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1 Introduction

Visualization allows better understanding of the intermediate representations (IRs) used in
compilers. Many parts of the IR are trees or graphs, e.g., the syntax tree, the control 
ow
graph, the call graph or the data dependence graph [WiMa92]. A simple textual visualization
of trees and graphs is often too confusing or unreadable. A special visualization tool that
shows trees and graphs in a natural way is more helpful. It allows powerful debugging of
internals of the compiler and the examination of the e�ect of engines on the IR.

In the early phases of the project Compare, the Edge tool [PaTi90] was used for this
purpose. This tool has the advantage to be easily adaptable by reading a graph speci�cation
from a �le that can be used as interface format between engines (compiler phases) and the
tool. Further, the tool can be used for postmortem debugging, which is important if the
compiler graphs are such large that the online debugging would slow down the compiler to
an unreasonable degree.

However, the Edge tool is very slow on typical IR graphs (e.g., visualization of a syntax
tree of a CLaX program of 200 lines needed more than 20 minutes on a Sun Sparc ELC), and
the layout is sometimes a little bit strange for the graphs used in compilers. Furthermore, it is
only possible in a limited way to show condensations of graphs, that often help to understand
algorithms in compiler construction. To overcome these de�ciencies, a new visualization tool is
implemented, theVCG tool. It combines the advantages of the Edge tool (easy adaptability)
with reasonable speed (a few seconds for the same example as above) and new concepts of
graph approximations. Therefore, we de�ne a language that describes graphs and the layout
of their nodes and edges (GDL - graph description language). The core of this language is
compatible to the input speci�cation language of the Edge tool, to allow interchangeability.
Additionally, some extensions are implemented (colors, edge classes and priorities, splines,
graph folding for path approximations), but also some layout description limits are introduced
to speed up runtime. If no layout is given in the graph speci�cation, the tool computes a
appropriate one. With respect to `readability' of the graph the following criteria are used:

1. Place the vertices (nodes) in a hierarchy of layers

2. Place the nodes without overlapping

3. Avoid crossings of lines (edges)

4. Keep edges short and straight

5. Favor a balanced placement

6. Position related nodes close together

In the following sections, we �rst give an overview of the phases during the calculation of
the layout. Next, we de�ne the graph description language and show some examples. Then,
we explain the usage of the VCG tool. The remaining sections describe some experiences,
and statistics concerning speed and applicability. The details of the algorithms used in the
VCG tool are not described here. There exists a technical report that explains these algo-
rithms (see [Sa94] [Sa95]).
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2 Overview of the Layout Phases

The task of the VCG tool is to parse a graph speci�cation, to assign horizontal and vertical
positions to each node, if necessary, and to �nd polygon segments or splines for the edges
such that they do not overlap with nodes, and �nally, to draw the resulting picture in a
window. The speci�cation that is given as input to the VCG tool is a readable ASCII text.
The output window can be used to browse through the graph, to shrink or enlarge the graph,
to fold parts of the graph and to export a bitmap of the graph or a PostScript �le. Graph
folding results potentially in a relayout of the graph. The layout of the graph can be in
uenced
in a wide range by attributes of edges, nodes and graphs, or by di�erent variations of the
layout algorithm. Because graph layout and drawing is a rather complex process, the tool
gives messages in form of a single character to indicate its state.

2.1 Parsing

The �rst phase of the tool is to parse the speci�cation and to construct internal data structures
representing the graph. The speci�cation may contain attributes denoting initially folded parts
of the graph. This phase is indicated by the message character `a'.

2.2 Folding

This phase is executed as start of each relayout, i.e. after the start of the tool, or whenever
a folding operation was selected by the user. It is indicated by the message character `f'.
Folding of a graph allows to inspect the graph in a more compact way: Unimportant parts are
hidden while important parts are shown in detail. To fold parts of the graph also improves
the performance of the tool because the folded parts need not to be laid out. Examples
are: fold the procedure parts of a syntax tree, hide annotations of a graph (e.g., syntax tree
attributes), display approximations of paths in a graph, show the condensation to strongly
connected regions, etc. There are 3 general methods to fold the visualized graph:

� folding of complete subgraphs: The GDL speci�cation allows to partition the
graph statically into nested subgraphs. (Statically means: there is no way to change
this partitioning interactively). See section 3.1, attribute folding. Subgraphs can be
visualized explicitly, i.e all nodes are drawn, or in a compressed manner by displaying
only one summary node for the whole graph.

� hiding of edges: The edges of the graph can be statically partitioned into classes.
Edge classes are speci�ed by numbers (1, 2, : : : ). Every class can separately be hidden.
In this case, all edges of this class are not laid out and not drawn. (Note that edges
with the linestyle invisible are laid out, even if they are not drawn. See section 3.3.)
Additionally, all nodes that are only reachable by edges currently hidden are not drawn,
i.e. all nodes whose incoming and outgoing edges are hidden become invisible, too. See
section 3.1, attribute hidden. However, nodes without any incoming or outgoing edge
are drawn (but see also section 3.1, attribute ignore_singles). This method allows
to hide regions of the graph that are only connected by edges of a certain class. See the



2 OVERVIEW OF THE LAYOUT PHASES 6

k

class k  is hidden

Graph       Part of

class k
Graph       

k

Figure 1: Hiding of Edges and their Region
The annotation (dark grey box) is a graph where all edges are in class k while the main graph is

connected via class j (j 6= k). The bold edges of class k connect the annotation with the main graph,

thus after hiding with respect to class k, the annotation is invisible. Other nodes (e.g., the grey node)

in the main graph are unchanged even if there are edges from the invisible annotations to these nodes.

Figure 2: Folding a Subtree

The striped subtree is folded to the black summary node.

sketch in �gure 1. Note that the hiding of edges may change the layout of a graph very
much, if certain variations of the layout algorithms are selected (variation maxdegree

: : :minoutdegree).

� folding of connected regions: While subgraphs allow statically to specify regions
that can be folded to one node, we can also use the class concept of edges to fold
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Figure 3: Folding a Subtree until a Node

The striped region is folded to the black summary node.

dynamically speci�ed regions (dynamically = interactively speci�ed). The connected
region of a start node n with respect to an edge class k is the set of nodes which are
reachable from n by edges of classes less or equal than k. It is possible to fold a connected
region of n into one node. It is also possible to select a node m inside the region of n
where the folding stops: in this case, the connected region of n without the connected
region of m is folded, or, with other words, the folding of the region of n stops at the
predecessors of m. This method can be used to visualize approximated path.

A simple example is a tree where all edges have the same class. Folding a node n is
folding the whole subtree starting from n into one summary node (see �gure 2). Folding
n until m (where m is in the subtree of n) is folding the path from n to m and all
subtrees along this path except the subtree that starts from m (see �gure 3).

Note that nested foldings are possible. Folding regions or subgraphs may interfere with
hiding of edges. In this case, �rst the summary node of the folded region or subgraph is
calculated, and then the hiding of edges is performed.

2.3 Assignment of Ranks

After folding, all visible nodes are determined. If all visible nodes are speci�ed by the user
with valid coordinates, the graph is drawn immediately. However, if the coordinates of at least
one node is missing, an appropriate layout must be calculated. The �rst pass places the nodes
into discrete ranks. All nodes of the same rank will appear at the same vertical position. The
partitioning of the graph into levels of nodes of the same rank is indicated by the message
character `p'.

There are many possibilities to assign the rank. The normal method is to calculate a
spanning tree by determing the strongly connected components of the graph. All edges
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should be oriented top down. A heuristics tries to �nd a minimal set of edges which cannot
be oriented top down. This is necessary in cycles of the graph. A faster method is to calculate
the spanning tree of a graph by depth �rst search (DFS). However, the order the nodes are
visited in in
uences heavily the layout. The initial order of the nodes is the order given by
the speci�cation of the graph. Thus we have implemented various versions of such methods:

� dfs: Calculate the spanning tree by one single DFS traversal. This is the fastest method,
but the quality of the result depends heavily on the initial order of the nodes in the
speci�cation, and might be poor for some graphs.

� maxdepth: Calculate the spanning tree by DFS with the initial order and with the
reverted initial order, and take the deeper spanning tree. This results in more levels, i.e.
the graph is larger in y-direction.

� mindepth: Take the 
atter spanning tree of both DFS. This results in less levels, i.e.
more nodes at same levels, and the graph is larger in x-direction.

� maxdepthslow, mindepthslow: While the previous algorithms are fast heuristics to
increase or decrease the depth of the layout, these algorithms really calculate a good
order to get a maximal or minimal spanning tree. The disadvantage is, that they are
rather slow. Warning: a minimal spanning tree does not necessarily mean that the depth
of the layout is minimal. However, it is a good hint to get a 
at layout. See the examples
in section 4.3.

� maxdegree, mindegree, etc.: We can also presort the nodes by di�erent criteria before
DFS such that the nodes are scheduled in a di�erent order. Possible criterias are the
number of incoming edges, the number of outgoing edges, and the number of edges at
all on a node. The sorting of nodes may have various e�ects and can sometimes be used
as a fast replacement of maxdepthslow or mindepthslow.

� minbackward: Instead of calculating strongly connected components, we can also per-
form topological sorting to assign ranks to the nodes. This is much faster, if the graph
is already known to be acyclic.

� tree: This method works only, if the graph is a forest of downward laid out trees, i.e.
each node at rank l has at most one adjacent edge coming from a node of an upper
rank k < l to it. A node may have edges pointing to nodes at the same level, and many
adjacent edges coming from nodes of lower ranks k > l, and the direction of the edges
can be arbitrary, but the picture of the layout (if the arrow heads are ignored) must be a
tree (see �gure 4). The assignment of ranks is done by DFS. Then, the graph is checked
whether it is a forest of downward laid out trees. If this is not the case, the standard
layout is used as fallback solution. As advantage of this method, crossing reduction (see
next section) is not necessary for downward laid out trees, and a very fast positioning
algorithm can be used.

A further possibility to in
uence the layout are the priorities of edges. During the calcu-
lation of the spanning tree, edges of higher priority are preferred. After the partitioning, a
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Structurally, this is not a tree (e.g.,
many edges point to the node "D"). But
the layout has the shape of a tree, thus
it is a downward laid out tree.

Structurally, this is a tree. But the lay-
out is not a downward laid out tree be-
cause of the edges at the nodes "B" and
"C".

Figure 4: Downward Laid Out Trees and Structural Trees

�ne tuning phase tries to improve the ranks in order to avoid very long edges. Remaining too
long edges are split into small edges and dummy nodes.

2.4 Reduction of Crossings

The next pass calculates a good order of the nodes within levels to avoid edge crossings. This
pass is not necessary, if the method for downward laid out trees is used. The �rst step is to
unmerge connected components of the graph and to handle each component separately. The
message character `u' indicates this.

The crossing reduction algorithm calculates the weights of the nodes dependent on the
possible crossings, and reorders the nodes of a level according to these weights. Because
the ordering of nodes within one level in
uences the weights of the adjacent levels, this is
performed iteratively until no improvement is anymore recognized. This is the phase 1 of the
crossing reduction, indicated by the message character `b'.

What happens, if the weights of some nodes are equal ? Then, the selected order of these
nodes is arbitrary. In order to improve the layout further, a permutation of these nodes is
tried. Sometimes, a permutation allows further to reduce the crossings. This is the phase 2 of
the crossing reduction, indicated by the message character `B'.

However, the �nal result need not to be optimal. The crossing reduction is only a heuristics.
A local optimization phase follows (message character `l').

There are four possibilities to calculate weights for crossing heuristics. The default
weights are the barycenter weights [STM81], while the mediancenter weights [GNV88] are
sometimes more appropriate, especially if the average degree (number of edges) at the nodes is
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small. The barymedian weights are the combination of barycenter and mediancenter, where
barycenter has the �rst priority and mediancenter is only used for those nodes where the
barycenter weights are equal. Conversely, the medianbary weights are the combination of
barycenter and mediancenter, where mediancenter has the �rst priority.

2.5 Calculation of Coordinates

After partitioning of nodes into levels and ordering of the nodes within the levels, we can
assign coordinates to the nodes. Here, the nodes can be aligned at the bottom or at the top
of a level or centered at a level, and there is a minimal distance between the levels (yspace).
This in
uences the y-coordinates. The x-coordinate must be calculated such that there is a
minimum distance between the nodes (xspace) and a minimal distance between the bend
points of edges (xlspace). Further, the layout must be balanced, such that the edges are
short and straight.

To achieve this, either a special method for downward laid out trees is used (message
character `T'), or, two general iteration phases are performed: The �rst phase simulates a
physical pendulum. The nodes are the balls and the edges are the strings. The balls hanging
on the strings pendel, i.e. the nodes move inside their level and in
uence the neighbored
nodes, until the layout is sparse enough such that each node has space to be placed on a good
position. This phase is indicated by the message character `m'.

Next, the nodes are centered with respect to their edges. This phase simulates a rubber-
band network: The edges pull on a node with a power proportional to their length. As e�ect,
the node moves to a position such that the sum of the forces of its edges is zero. Then, the
length of the edges is balanced. The message character `c' indicates this phase.

An optional �ne tuning phase tries to recognize long edges and tries to position these
edges by long line segments with gradient 90 degree. This is useful for the orthogonal layout
methods. The message character `S' indicates this phase.

Unfortunately, both physical simulations need not to be convergent, i.e. it may happen
that they are iterated in�nitely often without resulting in a stable layout. These cases are
seldom. To prevent in�nite execution, the number of iterations is arti�cially restricted. The
running in such a `timeout' situation is indicated by the message character `t'.

2.6 Bending of Edges

If a graph contains nodes with di�erent sizes, it might happen that an edge starting at a very
small node is drawn through a neighbored large node. To avoid this situation, we allow that
edges are bend at certain points. Also, if an orthogonal layout method is selected, the edges
are bend such that only orthogonal line segments exist. These bendings are calculated in an
iterative phase indicated by the message character `e'.

2.7 Drawing

Finally, the graph is drawn in a window, or it is exported into a �le. Edges can be drawn
as polygon segments or optionally as splines. The drawing of splines is very slow, thus it is
indicated by the character `d'.
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The exporting into PostScript or into bitmap formats (PBM and PPM) is also possible
and is indicated by further message characters.

