raw data; /1 Variable to hold the sem -trimmed AFE data
nMe9559 afe data_t afe_data; /1 Variable to hold the trinmed AFE data
case EVENT_AFE FI FO /1 Get the sem trinmed data fromthe FIFO

nmme9559 fifo pop((mm9559 fifo t*)&afe fifo, (uint8*)raw data.data, 1);
nme9559 afe_raw sensor_data_trin(afe_data.data, raw data.data);

/1 and trimit

/1 continue processing with the trimed AFE data

A more compl ete description of the FIFO operation isgiven in “FIFOS’ on page 24.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

16 Freescale Semiconductor, Inc.

The trim process modifies the gain and offset of the X, Y, Z, and temperature sensor values using
part-specific trim values that were measured and cal culated during the manufacture of the device. Thetrim
process also applies a set of three, user-specified offsetsto the X, Y, and Z axes that can be set to
user-configured values, by adding them to the results of the normal trim calculation.

The user-specified offsets can be set using the 9559 _af e_of f set s_set () function and read back
using the mma9559_af e_of f set s_get () function. The user-specified offset values are treated as
valuesin the 8g range and adjusted automatically to the appropriate g range when the g range is changed
withthemma9559 af e_csr_set () function. The user-specified offset values can be determined by
putting the device into the 8g mode, reading the accelerometer values without the effects of gravity, and
then negating these values.

The user offset values are reset whenever the deviceis reset.

2.3.3 Stop mode control

When there is no further software processing required, the CPU can be put into STOP mode to reduce the
power consumption. The MMA955xL hardware enables additional power savings by also enabling the
system clock rate to be controlled.

Three different stop clock modes are supported:
» Stop Fast Clock: The CPU is stopped and the clock treeis still running at the normal rate of 8 MHz
» Stop Slow clock: The CPU is stopped and the clock treeis running at areduced rate of 62.5 kHz.
» Stop No Clock: The CPU is stopped and the clock tree is disabled

There are some limitations on which clock rate can be used and they vary with the hardware functionality
being used. For example:

* When the AFE is converting a data sampl e then the clock must remain at 8 MHz (fast), therefore
the Stop Fast Clock mode must be used when stopping the CPU, but not Stop Slow Clock or Stop
No Clock.

» If theframe interval counter is being used to wake the device periodically, then the clock must
remain running, so either Stop Fast Clock or Stop Slow Clock modes must be used when stopping
the CPU, but not Stop No Clock (in fast or slow mode).

To stop the CPU and determine which clock rate to use, the 9559 i dl e() function can be called
whenever there is no other software to run. For more information on this usage, see “ Events and
scheduling” on page 18. For amore detailed explanation of the clock’s operation, see“ Power” on page 28.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 17

2.4 Events and scheduling

While the MMA9559L firmware does not provide atask scheduler, it does provide the main components
that can be used to create a simple, execution-loop scheduler, in the form of Events. This section explains
how these functions can be used. For more details, see “ Events and scheduling” on page 56.

2.4.1 Events

The MMA9559L firmware supports up to 32 events, each one represented by a single bit in the
mme9559_var s_t eventsfield. Whenever an event issignaled (activated), the corresponding bitisset in
the events field. When the event is handled, the bit is cleared.

The MMA9559L firmware does not use any of the event bits, alowing the assignment of the 32 bits by
the user firmware. In thisimplementation, the least-significant bit of the events bit field corresponds to
event 0—which may be treated as the highest-priority event. The most-significant bit of the event field
corresponds to event 31, which may be treated as the |lowest-priority event.

The currently signaled (active) events can be read directly from the MMA9559L firmware
mma9559_vars_t datastructure eventsfield, but it should not be modified except through the return
valuefromtheuser _excepti on_handl er () or using thenma9559 events_set cl ear ()
function.

Events are normally signaled inthe user _excepti on_handl er () which is created by the user and
existsin the user firmware. The easiest way to signal eventsisfor theuser _excepti on_handl er () to
return an event bit field as the function return value where the corresponding bits have been set for the
events that should be signaled. With this, the Freescale exception handler takes care of signaling the
events.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

18 Freescale Semiconductor, Inc.

This methodology enablestheuser _excepti on_handl er () tocompleteitswork quickly, keeping the
interrupt duration short. A simple, user _excepti on_handl er () isshown in the following example.

Example 2-4.
__decl spec(register_abi) events_t user_exception_handl er(
i nt vect or) /1 exception vector nunber
{
events_t events = 0; /1 Events to be signaled (defaults to none)

switch (vector)

{

case VectorNunber Vstart of franme:// Start of Frane
FCSR SF = 1; /1 Clear interrupt source
/1 Add Start of Frane event to the events to be signaled (asserted)
events | = EVENT_BI TFl ELD(EVENT_START_OF_FRAME) ;

br eak;

defaul t: /1 code to handl e the other exception sources
br eak;

}

return events; /1 signal events to be signaled (activated)

Events can aso be managed by FIFOs. (See “FIFOS’ on page 24.) In this case, events that are associated
with FIFOs are signaled when the FIFO contains data and the FIFO events are cleared when the FIFO is
empty.

Events are normally handled in a simple execution loop within the user mai n() function. The user
firmware selects an active event bit and performs the required processing. When the processing has
completed, the event bit can be cleared using the mma9559_event s_set _cl ear () function.
Alternatively, if the event is associated with aFIFO, it is cleared when the last datais read from the FIFO.

Two functions are provided to assist with the selection of the event to process:

* mm9559 events_find_first() selectsthehighest-priority event that isactiveand returnsthe
event number (from O to 31) for the chosen event.

« mm9559 events_find_next () selectsthe next active task in around-robin manner, working
from the least-significant bit to the most-significant bit and then wrapping around again.

The nmma9559 i dl e() function isused to put the MMA9559L into the lowest permissible power state
when no computational work isrequired. The function considersthe eventsfield and if any event bitsare
still signaled (set) when the mma 9559 _i dl e() function iscalled, it returnsimmediately to allow the
events to be processed.

The function only enters a CPU Stop mode to save power when the 9559 vars_t eventsfieldisO.
When an exception occurs, the MMA9559L wakes up from STOP mode and runs the exception handler.
The mma9559 i dl e() function then returns back to the scheduling loop in the main function.

Thenma9559 i dl e_use_st op_confi g() function can be used by user code to adjust the lowest
permissible power state when required by hardware. For more details, see “Power” on page 28.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 19

The discussed commands can be combined in asimple execution loop within the main function, as shown
in the following example.

Example 2-5.

events_t events;
int event = 0O;

/1 Initialization to set up the Freescale firmvare data structure

/1 Loop forever processing events
while (1) {
/1 retrieve the bitfield of active events
events = mm9559 vars_ptr->events;
if (events) { /1 if there are any active events
/'l select the next event to process with priority scheduling
/1 or use mMua9559 events find _next() for round robin scheduling
event = nmm9559 events find first(events);
/1 priority scheduling
switch (event) {
/1 insert code to respond to each of the events here

}
/1 clear event
nMmma9559 events _set clear (0, EVENT BI TFl ELD(event));
}
el se /1 if there are no outstanding events then go to sl eep
mma9559 idle();

b

Event signaling can also be used creatively by tasks in the main execution loop:
» When one task completes, it can wake up the next task by signaling the appropriate event.
* Internal state variables can be used to process more time-consuming tasks.

Some tasks may require longer execution timesto complete their processing. The event scheduling
is cooperative rather than preemptive, requiring long tasksto break up their processing into
multiple shorter executions.

Internal state variables may be used to keep track of the processing state of the task. Such tasks
may deliberately not clear the event that causes them to run, but instead leave it set for the task to
execute repeatedly to perform the rest of the processing steps. Only when all of the required
executions have been performed is the event bit cleared.

» Using FIFOsfor inter-process communication may be easier, when some longer tasks are difficult
to break up.

The mm9559 vars_t structure also containsan event s_mi ssed field. The bitsin thisfield are set
whenever an event issignaled and the event bit isalready active in the event field. Thissituation indicates
that the scheduler may be“losing” events because a new occurrence of the event has been signaled before
the processing for the previous event has been completed and the event bit cleared.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

20 Freescale Semiconductor, Inc.

Theevent s_mi ssed fieldisnever cleared by the Freescale firmware and may be used as adiagnostic to
identify problems with the scheduling of event processing. Theevent s_mi ssed field hasadlightly
different operation when associated with FIFOs. See “FIFOS’ on page 24.

2.4.2 Initialization

The user firmware must perform some initialization steps to configure the MMA9559L firmware before
the user exception handler can run or events can be used. The initialization steps are:
1. Retrieve the address of the MMA9559L Freescale firmware data structure.

This structure is needed in order to read the currently signaled events and to set the pointers to the
user handler functions. The address does not change at run time, and it only needs to be read once.

2. Set the pointer totheuser _except i on_handl er () function.

This must be done before any exceptions are enabled or the firmware may end up trapped in the
exception handler because the exception cause is not being cleared.

3. Optionally, set the pointer to theuser _t rap_handl er () functions.

Thisisonly required if user trap functions are being used and the pointer should be set before the
user trapiscalled. If auser trap is called before the pointer isinitialized, the trap-call function just
returns, but the system does not lock up.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 21

Thisinitialization normally occurs at the beginning of the user main function. The pointer to Freescale
firmware data structure can be aglobal variable, to avoid retrieving it multiple times. The following
example gives initialization code.

Example 2-6.

voi d mai n(voi d)

{

/1 Instantiate | ocal variables

/! Retrieve the address of the mm9559 vari abl es structure
nMme9559 vars_ptr = nmmm9559 vars_addr_get ();

/'l Register the user exception handl er (nust occur before interrupt sources are enabl ed)
nmea9559 vars_ptr->user_exception_handl er = user_exception_handl er

/! Register any user trap handlers (only needed if there are any user trap handl ers)
nMme9559 vars_ptr->user _trap_handl er[0] user _trap_handl erO;
nMme9559 vars_ptr->user _trap_handl er[1] user _trap_handl erl
nMe9559 vars_ptr->user _trap_handl er[2] user _trap_handl er 2;
nMme9559 vars_ptr->user _trap_handl er[3] user _trap_handl er 3;

/1 Interrupt sources can now be enabl ed

/1 Loop forever processing events

while (1) {
_—
}
2.4.3 Interrupts and critical sections

Interrupts are treated in a simple manner. Only one level of interrupt is permitted, therefore interrupts can
never be nested or reentrant. The only exception isthe INT pin IRQ which is non-maskable. Thispinis
handled with its own special handler, as explained in “ Supervisor stack usage”’ on page 13.

Theuser _exception_handl er () anduser _trap_handl er () functions are aways called with
interrupts already disabled/masked so that they are not interrupted. The user firmware should not change
the interrupt settings inside these functions.

Normal user code executes with interrupts enabled/unmasked. Occasionally, there are small sections of
code that should not be interrupted by exceptions, in order to avoid unintended side effects. For example,
themma9559 vars_t eventsand nmma9559 i dl e_t fields may be modified within exception handlers,
as aresult any changes to these fields within normal user code would be protected.

The mma9559 i nterrupts_di sabl e() and nma9559 i nterrupts_restore() functionscanbe
used by normal codeto create critical sectionsthat cannot beinterrupted by exceptions. They may be used
in either of the following manners.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

22 Freescale Semiconductor, Inc.

In simple implementations—where calls to disable interrupts can never be nested—a smpler form can be
used, a shown in the following example.

Example 2-7.
nMmea9559 i nterrupts_di sabl e(); /1 start critical section (disable interrupts)
nMmea9559 interrupts_restore(0); /1 enable interrupts

If thereis any possibility that calls to disable interrupts (such as critical sections) may be nested, a
more-advanced form can be used that savesthe state of theinterrupts at the start of the critical section. This
form also restores the interrupts to the same state (masked or unmasked) that they were at the start of the
critical section. See the following example.

Example 2-8.

int status = nma9559 interrupts_di sabl e();
/] start critical section (disable interrupts)

nMea9559 i nterrupts_restore(status); /1 restores previous interrupt mask state

Thenmma9559 i nt errupt s_di sabl e() function changes the Interrupt Priority Mask in the ColdFire
Status Register to 7, that masks all interrupt sources. Any exceptions that occur while the interrupts are
disabled are not lost, but remain pending in the hardware. Those pending interrupts are serviced as soon
astheinterrupt level isrestored at the end of the critical section.

Since interrupts are delayed, the critical section should be kept as short as possible to avoid unnecessarily
increasing the interrupt latency.

Themma9559 i nterrupts_restore() function doesnot just enable interrupts by changing the
Interrupt Priority Mask back to 0. It also restores the mask to the state supplied in the status parameter—
which the user should have saved from the result of the nma 9559 i nt err upt s_di sabl e() function
call. Thisdistinction enables the interrupt functions to work correctly, even when interrupts are nested
accidentally or deliberately.

The mma9559 i nterrupts_restore() function usesonly the interrupt-priority mask bits of the
supplied status parameter. If any of the interrupt priority mask bits are set, the interrupt priority mask is
set to 7 to mask all interrupts. Otherwise, the interrupt priority mask is set to 0 to enable/unmask the
interrupts.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 23

25 FIFOs

Most applications needs can be met using the Events and Scheduling capabilities, where an event can be
signaled in the user exception handler and handled in the main execution loop. Thisworks when the tasks
in the execution loop are short and can be completed before the next interrupt or AFE sample.

Occasionally, longer processing is required—processing that takes more time than the interval between
interrupts/AFE samples. In such cases, the AFE samples would be lost—if the regular event method was
used.

This can be handled in a couple of ways:

» Break the longer tasks into a number of smaller sections which can each be executed separately.
(See “Events and scheduling” on page 18.)

» Use FIFOsfor inter-process communications, as described in more detail in this section.

FIFOs provide a configurable amount of buffering between tasks in order to store data before being
processed. This can be used in situations where the tasks with longer execution times execute infrequently
and the total average processing time per AFE sample isless than the AFE sample period. The FIFO
provides a meansfor storing data temporarily during the times when the long-execution task runs, so that
that data can be retrieved from the FIFO and processed when shorter tasks run.

The MMA9559L firmware includes simple FIFO functionality that enables multiple, user-configurable
FIFOs to be created by the user code. For each of the FIFOs, the FIFO buffer size is configured in terms
of the maximum number of entries that can be stored and the size of each entry.

