
MANAGING EVENT PROCESSING NETWORKS

Louis Perrochon
Stephane Kasriel
David C. Luckham

Technical Report No.: CSL-TR-99-788

October 1999

This Project is in part supported by Air Force grant F30602-96-2-0191 and Navy grant N00014-93-1-1335.

Managing Event Processing Networks

Louis Perrochon, Stephane Kasriel, David C. Luckham

Technical Report No.: CSL-TR-99-788

October 1999

Computer Systems Laboratory
Departments of Electrical Engineering and Computer Science

Stanford University
William Gates Computer Science Building, 4A-408

Stanford, CA 94305-9040
<pubs@shasta.stanford.edu>

Abstract

This technical report presents Complex Event Processing. CEP is a fundamental new
technology that will enable the next generation of middleware based distributed
applications. CEP gains information on distributed systems and uses this knowledge for
monitoring, failure analysis or prediction of activities.

A very promising route in CEP research is that of Event Processing Networks, which is
one of the main areas of research of the Program and Analysyis Group at Stanford
University. Event Processing Networks are one way of describing and building CEP, by
successively filtering meaningful information and aggregating the corresponding events
into higher levels of abstraction.

This reports describes in detail the foundations and aims of Complex Event Processing.
Then we will introduce the concept of Event Processing Networks and describe their use
in the context of Complex Event Processing. Finally, we will describe the architecture of
the CEP system.

Key Words & Phrases: Complex event processing, distributed applications, network
and systems management

Copyright © 1999

Louis Perrochon, Stephane Kasriel, and David C. Luckham

iii

I. COMPLEX EVENT PROCESSING 1

A. Introduction 1

B. Event Processing Networks 4

C. Examples 6
1. Monitoring a Semiconductor Fabrication Line 6
2. Cyber Warfare 9

D. Related Work 10
1. General Event Services 10
2. Event Correlation 11
3. Query Engine 11

II. EVENT PROCESSING NETWORKS 13

A. Event Processing Agents 13

B. Relational Representation of the Pattern Language 14
1. Basics 14
2. Derived Definitions 14
3. Patterns 15

C. Relational Representation of Event Processing Agents 16
1. Filter 16
2. Map 16

D. Sub-EPN 17

E. Representation of Event Processing Networks 19
1. Definition 19
2. Example 21

F. Optimizations 22
1. Compression 22
2. Common Sub Expression Elimination 24
3. Reordering 25
4. Map Rule Elimination 25
5. Filtered Computations 26

G. Synchronous Groups 26
1. Introduction 26
2. Definition 27
3. Example 30
4. Design Issues for SG partition 31

H. RapNet 32
1. A Tool for Managing Event Processing Networks 32
2. Usage Scenario 35

iv

III. CEP: ARCHITECTURE OF THE SYSTEM 37

A. Notification Subsystem 38

B. Storage Subsystem 38

C. Computation Subsystem 39

D. Event Processing Subsystem 40
1. Event Processing Agent Interface 40
2. Agent Library 42
3. Agent Registry 43

E. Proxies 44

F. RapNet 44
Main Environment 46
2. Agent Framework 46
3. Interaction with other Components 48

G. Reference: Available EPAs 50
1. Distributor 51
2. Legacy Proxy 51

IV. BIBLIOGRAPHY 53

V. APPENDIX 55

A. The Agent Registry: Grammar 55

1

I. Complex Event Processing
This chapter introduces the concept of Complex Event Processing, the problem that it addresses and how
it aims at solving those problems. The chapter also gives an overview of how Event Processing Networks
contribute to Complex Event Processing. Finally the chapter briefly describe the Stanford University CEP
technology and illustrates how to use it to solve a CEP problem.

A. Introduction

Complex Event Processing (CEP) gains knowledge of a complex system in real-time based on events that
denote the system's activities. A system can be anything from a single semiconductor fabrication line to
the interconnected check-out registers of a nation-wide retailer.

Such systems may be probed to produce events as the system operates.

Events are then processed in a multitude of ways: Unwanted events are filtered out, patterns of logically
corresponding events are aggregated into one new complex event, repetitive events are counted and
aggregated into a new single event with a count of how often the original event occurred, etc. More
generally, events are said to be mined (hence the name of Event Mining or EM) because the user wants to
discover new interesting patterns occurring in the system.

This process of producing fewer "better" events out of many "lesser" events can be iterated. This idea is
the basis for Event Processing Networks, where agents mine incoming events and pass the resulting
events to other agents down the Event Processing Network. The presentation of the mined events to the
user is virtually unlimited.

CEP is particularly well suited for event based systems, but is applicable to other systems as well, e.g.
updates in a database can be interpreted as events.

The following list gives a few application examples:

• Security: High target sites are attacked hundreds of times per day. Most attacks are
unsuccessful, but a few attackers create havoc, from denial-of-service attacks to taking
control of systems. CEP can detect attacks in real-time, reduce the number of false
alarms and prioritize attack messages. Drill-down gives quick access to the original data
to increase the effectiveness of countermeasures [1]. Section 3.1. gives an example of
this application.

• Message Brokering: The CEP feed-back capabilities make it a powerful,
content/context based message broker. Users of publish-subscribe middleware can
subscribe to messages based on their context and content. A trader could e.g. subscribe
to IBM quotes only when at least 10,000 shares were traded at that price and the last
four quotes were all up-ticks.

• Business applications: EM based real-time decision support systems constantly gather
information throughout the enterprise and immediately respond to changes in

2

information. These systems are business event driven, where a business event
represents any significant change in business data or conditions.

• Enterprise network and systems management: Pattern of events that may lead to a
failure (e.g. an important disk filling up) or that could signal break-in attempts (i.e.
connect requests to multiple targets from a single source over a short time) are detected
as they occur. EM provides immediate notification of such conditions to the
Subsystems of large, mission critical networks. Automatic prioritizing of alerts and
quick root cause analysis leads to reduced response time, higher up time and allows
network Subsystems to quickly respond to critical situations.

• Manufacturing: A fabrication line is a complex federated system from multiple vendors
connected by communication middleware and running around the clock. Small
irregularities in fablines can be very expensive. EM allows close monitoring and
immediate propagation of all relevant data to the management.

Current event processing systems are rather simple. They support action-reaction rules based on single
events, with boolean conditions over the parameters of events. Our Complex Event Processing (CEP) is
based on the following innovative capabilities:

• Additional semantics: CEP supports not only time but also causality: one event causes
another. Causality is used to represent dependent vs. independent execution and
provides additional information that can be used in processing events. It also greatly
reduces the search space of pattern matching since related events are grouped together,
even if they occur widely separated in time or in the log file.

• Powerful mathematical foundation: Events are stored as complex objects together with
their relationships as partial orders. In today's networked real-time environments not all
events are time-ordered in respect to each other. In existing event-processing systems,
the original partial order of events is implicitly reduced while tracing, information is
lost, and non-determinism is introduced [2]. CEP maintains the partial order for both
time and causality.

• Expressive event query language: A formal language [3] to specify event patterns is a
crucial part of CEP. Working with a high level query language simplifies development
and configuration and allows for query optimization within CEP. The CEP event
pattern language allows the user to describe patterns of events. An event pattern
matcher searches for all occurrences of a pattern of events in a partially ordered set. A
typical example would search for all A events that cause both a B and a C event, with B
and C either ordered or independent of each other. This pattern could be specified as:

A->(B~C)

As a comparison, in OQL, clumsily enhanced with a * operator denoting one or several
repetitions of the path expression, this query would look like:

select tuple(e.ID, f.ID, g.ID)
from event e, e.(successor)* f, e.(successor)* g
where e.type='A' and f.type='B' and g.type='C' and
 (NOT f.(successor)*=g) OR (NOT f.(successor)*=g) OR f=g)

Using this pattern language, we can describe an agent with the following rule:

A(?id)->(B~C) => generate C(?id)

3

Whenever the above pattern is matched among observed events, a new event C is
generated. The rule also specifies that the parameter (or attribute) of the newly
generated C has the same value as the parameter of the A event that triggered the rule.

• Concept hierarchies: Building hierarchies of more and more abstract events allows for
high-level situation classification, description and reaction driven from high-level
business strategies (similar to views in databases). Concept hierarchies are useful for
understanding a system as they visualize levels of abstractions often used by humans
when thinking about complex systems. Concept hierarchies are built using the event
pattern language. The different levels of the hierarchy are fully interconnected, allowing
for drill down diagnostic analysis. The examples give examples of concept hierarchies.

Hierarchical organization of event pattern processing is a critical component in
recognition and classification of complex activity. It ensures that users receive
information at the appropriate semantic level. Low level events streams may be our
main source of data, (e.g., raw network intrusion detector output). A technique is
needed to correlate subsets of these events that signify possible parts of attacks.
Hierarchical organization of CEP lets us configure CEP to detect patterns of low level
events and generate high level events that correlate and summarize the data in the lower
level pattern instances. Higher level events can be fed to even higher level event
processing agents, transitively, until a complex activity is humanly recognizable. An
abstraction hierarchy gives us two very important things:

• it defines a set of concepts in terms of which views of the target system can be
constructed,

• it structures the concepts into a hierarchy of levels, and defines mathematical
relationships between the concepts in different levels.

We can use aggregator agents containing event pattern mapping rules to specify
relationships between the concepts at different levels in the definition of an abstraction
hierarchy. This gives us an EPN which is an executable form of hierarchy definition.
This EPN will generate a hierarchy of events corresponding to the hierarchy of
concepts. We can then add additional EPAs that construct views consisting of abstract
events corresponding to concept levels in a specified hierarchy. When sets of events
denoting instances of concepts at one level occur, they trigger aggregators in an EPN
corresponding to the hierarchy mappings which then generate abstract events denoting
instances of higher level concepts.

Concept hierarchies also work the other way round. The user can specify actions on a
high-level of abstractions and event processing agents translate these instructions into
corresponding lower level events.

Abstraction Hierarchies are useful for understanding a system as they visualize levels of
abstractions often used by humans when thinking about complex systems. Hierarchies
are implemented by sequence of aggregation steps (called maps) that create more and
more abstract events, all deduced from a basic source of events. The same mechanism
can be used to provide different views of the same system to different users. The
relation of events is maintained between different views.

• Support for systems architecture: Complex middleware-based systems consist of
components and communication pathways between these components. These
components and pathways may change while the systems is executing (e.g. in mobile

4

computing). Often the context of events is relevant: The reason why a message got lost
may be that a required pathway was no longer existent when the message was sent.

• Dynamic causal models are one form of event processing. Events in event streams are
automatically processed to include genetic information indicating which other events
had to happen in order for them to happen. The genetic data in an event allows the
events in its causal ancestry to be immediately uncovered by other EPAs, making their
operation more efficient and accurate. Causal information must be recognized across
multiple event streams. Extracting and developing accurate causal models for C2
environments is another research issue.

• Flexibility: CEP queries are flexible and configurable at runtime so the user can rapidly
adjust them if needed. This includes starting a new query against an ongoing event
stream, that either considers only new events, only old events, or both.

• Efficiency: Many applications produce relevant events at rates of millions/minute. CEP
supports high event rates through query optimization, efficient pattern matching
algorithms, as well as distribution of event processing.

CEP supporting these two features is part of Stanford University's RAPIDE project. We developed an
extensive set of tools that supports logging, mining, storing, and viewing of events in real-time. RAPIDE
events are related by time and cause. Each relations builds a partial order on all the events. A formal
pattern language [3] supports the construction of filters and maps, constructs that aggregate simple events
to complex events on a higher level of abstraction [4]. The same process can be used to query complex
events, thus building a more and more abstract view of the system.

B. Event Processing Networks

In order to accurately reflect the complex nature of real computing environments, effective event
processing must be component based. A variety of different components need to be able to process a
broad spectrum of events from different technologies.

We have built Event Processing Networks (EPNs) consisting of any number of Event Processing Agents
(EPAs), namely event producers, event processors, and event consumers. Figure 1 shows an overview
over the three categories, with thin arrows indicating the (logical) flow of events from producers through
processors to consumers.

The EPN is supported by an event service. The event service provides repositories for events and event
schemas, templates for processors, and a consumer registry. Event Schemas define the format of events
forwarded by the event service. The event repository stores events. Processor templates are predefined
templates that can be activated to filter, aggregate, or otherwise process events. The consumer registry
keeps track of which consumer is interested in which events.

5

Event Service
Algorithms, Storage, Communication

Consumer
Registry

Processor
Templates

Event
Repository

Event
Schema

Repository

Consumer
Table, Graph...

Producer
Logger, Sniffer...

Processor
Filter, Map...

E
ve

nt
 S

er
vi

ce
E

ve
nt

 C
on

su
m

er
s/

S
up

pl
ie

rs

W
ri

te
 E

ve
nt

s

R
ea

d
E

ve
nt

s

Figure 1 : Event Mining

Event sources in our applications are typically middleware sniffers. The system middleware can be pure
TCP/IP, an event communication service based on a proprietary protocol like TIBCO Inc.'s TIB or Vitria,
Inc.'s Communicator, or a military standard like the MIL STD 1553. We also automatically instrument
the source code of system written in Java to intercept events within the Java engine [5].

Typical examples for event processors are filters and maps. Filters pass on only a subset of their input,
maps aggregate multiple events in the input to output events, thus generating events on a higher level of
abstraction. Any third party event processor can be inserted into an EPN allowing for the integration with
other approaches.