3 Graph Description Language

The graph description language is very similar to GRL de�ned in [MaPa91]. A speci�cation
describes a graph that consists of subgraphs, nodes, and edges. Subgraphs are parts of a
graph that may be folded to one node during visualization or may be drawn explicitly. These
may have attributes that specify details of the graph's appearance on the screen like labels,
colors, sizes etc. The following shows an overview of the format of a GDL description:

graph: f

< general graph attributes >
< list of nodes or subgraphs >
< list of edges >

g

where nodes and edges are speci�ed by

node: f
title: < node title >
< node attributes >

g

and

edge: f
sourcename: < title of source node >
targetname: < title of target node >
< edge attributes >

g

There are some special kinds of edges:

back edges These edges are not laid out in the normal orientation, but are reverted. For
instance, if the layout algorithm tries to give all normal edges a top down orientation,
it tries to give the back edges a bottom up orientation. If a graph contains a cycle, not
all edges can have the same orientation: Some edges must be reverted. In this case, the
layout algorithm prefers back edges before selecting any other edge to be reverted.

near edges These special edges are laid out such that their source and target node are
directly neighbored at the same level. Near edges are drawn as short horizontal lines
which are not crossed by other edges or nodes. Invisible near edges can be used to
group nodes at a level together. A node can have maximal two near edges, whose one
is positioned to the left and the other is positioned to the right. (Other restrictions,
originated by the use of anchor points, are explained later).
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bent near edges These special edges consist of a horizontal part, a bend point and a vertical
part. If an edge label is drawn, it is placed just at the bend point. Implemented is such
an edge by the combination of a near edge and a normal edge.

Beside that, back edges, near edges and bent near edges are normal edges. Back edges are
speci�ed by

backedge: f

sourcename: < title of source node >
targetname: < title of target node >
< edge attributes >

g

Near edges are speci�ed by

nearedge: f
sourcename: < title of source node >
targetname: < title of target node >
< edge attributes >

g

Bent near edges are speci�ed by

bentnearedge: f
sourcename: < title of source node >
targetname: < title of target node >
< edge attributes >

g

Attributes are speci�ed in the form

< attribute keyword > : < attribute value >

The order of attributes is irrelevant. Most attributes are optional. It is possible to specify
default values of all nodes or edges in the attribute section of a graph by

node.< attribute keyword > : < attribute value >

or

edge.< attribute keyword > : < attribute value >

These default attribute values are valid for all nodes and edges (even back edges, near edges
and bent near edges) where the corresponding attribute is not set explicitly. Regions of nodes
and edges can be folded (see section 2.2). As result, a summary node is displayed for all
nodes of a region, and edges to this summary node are displayed for sets of edges to nodes of
the region. It is possible to specify the attributes for such nodes and edges that are originated
by a folding operation. This allows to give the folded regions a di�erent appearance than the
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normal nodes and edges. The attributes for such summary nodes or replacement edges are
speci�ed by

foldnode.< attribute keyword > : < attribute value >

or

foldedge.< attribute keyword > : < attribute value >

The order of subgraphs, nodes, and edges may in
uence the �nal layout, because the �rst
node is scheduled �rst. Strings must be enclosed in quote marks and may contain the normal
C escapes (e.g., \", \n, \f, : : : ). Integers are sequences of digits. Floating point numbers
consist of a sequence of digits, followed by a dot `.' and a sequence of digits. C style comments
(/* */) and C++ style comments (//) are allowed.

3.1 Graph Attributes

The graph information is delimited by the keywords graph: { and }. The complete list of
attributes with their types and default values is shown in the tables 1 and 2.

title speci�es the name (a string) associated with the graph. The default name of a subgraph
is the name of the outer graph, and the name of the outmost graph is the name of the
speci�cation input �le. The name of a graph is used to identify this graph, e.g., if we
want to express that an edge points to a subgraph. Such edges point to the root of the
graph, i.e. the �rst node of the graph or the root of the �rst subgraph in the graph, if
the subgraph is visualized explicitly.

label the text displayed inside the node, when the graph is folded to a node. If no label is
speci�ed then the title of the graph will be used. Note that this text may contain control
characters like NEWLINE that in
uences the size of the node. See section 3.6 for more
details.

info1, info2, info3 combines additional text labels with a node or a folded graph. info1,
info2, info3 can be selected from the menu interactively. The corresponding text labels
can be shown by mouse clicks on nodes.

color speci�es the background color for the outermost graph, or the color of the summary
node for subgraphs. Colors are black, blue, red, green, yellow, magenta, cyan, white,
darkgrey, darkblue, darkred, darkgreen, darkyellow, darkmagenta, darkcyan, gold,
lightgrey, lightblue, lightred, lightgreen, lightyellow, lightmagenta, light-
cyan, lilac, turquoise, aquamarine, khaki, purple, yellowgreen, pink, orange and
orchid. If more than these default colors are needed, a color map with maximal 256
entries can be used. The �rst 32 entries correspond to the colors just listed. A color
of the color map can selected by the color map index, an integer, for instance red has
index 2, green has index 3, etc. See section 3.5 for more details.

textcolor is the color for the label text of summary nodes.



3 GRAPH DESCRIPTION LANGUAGE 14

attribute name attribute type default value

title string �le name / name of outer graph
label string string of the title
info1 string empty string
info2 string empty string
info3 string empty string
color black, white, red, : : : white for background

white or transparent for
summary nodes

textcolor black, white, red, : : : black for summary nodes,
bordercolor black, white, red, : : : textcolor for summary nodes,
width int width of root screen - 100

width of the label for subgraphs
height int height of root screen - 100

height of the label for subgraphs
borderwidth int 2
x int 0 / unspeci�ed for subgraphs
y int 0 / unspeci�ed for subgraphs
folding int 0
shrink int 1
stretch int 1
textmode center, : : : center
shape box, rhomb, : : : box
vertical order int unspeci�ed for subgraphs
horizontal order int unspeci�ed for subgraphs
xmax int width of root screen - 90
ymax int height of root screen - 90
xbase int 5
ybase int 5
xspace int 20
xlspace int 1

2xspace if polygons are used
4
5xspace if splines are used

yspace int 70
xraster int 1
xlraster int 1
yraster int 1
hidden int none
classname int : string 1, 2, : : :
infoname int : string 1, 2, or 3
colorentry int : int triple default color map

Table 1: Graph Attributes, Part 1
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attribute name attribute type default value

layoutalgorithm maxdepth, mindepth, normal
minbackward, : : :

layout downfactor int 1
layout upfactor int 1
layout nearfactor int 1
layout splinefactor int 70
late edge labels yes, no no
display edge labels yes, no no
dirty edge labels yes, no no
�netuning yes, no yes
ignore singles yes, no no
straight phase yes, no no
priority phase yes, no no
manhattan edges yes, no no
smanhattan edges yes, no no
near edges yes, no yes
orientation top to bottom, : : : top to bottom
node alignment top, bottom, center center
port sharing yes, no yes
arrow mode �xed, free �xed
spreadlevel int 1
treefactor 
oat 0.5
crossing phase2 yes, no yes
crossing optimization yes, no yes
crossing weight bary, median bary

barymedian, medianbary
view c�sh, p�sh, fc�sh, fp�sh normal view
edges yes, no yes
nodes yes, no yes
splines yes, no no
bmax int 100
cmax int in�nite
cmin int 0
pmax int 100
pmin int 0
rmax int 100
rmin int 0
smax int 100

Table 2: Graph Attributes, Part 2
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bordercolor is the color of the summary node's border. Default color is the textcolor.

width, height are width and height of the displayed part of the window of the outermost
graph in pixels, or width and height of the summary node of inner subgraphs.

borderwidth speci�es the thickness of the summary node's border in pixels.

x, y are the x-position and y-position of the graph's window in pixels, relatively to the root
screen, if it is the outermost graph. The origin of the window is upper, left hand. For
inner subgraphs, it is the position of the folded summary node. The position can also
be speci�ed in the form loc: fx:int y:intg.

folding of a subgraph is 1, if the subgraph is fused, and 0, if the subgraph is visualized
explicitly. There are commands to unfold such summary nodes, see section 5.

shrink, stretch gives the shrinking and stretching factor for the graph's representation (de-
fault is 1, 1). ((stretch=shrink) � 100) is the scaling of the graph in percentage, e.g.,
(stretch,shrink) = (1,1) or (2,2) or (3,3) : : : is normal size, (stretch,shrink) = (1,2)
is half size, (stretch,shrink) = (2,1) is double size. For subgraphs, it is also the scaling
factor of the summary node. The scaling factor can also be speci�ed by scaling: 
oat
(here, scaling 1.0 means normal size).

textmode speci�es the adjustment of the text within the border of a summary node. The
possibilities are center, left_justify and right_justify.

shape can be speci�ed for subgraphs only. It is the shape of the subgraph summary node
that appears if the subgraph is folded: box, rhomb, ellipse, and triangle.

vertical order is the level position (rank) of the summary node of an inner subgraph, if this
subgraph is folded. We can also specify level: int. The level is only recognized, if an
automatical layout is calculated. See sections 2.3 and 3.6 for more details.

horizontal order is the horizontal position of the summary node within a level. The nodes
which are speci�ed with horizontal positions are ordered according to these positions
within the levels. The nodes which do not have this attribute are inserted into this
ordering by the crossing reduction mechanism (see section 2.4). Note that connected
components are handled separately, thus it is not possible to intermix such components
by specifying a horizontal order.
If the algorithm for downward laid out trees is used, the horizontal order in
uences only
the order of the child nodes at a node, but not the order of the whole level.

xmax, ymax specify the maximal size of the virtual window that is used to display the
graph (see �gure 5). This is usually larger than the displayed part, thus the width and
height of the displayed part cannot be greater than xmax and ymax. Only those parts
of the graph are drawn that are inside the virtual window. The virtual window can be
moved over the potential in�nite system of coordinates by special positioning commands.
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Figure 5: Displayed Window and Virtual Window

Therefore the graph may be larger than the virtual window. It is recommended to set
xmax, ymax not larger than the root screen to get a good performance.

xbase, ybase specify the horizontal and vertical o�set between the graph's window and the
upper, left hand corner of the graph, i.e. the position of the origin of the system of
coordinates relatively to the upper, left hand corner of the virtual window.

xspace, yspace the minimum horizontal and vertical distance between nodes.

xlspace is the horizontal distance between lines at the points where they cross the levels.
(At these points, dummy nodes are used. In fact, this is the horizontal distance between
dummy nodes.) It is recommended to set xlspace to a larger value, if splines are used
to draw edges, to prevent sharp bendings.

xraster, yraster speci�es the raster distance for the position of the nodes. The center of a
node is aligned to this raster.

xlraster is the horizontal raster for the positions of the line control points (the dummy
nodes). It should be a divisor of xraster.

hidden speci�es the classes of edges that are hidden. See section 2.2 and section 3.2. Edges
that are within such a class are not laid out nor drawn. Nodes that are only reachable
(forward or backward) by edges of an hidden class are not drawn. However, nodes that
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are not reachable at all are drawn. (But see attribute ignore_singles.) Speci�cation
of classes of hidden edges allows to hide parts of a graph, e.g., annotations of a syntax
tree. This attribute is only allowed at the outermost level. More than one settings
are possible to specify exactly the set of classes that are hidden. Note the important
di�erence between hiding of edges and the edge line style invisible (see section 3.3).
Hidden edges are not existent in the layout. Edges with line style invisible are existent
in the layout; they need space and may produce crossings and in
uence the layout, but
you cannot see them.

classname allows to introduce names for the edge classes. The names are used in the menus.

infoname allows to introduce names for the additional text labels. The names are used in
the menus.

colorentry allows to �ll the color map. A color is a triplet of integer values for the
red/green/blue-part. Each integer is between 0 (o�) and 255 (on), e.g., 0 0 0 is black
and 255 255 255 is white. For instance colorentry 75 : 70 130 180 sets the map
entry 75 to steel blue. This color can be used by specifying just the number 75. See
section 3.5 for more details.

layoutalgorithm chooses di�erent graph layout algorithms Possibilities are maxdepth,
mindepth, maxdepthslow, mindepthslow, maxdegree, mindegree, maxindegree,
minindegree, maxoutdegree, minoutdegree, minbackward, dfs and tree. The default
algorithm tries to give all edges the same orientation and is based on the calculation
of strongly connected components. The algorithms that are based on depth �rst search
are faster. While the simple dfs does not enforce additionally constraints, the algorithm
maxdepth tries to increase the depth of the layout and the algorithm mindepth tries
to increase the wide of the layout. These algorithms are fast heuristics. If they are not
appropriate, the algorithms maxdepthslow or mindepthslow also increase the depth or
wide, but they are very slow.

The algorithm maxindegree lays out the nodes by scheduling the nodes with the
maximum of incoming edges �rst, and minindegree lays out the nodes by schedul-
ing the nodes with the minimum of incoming edges �rst. In the same manner work
the algorithms maxoutdegree and minoutdegree for outgoing edges, and maxdegree

and mindegree for the sum of incoming and outgoing edges. These algorithms may
have various e�ects, and can sometimes be used as replacements of maxdepthslow or
mindepthslow.

The algorithm minbackward can be used if the graph is acyclic. See section 2.3 for
details.

The algorithm tree is a specialized method for downward laid out trees (see section 2.3).
It is much faster on such tree-like graphs and results in a balanced layout.

layout downfactor, layout upfactor, layout nearfactor The layout algorithm parti-
tions the set of edges into edges pointing upward, edges pointing downward, and edges
pointing sidewards. The last type of edges is also called near edges.
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If the layout_downfactor is large compared to the layout_upfactor and the
layout_nearfactor, then the positions of the nodes is mainly determined by
the edges pointing downwards. If the layout_upfactor is large compared to the
layout_downfactor and the layout_nearfactor, then the positions of the nodes is
mainly determined by the edges pointing upwards. If the layout_nearfactor is large,
then the positions of the nodes is mainly determined by the edges pointing sidewards.
These attributes have no e�ect, if the method for downward laid out trees is used.

late edge labels yes means that the graph is �rst partitioned and then, labels are intro-
duced. The default algorithm �rst creates labels and then partitions the graph (see
section 2.3), which yield a more compact layout, but may have more crossings.

display edge labels yes means display labels and no means don't display edge labels.

dirty edge labels yes enforces a fast layout of edge labels, which may very ugly because
several labels may be drawn at the same place. Dirty edge labels cannot be used if
splines are used.