All entries within a FIFO are the same size, although different FIFOs may have a different, fixed entry
size. The size of each FIFO entry should be determined by the data being stored in it. For example, if a
FIFO is storing AFE samples, the entry size might be sizeof(mma9559_af e_dat a_t). The maximum
number of entries should be determined according to the maximum delay that may be caused by the
long-execution tasks.

The FIFO functions aso can use the event functionality. When a FIFO isinitialized, the event bit field is
specified that defines the events associated with the FIFO. Typically, there is either zero or one event
associated with aFIFO. If there are any events associated with a FIFO, when datais pushed into the FIFO
the associated events are signaled. When the FIFO becomes empty—either because the last datawas
popped out of the FIFO or the FIFO is reset—the associated events are cleared.

This can be used in conjunction with the simple event scheduling capability to trigger processing to occur
whenever the FIFO contains data. In order to easily identify which FIFO contains data, it is best to use an
event bit in only one FIFO. That enables the appropriate FIFO to be uniquely identified by the event bit,
when the event is signaled.

If an event isassociated with aFIFO by being set in the eventsfield when the FIFO isinitialized, the event
isaddedtotherma 9559 vars events_fi f os field. That preventsthe event from being signaled by the
user _excepti on_handl er () code or modified by the mra9559_event _set _cl ear () function.

Theevents_mi ssed fieldinthenrma9559 vars_t structure isused dightly differently for events
that are associated with FIFOs. In this case, theevent s_ni ssed event bit is set whenever the FIFO
overflowsbecauseit cannot storeall of the dataentriesthat arebeing pushed intoit. Thissituation indicates

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

24 Freescale Semiconductor, Inc.

that the scheduler may be*“losing” events because one or more FIFO sampleswere not stored on the FIFO,
although user code may make some accommodation for this. Theevent s_mi ssed field isnever cleared
by the Freescale firmware and may be used as a diagnostic to identify problemswith the chosen FIFO size.

FIFOs are used with the following steps:

1. Instantiate the FIFO variable to reserve the space for the FIFO structure.

2. Initialize the FIFO at run time to configure it before it is used.

3. Push dataonto the FIFO, as it becomes available.

4. Pop data off the FIFO in the tasks that process the data.

5. Reset the FIFO to discard the current contents of the FIFO and restore it to its empty state.
FIFOsarenormally created as global variables so that they are aways permanently allocated and are never
de-allocated. They may also be created aslocal variableswithin functions, in which case they are alocated

on the user stack. If they are on the user stack, the user must ensure that they are not referenced after they
have gone out of scope and been removed from the stack.

25.1 Instantiate FIFO

The data buffer and control variables for each FIFO are held in a single data structure. The data structure
can either be created on a per-instance basis or by creating a data type that enables multiple instances of
the same FIFO to be created.

A FIFO instance can be created with the FIFO_STRUCT macro, asin the following code that creates the
FIFO test_fifo. That FIFO can hold up to FIFO_MAX_ENTRIES entries, where each entry is the size of
themma9559 af e_dat a_t datatype.

FI FO_STRUCT(FI FO_ MAX _ENTRI ES, si zeof (nmmma9559 afe data t)) test fifo;
An alternate method of creating a FIFO isto create a data type for the required FIFO configuration and

instantiate one or more FIFO variables from the data type with the same configuration. In the following
example, thefifo 20 t datatypeis created and used to create fifo_1 and fifo_2 variables:

Example 2-9.

typedef FIFO STRUCT(10, 2) fifo_20_t;
fifo 20 t fifol, fifo2;

2.5.2 Initialize FIFO

Once the FIFO data structure has been created through the definition of a FIFO variable, the space for the
FIFO structure has been reserved, but the contents of the FIFO structure must be initialized beforeit is
used. Initialization of a FIFO occurs at runtime and performs the following steps:

» Setsthe eventsthat are associated with the FIFO, and reserves them in the mma 9559 _var s
events_fi f os field. It dsoclearsthe associated events, in case any eventswere already signaled
because the FIFO is now empty and contains no data.

» Setsthe maximum number of data entries that the FIFO can hold and the size of each data entry.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 25

Both values must be greater than 0 and less than 256. The product of the maximum number of
entries and the size of each entry must be less than or equal to the size that was reserved when the
FIFO variables was created. (Normally, the values are the same as when the FIFO variable was
created/instantiated.)

* Resetstheinternal variables, so that the FIFO is empty.

From Example 2-9 on page 25, fifol may be initialized with the following code to set the FIFO sizeto the
same values that were used in the FIFO data type (maximum entries of 10, each entry is 2 bytes). The
following example shows how to associate fifol with the EVENT_FIFO event value:

Example 2-10.
ret = mm9559 fifo_init(
(mua9559 fifo_ t*)&fifol, /1 pointer to the FIFO structure
EVENT_BI TFI ELD(EVENT_FIFO), // bitfield of associated events
2 /1 maxi mum nunber of data entries

si zeof (mm9559_afe_data_t) /1 nunber of bytes in each data entry

Thereturn valuefromnmma9559 fifo_init () isO,if theinitializationissuccessful. If theinitialization
fails, thevaueis-1. If the values for the maximum number of entries or the bytes per entry areinvalid (O
or greater than 255), theinitialization fails. The buffer size (the product of the maximum number of entries
and the bytes per entry) isnot checked to seeif it exceeds the space reserved during the FIFO instantiation.

2.5.3 Push data onto the FIFO

Data can be stored in a FIFO after it has been successfully initialized. Data is always stored as an integer
number of dataentriesand is copied (byte by byte) into the FIFO from the supplied data pointer. Since the
data entry size was already set when the FIFO was configured, al that must be provided is the number of
data entries to be stored.

Usually datais pushed onto the FIFO one at atime, but the writing of multiple entriesalso is supported. I
the FIFO does not have enough empty data entries to store the data, the push operation is limited to the
amount of free space in the FIFO.

Thenmma9559 fifo_push() function returnsthe number of entries that were actually pushed onto the
FIFO, alowing user code to check that the requested data was stored correctly. If the number of entries
stored does not match the requested number of entries to push, the FIFO overflows and the associated
event bitsare set inthe mma9559 _vars events_m ssed field.

If the FIFO has not been successfully initialized, thereturn valueisaways0. No datais stored in the FIFO.
Example 2-11.

ret = mm9559 fifo_push(
(mua9559 fifo t*)&fifol, // pointer to the FIFO structure
(uint8*)raw dat a. dat a, /1 pointer to the first byte of the first entry
1 /1 the nunber of data entries to store

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

26 Freescale Semiconductor, Inc.

Since the FIFO push operation is performed within the firmware with interrupts disabled, it is an atomic
transaction. This ensures that multiple asynchronous processes can safely push data into the same FIFO
without any risk of interruption or corruption.

254 Pop data off the FIFO

Data can be read from a FIFO after it has been successfully initialized. Datais aways read as an integer
number of data entries and is copied (byte by byte) from the FIFO to the supplied data pointer. Since the
dataentry sizeisaready set when the FIFO was configured, all that is needed isthe number of data entries
to be fetched.

Data can be read as single or multiple entries. If the FIFO does not contain enough valid data entries to
store the data, the pop operation is limited to the number of non-empty entriesin the FIFO.

Themma9559 fifo_pop() function returnsthe number of entriesthat were actually popped off the
FIFO, allowing user code to check that the requested data was retrieved correctly. If the number of entries
read does not match the requested number of entries to pop, the FIFO underflows.

If the FIFO has not been successfully initialized, the return valueis always 0 and no data is read from the
FIFO.

Example 2-12.

ret = mm9559 fifo_pop(
(mua9559 fifo t*)& ifol,// pointer to the FIFO structure
(uint8*)raw data.data, // pointer to the start of the destination buffer
1 /1 the nunber of data entries to retrieve

Since the FIFO pop operation is performed within the firmware with interrupts disabled, it is an atomic
transaction. This ensures that multiple asynchronous processes can safely pop data off the same FIFO
without any risk of interruption or corruption.

255 Reset the FIFO

A FIFO can bereturned to an empty state, discarding its contents and resetting the associated events, using
the 9559 fifo_reset () function. Thisisuseful for quickly discarding the contents of a FIFO
without having to read all of the data entries:

Example 2-13.

ret = mm9559 fifo_reset(
(mua9559 fifo_ t*)&fifol /1 pointer to the FIFO structure to reset

)

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 27

2.5.6 Other FIFO functions

The following additional FIFO functions are provided by the firmware:

* mm9559 fifo_entries_used(): Returnsthe number of data entries currently used in the
FIFO.

« mm9559 fifo_entries_free(): Returnsthe number of data entries currently unused in the
FIFO.

2.6 Power

The MMA9559L device supports four major power modes, listed below from highest to lowest:

» System clock running at full speed (8 MHz) with the CPU running (RunFastClock)

e System clock running at full speed (8 MHz) with the CPU stopped (StopFastClock)

» System clock running at slow speed (62.5 kHz) with the CPU stopped (StopSlowClock)

» System clock and CPU stopped (StopNoClock)
|deally, the device would aways run in the lowest power mode (StopNoClock), but that is not feasible
because of interactions with the hardware. For instance:

* Inorder for theframeinterval counter to run and wake the device up periodically, the system clock
must be running in either Fast or Slow Clock rates, but cannot be stopped in the No Clock mode.

* The AFE ADC requiresthe system clock to be running at full speed in order for the conversion to
complete. Once the ADC conversion is complete, the clock rate may be reduced.

In order to accommodate dynamic changes of the stop mode clock rate, the mma9559 i dl e_t structure
isused. It contains two 32-bit fields:

e use_stop_fc

* use_stop_sc
Whenever the device has no further CPU processing to perform, the Freescale firmware can put the CPU
into Stop mode until the next interrupt occurs. However, the appropriate clock speed mode must be used.

Themua9559 i dl e() function selectsthe clock speed based on the two fieldsin the ma9559 i dl e_t
structure:

* Ifuse_stop_fc isnot zero, then use StopFastClock mode,

» Elseif use_st op_sc isnot zero, then use StopSlowClock mode,

» Else, use StopNoClock mode.
The 32 bitsin each field are split into 16 bits that are reserved for use by Freescale firmware and 16 bits
that user code can allocate to different activities that are impacted by the clock rate so that the activities
can each independently control the selection of the Stop-mode clock speed.
The Freescale firmware aready uses two of the reserved bits:

* |IDLE BITS CKOSC isused by the frame interval counter to prevent the use of StopNoClock
when the frame interval counter is being used.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

28 Freescale Semiconductor, Inc.

IDLE_BITS AFE isused by the AFE to force the use of StopFastClock when the ADC is
performing a conversion.

Theuse_stop_fc anduse_st op_sc fields may be modified inside the
user _exception_handl er () function. While these functions can be read anywhere, any code that
modifies the functions should only be executed when interrupts are disabled.

This can be achieved in three ways:

Withintheuser _excepti on_handl er () oruser _trap_handl er () functions,
* When interrupts are disabled using the i nt er r upt s_di sabl e() function,
* Using the mua9559 i dl e_use_st op_confi g() function.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1
Freescale Semiconductor, Inc.

29

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

30

Freescale Semiconductor, Inc.

Chapter 3 User Code Example

The functionality of the device is determined by the user firmware. This section shows sample code that
can be used as atemplate for creating that firmware.

The following code usually would be contained in asingle file. The code is split into four sections:

* Header

» User exception handler
o User trap handler

e Usermain

Each of the sectionsis required, except the user trap handler, which is optional and usually not needed.

3.1 Header

The user code should include the mma9559. h header file, instantiate the key global variables, assign event
bits, and set the FOPT value that is loaded from address Ox3FFE.

/1

11

11

11

Example 3-1.
#i ncl ude "derivative. h" /1 include peripheral declarations
#i ncl ude "mMmu9559. h" /1 include nma9559 firmvare functions

User assignnment of event bits (0 to 31)
#defi ne EVENT_AFE DATA (0) // AFE conversion is conplete
#defi ne EVENT_SLAVE PORT (1) // wite to the slave port nail boxes conpl etes

Set Flash Options to enable boot from Fl ash
word flash_opt @x3FFE = 0x0337;

/1 |/FOPT_BF_MASK | /1 This bit is inverted so | eave
/1 /1 blank for boot fromflash.

/1 FOPT_CHECKB_NMASK | /1 Do not perform Flash CRC

/1 FOPT_PW MASK [/1 PROTB writable

/1 FOPT_PROTB_MASK | /1 Flash Array NOT protected

/1 FOPT_SSW MASK | /1 Security State Witable

/1 FOPT_SSC MASK; /1 Security State = Unsecured

Instantiate gl obal variables

Use a pointer to access the MMA9559 firnmnare vari abl es
mm9559 vars_t *mm9559 vars_ptr;

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 31

/1 The follow ng variables are useful if working with the slave mail boxes, to
/1 record the mail box read and wite status bits before they are cleared in the
/1 user exception handl er

vui nt 32 sp_reads;

vui nt 32 sp_writes;

3.2 User exception handler

The user firmware normally contains asingle user exception handler function that is similar to
Equation 3-2 on page 33. This example lists all of the exception vectors that are specific to the
MMA955xL device.

For additional information on the exception sources, see the MMA955xL. Intelligent, Motion-Sensing
Hardware Reference Manual (MMA955xLRM). (See “References’ on page 10.).

The MMA9559L firmware handles the exception, masks the interrupts, and saves the volatile registers.
Then, it switches to User mode (with interrupts still masked) and callsthe user _excepti on_handl er ().

Theuser _excepti on_handl er () codeis modified/written by the user to perform the following
functions:

» Clear the source, or mask—the interrupt that caused the exception.
* Optionally, perform processing based on the interrupt.

This should be short, to limit the interrupt latency.
* Do either of the following:

— If the user wants to use the scheduling capabilities (described in “ Events and scheduling” on
page 18): Signal events by setting a return value that causes the execution of code in the main
function loop.

— |If the user does not want to signal events. Return 0.

Whentheuser _excepti on_handl er () function completes, control returnsto the MMA9559L firmware.
Thefirmwaresignalsthe eventsbased onthereturn valuefromtheuser _except i on_handl er () function,
restoresthe volatile registers, and restores the Program Counter and Status Register to their previous states
before the exception occurred.

NOTE

Two of the interrupts sources operate differently from the other interrupt
SOurces:

* TheVect or Number _Vconver si on_conpl et e Vector occurs on the
completion of an AFE conversion, and uniquely clears the interrupt
source without requiring the user _excepti on_handl er () function to
Clear it.

