
8.0
Building Vision for BusinessMVTec Software GmbH

HDevelop User's Guide

HDevelop, the interactive development environment of HALCON, Version 8.0.4

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without prior written permission of the publisher.

Edition 1 July 1997
Edition 2 November 1997
Edition 3 March 1998 (HALCON 5.1)
Edition 4 April 1999 (HALCON 5.2)
Edition 5 October 2000 (HALCON 6.0)
Edition 6 June 2002 (HALCON 6.1)
Edition 6a December 2002 (HALCON 6.1.1)
Edition 7 December 2003 (HALCON 7.0)
Edition 7a July 2004 (HALCON 7.0.1)
Edition 8 July 2005 (HALCON 7.1)
Edition 8a April 2006 (HALCON 7.1.1)
Edition 8b December 2006 (HALCON 7.1.2)
Edition 9 June 2007 (HALCON 8.0)
Edition 9a October 2007 (HALCON 8.0.1)
Edition 9b April 2008 (HALCON 8.0.2)
Edition 9c March 2009 (HALCON 8.0.3)

Copyright c© 1997-2010 by MVTec Software GmbH, München, Germany MVTec Software GmbH

Microsoft, Windows, Windows NT, Windows 2000, Windows XP, Windows 2003, Windows Vista, and
Visual Basic are either trademarks or registered trademarks of Microsoft Corporation.

All other nationally and internationally recognized trademarks and tradenames are hereby recognized.

More information about HALCON can be found at:

http://www.halcon.com/

About This Manual

This manual is a guide to HDevelop, the interactive development environment for the HALCON machine
vision library. It provides all necessary information to understand HDevelop’s basic philosophy and to
use HDevelop.

This manual is intended for users who want to use HDevelop as a convenient gateway to the HALCON
library or who want to deploy and test machine vision applications with it. However, it is not an intro-
duction to the HALCON machine vision library. A working knowledge of the concepts of HALCON is
assumed. Please refer to the Quick Guide to become acquainted with HALCON.

This manual does not assume that you are an expert in image processing. Regardless of your skills, it is
quite easy to work with HDevelop. Nevertheless, it is helpful to have an idea about the functionality of
graphical user interfaces (GUI)1, and about some basic image processing aspects.

The manual is divided into the following chapters:

• Introducing HDevelop
This chapter explains the basic concepts of HDevelop.

• Getting Started
This chapter explains how to start HDevelop and provides a quick overview of the graphical user
interface.

• Running Example Programs
This chapter explains how to find and run example programs.

• Acquiring Images with HDevelop
This chapter explains the fundamental part of machine vision applications – how to acquire images.

• Programming HDevelop
This chapter explains the procedure of development in HDevelop.

• Graphical User Interface
This chapter explains the graphical user interface of HDevelop and how to interact with it.

• Matching Assistant
This chapter describes how to use the Matching Assistant for shape-based matching.

• HDevelop Language
This chapter explains syntax and semantics of the language used in HDevelop programs.

1consult your operating system’s documentation for general information.

• Code Export
This chapter explains the export of a HDevelop program to C, C++, Visual Basic, Visual Basic
.NET, or C#.

• Tips & Tricks
This chapter describes keycodes, warning and error windows, and restrictions.

Contents

1 Introducing HDevelop 9
1.1 Facts about HDevelop . 10
1.2 HDevelop Procedures . 10
1.3 Parallel HDevelop . 11
1.4 Terminology & Usage . 11

2 Getting Started 13

3 Running Example Programs 17

4 Acquiring Images with HDevelop 21
4.1 Reading Images From Files . 21
4.2 Viewing Images . 22
4.3 Image Acquisition Assistant . 23

4.3.1 Acquiring Images From Files or Directories . 23
4.3.2 Acquiring Images Through Image Acquisition Interfaces 25
4.3.3 Modifying the Generated Code . 29

5 Programming HDevelop 31
5.1 Start a New Program . 31
5.2 Enter an Operator . 32
5.3 Specify Parameters . 32
5.4 Getting Help . 33
5.5 Add Additional Program Lines . 34
5.6 Understanding the Image Display . 36
5.7 Inspecting Variables . 37
5.8 Improving the Threshold Using the Gray Histogram . 37
5.9 Edit Lines . 38
5.10 Re-Execute the Program . 39
5.11 Save the Program . 39
5.12 Selecting Regions Based on Features . 39
5.13 Looping Over the Results . 40
5.14 Summary . 42

6 Graphical User Interface 43
6.1 Main Window . 43

6.2 Menu Bar . 46
6.2.1 Menu File . 46
6.2.2 Menu Edit . 56
6.2.3 Menu Execute . 73
6.2.4 Menu Visualization . 78
6.2.5 Menu Procedures . 87
6.2.6 Menu Operators . 89
6.2.7 Menu Suggestions . 94
6.2.8 Menu Assistants . 95
6.2.9 Menu Window . 97
6.2.10 Menu Help . 99

6.3 Tool Bar . 101
6.4 Program Window . 102

6.4.1 The Program Area . 102
6.4.2 PC, IC, and Break Points . 104
6.4.3 Creating and Editing Procedures . 105

6.5 Operator Window . 113
6.5.1 Operator Name Field . 114
6.5.2 Parameter Display . 114
6.5.3 Control Buttons . 117

6.6 Variable Window . 117
6.6.1 Iconic Variables . 120
6.6.2 Control Variables . 122

6.7 Graphics Window . 124
6.8 Help Window . 127
6.9 Zoom Window . 131
6.10 Gray Histogram Window . 133
6.11 Feature Histogram Window . 137
6.12 Feature Inspection Window . 138
6.13 Dialogs . 140

6.13.1 File Selection Dialog . 140
6.13.2 Unsaved Changes . 141

7 Matching Assistant 143
7.1 Introducing the Matching Assistant of HDevelop . 143
7.2 How to Use the Matching Assistant of HDevelop . 144

7.2.1 Creating the Model . 144
7.2.2 Testing the Model . 144
7.2.3 Optimizing the Parameters . 145

7.3 Matching Assistant Reference . 146
7.3.1 The Menu File . 146
7.3.2 The Menu Create Model and the Tab Model Creation 148
7.3.3 The Menu Use Model and the Tab Model Use 158
7.3.4 The Menu and Tab Inspect . 165
7.3.5 The Menu and Tab Code Generation . 166
7.3.6 The Menu Help . 168

8 HDevelop Language 169
8.1 Basic Types of Parameters . 169
8.2 Control Types and Constants . 170
8.3 Variables . 172
8.4 Operations on Iconic Objects . 173
8.5 Expressions for Input Control Parameters . 173

8.5.1 General Features of Tuple Operations . 173
8.5.2 Assignment . 175
8.5.3 Basic Tuple Operations . 177
8.5.4 Tuple Creation . 178
8.5.5 Simple Arithmetic Operations . 180
8.5.6 Bit Operations . 181
8.5.7 String Operations . 181
8.5.8 Comparison Operations . 186
8.5.9 Boolean Operations . 187
8.5.10 Trigonometric Functions . 187
8.5.11 Exponential Functions . 188
8.5.12 Numerical Functions . 188
8.5.13 Miscellaneous Functions . 190
8.5.14 Operation Precedence . 191

8.6 Reserved Words . 191
8.7 Control Flow Operators . 192
8.8 Limitations . 197

9 Code Export 199
9.1 Code Generation for C++ . 199

9.1.1 Basic Steps . 200
9.1.2 Optimization . 201
9.1.3 Used Classes . 201
9.1.4 Limitations and Troubleshooting . 201

9.2 Code Generation for C# (HALCON/.NET) . 203
9.2.1 Basic Steps . 203
9.2.2 Program Structure . 204
9.2.3 Limitations and Troubleshooting . 205

9.3 Code Generation for C# (HALCON/COM) . 205
9.3.1 Basic Steps . 206
9.3.2 Program Structure . 206
9.3.3 Limitations and Troubleshooting . 207

9.4 Code Generation for Visual Basic .NET (HALCON/.NET) 208
9.4.1 Basic Steps . 208
9.4.2 Program Structure . 208
9.4.3 Limitations and Troubleshooting . 209

9.5 Code Generation for Visual Basic .NET (HALCON/COM) 210
9.5.1 Basic Steps . 210
9.5.2 Program Structure . 211
9.5.3 Limitations and Troubleshooting . 212

9.6 Code Generation for Visual Basic 6 (HALCON/COM) 213

9.6.1 Basic Steps . 213
9.6.2 Program Structure . 213
9.6.3 Limitations and Troubleshooting . 215

9.7 Code Generation for C . 215
9.7.1 Basic Steps . 215

9.8 General Aspects of Code Generation . 217
9.8.1 User-Defined Code Blocks . 217
9.8.2 Assignment . 217
9.8.3 ’for’ Loops . 218
9.8.4 Protected External Procedures . 218
9.8.5 System Parameters . 219
9.8.6 Graphics Windows . 219

10 Tips & Tricks 221
10.1 Keycodes . 221
10.2 Online Help . 221
10.3 Warning and Error Windows . 221

A Glossary 225

B Command Line Switches 227

Index 229

Introducing HDevelop 9

Chapter 1

Introducing HDevelop

HDevelop is a tool box for building machine vision applications. It facilitates rapid prototyping by
offering a highly interactive programming environment for developing and testing machine vision appli-
cations. Based on the HALCON library, it is a sophisticated machine vision package suitable for product
development, research, and education.