�netuning no switches the �ne tuning phase of the graph layout algorithm o�, while it is
on as default (see section 2.3). The �ne tuning phase tries to give all edges the same
length.

ignore singles yes hides all nodes which would appear single and unconnected from the
remaining graph. Such nodes have no edge at all and are sometimes very ugly. Default
is to show all nodes.

straight phase yes initiates an additional phase that tries to avoid bendings in long edges.
Long edges are laid out by long straight vertical lines with gradient 90 degree. Thus, this
phase is not very appropriate for normal layout, but it is recommended, if an orthogonal
layout is selected (see manhattan_edges).

priority phase yes replaces the normal pendulum method by a specialized method: It forces
straight long edges with 90 degree, just as the straight phase. In fact, the straight phase
is a �ne tune phase of the priority method. This phase is also recommended, if an
orthogonal layout is selected (see manhattan_edges).

manhattan edges yes switches the orthogonal layout on. Orthogonal layout (or manhattan
layout) means that all edges consist of line segments with gradient 0 or 90 degree.
Vertical edge segments might by shared by several edges, while horizontal edge segments
are never shared. This results in very aesthetical layouts just for 
owcharts. If the
orthogonal layout is used, then the priority phase and straight phase should be used.
Thus, these both phases are switched on, too, unless priority layout and straight line
tuning are switched o� explicitly.

smanhattan edges yes switches a specialized orthogonal layout on: Here, all horizontal
edge segments between two levels share the same horizontal line, i.e. not only vertical
edge segments are shared, but horizontal edge segments are shared by several edges, too.
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This looks nice for trees but might be too confusing in general, because the location of
an edge might be ambiguously.

near edges no suppresses near edges and bent near edges in the graph layout.

orientation speci�es the orientation of the graph: top_to_bottom, bottom_to_top,
left_to_right or right_to_left. Note: the normal orientation is top_to_bottom.
All explanations here are given relatively to the normal orientation, i.e., e.g., if the
orientation is left to right, the attribute xlspace is not the horizontal but the vertical
distance between lines, etc.

node alignment speci�ed the vertical alignment of nodes at the horizontal reference line of
the levels. If top is speci�ed, the tops of all nodes of a level have the same y-coordinate;
on bottom, the bottoms have the same y-coordinate, on center the nodes are centered
at the levels.

port sharing no suppresses the sharing of ports of edges at the nodes. Normally, if multiple
edges are adjacent to the same node, and the arrow head of all these edges has the
same visual appearance (color, size, etc.), then these edges may share a port at a node,
i.e. only one arrow head is draw, and all edges are incoming into this arrow head. This
allows to have many edges adjacent to one node without getting confused by too many
arrow heads. If no port sharing is used, each edge has its own port, i.e. its own place
where it is adjacent to the node.

arrow mode fixed (default) should be used, if port sharing is used, because then, only a
�xed set of rotations for the arrow heads are used. If the arrow mode is free, then
each arrow head is rotated individually to each edge. But this can yield to a black spot,
where nothing is recognizable, if port sharing is used, since all these di�erently rotated
arrow heads are drawn at the same place. If the arrow mode is fixed, then the arrow
head is rotated only in steps of 45 degree, and only one arrow head occurs at each port.

treefactor The algorithm tree for downward laid out trees tries to produce a medium dense,
balanced tree-like layout. If the tree factor is greater than 0.5, the tree edges are spread,
i.e. they get a larger gradient. This may improve the readability of the tree.
Note: it is not obvious whether spreading results in a more dense or wide layout. For a
tree, there is a tree factor such that the whole tree is minimal wide.

spreadlevel This parameter only in
uences the algorithm tree, too. For large, balanced
trees, spreading of the uppermost nodes would enlarge the width of the tree too much,
such that the tree does not �t anymore in a window. Thus, the spreadlevel speci�es the
minimal level (rank) where nodes are spread. Nodes of levels upper than spreadlevel are
not spread.

crossing weight speci�es the weight that is used for the crossing reduction: bary (default),
median, barymedian or medianbary. See section 2.4. We cannot give a general rec-
ommendation, which is the best method. For graphs with very large average degree
of edges (number of incoming and outgoing edges at a node), the weight bary is the
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fastest method. With the weights barymedian and medianbary, equal weights of dif-
ferent nodes are not very probable, thus the crossing reduction phase 2 might be very
fast.

crossing phase2 is the most time consuming phase of the crossing reduction (see section
2.4). In this phase, the nodes that happen to have equal crossing weights are permuted.
By specifying no, this phase is suppressed.

crossing optimization is a postprocessing phase after the normal crossing reduction: we
try to optimize locally, by exchanging pairs of nodes to reduce the crossings. Although
this phase is not very time consuming, it can be suppressed by specifying no.

view allows to select the �sheye views (see section 5.8). Because of the �xed size of the
window that shows the graph, we normally can only see a small amount of a large
graph. If we shrink the graph such that it �ts into the window, we cannot recognize
any detail anymore. Fisheye views are coordinate transformations: the view onto the
graph is distort, to overcome this usage de�ciency. The polar �sheye is easy to explain:
assume a projection of the plane that contains the graph picture onto a spheric ball. If
we now look onto this ball in 3 D, we have a polar �sheye view. There is a focus point
which is magni�ed such that we see all details. Parts of the plane that are far away
from the focus point are demagni�ed very much. Cartesian �sheye have a similar e�ect;
only the formula for the coordinate transformation is di�erent. Selecting cfish means
the cartesian �sheye is used which demagni�es such that the whole graph is visible (self
adaptable cartesian �sheye). With fcfish, the cartesian �sheye shows the region of a
�xed radius around the focus point (�xed radius cartesian �sheye). This region might
be smaller than the whole graph, but the demagni�cation needed to show this region
in the window is also not so large, thus more details are recognizable. With pfish the
self adaptable polar �sheye is selected that shows the whole graph, and with fpfish

the �xed radius polar �sheye is selected.

edges no suppresses the drawing of edges.

nodes no suppresses the drawing of nodes.

splines speci�es whether splines are used to draw edges (yes or no). As default, polygon
segments are used to draw edges, because this is much faster. Note that the spline
drawing routine is not fully validated, and is very slow. Its use is mainly to prepare high
quality PostScript output for very small graphs.

layout splinefactor determines the bending at splines. The factor 100 indicates a very sharp
bending, a factor 1 indicates a very 
at bending. Useful values are 30 : : :80.

cmin set the minimal number of iterations that are done for the crossing reduction with the
crossing weights. The normal method stops if two consecutive checks does not reduce the
number of crossings anymore. However, this increasing of the number of crossings might
be locally, such that after some more iterations, the crossing number might decrease
much more.
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cmax set the maximal number of interactions for crossing reduction. This is helpful for
speedup the layout process. See section 5.13.

pmin set the minimal number of iterations that is done with the pendulum method. Similar
to the crossing reduction, this method stops if the `imbalancement weight' does not de-
creases anymore. However, the increasing of the imbalancement weight might be locally,
such that after some more iterations, the imbalancement weight might decrease much
more.

pmax set the maximal number of iterations of the pendulum method. This is helpful for
speedup the layout process.

rmin set the minimal number of iterations that is done with the rubberband method. This
is similar as for the pendulum method.

rmax set the maximal number of iterations of the rubberband method. This is helpful for
speedup the layout process.

smax set the maximal number of iterations of the straight line recognition phase (useful only,
if the straight line recognition phase is switched on, see attribute straight_phase).

bmax set the maximal number of iterations that are done for the reduction of edge bendings.

Note: the attributes xmax, ymax, xbase, ybase, xspace, yspace, xlspace, xraster, yraster,
xlraster, hidden, classname, infoname, colorentry, layoutalgorithm, layout downfactor, lay-
out upfactor, layout nearfactor, late edge labels, display edge labels, dirty edge labels, �ne-
tuning, ignore singles, straight phase, priority phase, manhattan edges, smanhattan edges,
near edges, orientation, node alignment, port sharing, arrow mode, treefactor, spreadlevel,
crossing weight, crossing phase2, crossing optimization, view, edges, nodes, splines, layout -
splinefactor, cmin, cmax, pmin, pmax, rmin, rmax, and smax can only be speci�ed for the
outermost graph. They in
uence the whole layout of all subgraphs, or change the general
usage mode of the VCG tool.

3.2 Node Attributes

Node speci�cations occur as parts of graph speci�cations. The node information is delimited
by the keywords node: { and }. At least, every node has to contain a title, other attributes
are optional. It is possible to specify default attribute values of nodes for every subgraph by
node.< attribute keyword > : < attribute value > . The complete list of attributes with their
types and default values is shown in table 3.

title the unique string identifying the node. This attribute is mandatory.

label the text displayed inside the node. If no label is speci�ed then the title of the node will
be used. Note that this text may contain control characters like NEWLINE that in
uences
the size of the node.
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attribute name attribute type default value

title string mandatory
label string string of the title
loc x int none
loc y int none
vertical order int unspeci�ed
horizontal order int unspeci�ed
width int width of the label
height int height of the label
shrink int 1
stretch int 1
folding int none
shape box, rhomb, : : : box
textmode center, left justify, right justify center
borderwidth int 2
color black, white, red, : : : white or transparent
textcolor black, white, red, : : : black
bordercolor black, white, red, : : : textcolor
info1 string empty string
info2 string empty string
info3 string empty string

Table 3: Node Attributes

loc is the location as x, y position relatively to the system of coordinates of the graph.
Locations are speci�ed in the form loc: { x: xpos y: ypos }. The locations of nodes
are only valid, if the whole graph is fully speci�ed with locations and no part is folded.
The layout algorithm of the tool calculates appropriate x, y positions, if at least one
node that must be drawn (i.e., is not hidden by folding or edge classes) does not have
�xed speci�ed locations.

vertical order is the level position (rank) of the node. We can also specify level: int.
Level speci�cations are only valid, if the layout is calculated, i.e. if at least one node
does not have a �xed location speci�cation. The layout algorithm partitioned all nodes
into levels 0 : : :maxlevel. Nodes at the level 0 are on the upper corner. The algorithm
is able to calculate appropriate levels for the nodes automatically, if no �xed levels are
given (see sections 2.3). Speci�cations of levels are additional constraints, that may be
ignored, if they are in con
ict with near edge speci�cations. See section 3.6 for more
details.

horizontal order is the horizontal position of the node within a level. The nodes which are
speci�ed with horizontal positions are ordered according to these positions within the
levels. The nodes which do not have this attribute are inserted into this ordering by the
crossing reduction mechanism (see section 2.4). Note that connected components are
handled separately, thus it is not possible to intermix such components by specifying a
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horizontal order.
If the algorithm for downward laid out trees is used, the horizontal order in
uences only
the order of the child nodes at a node, but not the order of the whole level.

width, height is the width and height of a node including the border. If no value (in pixels)
is given then width and height are calculated from the size of the label.

shrink, stretch gives the shrinking and stretching factor of the node. The values of the
attributes width, height, borderwidth and the size of the label text is scaled by
((stretch=shrink) � 100) percent. Note that the actual scale value is determined by the
scale value of a node relatively to a scale value of the graph, i.e. if (stretch,shrink) =
(2,1) for the graph and (stretch,shrink) = (2,1) for the node of the graph, then the
node is scaled by the factor 4 compared to the normal size. The scale value can also be
speci�ed by scaling: 
oat.

folding speci�es the default folding of the nodes. The folding k (with k > 0) means that the
graph part that is reachable via edges of a class less or equal to k is folded and displayed
as one node. There are commands to unfold such summary nodes, see section 5. If no
folding is speci�ed for a node, then the node may be folded if it is in the region of
another node that starts the folding. If folding 0 is speci�ed, then the node is never
folded. In this case the folding stops at the predecessors of this node, if it is reachable
from another folding node. The summary node inherits some attributes from the original
node which starts the folding (all color attributes, textmode and label, but not the
location). A folded region may contain folded regions with smaller folding class values
(nested foldings). If there is more than one node that start the folding of the same region
(this implies that the folding class values are equal) then the attributes are inherited
by one of these nodes nondeterministically (see section 2.2). If foldnode attributes are
speci�ed, then the summary node attributes are inherited from these attributes.

shape speci�es the visual appearance of a node: box, rhomb, ellipse, and triangle. The
drawing of ellipses is much slower than the drawing of the other shapes.

textmode speci�es the adjustment of the text within the border of a node. The possibilities
are center, left_justify and right_justify.

borderwidth speci�es the thickness of the node's border in pixels.

color is the background color of the node. If none is given, the node is white. For the possi-
bilities, see the attribute color for graphs (section 3.1).

textcolor is the color for the label text.

bordercolor is the color of the border. Default color is the textcolor.

info1, info2, info3 combines additional text labels with a node or a folded graph. info1,
info2, info3 can be selected from the menu. The corresponding text labels can be shown
by mouse clicks on nodes.
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3.3 Edge Attributes

Edge speci�cations also occur as parts of graph speci�cations. The edge information is de-
limited by the keywords edge: { and }. The attributes sourcename and targetname are
mandatory. They specify the source and target node of the edge. It is possible to specify
default attribute values of edges for every subgraph by edge.< attribute keyword > : < at-
tribute value > . The position of the edge is determined by the position of its nodes. Thus,
there is no way to specify (x, y) positions of the edge. The complete list of attributes with
their types and default values is shown in table 4.

attribute name attribute type default value

sourcename string mandatory
targetname string mandatory
label string no label
linestyle continuous, dashed, dotted, invisible continuous
thickness int 2
class int 1
color black, white, red, : : : black
textcolor black, white, red, : : : color
arrowcolor black, white, red, : : : color
backarrowcolor black, white, red, : : : color
arrowsize int 10
backarrowsize int 0
arrowsstyle solid, line, none solid
backarrowsstyle solid, line, none none
priority int 1
anchor int none
horizontal order int unspeci�ed

Table 4: Edge Attributes

sourcename is the title of the source node of the edge.

targetname is the title of the target node of the edge.

label speci�es the label of the edge. It is drawn if display_edge_labels is set to yes.

linestyle speci�es the style the edge is drawn. Possibilities are:

� continuous a solid line is drawn ( | )

� dashed the edge consists of single dashes ( - - - )

� dotted the edge is made of single dots ( � � � )

� invisible the edge is not drawn. The attributes of its shape (color, thickness) are
ignored.
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To draw a dashed or dotted line needs more time than solid lines.

thickness is the thickness of an edge.

class speci�es the folding class of the edge. Nodes reachable by edges of a class less or equal
to a constant k specify folding regions of k. See the node attribute folding (section 3.2)
and the folding commands (section 5).

arrowstyle, backarrowstyle Each edge has two arrow heads: the one appears at the target
node (the normal arrow head), the other appears at the source node (the backarrow
head). Normal edges only have the normal solid arrow head, while the backarrow head
is not drawn, i.e. it is none. Arrowstyle is the style of the normal arrow head, and
backarrowstyle is the style of the backarrow head. Styles are none, i.e. no arrow head,
solid, and line.

arrowsize, backarrowsize The arrow head is a right-angled, isosceles triangle and the
cathetuses have length arrowsize.

color is the color of the edge. For the possibilities, see the attribute color for graphs (sec-
tion 3.1)

textcolor is the color of the label of the edge.

arrowcolor, backarrowcolor is the color of the arrow head and of the backarrow head.

priority The positions of the nodes are mainly determined by the incoming and outgoing
edges. One can think of rubberbands instead of edges that pull a node into its position.
The priority of an edges corresponds to the strength of the rubberband.

anchor An anchor point describes the vertical position in a node where an edge goes out.
This is useful, if node labels are several lines long, and outgoing edges are related to
label lines. (E.g., this allows a nice visualization of structs containing pointers as �elds.)

horizontal order is the horizontal position the edge. This is of interest only if the edge
crosses several levels because it speci�es the point where the edge crosses the level.
within a level. The nodes which are speci�ed with horizontal positions are ordered
according to these positions within a level. The horizontal position of a long edge that
crosses the level speci�es between which two node of that level the edge has to be
drawn. Other edges which do not have this attribute are inserted into this ordering by
the crossing reduction mechanism (see section 2.4). Note that connected components
are handled separately, thus it is not possible to intermix such components by specifying
a horizontal order.

