spize.flores User Manual

flores V 4.0
date Sep-2011

1 Introduction

The flores library implements classes that are helpful for virtually every C++ project.

It's origin is in the 1990-ies; that explains that there is a String class - since at that time
there was no STL string available (at least not on Sun Solaris).

And it explains that flores has it's own test framework (nowadays one would use google
gtest ...)

1.1 package Overview

flores contains the following packages (e.g. namespaces) :

flores::diagnostics
flores:: lang
flores:: net
flores:: io

flores:: util

1.2 Design

Version 4 (2011) was completely revamped to make the library more Java like
* Class names and methods are the same as in Java (wherever applicable)

» We like the class import clause in java, so we crated an include directory structure to
mimick import syntax :
#include <flores/net/Socket.h> looks close to
import java.net.Socket :-)

* We like the ability of Java IDE's to structure the file list as a tree - sorted by package.
To achieve this in a C++ IDE like MSVC, source filenames include their package (e.g.
namespace)
the file-list in the IDE then looks as follows

flores.net.ServerSocket
flores.net.Socket

flores.util.CTime

© spize.cc

spize.flores User Manual

1.3 Supported Compilers

e Windows : Visual Studio 2008 and later

e Linux : gcc V3 and later

1.4 Supported Operating systems

e \Windows 32 bit

e Linux / Unix

1.5 License

flores is is open source and freely available under Apache License 2.0
(www.apache.org/licenses/LICENSE-2.0)

Contributor(s) :
CTS is open source and freely available under Eclipse Public License 1.0.

1.6 More Information

Class Reference Guide (created with DoxyGen)
Tests : can be regarded as learning tests :-)
Examples

1.7 Disclaimer

This documentation is work in progress !

2 Setup

Unzip the distribution to any directory.
Example : let's assume you 'installed’ flores in "X:\development\libraries\flores'

This directory will from now on be referred to as the flores-root

2.1 Sources

add all cts* sources from flores-root\contrib\cts
add all flores sources from flores-root\src
optional : if you want to test flores

add tests from flores-root\test\src

2.2 Project Settings

© spize.cc

spize.flores User Manual

flores is not written as managed code (otherwise it won't run on Linux), so make sure you
create an WIN32 (‘'umanaged code') project.

* WINS2

Define this when compiling on WIN32
X> Is usually pre-defined by the Windows IDE

e FLORES_EXPORT__
define this when you want to create a DLL from the flores sources.

2.2.1 additional include directories

add the following directories to the include path :
flores-root/include
flores-root/include/cts

optional : if you want to test flores, add :
flores-root/test/include

2.2.2 character set (windows only)

General
Project Defaults
Character set
use MULTI BYTE character set

2.2.3 required libraries

* On UNIX, add libraries rt and pthread

* On Windows, using Visual C++, make sure you add the library WS2_32.lib (winsock
version 2).
X> This library is only required when you use classes from flores.net

2.2.4 optional libraries

* flores.net.ReadWriteTest
this test uses the JTC (Java Threads for C) library.
If you want to run it, you need to :

a) add JTC sources (available from
ftp.dreamtime.org/pub/programming/c++/orbacus-jtc/2.0/) to your project
b) define _ FLORES_HAVE JTC _
c) add the directory "above' the JTC installation directory to the include path.
Example : let's assume you ‘installed’ JTC in "X:\development\libraries\JTC', then add
"X:\development\libraries' to the include path.

© spize.cc

spize.flores User Manual

3 net package

3.1 Overview

Some sections of a client- or server program using the socket API can be difficult to
understand for novice socket programmers.

In addition, these sections are often repetitive , e.g. they are copied and pasted from one
application to the next.

In addition, support for TELNET clients raises some subtle issues. Yes you are reading
right : TELNET !

Reason : Students proudly finish their first Client-Server project, alas, at runtime it won't
behave as expected. Who is the culprit - the Client or the Server ? To answer this
question, students are advised to use TELNET as a Client : If the behaviour is still not as
expected - it's the Server's fault ...

Last not least, (only) on the Windows platform, the socket DLL must be initialized
properly.

3.2 Server Example

A simple Echo Server.

X> notall lines of code are shown.

X> full source code can be found in the examples directory of the source code distribution

/**

** file : EchoServer.cpp
** description : minimalistic implementation - terminates after
*x satisfying the first request.

** Conclusion : not very useful, just for demonstration.
**/

int main()
{
flores::net::Socket* pSocket;
char line [MAXLINE];
int lineLen;
unsigned short port = ECHO_PORT;
flores::net::ServerSocket SS;

if (! ss.bind (port))
return 1;

pSocket = ss.accept ();
bzero (line, sizeof line);
lineLen = pSocket->read (line, sizeof line);

pSocket->write (line, lineLen);

© spize.cc

spize.flores

User Manual

delete (pSocket);
return O;

© spize.cc

spize.flores User Manual

3.3 Client Example
A simple Echo Client

X> notall lines of code are shown.