There are four basic ways to develop image analysis applications using HDevelop:

• Rapid prototyping in the interactive environment HDevelop.
You can use HDevelop to find the optimal operators or parameters to solve your image analysis
task, and then build the application using various programming languages, e.g., C, C++, C#, Visual
Basic .NET, or Delphi.

• Development of an application that runs within HDevelop.
Using HDevelop, you can also develop a complete image analysis application and run it within the
HDevelop environment.

• Execution of HDevelop programs or procedures using HDevEngine.
You can directly execute HDevelop programs or procedures from an application written in a pro-
gramming language using HDevEngine. This is described in detail in the Programmer’s Guide,
part VI on page 161.

• Export of an application as C, C++, Visual Basic, Visual Basic .NET, or C# source code.
Finally, you can export an application developed in HDevelop as C, C++ , Visual Basic, Visual
Basic .NET, or C# source code. This program can then be compiled and linked with the HALCON
library so that it runs as a stand-alone (console) application. Of course, you can also extend the
generated code or integrate it into existing software.

Let’s start with some facts describing the main characteristics of HDevelop.

In
tr

od
uc

tio
n

10 Introducing HDevelop

1.1 Facts about HDevelop

While developing programs, HDevelop actively supports the user in different ways:

2 With the graphical user interface of HDevelop, operators and iconic objects can be directly se-
lected, analyzed, and changed within one environment.

2 HDevelop suggests operators for specific tasks. In addition, a thematically structured operator
list helps you to find an appropriate operator quickly.

2 An integrated online help contains information about each HALCON operator, such as a detailed
description of the functionality, typical successor and predecessor operators, complexity of the
operator, error handling, and examples of application. In addition, the online help provides a
search facility that allows to search the complete documentation of HALCON.

2 HDevelop comprises a program interpreter with edit and debug functions. It supports standard
programming features, such as procedures, loops, or conditions. Parameters can be changed even
while the program is running.

2 HDevelop immediately displays the results of operations. You can try different operators and/or
parameters, and immediately see the effect on the screen. Moreover, you can preview the results
of an operator without changing the program.

2 Several graphical tools allow to examine iconic and control data online. For example, you can
extract shape and gray value features by simply clicking onto the objects in the graphics window,
or inspect the histogram of an image interactively and apply real-time segmentation to select
parameters.

2 Variables with an automatic garbage collection are used to manage iconic objects or control
values.

1.2 HDevelop Procedures

HDevelop offers a mechanism for the creation and execution of procedures. Procedures are meant to
increase the readability and modularity of HDevelop programs by encapsulating functionality of multiple
operator calls in one or more procedure calls. It also makes it easier to reuse program code in other
HDevelop programs by storing repeatedly used functionality in separate procedures.

A HDevelop procedure consists of an interface and a program body. Procedure interfaces resemble the
interfaces of HALCON operators, i.e. they contain parameter lists for iconic and control input and output
parameters. A procedure body contains a list of operator and procedure calls.

Every HDevelop program is made up of one or more procedures. It always contains the main procedure,
which has a special status inside the program, because it is always the top-most procedure in the calling
hierarchy and cannot be deleted from the program.

HDevelop offers all necessary mechanisms for creating, loading, deleting, copying, modifying, saving,
and exporting procedures. Once a procedure is created, it can basically be used like an operator: Calls to
the procedure can be added to any program body and be executed with the appropriate calling parameters.
Generally, the concept of using procedures inside HDevelop is an extension to the concept of calling

1.3 Parallel HDevelop 11

HALCON operators since procedure and operator interfaces have the same parameter categories and the
same rules apply for passing calling parameters.

Local and external procedures are differentiated in HDevelop. Local procedures are stored inside the
HDevelop program while external procedures are stored separately and therefore can be shared between
different HDevelop programs and, what is most advantageous, the modification of an external procedure
immediatly affects all HDevelop programs using it. In order to manage a large collection of procedures,
the procedures can be ordered in a hierarchical way, i.e., similar to the storing of operators thematically
ordered chapters and sections can be composed. Furthermore, external procedures can be protected by
passwords, so that they can be applied but not viewed or modified by unauthorized users.

1.3 Parallel HDevelop

In addition to the standard HDevelop, there is also a variant called Parallel HDevelop which is based
on Parallel HALCON. The user interface is identical, but underneath Parallel HALCON automatically
parallelizes operators if used on multi-processor or multi-core hardware. See the Programmer’s Guide
for more information. In the remainder of this document, when we refer to HDevelop you can substitute
Parallel HDevelop if that is the variant you will be using.

1.4 Terminology & Usage

HDevelop adheres to well-established conventions and usage patterns regarding its graphical user inter-
face. Most of the terminology explained here will have become second nature to most users and may
most likely be skimmed over.

Mouse Usage

click A single click with the left mouse button, e.g., to mark and select items or to activate buttons. To
select multiple items, hold down the <Ctrl> key and click the desired items. To select many items
from a list, click the first item, hold down the <Shift> key and click the last item. All intermediate
items are then also selected.

double-click Two quick successive clicks with the left mouse button, e.g., to open dialogs of selected
items. Double-clicks are mostly shortcuts for single clicks followed by an additional action.

right-click A single click with the right mouse button to access additional functionality of the user
interface, e.g., context-sensitive menus. Clicking the right mouse button also ends interactive
drawing functions in HDevelop.

drag Keeping the left mouse button pressed while moving the mouse and finally releasing the mouse
button. Typically used to move items, resize windows, select multiple items at once, e.g., program
lines, or to draw shapes.

drag-and-drop HDevelop supports drag-and-drop of image files and HDevelop programs from other
applications. You can, e.g., drag an HDevelop program icon from a file browser and drop it on the
HDevelop window to load it.

In
tr

od
uc

tio
n

12 Introducing HDevelop

middle mouse button With three-button mice, the middle mouse button is mostly used under UNIX
to paste text which has previously been selected into text fields. Otherwise, it provides the same
functionality as the left mouse button or none at all.

mouse wheel Most recent three-button mice combine the middle mouse button with a scrolling wheel.
HDevelop supports the mouse wheel in many places. The mouse wheel operates the GUI ele-
ment under the mouse cursor. Using the mouse wheel you can, for instance, quickly scroll large
program listings, select values from lists or perform continuous zooming of displayed images. In
general, windows that provide a scroll bar can be quickly scrolled with the mouse wheel. Further-
more, the values of spinner boxes (text fields that expect numerical data) can be decremented and
incremented with the mouse wheel.

Keyboard Usage

HDevelop is very keyboard-friendly. Most functions of the graphical user interface that can be operated
using the mouse can be accessed from the keyboard as well. Many of the most important functions
are available through keyboard shortcuts, which are worthwhile memorizing. When programming with
HDevelop, keeping both hands on the keyboard can increase the productivity. Therefore, many naviga-
tional tasks like selecting parameter fields or selecting values from lists can be easily done using just the
keyboard. The most common keyboard functions are listed in the appendix.

Windows

In the default window mode of HDevelop, windows can be freely moved inside the main window by
dragging the title bar. They can be resized by dragging the window border. Windows can be focused by
clicking inside the window area. This also raises the corresponding window to the front. Windows that
are completely covered by other windows can be brought to the front by selecting them from the Window
menu. The window title provides some buttons with additional functionality. Clicking the icon in the
left edge of the window title opens a menu from which all window management functions (move, resize,
minimize...) can be selected. The buttons on the right edge of the window allow to 1) minimize/restore,
2) maximize/restore, and 3) close the corresponding window (from left to right).