Theuser _exception_handl er () function may still perform
processing or signal events when this exception occurs, but it does not
need to clear the AFE conversion complete interrupt source.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

32 Freescale Semiconductor, Inc.

* ThelINT/IRQ pinisanon-maskable interrupt. In order to prevent it
from preempting already-running exception processing that exceedsthe

supervisor stack space, the pin is handled by athin handler.

The handler disables the IRQ interrupt and signals a Level-5 software

interrupt that is maskable. The user trap handler hasto

acknowledge/clear the software interrupt and re-enable the INT / IRQ

pin interrupt.

Example 3-2.

/1 User

Excepti on Handl er function declaration

__decl spec(register_abi) events_t user_exception_handl er(

/1 User

i nt

vector);

Excepti on Handl er function definition exanple
/1 This function is called in User node with interrupts di sabl ed/ masked

__decl spec(register_abi) events_t user_exception_handl er(

{

i nt

vect or)

events_t events = 0;
switch (vector) {

case

case

case

case

case

case

case

Vect or Nunber VL5swi :

| NTC_CFRC = Ox3A

| R@SC_| RQACK = 1;
IRSC IRQ E = 1;

br eak;

Vect or Nunber _Vt pnilovf :
TPMSC_TOF = 0;

br eak;

Vect or Nunber _Vt pmlchO:

TPMCOSC _CHOF = O0;
br eak;

Vect or Nunber _Vt pmlchl:

TPMC1SC CH1F = 0;
br eak;

Vect or Nunber _Vntim
MTI1T ML6SC_TOF = 0;
br eak;

Vect or Nunber _Vpdb_a:
PDB_SCR_SA = 1;
br eak;

Vect or Nunber _Vpdb_b:
PDB_SCR_SB = 1;
br eak;

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

/1

exception vector nunber

/1l Events to be signaled (defaults to none)

/1 Proxy for the INT pin (IRQ external
5 Software Interrupt (first)

/1
/1
/1

/1
/1

/1
/1

/1
/1

/1
/1

/1
/1

/1
/1

Cl ear |evel
Clear interrupt source
Re-enabl e 1 RQ i nterrupt

TPM Overfl ow
Clear interrupt source

TPM Channel O
Clear interrupt source

TPM Channel 1
Clear interrupt source

MIT M (Modul o Tiner) Overfl ow
Clear interrupt source

PDB_A

Clear interrupt source

PDB_B

Clear interrupt source

i nterrupt

Freescale Semiconductor, Inc.

33

case Vect or Nunber _Vsp_wake: /1 Slave mail box
/1 Save the mailbox read and wite status bits if needed for |ater
sp_wites = *((vuint32*)&SP_WSTS0) ;
sp_reads = *((vuint32*)&SP_RSTS0);
SP_SCR _ACTI VE_CSR = 1, /1 Clear slave port read and wite status bits
/1 Signal an event to trigger processing in the nain execution |oop
events = EVENT_BI TFlI ELD(EVENT_SLAVE PORT) ;
br eak;

case VectorNunber_Vstart_of franme: // Start of Frame

FCSR_SF = 1; /1 Clear interrupt source
nmea9559 afe_conversion_start();// Start a new AFE conversion
br eak;

case Vect or Nunber _Vconversi on_conpl ete:// AFE conversi on conpl ete
/1 Interrupt source already cleared in the Freescal e excepti on handl er
/1 Signal an event to enable processing in the main execution | oop
events = EVENT_BI TFI ELD(EVENT_AFE_DATA) ;

br eak;
case Vect or Nunber Vmaster i 2c: /1l 12C Master
IITCS II1CF = 1; /1l Clear interrupt source
br eak;
defaul t:
br eak;
}
return events; /1 signal events to run in the nain execution |oop

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

34

Freescale Semiconductor, Inc.

3.3 User trap handler

Although most firmware devel opers do not need to use these capabilities, the user firmware may optionally
create up to four user trap handlers. The trap handlers can be called by any of the supplied functions:

e mm9559 user _trap0()
* mm9559 user_trapl()
« mm9559 user_trap2()
e mm9559 user _trap3()

Alternatively, the trap call can be issued directly, using the following assembly trap instructions:
e asm{ trap #TRAP_USER O }
e asm{ trap #TRAP_USER 1 }
e« asm{ trap #TRAP_USER 2 }
e asm{ trap #TRAP_USER 3 }

When issuing atrap call directly with an assembly instruction, the user code isresponsible for setting the
required valuesin the registers.

The MMA9559L firmware handles the trap exception, masks the interrupts, switchesto User mode (with
interrupts still masked), and calls the appropriate user _t rap_handl er () .

When theuser _trap_handl er () function completes, control returns to the MMA9559L firmware. The
firmware leaves the return value in the DO register and restores the Program Counter and Status Register
to their previous state before the trap call. The firmware does not save and restore the volatile registers
because the trap call istreated as afunction call. The compiler takes care of the valuesin the volatile
registersin the calling function.

A trap handler normally appears similar to the following example. The parameters are the valuesin the dO,
dl, d2, a0 and al registers when the trap call isissued. The use of the parametersis up to the user code.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 35

Example 3-3.

/1 User Trap Handl er function declaration
__decl spec(register_abi) int user_trap_handl er(

i nt do,
i nt di,
i nt d2,

voi d *ao,
voi d *al);

/1 User trap Handl er function definition exanple
__decl spec(register_abi) int user_trap_handl er(

i nt do, /1 first integer paraneter
i nt di, /1 second integer paraneter
i nt dz, /1 third integer paraneter
void *a0, /1 first pointer paraneter
void *al) /1 second pointer paraneter
{
switch (d0) {
case 0O:
}
return O;
}

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

36 Freescale Semiconductor, Inc.

3.4 User main

Theuser mai n() function is called from the startup code. It should initialize all key variables and enter
an infinite loop, waiting for events and processing them when they occur.

Events are signaled in the User Exception Handler. The exception wakes up from the mma9559_i dl e()
function and keeps processing until all of the signaled events have been cleared. At that point, the function
again callsthe mm9559 i dl e() function to enter alow-power sleep.

Example 3-4.

voi d mai n(voi d)
{
nme9559 afe data_t afe_data;
events_t events;
int event;
int frame_ctr = 0;

/1 Get the address of the mma9559 vari abl es structure
nMe9559 vars_ptr = nmmm9559 vars_addr_get ();

/1 Register the exception handler and any trap handl ers
nMme9559 vars_ptr->user_exception_handl er = user_exception_handl er;
nMmma9559 vars _ptr->user _trap_handl er[0] = user _trap_handl er;

/1 Setup the slave port nail boxes to generate an interrupt when witten to
SP_SCR = (SP_SCR & (SP_SCR EN_MASK | SP_SCR PS MASK)) |

SP_SCR_ACTI VE_CSR_MASK |

SP_SCR_STOP_EN_MASK |

SP_SCR_W E_MASK;

/1 Configure the AFE and Frane |Interval Counter
mma9559 afe csr_set((afe_csr_options_t)(

AFE_CSR_GRANCE_8G | /1 Use AFE 8 g node
AFE_CSR_CAMODE_NONE | /1 Do not use the 4th ADC channel
AFE_CSR CMODE_16BIT)); /1l Use 16 bit ADC conversion

mma9559 franerate_set (FRAMERATE PO NT2HZ);// Set the frame rate to 1/5 Hz

/1 Loop forever processing events
while (1) {
events = mm9559 vars_ptr->events;
if (events) {
/'l select the next event to process
event = mMm9559 events find first(events); // priority scheduling
switch(event) {

case EVENT_AFE DATA: /1 AFE Conversion Conpl ete
frame_ctr++;
mma9559 afe trinmed_sensor_data_get (af e_data. data);
/1 add user code here
br eak;

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 37

case EVENT_SLAVE PORT: /1 Slave Port Maibox wite
if (sp_wites & 0x01)
C /!l add user code here
br eak;
}
nma9559 events_set _cl ear (0, EVENT_BI TFl ELD(event));// clear event
}

el se
nmea9559 i dl e(); /1 if there are no outstanding events, then go to sl eep

b

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

38 Freescale Semiconductor, Inc.

Chapter 4 Functional Detalls
This chapter provides the details for the following functional categories and special topics:

4.1

“Memory and CPU usage’
“Hardware support”
“Events and scheduling”
“FIFOs”

“Other functions”

“lIR filter”

Memory and CPU usage

This section documents the resources used by each of the MMA9559L Freescale firmware functions in
terms of Supervisor Stack Space (RAM) and CPU (cycles and time).

In examining the firmware's use of memory and the CPU, there are three scenarios to consider:

When in a Freescale firmware function, all interrupts are disabled except for the INT / IRQ
interrupt. The supervisor stack usage for each of the Freescale functionsis shown in the
“Supervisor stack usage” on page 13.

Thetotal stack usage could also include an additional 12 bytesfor the IRQ / INT interrupt, asthe

worst-case usage in this scenario ismm9559_devi ce_get _i nf o() (100 bytes) plusthe IRQ
handler (12 bytes) giving atotal of 112 bytes supervisor stack usage.

Waking up from idle sleep mode to handle an exception and then getting an IRQ / INT exception.

Thenmma9559 i dl e() function uses 8 bytes of stack space, the Freescale portion of the exception
handler uses 36 bytes, and the INT / IRQ handler uses 12 bytes, for atotal of 56 bytes. Additional
stack space will be used by functions called in theuser _excepti on_handl er ().

There are 128 bytes available and 56 bytes already have been used, with 72 bytes of supervisor
stack space remaining. Since the user exception handler runs on the user stack, it isonly necessary
to count Freescale firmware functions.

Thisenablesany Freescalefunction except mma9559_devi ce_i nf o_get () tobesafely caled from
within the exception handler.

Being in a user trap function and then getting an IRQ / INT exception.

A user trap function consumes 20 bytes of supervisor stack space and the INT / IRQ exception
handler takes 12 bytes, for atotal of 32 bytes that |eaves 96 bytes available for calling Freescale
firmware functions or other user trap calls.

Thisenablesany Freescalefunction except mma9559_devi ce_i nf o_get () tobesafely called from
within the user trap handler. If theuser _trap_handl er () callsother user _trap_handl er ()
functions or isrecursive, an additional 20 bytes of stack space is used for each instance.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 39

4.1.1 Supervisor stack

Asdescribed in “Memory and CPU usage” on page 12, the last section of RAM isreserved for the
supervisor stack that is used whenever the firmware is running.

Theuser _exception_handl er () andtheuser _trap_handl er () functionsare called from the Freescale
firmware, but are run in User mode, using the user stack space rather than using the supervisor stack space.
Four other firmware functions do not use any supervisor stack space, because they are in-line functions
that are expanded in the customer code and do not issue any trap call. Those functions are:

* mm9559 events_find _first()

* mm9559 events_find_next()

e mm9559 fifo entries free()

« mm9559 fifo_entries_used()

Sincethe MMA9559L clocksat 8 MHz when the CPU is running, the CPU time needed for the remaining
functions can be estimated by dividing the CPU usage in cycles by eight. The following table gives the
memory space, CPU cycles, and time required for firmware functions.

Table 4-1. Firmware's use of RAM and CPU

Function sstgglfruvslsa;; (apcp:)féjx?n);gtﬁy)l Time (ps)?
(bytes)
Exception Handler 36 115 14
mma9559 afe_conversion_start() 24 77 10
mma9559_afe_csr_get() 24 83 10
mma9559_afe_csr_set() 40 217 27
mma9559_afe_offsets_get() 24 78 10
mma9559_afe_offsets_set() 24 78 10
mma9559_afe_interrupt_clear() 24 80 10
mma9559_afe_raw_sensor_data_get() 24 88 11
mma9559_afe_raw_sensor_data_trim() 52 210 26
mma9559_afe_trimmed_sensor_data_get() 52 218 27
mma9559_boot_options_set() 24 79 10
mma9559_device_info_get() 100 718 20
mma9559_events_find_first() 0 8 1
mma9559_events_find_next() 0 65 8
mma9559_events_set_clear() 24 103 13
mma9559_fifo_entries_free() 0 39 5
mma9559_fifo_entries_used() 0 16 2

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

40 Freescale Semiconductor, Inc.

Table 4-1. Firmware’s use of RAM and CPU (Continued)

. Supervisor CPU cycles . ,
Function stack usage (approximately)l Time (us)
(bytes)
mma9559 _fifo_init() 24 106 13
mma9559_fifo_pop()® 40 145+ E * (12 + 6 * B) —
mma9559_fifo_push()3 40 134 + E * (22 + 6 * B) —
mma9559_fifo_reset() 24 103 13
mma9559_ framerate_set() 28 105 13
mma9559 _idle() 8 34 4
mma9559_idle_use_stop_config() 24 87 11
mma9559 _iir_filter() (order O)* 40 143+9*0 —
mma9559 _interrupts_disable() 12 44 6
mma9559_interrupts_restore() 12 46 6
mma9559_rom_command (RMF_DEV_INFO, 0)° 68 515 64
mma9559_user_trap0() 20 101 13
mma9559_ vars_addr_get() 24 76 10

1 E = The number of entries that are being transferred.

B = The size of each entry, in bytes.

O = The order of the filter.

The CPU time may be calculated for the blank cells, by calculating the number of CPU cycles and dividing by 8.
The CPU usage of the mma9559_fi f o_pop() and mmma9559 fifo_push() functions depends on the number
of entries that are being transferred (E) and the size of each entry in bytes (B). Once the number of cycles has
been calculated, the CPU time can be determined by dividing by 8.

The CPU usage ofthe mma 9559 iir_filter () function depends onthe order (O) of the filter. Once the number
of cycles has been calculated, the CPU time can be determined by dividing by 8.

The CPU time for the mma9559 r om command() function depends on which of its ROM functions are being
executed. The stack usage is fixed, however, because the ROM functions do not use stack space. The ROM
Device Info function was used for the measurement of the CPU cycles and time in Table 4-1.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

4.2

Hardware support

Enables user code to access key hardware functionality of the MMA955xL device.