3.4 Grammar of GDL

Now we give the grammar of GDL in EBNF (Extended Bacchus Naur Form). Terminals are
enclosed in \double quotes", nonterminals are written italic, �nite iteration is speci�ed by
(: : : )�. Note that C style comments (/* */) and C++ style comments (//) are allowed.
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graph : \graph: f" (graph entry)� \g"
graph entry : graph attribute

j node defaults
j edge defaults
j foldnode defaults
j foldedge defaults
j graph
j node
j edge
j backedge
j nearedge
j bentnearedge

graph attribute : graph attribute name \:" attribute value
graph attribute name : any attribute shown in table 1 and 2
node defaults : \node."node attribute
edge defaults : \edge."edge attribute
foldnode defaults : \foldnode."node attribute
foldedge defaults : \foldedge."edge attribute
node : \node: f" (node attribute)� \g"
edge : \edge: f" (edge attribute)� \g"
backedge : \backedge: f" (edge attribute)� \g"
nearedge : \nearedge: f" (edge attribute)� \g"
bentnearedge : \bentnearedge: f" (edge attribute)� \g"
node attribute : node attribute name \:" attribute value
edge attribute : edge attribute name \:" attribute value
node attribute name : any attribute shown in table 3
edge attribute name : any attribute shown in table 4
attribute value : integer value

j 
oat value
j string value
j enum value

integer value : any integer constant in C style

oat value : any 
oat constant in C style
string value : \"" (character)� \""
enum value : any possible constant value shown in tables 1 , 2, 3 , 4
character : any printable ASCII character

3.5 Colors

The VCG tool has a color map of 256 colors, where 254 of these are free available. The �rst
32 colors (index 0 { 31) of the color map are the default colors. These colors can be speci�ed
by name, all other colors are speci�ed by their color map index number. The color map is
changed by specifying a sequence of colorentry attributes, for instance
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colorentry 32 : 205 198 115 /* khaki */

colorentry 33 : 210 218 255 /* AliceBlue */

colorentry 34 : 205 92 92 /* indian red */

introduce the colors `khaki', `AliceBlue' and `indian red' with the color index 32, 33 and 34.
If we want to use blue, which is a default color, we can specify color: blue or color: 1. If
we want to use khaki as a color of a node, we cannot specify color: khaki since this name
`khaki' is unknown for the VCG tool. Instead, we specify color: 32.
More tricky, we can even overwrite the default colors. If we specify

colorentry 1 : 205 198 115 /* khaki */

colorentry 2 : 210 218 255 /* AliceBlue */

colorentry 3 : 205 92 92 /* indian red */

then the default colors blue, red and green are overwritten by khaki, AliceBlue and indian red.
If we now specify color: blue, then the color khaki will appear. Table 5 shows the default
color map.

white 00 blue 01 red 02 green 03
yellow 04 magenta 05 cyan 06 darkgrey 07
darkblue 08 darkred 09 darkgreen 10 darkyellow 11
darkmagenta 12 darkcyan 13 gold 14 lightgrey 15
lightblue 16 lightred 17 lightgreen 18 lightyellow 19
lightmagenta 20 lightcyan 21 lilac 22 turquoise 23
aquamarine 24 khaki 25 purple 26 yellowgreen 27
pink 28 orange 29 orchid 30 black 31

Table 5: Color Codes of the Default Color Map

3.6 Further Remarks

A few important restrictions should be considered. All titles of graphs and nodes must be
unique. In order to decide which are the source and the target node of an edge, this restriction
is very important.

A node can only be touched by 2 near edges. If more than 2 near edges are speci�ed to
touch the node, the remaining near edges are converted into normal edges. A node that has
anchored edges can have only maximal 1 near edge. Further, if anchored edges occur, the
orientation is always top_to_bottom.

It is possible to change the colors or underline during the output of text, e.g., drawing
of labels or info �elds. This is controlled by special characters in the corresponding string
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Table 6: The ISO Latin 1 Character Set

values. Note: the ASCII value of the control characters depends on the operating system and
the C compiler. The following control characters are allowed:

Newline (corresponds to the C sequence "\n", mostly implemented by ASCII code 10)
continue drawing text at the beginning of the next line.

Tabular (C sequence "\t", ASCII code 9) draw 8 space characters.

Beep (C sequence "\a", ASCII code 7) produce an audible or visible alert (equivalent to
printf("\a");). The position for the next character to be drawn is not changed.

Backspace (C sequence "\b", ASCII code 8) go one character back and continue drawing
at that place.

Formfeed (C sequence "\f", ASCII code 12) This occurs with an additional parameter (the
next few characters) and changes the actual form of output.
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\fu (ASCII codes 12 117) starts underlining.
\fb (ASCII codes 12 98) starts bold typeface.
\fB (ASCII codes 12 66) starts very bold typeface.
\fn (ASCII codes 12 110) stops underlining and bold typefaces, i.e. set to normal
typeface.
\fi000 (ASCII codes 12 105 48 48 48) prints the ISO character 0.
\fi223 (ASCII codes 12 105 50 50 51) prints the ISO character 223 (the German �).
\fi252 (ASCII codes 12 105 50 53 50) prints the ISO character 252 (the German �u).
See table 6 for the ISO Latin 1 character set.
\f00 (ASCII codes 12 48 48) sets the color to white (or, to the color that currently has
index 0 in the color table).
\f31 (ASCII codes 12 51 49) sets the color to black (or, to the color that currently has
index 31 in the color table). By this way, it is possible to access to the �rst 99 colors of
the map. See table 5 for the default color map.

The level of nodes (also: summary nodes of subgraphs) is only recognized, if the whole
graph is laid out automatically, i.e. if at least one node has no speci�ed location. Normally, all
nodes of level 0 form the uppermost layer, nodes of other levels form the next layer top down.
The level speci�cation may be in con
ict with a near edge speci�cation, because the source
and target node of a near edge must have the same level. In this case, the level speci�cation
of source or target node of the near edge is ignored.

4 Examples of GDL Speci�cations

Here we give some GDL speci�cations with the displayed graphs.

4.1 A Cyclic Graph

Example 1 is a small cyclic graph without labels. The title is displayed in the nodes.

Example 1:

graph: f
/� list of nodes �/
node: f title: "A" g node: f title: "B" g node: f title: "C" g
node: f title: "D" g node: f title: "E" g
/� list of edges �/
edge: f thickness: 3 sourcename: "A" targetname: "B" g
edge: f thickness: 3 sourcename: "A" targetname: "C" g
edge: f thickness: 3 sourcename: "C" targetname: "D" g
edge: f thickness: 3 sourcename: "D" targetname: "E" g
edge: f thickness: 3 sourcename: "D" targetname: "A" g

g
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Figure 6: Example 1 Figure 7: Example 2 Figure 8: Example 3

The VCG tool tries to give all edges the same orientation. But since the graph is cyclic, one
edge must be reverted (edge D!A). We can also select, which edge should be reverted, by
specifying a back edge (edge C!D in example 2). .

Example 2:

graph: f
/� list of nodes �/
node: f title: "A" g node: f title: "B" g node: f title: "C" g
node: f title: "D" g node: f title: "E" g
/� list of edges �/
edge: f thickness: 3 sourcename: "A" targetname: "B" g
edge: f thickness: 3 sourcename: "A" targetname: "C" g
backedge:f thickness: 3 sourcename: "C" targetname: "D" g
edge: f thickness: 3 sourcename: "D" targetname: "E" g
edge: f thickness: 3 sourcename: "D" targetname: "A" g

g

Again, the most of the edges have the same orientation. The tool selects the node D as topmost
node now. The same cyclic graph looks completely di�erent, if we add some near edges. The
nodes connected by near edges are drawn at the same level (example 3).

Example 3:

graph: f
/� list of nodes �/
node: f title: "A" g node: f title: "B" g node: f title: "C" g
node: f title: "D" g node: f title: "E" g
/� list of edges �/
nearedge: f thickness: 3 sourcename: "A" targetname: "B" g
nearedge: f thickness: 3 sourcename: "A" targetname: "C" g
backedge: f thickness: 3 sourcename: "C" targetname: "D" g
nearedge: f thickness: 3 sourcename: "D" targetname: "E" g
edge: f thickness: 3 sourcename: "D" targetname: "A" g

g
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In some situations, we want to have edges that are horizontally anchored, but the target nodes
should not be at the same level. Such edges must have a bend point. Here, we can use bent
near edges (A!B and D!E in example 4).

Example 4:

graph: f
/� list of nodes �/
node: f title: "A" g node: f title: "B" g node: f title: "C" g
node: f title: "D" g node: f title: "E" g
/� list of edges �/
bentnearedge: f thickness: 3 sourcename: "A" targetname: "B" g
nearedge: f thickness: 3 sourcename: "A" targetname: "C" g
backedge: f thickness: 3 sourcename: "C" targetname: "D" g
bentnearedge: f thickness: 3 sourcename: "D" targetname: "E" g
edge: f thickness: 3 sourcename: "D" targetname: "A" g

g

In order to indicate that node "D" represents a struct with two �elds, whose �rst points to
"E" and second points to "A", we can use the attribute anchor for the speci�cation of the
edges (example 5).

Figure 9: Example 4 Figure 10: Example 5

Example 5:

graph: f
/� list of nodes �/
node: f title: "A" g node: f title: "B" g node: f title: "C" g
node: f title: "D" label: "Field1\nField2:" g node: f title: "E" g
/� list of edges �/
bentnearedge: f thickness: 3 sourcename: "A" targetname: "B" g
nearedge: f thickness: 3 sourcename: "A" targetname: "C" g
backedge: f thickness: 3 sourcename: "C" targetname: "D" g
edge: f thickness: 3 sourcename: "D" targetname: "E" anchor: 1 g
edge: f thickness: 3 sourcename: "D" targetname: "A" anchor: 2 g

g
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4.2 A Control Flow Graph

Example 6 is a control 
ow graph of a procedural program. The nodes contain the text
of statements as labels. Not all edges have labels. The displayed program (in the pseudo
language CLaX) consists of a procedure test and a main routine:

PROCEDURE test( VAR b : INTEGER; c : INTEGER);
BEGIN
b := c + 5;

END

BEGIN /* main routine of a nonsense program */
x := 1;
WHILE (x = 1) DO
x := 2;
test ( x, 1 );
x := 3;

OD;
WHILE (x = 1) DO
x := 4;
x := 5;
test ( x, 2 );

OD;
WHILE (x = 1) DO
x := 6;
IF (x = 7) THEN x := 8; ELSE test ( x, 3 );
FI;

OD;
END.

Example 6:

graph: f title: "CFG GRAPH"
splines: yes
layoutalgorithm: dfs �netuning: no
display edge labels: yes
yspace: 55
node: f title:"18" label: "test b := test c + 5" g
node: f title:"17" label: "Exit" g
node: f title:"16" label: "test(x;3)" g
node: f title:"15" label: "x := 8" g
node: f title:"14" label: "x = 7" g
node: f title:"13" label: "x := 6" g
node: f title:"12" label: "x = 1" g
node: f title:"11" label: "test(x;2)" g
node: f title:"10" label: "x := 5" g
node: f title:"9" label: "x := 4" g
node: f title:"8" label: "x = 1" g
node: f title:"7" label: "x := 3" g
node: f title:"6" label: "test(x; 1)" g
node: f title:"5" label: "x := 2" g
node: f title:"4" label: "x = 1" g
node: f title:"3" label: "x := 1" g
node: f title:"2" label: "Start" g
node: f title:"1" label: "Exit point\ntest" g
node: f title:"0" label: "Entry point\ntest" g
edge: f thickness: 4 sourcename:"18" targetname:"1" g
edge: f thickness: 4 sourcename:"0" targetname:"18" g
edge: f thickness: 4 sourcename:"12" targetname:"17" label: "false" g
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Figure 11: Example 6

edge: f thickness: 4 sourcename:"8" targetname:"12" label: "false" g
edge: f thickness: 4 sourcename:"16" targetname:"12" label: "back" g
edge: f thickness: 4 sourcename:"15" targetname:"12" label: "back" g
edge: f thickness: 4 sourcename:"13" targetname:"14" g
edge: f thickness: 4 sourcename:"14" targetname:"16" label: "false" g
edge: f thickness: 4 sourcename:"14" targetname:"15" label: "true" g
edge: f thickness: 4 sourcename:"12" targetname:"13" label: "true" g
edge: f thickness: 4 sourcename:"4" targetname:"8" label: "false" g
edge: f thickness: 4 sourcename:"11" targetname:"8" label: "back" g
edge: f thickness: 4 sourcename:"10" targetname:"11" g
edge: f thickness: 4 sourcename:"9" targetname:"10" g
edge: f thickness: 4 sourcename:"8" targetname:"9" label: "true" g
edge: f thickness: 4 sourcename:"3" targetname:"4" g
edge: f thickness: 4 sourcename:"7" targetname:"4" label: "back" g
edge: f thickness: 4 sourcename:"6" targetname:"7" g
edge: f thickness: 4 sourcename:"5" targetname:"6" g
edge: f thickness: 4 sourcename:"4" targetname:"5" label: "true" g
edge: f thickness: 4 sourcename:"2" targetname:"3" g

g
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This previous example was a very simple translation into a control 
ow graph. The start,
exit and branch nodes can be better recognized if we use di�erent shapes for them. The edges
that close a cycle can be speci�ed as back edges, in order to see the uniform 
ow of the other
edges. The decision edges should be anchored left and right to the branch nodes, thus, we
use bent near edges. The result is example 7.