Typical event viewers are a graphical viewer for partially ordered sets of events (POV), a tabular viewer
of event frequency or a simple gauge metering the latest value of an important parameter.

Data needs to be stored persistently because agents may want to access past events, even long after they
have happened. Also, because the number of objects currently under consideration may easily exceed the
size of the available main memory, thus EM requires some way of storing objects temporarily to disk.
RAPIDE EM includes a shared data store that keeps track of all the objects. New objects are written into
the data store from where agents and viewers read them. A communication service notifies other EPAs
when new objects are added.

On a conceptual level, splitting up the event processing load into a sequence of aggregation steps creates a
concept stack, the concepts being more and more abstracted activities, all deduced from one basic source
of events. Concept stacks are useful for understanding a system as they visualize levels of abstractions
often used by humans when thinking about complex systems. Also, reusing partial results of one agent for
multiple other agents reduces the amount of overall computation that needs to be done.

Events flow through the EPN in real-time and are displayed in viewers as soon as they are created, limited
only by the speed of the underlying infrastructure. Processed events are displayed in viewers shortly after
the underlying events have been created by the event source. EPNs are dynamic in that EPAs can be

6

added, reconfigured and removed at runtime. Newly added agents can ignore all previous events and just
start with the current event at the time they are added, or they can try to catch up all events from the
beginning. As EPNs are distributed, EPAs can reside on machines distributed across a network.

C. Examples

1. Monitoring a Semiconductor Fabrication Line

Fabrication Line

Data
Storage

Level 1-2
Map

Level 2-3
Map

Level 3-4
Map

TIB
Sniffer

Disposit ion
Viewer

Workf low
Viewer

FabFloor
Viewer

Figure 2 : The fabline EPN

A typical chip fabrication line may have some 600 components ranging from manufacturing machines to
in-house developed applications. In our example, these components are interconnected using TIBCO
Inc.'s Rendezvous. A detailed version of this example can be found in [4].

The EPN in our example consists of a TIB sniffer, three event processors, and three viewers (as shown in
Figure 2. The RapNet reference manual gives a complete description of the graphical representation of
Event Processing Networks).

The sniffer records the raw traffic on the TIB and produces events on a first level - the Middleware
Communication level. In our example, only these events are stored persistently to disk.

A first map ("Level 1-2 Map") reads these events and creates new events on a higher level of abstraction -
the Point-to-Point Communication level. Point-to-point events have inherently more meaning, since they
represent flow from a sender to a receiver. The first map has to aggregate sets of broadcast messages that
are all causally dependent and build a valid point-to-point message into one new event. The start and end
point of this communication are deduced from the contents and causal relation of the level 1 events. This
higher level is then read by a viewer that displays graphical animations of point-to-point messages within
the fabline system ("Fabfloor Viewer").

7

A second map ("Level 2-3 Map") aggregates point-to-point events to Workflow Steps, events denoting the
movement and processing of lots. These events are also displayed as animation ("Workflow Viewer").

Analogously, we build a fourth layer, Disposition, which describes the positions of the lots on the fab
floor.

These four layers build our concept stack.

Figure 3:Monitoring a fabline

Figure 3 shows the result of the Level 3-4 Map. The nodes in the graphs represent events, the edges
represent the causal relation. The selection in the left window shows 4 events on level 3 that are mapped
to the 2 selected events on level 4 in the right window. The two small windows give in-depth information
on single events .

8

Figure 4 : Monitoring a fabline

This EPN can now be used in different scenarios: In a decision support scenario, the site Subsystem has
constant on-line information on the production status, how many lots are in process, when they are
expected to be done, when scheduled maintenance will slow down the fabline, etc. (Figure 4).

Figure 5 : Tracking the fate of lot 6

In a monitoring scenario, something might go wrong with lot 6, maybe it got stuck in equipment 2. An
engineer now tracks the fate of lot 6 at level 3. He selects events leading to a problem at level 4 and looks
at the corresponding events at level 3 (Figure 5). We describe this process down through all the levels to
the root cause in [4]. An operator failed to reply to a message involving preventive maintenance on
equipment 2. This scenario shows how our tools can be used to efficiently drill-down through huge
amounts of data to resolve problems.

9

2. Cyber Warfare

Our second application example brings us to the world of cyber warfare. As organizations build ever-
larger computer networks, security has become an increasingly important issue. The growth of the
Internet has resulted in an increase in the size of individual networks as well as an increase in the volume
of traffic flowing through the network. As system log files have grown to contain gigabits of data, it has
become almost impossible to manually trace through log files to detect attempts at intrusion activity or
other security violations. This has given rise to a need for software tools that automate network
monitoring for security intrusions [6-12]. Some of the results that can be achieved by using context-
based event correlation in cyber warfare are:

• High-level view: CEP provides high-level situation classification, event description, and
deployment of new defensive actions driven from high level strategies. This is achieved
through definition of concept hierarchies.

• Flexibility: CEP provides rapid reaction and interactive on-the-fly reconfiguration of
strategies. This is made possible by communicating structures of event processing
agents, called Event Processing Networks.

• Analysis: CEP provides drill down diagnostic analysis.

• Consolidation: CEP can correlate of a diversity of independent inputs from network-
level intrusion detectors to application-level sensors.

• False Alarm Reduction: Alarms that are not subsequently confirmed by another alarm
may be false or irrelevant. As an example, denial of service attacks may be used to
create a diversion by flooding administrators with low priority alarms to mask
penetration attacks. Compared to the ongoing penetration, the denial of service may be
irrelevant.

• Increased Detection Rate: CEP detects coordinated but separate attacks no matter how
widely separated in time by capturing of causal relations between events.
Unobserved intrusions may be detected by deduction from observed attacks. On-line
event correlation of early stage probing alerts may detect ongoing attack patterns in
early stages.

CEP provides on on-line overview of the state of the cyber battlefield. Patterns of events that may lead to
a failure (e.g. a DNS server having slower and slower response time) are detected as they occur. CEP
provides immediate notification of such conditions. Because the context of events is maintained, user
driven drill-down from a notification message back to the root cause is possible. Automatic prioritizing of
alerts and quick root cause analysis leads to reduced response time, higher up time and allows system
managers to quickly respond to critical situations. CEP also allows automatic response based on pre-
defined rules.

Figure 6 shows how CEP is integrated into the emerging Common Intrusion Detection Framework
(CIDF)[13]. The framework consists of middleware that provides secure transport of General Intrusion
Detection Objects (GIDOs). These GIDOs are formulated in the Common Intrusion Specification
Language (CISL). The middleware and the language provide a mechanism for components to
communicate (shown as dashed arrows). The main components in the framework are detectors and
correlators. Detectors are a part of the information infrastructure, such as a (sub)network, a host or the
middleware. Correlators investigate the output for two major purposes: Reduction of false alarm and
detection of large-scale attacks that involve simultaneous attacks to multiple parts.

10

CEP/CIDF integration starts with a sniffer agent that listens to CIDF traffic and intercepts relevant
GIDOs. Each GIDOs is then translated into an event in the CEP internal format (level 0 events). As
shown in Figure 6, these level 0 events are stored to disk for later analysis. They are also displayed in the
CIDF Traffic Viewer. The level 0 events are also the basis for a first map. Because CEP has been
optimized for strongly structured events, and CIDF events have a very flexible structure, we extract
relevant information from the level 0 events and create another layer of events with a rigid structure (level
1). These events are then used as input for several other maps that may be built on top of each other as
shown in Figure 6.

Common Intrust ion Detect ion Framework (CIDF)

Stanford Complex Event Processing (CEP) Correlator

Extractor
Map

CIDF
Traffic
Viewer

Network

Host
Detector

Data S to rage

Level 1 :
CEP in t rus ion events
(opt imized for CEP)

Prioritizer
Map

Network
Detector

Host
Detector CIDF

Traffic
Viewer

Priorit ized
Events
Viewer

Correlator
Map

Correlated
Events
Viewer

CIDF
Sink

CIDF
Logger

CIDF
Correlator

CIDF Traffic Flow: GIDOs in CISL CIDF Traffic Flow: GIDOs and abstractions in CEP

Level 3 :
Pr ior i t ized Events

CIDF
Sink

Level 2 :
Corre la ted Events

Leve l 0 :
CEP events equ iva lent

to C ISL GIDOs

Figure 6 : The CIDF Event Processing Network

D. Related Work

1. General Event Services

The Open Group published a specification for Event Management Systems (XEMS) [14]. XEMS
provides a set of APIs for event producers and consumers to connect to the The Open Group published a
specification for Event Management Systems (XEMS) [14]. XEMS provides a set of APIs for event
producers and consumers to connect to the service. Additionally, there are API calls for configuration and
management of the service itself. XEMS supports a mechanism to define types of events. Event filters in
XEMS are part of the event service and not external components. They are also rather simple, consisting
of logical expressions on the attributes in an event (in disjunctive normal form) only. Simple and internal
filters can be implemented more efficiently. In our technology, filters are outside the event service and
can be arbitrarily complex. The service supports efficient filtering (and aggregation) through the API.

11

We have our own event processing infrastructure and event format. We supply translators that perform
the translation from and to other event formats. We expect the cost of the translation to be negligible
compared to the cost of the event processing. Our format is optimized for efficient processing of causal
information. Our EPN management tool is optimized to control our event processing agents. However, by
using proxies, third party agents can be controlled as well.

2. Event Correlation

Many groups are focusing on event correlation for network management. Event correlation circuits as
described in [15] are limited to simple filtering and aggregation. SMART correlation books is restricted to
simple event correlation [16]. The correlation is not done by an EPN, but rather by single process based
on a pre-compiled table of correlations. Both [15] and [16] are focused on network management events,
while CEP is applicable to any domain. Commercial products available include Computer Associates
International Inc.'s Unicenter TNG, Tivoli Systems Inc.'s TME 10, and Hewlett Packard Co.'s OpenView.
These commercial products are rather limited in two ways: First, their respective event processing
capabilities are limited to simple filters and aggregations, similar to the Unix commands grep , sort and
wc. Second, they are based on relational database technology, treating all events as tuples in a table.
While this approach is sufficient for many applications, there are cases where more powerful aggregation
is necessary.

Systems formally defined using communicating finite-state machines (CFSMs) introduce non-
determinism (e. g. SDL [17], Estelle [18],). The events denoting state changes of the CFSM build a
partial order with relations between events of the same machine or the same communication activity.
However, in the CFSM this partial order is lost.

The same holds for most approaches to detect software failures (e. g. [19]). The partial order is implicitly
reduced to a total order. This introduces additional complexity as multiple reductions are possible,
depending on the delay in the communication pathways. CEP avoids this complication by analyzing
partially ordered sets.

CEP based on-line validation can be viewed as a variation of the observer-worker approach described in
[20] or the supervisor approach as described e. g. in [21]. An observer/supervisor can be defined using the
CEP event pattern language. Using the on-line validation capabilities of our infrastructure the
observer/supervisor constantly checks the specification against the running system.

3. Query Engine

The work we did in the event pattern matcher is related to work done so far in the database field.
Optimizing our pattern matching is related to the work Qian and Wiederhold did for relational algebra
[22, 23]. However, we hope to do similar optimization work on the level of our event pattern language,
without having to go down to relational algebra.

Work done by Wolfson et al. [24] focused on incremental evaluation of rules in a deductive database
where rules are added as the interpreter evaluates rules. They operarate on a more general level where
rules can change after initial insertion with consequences for later rules. In our pattern language, once a
pattern is found, it cannot be undone. Regarding real-time constraints, [24] just expects "that incremental
rule processing … will realize real-time expert systems with large database".

[25] presents a logic oriented point of view of the problem. It involves backtracking and describes an
algorithm to obtain an approximation of the ideal effective point in a constraint based incremental system.

12

It applies to another case of dynamism, where the query itself evolves dynamically, which can happen
with the pattern language used to trigger events in the CEP model.

Our problem is a subset of those studied in [26], where our FOIES is almost insertion-only with
(currently) non recursive auxiliary mappings. Unfortunately, the arity of our queries is potentially high,
which makes an efficient general algorithm unlikely.

Actually, the problem we are faced with most closely resembles materialized view maintenance, for
which many algorithms (see for instance [27, 28]) have been developed for relational systems. A large
part of these studies focus on how to propagate changes over several materialized views, a problem that
does not apply to EM. Only a few published papers address view materialization issues in OODBMS and
some of the proposals have not been implemented. Croque [29] extends [22] to monoids and is much
more general (and probably less efficient) than what we need. MultiView [30] is more concerned about
schema changes. Using this approach, we would have to define a virtual class for each query that is
derived from existing classes by a recursive path query. However, MultiView does not support recursive
queries.

13

II. Event Processing Networks
In the following sections, we introduce the concept of event processing agents and of event processing
networks, we proceed to a relational representation of them, which we use to optimize such networks. We
will follow a bottom up approach: we begin by defining a relational representation of the RAPIDE pattern
language, then use that representation to define typical Event Processing Agents, and explain how to
combine those into full Event Processing Networks. This leads to a discussion of possible optimizations,
efficient incremental algorithms to compute the outputs of an event processing network and opportunities
to distribute and parallelize the network on a pool of machines.