X> full source code can be found in the examples directory of the source code distribution

int main(int argc, char * argv[])

{
unsigned short port = ECHO_PORT;
char servername [80];
char inBuff [MAXLINE];
char outBuff [] = "hello";
flores::net::Socket sock;
if (! sock.connect (servername, port))

return 1;
if (sock.write (outBuff, strlen(outBuff)) == -1)

return 2;
if (sock.read (inBuff, sizeof inBuff) < 0)

return 3;
return 0;

}

3.4 EOL

End of Line indicators vary netween operating systems and applications ...
* <CR><LF> : Windows style
* <LF> - UNIX style

<LF>isusedby: TELNET

SMTP, HTTP, ...
Java Network Applications

* \0' may be used by an Application implemented in C/C++, sending strings wich
already contain a terminating Null

The Socket.readLine() method checks for all these EOL indicators.

4 util package

© spize.cc

spize.flores User Manual

4.1 Properties class

Eases the task of reading and writing INI files.
Without this class one would have to write code like this, which is not very convenient ...

char key []="Nickname";
char value [80] = {\0' };

int valueLen = GetPrivateProfileString (

"Client" I section

key Il key

/I Default,

,value /I ReturnedsString,
,Sizeof(value) I/ Size of ReturnedString

;"\ChatClient.ini"); /I INI File Name

if (valueLen ==0)
cout << "INI file or section or key not found!" << endl;
else cout << "value of key " << key << " is " << value << end|;

}

5 dsl package

Provides a (Generic) LexicalAnlyzer and implementations for C++ and LegalNumbering.

We are aware that nowadays one would use frameworks like antlr (for Java) etc., yet we
maintain these classes - maybe out of 'nostalghia’ :-)

6 Throwables and Test support

6.1 Design

Design of Throwables is inspired by the concept of preconditions and postconditions (B.
Meyer).
flores classes implement preconditions and postconditions.

6.2 Classes

flores::lang:: Throwable is the parent for all throwables.

Throwable has two direct subclasses :

Slip : When a precondition is violated, a Slip is thrown (because you, the user, did
something wrong, e.g. you slipped).

Panic : When a Postcondition is violated, a Panic is thrown (because we, the developers,
did something wrong).

Creating an application-specific set of expressive Slips and Panics is good practice (as in
Java).

© spize.cc

spize.flores User Manual

* Available Slips

lang::NumberFormatSlip
lang::1llegal ArgumentSlip
lang::ArrayIndexOutOfBoundsSlip
10::FileExistSlip

¢ Available Panics

lang::BufferTooSmallPanic
lang::OutOfMemoryPanic
10::FileOpenPanic
io::FileCreatePanic
io::FileRenamePanic
io::FileDeletePanic
net::CannotCreateSocketPanic
net::ProtocolPanic

6.3 macros for Testers

* assertTrue (condition)

* assertFalse (condition)

* assertSlipped (method-call)

Verify that we violated a precodition, for example by calling a method with invalid
argument(s)

Example : assertSlipped(myBank.withdrawal (100000000));

6.4 class for Testers

* Statistician
call Statistician.begin (<TestName>) at the start of your test and and
Statistician.end (<TestName>), and Statistician will log an passed or failed message.

X> In afuture release of flores, Statistician will count the number of passed and failed asserts.

6.5 Example

void main ()
{
Statistician::begin ("BankAccount");
double initialBalance = 100.0; double amount = 50.0;

BankAccount ba (initialBalance);
ba.withdrawal (amount);
assertTrue (ba.getBalance() == initialBalance - amount);

© spize.cc

spize.flores User Manual

ba.deposit(amount);
assertTrue (ba.getBalance() == initialBalance);

initialBalance = 50.0; too_much = 100.0;
BankAccount ca (initialBalance);
assertSlipped (ca.withdrawal (too_much));

assertSlipped (ca.deposit (- amount));

Statistician::end ("BankAccount");

}
6.6 Example output

INFO ==== Test for BankAccount begins

FINE line 30 :ok: assert True (ba.getBalance() == initialBalance - amount)
FINE line 33 :ok: assert True (ba.getBalance() == initialBalance)
FINE Insufficient funds in account 2

Balance was 50.

Withdrawal was 100.
FINE line 44 ok: assert Slip (ca.withdrawal(amount))
FINE >amount > 0< l:\flores\examples\diagnostics\bankaccount.cpp # 48
FINE line 47 :ok: assert Slip (ca.deposit(-amount))

INFO ==== Test for BankAccount ok

6.7 macros for developers

* require (condition)
If the requirement is not met, this macro throws a Slip.
nB : require is a keyword in Eiffel (the language created by B. Meyer)
[Example

void BankAccount::deposit (double amount)

{
require (amount > 0)
balance += amount;

* ensure (condition)
If the condition is false, this macro throws a Panic.
nB : ensure is a keyword in Eiffel (the language created by B. Meyer)

Example

void String::insert (const String s, int pos)

{

ensure (isConsistent())

* [i]raise
If you want to throw a sub-class of Slip or Panic, you could use throw.

However, using the macros

© spize.cc

spize.flores User Manual

raise (ThrowableClassName, message) or
iraise (Throwablelnstance)
has advantages :

[i]raise stores additional information (Filename, line-number) where the Slip or Panic was
thrown.

© spize.cc