There is an alternative window mode called SDI (see also section 6.1 on page 45) which delegates the
functionality of the window title to the window manager.

Abbreviations

BP break point

IC insert cursor

MDI multi-document interface

PC program counter

SDI single-document interface

XLD extended line description (see also chapter A on page 225)

Getting Started 13

Chapter 2

Getting Started

In this chapter the following topics are covered:

• running HDevelop

• specifying command line switches

• short introduction to the windows of HDevelop

In the following it is assumed that HALCON has already been installed as described in the Installation
Guide.

Windows

Under Windows, HDevelop is usually started from the Windows “Start” menu:

Start . Programs . MVTec HALCON . HDevelop

You can also start HDevelop from the Windows Command Prompt or from the Start . Run... menu,
making it easy to pass optional command line switches:

hdevelop

UNIX

Under UNIX, HDevelop is started from the shell:

hdevelop &

G
et

tin
g

S
ta

rt
ed

14 Getting Started

1 2

4 3

status bar

menu bar tool bar

graphics window operator window

program windowvariable window

window title

Figure 2.1: User interface.

Command Line Switches

Under both Windows and UNIX, HDevelop supports several command line switches to modify its startup
behavior. You can add the name of an HDevelop program on the command line to load it directly. This is
identical to an invocation of HDevelop without any parameters and a subsequent loading of the program.
Or, you can convert HDevelop programs to other programming languages without opening the graphical
user interface at all. A full list of the supported command line switches is available with the following
command:

hdevelop --help

See appendix B on page 227 for a listing of the available switches.

15

User Interface

When HDevelop is started for the first time it looks similar to figure 2.1. The main window offers a menu
and a tool bar for quick access to frequently used functions. The status bar at the bottom of the window
displays messages and image properties. In addition, the following windows are available by default:

1. Graphics window

This window displays iconic data: images, regions, and XLDs. It provides its own tool bar to
quickly zoom and pan the displayed image and a context menu to adapt the visualization settings.
The context menu is available by right-clicking inside the window1 It contains the most frequently
used entries from the menu Visualization. You can open multiple graphics windows. The one
marked with a lit bulb in the upper right corner is the active graphics window, i.e., it is the target
for subsequent display operations. The graphics window works like an image stack: Images can
be overlayed with regions or XLDs, or with images that have a reduced domain. The image stack
and thus the graphics window can be explicitly cleared and rebuilt.

2. Operator window

You can select HALCON operators (and HDevelop procedures) in this window. The parameters
of the selected operator can be specified, and the operator can be executed, entered in the current
program, or both. You can also get online help for the selected operator from this window.

3. Program window

This window displays the current program. Program editing in HDevelop is line-based. Program
lines can be modified by double-clicking them and editing them in the operator window. The left
column displays the program line numbers. The small black triangle is the insert cursor, which is
where new program lines will be added. In the following it is referred to as IC. The green arrow
is the program counter which marks the next line to be executed. In the following the program
counter is referred to as PC. You can also add or remove break points in the current program in
this column. These will halt the program execution at user-defined places.

4. Variable window

Program variables can be watched in this window. It displays all variables of the current procedure
and their current values. Iconic variables are displayed as thumbnails, whereas control variables
are displayed as text. The layout of this window can be switched between horizontal and vertical
splitting by double-clicking the separator. You can double-click iconic variables to display them
in the active graphics window. Double-clicking on control variables spawns an inspection window
with a list of the current values and statistical data.

There are many other windows which will be covered later in this manual.

1Unless the context menu has been disabled in the preferences to prevent any interference with interactive drawing functions.
See section 6.2.2.11 on page 62.

G
et

tin
g

S
ta

rt
ed

16 Getting Started

Running Example Programs 17

Chapter 3

Running Example Programs

HALCON comes with a large number of HDevelop example programs from a variety of application
areas. These range from simple programs that demonstrate a single aspect of HALCON or HDevelop to
complete machine vision solutions. As an introduction to HDevelop we recommend to try some of these
programs to quickly get accustomed to the way HDevelop works.

One of the examples demonstrates many different capabilities of HALCON in one program. It is the only
HDevelop example program that can be started from the “Start” menu under Windows. The UNIX path
to this program is $HALCONROOT/examples/hdevelop/explore_halcon.dev. Running this program
is very recommended to get a good overview of the many application areas of HALCON.

The example programs have been categorized by application area, industry, method, and operator usage.
A special category “New in version” groups examples by their appearance in specific HALCON releases.
Browsing these categories, you can quickly find example programs that cover image processing problems
that you may wish to solve with HALCON. These programs may serve as a foundation for your own
development projects.

Figure 3.1: Open Example dialog.

E
xa

m
pl

es

18 Running Example Programs

Browse and Load Example Programs

• Click File . Open Example....

This will open the example program browser (see figure 3.1 on page 17). Similar to a file browser,
it shows a tree of categories on the left and a list of example programs from the selected categories
on the right. Categories that contain hidden subtopics are marked with a + . Double-click on a
category label to open the subtopics (or click +). Double-click again to close the subtopics (or
click −).

Browse the categories: Click on a category to select it and display its example programs. You can
select multiple categories at once by holding the <Ctrl> key while clicking on the categories.

Filter the example programs: To reduce the amount of listed example programs, enter a word or
substring into the Filter text field. Subsequently, only example programs matching this substring
in the file name or short description will be displayed.

We pretend that you are looking for a measuring example from the semiconductor industry:

• Click on + next to Industry.

• Click on the subtopic Semiconductors. The examples belonging to the semiconductor industry
are listed on the right.

• Enter the word measure into the Filter text field.

Note how the list is updated as you type. Now, you have a short list of example programs to select
from. You may need to resize the example browser to fully read the short descriptions of the listed
programs.

• Select measure_ic_leads.dev by clicking on it.

• Click Load. The selected example program is then loaded. Alternatively, you can load an example
program by double-clicking on it. The example browser is closed unless Keep dialog open is
checked.

The program lines of the loaded example program are now displayed in the program window. The PC
is set to the first executable line of the program (leading comments are ignored). The variable window
is also updated: It lists the variables that are used in the main procedure, which is initially the current
procedure. The variables are currently uninstantiated, i.e., their current value is undefined. This is
indicated by the question mark (?). Both windows are displayed in figure 3.2.

19

current procedurePC (program counter)iconic variables control variables

Figure 3.2: The variable and program window after loading the example program.

Run Example Program

• Click Execute . Run or click the corresponding button from the tool bar (see figure 3.3).

The program line next to the PC is executed, the PC is moved to the following line and so forth
until the execution stops. There are four reasons for the program execution to stop: 1) the last
program line has been executed, 2) a breakpoint has been reached, 3) the HDevelop instruction
stop has been encountered as in this example, or 4) an error has occurred.

During execution, the graphics window is used for visualization. Changes to the variables are
reflected in the variable window. When the program execution stops, the status bar displays the
number of executed lines and the processing time.

To continue with the program execution, click Execute . Run again until the end of the program
is reached.

• Click Reset Program Execution to reset the program to its initial state. (see figure 3.3).

• Using the button Step Over you can execute the program line by line and inspect the immediate
effect of each instruction.

Reset Program ExecutionRun StopStep Over

Figure 3.3: The basic execution buttons.

E
xa

m
pl

es

20 Running Example Programs

Acquiring Images with HDevelop 21

Chapter 4

Acquiring Images with HDevelop

Image acquisition is crucial for machine vision applications. It will usually be an early if not the first
step in your programming projects. This chapter explores the different ways of image acquisition in
HDevelop.

4.1 Reading Images From Files

Especially in the prototyping phase you often have a set of sample image files to work from. HDevelop
(or rather the underlying HALCON library) supports a wealth of image formats that can be loaded
directly (see read_image in the Reference Manual).

Drag-and-Drop

The easiest way to read an image is to simply drag it from a file browser to the HDevelop window and
drop it there. When the file is dropped, HDevelop opens the dialog Read Image (see figure 4.1).

This dialog displays the full path of the image and automatically proposes a variable name derived from
the file name. This name can be edited, or another iconic variable name from the current program may
be selected from the drop-down list.

Furthermore, a preview of the image and basic image properties are displayed in the dialog (width,
height, color type, and number of channels). If you picked the wrong image, you can select another one
from the same directory by pressing the button next to the file name. This will open a file browser native
to the operating system, i.e., on Windows you may be able to switch to thumbnail view in this dialog.
When another image is selected, the dialog is updated accordingly.

When you click the button OK, the instruction read_image is added to the current program. With the
setting of Insert Position you determine where the instruction will be put: At the IC or the PC. If
you changed your mind about reading the selected image at all, click Cancel.