A. Event Processing Agents

To monitor a distributed system and analyze its behavior, we have designed a framework that enables
Complex Event Processing in a modular and distributed fashion. Each element of this modular framework
acts as an agent, hence the name of Event Processing Agent, or EPA.

Event Processing Agents can be split in three categories:

• Suppliers: these agents either have no input (in which case we refer to them as
generators), or have an input that is external to our system: they may listen to the
messages being exchanged by the nodes of the monitored system and convert them into
events for on line analysis (in which case we call them sniffers) or they can read some
log file produced by the monitored system, usually for post-mortem analysis (in which
case we call them loggers). A typical supplier will work under the assumption of
orderly observation (no earlier event arrives after a later event) and will try to add
meaningful causal information to the generated events.

• Processors: these agents do the bulk of the work. Filters filter out events that do not
match a given pattern. Mappers aggregate multiple events into one or more new events.
Constraint checkers ensure that a condition is always or never met.

• Consumers/Responders: these agents have no output within our system. They are
usually used to notify the user of significant activities in the network. This is done
either through a graphical or textual representation (viewers) or through taking specific
actions (actors), such as sending email or paging the person in charge of the system.

Once we have those EPAs, we can compose them into an Event Processing Network, which can be
thought of as a directed acyclic graph, where the vertices refer to event channels and the nodes are EPAs.

From these types of agents, we realize that a lot of commonality is shared. In general, we can represent an
EPA as a black box, with a given (possibly variable) number of inputs and outputs, each with a given type
(Rapide is a typed language).

This allows us to design our system to be modular and extensible: by defining an interface which all
EPAs must implement, we can fully exploit the black box paradigm yet let the system grow by adding
new EPAs as needed. This is further described in chapter III, which specifies the architecture of the
RAPIDE CEP system, but it is important to note it here, because this is the key to Event Processing

14

Networks: because nodes can be represented as black boxes, agents can interact within an Event
Processing Network and pass events to other agents in order to build the concept stack which was
described in section I.C.

B. Relational Representation of the Pattern Language

The purpose of this section is not to describe the Rapide pattern language, which has been thoroughly
defined in [3], but to define a representation that is useful in representing and optimizing Event
Processing Networks.

1. Basics

We will be working in an algebra on the set C of all the event containers in a given universe (an event
container is either a computation or a subcomputation. Although there is a difference between the two
notions in the CEP context, the following theory is independent of that distinction and therefore applies to
event containers in general).

We are either working in terms of binary relations over C px C q or in terms of predicates. The two notions
are linked: For a relation definition, the following statement holds: x R y = PR(x,y), where PR is a
predicate that defines R. In other terms, R={(x,y)|PR(x,y)}. Considering this way of viewing a relation (i.e.
by its graph), one can apply the usual set operations to relations.

Composition is defined as: yzRzxRzyRxR 2121 .; ∧∃⇔ . This leads to the notion of inverse of a
relation R, written R-1, where R;R-1 = Id(C p) and R-1;R = Id(C q)

We will also need to use the concept of power set: }|{)(xRuuyyRx =⇔Λ &&
, (where we write y as a

vector as a reminder that it is actually a subset of Cq).

Finally, because Event Processing Networks typically have fan-out portions, we also define the concept of
pairs or tuples of relations:

222111212121 ^),)(,)(,(yRxyRxyyRRxx ⇔

A useful operator which is directly related to the concept of pairs is the dup operator, which transforms x
into (x,x).

Finally, we can define conjugation by graphs: the graph of the conjugate of a relation R, written R , is the
complement of the graph of R.

One can prove that C , with conjugation and composition has an algebraic structure.

2. Derived Definitions

From the basic definitions, we can define the usual set operators:

15

Intersection: 1
2121);,(; −= dupRRdupRR �

Union: 2121 RRRR �� =

Difference: SRSSR ;;1−=−

3. Patterns

Given this framework, we can define the Rapide patterns. A pattern p is a binary relation p : C xC such
that: mpc if cm⊆ matches p.

A pattern macro in RAPIDE is a parametrizable pattern. RAPIDE has six predefined pattern macros[3],
which take patterns as parameters and are the glue that makes up the pattern language. These predefined
pattern macros express causal relationships; for instance, aÆb means “b causally follows a”, a||b means
“b and a are causally independent”, and a~b means “b causally follows a or b and a are causally
independent”.

Because of their key importance in the language, and because we are following a bottom-up approach, it
makes sense to start by expressing those predefined pattern macros, in terms of their predicates. This is
summarized in the following table:

),(21 CCP→
iff

212211 .. eeCeCe %∈∀∈∀

),(21~ CCP iff 021 =CC �

),(21|| CCP iff
1212212211 .. eeeeeeCeCe ≅¬∧¬∧¬∈∀∈∀ %%

),(21 CCPOR
iff 00 21 =∨= CC

),(21 CCPAND
iff

21 CC =

),(21 CCP� iff true

Here, we assume, according to the Rapide models, that a causal relation amongst events is known, namely
% . This is a partial order, with the notion of equivalent events, noted ≅ .

From the pattern macros, we can work towards more complex patterns, using the following relation:
Given two patterns p1 and p2, and a pattern macro +, which is one of Æ, ~, ||, OR, AND or U, and the
corresponding predicates, we have:

�);,();,(; 2121 +=+ PCIdppduppp

This is very powerful, as it lets us now write every non iterative Rapide pattern (parameters and guarded
patterns can be described as well).

16

C. Relational Representation of Event Processing Agents

Most of the agents that are used in Event Processing Networks can be defined in terms of the algebra
presented in the previous section, possibly using the pattern language. As the number of such Event
Processing Agents is quite large (and growing), we will only present here some typical and interesting
examples, namely simple filters and maps.

Although it is probably not possible to express all possible EPAs in relational form (maybe not even
every possible map), this representation is still useful to optimize an EPN when possible.

1. Filter

The task of a filter is, given a pattern p, to only let pass through those events that are part of a match for p.
Filters can be very complex, given the power of the RAPIDE filter language. They can maintain state
between matches. Such state makes our representation much harder to write (although it does not make it
impossible), and we therefore present the results for stateless filters.

Given this intuitive definition, two definitions are possible for filters:

• The first one produces a set of computations, and can be written as:)(pfilterp Λ= .

Here a given event can participate in several matches.

• In the second definition, only the earliest maximal match is produced. Therefore a filter
only produces one computation.

The second definition is the one that is currently implemented, primarily for efficiency reasons, and
because, in most cases, only the earliest maximal match matters. However the first one is much easier to
represent, because our framework does not include the notion of time, i.e. of which events came first, and
which match is earliest.

To make up for the inaccuracy between theory and implementation and to make sure that following EPAs
in the EPN get a computation rather than a set of computations as an input, we also define a special kind
of EPA, called choose, which selects a computation from a set of computations.

2. Map

The purpose of this section is not to fully describe maps. A complete reference can be found in [31]. The
main purpose of this section is to show how to specify simple maps in our relational scheme.

Maps are potentially very complex EPAs. The basic idea behind map is that, given a domain and a range,
rules will be triggered when events of the domain match a given pattern, and those rules may produce
events in the range of the map. A map is usually a list of rules. A rule is usually made of a trigger (a
pattern which describes events which will start the map) and a statement (a pattern which defines which
event(s) are produced when the trigger matches).

Because maps can be arbitrarily complex (the map language is a large superset of the pattern language),
not much can be done to optimize or even predict map behavior in general.

Therefore we will only concentrate on simple maps, which are basically maps that do not maintain any
state. These maps can be represented as a list of triggers, which are Rapide patterns, and a list of bodies,

17

which are also Rapide patterns. Whenever a set of events matches a pattern in the list of triggers, then
corresponding body is executed, leading to another set of events. In the end, maps operate on CxC.

Before introducing the representation of maps, we define the matching of a rule rl pp ⇒ as

(){ })()(,),(rrllrlrlmatch pRcpRcccppR ∈∧∈= : this simply says that the graph of a matcher

is such that for every match of the rule by events of the input computation, a set of events matching the
statement of the rule is generated.

A single ruled map is a little more involved than that, because of the notion of consumption of events: a
rule will only trigger on the first earliest set of events (in the causal sense). To represent that in our
relational representation, we need to introduce the concept of prefixes. This notion is commonly defined
in partial orders and therefore we will only say that a prefix is a subset of a computation which respects
the causal ordering of events, i.e. if a prefix contains an event then it contains all the events which
causally precede it.

We now have the tools to define a single-ruled map:

(){ })(,),(212121 ijibt
lrlppmap cDisjcCcCCxCCCppMP ∧=∧⊇∈==

⇒
��

�

Here, the cl’s and cr’s are taken from the corresponding matches, defined in Rnatch, and �
�

is the causal
preserving disjoint union operator, i.e. it enforces elements to be disjoint while building them
monotonically (following the causal order), which can be expressed using the notion of consistent cuts:

�
�

�
�

% ∉′′⇒∈′∧′′′′′′∀ cccccc).,(, where % stands for “is a consistent cut of”. This notion of
monotonic union can also be expressed as:

() () 22212121211121),(,),(,).,(ccppMccppMcccccc %% ′⇒∈∧∈′′∧′′′∀

Multiple ruled maps can be defined in terms of single rule maps, depending on the semantics of
triggering: when multiple rules can trigger, only one of them should trigger. The decision of which rule
will actually trigger in such cases is not made as of now because it is unclear whether random, round-
robin or user specified priorities would be most useful.

D. Sub-EPN

The concept of sub-EPNs is useful in several contexts:

• Sub-EPNs are the equivalent of a basic block in the process of EPN optimization.

• Sub-EPNs are used extensively in tools like RapNet, where they are the principal means
of scalable/hierarchical design of EPNs and where they mimic the typical top-down
design approach: an Architect designs building blocks in the form of sub-EPNs, which
are then added to a library of Agents, which is used by engineers to build actual EPNs.
This is further discussed in section II.H.2.a).

18

• Synchronous Groups (which we describe below) are a special case of sub-EPN.

Just like an EPN is a directed acyclic graph of agents, a sub-EPN is a subset of an EPN, which respects
the following condition: one should be able to replace that subset in the EPN by a single node without
creating a cycle in the resulting graph. The reason for that restriction is that you want to be able to treat a
sub-EPN just like a regular EPA, because: 1/ it is then transparent to the user of RapNet whether a library
element is an EPA or a sub-EPN, and 2/ optimizations can then be done in terms of sub-EPNs, with no
side-effects outside of the sub-EPN (this is explained in section II.F).

Examples and counter-examples of sub-EPNs are shown on Figure 7, where the dotted blue area is the
boundary separating the elements of the sub-graph and the elements outside the sub-graph.

The first example in the figure shows a typical sub-EPN, which contains a filter and two maps. The
resulting sub-EPN can be represented as a black box itself, with one input (the input of the filter) and four
outputs (the outputs of the maps).

The second example in the figure shows that if the sub-graph is not connected, then it may not be a sub-

EPN: (11 ;; magentf) shows that (11 mf °) is not a sub-EPN because the induced graph has a cycle.

The figure also proves that being connected is not a sufficient condition: in the third example, the selected
sub-graph is connected, but it still is not a sub-EPN, because the EPN shown induces a cycle when the
sub-graph is replaced by a single node.

To give a more formal definition of sub-EPNs, we need to introduce the notion of dominance. This notion
is taken from graph theory and compiler optimization. In a graph, a node a dominates a node b if all paths
starting from any entry node that lead to b go through a. In our case, an entry node is a node with no
predecessor. Post dominance is dominance in the reverse graph (i.e. when reversing all the edges of the
DAG).

In fact, it is possible to prove that the intuitive definition of sub-EPNs given above is equivalent to the
following: a sub-EPN is a sub-graph of an EPN under which dominance and post-dominance are closed;
i.e. if a node is both dominated by some node of the sub-graph and is post-dominated by some other node
in the sub-graph, then it must be in that sub-graph in order for the sub-graph to be a sub-EPN.

19

S u b E P N
f1 m 1

m 1

f1
m 1agen t

f1 m 1agen t

agen t
agen t

S u b
E P N

Figure 7 : Sub Event Processing Networks (Sub-EPNs)

E. Representation of Event Processing Networks

1. Definition

We can represent an Event Processing Network using our relational representation of EPAs, combined
with operators to describe fan-in and fan-out connections:

• in our model, an EPN is a directed acyclic graph of agents. The acyclicity of the graph
is not a strong requirement and may be relaxed in the future. We have already thought
of examples where such a cycle may add expressiveness to the system, provided that
the cycle does not recurse indefinitely.

• Each node is an agent, which can be represented using the previous relational
expressions.

• Each vertex corresponds to an event container, which is the mean for carrying events
between two agents.

20

There are many possible situations: the representation depends on the multiplicity of the connections on
each input / output of agents, and on fan-in/fan-out positions in the network. The possible situations are
summarized in Figure 8. This figure introduces a graphical representation of Event Processing Networks.
Composing the elementary configurations presented in Figure 8 allows one to build all possible EPNs.

Agent 1 Agent 2
Error! Objects cannot be
created from editing field codes.

Agent 1

Agent 2

Agent 3

()321 ,; AgentAgentAgent

Agent 1

Agent 2

Agent 3

()321 ,;; AgentAgentdupAgent

Agent 1

Agent 2

Agent 3

() 132 ;;, AgentAgentAgent �

This case is further discussed
below.