Figure 12: Example 7

Example 7:

graph: f title: "CFG GRAPH"
layoutalgorithm: dfs
�netuning: no
display edge labels: yes
yspace: 55
node: f title:"18" label: "test b := test c + 5" g
node: f title:"17" label: "Exit" shape: ellipse g
node: f title:"16" label: "test(x;3)" g
node: f title:"15" label: "x := 8" g
node: f title:"14" label: "x = 7" shape: rhomb g
node: f title:"13" label: "x := 6" g
node: f title:"12" label: "x = 1" shape: rhomb g
node: f title:"11" label: "test(x;2)" g
node: f title:"10" label: "x := 5" g
node: f title:"9" label: "x := 4" g
node: f title:"8" label: "x = 1" shape: rhomb g
node: f title:"7" label: "x := 3" g
node: f title:"6" label: "test(x; 1)" g
node: f title:"5" label: "x := 2" g
node: f title:"4" label: "x = 1" shape: rhomb g
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Figure 13: Example 8

node: f title:"3" label: "x := 1" g
node: f title:"2" label: "Start" shape: ellipse g
node: f title:"1" label: "Exit point\ntest" shape: ellipse g
node: f title:"0" label: "Entry point\ntest" shape: ellipse g
edge: f thickness: 4 sourcename:"18" targetname:"1" g
edge: f thickness: 4 sourcename:"0" targetname:"18" g
bentnearedge: f thickness: 4 sourcename:"12" targetname:"17" label: "false" g
bentnearedge: f thickness: 4 sourcename:"8" targetname:"12" label: "false" g
backedge: f thickness: 4 sourcename:"16" targetname:"12" label: "back" g
backedge: f thickness: 4 sourcename:"15" targetname:"12" label: "back" g
edge: f thickness: 4 sourcename:"13" targetname:"14" g
bentnearedge: f thickness: 4 sourcename:"14" targetname:"16" label: "false" g
bentnearedge: f thickness: 4 sourcename:"14" targetname:"15" label: "true" g
bentnearedge: f thickness: 4 sourcename:"12" targetname:"13" label: "true" g
bentnearedge: f thickness: 4 sourcename:"4" targetname:"8" label: "false" g
backedge: f thickness: 4 sourcename:"11" targetname:"8" label: "back" g
edge: f thickness: 4 sourcename:"10" targetname:"11" g
edge: f thickness: 4 sourcename:"9" targetname:"10" g
bentnearedge: f thickness: 4 sourcename:"8" targetname:"9" label: "true" g
edge: f thickness: 4 sourcename:"3" targetname:"4" g
backedge: f thickness: 4 sourcename:"7" targetname:"4" label: "back" g
edge: f thickness: 4 sourcename:"6" targetname:"7" g
edge: f thickness: 4 sourcename:"5" targetname:"6" g
bentnearedge: f thickness: 4 sourcename:"4" targetname:"5" label: "true" g
edge: f thickness: 4 sourcename:"2" targetname:"3" g

g

If we use the orthogonal layout, the graph looks like a typical 
owchart. Here, the down-
factor should be large while the nearfactor and the upfactor must be zero. The result is
example 8.
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Example 8:

graph: f title: "CFG GRAPH"
manhattan edges: yes
layoutalgorithm: dfs
�netuning: no
display edge labels: yes
layout downfactor: 100
layout upfactor: 0
layout nearfactor: 0
xlspace: 12
yspace: 55
: : : nodes and edges as in example 7 : : :

g

4.3 The E�ect of the Layout Algorithms

The following sequence of pictures shows several times the same graph visualized by di�erent
layout algorithms. The graph is cyclic, thus it depends on the personal taste which layout is
the best. Of course, the algorithm tree is not applicable. If the graph is acyclic, the default
layout algorithm or the layout algorithm minbackward are the most appropriate in nearly
all cases. Very often, the main problem is to select the nodes that appear at the top level
of the graph. The layout algorithm looks for candidates that have no incoming edges but at
least one outgoing edge. If such a node does not exist { as in example 9 { the algorithms
mindegree, : : : , maxoutdegree are helpful.

The �ne tuning phase eliminates long edges. The tuned graph is more compact. The tuned
graph created by maxdepthslow need not to be maximal deep because the �ne tuning may
have reduced the deep better with another variant of the layout algorithm. The tuned graph
created by mindepthslow need not to be minimal deep, too. All these partitioning algorithms
are only heuristics.

Example 9:

graph: f
xspace: 25
node: f title: "A" label: "Start of all" g
node: f title: "B" g node: f title: "C" g node: f title: "D" g
node: f title: "E" g
node: f title: "F" g node: f title: "G" g node: f title: "H" g
node: f title: "I" g node: f title: "J" g node: f title: "K" g
edge: f thickness: 3 sourcename: "A" targetname: "B" g
edge: f thickness: 3 sourcename: "A" targetname: "C" g
edge: f thickness: 3 sourcename: "A" targetname: "D" g
edge: f thickness: 3 sourcename: "A" targetname: "E" g
edge: f thickness: 3 sourcename: "A" targetname: "F" g
edge: f thickness: 3 sourcename: "A" targetname: "J" g
edge: f thickness: 3 sourcename: "B" targetname: "D" g
edge: f thickness: 3 sourcename: "C" targetname: "E" g
edge: f thickness: 3 sourcename: "D" targetname: "F" g
edge: f thickness: 3 sourcename: "F" targetname: "K" g
edge: f thickness: 3 sourcename: "J" targetname: "K" g
edge: f thickness: 3 sourcename: "A" targetname: "G" g
edge: f thickness: 3 sourcename: "G" targetname: "H" g
edge: f thickness: 3 sourcename: "H" targetname: "I" g
edge: f thickness: 3 sourcename: "I" targetname: "A" g

g
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Figure 14: normal without �ne tuning

The normal layout algorithm breaks the cycle
such that only one reverted edge is necessary.

Figure 15: normal with �ne tuning

Compared to the previous layout, the �ne tun-
ing phase has balanced the position of the
node J. The long edge I->Start will not be
balanced since this would create additional re-
verted edges.

Figure 16: minbackward
without �ne tuning

This is nearly the same pic-
ture as for normal. Again,
only one reverted edge is
necessary. The layout al-
gorithm maxdepth without
�ne tuning results in the
same picture.

Figure 17: minbackward
with �ne tuning

Compared to the previ-
ous layout, the �ne tun-
ing phase has partially
eliminated the long edge
I->Start and has again
balanced the position of
node J.

Figure 18: maxdepth
with �ne tuning

The long edge I->Start is
now fully eliminated. Here,
the �ne tuning phase is al-
lowed to revert additional
edges.
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Figure 19: maxdepthslow without �ne
tuning

This layout with depth 6 is in fact maximal
deep, compared to all other variants.

Figure 20: maxdepthslow with �ne
tuning

The �ne tuning phase eliminates the long edge
Start->G. Thus, the layout is not anymore
maximal deep: Fine tuning destroys the prop-
erty to be maximal deep.

Figure 21: mindepth without �ne tuning

The layout algorithms dfs and minindegree

happen to result in the same picture.

Figure 22: mindepth with �ne tuning

Compared to the previous layout, the long
edges I->Start is eliminated. In fact, this is
the layout with the minimal depth.
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Figure 23: mindepthslow without �ne
tuning

Graphs that are minimal deep tend to have
many nodes at the top level. Compared to all
untuned graphs, this layout is minimal deep.
However note, that the algorithm mindepth

with �ne tuning is able to produce a 
atter
layout.

Figure 24: mindepthslow with �ne
tuning

The long edges G->H and Start->B are elim-
inated. Note that the �ne tuning phase of al-
gorithm mindepth happens to reduce the deep
while here, this is not possible. Thus, com-
pared to all �ne tuned graphs, mindepthslow
does not produce the 
attest layout.

Figure 25: maxdegree without �ne tuning

The node Start has the most adjacent edges.
Thus it is selected as start node of the span-
ning tree, i.e. it appears at the topmost level.

Figure 26: maxdegree with �ne tuning

Compared to the previous picture, the long
edge I->Start is eliminated. This is also a
layout with minimal depth.
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Figure 27: mindegree without �ne tuning

The candidates for start nodes of the spanning
tree are the nodes B, C, G, H, I and J be-
cause they have the minimal degree 2. From
these nodes, B, C and G happened to be se-
lected. Note: the nodes E and K (also degree
2) are no candidates of start nodes because
they do not have outgoing edges.

Figure 28: mindegree with �ne tuning

The long edges Start->B and Start C are
eliminated. This changes the structure of the
layout completely.

Figure 29: minindegree without �ne
tuning

The candidates for start nodes are Start, B,

C, G, H, I and J, from which Start was se-
lected. The algorithm maxoutdegree results in
the same picture.

Figure 30: minindegree with �ne tuning

The long edge I->Start is eliminated. This is
again a layout with minimal depth.
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Figure 31: maxindegree without �ne
tuning

This time, the candidates are D and F, from
which F was selected as start node resulting in
the spanning tree F->K. Because K has no out-
going edges, this component of the spanning
tree cannot be larger. Thus, a second com-
ponent of the spanning tree is needed, which
starts at D and is D since it has no outgoing
edges to not yet scheduled nodes. A third com-
ponent starts at G which is one of the not yet
scheduled nodes with maximal indegree.

Figure 32: minoutdegree without �ne
tuning

The nodes E and K with minimal outdegree
0 cannot be start nodes, because start nodes
must have at least one successor. Otherwise,
they would create one-node components of the
spanning tree. The useful candidates are all
other nodes except Start, from which B, C

and G happened to be selected.

Figure 33: maxindegree with �ne tuning

F is again start node of one component of
the spanning tree. Compared to the previous
example, the long edges Start->G, B->D and
Start D are eliminated.

Figure 34: minoutdegree with �ne
tuning

The long edges Start->G, Start->B and
Start->C are eliminated.
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4.4 Tree Layouts

The following example shows a typed syntax tree. This tree can either be laid out by the
specialized algorithm for downward laid out trees, or by the normal algorithms using cross-
ing reduction and rubberband methods. The layout of a tree is quite strange, if the lay-
out downfactor is not used. The incoming edges draw the nodes too much into the direction of
of the parent node. The nicest layout is produced by the specialized tree algorithm with a tree
factor of 0.9. If an orthogonal layout is needed, the attribute smanhattan_edges can be used.
For trees, it is more appropriate than the normal manhattan layout with manhattan_edges.

Positioning by the rubberband method.

The layout downfactor, layout upfactor

and layout nearfactor are 1. The nodes

are pulled in direction of their parent

nodes.

Positioning by the rubberband method.

The layout downfactor is 10. The lay-

out upfactor and layout nearfactor are

1. The nodes are not anymore pulled in

direction of their parent nodes.

Figure 35: Example 10: Layout algorithm maxdepth

Example 10:

graph: f
title: "typed syntax tree"
node: f title: "503160" label: "Identi�er\ntst3 (0)" g
node: f title: "503240" label: "Identi�er\nx (0)" g
node: f title: "502952" label: "INTEGER" g
node: f title: "503304" label: "VarDecl" g
: : :

node: f title: "T0" label: "no type" g
node: f title: "T1" label: "no type" g
node: f title: "T2" label: "int" g
: : :

edge: f sourcename: "503304" targetname: "503240" g
edge: f sourcename: "503304" targetname: "502952" g
: : :

nearedge: f sourcename: "503160" targetname: "T0" linestyle: dotted g
nearedge: f sourcename: "503240" targetname: "T1" linestyle: dotted g
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Figure 36: Example 10: Layout algorithm tree, treefactor:0.9

nearedge: f sourcename: "502952" targetname: "T2" linestyle: dotted g
: : :

g

4.5 The Combination of Features

The following example is taken from [GKNV93] and shows the dependencies of di�erent shell
programs. To visualize it, a combination of features of the VCG tool is used. There is a time
scale that should indicate the origin of the programs. The shells themselves are nodes that
must be placed at the same rank as their birth dates. We use the attribute vertical_order
to set the nodes to these positions. Furthermore, we want to have the time axis at the left
side of the shell dependence graph. This is achieved by the attribute horizontal_order at
some of the nodes. However, this attribute only works if the graph is connected. Thus, we
create three invisible edges to make the graph connected.

Invisible edges, as all other edges, in
uence the positions of the nodes as they would pull
their adjacent nodes together. To avoid this e�ect for the invisible edges, we set the priority
of the invisible edges to zero and the priority of the visible edges to 100. There are many
possibilities to change the priority: we can set the attribute priority, but we can also set
the layout factors downfactor, upfactor and nearfactor. The real priority of a downward



4 EXAMPLES OF GDL SPECIFICATIONS 45

Figure 37: Example 10: Layout algorithm tree, smanhattan edges

edge is the product downfactor � priority.
We want to have the shell Bourne left to the shell Mashey and csh right to Mashey. Thus

we also give the nodes at level 2 a horizontal order. However, csh is on level 3, and only its
edge crosses level 2. Thus we set the attribute horizontal_order for this edge, too, and now
this edge is drawn to the right of Mashey.