Im
ag

e
A

cq
ui

si
tio

n

22 Acquiring Images with HDevelop

Figure 4.1: After dragging an image file onto the HDevelop window.

Images from Selected Directories

Apart from dragging and dropping images, there is an equivalent method from within HDevelop: Select
File . Read Image to get a list of image directories to choose images from. Again, this will open a
native file selection dialog. Browse to and select the desired image from there, and click OK to open up
the dialog Read Image described above.

4.2 Viewing Images

When images are read as described above, they are automatically displayed in the active graphics win-
dow. This is the default behavior in HDevelop, but the automatic display of images can be suppressed if
desired, e.g., to speed up computationally intensive programs.

Initially, the loaded image fills the graphics window entirely. The window itself is not resized so the
aspect ratio of the image might be skewed. Using the tool box of the graphics window you can easily
zoom the image, or change the window size with regard to the image.

We recommend to adapt the window size to the size of the image because otherwise the display is slowed
down. The image size, the window size and the displayed part of the image are set with the tool bar icons
of the graphics window (see figure 4.2).

An iconic view of the loaded image is also displayed in the variable window. When the image is cleared
in the graphics window, it can always be restored by double-clicking this icon.

4.3 Image Acquisition Assistant 23

zoom
in/out

pan image

image size

window size

magnifyselectclear

Figure 4.2: Tools in the graphics window.

4.3 Image Acquisition Assistant

The image acquisition assistant is a powerful tool to acquire images from files (including AVI files),
directories or image acquisition devices supported by HALCON through image acquisition interfaces.
To use this assistant, select Assistants . Open New Image Acquisition. The window is displayed
in figure 4.3. It features several tab cards that can be stepped through one after another. Ultimately, the
assistant generates HDevelop code that can be inserted into the current program. Select the entry Help
in the menu of the image acquisition assistant to open its online help.

Figure 4.3: Image acquisition assistant.

The tab card Source determines the acquisition method and the image source. In the default setting
images are acquired from files. This is described in the following section. Alternatively, images are
acquired from an image acquisition device, e.g., a camera. This is described in section 4.3.2 on page 25.

4.3.1 Acquiring Images From Files or Directories

You can specify a selection of image files or a directory to load images from. Make sure the radio button
Image File(s) is selected in the tab card Source. You can directly enter image names or the name of
a directory into the text field. Multiple image names are separated by a semicolon. Usually, it is more
convenient to use one of the following buttons:

Im
ag

e
A

cq
ui

si
tio

n

24 Acquiring Images with HDevelop

Select File(s) ...

HDevelop opens a file selection dialog in the current working directory, displaying the image files sup-
ported by HALCON. Multiple image files can be selected by holding down the <Ctrl> key while click-
ing additional image files. Click Open to confirm the selection. The first selected image is displayed in
the active graphics window.

Select Directory ...

HDevelop opens a directory browser. It is not possible to select multiple directories. Confirm your
selection by clicking Open or OK. The first image from the selected directory is displayed in the active
graphics window. If the check box Recursive is ticked, all subdirectories of the specified directory are
scanned for images as well.

View Images

You can single-step through the selected images by clicking the Snap button (see figure 4.4). Each time
you click the button, the next image is displayed in the active graphics window. You can also loop
through the images by clicking the button Live. This is especially useful for animations. Both functions
are also available from the menu Acquisition.

Snap (single−step images)

Connect Live (continuous display)

Figure 4.4: Browsing the selected images.

Generate Code

Switch to the tab card Code Generation, and specify a variable name in the text field Image Object.
You can later access the image in the program by this name. If multiple images or a directory were
selected in the tab card Source, the image acquisition assistant will read the images in a loop. In this
case the following additional variable names need to be specified:

Loop Counter: The name of the loop index variable. While looping over the images in the program,
this variable will contain the object number of the current image.

Image Files: The name of the variable that will contain the names of the selected images.

Click Code Preview to inspect the code that would be generated from the currently specified parame-
ters.

Click Insert Code to generate the code and insert it at the position of the IC in the current program.

The following piece of code is an example generated from three selected images. It is a self-contained
HDevelop program that runs without alteration.

4.3.2 Acquiring Images Through Image Acquisition Interfaces 25

Figure 4.5: Specifying variable names and previewing the code.

* Code generated by Image Acquisition 01
ImageFiles := []
ImageFiles[0] := ’C:/Program Files/MVTec/HALCON/images/fin1.png’
ImageFiles[1] := ’C:/Program Files/MVTec/HALCON/images/fin2.png’
ImageFiles[2] := ’C:/Program Files/MVTec/HALCON/images/fin3.png’
for Index := 0 to |ImageFiles| - 1 by 1

read_image (Image, ImageFiles[Index])
* Do something
endfor

4.3.2 Acquiring Images Through Image Acquisition Interfaces

Select Image Acquisition Interface in the Source tab. The drop-down list below the radio button
becomes active. Initially, it lists all image acquisition interfaces supported by HALCON. You can tidy
this list by clicking the button Detect. HDevelop will then probe all the image acquisition interfaces
and remove those that do not respond. Probing the interfaces is potentially dangerous. If there are
unsaved changes in the current program, HDevelop will display a corresponding dialog. You can save
the changes and proceed, ignore the warning and proceed, or abort the operation. After the interfaces
have been probed, you can select the desired image acquisition interface from the list.

Im
ag

e
A

cq
ui

si
tio

n

26 Acquiring Images with HDevelop

detect image acquisition devices...

... and select from the list

Figure 4.6: Source selection (example).

Connect to the Device

Once an image acquisition interface is selected, its connection parameters are detected and updated in the
tab card Connection (see figure 4.7). Here you can specify the device that is connected to the selected
image acquisition interface. If, for example, the interface of a frame grabber board with multiple cameras
has been selected as the source, the actual device can be selected here. The parameters of this tab card
are described in general in the reference section of the operator open_framegrabber; please refer to
the HTML page of the selected interface for detailed information (menu Help).

Figure 4.7: Connection parameters (example).

If the acquisition interface File is selected, two buttons become available to select an image file or an
image directory, respectively. The File interface also supports AVI files, or sequence files (.seq). The
latter are special to HALCON; they contain a list of image file names that will be loaded in succession.

Specify the desired connection parameters and click Connect to establish or update the connection to
the actual device. The connection status can also be toggled in the tool bar (see figure 4.4 on page 24).

4.3.2 Acquiring Images Through Image Acquisition Interfaces 27

You can grab single images with the button Snap, or switch to continuous grabbing mode using the
button Live. Live mode can be stopped by clicking the same button again which is now labeled Stop.

Clicking the button Detect attempts to re-detect valid parameters for the currently selected image ac-
quisition interface. Usually, this is done automatically, when the interface is selected from the list on the
tab card Source.

The button Reset All sets all connection parameters back to their default values.

Set Device Parameters

The tab card Parameters contains a list of parameters specific to the selected device. It becomes
available once the connection to the device has been activated. See figure 4.8 for an example parameter
list. Please refer to the HTML page of the selected interface for detailed information. You can click the
help button of the assistant to get to the corresponding page automatically.

Depending on the parameter type, different selection methods are enabled. As an example, parameters
with a defined range of values can be specified by dragging a slider or entering the value parametrically.
If a value is changed, a reset button to the right is activated. Some parameters provide a check box which
attempts to set the parameter automatically if clicked.

If Update Image is checked, parameter changes are immediately reflected in the graphics window by
acquiring a new image. The button Refresh updates the list of parameters, which is useful if parameters
have side effects. You can reset all parameters to their default values at once by clicking Reset All.

acquire new image at parameter

change

reset parameter

selection of parameters (optional)

and sorting

set parameter automatically

Figure 4.8: Device-specific parameters (example).

Im
ag

e
A

cq
ui

si
tio

n

28 Acquiring Images with HDevelop

Generate Code

On the tab card Code Generation the settings made in the other tab cards are turned into executable
code. The basic structure of the code and the corresponding variable names can be specified.

Control Flow

Initialization Only: Generate only code to initialize the image acquisition interface with the param-
eters specified in the other tab cards and to close it down properly. Additional code for image acquisition
and processing can be added later.

Acquire Single Image: Also generate code to acquire an image.

Acquire Images in Loop: Also add a loop around the image acquisition code. Further image pro-
cessing can be added inside this loop.

The image acquisition interface is addressed by a so-called handle. The variable name of this handle can
be specified in the text field Connection Handle. The variable name of the acquired image(s) can be
set in Image Object.