Figure 8 : Connections in relational expressions

The semantics for a fan-out situation are rather clear, and we only define one type (the second case in
Figure 8). The third case in Figure 8 is a special case of the previous one, where the fan-out is represented
as a dup operator, i.e. everything happens as if the events where copied on each outgoing computation (in
reality, for efficiency reasons, our implementation shares the events amongst the different observers
which is fine as long as EPAs are not allowed to modify their inputs). This is exactly as if there was a dup
EPA between Agent 1 and Agent 2, Agent 3.

For fan-in nodes, as represented by the last case of Figure 8, many semantics can be defined. The most
common ones are:

• Barrier semantics: an event can go through only if all the sources have produced an
event. The name comes from the Barrier construct, which is typical in message passing
systems.

21

• Pass-through semantics: anything that comes from either source will propagate through
the node: this is what the union does, shown here.

We then have much more involved semantics, which use the concept of activity-equivalent event: each
event has its own, unique event identifier (EID). Each event is identical only to itself, however, events
denoting the same activity are said to be activity equivalent or in short, equivalent. Equivalence is context
dependent, i.e. it depends on the view of the world and the implementation of the loggers. In certain
cases, it might even never be resolved whether two events are equivalent. But in cases where the activities
can be associated with identifiers (AIDs) and the events carry the AID of the corresponding activity,
resolving the equivalence is possible. Two events are equivalent if they belong to the same activity class.
We can then define a merge operator, which acts as a union on the quotient of the identity equivalence
class – and is therefore yet another powerful way of implementing a fan-in node.

Building representations from Figure 8 defines an injective morphism between EPNs in the intuitive
sense, as represented by the graphical representation and in the relational sense: given a graphical
representation, it is possible to define a unique relational expression; the opposite is not true in general,
simply because there are relational expressions for which there is no graphical representation.

Moreover, this defines an algorithm to go from the graphical representation (which is introduced in the
next section and which is fully described in the RapNet reference section) to the relational representation
– which is the basis for a tool like RapNet: starting from the graphical representation, it can convert into
the relational sense, and optimize based on that representation.

2. Example

We can code a network composed of a map m1 whose outputs is connected in parallel to two maps, m2

and m3, each of which is connected to a filter (respectively f2 and f3), which then are merged back. The

representation in our relational language for this EPN is: �);,();,(;; 32321 ffmmdupm

We also use another representation for Event Processing Networks, which is purely graphical. Below is
an example of it, showing the same network in graphical form. In this form, an EPN appears as a Directed
Acyclic Graph (DAG), where the nodes are EPAs and the vertices are computations.

22

M 1

M 2

M 3 f3

f2

U

Figure 9:Connections in relational expressions

A complete reference of the graphical representation can be found in the RapNet reference section, as this
chapter aims at using the relational form to optimize a network – which is something that cannot be done
easily with our graphical representation.

F. Optimizations

The relational representation of Event Processing Networks gives an opportunity to optimize the run-time
processing cost. Processing cost includes CPU, I/O and network bandwidth, part of which is
implementation dependent. We are giving here a list of possible optimizations that the run-time engine
can do and their respective tradeoffs.

All of these optimizations operate on sub-EPNs, i.e. a sub-graph of the EPN which can itself be
represented as a node without creating any cycle in the resulting graph. Note that this kind of algorithm is
inherently recursive: it starts with the smallest possible sub-EPNs, usually a couple of EPAs and
progresses toward larger and larger sub-EPNs. Obviously, the number of combinations is exponential in
the size of the complete EPNs, and we therefore use heuristics to try to avoid testing for non-optimal
cases.

All of these optimizations respect the structure of sub-EPNs: the result of optimizing a sub-EPN leads to a
sub-EPN (sub-EPNs are formally defined in section II.D). This is very important for Synchronous
Groups, which are a special case of sub-EPNs: because the user of a tool like RapNet are able to specify
where they want to split into Synchronous Groups, the optimizations should not change the corresponding
structure internally, i.e. optimizations should be closed under Synchronous Group partition.

On an implementation standpoint, these optimizations can occur within RapNet, when the user hits the Go
button.

1. Compression

It is possible to take advantage of certain conditions to test conditions earlier than they would normally
be, hence reducing the number of events that flow through the EPN. For instance, a sequence of filters

23

f1;f2 can be replaced by a single filter f, where f is defined by: f = UΛ(p), where p = p1^p2, if p1 is the
pattern filtered by f1 and p2 the pattern filtered by f2.

We call this optimization a compression, in the sense that it compresses the original (extended) graphical
representation by removing as many filters as possible.

Why would anyone ever write such an EPN? There are mainly two reasons:

• For logical reasons: even though the two filters can be combined in one, it may aid the
user conceptually to separate them. For instance, a system that needs to filter out chips
that have passed test #1 and then, out of these, those that have passed test #2 would
most logically be drawn as two filters in sequence.

• One (or both) of the filters may be hidden from the user. This is because the tool we use
to build EPNs (RapNet) allows the user to use sub-EPNs, which behave like any regular
EPA but may actually contain many EPAs, and may in particular contain a filter. Then,
if the user builds an EPN using two sub-EPNs e1 and e2, i.e. e1;e2 and e1 is m1;f1 and e2

is f2;m2 then the user – without knowing it – actually creates the EPN: m1;f1;f2;m2,
where there is an opportunity for compression.

In Figure 10, we show this EPN: the top part shows what the user builds and sees, i.e. two sub-EPNs
connected to each other. Below is the internal representation, showing the expanded sub-EPNs. On that
level, it is easy to see that the two filters can be compressed into a single one. This is what is done in the
bottom part, which shows the resulting, optimized EPN.

24

f2 m2

f1m1

m1

m2

f

S u b E P N1 S u b E P N2

Figure 10: Optimization: Compression

Of course, further improvements can be made if the conditions in f1 are not independent from those in f2:
these are fairly classical logic optimizations, which have been thoroughly described in both logic and
database research.

This is a tremendous improvement in performance in our system, because of the cost of generating and
distributing useless events (this costs CPU power, as well as network bandwidth – in the case of
lightweight computations – or disk bandwidth – in the case of non-transient computations).

There is a disadvantage of processing to this optimization like all those presented here: it assumes that no
other EPA x will ever be connected to the output of the first filter. If that is not the case, then we are
replacing f1;dup;(x,f2) by f1;f2;x, which is incorrect. This is avoided by having tools like RapNet lock
EPNs in a way which does not allow adding incorrect EPAs once the EPN is optimized: basically, the
user can turn optimization on or off. He will only turn it on when he knows that he will not need to
change the EPN in a way that would be prohibited by RapNet.

2. Common Sub Expression Elimination

It is frequent that part of the computation needed to process an EPA can be reused somewhere in the
network. This can be usefully put to use by changing the topology of the executed network to avoid
redundant work.

25

For instance, if we have an EPN f1;m1, where the pattern in f1 is the pattern in the left side of the map rule,
then the filter is useless, and can be safely deleted.

Another case of common sub expressions occurs often when using sub-EPNs, and can be represented as

),();,(;; 43221 agentagentagentagentdupagent . Provided that agents are not allowed to change

their inputs (which is currently a requirement, due to the implementation), this sub-EPN can be replaced

by),(;;; 4321 agentagentdupagentagent . This is an obvious win: the new sub-EPN is less

computationally intensive, it produces fewer intermediary events and therefore less disk/network
contention.

3. Reordering

In general it makes sense to try to execute filters as early as possible in the EPN, as they tend to reduce
the number of events that are further processed in the system.

This optimization assumes that the execution of the filter is relatively fast, i.e. that it makes up for the
time that would be spent carrying more events through the EPN. This is not always the case, however:
two commons counter examples are:

• Expensive predicates: if the pattern in the filter is complex (with respect to those in the
other EPAs), then the cost of executing the filter where it would normally not be
executed may kill the benefit of moving the filter up in the EPN.

• Low selectivity: if most of the events go through the filter, then the cost of executing
the filter will be larger than the little time saved by not generating the corresponding
events.

In general, it makes sense to try to put the filters with the highest selectivity and the lowest processing
cost up front.

This optimization may involve rewriting the filter pattern. In particular, when inverting a map and a filter,
the filter has to operate on a completely different set of events.

Note that this optimization may not always be possible or expressible:

• It may be incorrect to exchange a filter and a constraint.

• Because maps can aggregate events in very powerful ways, it may not be possible to
express the filter in terms of vertically related events (with respect to the map), i.e.
events of the domain and events of the range of the map, which correspond to each
other by the triggering of one of the map rules.

4. Map Rule Elimination

If a map contains a rule that cannot be triggered, that rule is useless and can be eliminated. If a map does
not contain any rule – due to elimination – it can itself be removed from the EPN (the mapped events of
the map then become the empty computation of the corresponding type, and the unmapped computation is
just the input computation of the map).

26

It is sometimes possible for our system to realize statically that a rule cannot trigger, and therefore to
remove it before activating the EPN. This is done by looking at the type of the input computation and at

the events that can possibly go through. A typical example of this is:)();(21 qpmpf ⇒ where

ap =1 and bp =2 . Then only events with action declaration a go through the filter, but the map will
only trigger on events with action declaration b.

A more complex example is the same EPN, but with: 0)(1 <= iwhereiap and

10)(2 >= jwherejap

5. Filtered Computations

We also define a special kind of computations, called filtered computations. A filtered computation is a
pair <pattern, computation> such that all the events in the computation match the pattern. A filtered
computation is generated from a normal computation by filtering out unmatched events.

Typically the pattern of a filtered computation has to be very simple (else one uses a real filter). Filtered
computations were initially introduced as an implementation optimization: by filtering out useless events
early, we avoid having them go through all the layers of the system, most notably through the persistent
storage (hence reducing I/O bandwidth) and through the notification subsystem, hence reducing the
network bandwith.

Even though filtered computations were introduced as an implementation optimization, they actually have
a theoretical advantage as well, because they allow further optimizations. For instance, if the triggers of a
map are simple patterns, the normal computation which is an input to the map can be replaced by a
filtered computation of the disjunction of the patterns.

G. Synchronous Groups

1. Introduction

We have two paradigms of inter agent communications: in the first one, agents use a local/synchronous
notification mechanism (basically, method calls); in the second one they use a remote/asynchronous
notification mechanism (a message passing system).

Following certain constraints that we will explain below, these two communication mechanisms can be
mixed. In this section we will explain what a Synchronous Group is, what they can be used for, and how
to optimize an Event Processing Network by selecting the right Synchronous Groups and optimally
allocating resources.

Within a synchronous group, all processing happens in a depth first, synchronous way: As soon as one
EPA in the local SG updates its output computation(s), all local subscribers to that computation get called
back. Therefore, even if EPAs run in multiple threads, the flow of control within one thread follows a
depth first traversal of the DAG.

27

Splitting an EPN in several Synchronous Groups is an opportunity for distributing the EPN on several
machines: within a Synchronous Group, all the EPAs are executed in the same process, and therefore on
the same machine, but one can choose to run a Synchronous Group on one machine and another one
somewhere else.

Seen this way, a Synchronous Group corresponds quite well to the COM concept of Apartment [32],
which is neither a process nor a thread, but represents the ownership by a thread of some object, and
therefore dictates whether objects can communicate with each other using regular calls or whether they
should communicate indirectly using marshalling proxies.

Choosing the SGs for a given EPN can greatly improve its performance. We have some rules of thumbs
to decide how to partition our EPNs when we design them. We are working on developing a more formal
theory of optimal partitions.

2. Definition

A Synchronous Group is a sub-EPN which obeys to the following constraints:

• Head: to define Synchronous Groups, one can use the concept of heads of sub-EPNs: a
node (i.e. an EPA) is the head of a sub-EPN iff all of its inputs are outside of the sub-
EPN and if it blocks when started. With this terminology, a Synchronous Group has
exactly one head: it obviously must have at least one (except if one considers a
complete EPN to be a Synchronous Group); and if it has more than one, then only one
of the heads can start.

• Fan-in Nodes: fan-in situations can cause starvation. Therefore, we enforce that either
both or none of the connections in a fan-in slot are in the Synchronous Group of the
EPA.

In the following paragraphs, we are explaining why we placed such restrictions in the definition of
Synchronous Groups. We are illustrating with graphical representations of candidate Synchronous
Groups. In those representations, gradient-filled boxes with thick discontinuous borders represent the
partition of the EPN into Synchronous Groups.

Agent 1

Agent 2

Agent 4

Figure 11 : SGs are restricted to one head

In Figure 11, we show why we restrict SGs to one head: if both Agent 1and Agent 2 are in the same SG as
Agent 4, then the SG has two heads (Agent 1 and Agent 2). The flow of control will start from either
Agent 1 or Agent 2, then go to Agent 4 (because of the depth-first propagation within an SG), then back to
the caller, and so on, and therefore the other head will starve.

28

This explains why we only allow one head per SG. In reality, we can relax this constraint slightly: if a
head agent can be implemented to work asynchronously and cooperatively then we can build a pseudo-
head, which precedes all the heads in the SG, and which calls each of the heads in a round-robin fashion:
in Figure 12, the pseudo head calls the first asynchronous head. If that agent has data available, it creates
the corresponding events, which in turn calls Agent 4. Then, the control returns to the head. Because Head
1 is instructed by the pseudo-head to cooperate, it returns the control to the pseudo-head, which gives a
chance to the other head to process its events. This mechanism may seem simplistic, but it actually works
very well, because many heads are sniffers, which typically use select() calls to retrieve their information
and are therefore inherently asynchronous.