To reduce the amount of speci�cation, we use default attribute speci�cations for the height,
width and borderwidth of nodes and for the style of edges. To di�erentiate, we use ellipses
for the di�erent variations of the KornShell, triangles for C-Shells and a rhomb for tcl. The
graph is acyclic, thus the layout algorithm minbackward is used. Edges are drawn by splines.

Example 11:

graph: f
title: "shells"
splines: yes
layoutalgorithm: minbackward
layout nearfactor: 0
layout downfactor: 100
layout upfactor: 100

// First the time scale
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Figure 38: Example 11

node.height: 26
node.width: 60
node.borderwidth: 0
edge.linestyle: dashed

node: f title: "1972" vertical order: 1 horizontal order: 1 g
node: f title: "1976" vertical order: 2 horizontal order: 1 g
node: f title: "1978" vertical order: 3 g
node: f title: "1980" vertical order: 4 g
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node: f title: "1982" vertical order: 5 horizontal order: 1 g
node: f title: "1984" vertical order: 6 g
node: f title: "1986" vertical order: 7 g
node: f title: "1988" vertical order: 8 g
node: f title: "1990" vertical order: 9 g
node: f title: "future"vertical order: 10 horizontal order: 1 g

edge: f sourcename: "1972" targetname: "1976" g
edge: f sourcename: "1976" targetname: "1978" g
edge: f sourcename: "1978" targetname: "1980" g
edge: f sourcename: "1980" targetname: "1982" g
edge: f sourcename: "1982" targetname: "1984" g
edge: f sourcename: "1984" targetname: "1986" g
edge: f sourcename: "1986" targetname: "1988" g
edge: f sourcename: "1988" targetname: "1990" g
edge: f sourcename: "1990" targetname: "future"g

// We need some invisible edge to make the graph fully connected.
// Otherwise, the horizontal order attribute would not work.

edge: f sourcename: "ksh-i" targetname: "Perl" linestyle: invisible priority: 0 g
edge: f sourcename: "tcsh" targetname: "tcl" linestyle: invisible priority: 0 g
nearedge: f sourcename: "1988" targetname: "rc" linestyle: invisible g
nearedge: f sourcename: "rc" targetname: "Perl" linestyle: invisible g

// Now the shells themselves
// Note: the default value -1 means: no default

node.height: -1
node.width: -1
node.borderwidth: 2
edge.linestyle: solid
node: f title: "Thompson" vertical order: 1 horizontal order: 2 g
node: f title: "Mashey" vertical order: 2 horizontal order: 3 g
node: f title: "Bourne" vertical order: 2 horizontal order: 2 g
node: f title: "Formshell" vertical order: 3 g
node: f title: "csh" vertical order: 3 shape: triangle g
node: f title: "esh" vertical order: 4 horizontal order: 2 g
node: f title: "vsh" vertical order: 4 g
node: f title: "ksh" vertical order: 5 horizontal order: 3 shape: ellipse g
node: f title: "System-V" vertical order: 5 horizontal order: 5 g
node: f title: "v9sh" vertical order: 6 g
node: f title: "tcsh" vertical order: 6 shape: triangle g
node: f title: "ksh-i" vertical order: 7 shape: ellipse g
node: f title: "KornShell" vertical order: 8 shape: ellipse g
node: f title: "Perl" vertical order: 8 g
node: f title: "rc" vertical order: 8 g
node: f title: "tcl" vertical order: 9 shape: rhomb g
node: f title: "Bash" vertical order: 9 g
node: f title: "POSIX" vertical order: 10 horizontal order: 3 g
node: f title: "ksh-POSIX" vertical order: 10 horizontal order: 2 shape: ellipse g

edge: f sourcename: "Thompson" targetname: "Mashey" g
edge: f sourcename: "Thompson" targetname: "Bourne" g
edge: f sourcename: "Thompson" targetname: "csh" horizontal order: 4 g
edge: f sourcename: "Bourne" targetname: "ksh" g
edge: f sourcename: "Bourne" targetname: "esh" g
edge: f sourcename: "Bourne" targetname: "vsh" g
edge: f sourcename: "Bourne" targetname: "System-V" g
edge: f sourcename: "Bourne" targetname: "v9sh" g
edge: f sourcename: "Bourne" targetname: "Formshell" g
edge: f sourcename: "Bourne" targetname: "Bash" g
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edge: f sourcename: "csh" targetname: "tcsh" g
edge: f sourcename: "csh" targetname: "ksh" g
edge: f sourcename: "Formshell" targetname: "ksh" horizontal order: 4 g
edge: f sourcename: "esh" targetname: "ksh" g
edge: f sourcename: "vsh" targetname: "ksh" g
edge: f sourcename: "ksh" targetname: "ksh-i" g
edge: f sourcename: "System-V" targetname: "POSIX" g
edge: f sourcename: "v9sh" targetname: "rc" g
edge: f sourcename: "ksh-i" targetname: "KornShell" g
edge: f sourcename: "ksh-i" targetname: "Bash" g
edge: f sourcename: "KornShell" targetname: "Bash" g
edge: f sourcename: "KornShell" targetname: "POSIX" g
edge: f sourcename: "KornShell" targetname: "ksh-POSIX"g

g

5 Usage of the VCG tool

The usage of the VCG tool is very simple. It is designed as an auxiliary tool that works
in combination with programs that provide automatically the input of the tool. Thus, the
possibilities to change the visualized graph interactively are very limited. The interactive
commands are concentrated to improve the readability of existing graphs, i.e. to show impor-
tant parts and hide other parts.

5.1 Starting the Tool

The invocation of the VCG tool is:

xvcg [�lename]

If the optional parameter �lename is set to \{", the input �le is <stdin>. If �lename is not
speci�ed, the tool asks for the �lename containing the graph description in GDL. If multiple
graph speci�cations should be visualized sequentially, the tool is invoked by

xvcg -multi �lename1 �lename2 �lename3 : : :

Instead of terminating the tool after the visualization of �lename1, the tool is automatically
reinvoked to visualize �lename2, �lename3, etc. The command \xvcg -h" prints an explanation
of the usage on the screen. Other options of the tool are explained in the manual page. After
reading the input, the visualization layout is calculated with the parameters given in the GDL
�le. The graph is drawn in a X11 window [Pet91]. Interactive commands are entered by a
mouse menu (pull down menu using the left or right mouse button). A summary of commands
is shown in table 7.

5.2 The Graph Window

The graph window consists of a drawing area where the graph appears, a text area be-
low where the messages are printed, 5 scrollbars and a small button (right, below the right
scrollbar). The menu becomes visible on a mouse click into the drawing area, as shown in
�gure 39.



5 USAGE OF THE VCG TOOL 49

Item Description

Fold Subgraph fold a subgraph to a summary node
Unfold Subgraph unfold a subgraph
Expose/Hide Edges hide or expose edges and their regions
Fold Region fold a region of class k
Unfold Region unfold a region
Scroll scroll the virtual window
Node Information show the info1, info2, or info3 text, the label

or layout attributes of a node.
Position position the virtual window absolutely
Pick Position position the virtual window accordingly to mouse position
Center Node position the virtual window to center a node
Follow Edge center the node at the end of an edge in the window
Ruler switch position rulers on or o�
Layout change the layout parameters of the graph
View change the view parameters
Scale set (shrink/stretch) factor for magni�cation
File store the graph in VCG, PBM, PPM or PostScript format,

load a new �le, or reload the actual �le again
Quit exit the tool

Table 7: Menu Items

As described in section 3.1, the displayed window shows a part of the virtual window that
contains the actually drawn part of the graph (see �gure 5). Parts that are not inside the
virtual window are not drawn because of performance reasons. The displayed window can be
closed or opened, but cannot be larger than the virtual window. The �rst left scrollbar is used
to position the virtual window to a y-coordinate, i.e. to move the window vertically through
the system of coordinates. The second left scrollbar is used to scroll the displayed window
vertically through the virtual window, i.e. to �ne tune the vertical position of the visible part
of the graph.

The �rst lower scrollbar is used to position the virtual window to a x-coordinate, i.e. to
move the window horizontally through the system of coordinates. The second lower scrollbar
is used to scroll the displayed window horizontally through the virtual window, i.e. to �ne
tune the horizontal position of the visible part of the graph.

Note: if the virtual window is positioned, this causes a redrawing of a part of the graph.
If the visible window is scrolled through the virtual window, this causes refresh of the visible
window, which is usually a much faster operation, because of a graphic bu�er.

The right scrollbar is used to set the scaling of the graph. If the scrollthumb is in the
middle of the scrollbar, the scaling is 100%, i.e. it is normal size. The small buttons at the
beginning and end of each scrollbar can be used to increment or decrement the scrollbar value
in �ne grained steps. The amount of increment or decrement depends on the selected mouse
button used to push onto the scrollbar buttons. The small button below the right scrollbar is
used to set an appropriate scaling such that the whole graph is completely visible. For large
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Figure 39: The Graph Window

graphs, this will set a large demagni�cation such that no details are anymore visible.

5.3 Folding

As already mentioned, the graph can be partitioned into nested subgraphs, that can be folded
by selecting one of their nodes, and unfolded by selecting the summary node of a subgraph.
Further, a class of edges can be hidden, which also hides the region of nodes only reachable
by edges of this class. Finally, a connected region can be folded dynamically by selecting
the start nodes and the end node of a region and an edge class k. All nodes reachable from
the start nodes by edges of classes less or equal then k up to (and unless) the end nodes are
condensed into one summary node. Nested foldings are possible. To activate the di�erent
folding methods, the following items are in the mouse menu:

� Fold Subgraph: After selection of this item, an arbitrary node of the subgraph to be
folded must be selected. The corresponding subgraph is folded.

� Unfold Subgraph: The summary node of a subgraph must be selected to show this
subgraph explicitly.

� Expose/Hide Edges: A dialog box of all edge classes appears (see �gure 40 for an
example). There is at least the default edge class \1". The edge classes are shown by
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Figure 40: The Edge Class Menu of an Example
The text of the edge classes is speci�ed in this example graph and changes with each new graph (see

attribute classname).

numbers, or by the names that are assigned to the classes in the speci�cation (see
attribute classname). The classes currently exposed are highlighted. Here, the classes
to hide and the classes to expose can be selected. As at all dialog boxes, the selection
of the \Okay" button causes the relayout, while the selection of the \Cancel" button
cancels this operation.

� Fold Region: An edge class must be selected from the submenu. First, nodes are
selected by the left mouse button where the following \Fold Region" operation stops.
This corresponds to the folding attribute value 0 of nodes. After pressing the right
mouse button, nodes can be marked where the folding process starts. The connected
region of this class is folded until the foldstops are reached (if there are any).

� Unfold Region: After selection of a summary node, the corresponding connected region
is unfolded.

5.4 Positioning

The displayed window can be scrolled through the virtual window by scrollbars. The virtual
window can be positioned over the potential in�nite system of coordinates of the graph by
scrollbars, too. If the �sheye view is selected (see section 5.8), the positioning moves the focus
point instead of the virtual window. Additionally, there is the item Scroll in the mouse menu,
which opens a submenu with

� left, right, up, down: move the virtual window (or focus point) 32 pixels to the cor-
responding direction.

� lleft, rright, uup, ddown: move the virtual window (or focus point) 256 pixels to the
corresponding direction.
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� llleft, rrright, uuup, dddown: move the virtual window (or focus point) one screensize
to the corresponding direction. The screensize is given by the attributes width and
height of the outermost graph (see section 3.1).

� origin move the virtual window to the position (0,0), or move the focus point to the
center of the graph.

Additionally, there is the item Position in the mouse menu that allows to change the
absolute position of the virtual window, and the item Pick Position which allows to select
the new origin of the coordinate system by mouse picks, the item Center Node which centers
a node whose title was entered in the virtual window, and the item Follow Edge that allows
to follow an edge to its start or end point.

The operation Pick Position has two modes: New origins (focus points for �sheye views,
see 5.8) can be selected continuously by short left mouse clicks. This operation continues until
a right mouse button is selected. This is helpful to browse through the graph with �sheye
view, e.g., to move the focus point over all points of interest. However, if the left mouse button
is pressed, hold and drawn over the window, a rubberband appears. In this case, not only
the origin is set but also a scaling is calculated such that just the region of the rubberband is
magni�ed to �t into the window. Selecting regions by this way does not continue as for the
short mouse clicks. It stops directly.

Figure 41: The Follow Edge History Box

The operation Follow edge works as follows: �rst one node must be selected by the
mouse, then one edge that starts or ends at this node is chosen by mouse button clicks. The
other end point of the edge is centered. Now, an edge of the end point can be selected by
button clicks to center a new end point, etc. The operation stops if the right mouse button is
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selected at the end point. This method is also helpful to browse through the graph. However,
how the �nd the way back to a node where the operation has been started ? To support this,
a history is implemented. By pressing the key 'h' during the Follow edge operation, the
history dialog box appears (see �g. 41) and shows all nodes that have been centered during
the Follow edge operation. Selecting a node using the button \Select Node" browses back
and centers this node (or sets the focus point to it), touching the button \Next Edge" allows
to select the next edge to follow, and touching the button \Follow Edge" allows to follow the
edge.

The selection of the menu item Ruler gives a hint of the current position of the virtual
window: Horizontal and vertical rulers are switched on or o� at the margins of the displayed
window to display the coordinates. Of course, this does not work for �sheye views, since the
coordinate system is distort.

5.5 Node Information

This submenu contains several points that allow to see more information about the nodes and
the graph.

� Info 1, Info 2, Info 3: The name of these items can be selected as attribute infoname
in the speci�cation, otherwise the item numbers \1", \2", and \3" appear. After the
selection of nodes, their info �elds are displayed. The info �elds can be used to provide
the nodes with additional textual information that would be too large as labels of the
nodes.

� Layout Attributes: After the selection of nodes, their layout attributes are shown.
This includes the attributes of the speci�cation, but also the calculated position. If a
horizontal or vertical order was speci�ed, it may happen that this order was corrected,
because a level was not possible for a node or the layout algorithm failed to validate
the speci�ed horizontal orders. In this case, we see for instance the entry 1 -> 5 which
means that the order was speci�ed to be 1, but was corrected by the layout algorithm
to the value 5.

� Label of Node displays the label of a node in normal size. This is useful, if the graph
is shrunken very much, such that the label text is not readable because it is too small.