The MMA9559L Freescale firmware provides a set of functions that enable access to key areas of
functionality in the MMA955xL hardware. These areas include:

4.2.1

Frame Interval Counter (FIC): Creates a periodic interval timer
Analog Front End (AFE): Configures and reads the sensor hardware values

Macros

4.2.1.1 #define NUM_SENSOR_AXIS 5
Specifies the total number of axes/sensorsin the (AFE) Analog Front End. These include:

4.2.2

Accelerometer X, Y, and Z
Temperature
External input

Enumerations

4.2.2.1 enum afe_csr_options_t

This enumeration configures the AFE (Analog Front End) through the AFE CSR (Control and Status
Register).

Sincethe AFE_CSR is not directly accessible in User mode, it can be accessed using the Freescale
mm9559 afe_csr_set () and ma9559 afe_csr_get () functions.

The AFE_CSR controls three parameters of the AFE operation:

G range selection: The AFE can operate in +/-2g, +/- 4g or +/-8g range.

Fourth Conversion: The X, Y and Z accelerometer channels are measured using three out of four
of the ADC channels. The fourth channel can be disabled or used to measure the temperature or
external ADC input.

Conversion mode: The ADC can perform a 10, 12, 14, or 16-bit conversion. A higher bit
conversion gives more resolution in the result, but takeslonger to complete, such that more power
is consumed.

The significance of the most-significant bit remains the same in all conversion modes. In other

words, if the conversion mode islessthan 16 bits, the least-significant bits of the raw sensor value
isO.

The AFE_CSR setting valueis normally constructed by OR-ing one entry from each of the three sections
and casting it to the correct type, as shown in the following example.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

42

Freescale Semiconductor, Inc.

Example 4-1.

\\ Configure the AFE Control and Status Register
nMe9559 afe csr_set((afe_csr_options_t)(

AFE_CSR GRANGE 2G | /1l Use +/- 2 g range
AFE_CSR CAMODE_TEMP | /1 Measure X, Y, Z and Tenperature
AFE_CSR CMODE_10BI' T /1 Use 10 bit conversion
)
See also:

e void mma9s59 afe csr_set(afe csr_options t options)
» void mma9s59 afe csr_set(afe csr_options t options)

Table 4-2. enum afe_csr_options_t enumerators

Enumerator Description
AFE_CSR_GRANGE_8G Set the AFE to the +/-8g range, so each LSB is 0.244 mg
AFE_CSR_GRANGE_4G Set the AFE to the +/-4g range, so each LSB is 0.122 mg
AFE_CSR_GRANGE_2G Set the AFE to the +/-2g range, so each LSB is 0.061 mg

AFE_CSR_C4MODE_NONE Do not measure anything with the ADC's fourth channel

AFE_CSR_C4MODE_TEMP Use the ADC's fourth channel to measure the temperature sensor

AFE_CSR_C4MODE_EXT Use the ADC's fourth channel to measure the external inputs
AFE_CSR_CMODE_10BIT Perform a 10-bit ADC conversion so the six LSBs are 0
AFE_CSR_CMODE_12BIT Perform a 12-bit ADC conversion so the four LSBs are 0
AFE_CSR_CMODE_14BIT Perform a 14-bit ADC conversion so the two LSBs are 0
AFE_CSR_CMODE_16BIT Perform a 16-bit ADC conversion using all 16 data bits

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

43

42.2.2

This enumeration configures the FIC (Frame Interval Counter) frequency through the CK_OSCTRL
register.

enum framerate t

The frame interval counter is the primary mechanism for waking the device up periodically to take some
action such asreading the AFE values. The frameinterval counter register is accessible in User mode, but
afunction is provided to set the frame rate for two reasons:

* The upper three bits of the CK_OSCTRL register control other attributes of the oscillator, and
should be preserved when the frame rate is changed.

* Inorder for theframeinterval counter to run, the lowest power idle mode that can be used is Stop
SC (dow clock). Thisis ensured by setting the IDLE_BITS CKOSC bitintheidle
mu9559 i dl e_t use_stop_sc field. Whilethisfield can be accessed by user code, it should only
be modified while interrupts are disabled, either in the exception or trap handlers, or when
interrupts have been disabled.

If theframerateisset to FRAMERATE_NONE, theIDLE_BITS CKOSChitintheidlenma9559_i dl e_t
use_st op_sc field is cleared to enable idle mode to drop to the lowest power Stop NC (no clock) mode.
If the framerateis set to any other valid value, the IDLE_BITS CKOSC bitintheidle ma9559_i dl e_t
use_st op_sc field is set to prevent the idle mode from dropping below the Stop SC (dow clock) mode.

If the device entersthe Stop NC state, the frame interval counter does not run and cannot wake the device
at the start of each frame.

See also:
o framerate t mma9559 framerate set(framerate t rate)

Table 4-3. enum framerate_t enumerators

Enumerator Description

FRAMERATE_NONE

The FIC is disabled and does NOT wake up the MMA9559L periodically.

FRAMERATE_3906HZ

Configures the FIC to run at 3906 Hz

FRAMERATE_1953HZ

Configures the FIC to run at 1953 Hz

FRAMERATE_977HZ

Configures the FIC to run at 977 Hz

FRAMERATE_488HZ

Configures the FIC to run at 488 Hz

FRAMERATE_244HZ

Configures the FIC to run at 244 Hz

FRAMERATE_122HZ

Configures the FIC to run at 122 Hz

FRAMERATE_61HZ

Configures the FIC to run at 61 Hz

FRAMERATE_30HZ

Configures the FIC to run at 30.5 Hz

FRAMERATE_15HZ

Configures the FIC to run at 15.3 Hz

FRAMERATE_8HZ

Configures the FIC to run at 7.6 Hz

FRAMERATE_4HZ

Configures the FIC to run at 3.8 Hz

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

44 Freescale Semiconductor, Inc.

Table 4-3. enum framerate_t enumerators

Enumerator Description
FRAMERATE_2HZ Configures the FIC to run at 1.9 Hz
FRAMERATE_1HZ Configures the FIC to run at 0.95 Hz

FRAMERATE_POINT5HZ | Configures the FIC to run at 0.48 Hz

FRAMERATE_POINT2HZ | Configures the FIC to run at 0.24 Hz

4.2.3 Data structure

4.2.3.1 mma9559 afe data t

Themu9559 af e_dat a_t Structure is used to contain a set of raw or trimmed AFE sensor data taken
during asingle AFE sample. A 16-bit, signed value is stored for each axis/sensor, where the number of
axes/sensors in each sampleis defined in the NUM_SENSOR_AXI S macro.

See also:
o framerate t mma9559 framerate set(framerate t rate)

Field

int16 data [5]: Raw or trimmed value for each axis/sensor

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

45

424 Functions

4.2.4.1 framerate_t mma9559 framerate_set(framerate_t rate)

This function configures the FIC (Frame Interval Counter) with the supplied frequency. If the frame rate
isinvalid, it isignored and the frame rate is not adjusted.

Example 4-2.

franerate_t framerate;
framerate = nMmm9559 framerate_set (FRAMERATE 488HZ) ;

If theratevalueisFRAMERATE_NONE, theIDLE_BITS CKOSCbitisclearedinthenma9559_i dl e_t
use_st op_sc field, enabling the mm9559 i dl e() function to use the StopNC stop mode (unless some
other setting of thei dl e_confi g_t structure preventsit).

If the rate value is any other valid rate, the IDLE_BITS_CKOSC hit is set in the nma9559_i dl e_t
use_st op_sc field, preventing the mma9559_i di e() function from using the SlopNC mode, and stopping
the FIC from running.

NOTE

At the highest supported framerate of 3.906 kHz, the 16-bit and 14-bit AFE
conversion cannot be completed within the frame interval, as aresult only
an AFE conversion length of 12 bits or less should be used.

See also:
e enum framerate t
 “Frameinterval counter” on page 14
e “User main” on page 37

Return

Theresulting framerate valueistheframeinterval counter. Thisshould be the same asthe requested value,
unless the requested value was invalid, in which case the current frame rate setting in the frame interval
counter is returned.

Parameter

rate: The frame rate setting for the frame interval counter frequency.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

46 Freescale Semiconductor, Inc.

4.2.4.2 void mma9559 afe conversion_start(void)

Thisfunction triggers the AFE to start an ADC conversion cycle. The duration of the conversion depends
on the AFE_CSR configuration. When the conversion completes, the

Vect or Number _Vconver si on_conpl et e exception occurs and can be used by the

user _excepti on_handl er to start subsequent processing.

Thisfunction can be called from anywhere in user code, but isusually called from within the

user _excepti on_handl er () function, when the Start of Frame interrupt is serviced, to minimize the
jitter on the AFE sampling:

Example 4-3.
__decl spec(regi ster_abi) events_t user_exception_handl er(
int vector) /1 exception vector nunber
{
case VectorNunber Vstart of frane: /1l Start of Frane
FCSR_SF = 1; /1 Clear interrupt source
nma9559_af e_conversion_start(); /1l Start a new AFE conversion
br eak;
}

The function also setsthe IDLE_BITS AFE inthe ma9559 idle_t use_stop_fc field sothat the

mma9559_i dl e() function uses StopFC (fast clock) during any idle time. The ADC requires the system
clock to run at full speed during the AFE conversion.

See also:
e “User exception handler” on page 32

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 47

4.2.4.3 void mma9559 afe interrupt_clear(void)

Thisfunction resets the AFE conversion complete bit that is set on the completion of the ADC conversion.
It also clearsthe IDLE BITS AFE inthe mua9559 idle_t use_stop_fc. Asaresult, the
ma9559_i dl e() function isno longer forced to use StopFC (fast clock) during any idle time.

NOTE

Since the Freescale exception handler already executes this functionality
whenever an AFE conversion complete exception occurs, users do not
normally need to call thisfunction unless they are operating with interrupts
disabled.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

48 Freescale Semiconductor, Inc.

4.2.4.4 void mma9559 afe raw_sensor_data_get(int1l6 *data_ptr)
This function gets the raw (semi-trimmed) data from the AFE sensors.

Normally, the trimmed AFE sensor values are read using the
mma9559_af e_t ri nmed_sensor _dat a_get () functionwhich readsthe hardware registersand appliesthe
trim calculations in asingle function call.

This function copies the semi-trimmed sensor values directly from the AFE hardware registersinto the
supplied data structure. The raw sensor values can then be trimmed using the

mu9559_af e_raw sensor _data_trim() function. This can be useful in saving power when basic
operations can be performed on the sensor data (such as decimation), prior to applying the trim
calculations.

Example 4-4.

nMme9559 afe data_t raw afe_data;

nMe9559 afe raw sensor_data_get(raw _afe_data. data);

The raw sensor values are stored in the array of 16-bit signed integersin the order:
* Accelerometer X axis
e Accelerometer Y axis
» Accelerometer Z axis
e Temperature
* External input

The Temperature and External input values do not change if the AFE_CSR is not configured to measure
them using the fourth ADC channel.

NOTE

The user must ensure that the supplied data structureislarge enough to hold
the valuesfrom all of the axis/sensors. The number of axes/sensorsisset in
the NUM_SENSOR_AXIS definition.

See also:

* void mma9559 afe trimmed_sensor_data get(int16 *trim_ptr)

* void mma9559 afe raw_sensor_data_trim(int16 *trim_ptr, int16 *data_ptr)
e mma9559 afe data t

* “Anaog Front End (AFE)” on page 15

Parameter
data ptr: Addressto store the raw AFE sensor data values.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 49

4.2.4.5 void mma9559 afe raw_sensor_data_trim(int16 *trim_ptr, int16
*data_ptr)

This function trims the supplied raw AFE sensor data to produce trimmed AFE sensor values.

Normally the trimmed AFE sensor values are read using the

mu9559_afe_tri mmed_sensor _dat a_get () functionwhich readsthe hardwareregistersand appliesthe
trim calculations in asingle function call.

This function trims previously read semi-trimmed sensor values, that were read using the

mu9559_af e_raw sensor _dat a_get () function, and optionally pre-processed. The trim processing is
identical to the 9559 afe_tri med_sensor _data_get () function.

Example 4-5.

nMme9559 afe data_t raw afe_data;
nMe9559 afe data_t trinmmed_afe_ dat a;

nmea9559 afe _raw sensor _data_trin(tri med afe _data.data, raw afe_data.data);

NOTE

The user must ensure that the supplied data structure islarge enough to hold
the values from al of the axig/sensors. The number of axis/sensorsissetin
the NUM_SENSOR_AXIS definition.

See also:

e void mma9559 afe raw_sensor _data get(int1l6 *data ptr)
e mma9s59 afe data t
* “Anaog Front End (AFE)” on page 15

Parameters

e trim_ptr: Addressto store the trimmed AFE sensor data values.
e data ptr: Address of the raw AFE sensor data to be trimmed.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

50 Freescale Semiconductor, Inc.

4.2.4.6 void mma9559 afe trimmed_sensor_data_get(int16 *trim_ptr)

This function reads the data from the AFE sensor hardware registers and applies the trim calculations to

provide the accurate values.

The accelerometer sensor values are corrected for gain and offset using device-specific trim values. User

specified offsets are also applied to account for offsets caused by board mounting during the assembly
process. The user offsets can be set using the ma9559_afe_of f sets_set () function.

Example 4-6.

mma9559 afe data t trimed _afe data;

nmmea9559 afe_tri mmed_sensor_data_get (tri nmed_af e_dat a. dat a) ;

The trimmed sensor values are stored in the array of 16-bit, signed integersin the order:

* Accelerometer X axis

* Accelerometer Y axis

* Accelerometer Z axis

* Temperature

* External input
The temperature and external input values remain unchanged, if the AFE_CSR is not configured to
measure them using the fourth ADC channel.

NOTE

The user must ensure that the supplied data structureislarge enough to hold
the values from al of the axis/sensors. The number of axig/sensorsissetin
the NUM_SENSOR_AXIS definition.

See also:
* void mma9559 afe offsets set(int16 *data ptr)
e mma9559 afe data t
* “Analog Front End (AFE)” on page 15

Parameter

trim_ptr: Addressto store the trimmed AFE sensor data values.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

51

4.2.4.7 void mma9559 afe csr_set(afe_csr_options_t options)

This function configures the AFE (Analog Front End) by setting the AFE CSR (Control and Status
Register) contents. The AFE_CSR isnot directly accessible in User mode, so thisfunction enablesit to be
set by the user. The function also preserves some fixed configuration settings.

The AFE_CSR controls three parameters of the AFE operation:

* Grange sdlection: The AFE can operate in +/-2g, +/- 4g or +/-8g range.