Agent 4
Pseudo -

H e a d

Asynch ronous
Head 1

Asynch ronous
Head 2

Figure 12: Pseudo-Head in SGs

More generally, fan-in nodes are an issue. On Figure 13, we show an incorrect SG partition. The problem
is that Agent 4 needs to be receiving asynchronous notifications from Agent 2 (i.e. the corresponding
computation has to be either lightweight or heavyweight global, see III.C for details), and therefore
everything is as if there was a second head in the SG, called Listener, which handles all the asynchronous
notifications (see Figure 14).

Agent 1

Agent 2

Agent 4

Agent 3

Figure 13: Incorrect SG Partition at Fan-In Node

29

Agent 1

Agent 2

Agent 4

Agent 3

L is tener

Figure 14: The asynchronous notification can be seen as an extra head in the SG

This restricts the possible SG partitions considerably, although the relaxation that we described above
definitely applies to the Listener: it is easy to implement the notification subsystem in a way such that
Listener is both asynchronous and cooperative. Thus, if Agent 1 is also both asynchronous and
cooperative, we can add a pseudo-head, which calls successively Agent 1 and Listener, making the SG in
Figure 13 a legal one.

If we cannot use the relaxation mechanism, then a possible SG partition for this EPN is shown on Figure
15: because Agent 4 is now in its own SG, all the requirements are met to make this a legal partition.
Indeed, Agent 4 receives notification asynchronously from both Agent 1 and Agent 2, which avoids
starvation of those agents.

Agent 1

Agent 2

Agent 4

Agent 3

Figure 15: A legal SG partition

30

3. Example

Let us look at a simple example (based on our Fabline Demo, first introduced in the first chapter of this
document, and Figure 2).

Fabricat ion Line

Level 1-2
Map

Level 2-3
Map

Level 3-4
Map

TIB
Snif fer

Dispos i t ion
V iewer

Work f l ow
Viewer

FabFloor
V iewer

Level 2:
Point-to-Point

Communica t ion

Level 3:
Work f low

Data
Storage

Figure 16 : FabLine EPN split into 5 SGs

In that EPN, the logger creates a first computation reflecting the raw (broadcast) traffic on the
middleware. A first map transforms this first computation to a higher level of abstraction, point-to-point
communication. This second computation is then read by a viewer that displays the number of point-to-
point messages originating at the controller. Likewise, the Level 2-3 and Level 3-4 maps are creating
higher levels in our conceptual stack.

We split the fabline EPN into five SGs (see Figure 16):

1. The first contains just the sniffer.

2. A second SG contains the three maps.

3. The remaining SGs consist of one viewer each.

Combining the sniffer and the maps into a single SG could work in this case too. Alternatively, provided
we have global heavyweight computations (described in section III.C), we can also separate each map in
its own Synchronous Group.

Whenever the sniffer registers an event on the middleware, it adds it to the first computation. This means
that it is added to the persistent store and the first map is notified that a new event is available.

Immediately after that, the logger starts to look out for the next event. Independently of the sniffer, the
first map is notified asynchronously of the new event and may generate another event in the second
computation.

31

In that case, the second map is called for processing. Because it is in the same SG the first map will not
process any more events for now: this is the depth first execution pattern of synchronous groups.

If the second map generates a new event, the third map is called in the same way. After all the maps are
done, the first map starts looking at the next event. Independently each viewer is notified asynchronously
of incoming events on their level.

4. Design Issues for SG partition

High speed loggers can be slowed down considerably by synchronous processing of events. The time
spent calling back following EPAs might be longer than the time to the next event to log, eventually
leading to missed events or to a growing queue of waiting events.

On the other hand, if the raw output of the logger is not relevant, calling a simple filter for each event
immediately might remove the need to store that raw output altogether and lead to higher overall
throughput.

As one can see there are trade-offs when partitioning an EPN into multiple SGs. There are some rules to
efficiently decide on the partition:

• SGs follow the same rules as Sub EPNs. They partition the EPN in a way that is
consistent with the vertexes of the EPN. This puts a topological constraints on the
possible SGs and therefore narrows considerably the search space in an algorithm
which tries to find the optimal SG partition.

• Any EPA that runs in a separate process and/or on a separate machine is by definition in
a separate SG. This includes for instance all loggers which instrument some legacy code
(e.g. eJava [5]).

• Viewers: If a viewer lives in its own process, then the preceding rule applies. Else, since
the user cannot view thousands of events per second, viewers will typically receive
events at a low rate and do a lot of processing on them (e.g. POV) or at a high rate but
then only show aggregate information on them (e.g. count of events with a given
signature). In the first case, if the processing time at the previous node of the EPN is not
much greater than that required at the viewer, it may be wise to put the viewer in its
own SG.

• Currently, distribution of EPNs occurs on an inter-SG level: within a single SG, all
agents run in the same thread, on the same machine. Therefore, to take advantage of a
cluster of machines, one tries to split the EPN in as many Synchronous Groups as there
are machines, provided this does not overload the available network bandwidth of the
cluster.

32

H. RapNet

1. A Tool for Managing Event Processing Networks

This section introduces RapNet. A user manual can be found on-line or as an appendix to this document.
The architecture of the tool is described in section III.F.

Once we started designing a few hard-coded Event Processing Networks, we realized that it would be
very valuable to have a tool that would allow one to create, instantiate and modify on the fly a network
while the system is running. This allows to design networks incrementally, which fits well in the process:
it allows the engineer to modify the network every time he discovers new information.

The tool we have developed to accomplish this is called RapNet. RapNet offers a GUI to instantiate and
communicate with EPAs. The GUI lets one draw an EPN in a form that is based on the graphical
representation we introduced above; given that EPN, RapNet is responsible for its configuration, its
instantiation (i.e. creating the actual agents in the EPN and hooking them to each other using
computations) and its optimized distribution on a pool of machines (using the Synchronous Group
mechanism described in the previous section).

a) Requirements

• RapNet should be easy to use: most of our customers don't want to learn the CEP
pattern language or a fortiori the map, filter or constraint languages. They are
completely happy with having an architect write the EPAs for them, and just want to be
able to assemble them as needed. Such EPAs will usually have a few free parameters
which the user can configure.

• RapNet should be able to load a library of EPAs: the architect makes a given set of
EPAs available to the engineer for building EPNs. Whether these EPAs are simple
EPAs or complex EPAs should be indifferent to the engineer. Complex EPAs include
Sub-EPNs, which are described in section II.D.

• It should be flexible: if an object is able to use the Computation Subsystem (a part of
the RAPIDE CEP implementation, described in III.C) , then RapNet should be able to
use it.

• It should be portable: if an EPA can work both under NT and Solaris, then RapNet
should be able to start it on either of those platform, and should also be able to run
there.

To meet these requirements, and although the complete infrastructure is written in C++, we decided to
implement RapNet in Java. We therefore designed a Java interface to the Computation Library and to the
EPA interface. The current implementation of this interface makes an extensive use of the Java Native
Interface (JNI), after having tried other communication models.

The GUI of RapNet was strongly inspired by other products such as Visio1. However, we consider the
rest of the architecture of RapNet to be original enough to be worth presenting in a separate section of
this document (III.F).

1 Visio is a line of tools made by Visio Corp. More information can be found at www.visio.com

33

b) Support for sub-EPNs.

RapNet supports a hierarchy concept, where EPNs can be constructed out of other EPNs. Such a sub-EPN
can be viewed as a complex EPA itself. This means that a sub-EPN can be part of the library of available
EPAs. The user does not need to know that the EPA is actually a sub-EPN.

In RapNet, the user can choose to either view a sub-EPN as an EPA, i.e. as a single node in the network,
or to expand it to show its internal structure. This is possible, because by definition of sub-EPNs, doing so
will not create a cycle in the original graph, i.e. expansion transforms an EPN into another EPN.

A sub-EPN may be password protected, in which case a password is necessary to expand it: this way, an
architect can sell a library of EPAs without providing their source code.

c) Support for Synchronous Groups

Sub-EPNs are architecturally defined to be EPAs, enabling hierarchical design by making a sub-EPN just
a special case of EPA.

Likewise, a synchronous group is by design a special case of sub-EPN. In a synchronous group, all the
elements cooperate using a local notification mechanism. This has several consequences:

• The cost of execution is lower than using a global notification scheme, because
notification goes through regular procedure calls instead of our external
publish/subscribe mechanism. This gain is of several orders of magnitudes, but the
overall improvement in not always that significant, because notification is often a small
portion of the actual computing cost.

• The semantics within a synchronous group are slightly different from the external
notification scheme: procedure calls are synchronous and we do them in a depth first
order, whereas the asynchronous notification scheme tends to do the calls in a breadth
first search fashion. In general, this does not change the output.

• The trade-offs involved in choosing synchronous groups within an EPN have been
studied in the section covering synchronous groups (section II.G).

RapNet can allow synchronous groups by selecting a sub-EPN and deciding to make it a synchronous
group. Some additional rules apply to synchronous groups, because it is not possible to interleave groups.

It is not possible to have Synchronous Groups as part of a library of available EPAs, though, and trying to
do so upcasts the SG back to a sub-EPN. This is because adding connections to a Synchronous Group, as
seen as a black box may result in an incorrect SG: in Figure 17 we show a simple and perfectly legal
Synchronous Group, consisting of just a head and another agent. However, if that SG could be added to
the library of EPAs as an SG rather than as a sub-EPN, and one connected another head, Head 2 to the
agents (shown on Figure 18), then an incorrect SG partition would result (as explained in section II.G.2).

34

H e a d Agent 1

Figure 17: If one can add an SG into a library of EPAs...

Head Agent 1

Head 2

Figure 18:... then incorrect SG partitions may result

We don’t expect many users to want to control the partition of their EPNs into multiple SGs. Therefore
RapNet can be told to attempt to partition an EPN optimally, following the rules we mentioned in section
II.G.4.

d) Support for strong type checking

The underlying language of Event Processing Networks, called RAPIDE, is strongly typed: computations
have a type, which describes the kinds of events they can carry. Moreover, the type system in RAPIDE
has a notion of inheritance, i.e. some types are subtypes of others, and an EPA can accept any subtype of
its expected input types.

Because of that, EPAs themselves have a type, which is the combination of the types of their input
computations and of the types of their output computations, each with a given cardinality. In our
relational representation, EPAs are binary relations from the cross product of the input computations of
the respective input types to the cross product of the output computations of the respective output types.

RapNet does both type checkings:

• EPA type: some EPAs can take multiple computations on a given slot, others cannot.
This is specified by the EPA to RapNet, and RapNet only lets the user connect as many
computations as are available for that EPA.

• RAPIDE type: RapNet ensures that the RAPIDE types are respected, and only lets the
user connect EPAs in a way that respects these types: for example, the type of an
output of an EPA must be a subtype of the input types of the EPAs to which this output
is connected.

35

e) Support for persistence

So far, we only discussed “computations”. In the real world, the single concept of computation is relaxed
for efficiency reasons. While a first time user may build an EPN using only “computations”, advanced
users have more control over different aspects of computations. For one thing, computations can be
declared non-persistence, or transient. Transient computations are called event channel. Within an EPN,
they provide the same functionality that computations do, except that the data associated with them is not
stored persistently. Using Event Channels instead of Computations improves throughput for an EPN.

Both, computations and event channels can optionally be declared lightweight. Lightweight means that
the computations are made available outside the local synchronous group in a reduced form without
information. Some EPAs need not more than lightweight, and these EPAs run more efficient on
lightweight computations. However, the process of publishing lightweight is additional effort for the
publisher. Lightweight should only be turned on if needed.

2. Usage Scenario

a) Roles

We are assuming two different roles in Complex Event Processing:

• An architect: the architect is responsible for creating the agents which constitute basic
building blocks to design EPNs. There are many tools available to the architect in order
to build those agents and the architect uses them to fulfill the following responsabilities:

• Maps, Filters and Constraints can be designed graphically, using a tool like
RapNet, usually by filling placeholders in predefined EPAs. Alternatively, for more
flexibility, they can be written in RAPIDE, and then registered as new agents in the
library.

• Custom agents can be written in any language. This includes, for instance dedicated
producers. Usually, the existing viewers should be sufficient to view almost any
data in any possible format; however, if the architect wants to design a viewer with
the same functionality as our viewers (mainly the capacity to relate vertically-
equivalent events and the ability for two viewers to communicate on different sets
of events), he can use our dedicated framework to do so – including APIs in
multiple languages.

• RapNet lets the architect build sub-EPNs, which are themselves considered to be
EPAs. Once a sub-EPN is added to the library of EPAs, nothing distinguishes it
from other EPAs.

• More generally, tools like RapNet use a registry which describe the agents which
are available to build networks. This registry is setup by the architect, which may
get the help of installation scripts: when the architect installs a new EPA, that EPA
can self-register. The agent registry is described in section III.D.3 and a full
reference is available in sections V.A.

• An engineer: the engineer uses the agents which are available in RapNet to design new
networks. If the architect has given him the right set of agents, he should be able to

36

solve any problem he wants and to refine queries as needed, even while the network is
running.