Click Code Preview to inspect the code. Click Insert Code to generate the code in the program
window at the IC.

Figure 4.9: Code generation.

Here is a code example:

4.3.3 Modifying the Generated Code 29

* Code generated by Image Acquisition 01
open_framegrabber (’uEye’, 1, 1, 0, 0, 0, 0, ’interlaced’, 8, ’default’, -1,
’false’, ’UI154x-M’, ’1’, 0, -1, AcqHandle)

set_framegrabber_param (AcqHandle, ’exposure’, 99.9248)
grab_image_start (AcqHandle, -1)
while (true)

grab_image_async (Image, AcqHandle, -1)
* Do something
endwhile
close_framegrabber (AcqHandle)

4.3.3 Modifying the Generated Code

After the generated code has been inserted into the program window, HDevelop internally keeps the code
linked to the corresponding assistant. This link is kept until the assistant is quit using the menu entry
File . Exit Assistant. If you close the assistant using the menu entry File . Close Dialog or
using the close icon of the window, the assistant can be restored from the top of the menu Assistants.

You can change the settings inside the assistant and update the generated code accordingly. The code
preview will show you exactly how the generated code lines will be updated. Furthermore, you can
delete the generated code lines, or release them. When code lines are released, the internal links between
the assistant and those lines is cut off. Afterwards, the same assistant can generate additional code at a
different place in the current program.

Im
ag

e
A

cq
ui

si
tio

n

30 Acquiring Images with HDevelop

Programming HDevelop 31

Chapter 5

Programming HDevelop

This chapter explains how to use HDevelop to develop your own machine vision applications. It is
meant to be actively followed in a running instance of HDevelop. In the following, it is assumed that the
preferences of HDevelop are set to the default values. This is always the case after a fresh installation
of HALCON. If you are uncertain about the current settings, you can always start HDevelop with the
default settings by invoking it from the command line in the following way (see also chapter 2 on page
13):

hdevelop -reset_preferences

We begin with a very simple example. Given is the image displayed in figure 5.1. The objective is to
count the clips and determine their orientation.

Figure 5.1: Paper clips.

5.1 Start a New Program

Start HDevelop or, if it is still running, click File . New Program to start a new program. HDevelop will
notify you if there are unsaved changes in the current program. If it does, click Discard to throw away
the changes and start anew. In case you rearranged the windows, click Window . Organize Windows
to restore the default layout displayed in figure 2.1 on page 14.

P
ro

gr
am

m
in

g

32 Programming HDevelop

The first thing to do is read the image and store it in an iconic variable. From the last chapter we know
that we can simply drag an image to the HDevelop window. We also know that this inserts the operator
read_image into the program. Therefore, we can just as well insert the operator directly.

5.2 Enter an Operator

Click into the text box of the operator window, type read_image and press <Return>. You can also type
any partial operator name and press <Return>. HDevelop will then open a list of operators matching
that partial name. This way, you can easily select operators without having to type or even know the
exact name. Selection is done with the mouse or using the arrow keys to highlight the desired operator
and pressing <Return>. If you selected the wrong operator by accident, you can reopen the list by
clicking on the drop-down arrow next to the operator name. When entering a partial name, operators
commencing with that name appear at the top of the list.

Figure 5.2: Matching operators after typing read_ and pressing <Return>.

5.3 Specify Parameters

After selecting an operator, its parameters are displayed in the operator window. They are grouped by
iconic and control parameters. The icons next to the parameter names denote the parameter type: Input
vs. output (see figure 5.3). The semantic type is displayed to the right of the parameters. Parameters are
specified in the text fields. The first parameter gets the input focus.

Enter Clip into the text field Image. The image will be stored in this variable. Next, enter ’clip’ into
the text field FileName. You can press <Tab> to go to the next input field. Pressing <Shift> <Tab>
takes you back to the previous field. This way you can enter all parameters without using the mouse.

Click OK or press <Return> to submit the operator to the current program. This will do the following:

5.4 Getting Help 33

semantic type

data type

iconic output

control input

file selection dialog

Figure 5.3: Specifying parameters.

• An operator call is added as the first line of the current program.

• The IC is advanced, so that additional lines will be added after the inserted line.

• The program line is executed and the PC is advanced. To be more precise: All the lines from the
PC to the IC are executed which makes a difference when adding program lines in larger programs.

• The character * is added to the window title to indicate unsaved changes in the current program.

• The image is displayed in the graphics window.

• The status bar is updated, i.e., the execution time of the operator read_image is displayed and the
format of the loaded image is reported.

• The output variable Clip is created and displayed in the variable window.

• The operator window is cleared and ready for the insertion of the next operator.

5.4 Getting Help

You may be wondering where the clip image was loaded from since we did not specify any path or even
a file extension. This is a detail that is related to the way the HALCON operator read_image works.
HDevelop does not know anything about it. It just executes the operator with the parameters you supply.
Nonetheless, it is easy to access the documentation of the operators from within HDevelop.

Double-click the first program line in the program window. The operator is displayed in the operator
window for editing. Now click Help to open the HDevelop online help window. It will automatically
jump to the documentation of the displayed operator (see figure 5.4). The reference manual is completely
cross-linked. The navigation at the left part of the window provides quick access to the documentation.
The tab card Contents presents the hierarchical structure of the reference manual (plus access to other
HALCON manuals). The tab card Operators lists all operators for direct access. Enter any desired
substring into Filter to quickly find an operator.

In the remainder of this chapter, try to use the online help as much as possible to get information about
the used operators. The online help window is described in section 6.8 on page 127.

P
ro

gr
am

m
in

g

34 Programming HDevelop

Figure 5.4: The online help window showing the documentation of the operator read_image.

5.5 Add Additional Program Lines

Select the clips by thresholding

Now, we want to separate the clips from the background, i.e., select them. They clearly stand out from
the background, thus a selection based on the gray value is appropriate. This operation is known as
thresholding.

Enter threshold into the operator window. This is both the full name of an operator and part of other
operator names. Thus, you get a list of matching operators with threshold pre-selected when you press
<Return>. Press <Return> once more to confirm the selected operator and show its parameters.

In figure 5.5 you can see that the input parameter Image is set to Clip automatically. For input variables
with no default value, reasonable suggestions are inferred automatically by collecting previous output
variables of the same type. Therefore, the name of the most recent matching output parameter will be
suggested (most recent being the closest predecessor of the current program line). In this example, only
Clip is available.

Set MinGray and MaxGray to 0 and 30, respectively. This will select the dark pixels in the image.

Click Apply. This button executes the operator without adding it to the program. Additionally, it keeps
the current parameters open for editing. This way, you can easily try different settings and immediately
see the result. The selected pixels (the so-called region) are stored in the output variable Region, which
is displayed in the variable window. The region is an image mask: White pixels are selected while black
pixels are not.

5.5 Add Additional Program Lines 35

Figure 5.5: Parameter guessing.

The region is also displayed as an overlay in the graphics window. The selected pixels are displayed in
red (unless you changed the default settings).

The selected threshold values are not perfect, but we will correct this later. For now, click Enter to add
the operator to the program window. Contrary to clicking OK, this does not execute the operator. Note
that the variable Region keeps its value but is no longer displayed in the graphics window. Also, the PC
is not advanced, indicating that the second line of the program is yet to be executed.

Adding program lines with Enter is especially useful if some of the input parameters use variable names
that will be added to the program at a later time.

Successor

Click on the just inserted program line to select it. You can let HDevelop suggest operators based on the
selected line. Open the menu Suggestions . Successors. This menu is filled dynamically to show
typical successors of the currently selected operator. We want to split the selected pixels into contiguous
regions. Move the mouse pointer over the menu entries. The status bar displays a short description of
the highlighted operator. Looking through the menu entries, the operator connection looks promising,
so we click on it. Any operator selected through this menu is transferred to the operator window.

Again, the variable names suggested by HDevelop look reasonable, so press <Return>. This is equiva-
lent to clicking the OK button (though this can be changed in the preferences of HDevelop). This time,
two program lines are executed: The threshold operation and the connection operation. As noted
above: Clicking OK executes from the PC to the IC.

In the graphics window, the contiguous regions calculated by the operator connection are now dis-
played in alternating colors.

P
ro

gr
am

m
in

g

36 Programming HDevelop

5.6 Understanding the Image Display

After having executed the three lines of our program, the graphics window actually displays three layers
of iconic variables: the image Clip, the region Region, and the tuple of regions ConnectedRegions
(from bottom to top). Place the mouse pointer over the icons in the variable window to obtain basic
information about the variables.