» Fourth Conversion: The X, Y, and Z accelerometer channels are measured using three out of the
four ADC channels. The fourth ADC channel can be disabled or used to measure the temperature
or external input.

» Conversion mode: The ADC can perform a 10, 12, 14, or 16-bit conversion. A higher bit
conversion gives more resolution in the result, but takes longer to complete, and consumes more
power.

The significance of the most-significant bit remains the same in all conversion modes. If the
conversion modeis less than 16 bits, the least-significant bits of the raw sensor valueis 0.
The AFE_CSR setting valueis normally constructed by OR-ing one entry from each of the three sections
and casting it to the correct type, as shown in the following example.

Example 4-7.

/1 Configure the AFE Control and Status Register
nmea9559_afe_csr_set ((afe_csr_options_t)(
AFE_CSR GRANGE 2G | // Use +/- 2 g range
AFE_CSR CAMODE TEMP | // Measure X, Y, Z and Tenperature
AFE_CSR CMODE_10BIT) // Use 10 bit conversion

);

Parameter

options: Configuration option to be loaded into the AFE CSR.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

52 Freescale Semiconductor, Inc.

4.2.4.8 afe_csr_options_t mma9559_ afe csr_get(void)
This function reads the configuration bits from the AFE CSR register.

Example 4-8.

afe_csr_options_t csr;
csr = mMmu9559 afe csr_get(); /1 Read the current AFE CSR val ue

See also:

* void mma9559 afe offsets set(int16 *data ptr)
* enum afe _csr_options t

Return
The current setting of the AFE CSR options.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 53

4.2.4.9 void mma9559 afe offsets_set(int16 *data_ptr)
Thisfunction gets the current AFE accelerometer user offset values.

Themu9559 afe_trimed_sensor_data_get () and nma9559 afe _raw sensor_data_trin()
functions add user-programmabl e offset values to the trimmed accel erometer readings. These values may
be set or read by the user.

The offset values are treated as values in the 8g range (where the hex value 0x4000 equatesto 1g), and are
adjusted automatically to the appropriate g range when the g range is changed with the

mu9559_af e_csr_set () function. The values can be determined by putting the device into the 8g mode,
reading the accelerometer values without the effects of gravity, and negating these values.

Example 4-9.

intl6 offsets[3] = { 0, 0, 0x4000 }; /1 X, Y and, Z offsets in 8g node
nMmea9559 afe of fsets _set(offsets);

The user offset values are reset whenever the deviceis reset.

See also:
» void mma9559 afe trimmed_sensor_data get(int16 *trim_ptr)

Parameter

data ptr: Address containing the three accel erometer user offset values.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

54 Freescale Semiconductor, Inc.

4.2.4.10 void mma9559 afe offsets_get(intl6 *data_ptr)

Thisfunction enablesthe user to read the current val ues of the three accel erometer user offset settings. The
offset values are in 8g mode, with the hex value of 0x4000 corresponding to an offset of 1g.

Example 4-10.
int16 of fsets[3]; /1 X, Y and Z offsets in 8 g node
nea9559 afe_of fsets_get (of f sets);
NOTE

The user must ensure that the supplied data structureislarge enough to hold
the values from all three of the accelerometer axes.

See also:
* void mma9559 afe offsets set(int16 *data ptr)

Parameter

data ptr: Address containing the three accel erometer user offset values.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 55

4.3 Events and scheduling
Thisfunctional category manages events and task-scheduling.

The MMA9559L firmware creates events and provides a set of functions to manage them and use them to
schedule tasks or activities. These tasks or activities include:

» Signaling and clearing up to 32 events

» Selecting events, using priority or round-robin scheduling algorithms

* Providing configurable, power-saving idle control

» Disabling or restoring interrupts for critical sections

» Providing prototypes for user-created exception and trap-handler functions

43.1 Macros

43.1.1 #define EVENT_BITFIELD(b) ((events_t)(1<<b))
This macro creates an events t bit field from the event number.

The MMA9559 firmware supports up to 32 events, numbered from O to 31. The events t data type can
represent multiple events by using asingle bit for each event. This macro provides an easy way to create
the events t bit field from an event number.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

56 Freescale Semiconductor, Inc.

4.3.2 Enumerations

43.2.1 enum idle_config _t

Thisvalueisused by the mma9559_i di e_use_st op_confi g() toset how thei dl e_bi t s bit field isused
to modify the idle mode operation.

See also:
» void mma9559 idle use stop_config(idle_config_t config, idle_bits t bits)

Enumerators

Table 4-4. enum idle_config_t enumerators

Enumerators Description

IDLE_USE_STOP_FC_CLEAR | Clear (remove) a bitinthe use_st op_f ¢ field of the na9559 i dl e_t structure

IDLE_USE_STOP_FC_SET Setabitintheuse_st op_f c field of the mma9559 i dl e_t structure. This forces the idle
function to stop using the Stop_FC mode so that the system clock still runs at full speed

IDLE_USE_STOP_SC_CLEAR | Clear (remove) a bit in the use_st op_sc field of the mma9559_i dl e_t structure

IDLE_USE_STOP_SC_SET Seta bitin the use_st op_sc field of the mma9559_i dl e_t structure. This prevents the
idle function from using the Stop_NC mode, allowing the system clock to still run

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 57

4.3.2.2

Thisvalue may be used individually or combined by the 9559 _i dl e_use_st op_confi g() functionto
set how the bit field is used to modify the idle mode operation. Bits can be individually set to separate
tasks, allowing tasks to modify the idle mode configuration without overwriting the configuration set by
other tasks or activities.

enum idle_bits t

These bit fields also can be used to directly modify thei dl e_confi g_t fieldswithin the
user _excepti on_handl er function. The fields also can be used whenever interrupts are disabled.

* Thefirst 16 idle bits are reserved for Freescale use and should not be used by user code.
» Thesecond set of 16 bits are available for user code.

See also:
» void mma9559 idle use stop_config(idle_config_t config, idle_bits t bits)

Enumerators

Table 4-5. enum idle_bits_t enumerators

Enumerator Description

IDLE_BITS_CKOSC Sets the idle configuration for the FIC (Frame Interval Counter)

IDLE_BITS_AFE Sets the idle configuration for the AFE (Analog Front End)

IDLE_BITS_RSVD_2

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_3

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_4

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD 5

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_6

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_7

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_8

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_9

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_10

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_11

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_12

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_13

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_14

Idle configuration bit reserved for Freescale use

IDLE_BITS_RSVD_15

Idle configuration bit reserved for Freescale use

IDLE_BITS_USER_0

User-assignable idle configuration bit

IDLE_BITS_USER_1

User-assignable idle configuration bit

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

58

Freescale Semiconductor, Inc.

Table 4-5. enum idle_bits_t enumerators

Enumerator

Description

IDLE_BITS_USER_2

User-assignable idle configuration bit

IDLE_BITS_USER_3

User-assignable idle configuration bit

IDLE_BITS_USER_4

User-assignable idle configuration bit

IDLE_BITS_USER_5

User-assignable idle configuration bit

IDLE_BITS_USER_6

User-assignable idle configuration bit

IDLE_BITS_USER_7

User-assignable idle configuration bit

IDLE_BITS_USER_8

User-assignable idle configuration bit

IDLE_BITS_USER_9

User-assignable idle configuration bit

IDLE_BITS_USER_10

User-assignable idle configuration bit

IDLE_BITS_USER_11

User-assignable idle configuration bit

IDLE_BITS_USER_12

User-assignable idle configuration bit

IDLE_BITS_USER_13

User-assignable idle configuration bit

IDLE_BITS_USER_14

User- assignable idle configuration bit

IDLE_BITS_USER_15

User-assignable idle configuration bit

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

59

4.3.3 Data structures

This section describes the data structures used in the events and scheduling functional category.

4.3.3.1 mma9559 idle t

This structure holds the configuration variables that control the operation of the device when the
mm9559 i dl e() functioniscalled. Theuse of thisstructureisdescribed inthema9559 i di e() function.

Theuse_stop_fc anduse_st op_sc fields can be modified inside the user _excepti on_handl er ()
function. While these fields can be read anywhere, any code that modifies them should only be executed
when interrupts are disabled.
This can be achieved in three ways:

* Withintheuser _excepti on_handl er () or user _trap_handl er () functions

* When interrupts are disabled, using thei nt er rupt s_di sabl e() function

e Using the nma9559 i dl e_use_st op_confi g() function

See also:
e void mma9559 idle(void)
» void mma9559 idle use stop_config(idle _config_t config, idle_bits t bits)

Fields
Table 4-6. mma9559 idle_t fields
Field Description
int8 stop_cfg Override the normal idle mode stop configuration, based upon the value of this field:

« stop_cfg < 0: do not use any Stop mode
« stop_cfg > 0: use the supplied value as the Stop mode
 stop_cfg = 0: use the use_stop_fc and use_stop_sc fields

vuint32 use_stop_fc If this is non-zero then STOP mode must use StopFC (Fast Clock) mode.

vuint32 use_stop_sc | If this is non-zero and use_stop_fc is zero then STOP mode must use StopSC (Slow Clock) mode.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

60 Freescale Semiconductor, Inc.

4.3.3.2 mma9559 vars t

This structure holds all of the variables that are used by the Freescale firmware. Most of these variables
can be used by the user firmware to configure and control the operation of the Freescale firmware. User
code obtains the address of the data structure using the nma9559 vars_addr _get () function.

Theevents and event s_ni ssed fields can be read anywhere, but—since they can be updated by the
Freescale excepti on_handl er () function—any code that modifies them should only be executed when
interrupts are disabled. (These fields are described in “Events’ on page 18 and “FIFOs’ on page 74.)
Modifying the two fields can be achieved in three ways:

* Withintheuser_exception_handl er () or user_trap_handl er () functions

* When interrupts are disabled, using thei nt er r upt s_di sabl e() function

e Using the mma9559 i dl e_use_st op_confi g() function

Theuser _exception_handl er anduser _trap_handl er fields can be loaded with the addresses of the
respective user functions, if they are present. If no handlers are present, they are set to 0.

See also:
e void mma9559 idle(void)
* mma9s59 vars t* mmads59 vars addr_get(void)
* events t mma9s59 events set_clear (events t set_events, events t clear_events)

Fields
Table 4-7. mma9559 idle_t fields
Field Description
volatile events_t events Currently signaled events. (See “Events and scheduling” on page 56.)
volatile events_t Events that were signaled before they had been cleared from the previous time that they had
events_missed been signaled. (See “Events and scheduling” on page 56.)
events_t events_fifos Events that are associated with FIFOs should not be modified by user code. (See “FIFOs” on
page 74.)
uintlé afe_cm_gain AFE trim configuration. Do not modify.
uint8 afe_fs_shift AFE trim configuration. Do not modify.
mma9559_idle_tidle Idle stop mode configuration. (See “mma9559 idle_t" on page 60.)
user_exception_handler_t | Address of the user exception handler.
user_exception_handler
user_trap_handler_t Addresses of the user trap handlers. These are optional, but should be set prior to issuing the
user_trap_handler[4] associated trap call.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 61

434 Functions

4.3.4.1 mma9559 vars_t* mma9559 vars addr_get(void)

The Freescale firmware uses an instance of the mma9559 vars_t structure to store the variables used for
its configuration and control. The operation of the firmware can be modified and/or observed through this
control structure.

Since the address of the structure instance may change in future releases of the firmware, this function is
provided to enable the user code to find the address of the structure and use it.

NOTE

Thisfunction calls the ROM trap function to get device information from
the ROM code. This causes both this function call and the ROM trap being
on the supervisor stack at the same time—consuming alarge part of the
supervisor stack. This function should not be called from within a user
exception handler or a user trap call because that would exceed the
supervisor stack space.

Return

Address of the Freescale firmware data structure.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

62 Freescale Semiconductor, Inc.

4.3.4.2 events_t mma9559 events_set_clear(events_t set_events,
events_t clear_events)

Thisfunction updates the mma9559 vars_t events and event s_mi ssed fields with the supplied
set _events andcl ear _event s parameters.

Themma9559 vars_t events_nmi ssed field isupdated to mark any events that were signaled in the
set _event s parameter, werenot setinthecl ear _event s parameter, and are still activein the eventsfield.

Themmua9559_vars_t events field isupdated, setting the events signaled inthe set _event s parameter
and marking the eventsinthecl ear _event s parameter. If an event is set in both theset _event s and the
cl ear _event s fields, the event is signaled.

Any events that have been associated with FIFOs, using nma9559_fi f o_i ni t (), are masked, indicating
that they can only be signaled and cleared by the FIFO functions and cannot be modified by user code,
including this function.

The function performs the operations shown in the following example:

Example 4-11.

set _events &= ~(mm9559 vars.events_fifos);

cl ear _events &= ~(mm9559 vars. events_fifos);

nMmea9559 vars. events_mi ssed | = set_events & ~clear_events & mMmu9559 vars. events;
nMmea9559 vars. events = set_events | (~clear_events & mm9559 vars. events);

Themma9559_vars_t events field may be modified in an exception handler, which meansit must not be
modified in User mode. Thisis because User mode cannot ensure an atomic transaction is not interrupted
by an exception, unlessit is modified within a critical section (that cannot be interrupted). The
mma9559_event s_set _cl ear () function runswith interrupts masked, providing asafe way for user code
to modify the events field without the risk of being interrupted by an exception and without needing to
create acritical section.

Return

The resulting value of the mma9559 vars t eventsfield

Parameters
Table 4-8. events_t mma9559 events_set_clear parameters
Parameter Description
set_events Bits that are set in this parameter are signaled in the mma9559_vars_t events field
clear_events Bits that are set in this parameter are cleared from the mma9559_vars_t events field

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 63

4.3.4.3 int mma9559 events_find_first(events_t events)

This function may be used in conjunction with the Events and Scheduling functionality of the Freescale
firmware to provide a basic scheduling capability for a user’s execution loop.

Thefunction returnsthe number of the highest-priority event bit that isset intheevent s field. The priority
isarranged so that the least-significant bit (LSB) of the events parameter is the highest-priority
event—which generates the return value 0. The most-significant bit (MSB) of the events parameter isthe
lowest-priority event—which generates the return value 31.

Return

The priority number of the highest-priority activetask intheevent s bit field, from O for the LSB to 31 for
the MSB. If there are no active priority bits, the value 32 is returned.