Typically there will be one architect and several engineers. Each engineer has his own view of the
available tools (shown in a tree view in RapNet), because all engineers solve different problems.

b) Example

For instance, in an intrusion detection system, the engineer sets up a network of nodes, each of which is
aimed at either watching or stopping intrusion attempts. This involves a set of producers, which either
read gateway log files or sniff directly from the network (e.g. using tcpdump). The producers are
connected to filters, because attempts will be watched for some given machine and because some port
numbers are known to be weak points. Filters are connected to maps: some are convenience maps, which
transform the data in a way that is understood by viewers; others are more involved and aim at
discovering unusual patterns of behavior.

At some point, the engineer may detect a new kind of intrusion and want to add a node to stop that kind of
intrusion while the system is running. RapNet makes it easy for him to create a new EPA (or configure an
existing one), and to connect it to existing EPAs.

RapNet also lets the engineer reconfigure existing EPAs: for instance, he may want to start watching
another port as well. This can be done in limited ways by RapNet, because it causes a problem in the way
our architecture works: because patterns can express things which happened in the past, changing the
configuration of EPAs may create undesirable discontinuities of behavior: for instance, if the filter now
starts to let port 80 go through, although it stopped it before, then a pattern asking for all the past
instances of port 80 will miss all the ones which predate the current time. RapNet enforces correct
behavior by prohibiting creating such discontinuities while the system is running: major changes require
one to either stop using past events (such as is the case with lightweight computations) or to stop the EPN,
and then restart it.

RapNet lets the engineer chain from previous results: once the engineer has detected an intrusion pattern
from a given address, he may want to monitor all activity coming from that address. There are several
ways of doing so. The one which we currently use is a multi-input map, where one of the input is the raw
data and the other input is the output of the intrusion detection system (which can be seen by this map as a
sub-EPN).

37

III. CEP: Architecture of the system
The Event Processing Network system is a complete tool set of integrated products. It can also be used as
an extensible framework for third party developers.

The whole system was designed in a layered architecture, as can be seen from Figure 19 . This chapter
describes the different components of the system, giving a rough outline of those that only exist as
infrastructural services and do not contribute to the understanding of Event Processing Networks.

In terms of actual products, the Event Processing Network system acts as an infrastructure for our
management software: RapNet. The main point of this chapter is then to describe the underlying
architecture and services of the system, as seen by RapNet, as well as RapNet itself.

f1 m 1
U

ViewerRapNet

Java Interface

Event Processing Subsystem

Computation Subsystem

Notification Subsystem

Storage Subsystem

f1 m 1
U

Figure 19 : Architecture of CEP

38

A. Notification Subsystem

The Notification Subsystem provides location transparent communication between Event Processing
Agents. It provides a hierarchical publish/subscribe communication model: an agent subscribes to a set of
subjects. When some other agent publishes under that subject or under a subject that inherits from it, the
Notification Subsystem notifies the former agent by forwarding it the message.

The default notification paradigm is asynchronous, just like in the typical Information Bus architecture: a
daemon (which can be distributed for scalability and/or replicated for availability) runs on the system.
Subscribers subscribe to a given subject or set of subjects with the daemon. Producers send messages to
the daemon, which then forward appropriately to the corresponding subscribers.

This is currently implemented with raw UDP sockets. However, the Notification Subsystem itself is
layered in such a way that very little code has to be changed to adapt it to another communication
medium or protocol. For instance, since the system typically sniffs messages from a piece of middleware,
it may sometimes make sense to use that middleware for inter-agent communication as well.

However, for efficiency reasons, the Notification Subsystem supports another notification paradigm,
which is synchronous: that mode allows Event Processing Networks to be subdivided into Synchronous
Groups (SG). In such a group, all notifications are simple procedure calls, i.e. they are synchronous.

The NM hides this dual mechanism from the upper layers of the system.

B. Storage Subsystem

The role of the SM is to provide location transparent memory access to events and computations.

Currently there are two implementations of this layer. Both permanently store the objects in an object
oriented database management system (OODBMS): one of them uses a commercial OODBMS from
Objectivity, Inc., whereas the other one relies on a small custom database engine.

In this layer, events are stored on disk, and they are grouped in event containers (an event container
corresponds to either a computation or a subcomputation). Other objects, such as time-, causal- and
architecture stamps, as well as clocks and threads are stored on disk as well. This is not further discussed
in this document, but reference to the class hierarchy in the Storage Subsystem and their correspondence
to higher level objects can be found in [33, 34].

All objects are very small but point to many different objects, which influenced the design of that
subsystem, and was one of the reasons to use an object oriented system (the other one being that the type
of queries that are done by upper layers is highly path oriented, which is hard to express in SQL).

The database is optimized for the multiple reader - one writer scenario (MROW), where the readers
always have access to the data, possibly in a stale version: most of the time only one logger will write in a
given event container.

Data can be cached at the SM level, but this is completely hidden to the upper layer.

39

C. Computation Subsystem

The Computation Subsystem (also called Computation Library, or CL) layer provides many helpful
algorithms related to causality and hides specifics of memory access and agent communication.

This layer drives the lowest two layers, and exposes an interface where communication amongst different
agents is completely contained within the computation or event channel (for the rest of this section, we
will not separately list event channels, what applies to computations also applies to event channels)
through which they communicate: the way agents get notified of new events is that they register observers
on the corresponding computation. The Computation Subsystem takes care of publishing on the
notification Subsystem when an event is added to a computation. Observers register themselves to the
notification daemon for the subject corresponding to the computation and therefore get called back when
an event is added to a computation.

The two mechanisms of notification available at the Notification Subsystem level (namely synchronous
vs. asynchronous) translate to a property of computations, which we call “lightweight”. Computations can
be one of three types with respect to the lightweight property:

• A local heavy weight computation uses the local (synchronous) notification mechanism.
During the callbacks that implement notification, the events are read from the database.
Nothing goes over the network. Due to current limitation in the implementation of the
system (mainly, that it is not reentrant), only one heavyweight thread exists per
database.

• A global heavy weight computation uses the remote (asynchronous) notification
mechanism to pass object IDs over the wire. This way, an observer can retrieve
information stored in the database, even though both the publisher and the subscriber
may be running in completely different processes on different machines. This is
currently not implemented as it requires major changes to the infrastructure, but it is
one of the future directions of the RAPIDE CEP system.

• A light weight computation uses the remote (asynchronous) notification mechanism.
Events in lightweight computations are sent (i.e. the events themselves, not their object
IDs) to the Notification Daemon, i.e. transit over the wire and are forwarded to event
observers. Only current events can be observed, i.e. clients are not notified of past
events. Moreover, to save network bandwidth, not all of the information that we usually
store in an event is generated, hence the name of “lightweight”.

In general, lightweight computations are used for lightweight viewers, which are typically simple meters
that do not use any causal information, but just plot some of the parameters of the incoming events.

Until the system (mainly the Storage Subsystem layer) is made re-entrant, the only way to distribute an
Event Processing Network within one database is to use lightweight computations. This means that
Synchronous Groups are currently the main way to distribute an Event Processing Network.

In addition to lightweight, the Computation Subsystem also manages another important property of
computations: normally, computations are persistent, i.e. the Storage Subsystem is responsible for writing
events to disk. However, some intermediary computations do not need to be persistent; for instance,
mappers create temporary event containers to store incomplete matches. Therefore, for efficiency reasons,
the Computation Subsystem is also able to create transient computations, which do not reside on disk and
therefore decrease the disk throughput requirements.

40

D. Event Processing Subsystem

1. Event Processing Agent Interface

All EPAs implement the EPA interface. This enables a single tool – such as RapNet – to manage all
possible EPAs, hence providing a general extensibility mechanism. The design of the interface is inspired
by both Java’s reflection mechanism and COM automation (which is described thoroughly in [32]).

We are presenting this interface in detail, as it is an important part of the whole architecture, most of all
from RapNet’s perspective.

class EPNEPA {

public:

 /** Virtual Destructor for protocol class. */

 virtual ~EPNEPA() {};

 /** Returns an argMap of EPN arguments. The values of the EPNArgMaps are set to the
default or current values. */

 virtual void getArgs(EPNArgMap & arguments) const epnthrow2 = 0;

 /** Sets the arguments in the EPNArgMap to the values provided with the argMap. Setting
arguments to the same values provided by getArgs should not change the state of the EPA. */

 virtual void setArgs(const EPNArgMap & arguments) epnthrow2 = 0;

This is used extensively by RapNet and is the main way for RapNet to communicate with agents. Through
this interface, EPAs can make some of their parameters available, and getArgs()/setArgs() allows a tool
like RapNet to present those parameters in a property sheet and therefore to configure EPAs during the
construction of the EPN, without having to rewrite or rebuild a single line of calls.

Different types of arguments may be set using these functions, corresponding to standard predefined types
(arguments of boolean, integer, string or float types) or to more complex and RAPIDE specific arguments
(such as computation names and types).

Maps and filters will often have a few free parameters which the architect expects the engineer to fill in:
for example, in our intrusion detection agents, there is a way to filter out connections which do not go to a
secure port; this translates to a filter which can accept a list of ports to scan for.

Other examples are viewers, which can typically be configured in many ways, and producers, which often
need to be given the source of the data.

In RapNet, these properties can be edited by the engineer by filling in property sheets. To do this, the
engineer double clicks on an agent, which pops up a property sheets containing the graphical
representation of what RapNet got from the getArgs().

/** Returns an argMap of arguments that can be changed after start. The values of the
EPNArgMaps are set to the default or current values. */

 virtual void getRuntimeArgs(EPNArgMap & arguments) const epnthrow2 = 0;

41

 /** Changes (after start) the arguments in the EPNArgMap to the values provided with the
argMap. Use setArgs for changes before start. */

 virtual void changeArgs(const EPNArgMap & arguments) epnthrow2 = 0;

Those methods are the equivalent of setArgs/getArgs in the case where the EPN is already running.
Typically, you only want to be able to change a proper subset of the previous parameters, to avoid
creating inconsistencies with past events. This has been described in section II.H.2.b).

/** Returns true if all required args have been set except EPNInterfaceArgs. Note that things
can go wrong even if configured returns() true. */

 virtual bool configured() const epnthrow2 = 0;

 /** Start the EPA (if not started already). */

 virtual void start() epnthrow2 = 0;

 /** Terminate the EPA's execution. Complete's all output computations of the EPA. and
initializes all state. Pausing and other ways of stopping an EPA are TBD. */

 virtual void terminate() epnthrow2 = 0;

These methods are used by RapNet when the user hits the go button. After making RapNet level checks,
the tools calls configured() on all the EPAs in the EPN, and if everything went fine, RapNet calls start on
all of the EPAs, starting with the connections, in topological order – the order does matter, because filter
and map outputs are subcomputations of their input.

/** Returns true if the EPA will not return from start until he's completely done. */

 virtual bool blocking() const epnthrow2 = 0;

This is important for RapNet, because blocking EPAs correspond to heads of synchronous groups. For
instance, at most one blocking EPA can exist per synchronous group, else the group will dead lock –
which is enforced by RapNet. When RapNet discovers a blocking EPA, it starts it in its own thread. The
rest of the SG joins that thread automatically, even though they are created originally in another thread.

 // EPA status observers

 struct EPAStatusMessage {}; // empty as of now...

 typedef CMObserver<EPAStatusMessage> EPAStatusObserver;

 /** Register an EPAStatusObserver */

 virtual void epaObserverFromNow(EPAStatusObserver & obs) epnthrow2 = 0;

This is used by RapNet to register itself as an observer on the EPA. This is a means for the EPA to
communicate information on its current status to RapNet. The basic functionality is used for the EPA to
notify RapNet that it is completed, in which case RapNet can show this information visually. When all the
EPAs are completed, RapNet considers the EPN to be completed, and starts using setArgs/getArgs again,
instead of their run-time version. Other functionality can be added by deriving a new class from
EPAStatusMessage and the corresponding observer in RapNet (This could potentially be added to the
Agent Registry if needed). Such functionality could include more detailed information on the running
EPA, such as performance statistics, progress report, etc.

typedef map<string, EPNEPACreator *, less<string> > EPARegistryMap;

This is the data structure which we use to register EPAs. RapNet uses the Agent Registry, through the
Agent Library, to know which EPAs are available, by name. This is the structure which, given the name
of an EPA, returns its factory class.

42

 // The EPA registry

 /** Register EPAs with a name. All EPAs should call this in a static block */

 static void registerCreator(const string & name, const EPNEPACreator * creator) epnthrow2;

 /** Lookup EPA's by name. */

 static EPNEPA * lookup(const string & name) epnthrow(EPNUsageException);

 /** Get List of all known EPAs */

 static void EPAList(list<string> & list) epnthrow2;

In order for the EPA interface to create EPAs, given their name (the name is given to RapNet by the agent
registry), we need two mechanisms:

• There needs to be a way to know which dynamically linked library (DLL under
Windows, .so under Solaris/Linux) has to be loaded in order for the EPA to register
itself and be found; this allows for late binding, hence avoiding to have to re-link the
system every time a new EPA is to be added. This could have been added to the Agent
Registry, but we felt that it was mainly an implementation detail which even the
Architect should not have to know about, and therefore it is done as an EPN property,
for instance through the .epnrc file.

• Once the dynamic library is loaded, all EPAs are supposed to contain static code to
register their class factory in the registry. This is the role of registerCreator().