The display properties of images and the topmost region can be adjusted from the context menu of the
graphics window. For images, the look-up table (henceforth called LUT) and the display mode (referred
to as “paint”) can be set. The LUT specifies gray value mappings. Experiment with different settings:
Right-click in the graphics window and select some values from the menus Lut and Paint. Make sure,
the menu entry Update Window is checked. Notice how the display of the image changes while the
regions remain unchanged.

The menu entries Colored, Color, Draw, Line Width, and Shape change the display properties of
the topmost region. Set Draw to ‘margin’, Color to ‘cyan’, and Shape to ‘ellipse’. The display of
ConnectedRegions (which is the topmost layer) changes accordingly. The region Region is still dis-
played in filled red.

A more convenient way to set many display properties at once is available through the menu entry Set
Parameters.... It opens the settings window displayed in figure 5.6.

After trying some settings, click the button Reset to restore the default visualization settings.

Figure 5.6: Changing the display parameters.

You cannot change the display properties of regions (or XLDs) other than the topmost. What you can
do is rebuild the image stack in the graphics window manually by double-clicking iconic variables in
the variable window and changing the properties each time another layer is added. The stack is cleared

5.7 Inspecting Variables 37

Figure 5.7: Interactive inspection of an iconic variable containing regions.

whenever an image is added that uses the full domain. To clear the stack (and thus the graphics window)
manually, click the clear icon (see figure 4.2 on page 23).

5.7 Inspecting Variables

When you move the mouse cursor over the variable ConnectedRegions you see that it contains 98
regions.

Right-click on the icon ConnectedRegions and select Clear / Display to display only the con-
nected regions in the graphics window. Right-click again and select Display Content . Select....
This menu entry opens a variable inspection window which lists the contents of the variable
ConnectedRegions. The selected region of this inspection window is displayed in the graphics win-
dow using the current visualization settings. Set Draw to ‘margin’ and Shape to ‘ellipse’ and select some
regions from the list. An example is illustrated in figure 5.7.

For now, close the variable inspection window. The large number of regions is due to the coarse setting
of the bounds of the threshold operator. In the following we will use one of HDevelop’s tools to find
more appropriate settings interactively.

5.8 Improving the Threshold Using the Gray Histogram

Click Visualization . Gray Histogram to open a tool for the inspection of gray value histograms.
One of its uses is to determine threshold bounds visually. Because the graphics window currently dis-
plays only regions, the gray histogram is initially empty. Double-click the Clip icon in the variable
window to re-display the original image and watch its gray histogram appear.

P
ro

gr
am

m
in

g

38 Programming HDevelop

Figure 5.8: Determining threshold bounds interactively using the gray histogram.

In the Output section of the gray histogram window, set Display to threshold. Now, you can try
different threshold bounds by altering the values in Min and Max or by dragging the lines in the histogram
area (see figure 5.8). Any changes to these values are immediately visualized in the active graphics
window. The values 0 and 56 seem suitable for the lower and upper bounds, respectively.

5.9 Edit Lines

As previously noted, editing in HDevelop is line-based. All parameter modifications in the program are
done through the operator window. To edit a line, double-click it in the program window. Afterwards,
the parameters are displayed in the operator window for editing. If you click OK or Enter, the original
line in the program is updated.

Double-click the second line of the program to adjust the threshold operation. Replace the value 30 with
56 and click Enter. The program line is updated in the program window.

5.10 Re-Execute the Program 39

5.10 Re-Execute the Program

The last editing step was just a tiny modification of the program. Often, after editing many lines in your
program with perhaps many changes to the variables you want to reset your program to its initial state
and run it again to see the changes.

Click Execute . Reset Program Execution to reset the program. Now, you can select Execute .
Run to run the complete program, or click Execute . Step Over repeatedly to execute the program line
by line.

5.11 Save the Program

Perhaps now is a good time to save your program. Select File . Save and specify a target directory
and a file name for your program.

5.12 Selecting Regions Based on Features

Inspecting the variable ConnectedRegions after the changed threshold operation yields a much better
result. Still, a contiguous area at the left edge of the image is returned. To obtain only the regions
that coincide with the clips, we need to further reduce the found regions based on a common criterion.
Analogous to the gray histogram tools, which help to select regions based on common gray values,
HDevelop provides a feature histogram tool, which helps to select regions based on common properties
or features.

Click Visualization . Feature Histogram to open the tool. The checkbox at the top allows to select
the feature that the region selection will be based on. The default feature is “area”, which is adequate in
this case: The actual clips are all the same size, thus the area of the regions is a common feature. In the
feature histogram the horizontal axis corresponds to the values of the selected feature. The vertical axis
corresponds to the frequency of certain feature values.

Similar to the gray histogram window, you can visualize the selected regions, i.e., the regions whose
area falls between the values Min and Max, which are represented by the green and red vertical lines,
respectively.

Specify the parameters in the Output section of the feature histogram window as shown in figure 5.9.
Drag the green and red line to see how this affects the selected regions. From the histogram we can see
that in order to cover all the clips, we can safely select regions whose area is between, say, 4100 and
6500. Add the following line to the program:

select_shape (ConnectedRegions, SelectedRegions, ’area’, ’and’, 4100, 6500)

Run the program, and inspect the output variable SelectedRegions. The regions corresponding to the
clips are now determined correctly. To obtain the orientation and the center of gravity of the clips, add
the following operator calls to the program:

P
ro

gr
am

m
in

g

40 Programming HDevelop

Figure 5.9: Selecting regions with a similar area in the feature histogram.

orientation_region (SelectedRegions, Phi)
area_center (SelectedRegions, Area, Row, Column)

The operator orientation_region returns a tuple of values: For each region in SelectedRegions
a corresponding orientation value in Phi is returned. The operator area_center in the same way
returns the area, row and column of each input region as tuples. Again, run the program and inspect
the calculated control variables. You can inspect multiple control variables in one inspection window.
This is especially useful if the control variables all relate to each other as in this example. In the variable
window select all control variables (hold down the <Ctrl> key), and right-click Inspect (see figure 5.10
on page 41).

5.13 Looping Over the Results

Being an integrated development environment, HDevelop provides features found in other programming
languages as well: Variable assignment, expressions, and control flow. Variable assignment and control
flow are implemented in terms of specific HDevelop operators. These operators can be selected from the

5.13 Looping Over the Results 41

Figure 5.10: Inspecting control variables.

menu Operators . Control. Expressions are implemented in terms of a specific HDevelop language
which can be used in input control parameters of operator calls.

To iterate over the elements in Phi, we use a for loop which counts from zero (the index of the first
element of a tuple) to the number of elements minus one. The for loop is entered just like a common
HALCON operator: Enter for into the operator window and specify the parameters as in figure 5.11.
The notation |Phi| - 1 is part of the HDevelop language. This operation calculates the number of
elements in Phi minus one. When inserted in the program window, the operator for is displayed in a
different format to make it more readable. Note that the closing endfor is entered automatically if the
corresponding check box is ticked. Also note that the IC is placed between the added lines so that the
body of the loop can be entered.

Figure 5.11: Entering a loop in HDevelop.

P
ro

gr
am

m
in

g

42 Programming HDevelop

Add the following lines to the program. They are automatically indented in the program window to
highlight the nesting inside the for loop.

set_tposition (3600, Row[Index], Column[Index])
write_string (3600, deg(Phi[Index]) + ’ degrees’)

The instruction set_tposition places the text cursor in the active graphics window at the center of
the region corresponding to the loop index variable Index. The value 3600 is the so-called window
handle of the target graphics window. This number is displayed in the title of the graphics window and
can be different in your environment. The notation Row[Index] is another operation of the HDevelop
language. It provides access to a single value of a tuple.

The instruction write_string outputs a given string at the current text cursor position in the graph-
ics window. The function deg is part of the HDevelop language. It converts its argument from radi-
ans to degrees. In this example the operation + performs a string concatenation because the argument
’ degrees’ is a string value. Before the two operands of + are concatenated, an automatic type con-
version (double to string) of the numeric argument takes place. The details of the HDevelop language
are explained in chapter 8 on page 169.

5.14 Summary

This is basically the way to create programs in HDevelop. Select an operator, specify its parameters, try
different settings using the button Apply, add a new program line using Enter or OK, and edit it later by
double-clicking it in the program window. Use the interactive tools provided by HDevelop to assist you,
e.g., to find appropriate values for the operators.