� Statistics shows the statistics of the graph, which includes the size of the graph, the
number of nodes and edges, the number of crossings etc.

5.6 Scaling

Additionally to the right scrollbar, the submenu Scale is used to scale the current visualization
up and down. It sets the global values of stretch and shrink:
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Item New stretch New shrink

normal 1 1
400 % stretch * 4 shrink
200 % stretch * 2 shrink
150 % stretch * 3 shrink * 2
90 % stretch * 9 shrink * 10
80 % stretch * 8 shrink * 10
70 % stretch * 7 shrink * 10
60 % stretch * 6 shrink * 10
50 % stretch shrink * 2
25 % stretch shrink * 4

Figure 42: The Layout Parameter Box
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5.7 Layout Parameters

After the selection of the menu item Layout, a dialog box appears (see �g. 42). Here, we can
select the way and whether edge labels are drawn, the orientation of the graph (see attribute
orientation), the crossing reduction method (barycenter weights if the degree of the nodes
is high, mediancenter weights if the degree is small, or one of the hybrid methods barymedian
or medianbary; the crossing reduction phase 2 or the local optimization phase can also be
switched on or o�), the node alignment (see attribute node_alignment), the mode for the
arrow heads (see attribute port_sharing and arrow_mode) and the layout algorithm. The
attribute late_edge_labels corresponds to the selection of the point \Adding labels ... after
partitioning". Further, we have access to all layout factors by some scrollbars: for instance,
if the graph is too dense, we set xspace and yspace, if splines are too sharp, we reduce
the spline factor and increase xlspace, if the layout iteration phases run into timeouts, we
increase the maximal number of iterations, etc.

The layout parameters become valid, if the dialog box is closed by selecting the \Okay"
button. This yield a relayout of the graph. On button \Cancel", the old parameters remain
valid.

Figure 43: Normal Flat View
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5.8 View Parameters

After the layout, we have a view onto the graph. The \view" is the way how the graph
appears: Normally, it appears in the window that realizes a 
at coordinate system with linear
scale (see �g. 43). Unfortunately, large graphs do not �t well into a small window such that
the normal view either shows the full graph demagni�ed such that no details are visible, or it
shows a small region in an appropriate magni�cation such that the node labels are readable.
But then, only a part of the graph is visible and the structure of the whole graph and the
relations between this part and the remaining graph is not recognizable.

The idea of a solution of this con
ict is to distort the coordinate system. The main point
of interest is the focus point. It is magni�ed such that its label is readable. Parts far away
from the focus point are demagni�ed. Thus, the whole graph or at least a very large part is
visible.

Figure 44: Polar Fisheye View

This mechanism has similarities with the �sheye camera lenses in the photography. The
polar �sheye view (�g. 44) is a coordinate transformation where the plane of the normal
coordinate system is projected onto a spheric ball. If we look onto this ball in 3 D, we have
a polar �sheye view. The point most near to us looks very large; it is the focus point. It
appears in the magni�cation that is currently valid due to the right scrollbar setting or one
of the scaling operations. Points near the border of the visible half of the ball are shown
very small. A polar �sheye view has also disadvantages: it distorts the graph, thus distances
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between the nodes, angles between the edge segments, and even straightness of lines are not
anymore recognizable. Since the drawing of lines is optimized, it may even happen that we
see a crossing of lines when there is no crossing in the plane view. But these cases are very
seldom.

Figure 45: Cartesian Fisheye View

The cartesian �sheye view (�g. 45) is a similar projection. The polar �sheye is a transfor-
mation of the polar coordinate system, while the cartesian �sheye is a transformation of the
cartesian coordinate system. The advantage is: in a polar view, horizontal and vertical lines
do not appear orthogonal, they seem to be bend. In a cartesian view, they are still drawn as
parallel horizontal and vertical lines. Since important forms of nodes and also the orthogonal
layout (see attribute manhattan_edges) contain many orthogonal lines, this improves the
readability.

The browsing through a �sheye view is the moving of the focus point. This can be done
by the command Pick Position and the various other positioning operations that allow to
set the origin in the 
at view. We have two di�erent modes for �sheye views:

Self adaptable �sheyes The whole graph is visible The distortion scale of the �sheye is
automatically adapted to the actual �sheye, such that the graph just �ts into the win-
dow. The position where the focus point appears in the window is calculated from the
position of the focus point in the graph, i.e., e.g., if the focus is set to the upper left
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Figure 46: The View Parameter Box

corner of the graph, it will also appear in the upper left corner of the window. This
helps to keep the orientation when browsing through the graph.

Fisheyes with a �xed radius If the graph is even too large for a self adaptable �sheye,
this mode may be useful. Here, not the whole graph is visible but only a region of a
�xed radius around the focus point. In this case, the focus point is always centered in
the graph window.

The view parameters can be selected by a dialog box (�g. 46). Here, not only the mode
of the �sheye can be chosen, but also whether edges or nodes generally should appear, or
whether splines should be used to draw edges.

5.9 File Operations

There is a submenu with the following items:

� Save to File writes the graph with all calculated layout parameters into a �le. The
result is a valid GDL speci�cation that can be read by the VCG tool.

� Export Part: after selecting a region to be exported, an image is saved in monochro-
matic PBM-P4 format, colored PPM-P6 format, or PostScript. For PostScript, multiple
page output up to 25 pages is possible, too. Note: if we use splines, it is only possible
to export the whole graph.

� Export Graph: The whole graph is exported, just similar as above.

� Load: a new GDL-�le is read and the described graph is displayed.

� Reload: the actual GDL-�le is read again and the described graph is displayed. This
does not work if the actual �le is <stdin>.

To export an image, it is useful �rst to shrink the graph to a size that the part to export
is completely visible. With a rectangular rubberband, this part is selected. Hint: If a corner
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of the part is too close to the corner of the window, it is more comfortable to open the
rubberband at the opposite corner and to draw it over to corner of the window. The selection
by rubberband is not necessary, if the whole graph is exported.

Figure 47: The Export Box

Now, a dialog box is opened that allows to select the format, scaling, size and position of
the image (see �gure 47). Basically, this export mechanism is designed to create �les that can
be printed. PBM and PPM are bitmap formats that often create rather large �les. (Example:
A din A4 page at 300 dpi needs in PBM format nearly 1 MB, and in PPM about 24 MB.)
However, there are many printer drivers for PBM and PPM format in the world. PBM is a
monochromatic format (b&w) and PPM is a color format. PostScript is an image description
language that can be used to create colored images, grey scaled images and monochromatic
images. PostScript images can be split into many pages, such that it is possible to dispatch
a very large graph onto several pages, in order to avoid that the labels of nodes becomes
unreadable small.

After selecting the format, the paper size and orientation, and perhaps the number of
PostScript pages, the size and position of the images must be selected. For the bitmap
formats, the dpi-factor of the printer must be selected �rst, because the size depend on this
factor. The factors x-dpi and y-dpi are independent of each other, such that it is possible
to distort the images with these factors. This is necessary for printing with the usual 9-dot
printers, which often have di�erent horizontal and vertical resolutions. Next, we prefer to
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select the buttons \Scaling: 100%" if the image should be normal size, or \Maxspect", if
the image should be maximal large. The scrollbars \Scaling", \Width" and \Height" are
combined scrollbars. Changing one of them in
uences the others, to preserve the aspect ratio.
The image is maximal wide, if the scrollthumb is at the right side of the bar labeled with
\Width", and maximal heigh, if the scrollthumb is at the right side of the bar labeled with
\Height".

To position the image on the paper, we move the small rectangular that has diagonals
within the panner, or select one of the buttons \Center", \Center width" and \Center height".
On PostScript multipage output, the position cannot be changed.

5.10 The File Selector Box

On all �le operation, a �le selector box appears to help the selection of a �le name (see
�gure 48). Additionally to the �le name, a �le info is shown that may be the size of the �le,
the access mode, the creation date, the owner or the group. The �le entries in the box can
be sorted by names, or by this �le info, and can be preselected by di�erent name extensions
like *.vcg, *.ps etc. The directories are always shown as �le entries, where `.' indicates the
actual directory and `..' indicates the parent directory. To switch into a directory, a double
mouse click on the corresponding entry is necessary. Alternately, a path can be speci�ed,
which becomes valid if the button \Rescan" is selected to reread the �le name entries.

Figure 48: The File Selector Box
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To scroll through the list of �le name entries, a scrollbar and the buttons \next" and
\prev" are available. An entry is selected as �le name on a double mouse click on it. The
�le name becomes valid if the dialog box is closed by the button \Okay". Note that the �le
selector box is immediately reopened, if the �le name was not appropriate, e.g., if we try to
read a nonexisting �le or to write to an existing �le.

normal commands

q quit the tool
r show or hide the ruler
f load another �le
g reload the same �le
l change layout
v change view

1 : : :9 hide/expose the corresponding edge class
i show the info �eld 1 of nodes
I show the info �eld 2 of nodes
j show the info �eld 3 of nodes

position commands

a
d (arrow keys) c scroll to the left/right/up/down

b
o go to the origin (0,0)
P enter a position by coordinates
p pick a position by the mouse
n position such that a node is centered
e follow an edge

scaling commands

+ or = stretch
- or shrink
0 (null) set the scale factor to normal

Table 8: Key Commands in the Graph Window

5.11 Animations

On some computer systems, there is a simple possibility to implement animations: The
signal USRSIG1 (on SunOs: UNIX software signal 30, e.g., kill -30) causes the tool to
reload the actual GDL-�le. An engine (or some other program) can continuously produce
GDL-speci�cations into a �le while VCG visualizes in parallel according to this �le. When
the engine has produced one instance of output, it sends the signal USRSIG1 to the tool.
The tool then displays the new instance of the graph. Depending on the option used to start
VCG, the tool indicates the completion of the visualization of a reload by touching its input
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l switch edge labels on or o�
d switch dirty edge labels on or o�
s set slow and nice layout
n set normal layout
m set medium layout
f set fast and ugly layout
o optimze crossing phase 2
1 set top to bottom orientation
2 set bottom to top orientation
3 set left to right orientation
4 set right to left orientation
7 set node alignment to top
8 set node alignment to center
9 set node alignment to bottom

RETURN quit the dialog box
ESC cancel the dialog box

Table 9: Key Commands in the Layout Dialog Box

v select normal view
c select cartesian view
p select polar view
e switch edges on or o�
n switch nodes on or o�
s switch splines on or o�
f switch �xed radius on of o�

RETURN quit the dialog box
ESC cancel the dialog box

Table 10: Key Commands in the View Dialog Box

�le to create a new time stamp, or by sending signal USRSIG1 to the caller. The signal
USRSIG2 (on SunOs: UNIX software signal 31) causes the tool to close its main window.
It is recommended to use this simple animation mechanism only if the engine produces a
GDL-description with �xed layout (i.e. all nodes have attributes loc).

5.12 Keyboard Commands

The most used commands are available on key press. Which commands are available depends
on the window/dialog box that is currently open. If it is not ambiguous, the uppercase and
lowercase keys have the same functionality. Only the pairs I/i and P/p must be distinguished



5 USAGE OF THE VCG TOOL 63

1 switch edge class 1 on or o�
2 switch edge class 2 on or o�
3 switch edge class 3 on or o�
4 switch edge class 4 on or o�
5 switch edge class 5 on or o�
6 switch edge class 6 on or o�
7 switch edge class 7 on or o�
8 switch edge class 8 on or o�
9 switch edge class 9 on or o�

RETURN quit the dialog box
ESC cancel the dialog box

Table 11: Key Commands in the Edge Class Selection Dialog Box

1 PBM output format
2 PPM output format
3 PostScript output format
f full color
g greyscale
b black and white
l orientation: landscape
p orientation: portrait
s scaling: 100 %
m scaling: maxspect
c center the position
q quit the dialog box

RETURN quit the dialog box
ESC cancel the dialog box

Table 12: Key Commands in the Export Dialog Box

on the graph window. During the selection of nodes, all key commands are switched o� except
q, a, b, c, d (arrows), o, +, - and 0. See the tables 8, 9, 10, 11, 12, 13, and 14.

5.13 Speedup the Layout

The VCG tool was designed to explore large graphs. However, the layout of large graphs
needs a lot of time. Thus, there are many possibilities to speedup the layout algorithm: the
graph can be folded, iterations can be limited, and time limits can be speci�ed.

The �rst step to visualize a large graph is to select the parts of the graph that are currently
not of interest. We specify these parts as initially folded. Folding makes the remaining visible
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s additional info: size
m additional info: mode
d additional info: date
o additional info: owner
g additional info: group
u order of entries: unsorted
b order of entries: sorted by name
i order of entries: sorted by info
a entry selection: all
v entry selection: *.vcg

- or p scroll entry list up
+ or n scroll entry list down

r rescan entry list
q quit the dialog box

RETURN quit the dialog box
ESC cancel the dialog box

Table 13: Key Commands in the File Selector Box

t show titles
l show labels
1 show info �elds 1
2 show info �elds 2
3 show info �elds 3
c show coordinates

- or p scroll entry list up
+ or n scroll entry list down

a apply current selection
q quit the dialog box

RETURN quit the dialog box
ESC cancel the dialog box

Table 14: Key Commands in the Title Selector Box and Follow Edge History Box

graph smaller, thus the layout can be calculated faster and the quality of the layout is better. It
is of course useful �rst to try the fast algorithms (dfs, minbackward, tree), then the medium
fast methods (normal, mindepth, maxdepth, : : :) before the slow methods (mindepthslow,
maxdepthslow).

If the VCG tool is still too slow, we must omit some phases or limit the iteration factors.
This decreases the quality of the layout: the picture will be more ugly. First, we should try
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to skip the crossing reduction phase 2 (option -nocopt2, attribute crossing_phase2). It
probably takes the most time, which we can recognize if the message character `B' appears
a long time. Next, we should try to limit the iterations for the crossing reduction (option
-cmax, attribute cmax) or try to select another crossing weight (option -bary, etc., attribute
crossing_weight). Normally, it is not necessary to switch o� the local crossing optimization,
because this step is very fast and e�ective.

If the graph is very unbalanced, then the pendulum method probably needs a lot of time.
We can recognize this if the message character `m' appears a long time. In this case, we
limit the iterations for the crossing reduction (option -pmax, attribute pmax). If the message
character `S' does not disappear immediately after the pendulum method, then we limit the
straight line �ne tuning phase instead (option -smax, attribute smax).