From RapNet’s perspective, the most useful method here is lookup(): given the name of the EPA, it gets
its class factory (“Creator”) from the EPA registry, which creates a new instance of the EPA, which is
returned back to RapNet, through the Java interface.

 /** Look in the registered CM declarations for the type name. */

 static CMAggregateType& findOrRegister(const string& typeName,

 const string& fileName = "") epnthrow2;

This is a convenience method, and is an alias to ExternalForm::findOrRegister(). This method is used by
RapNet to get registered declarations for a given type, and is used amongst other things to get declarations
of maps and filters to be passed to the corresponding EPAs (mappers and filter EPAs).

2. Agent Library

To create and manage EPAs, we need some way of knowing what agents are available, where they are
physically located, how to activate them and communicate with them.

This is a rather classical problem. For instance, in Corba, it is addressed by the naming service and by
locators. COM/DCOM has its own way of registering and discovering COM objects (mainly through the
Win32 registry). Our case is simpler because we currently don’t need to do run-time discovery: we can
hard-code these locations in a simple registry. However, there is still the requirement that you do not want
to rebuild the whole system, just because you want to make a new Agent available.

43

Some Event Processing Agents may be linked in with the Computation Library itself. Others may be
running and can advertise themselves to interested parties, possibly through the CL. Yet others are
available as executables but are not currently running and therefore have no way of notifying of their
existence.

Therefore, we needed a library that would allow us to manage EPAs transparently, without having to
know the details of their activation or communication protocols.

This was implemented through a small library, whose functionality is inspired by Corba activators and
locators.

3. Agent Registry

To provide its functionality, the Agent Library reads information from a central registry. This registry is
defined in XML, and the default XML file, along with its validating DTD are given in appendix. More
details on how to specify available EPAs can be found in the RapNet reference manual. We believe that
the protocol to update the registry will most likely be one of the following:

• One of the architects of the system updates the registry when he wants to make a new
EPA available to an engineer.

• When new EPAs are available, the script which installs them also updates the registry.
We expect to be able to make such EPAs available remotely through the web: a client
tool such as RapNet can load a directory of available EPAs from any remote source, the
architect can select useful EPAs on that list and download them automatically.

Part of the DTD is dedicated to RapNet, and is discussed in the RapNet reference.

From looking at the default XML file one can note that three categories are empty: map, filter and
constraint. These correspond to mapper, filter and constraint agents respectively. Although those EPAs
may have several different implementations that one might want to choose from – as they currently do –
we feel that the clients of the Agent Library are more interested in the content than in the container, e.g.
about the different types of available maps than in the available mappers.

The difference is that maps are static information stored in the storage Subsystem in the form of an AST,
whereas the mappers are the actual EPAs that process them. Although we have different implementations
of mappers, we feel that the maps themselves should be in the directory, not the mappers.

On the other hand, it does not make sense to enforce that the Computation Library, which maintains and
stores the AST, updates the registry every time a new map, filter or constraint is created; hence the Agent
Library considers the categories Map, Filter and Constraint to be special and queries the Computation
Library to get the available operators.

The current implementation of the Agent Library uses Sun's XML parser, which allows to associate
JavaBeans to XML elements, and hence facilitates the implementation of such semantics.

44

E. Proxies

In this section, we describe possible event processing agents that enable RapNet to talk with legacy
agents: whereas RapNet can talk to linked-in EPAs using regular Java Native Interface (JNI) function
calls, there needs to be some mechanism to talk to external EPAs and in particular, to agents that do not
implement the EPA interface.

To do this, we define special kinds of Java EPA objects, which act as proxies to the actual EPA. Then the
actual EPA may or may not need to be able to talk to its proxy, and in particular may only be able to
execute a subset of the functions of a regular EPA implementation. Two proxies are currently useful:

• If the external EPA is a Java application/applet, then we use Remote Method Invocation
(RMI): the EPA registers itself as an exported object, and the proxy binds to it, then can
make all the regular function calls. On the EPA side, except for the code that does the
binding, this is completely transparent and only involves implementing the EPN.EPA
interface.

• If the external EPA is not written in Java (usually it will be C++ or Tcl/Tk), then we use
a special form of proxy, which knows the configuration parameters that the program it
proxies for accepts (through the XML registry described in section III.D.3) and lets the
user of RapNet (the engineer) configure them. When the user clicks on GO, the proxy
starts the actual EPA as an external process (possibly on a remote machine), and ceases
to have control over it. This proxy is intended for legacy code, where the EPA does not
have to support the EPA interface.

Note that external EPAs cannot be notified through local subscription in the Notification Subsystem, and
therefore a lightweight computation is necessary (or a global heavyweight computation, once they are
available). This means that a Notification Subsystem daemon needs to be run on some machine and both
RapNet and the EPAs need to be aware of which machine/port the daemon operates from (this is done by
configuring the .epnrc file accordingly). It also means that the computation to which the EPA is
connected needs to be lightweight (in the case of RapNet, this can be set graphically by double clicking
on the connection and selecting the lightweight checkbox).

If this is not done, then the external EPA has no way of getting any notification from its source, and
therefore the events will be lost.

F. RapNet

This section describes the architecture and design decisions taken by the author in building RapNet. We
believe that they are useful not only as documentation, but per se and therefore present the design of
RapNet in its own section of this document.

The graphical interface presented by RapNet is strongly influenced by other existing products, such as
Visio. The underlying design and architecture of RapNet is strongly inspired by the Design Patterns
book[35], and the Concurrent Java book [36].

RapNet is a generic tool to design flow graphs. Any object which can be represented as a black box and
connected to other objects can be driven by RapNet. In that sense, RapNet is a very powerful Visio-like
(or BeanBox-like) tool. It adds other functionality, though and therefore it made sense to develop a new

45

tool rather than to try to extend existing products (moreover Visio only runs on Windows platform,
whereas most of RST’s customers are expected to use Unix based systems).

To achieve this generality in RapNet, the design of the tool is separated in two separate packages:

• A main program, which is very generic and provides the environment in which agents
are created, described in III.F.1.

• The framework to be implemented by actual agents, which is further decomposed into
several components, described in III.F.2.

In the last section of this part, we describe the interactions between RapNet and the underlying CEP
infrastructure.

DefaultRepresentation

ConnectionRepresentation

MapRepresentationFilterRepresentation Default ConnectionAc tion

DefaultEPA

Mapper FilterLogger Viewer

Configurable

getConfiguration()

<<Interface>>

Library

getAction()
getRepresentation()
createEPA()

Representation
EPA

<<Interface>>

Operator

Action

MainWindow

DesignWindow

SubEPN

Figure 20: Architecture of RapNet (Class Diagram)

46

1. Main Environment

The MainWindow and DesignWindow classes represent the main classes of RapNet. MainWindow is a
singleton class, which implements the frame that contains RapNet, as well as the menus, toolbars, and
which creates both the DesignWindow and the Tools Window. Currently, DesignWindow is also a
singleton because there has not been a need to work on several EPNs in the same instance of RapNet.
This should be fairly easy to change, though, if the need were to arise.

An instance of DesignWindow contains a SubEPN, which represents the topmost sub-EPN, i.e. the EPN
that the user is currently working on. Therefore, SubEPN can be considered has having two separate uses:
it is either an actual sub-EPN or it is the EPN. This design is strongly inspired from the Composite Pattern
in [36].

SubEPN both inherits from the class Operator and contains a list of instances of Operators. This design
decision is what makes SubEPNs behave exactly like any operator, hence making them transparent to the
user.

2. Agent Framework

Figure 20 shows a UML Class Diagram (a reference on UML diagrams can be found in [37]) of the agent
framework within RapNet. To achieve generality in RapNet, the design separates agents (i.e. what the
user creates graphically) into four parts:

• The Operator component is a thin shell which mainly contains pointers to the other
components. When the user inserts an agent in the RapNet design canvas, RapNet
actually goes and creates an Operator, which in turns instantiates the remaining
components.

• A Representation component: this encodes the graphical aspect of the agent in the
RapNet design canvas, as well as the interaction that the user can have with it (moving,
resizing, etc.). Different agents have different graphical representations as well as
different interactive features. For instance connections behave rather differently than
regular agents; thanks to this design, though, this is completely transparent to RapNet.
An extensive library of implementations of the representation exist, which makes it
easy for the system Architect to specify unique shapes for unique components of the
networks.

• An Action component: RapNet uses this component to talk to the EPA object. It is
responsible for setting the arguments of the EPA according to the property sheet which
the user can set by double clicking on the representation component. This component is
also responsible for making persistent the state of the controlled EPA, by serializing it
when the user wants to save EPNs.

• The EPA itself: this may be a Java class, a linked-in C++ class or even an external
process – in which case RapNet can execute in on a remote machine using a special
EPA, called a Distributor. The EPA is created by the Operator component, which uses
the Agent Library to get the details of the construction, localization and activation
mechanisms for that EPA. The EPA is controlled by the action component.

47

The actual implementation of this component model is done by deriving from the following classes:

• RapNet.Configurable is an interface which represents a tab in the property sheet (i.e. the
dialog box which the user invokes by double clicking on the representation of an agent,
and which lets him set the arguments of the EPA), and contains all editable properties
of an object; it is also able to set the properties of that object, given the fields of the
property sheet.

• RapNet.Operator is the way RapNet thinks of EPAs. An Operator is just a wrapper
around an Action, a Representation and an EPA.

• RapNet.Representation represents the operator as a box on the screen, describes how
many inputs/outputs the operator has, etc. Representation implements Configurable,
hence allows the user to control GUI parameters of the operator.

• RapNet.Action, uses the CL to instantiate and manage the actual EPA. Since Action
also implements Configurable, the implementor of an Action class must also provide a
property sheet for its class.

The Action component is the same for all agents implementing the EPA interface. This interface enables
(and forces) agents to implement methods that can give RapNet:

• The number, type, cardinality and name of inputs and outputs of the object.

• A way to ask the object whether it is configured properly.

• A way to start an object and to know whether it has completed.

• A way to change some of its arguments while it runs.

The default implementation of Action also provides a default property sheet, which is simply the list of all
the editable properties of the agent. It is possible in the registry to specify the property sheet of the
operator. This can be done to get a nicer GUI representation, or to provide several sets of property sheets,
depending on the user's privileges or knowledge: the Architect may have her 'expert' property sheets,
while the Engineer will have a more basic set of properties.

For EPAs that require more functionality, the Action component will depend directly on the agent being
implemented, and can be given in the registry.

One typical such extension is the use of customized callbacks: as we described in the section describing
the EPA interface, before starting an EPN, RapNet will register observers (callback objects) on all of its
EPAs. The EPAs can then use this mechanism to transmit data to RapNet while they are running. This
information can include the number of events processed so far, some load information or any kind of
desired data. If the Action and/or Representation components are aware of this, they can react
appropriately: for instance, the number of processed events can appear as a 'tool tip' when the user moves
his mouse over the representation, or it can be drawn as a counter in the representation itself.

48

3. Interaction with other Components

RapNet only sees the upper layers of our infrastructure: at this level, both the SM and the NM are
completely hidden, and even the CL is mostly hidden. The two components which RapNet uses the most
are the EPA interface through which Action components start and interact with EPAs, and the Agent
Library, which allows localization, creation and activation of EPAs, as well as giving a directory of
available EPAs and how to represent them graphically.

a) Use of the Computation Subsystem by RapNet

In RapNet an EPN is represented visually as a DAG, where the boxes (nodes of the graph) represent
EPAs and the connections (vertices of the graph) represent computations. Because of this, there is an
interaction between RapNet and the computation Subsystem.

We are presenting in this section all the interactions between RapNet and the Computation Subsystem.

(1) Naming and Lightweigthness

When the user double clicks on a computation, he can specify the name of the computation. By default,
heavy-weight computations are unnamed and lightweight computations are given a long, unique name
automatically.

The user can also specify whether that computation should be heavy-weight or light-weight (description
of these types and their trade-offs can be found in the section describing the computation Subsystem).

Inter-SG communication has to go through lightweight computations (in particular, the computation
between an EPA and a lightweight viewer has to be lightweight: else, no message gets propagated to the
viewer). This is enforced by RapNet: the frontier of a Synchronous Group is always made up of
lightweight computations.

(2) Creation of a computation

When the user hits the GO button, RapNet calls a start() method on all the action components of
connections. In general, this method creates a computation of the given type and with the given name.
However, for filters and maps, this behaves differently: because the output of filters and mappers are
subcomputations of their input, the action component will create them accordingly. This puts an
additional constraint on RapNet: connections have to be started in a topological order, because one cannot
create a sub-computation of a computation that has not yet been created. This is done in the SubEPN
start() method, before any of the Action components is started.

b) Use of the EPA interface by RapNet

(1) Insertion

This happens when the user wants to add a new EPA to an EPN. The different steps involved are shown
on the UML Interaction Diagram shown on Figure 22

49

When a new operator is inserted on the design window, RapNet first asks the Agent Library to create the
corresponding EPA, then asks the library to create the appropriate Action component and links that action
object to the EPA object. Then it creates the corresponding Representation component (once again, the
Agent library knows how to create it). At that point, the representation component needs to know how
many input and output slots there are, what their RAPIDE type should be, and where to draw them. To do
that, it asks the EPA for its arguments, using EPA::getArgs(). This returns an ArgList which contains,
among other things, arguments of type InterfaceArg, which describe the input and output slots of a
representation, along with their cardinality (the number of connections that can start from or arrive to a
given slot), and whether they are mandatory or optional (mandatory slots are represented as a red cross
until they meet the cardinality requirements).