Graphical User Interface 43

Chapter 6

Graphical User Interface

This chapter is the reference to the graphical user interface of HDevelop.

6.1 Main Window

The main window handles HDevelop programs. It comprises the following components:

Window Title

The main window of HDevelop is identified by the title HDevelop followed by the name of the current
program (or unnamed if no file name has been specified yet). Unsaved changes in the current program
are indicated with a trailing asterisk (*) in the window title.

Menu Bar

The menu bar at the top provides access to the functionality of HDevelop. The menus and their entries
are described in the section “Menu Bar” on page 46.

Tool Bar

The tool bar icons provide convenient shortcuts for frequently used functions. It is described in the
section “Tool Bar” on page 101.

G
U

IR
ef

er
en

ce

44 Graphical User Interface

Window Area

The main part of the window is reserved for the windows and dialogs of HDevelop. The most important
windows are the following:

• Program window (see page 102)

• Operator window (see page 113)

• Variable window (see page 117)

• Graphics window (see page 124)

• Online help window (see page 127)

Status Bar

The status bar at the bottom of the main window displays status information, e.g., context-sensitive
information about a specific user action or the runtime of operator or procedure calls (unless time mea-
surement has been deactivated in the preferences, see section “Runtime Settings” on page 72). The
status bar is divided into the following five areas (from left to right):

1. Status icon: Shows the current run status of the program.

2. Messages and runtime information. For example, if you select an operator from the menu, the
corresponding short description is displayed here.

3. Information about the image in the active graphics window. The display format is

[index] variable name (#=number of objects: height x width x channels x type)

4. Gray value of the image in the active graphics window at the mouse cursor position. For multi-
channel images, the gray values of all channels are displayed separated by commas.

5. Image coordinates in the graphics window (row, column).

The status bar has its own context menu:

You can toggle whether execution messages are displayed in the status bar by clicking the entry Show
Processing Time in the context menu of the status bar. To open the context menu, right-click in the
message area of the status bar.

A history of the latest execution messages is displayed as a tool tip when placing the mouse pointer over
the message area of the status bar. The history can be copied to the clipboard by selecting the entry Copy
History to Clipboard in the context menu of the status bar.

The status bar is displayed in figure 6.1.

6.1 Main Window 45

Window Modes

There are two different window modes in HDevelop, which can be toggled in the menu Window:

MDI (multiple-document interface): In this mode the main window contains all other windows and
dialogs (with the exception of the online help window and modal dialogs which block other win-
dows temporarily). You are free to move the windows according to your needs and preferences
inside the main window. You may iconify and/or deiconify them. HDevelop provides basic win-
dow management functions in this mode.

SDI (single-document interface): In this mode the main window contains only the menu bar, the tool
bar, the status bar, and the program window. All other windows are independent. You may find
this mode beneficial if you want to take advantage of special window manager capabilities under
UNIX.

run status image details gray value coordinatesmessages / runtime information

Figure 6.1: The status bar.

G
U

IR
ef

er
en

ce

46 Graphical User Interface

6.2 Menu Bar

The menu bar of the main window provides access to the complete functionality of HDevelop. Here, you
may choose HALCON or HDevelop operators or procedures, or manipulate the graphical output. Every
menu item opens a pull-down menu (henceforth abbreviated as menu) with optional submenus. You open
a menu by clicking a menu item or via the keyboard (by pressing the <Alt> key in combination with the
underlined letter of the menu item). In the following sections the menu entries are described in the order
in which they appear.

6.2.1 Menu File

This menu provides functions to load images and existing programs and to save recently created or
modified programs and procedures, respectively. Furthermore, you may export HDevelop programs to
C++, C, Visual Basic, Visual Basic .NET, or C#, and also print them.

6.2.1.1 New Program

Synopsis: Initialize a new HDevelop program.

Checks for: Unsaved changes (page 141)

Shortcut: Ctrl+N

This menu item deletes the current program including all local procedures. The contents of variables
are deleted before removing them. In addition, all graphics windows except one are closed. The last
graphics window is cleared. The display parameters for the remaining graphics window are reset to the
default values stored in the preferences (see section “Visualization Settings” on page 71). The
runtime settings of the preferences are reset to their default values (see section “Runtime Settings”
on page 72).

6.2.1.2 Open Program...

Synopsis: Load an existing HDevelop program.

Checks for: Unsaved changes (page 141)

Shortcut: Ctrl+O

A file selection dialog (page 140) pops up to select an HDevelop program. Please note that only native
HDevelop programs can be loaded. Thus, text, C, C++, Visual Basic, Visual Basic .NET, and C# versions
of a file are rejected.

After you have loaded a program, the corresponding file name is added to the top of the menu Recent
Programs. This allows you to quickly switch between recently loaded programs.

6.2.1 Menu File 47

Figure 6.2: Open Example....

6.2.1.3 Open Example...

Synopsis: Load HDevelop example program by selecting it from a categorized list.

Checks for: Unsaved changes (page 141)

Selecting this menu item opens a dialog that allows you to load HDevelop example programs grouped
by categories. The dialog is displayed in figure 6.2.

Browsing the Categories

The tree on the left contains a structured list of categories. Clicking the icon in front of a category
toggles the display of its children. Alternatively, double-clicking any category label shows and hides the
subcategories while also selecting the node of the tree. There can be multiple levels of categories. If you
select a category, all its matching example programs are listed in the area on the right. You can select
multiple categories by holding down the <Ctrl> key while clicking additional categories. An HDevelop
example program may appear multiple times under different topics and categories.

Filtering the Matched Example Programs

Both the file name and the short description of the matched example programs are displayed. You can
reduce the number of listed programs by entering a search string into the Filter text box. As you type,
the list is updated to contain only example programs matching the string in either the file name or the
short description field. The filtering is case-insensitive.

G
U

IR
ef

er
en

ce

48 Graphical User Interface

Loading an Example Program

Double-click an example program in the list, or select it and click the button Load. Clicking Load in
new HDevelop opens the program in a new instance of HDevelop, which is useful if there are unsaved
changes in the current program.

Either way, you can keep the dialog open by checking the corresponding box beforehand. This can be
useful if you wish to scan through several example programs quickly.

6.2.1.4 Recent Programs

Synopsis: Load recently used HDevelop programs.

Checks for: Unsaved changes (page 141)

This submenu contains a list of the most recently used HDevelop programs. Simply click on a program
name to load it.

6.2.1.5 Insert Program

Synopsis: Insert (parts of) another HDevelop program into the current program.

Selecting an entry in this submenu opens a file selection dialog (page 140) for the selection of an HDe-
velop program.

2 Insert All...

Synopsis: Insert a complete HDevelop program into the current program.

The main body of the selected program is inserted at the IC. All local procedures of the selected program
are copied to the current program under their original name. If a local procedure of that name already
exists, the suffix _COPY_1 (or _COPY_2, _COPY_3... for subsequent imports) is added to the imported
local procedure. All invocations of the renamed procedure are updated automatically.

If the current program already contains an external procedure with the same name, the imported local
procedure overrides the external procedure.

6.2.1 Menu File 49

2 Insert Procedures...

Synopsis: Insert local procedures of the selected program into the current program.

Via this menu item you can add local procedures from an HDevelop program file to the current program.
All local procedures except the main procedure are loaded from the selected file. If the current program
already contains a local procedure with the same name, the newly added procedure will be renamed by
appending the suffix _COPY_1 to its name. If the current program already contains an external procedure
with the same name, the newly added local procedure overrides the external procedure.

2 Insert Mainbody...

Synopsis: Insert only the main procedure of the selected program into the current program.

Insert the main body of the selected program at the IC. No local procedures are imported. If the current
program does not provide the procedures used in the imported program, the corresponding program lines
are marked as invalid code and will not be executed. Invalid code is turned into valid code by providing
the missing procedures.

6.2.1.6 Save

Synopsis: Save changes of the current HDevelop program or the currently selected external procedure.

Shortcut: Ctrl+S

The actual functionality of this menu entry depends on the selected procedure in the program window:

• Main or local procedure selected in program window:

Save changes of the current HDevelop program. If no file name has been specified yet, a file
selection dialog (page 140) will be opened. Local procedures are saved within the HDevelop
program.

The file name of the program you save is added to the menu Recent Programs.

Please note that modified external procedures are not saved automatically. To save them as well,
select the menu entry Menu File . Save All, or select the corresponding external procedure in
the program window and click Menu File . Save again (see below).

• External procedure selected in program window:

Save changes to the currently selected external procedure back to the originating file. The operation
is done quietly. A modified external procedure is marked with an asterisk (*) in the program
window.