Parameter

events. The events bit field to be searched for the first event.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

64 Freescale Semiconductor, Inc.

4.3.4.4 int mma9559 events_find_next(events_t events, int current_event)

The purpose of thisfunction isto find the next active event for round-robin scheduling. Thisfunction may
be used in conjunction with the Events and Scheduling functionality of the Freescale firmware to provide
a basic scheduling capability for a user’s execution loop.

This function returns the number of the next-highest priority event bit that is set in the eventsfield and a
lower priority than the current event. The priority is arranged, such that the least-significant bit (LSB) of
the events parameter is the highest-priority event—which generates the return value 0. The
most-significant bit (MSB) of the events parameter is the lowest-priority event—which generates the
return value 31.

If there are no active priority bits lower than the cur r ent _event , the selection wraps around and the
highest-priority active event is returned.

Calling thisfunction with acur rent _event parameter of 32 or higher causes the function to return the
highest-priority active event.
Return

The priority number of the next-highest priority active task in the events bit field that is lower than the
current _event —from O for the LSB to 31 for the MSB. If there are no active priority bits, the value 32
isreturned.

Parameters
Table 4-9. int mma9559 events_find_next parameters
Parameter Description
events The events bit field to be searched for the next event.
current_event The currently running priority level (0 to 31).

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 65

4.3.4.5 void mma9559 idle_use_stop_config(idle_config_t config,
idle_bits_t bits)

Thisfunction enablesthe ma9559 i dl e_t use_stop_fc anduse_st op_sc fieldsto be configured from
user space.

The mma9559 i dl e_t fields are modified directly by the Freescale exception handler and may also be
modified by the user _except i on_handl er function. To avoid modification of these fields from user
space or corruption of thefields by an exception during processing, the user code must useacritical section
(disabling then enabling interrupts) or call this function.

Example 4-12.

/1l Set a use StopFastC ock bit so that idle will use Stop Fast O ock node
na9559 i dl e_use_stop_confi g(
| DLE USE _STOP_FC SET, /1 Set bit(s) in the Use Stop Fast field
| DLE BI TS _USER 0); /1 Bits to be set

/1 When the hardware has finished running clear the bit to allow normal Stop nobde operation
na9559 i dl e_use_stop_confi g(
| DLE_USE _STOP_FC CLEAR, /1 Clear bit(s) in the Use Stop Fast field
| DLE BI TS _USER 0); /1l Bits to be cleared

These fields are used by the 9559 _i dI e() function to determine which Stop mode to use when the
deviceisidle to achieve the lowest possible power.
The Freescale firmwarereservesthelower 16 idle_bitsand already usesthetwo least-significant idle_bits:

* [IDLE BITS CKOSC: Used by theframeinterval counter to prevent the use of StopNoClock when
the frame interval counter is being used.

 |IDLE BITS AFE: Used by the AFE to force the use of StopFastClock when the ADC is
performing a conversion.

User code may use any of the upper 16 bits that have the prefix IDLE_BITS USER .

See also:
» void mma9559 idle(void)
* “Power” on page 28

Parameters
Table 4-10. void mma9559 idle_use_stop_config parameters
Parameter Description
config Selects which field and type of modification to make.
bits Designates the bits to be modified in the selected field.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

66 Freescale Semiconductor, Inc.

4.3.4.6 void mma9559 idle(void)

This function executes the idle processing function, to sleep until the next exception.

The mma9559 i dl e() function manages the CPU Stop modes to use the lowest possible power. Thisis
done using the Stop mode, based on the configuration set in the 9559 _i dl e_t fields and the
mm9559 vars_t events field:

If the ma9559 vars_t events field isnon-zero, then return.

This occursif there are unhandled events that should be processed before entering Stop mode.

If the mm9559_idle_t stop_cfg fieldisnegative, then return.

This enables the use of Stop modes to be disabled for debug purposes.

If themmm9559 i dl e_t stop_cfgfieldispositive, that valueisloaded directly into the STOP_CR
register and a stop issued.

This enables testing of particular Stop configurations but should not generally be used.

If themma9559 idle t stop_cfgfieldisOandthemua9559 idle t use_stop_fc iSnon-zero,
the device uses StopFC (fast clock) mode.

If the mua9559 idle t stop _cfganduse stop_fc fieldsare0and the ma9559 idle t
use_st op_sc field is non-zero, the device uses StopSC (slow clock) mode.

If therma9559 idle t stop _cfg,use_stop fc,anduse_stop_sc fieldsareadl zero, thedevice
uses StopNC (no clock) mode—the lowest power mode.

See also:

mma9559 idle t
mma9559 vars t

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 67

4.3.4.7 int mma9559_interrupts_disable(void)

Thisfunction can be used to create critical sectionsin user firmware that is not interrupted by exceptions.
Thisimplementation supports the use of nested critical sections (accidentally or deliberately) by enabling
the user to record the interrupt level/mask interrupts when they are disabled. Theinterrupts are restored to
their original value, when the interrupts are restored.

Theuser _exception_handl er () anduser _trap_handl er () runwiththeinterruptsdisabled; therefore,
these functions are not required for either of these handlers.

Any exception sources that become active are handled once the interrupt priority mask isreturned to O by
the call to the mma9559 i nterrupts_restore() function.

A critical section can be created as shown in the following example.

Example 4-13.

int status = nma9559 interrupts_disable(); // start critical section

nMa9559 i nterrupts_restore(status); /'l restores previous interrupt |evel/msk

If the critical section isnever nested, this solution can be simplified by removing the status variable and
making the parameter to thenmma 9559 _i nt er rupt s_rest ore() function zero. See the following example.

Example 4-14.
nMea9559 i nterrupts_di sabl e(); /1 start critical section
nMa9559 i nterrupts_restore(0); /1 enables interrupts

Return

The value of the status register, including the interrupt priority mask before the interrupts were disabled.

See also:

e void mma9559 interrupts restore(int status)
* “Interrupts and critical sections’ on page 22

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

68 Freescale Semiconductor, Inc.

4.3.4.8 void mma9559 interrupts_restore(int status)

Thisfunction is used in conjunction with the mma9559_i nt er r upt s_di sabl e() function to enable user
code to create critical sections that cannot be interrupted by exceptions. See int
mmad559_interrupts_disable(void) for more information.

» If user code supports nested critical sections, then the status parameter should be the value returned
by the matching mma9559_i nt er r upt s_di sabl e() function call.

» |If user code does not support nested critical sections, then the status parameter may be set to 0 to
re-enable interrupts. No other values should be used

Only the interrupt priority mask bits of the status parameter are used. If any of the interrupt priority mask
bitsare set, then theinterrupt priority mask isset to 7 to disable/mask all interrupts; otherwise, theinterrupt
priority mask is set to O to enable/lunmask the interrupts.

For example code using the mma9559_i nterrupt s_restore() function, see the description of theint
mma9559 interrupts_disable(void) function.

See also:
e int mma9559 interrupts disable(void)
* “Interrupts and critical sections’ on page 22

Parameter

st at us: Interrupt status state to be restored.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 69

4.3.4.9 int mma9559 user_trap0(int dO, int d1, int d2, void *a0, void *al)

Thisfunction issues atrap instruction that calls the function registered in the firmware variables structure
entry user _t rap_handl er [0] . The parameter variables are passed to the trap function and their usageis
determined by the user trap handler function.

Return

The integer value returned by the user _t rap_handl er function.

NOTE

The user trap handler can be called directly using theasm { trap
#TRAP_USER 0 } instruction. Thisfunction makesit easier to set the
parameter values.

Parameters
Table 4-11. int mma9559_user_trap0 parameters
Parameter Description
do First integer parameter (user-defined meaning).
di Second integer parameter (user-defined meaning).
d2 Third integer parameter (user-defined meaning).
a0 First pointer parameter (user-defined meaning).
al Second pointer parameter (user-defined meaning).

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

70 Freescale Semiconductor, Inc.

4.3.4.10 int mma9559 user_trapl(int dO, int d1, int d2, void *a0, void *al)

Thisfunction issues atrap instruction that calls the function registered in the firmware variables structure
entry user _trap_handl er [1] . The parameter variables are passed to the trap function and their usageis
determined by the user trap handler function.

Return

The integer value returned by the user _t rap_handl er function.

NOTE

The user trap handler can be called directly using theasm { trap
#TRAP_USER 1 } instruction. Thisfunction makesit easier to set the
parameter values.

Parameter
Table 4-12. int mma9559 user_trap1 parameters
Parameter Description
do First integer parameter (user-defined meaning).
di Second integer parameter (user-defined meaning).
d2 Third integer parameter (user-defined meaning).
a0 First pointer parameter (user-defined meaning).
al Second pointer parameter (user-defined meaning).

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 71

4.3.4.11 int mma9559 user_trap2(int dO, int d1, int d2, void *a0, void *al)

Thisfunction issues atrap instruction that calls the function registered in the firmware variables structure
entry user _trap_handl er [2] . The parameter variables are passed to the trap function and their usageis
determined by the user trap handler function.

Return

The integer value returned by the user _t rap_handl er function.

NOTE

The user trap handler can be called directly using theasm { trap
#TRAP_USER 2 } instruction. Thisfunction makesit easier to set the
parameter values.

Parameters
Table 4-13. int mma9559 user_trap2 parameters
Parameter Description
do First integer parameter (user-defined meaning).
di Second integer parameter (user-defined meaning).
d2 Third integer parameter (user-defined meaning).
a0 First pointer parameter (user-defined meaning).
al Second pointer parameter (user-defined meaning).

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

72 Freescale Semiconductor, Inc.

4.3.4.12 int mma9559 user_trap3(int dO, int d1, int d2, void *a0, void *al)

Thisfunction issues atrap instruction that calls the function registered in the firmware variables structure
entry user _t rap_handl er [3] . The parameter variables are passed to the trap function, and their usageis
determined by the user trap handler function.

Return

Thisisthe integer value returned by the user _t rap_handl er function.

NOTE

The user trap handler can be called directly usingtheasm { trap
#TRAP_USER 3 } instruction. This function makesit easier to set the
parameter values.

Parameters
Table 4-14. int mma9559 user_trap3 parameters
Parameter Description
do First integer parameter (user-defined meaning)
di Second integer parameter (user-defined meaning)
d2 Third integer parameter (user-defined meaning)
a0 First pointer parameter (user-defined meaning)
al Second pointer parameter (user-defined meaning)

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 73

44 FIFOs

The MMA9559L Freescale firmware supports the use of FIFOs for inter-process communication, with a
configurable FIFO structure definition and a set of functions to manage them. For overview information,
see “FIFOS’ on page 24.

44.1 Macros

4411 #define FIFO_STRUCT(max_entries, bytes_per_entry) struct { uint32
rsvd[2]; uint8 data[max_entries * bytes_per_entry]; }

The MMAO9559L firmware providesfunctionsto store and retrieve datain FIFOs. The FIFO data structure
containsacommon set of internal variablesthat are the samein every FIFO and adata buffer whose length
isdetermined by the number of dataentriesinthe FIFO and the size of each entry. Theentry sizeisin bytes.
This macro can be used to create FIFOs in two ways:
* A singlevariableinstance of a FIFO can be created using the macro, as shown in the following
example.
Example 4-15.

FI FO_ STRUCT(5, sizeof (uint32)) fifol;
/1 FIFO variable to hold five 32 bit unsigned integers

» A typedef can be created for a particular FIFO configuration and individual variable instances of
the same configuration created from that typedef, as shown in the following example.

Example 4-16.
t ypedef FIFO _STRUCT(10, sizeof(uint8)) fifol0 t;// FIFO data type to hold 10 bytes
fifolO_t fifo2; /1 Instance variable of a FIFOto hold 10 bytes
NOTE

When creating the FIFO structure, this macro calculatesthetotal databuffer
size (in bytes) by multiplying the maxi mum ent ri es field by the

byt es_per _ent ry field. The two, separate values are not needed here, but
are kept in thisformat to maintain consistency with the

ma9559 fifo_init() function.

See also:

* int mma9559 fifo init(volatile mmag559 fifo t *fifo _ptr, events t events, unsigned int
max_entries, unsigned int bytes per_entry)

* “FIFOS’ on page 24

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

74 Freescale Semiconductor, Inc.

4.4.2 Data structures

4421 mma9559 fifo t

This structure provides a generic FIFO structure that contains the internal variables used by the FIFO

functions and a placeholder for the data buffer. This structure is not used directly because it does not have
any data buffer space. Instead, users should create the FIFOs they need using the FIFO_STRUCT macro
and include a correctly sized data buffer.

The contents of the structure should not be accessed directly by user code, but accessed by

MM A9559L -firmware functions.

See also:

* int mma9559 fifo init(volatile mmag9559 fifo t *fifo _ptr, events t events, unsigned int

max_entries, unsigned int bytes per_entry)

e int mma9559 fifo pop(volatile mma9559 fifo t *fifo_ptr, uint8 *data_ptr, unsigned

int entries)

» #define FIFO_STRUCT (max_entries, bytes per_entry) struct { uint32 rsvd[2]; uint8

datafmax_entries* bytes per_entry]; }

Fields

Table 4-15. mma9559 fifo_t fields

Field

Description

events_t events

Events to signal when the FIFO has data.

uint8 read_index

Index for the next entry to be read.

uint8 maximum_entries

Maximum number of elements in the FIFO.

uint8 number_of_entries

Number of entries currently in the FIFO.

uint8 bytes_per_entry

Number of bytes in each data element.

uint8 data[]

Configurable size buffer for FIFO data.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

75

4.4.3 Functions

4431 int mma9559_fifo_init(volatile mma9559 fifo_t *fifo_ptr,
events_t events, unsigned int max_entries,
unsigned int bytes_per_entry)

Thisfunction initializes the FIFO data structure. The structure first must be defined, using the
FIFO_STRUCT macro that creates a customized FIFO variable or data type. At run time, the FIFO
structure must be initialized using this function.

Whenever datais pushed into the FIFO, the eventsin the eventsfield is signaled and the event is cleared
when either thelast datais popped off the FIFO (leaving it empty) or the FIFO isreset. The events are also
added tothenmm9559_vars events_fi f os field, which meansthey can be signaled or cleared by the user
exception handler or the nma 9559 event s_set _cl ear () function.

Themax_entri es and byt es_per _ent ry values both must be in the range of 1 to 255. If either valueis
out of thisrange, the function returns avalue of -1 and leaves the FIFO structure marked as unconfigured.
The following example:

* Initializesfifol.