_design :
DesignWindow

ToolWindow Operator _library : Library Java reflection mechanism _epn : SubEPNEPNEPA :
EPA

XML tree

getInsertType

new Operator(agentName)

getAction(agentName)

"instantiate new Action subclass"

createEPA

getRepresentation(agentName)

"instantiate new Representation subclass"

add

getRegistrationName

lookup

Figure 22: Creating a new EPA

(2) Property Sheet

 When the user opens a property sheet on an operator, the action component will query the EPA for its
arguments, using the EPA interface method getArgs(). The types of arguments corresponding to slots (of
type InterfaceArg) are filtered out, and the others are added automatically to a form.

When the user opens a property sheet while the EPN is running, only the parameters which are returned
by EPA.getRuntimeArgs() are shown – these are typically a proper subset of the arguments returned by
getArgs(), because some parameters should not be changed while EPAs are running: heavyweight
computations maintain all their past history and the pattern language has the potential to ask for past

50

events. If one changes the rule of a filter while it is running – for instance – then the events which are
already present in the computations may not be the ones which match the new filter, leading to incorrect
results.

(3) Activation

When the user activates the EPN, RapNet first checks that all the EPAs are configured properly. This
involves several phases:

• Connection checking: RapNet checks that all the connections are made, with the right
cardinality.

• Type checking: Rapide is a type checked language. RapNet enforces type checking and
only allows an EPA to be connected to the input of another EPA if it produces a
subtype of the type expected by its connected EPA.

• RapNet calls EPA.isConfigured() on all the EPAs in the EPN.

Then RapNet calls start() on all the Connection action objects in the EPN, which create the appropriate
computations. Finally, it calls start() on all the other action objects, which in turn call start() on their EPA.
An exception to that rule, which is currently hard coded, is for the output of maps and filters, which are
not computations but sub computations of their inputs.

c) Use of the Agent Library by RapNet

 At startup, RapNet needs to know which operators are available. In addition, GUI features (such as the
representation for an operator or the icon to represent it in the tree) may optionally be specified. This
requires the functionality of the agent library.

The agent library manages a repository of available linked-in and external EPAs, along with default and
specific GUI features for each of them.

The library is first used when RapNet starts up, to get the list of all the available EPAs, which are then
displayed in the Tools Window.

Every time an EPA is inserted (i.e. the user selects an element from the Tools Window and places it in the
design window), RapNet starts by querying the Library to create the new EPA. In the case of maps and
filters, the behavior of the Library is slightly different, because they are not EPAs themselves, but just a
parameter to an EPA (respectively the Mapper EPA and the Filter EPA). Therefore the library, which gets
passed the element selected in the tree of the Tools Window creates a mapper/filter object and passes it
the declaration which was selected.

G. Reference: Available EPAs

The CEP user manual [38] describes the following EPAs: Mappers, Filters, Loggers (sLogger,
predLogger, netflow logger, tib sniffer), Viewers / Meters (nTable, nGraph, nTrail, RapView). These are

51

the current agents which are available by default to engineers. Because these agents are fully described
elsewhere, this section concentrates on agents which are directly related to RapNet.

1. Distributor

The distributor is a special kind of program which is used by RapNet to distribute agents on different
machines. The current implementation is a simple script which takes an executable, its command line
parameters and the name of the machine to run the process on, and which executes that process remotely.

This, admittedly, is a temporary hack, because agent distribution should ultimately be transparent to the
user, unless he explicitly wants to take over the control of the Synchronous Groups.

2. Legacy Proxy

The Legacy Proxy EPA is used to run out of process agents. The proxy is designed in a way such that the
agent does not need to implement the EPA interface; instead, it takes all the configurable arguments for a
given agent from the Agent Registry. Because of that, the proxy only allows a subset of the capabilities of
standard agents. For instance, because the spawned process does not implement any client-server
mechanism, there is no way to change the arguments of a running EPA. Moreover, at least in the current
implementation, there is no way for the proxy to know when the agent it started has completed and to
notify RapNet accordingly.

The proxy implements the EPA interface, which means that it can be controlled by RapNet, and that, as
far as the user can see, everything happens as if the agent was an actual EPA; i.e. the action of the proxy
is transparent to the user.

Before the start() method is called on the proxy, the agent does not exit. The proxy knows which
arguments the agent will understand, by reading that information from the Agent Registry. Therefore, a
getArgs() returns the parameters which the proxy knows to be implemented by the agent – and which the
proxy gets through the Agent Library which instantiated it. Likewise, a setArgs() only changes data
within the proxy itself.

The interaction between the proxy and its agent only occur when the user hits the GO button in RapNet,
i.e. when the start() method is called on the proxy. At that point, the proxy starts the agent by executing it
in a new process, and passing all the arguments in the command line. More specifically, the arguments are
passed as:

-D<argid>=<value>

This means that the argid, which is given in the Agent Registry, must correspond to the parameter that the
agent expects on the command line.

Another consequence of this is that, with our current implementation, not all the types defined by the EPA
layer can be passed this way. Currently, only strings, booleans, integers and reals can be passed through
the proxy.

One special agent which may be started by the proxy is the Distributor, described above. A combination
of the two pseudo-agents is used to distribute an EPN over several machines, respecting the boundaries of
Synchronous Groups.

52

53

IV. Bibliography
1. Perrochon, L., E. Jang, and D.C. Luckham. Enlisting Event Patterns for Cyber Battlefield Awareness. in

DARPA Information Survivability Conference & Exposition (DISCEX'00). 25-27 January 2000. Hilton Head,
South Carolina: IEEE Computer Society Press.

2. Pratt, V.R., Modeling concurrency with partial orders. Int. J. of Parallel Programming, 1986. 15(1): p. 33-71.

3. RAPIDE, Rapide 1.0 Pattern Language Reference Manual. 1997, Stanford University: Stanford.

4. Luckham, D.C. and B. Frasca, Complex Event Processing in Distributed Systems. 1998, Stanford University:
Stanford.

5. Santoro, A., et al. eJava - Extending Java with Causality. in 10th International Conference on Software
Engineering and Knowledge Engineering (SEKE'98). Redwood City, CA, USA.

6. Network Associates Inc., CyberCop Scanner. 1999.

7. Internet Security Systems, RealSecure. 1999.

8. Security Dynamics Inc., Kane Security Monitor. 1999.

9. AXENT, NetProwler. 1999.

10. Net Flight Recorder Inc., Net Flight Recorder. 1999.

11. CISCO, NetRanger. 1999.

12. SRI, Emerald. 1999.

13. Kahn, C., et al., A Common Intrusion Detection Framework (CIDF). 1999, CIDF Working Group.

14. The Open Group, Systems Management: Event Management Service. 1997, The Open Group: Reading,
Berkshire, UK.

15. Sheers, K.R., HP OpenView Event Correlation Services. Hewlett-Packard Journal, 1996(October).

16. Yemini, S., et al., High Speed & Robust Event Correlation. 1996, System Management Arts (SMARTS):
White Plains, NY 10601.

17. ITU, [Z.100] Recommendation Z.100 (03/93) - CCITT specification and description language (SDL). 1993,
International Telecommunication Union: Geneva.

18. ISO/IEC, Estelle: A formal description technique based on an extended state transition model. Amendment 1.
1997, International Standards Organization: Geneva.

19. Savor, T. and R.E. Seviora, Toward Automatic Detection of Software Failures. IEEE Computer, 1998. 31(8):
p. 68-74.

20. Diaz, M., G. Juanole, and J.-P. Courtiat, Observer - A Concept for Formal On-Line Validation of Distributed
Systems. IEEE Transactions on Software Engineering, 1994. 20(12): p. 900-913.

21. Savor, T. and R.E. Seviora. An Approach to Automatic Detection of Software Failures in Real-Time Systems.
in IEEE Real-Time Technology & Applications Symposium (RTAS '97): IEEE Computer Society Press.

22. Qian, X. and G. Wiederhold, Incremental Recomputation of Active Relational Expressions. IEEE Trans. on
Knowledge and Data Engineering, 1991. 3: p. 337--341.

23. Griffin, T., L. Libkin, and H. Trickey, An Improved Algorithm for the Incremental Recomputation of Active
Relational Expressions. IEEE Transactions on Knowledge and Data Engineering, 1997. 9(3): p. 508-511.

24. Wolfson, O., et al. Incremental Evaluation of Rules and its Relationship to Parallelism. in SIGMOD'91

54

Conference on the Management of Data. Boulder, CO: ACM Press.

25. Lee, J.H.M. and H.F. Leung. Incremental Querying in the Concurrent CLP language IFD-Constraint
Pandora. in 1996 ACM Symposium on Applied Computing. February 1996. Philadelphia: ACM Press.

26. Dong, G. and J. Su. Space-Bounded FOIES. in 14th ACM Symposium on Principles of Database Systems
(PODS'95). May 22-25, 1995. San Jose, CA: ACM PRess.

27. Zhuge, Y., et al. View Maintenance in a Warehousing Environment. in Sigmod'95. June 1995. San Jose, CA.

28. Labio, W.J. and H. Garcia-Molina, Expiring Data from the Warehouse. 1997, Stanford University: Stanford.

29. Gluche, D., et al. Incremental Updates for Materialized OQL Views. in The 5th Int'l Conference on Deductive
and Object-Oriented Databases (DOOD'97). December 1997. Montreux, Switzerland: Springer Verlag.

30. Kuno, H.A. and E.A. Rundensteiner, The MultiView OODB View System: Design and Implementation. Theory
and Practice of Object Systems (TAPOS), 1997. 2(3).

31. Mann, W., The Language of Event Processing Objects. 1999, Stanford University: Stanford.

32. Box, D., Essential COM. 1998: Addison, Wesley, Longman.

33. Perrochon, L., The Storage Manager API. 1997, Stanford University: Stanford.

34. Perrochon, L., Storage Management in the Computation Library. 1997, Stanford University: Stanford.

35. Gamma, E., et al., Design Patterns, Elements of Reusable Object-Oriented Software. 1994: Addison, Wesley,
Longman.

36. Lea, D., Concurrent Programming in Java: Design Principles and Patterns. 1998: Addison, Wesley,
Longman.

37. Fowler, M. and K. Scott, UML Distilled: Applying the Standard Object Modeling Language. 1998: Addison,
Wesley, Longman.

38. Perrochon, L., Complex Event Processing User Manual. 1999, Stanford University: Stanford.

55

V. Appendix
In this appendix, we add the reference document for the Agent Library and Agent Registry described in
section III.D.2.

A. The Agent Registry: Grammar

The agent registry is an XML file, and as such is validated by a grammar. The grammar is written in the
file operators.dtd, which lives in the RapNet directory (epn/packages/viewers/rapnet). This file is
presented here as a reference only. Its semantics are described in the RapNet reference manual.

<!-- DTD for the EPA library -->

<!-- Stephane Kasriel -->

<!-- Copyright 1997-1999 Stanford University, Board of Trustees-->

<!ENTITY % title 'TITLE,ICON?,URL?'>

<!ENTITY % arg.att '

 argid CDATA #REQUIRED

 argdesc CDATA "[no description]"

 required CDATA "true"

 default CDATA ""

'>

<!ENTITY % interface.att '

 argid CDATA #REQUIRED

 argdesc CDATA "[no description]"

 required CDATA "true"

 input CDATA #REQUIRED

 min CDATA "1"

 max CDATA "1"

 declaration CDATA #REQUIRED

 file CDATA #REQUIRED

'>

<!ELEMENT OPERATORS (%title;,RAPNET?,CATEGORY+)>

<!ELEMENT CATEGORY (%title;,RAPNET?,(CATEGORY|OPERATOR)*)>

<!ELEMENT TITLE (#PCDATA)>

<!ELEMENT ICON (#PCDATA)>

56

<!ELEMENT URL (#PCDATA)>

<!ELEMENT OPERATOR (%title;,RAPNET?)>

<!ELEMENT CLASS (#PCDATA)>

<!ELEMENT PARAM (#PCDATA)>

<!ELEMENT INTARG EMPTY>

<!ATTLIST INTARG %arg.att;>

<!ELEMENT BOOLARG EMPTY>

<!ATTLIST BOOLARG %arg.att;>

<!ELEMENT STRINGARG EMPTY>

<!ATTLIST STRINGARG %arg.att;>

<!ELEMENT INTERFACE EMPTY>

<!ATTLIST INTERFACE %interface.att;>

<!ELEMENT EPA ((CLASS,PARAM*, (INTARG|BOOLARG|STRINGARG|INTERFACE)*) |
PATH)>

<!-- The following is used by RapNet -->

<!ELEMENT ACTION (#PCDATA)>

<!ELEMENT ACTIONCONFIGURATION (#PCDATA)>

<!ELEMENT REPRESENTATION (#PCDATA)>

<!ELEMENT REPRESENTATIONCONFIGURATION (#PCDATA)>

<!ELEMENT PATH (#PCDATA)>

<!ELEMENT RAPNET (EPA?,ACTION?,REPRESENTATION?, ACTIONCONFIGURATION?,
REPRESENTATIONCONFIGURATION?)>