The other parameters normally need not to be changed, because the corresponding phases
are very fast. In particular, bending reduction improves the layout quality much and is so
fast, such that the option -bmax is needed very seldom. Further, the fast mode (option -f)
should be avoided, because it reduces the iteration limits so much that the result is very ugly.
The drawing of splines is very slow. Thus it should be avoided on large graphs.

If we don't want to deal with the exact iteration limits, we can set a time limit (option
-timelimit). If the time limit is exceeded, the fastest possible mode for the actual iteration
phase is switched on. The time limit does not mean that the layout really needs so much time:
The layout may be faster, because the graph structure is very simple, but more often, it will
be slower, because even the fastest possible methods already exceed the time limit. The time
limit is only a hint for the VCG tool. Another problem: the time limit is real time, thus the
result of the layout with time limit depends on the load of the computer. Thus, given a time
limit, two identical trys need not to give identical results.

6 Experiences

Compiler graphs are usually a rather large network of interwoven graphs. Often, there is one
base graph and a lot of subgraphs that are annotations of the base graph. Not all aspects of a
compiler graph are of interest at the same time: either an overview of the graph is needed, or
some details are inspected. In the �rst case, the graph must be laid out completely and nice,
i.e. edges must be straight, nodes must be centered, etc. The user normally has shrunken
the graph very much. But in the �rst case, not all nodes must be drawn, large parts like
annotations can be folded, because only the main structure is of interest. In the second case,
the readability of the complete layout is not important. The layout may be ugly, but the user
only looks at small regions, and has stretched the graph to see the details. The VCG tool
provides reasonable facilities to support both situations, it can even combine both situations
using �sheye views. The layout algorithm can be controlled to be fast and ugly, or slow and
nice. Folding allows to reduce the number of information seen at the same time. If the user
looks at details, there are possibilities to �nd nodes and edges that are currently not in the
window. The user can in
uence the structure of the interwoven graphs by near edges, anchor
points and priorities. Nevertheless, visualization of large graphs is a di�cult task and needs
a lot of time.
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Table 15 shows the performance of the VCG tool on a Sun Sparc ELC. The \Time for
Loading" includes the start of the tool, loading of the speci�cation, automatical layout and
drawing. The measurements are done by hand. The speed is reasonable.

The examples are:

� Graph 1 shows a LR deterministic automaton produced by the TrafoLa parser generator
(see [HeSa93]).

� Graph 2 is a larger LR deterministic automaton.

� Graph 3 is an all graph, i.e. all nodes are connected pairwise.

� Tree 1 is a syntax tree of a CLaX program (normal layout, not specialized tree layout).

� Tree 2 is a syntax tree with annotations (normal layout, not specialized tree layout).

� Tree 3 is a large syntax tree with annotations (normal layout, not specialized tree
layout).

� Tree 4 is a binary tree of level 12 (normal layout, not specialized tree layout).

Example jNodesj jEdgesj Time for Loading (sec.) Time for Positioning (sec.)

Graph 1 12 35 3 1
Graph 2 131 287 9 *
Graph 3 20 190 22 1.5
Tree 1 154 153 2.5 *
Tree 2 614 613 10 4
Tree 3 2763 2762 24 3
Tree 4 4095 4094 30 *

Table 15: Statistics: Times for Loading and Positioning
* means \not measurable", i.e. less than 1 sec.

7 Related Work

During the work in the project Compare, we tested some visualization tools and algorithms.
Each of these tools has certain advantages and disadvantages, but none of these tools combined
speed on large graphs with an appropriate folding mechanism. Nevertheless, these excellent
tools gave us many inspirations.

We mentioned already the Edge tool (see [PaTi90], [MaPa91]), that has the most common
features with theVCG tool. Another visualization tool that works similar than theVCG tool
or the Edge tool is daVinci (see [FrWe93]). This X11 tool reads a speci�cation of a graph
written in the style of a functional language. The DAG tool and the DOT tool are described
in [GNV88], [GKNV93] and [KoEl91]. They allow the production of high quality graphs
for printing. The GraphEd (see [Hi93]) is a graph editor that includes a large collection of
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algorithm to create, analyze and lay out graphs interactively. D-ABDUCTOR is described
in [Mis94]. This tool is very powerful for the visualization of compound graphs.

8 Conclusions

VCG is a tool that allows to visualize complex graphs in a compact way and in good per-
formance. It can be used to show the compiler functionality to prepare presentations and to
help on compiler debugging. The GDL speci�cation language of the tool is general such that
the tool can be adapted to many applications.

The tool is intended to be used in combination with a program system that produces
graphs. It is not an interactive graph editor. The algorithms to lay out the graph are rather
simple and use heuristics, but they are very fast. Thus, the visualization of a graph may di�er
from the intuition, but these cases were seldom in our experiences. The layout algorithms can
still be improved (see [BET94]). Usually, the readability of large graphs is improved by the
layout algorithm. We believe that the tool is a good compromise between performance and
legibility of the visualization.

There is a mailing list vcg-users@cs.uni-sb.de that distributes mail to all users of the VCG

tool. If you want to be added to this list, please send a request to sander@cs.uni-sb.de. Then, you

will be informed about bugs and new versions of the tool.
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9-dot printer, 59

acyclic, 8, 18, 37, 45
alert, 29
alignment, 20
anchor, 28, 32
anchor point, 11, 26
animation, 61
annotation, 5, 18
aquamarine, 13, 28
arrow color, 26
arrow head, 20, 26
arrow mode, 20
arrow size, 26
arrow style, 26
attribute, 11, 12
attribute order, 12
attribute value, 12
attribute value, default, 12, 45

backarrow color, 26
backarrow size, 26
backarrow style, 26
backedge, 11, 31, 35
background color, 13, 24
backspace, 29
bary, 21, 65
barycenter, 9, 21, 55
barymedian, 9, 21, 55
beep, 29
bend point, 10, 12
bending reduction, 22, 65
bentnearedge, 12, 32, 35
bitmap, 5, 11, 59
black, 13, 28
blue, 13, 28
bmax, 22
bold, 28
bordercolor, 16, 24
borderwidth, 16, 24
bottom, 20
bottom to top, 20

bottom up, 11
box, 16, 24

C escape, 13
call graph, 4
cartesian �sheye, 21, 57
center, 20, 60
center height, 60
center node, 52
center width, 60
c�sh, 21
character set, 29
class, 5, 6, 17, 24, 26, 50, 51
class name, 18, 51
CLaX, 4, 33
cmax, 22, 65
cmin, 21
color, 13, 24, 26, 28, 30
color entry, 18, 28
color index, 28
color map, 13, 18, 28
comment, 13, 26
compiler, 4
connected component, 9, 26
continuous, 26
control character, 13, 29
control 
ow graph, 4, 33
coordinate, 7, 10
coordinate system, 16, 51, 56
coordinate transformation, 21, 56
crossing, 9
crossing optimization, 21
crossing phase1, 9
crossing phase2, 9, 21, 55, 65
crossing reduction, 9, 21, 65
crossing reduction method, 55
crossing weight, 9, 21, 65
cyan, 13, 28
cycle, 8, 11, 31, 35, 37

D-ABDUCTOR, 67
DAG tool, 66
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darkblue, 13, 28
darkcyan, 13, 28
darkgreen, 13, 28
darkgrey, 13, 28
darkmagenta, 13, 28
darkred, 13, 28
darkyellow, 13, 28
dashed, 26
data dependence graph, 4
daVinci tool, 66
default attribute value, 12, 45
depth �rst search, 8, 18
dfs, 8, 18, 39, 64
dirty edge labels, 19
display edge labels, 19
displayed window, 16, 49
DOT tool, 66
dotted, 26
downfactor, 18, 36, 45
downward laid out tree, 8, 18, 24, 43
dummy node, 9, 17

edge, 11, 25
edge attribute, 25
edge class, 5, 6, 17, 24, 26, 50, 51
edge color, 26
edge label, 19, 25, 33, 55
edge label color, 26
edge priority, 8, 26
edge thickness, 26
Edge tool, 4, 66
edges, 21, 58
ellipse, 16, 24
export graph, 58
export part, 58
expose edges, 51

fast mode, 65
fc�sh, 21
�le info, 60
�le selector box, 60
�ne tuning phase, 9, 19, 37, 38
�sheye, 21, 56
�sheye with �xed radius, 21, 58

�sheye, self adaptable, 21, 58
�xed, 20

oat, 13

owchart, 36
focus point, 21, 57
fold region, 6, 7, 24, 50, 51
fold subgraph, 5, 50
foldedge, 13
folding, 5, 12, 16, 24, 50, 63
foldnode, 13, 24
follow edge, 52
follow edge history, 53
formfeed, 29
free, 20

GDL, 4, 11, 26
gold, 13, 28
grammar of GDL, 26
graph, 11, 13
graph attribute, 13
graph description language, 4, 11
graph label, 13
graph title, 13
graph window, 48
GraphEd, 67
green, 13, 28
GRL, 11

height, 16, 24, 60
help explanation, 48
hidden, 5, 17
hide edges, 5, 6, 50, 51
hide region, 5
horizontal order, 16, 23, 26, 44, 53

ignore singles, 19
info name, 18
info1, 13, 24, 53
info2, 13, 24, 53
info3, 13, 24, 53
input �le, 48
integer, 13
intermediate representation, 4
invisible, 5, 18, 26, 44
IR, 4
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iteration, 9, 55, 65

keyboard command, 62
khaki, 13, 28

label, 13, 19, 22, 25, 33, 53
late edge labels, 19, 55
layout algorithm, 5, 18, 37
layout attribute, 53
layout criteria, 4
layout factors, 55
layout parameter, 55
layout phase, 5
layout spline factor, 21
layoutdownfactor, 18, 36, 45
layoutnearfactor, 18, 36, 45
layoutupfactor, 18, 36, 45
left justify, 16, 24
left to right, 20
level, 7, 10, 16, 23, 26, 30, 37, 53
lightblue, 13, 28
lightcyan, 13, 28
lightgreen, 13, 28
lightgrey, 13, 28
lightmagenta, 13, 28
lightred, 13, 28
lightyellow, 13, 28
lilac, 13, 28
line, 26
line style, 18, 26
load, 58
loc, 16, 23, 62
local crossing optimization, 9, 21, 55, 65

magenta, 13, 28
manhattan edges, 19, 36, 43
manhattan layout, 19, 20
manual page, 48
maxdegree, 8, 18, 40
maxdepth, 8, 18, 38, 64
maxdepthslow, 8, 18, 37, 39, 64
maxindegree, 8, 18, 42
maxoutdegree, 8, 18, 37, 41
maxspect, 60
median, 21

medianbary, 9, 21, 55
mediancenter, 9, 21, 55
message character, 5, 7, 9{11, 65
minbackward, 8, 18, 37, 38, 45, 64
mindegree, 8, 18, 37, 41
mindepth, 8, 18, 39, 64
mindepthslow, 8, 18, 37, 40, 64
minindegree, 8, 18, 41
minoutdegree, 8, 18, 42
mouse button, 48
mouse click, 13, 24, 48
multipage, 60
multiple input �les, 48

nearedge, 11, 20, 28, 30, 31
nearfactor, 18, 36, 45
nested graph, 5
newline, 29
node, 11, 22
node alignment, 20
node attribute, 22
node information, 53
node label, 22, 33, 53
node title, 22
nodes, 21, 58
none, 26
number of crossings, 53
number of edges, 53
number of nodes, 53

orange, 13, 28
orchid, 13, 28
orientation, 20, 55, 59
orthogonal layout, 10, 19, 20, 36, 57
outermost graph, 22

panner, 60
paper format, 59
paper size, 59
parsing, 5
PBM format, 59
pendulum method, 10, 19, 22, 65
pick position, 52, 57
pink, 13, 28
pmax, 22, 65
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pmin, 22
polar �sheye, 21, 56
polygon segment, 10
port sharing, 20
position, 52
positioning, 49, 51
PostScript, 5, 11, 59
PPM format, 59
priority, 8, 26, 44
priority phase, 19
pull down menu, 48
purple, 13, 28

rank, 7, 16, 20, 23, 44
red, 13, 28
redraw, 49
refresh, 49
region, 6, 12, 24, 51
reload, 58
replacement edge, 13
rescan, 60
rhomb, 16, 24
right justify, 16, 24
right to left, 20
rmax, 22
rmin, 22
root screen, 16
rubberband, 52, 58
rubberband method, 10, 22, 43
ruler, 53

save to �le, 58
scaling, 16, 24, 49, 53, 60
scrollbar, 48, 51
scrolling, 49, 51
self adaptable �sheye, 21, 58
shape, 16, 24, 35
shrink, 16, 24, 53
single nodes, 19
smanhattan edges, 20, 43
smax, 22, 65
solid, 26
sourcename, 25
spanning tree, 7, 40

speci�cation, 5
speedup, 63
spline, 10, 21, 45, 58, 65
spline factor, 21
spread level, 20
statistics, 53
stdin, 48
straight line phase, 10, 19, 22, 65
straight phase, 19
stretch, 16, 24, 53
string, 13
strongly connected component, 7, 18
subgraph, 5, 11, 50
summary node, 5, 6, 12, 24, 50
syntax tree, 4

tabular, 29
targetname, 25
textcolor, 13, 24, 26
textmode, 16, 24
thickness, 26
time limit, 65
timeout, 10
title, 13, 22
top, 20
top down, 11
top to bottom, 20, 28
tree, 8, 18, 20, 37, 43, 64
tree factor, 20, 43
triangle, 16, 24
turquoise, 13, 28

underline, 28
unfold region, 51
unfold subgraph, 50
UNIX software signal, 61
upfactor, 18, 36, 45
usage, 48
USRSIG1, 61
USRSIG2, 61

VCG tool, 4
vertical order, 16, 23, 44, 53
view, 21, 56
virtual window, 16, 49
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white, 13, 28
width, 16, 24, 60
window, 16

x dpi, 59
x position, 16
X11 window, 48
xbase, 17
xlraster, 17
xlspace, 10, 17
xmax, 16
xraster, 17
xspace, 10, 17

y dpi, 59
y position, 16
ybase, 17
yellow, 13, 28
yellowgreen, 13, 28
ymax, 16
yraster, 17
yspace, 10, 17