» Setsthe FIFO size to the same values that were used in the FIFO data type (maximum entries of
10, entry size of 2 bytes).
e Associatesfifol withthe EVENT_FIFO event.

Example 4-17.

/1l Instantiate the FIFO to reserve the nenory space
FI FO_STRUCT(2, si zeof (nma9559 afe data t)) fifol;

/1 At run tinme initialize the FIFO before using it
ret = mm9559 fifo_ init(

(mua9559 fifo t*)&fifol, /1 pointer to the FIFO structure
EVENT_BI TFI ELD(EVENT_FIFO, // bitfield of associated events
2 /1 maxi mum nunber of data entries

si zeof (mMm9559 afe data t) /1 nunber of bytes in each data entry

Themax_entries and byt es_per _ent ry fields normally match the values used in the FIFO_STRUCT
macro to create the FIFO variable. Other values may be used, however, aslong as the product of the
max_ent ri es and byt es_per _ent ry values—used inthenmma9559 _fifo_init () function—isnot larger
than the product of the values used by the FIFO_STRUCT macro to determine the FIFO data buffer size.

NOTE

There is no automatic validation of the mrax_entri es and
byt es_per _ent ry values. The user must ensure that these values are
consistent with the FIFO_STRUCT usage.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

76 Freescale Semiconductor, Inc.

See also:

o #define FIFO_STRUCT (max_entries, bytes per_entry) struct { uint32 rsvd[2]; uint8
datafmax_entries* bytes per_entry]; }

* “Initialize FIFO” on page 25

Return

Error status:

If the max_entri es or byt es_per _ent ry valuesare greater than 255 or lessthan 1, then-1is
returned.

* Otherwise, 0 isreturned on success

Parameters
Table 4-16. int mma9559 fifo_init parameters
Field Description
fifo_ptr Address of the FIFO data structure to be initialized.
events Bit field of events signaled, when the FIFO contains data.
max_entries Maximum number of entries that can be stored.
bytes_per_entry Bytes per FIFO entry.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc.

4.4.3.2 void mma9559 fifo_reset(volatile mma9559 fifo_t *fifo_ptr)

Thisfunction resets the FIFO variablesto empty the FIFO and clears any currently signaled event bitsfor
the FIFO. When the FIFO isreset, al datain the FIFO is discarded and the FIFO data structure is
re-initialized.

Example 4-18.

nme9559 fifo reset(
(mma9559 fifo t*)&fifol /1 pointer to the FIFO structure to be reset
)

See also:
* “Reset the FIFO” on page 27

Parameter
fifo_ptr: Address of the FIFO data structure to be reset.

MMA9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

78 Freescale Semiconductor, Inc.

4.4.3.3 intmma9559 fifo_pop(volatile mma9559 fifo_t *fifo_ptr, uint8 *data_ptr,
unsigned int entries)

This function copies the requested number of entries from the FIFO to memory, starting at the supplied
data pointer. If the FIFO contains less entries than the number of entries requested, only the number of
entriesin the FIFO are copied.

After the data has been copied from the FIFO, the data is discarded from the FIFO buffer—freeing space
for new data. If the FIFO is empty after the data has been read, the events associated with the FIFO are
cleared.

It does not corrupt the FIFO to attempt to pop data off an empty FIFO or to read more data entriesfrom a
FIFO thanit contains. Either action, however, resultsin all of the available entries being read and the FIFO
being emptied.

Example 4-19.

ret = mm9559 fifo_pop(
(mua9559 fifo t*)&ifol, // pointer to the FIFO structure
(uint8*)afe_data. data, /1 pointer to the start of the destination buffer
1 /1 the nunber of data entries to retrieve

If the FIFO has not been successfully initialized with the nma9559 fifo_init () function, no dataisread
from the FIFO and the return value is 0.

NOTE

The buffer addressed by the dat a_pt r parameter must be large enough to
hold the number of bytes being popped. This value must be greater than or
equal to the entries parameter multiplied by the number of bytes per entry,
set when the FIFO was initialized. This function does not check the size of
the data buffer.

Return

The actual number of entries that were popped off the FIFO and copied to the data pointer.

Parameters
Table 4-17. int mma9559_fifo_pop parameters
Field Description
fifo_ptr Address of the FIFO data structure to obtain data.
data_ptr Address of the structure to store the popped data.
entries Number of entries to pop off the FIFO.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 79

4.4.3.4 int mma9559 fifo_push(volatile mma9559 fifo_t *fifo_ptr,
uint8 *data_ptr, unsigned int entries)
This function copies the requested number of entries—from the memory starting at the supplied data

pointer—into the FIFO. If the FIFO does not have enough space (empty FIFO entries) to store the
requested number of entries, then only the number of entries fitting within that space are copied.

The events associated with the FIFO are signaled every time this function is called, regardless of the
number of entries that are pushed into the FIFO.

If the number of entriesto be pushed into the FIFO exceeds the space in the FIFO, the FIFO overflows.
The entriesthat do not fit are not stored in the FIFO and the events bit field, associated with the FIFO, are
set inthemm9559 vars_t events_ni ssed field.

The FIFO isnot corrupted by attempting to push datainto afull FIFO or to write data entries that exceed
the available space. However, the excess data (in both scenarios) are not stored in the FIFO and are lost.

Example 4-20.

ret = mm9559 fifo_push(
(mua9559 fifo t*)&fifol, // pointer to the FIFO structure
(ui nt 8*) af e_dat a. dat a, /1 pointer to the first byte of the first entry
1 /1 the nunber of data entries to store

If the FIFO has not been successfully initialized with the mma9559_fi f o_i ni t () function, no dataisread
from the FIFO and the return value is 0.

NOTE

The buffer addressed by the dat a_pt r parameter must contain the correct
number of bytes to match the number of entries being pushed. The parameter’s
value must be equal to the entries parameter multiplied by the number of bytes
per entry, set when the FIFO was initialized. This function does not check the
Size of the data buffer.

Return
The actual number of entries that were copied from the data pointer and pushed into the FIFO.

Parameters
Table 4-18. int mma9559 fifo_push parameters
Field Description
fifo_ptr Address of the FIFO data structure.
data_ptr Address of the structure from which the data is pushed.
entries Number of entries to push into the FIFO.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

80 Freescale Semiconductor, Inc.

4.4.3.5 int mma9559 fifo_entries_used(volatile mma9559 fifo_t *fifo_ptr)

This function returns the number of entriesin the FIFO that currently contain valid data. User code may
pop this many entries off the FIFO without running out of data. The FIFO may still contain data after this
many reads because more data may be pushed onto the FIFO by interrupt handlers while the FIFO isbeing
read. The FIFO should not run out of data.

Example 4-21.

used _entries = mMmm9559 fifo_entries_used(
(mua9559 fifo t*)&ifol, // pointer to the FIFO structure

);

Return

The number of entriesin the FIFO that currently contain data that can be popped off the FIFO.

Parameter

fifo_ptr: Address of the FIFO data structure.

4.4.3.6 int mma9559_fifo_entries_free(volatile mma9559 fifo_t *fifo_ptr)

Thisfunction returns the number of entriesin the FIFO that currently are empty. User code may push this
many entries into the FIFO without running out of FIFO space and overflowing the FIFO. The entries
valueisonly correct at thetimeitisread. If any other tasks (such asinterrupt handlers) are using the FIFO,
there may be more or less space in the FIFO when the user code actually accesses the FIFO.

Example 4-22.

free_entries = mm9559 fifo_entries_free(
(mua9559 fifo t*)&fifol, // pointer to the FIFO structure

)

Return

The number of entriesin the FIFO that are currently available to store more data.

Parameter
fifo_ptr: Address of the FIFO data structure.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 81

4.5 Other functions

This section describes additional firmware functionality that does not fit into the previous functional
categories.

45.1 Enumerations

45.1.1 enum boot_options_t
This sets the execution path for a startup other than power-on reset.

When the device first powers up, the boot mode is loaded with the FOPT settings from the flash location
at Ox3FFE. Thisis set in the flash code image.

On subsequent resets, the FOPT settings are not reloaded from the flash location. Instead, the register
settings are used directly. Thisfunction enables users to modify the FOPT setting for the execution path in
order to set the operation next time the device resets.

See also:
e void mma9559 boot_options _set(boot_options t option)

Enumerators
Table 4-19. enum boot_options_t enumerators
Enumerator Description
BOOT_TO_ROM On the next non power-on reset, execute the ROM command line interpreter.
BOOT_TO_FLASH On the next non power-on reset, execute the firmware loaded in the flash memory.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

82 Freescale Semiconductor, Inc.

45.1.2 enum rmf_func_t

This value specifies the ROM command to execute. For more information on the operation and data
formats for the commands, see the “User Callable ROM Functions’ section of the“ROM” chapter in the
MMA955xL Intelligent, Motion-Sensing Hardware Reference Manual (MMA955xL HWRM).

See also:
e void* mmag9559 rom_command(rmf_func t func id, void *addr)

Enumerators
Table 4-20. enum rmf_func_t enumerators

Enumerator Description
RMF_DEV_INFO Retrieves device information data structure.
RMF_FLASH_PROGRAM Programs flash memory, through the flash controller.
RMF_FLASH_ERASE Erases flash memory, through the flash controller.
RMF_EXTENSION Executes extended flash functions.
RMF_CRC Calculates the CRC, over a range in memory.
RMF_CI Transfers command to the ROM-based command interpreter.
RMF_CHANGE_CONFIG Updates the device capabilities configuration.
RMF_FLASH_PROTECT Protects the flash against accidental erasure and programming.
RMF_FLASH_UNPROTECT Unprotects access to the flash program and erase functions.
RMF_FLASH_UNSECURE Modifies the current security status of the device.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 83

45.2 Data structures

45.2.1 mma9559 device_info_t

This structure holds device information that is derived from a combination of the ROM device, version
information, and firmware-version information.

e Thedevice_ id, romyversion,andhw versi on values areretrieved from the ROM device

information.

* Thefw_ version,buil d_code, part_number, reset cause,andsecurity state arereported
by the MMA9559L firmware.

Fields

Table 4-21. mma9559 device_info_t fields

Field

Description

uint32 device_id

ROM: Pseudo-random part identification value.

uintl6 rom_version

ROM: ROM version code, major.minor.

uintl6 fw_version

FW: Firmware version code, major.minor.

uintl6 hw_version

ROM: Hardware version code, major.minor.

uint16 build_code

FW: Firmware build number and date code. The value is encoded in the following bit fields:
¢ [15:12] Daily build number, 0 to 15

¢ [11: 8] Build month, 1 to 12

¢ [7: 3] Build day, 1 to 31

¢ [2: 0] Build year, 2010 to 2017

uintl6 part_number

FW: BCD-encoded part number. For example, 0x9559.

uint8 reset_cause

FW: Lower five bits from the RCSR reports reset source.

uint8 secure_mode

FW: Lower two bits of FOPT report the security mode of the device.
Values:

e 2 =secure

¢ Otherwise = not secure

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

84

Freescale Semiconductor, Inc.

45.2.2 union rmf_return_t
This returns a value from the ROM command, accessible as a value or a pointer.

ROM commands return asingle value that can be either apointer or avalue, depending on which function
was called. The mma9559_r om conmand() function returns a pointer that can be assigned to the pt r field
in the union and handled by user code as either apointer or avalue, depending on which ROM command
was executed.

See also:
e void* mma9559 rom_command(rmf_func_t func_id, void *addr)

Fields
Table 4-22. union rmf_return_t fields
Field Description
void* ptr Return value handled as a pointer
unsigned long val Return value handled as an integer

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 85

45.3 Functions

45.3.1 void mma9559 boot_options_set(boot_options_t option)
Sets the execution path for the next non-POR reset.

Thisfunction enablesthe execution path on the next reset, other than a power-on reset, to be configured to
run either the ROM command interpreter or to execute the user firmware in flash.

When the device first powers up, the boot mode is loaded with the FOPT settings from the flash location
at Ox3FFE. Thisis set in the flash code image. On subsequent resets, the FOPT settings are not reloaded
from the flash location. Instead, the register settings are used directly.

Thisfunction enables usersto modify the FOPT setting for the execution path to set the operation next time
the device resets.

Once the execution path has been set using the mm9559_boot _opt i ons_set () function, areset can be
generated by writing to the Assert Software Reset (ASR) bit of the user-accessible, Reset Control and
Status Register (RCSR). Resets caused by anything other than the POR also follow the execution path set
with this function.

The following example resets the device back to the ROM Command Interpreter.

Example 4-23.

nma 9559 boot _opti ons_set (BOOT_TO ROM ; /1 Set next reset boot path to ROM
RCSR_ASR = 1; /1l |ssue software reset

NOTE
The MMA955xL EVM board issues a reset to the MMA955xL device
whenever it connects to the device to ensure that the correct 12C / SPI
connection selection isused. If the user code already has set the boot path to
ROM using nmma9559_boot _opt i ons_set (BOOT_TO_ROM) , the part always
runs the ROM Command interpreter when the PC connects to the part
through the MMA955xL. EVM board. This problem is avoided by not
setting the boot path to ROM until areset to ROM is desired.

Parameter
option: Selects the execution path on the next non-POR reset.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

86 Freescale Semiconductor, Inc.

45.3.2 int mma9559 device_info_get(int length,
mma9559 device_info_t *addr)

This function retrieves a combination of identification and version information from the ROM code and
the MMA9559L device and copiesit into the data structure at addr .

To avoid overflowing the supplied data buffer, the caller must provide alength parameter that limits the
number of bytes that are copied to the supplied data buffer, as shown in the following example.

Example 4-24.

nmea9559 devi ce_info_t device_info;
/1 storage to hold the returned device information
device_info_| ength = mm9559 devi ce_i nfo_get (
si zeof (mMma9559 device_info_t), // maxi mum nunber of bytes to read
&devi ce_info /1 address of buffer to receive data

)

NOTE

Thisfunction uses alarge amount of the supervisor stack space, so it should
never be called from within the user _excepti on_handl er () function or
any user _trap_handl er () function.

Return

Reports the number of bytes copied into the buffer, which isthe minimum of the length parameter and the
length of the available device identification and version information.

Parameters
Table 4-23. int mma9559 device_info_get parameters
Field Description
length Size of the receiving buffer, in bytes.
addr Address of the buffer into which the device information is being copied.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 87

45.3.3 void* mma9559 rom_command(rmf_func_t func_id, void *addr)

Thisfunction provides access to the ROM functions documented in the MMA955xL. Intelligent,
Motion-Sensing Hardware Reference Manual (MMA955xL HWRM). For details on the operation of these
functions, see that document’s “ROM” chapter.

Example 4-25.

rnf _return_t rnf _ret;

rnf _ret.ptr = nmma9559 r om command(
RVF_DEV_I NFO /1 ROM function to be called = Get Device Info
0 /1 this comand does not take any argunents

)

Return

Either provides the address of a parameter block containing the result of the command or returns a value,
depending on the ROM function called.

Parameters
Table 4-24. void* mma9559 rom_command parameters
Field Description
func_id Specifies the ROM functions to be executed.
addr Gives the address of the parameter block used for the ROM function.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

88 Freescale Semiconductor, Inc.

4.6

lIR filter

The MMA9559L firmware includes an optimized Direct Form I, Nth-order Infinite Impul se Response
(IR) filter function that can be accessed by user code.

A Direct Form | IR filter is calculated using ageneral formulathan can be extended to an Nth-order filter.
See the following equation.

Y[n] = b0*X[n] + b1*X[n-1] - al*Y[Nn-1] + b2*X[n-2] - a2*Y[n-2] ... Eqn. 4-1

Where:

X[n] isthe current input

X[n-N] isthe input from N cycles earlier

Y[n] isthe current output

Y [n-N] isthe output from N cycles earlier

aN and bN are the filter coefficients that are fixed for a particular filter response

In thisimplementation, the input, output, and coefficient values are all 16-bit, signed integers, but the
intermediate accumulation of the result uses a 32-bit accumulator that is right-shifted, at the end of the
operation, to normalize the result.

For more detailed information, see therelated 1R Filter applications note AN4464, Digital Filtering with
MMAO955xL..

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 89

4.6.1 Data structures

4.6.1.1 mma9559 coef _t

Thisstructure is used to hold the coefficients for an IR filter. The methods of calculating the coefficients
for the filter is beyond this reference manual, but an sample low-passfilter is shown, in the following
example, to illustrate how the data structure is used.

Example 4-26
/1 6th order Chebyshev type 2 | owpass filter, cutoff at fs/4
static const nMma9559 coef t | p_cheby6 = {
6, /1 filter order = 6
14, /1 coefficient shift = 1/16384
{ 16384, 441, /1 a0, b0 = 1.000000, 0.000244 (a0 val ue not used)
- 16546, 1637, /1 al, bl = -1.009888, 0.099915
20052, 3191, /1 a2, b2 = 1.223877, 0.194763
- 8837, 3925, /1 a3, b3 = -0.539368, 0.239563
3957, 3191, /1 a4, b4 = 0.241516, 0.194763
-624, 1637, /1 a5, b5 = -0.038086, 0.099915
78, 441 } /1 a6, b6 = 0.004761, 0.000244
1
See also:
e int16 mma9559 iir_filter (int16 input, const mma9559 coef t *coef, void *buffer)
Fields

Table 4-25. mma9559 coef _t fields

Field

Description

uint16 order

Defines the order of the filter and determines the size of the coef _ar y array.

uint16 shift
output of the filter.

Specifies the number of fractional bits in the coefficients to determine how many bits to right-shift the

int16 coef_ary[]

Holds the coefficient values for the filter. The number of coefficients is determined by the order of the
filter and is calculated as 2 * (order + 1); for example, for a sixth order filter, there are 14 coefficients.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

90

Freescale Semiconductor, Inc.

4.6.2 Functions

4.6.2.1 INnt16 mma9559 _iir_filter(intl6 input, const mma9559 coef_t *coef,
void *buffer)

This function applies the supplied input data to the specified IR filter. The coefficient structureis
predefined for each particular transform. The same coefficient structure may be reused, such as for each
channel of the X, Y, and Z accelerometer data.

The buffer is used to hold the previous X[n] and Y[n] values. In order to keep the previous values, the
buffer must be persistent; therefore it is either global or static. It is updated by the filter function on each
execution, as new data entersinto the filter.

The size of the buffer depends on the order of thefilter and is2 * order-wordslong. Thisis declared as
shown in the following code:

Example 4-27
i nt 32 buffer[ORDER]; /1 each int32 holds a pair of 16 bit {yn, xn} val ues

A three-channel, low-pass filter could be implemented as shown in the following example.

Example 4-28

/1 6th order Chebyshev type 2 | owpass filter, cutoff at fs/4
static const mMm9559 coef t | p_cheby6 = {

6, [l filter order = 6
14, /] coefficient shift = 1/16384
{ 16384, 441, /1 a0, b0 = 1.000000, 0.000244 (a0 val ue not used)
- 16546, 1637, /] al, bl = -1.009888, 0.099915
20052, 3191, /1 a2, b2 = 1.223877, 0.194763
- 8837, 3925, // a3, b3 = -0.539368, 0.239563
3957, 3191, /1 a4, b4 = 0.241516, 0.194763
- 624, 1637, // a5, b5 = -0.038086, 0.099915
78, 441 } /1 a6, b6 = 0.004761, 0.000244
b
/1 buffers are global to maintain their contents across function calls
int32 buffer_x[6]; /1 buffer to hold X internedi ate values for 6th order filter
int32 buffer_y[6]; /1 buffer to hold Y internedi ate values for 6th order filter
int32 buffer_z[6]; /1 buffer to hold Z internedi ate values for 6th order filter

/1 Function to low pass filter X, Y and Z channel s
void filter(intl6 *output, intl6 *input) ({
(out put ++) mme9559 iir_filter((input++), & p_cheby6, &buffer_ x);
/1 Filter X data
*(out put ++)
/] Filter Y data
*(out put ++)
/] Filter Z data
}

nmme9559 iir_filter(*(input++), & p_cheby6, &buffer_y);

nme9559 iir_filter(*(input++), & p_cheby6, &buffer_z);

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 91

For more information about using this function, see the related 1R Filter applications note AN4464,
Digital Filtering with MMA955xL.

Parameters
Table 4-26. int16 mma9559 iir_filter parameters
Parameter Description
input Filter input data value.
coef Pointer to the IIR filter coefficient data structure.
buffer Pointer to the working data buffer used by the filter.

4.6.3 Typedefs

46.3.1 typedef struct mma9559 coef t mma9559 coef t

Thisstructureis used to hold the coefficientsfor an IR filter. The methodsfor cal culating the coefficients
for the filter is beyond this reference manual, but a sample, low-passfilter is given in the following

example.

Example 4-29

/1 6th order Chebyshev type 2 lowpass filter, cutoff at fs/4
static const mMm9559 coef t | p_cheby6 = {

6, // filter order = 6
14, /1l coefficient shift = 1/16384
16384, 441, /1 a0, b0 = 1.000000, 0.000244 (a0 val ue not used)
- 16546, 1637, /!l al, bl = -1.009888, 0.099915
20052, 3191, /1l a2, b2 = 1.223877, 0.194763
- 8837, 3925, /!l a3, b3 = -0.539368, 0.239563
3957, 3191, /1l a4, b4 = 0.241516, 0.194763
- 624, 1637, /1 a5, b5 = -0.038086, 0.099915
78, 441 } /1l a6, b6 = 0.004761, 0.000244
}s
See also:

e int16 mma9559 iir_filter (int16 input, const mma9559 coef t * coef, void *buffer)

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

92

Freescale Semiconductor, Inc.

Appendix A
Revision History

This appendix describes corrections to the MMA9559L Intelligent, Motion-Sensing Platform Software
Reference Manual. For convenience, the corrections are grouped by revision.

A.1 Changes Between Revisions 0 and 0.1
Rev. 0 of this document was published on Feb 1 2012.

Table A-1. Changes Between Revisions 0 and 0.1

Chapter Description

Chapter 2, “Firmware In Table 2-1., “Firmware flash usage,” for flash region 0x0000_0804 to 0x0000_3FFB ,
Overview” corrected the size to 14328 (was 14332, which is wrong). (Mar 8 2012)

» Fixed a typo in Section 2.5.4, “Pop data off the FIFO"— changed “Since the FIFO push
operation is performed” to “Since the FIFO pop operation is performed”.

MMAO9559L Intelligent, Motion-Sensing Platform Software Reference Manual, Rev. 0.1

Freescale Semiconductor, Inc. 93

	Contents
	Chapter 1 About this Document
	1.1 Overview
	1.1.1 Purpose
	1.1.2 Audience
	1.1.3 Document structure

	1.2 Terms and acronyms
	1.3 Conventions
	1.4 References

	Chapter 2 Firmware Overview
	2.1 Firmware elements and functionality
	2.2 Memory and CPU usage
	2.2.1 Flash memory
	2.2.2 RAM
	2.2.3 Supervisor stack usage

	2.3 Hardware support
	2.3.1 Frame interval counter
	2.3.2 Analog Front End (AFE)
	2.3.3 Stop mode control

	2.4 Events and scheduling
	2.4.1 Events
	2.4.2 Initialization
	2.4.3 Interrupts and critical sections

	2.5 FIFOs
	2.5.1 Instantiate FIFO
	2.5.2 Initialize FIFO
	2.5.3 Push data onto the FIFO
	2.5.4 Pop data off the FIFO
	2.5.5 Reset the FIFO
	2.5.6 Other FIFO functions

	2.6 Power

	Chapter 3 User Code Example
	3.1 Header
	3.2 User exception handler
	3.3 User trap handler
	3.4 User main

	Chapter 4 Functional Details
	4.1 Memory and CPU usage
	4.1.1 Supervisor stack

	4.2 Hardware support
	4.2.1 Macros
	4.2.1.1 #define NUM_SENSOR_AXIS 5

	4.2.2 Enumerations
	4.2.2.1 enum afe_csr_options_t
	4.2.2.2 enum framerate_t

	4.2.3 Data structure
	4.2.3.1 mma9559_afe_data_t

	4.2.4 Functions
	4.2.4.1 framerate_t mma9559_framerate_set(framerate_t rate)
	4.2.4.2 void mma9559_afe_conversion_start(void)
	4.2.4.3 void mma9559_afe_interrupt_clear(void)
	4.2.4.4 void mma9559_afe_raw_sensor_data_get(int16 *data_ptr)
	4.2.4.5 void mma9559_afe_raw_sensor_data_trim(int16 *trim_ptr, int16 *data_ptr)
	4.2.4.6 void mma9559_afe_trimmed_sensor_data_get(int16 *trim_ptr)
	4.2.4.7 void mma9559_afe_csr_set(afe_csr_options_t options)
	4.2.4.8 afe_csr_options_t mma9559_afe_csr_get(void)
	4.2.4.9 void mma9559_afe_offsets_set(int16 *data_ptr)
	4.2.4.10 void mma9559_afe_offsets_get(int16 *data_ptr)

	4.3 Events and scheduling
	4.3.1 Macros
	4.3.1.1 #define EVENT_BITFIELD(b) ((events_t)(1<<b))

	4.3.2 Enumerations
	4.3.2.1 enum idle_config_t
	4.3.2.2 enum idle_bits_t

	4.3.3 Data structures
	4.3.3.1 mma9559_idle_t
	4.3.3.2 mma9559_vars_t

	4.3.4 Functions
	4.3.4.1 mma9559_vars_t* mma9559_vars_addr_get(void)
	4.3.4.2 events_t mma9559_events_set_clear(events_t set_events, events_t clear_events)
	4.3.4.3 int mma9559_events_find_first(events_t events)
	4.3.4.4 int mma9559_events_find_next(events_t events, int current_event)
	4.3.4.5 void mma9559_idle_use_stop_config(idle_config_t config, idle_bits_t bits)
	4.3.4.6 void mma9559_idle(void)
	4.3.4.7 int mma9559_interrupts_disable(void)
	4.3.4.8 void mma9559_interrupts_restore(int status)
	4.3.4.9 int mma9559_user_trap0(int d0, int d1, int d2, void *a0, void *a1)
	4.3.4.10 int mma9559_user_trap1(int d0, int d1, int d2, void *a0, void *a1)
	4.3.4.11 int mma9559_user_trap2(int d0, int d1, int d2, void *a0, void *a1)
	4.3.4.12 int mma9559_user_trap3(int d0, int d1, int d2, void *a0, void *a1)

	4.4 FIFOs
	4.4.1 Macros
	4.4.1.1 #define FIFO_STRUCT(max_entries, bytes_per_entry) struct { uint32 rsvd[2]; uint8 data[max_entries * bytes_per_entry]; }

	4.4.2 Data structures
	4.4.2.1 mma9559_fifo_t

	4.4.3 Functions
	4.4.3.1 int mma9559_fifo_init(volatile mma9559_fifo_t *fifo_ptr, events_t events, unsigned int max_entries, unsigned int bytes_per_entry)
	4.4.3.2 void mma9559_fifo_reset(volatile mma9559_fifo_t *fifo_ptr)
	4.4.3.3 int mma9559_fifo_pop(volatile mma9559_fifo_t *fifo_ptr, uint8 *data_ptr, unsigned int entries)
	4.4.3.4 int mma9559_fifo_push(volatile mma9559_fifo_t *fifo_ptr, uint8 *data_ptr, unsigned int entries)
	4.4.3.5 int mma9559_fifo_entries_used(volatile mma9559_fifo_t *fifo_ptr)
	4.4.3.6 int mma9559_fifo_entries_free(volatile mma9559_fifo_t *fifo_ptr)

	4.5 Other functions
	4.5.1 Enumerations
	4.5.1.1 enum boot_options_t
	4.5.1.2 enum rmf_func_t

	4.5.2 Data structures
	4.5.2.1 mma9559_device_info_t
	4.5.2.2 union rmf_return_t

	4.5.3 Functions
	4.5.3.1 void mma9559_boot_options_set(boot_options_t option)
	4.5.3.2 int mma9559_device_info_get(int length, mma9559_device_info_t *addr)
	4.5.3.3 void* mma9559_rom_command(rmf_func_t func_id, void *addr)

	4.6 IIR filter
	4.6.1 Data structures
	4.6.1.1 mma9559_coef_t

	4.6.2 Functions
	4.6.2.1 int16 mma9559_iir_filter(int16 input, const mma9559_coef_t *coef, void *buffer)

	4.6.3 Typedefs
	4.6.3.1 typedef struct mma9559_coef_t mma9559_coef_t

	Appendix A Revision History
	A.1 Changes Between Revisions 0 and 0.1