If you try to save a file that has been modified outside of your running instance of HDevelop (possibly by
another user), a warning message is displayed asking whether you want to overwrite the file. If you are
uncertain about the external changes to the file, it is recommended to click No, and save your program
under a different name using Save Program As....

G
U

IR
ef

er
en

ce

50 Graphical User Interface

Figure 6.3: Adding a new directory to the list of external procedure directories.

6.2.1.7 Save Program As...

Synopsis: Save changes of the current HDevelop program to a new file.

Shortcut: Ctrl+Shift+S

A file selection dialog (page 140) is opened. You can specify a new file name and save the current
program under that name. The new file name becomes the default name of the current program so that
subsequent Save operations will use that name instead of the old.

The file name of the program you save is added to the menu Recent Programs.

6.2.1.8 Save Procedure As...

Synopsis: Save current procedure as an external procedure or as an HDevelop program.

Using this menu entry you can save the currently selected procedure as an external procedure or an
HDevelop program. A file selection dialog (page 140) is opened where you can select the file type:

• HDevelop procedures (*.dvp)

The procedure is saved as an external procedure. If the target directory is not already configured in
the external procedure directories (see Menu Edit . Preferences..., External Procedures
(page 66)), HDevelop will suggest adding the directory to the list. An example dialog is displayed
in figure 6.3. If you click No, HDevelop will not be able to access the saved procedure unless the
directory is later added to the external procedure settings manually.

This is one method to make an internal procedure external. If you do not change the name of the
procedure, the internal procedure will conceal the external procedure while it is still loaded.

• HDevelop local procedure (*.dev)

If this file type is selected, an empty main procedure is added to the target file, and the procedure
is added to the program as an internal procedure.

This menu item is disabled if the current procedure is the main procedure.

6.2.1 Menu File 51

Figure 6.4: Export.

6.2.1.9 Save All

Synopsis: Save the current program and all modified external procedures.

Shortcut: Ctrl+Alt+S

If no name has been specified for the current program yet, the behavior is similar to that of Save
Program As.... In addition, all modified external procedures marked with an asterisk (*) in the pro-
gram window’s combo box are saved.

6.2.1.10 Export...

Synopsis: Export program code to a programming language or as a text file.

See also: hdevelop -convert (command line switch)

Using this dialog, you can select an export format and write (parts of) the current program to a file in that
format. The dialog is displayed in figure 6.4.

The button next to the export file name opens a file selection dialog (page 140) to select a file name and
an export format. The following formats are supported (file extension in parentheses):

• Text file (.txt)

• C (.c) . see also section 9.7 on page 215

• C++ (.cpp) . see also section 9.1 on page 199

• C# HALCON/.COM (.cs) . see also section 9.3 on page 205

• C# HALCON/.NET (.cs) . see also section 9.2 on page 203

G
U

IR
ef

er
en

ce

52 Graphical User Interface

• Visual Basic 6.0 HALCON/COM (.bas) . see also section 9.6 on page 213

• Visual Basic .NET HALCON/COM (.vb) . see also section 9.5 on page 210

• Visual Basic .NET HALCON/.NET (.vb) . see also section 9.4 on page 208

The file name extension corresponding to the selected export format is appended to the specified file
name.

6.2.1 Menu File 53

Export Range The export range specifies which parts of the current program are exported. The fol-
lowing options are available:

• Program: The entire program is exported (main procedure and all local procedures). All
used external procedures are exported depending on the setting of the external procedure
options (see below).

• Current Procedure: The current procedure and all used local procedures are exported.
All used external procedures are exported depending on the setting of the external procedure
options (see below).

• External Procedures: All external procedures are exported depending on the setting of
the external procedure options (see below).

The short description and chapter information of procedures are exported as comments. Arbitrary
code can be embedded with special comment lines (see section 9.8 on page 217).

External Procedure Options Defines the export behavior for external procedures.

• Export Procedure Body: Determines whether only the procedure declaration or both the
declaration and the procedure body is exported.

Encoding Specifies the encoding of exported programs. The following options are available:

• Native: Export in the encoding defined by the operating system.

• UTF-8: Force export in UTF-8 encoding (Unicode).

Keep dialog open Checking this box keeps the dialog open for subsequent exports.

6.2.1.11 Read Image

Synopsis: Read an image from a selected directory.

See also: read_image

This submenu contains several directories from which images can be loaded. The directory denoted
by . (a single dot) is the current working directory of HDevelop, i.e., the directory HDevelop was
started from. Below that entry, the directories specified by the environment variables HALCONROOT and
HALCONIMAGES are displayed.

Directories below the separator line are user-defined directories. Each time an image is loaded from a
directory which is not already listed, that directory name is appended to the menu. This is convenient
when several images from a non-standard directory must be read.

When clicking on an entry in this menu, a file selection dialog (page 140) of the given directory is opened.
Depending on the operating system you may be able to switch to a thumbnail view in this dialog. See
figure 6.5 for an example.

After selecting a file name, the dialog Read Image is opened. It displays a thumbnail of the selected
image and some image properties. This is also displayed in figure 6.5. HDevelop suggests a variable
name derived from the selected file name. You may adopt or edit this name. If you want to use a name

G
U

IR
ef

er
en

ce

54 Graphical User Interface

Figure 6.5: Read Image.

of an already created iconic variable, a combo box offers you all known iconic variable names. Simply
click the arrow on the right side of the combo box to select a variable name. Note that the reuse of a
variable deletes the old content and replaces it with the new image.

Click OK to load the image into HDevelop. The operator read_image is inserted at the specified insert
position (IC or PC). The specified iconic variable is updated in the variable window and the image is
displayed in the active graphics window. Clicking Cancel aborts the operation.

6.2.1.12 Cleanup

Synopsis: Clean up allocated resources that are no longer being used.

See also: variable window . context menu (page 119)

This menu item deletes all unused variables (iconic and control data) from the current procedure. These
are variables in the variable window that are no longer used in any operator or procedure call in the
current procedure body. This can happen after the deletion of program lines or after editing variable
names, because the corresponding variables are not deleted automatically. You may use this menu item
during a longer editing session to reorganize your variable window (page 117).

6.2.1.13 Properties...

Synopsis: Display various properties of the current program.

The tab card General displays file properties of the current program, such as file name, path, creation
and modification date, and write permission. It also shows the file size, the number of lines of code, used
and unused local procedures, used external procedures and used protected procedures. This is displayed
in figure 6.6.

6.2.1 Menu File 55

The tab card Used Modules lists the HALCON modules used by the current program. Modules marked
with a lit bulb are used. This window allows you to get an estimate of how many modules your appli-
cation will need in a runtime license. Please refer to the Installation Guide for more information about
modules and runtime licenses. See figure 6.6 for the corresponding dialog of an OCR example.

Check only used procedures If checked, only used procedures are considered for the evaluation of
the used modules. Otherwise, all procedures are considered.

Copy to Clipboard Copy the names of the used modules to the system clipboard. This way the list
can be easily pasted into other applications.

6.2.1.14 Print...

Synopsis: Print the current program or selected procedures.

Shortcut: Ctrl+P

The print dialog is displayed in figure 6.7.

Print Range

Program Complete program including all procedures.

Current Procedure Current procedure and its used procedures.

Selection Highlighted program lines and their used procedures.

External Procedures All external procedures.

Figure 6.6: Properties: General (left), Used Modules (right).

G
U

IR
ef

er
en

ce

56 Graphical User Interface

Procedure Options

Print Procedures Define whether procedures are printed or not.

• Used Local Procedures: print only used local procedures.

• All Local Procedures: print all local procedures.

• Used External Procedures: also print used external procedures.

Only Procedure Interface If this box is checked, the procedure body is not printed. Instead, only
the interface of the procedure is printed.

The bodies of external procedures that are locked by a password (see section “Edit Status of External
Procedures” on page 111) are not printed.

6.2.1.15 Quit

Synopsis: Quit HDevelop.

Checks for: Unsaved changes (page 141)

Shortcut: Ctrl+Q

See also: exit

This menu item terminates HDevelop.

6.2.2 Menu Edit

In this menu you find all necessary functions to modify the current HDevelop procedure body displayed
in the program window. Furthermore, a comprehensive find and replace functionality is offered. You can
also access the preferences of HDevelop from this menu.

Figure 6.7: Print.

6.2.2 Menu Edit 57

6.2.2.1 Undo

Synopsis: Undo your previous editing activities.

Shortcut: Ctrl+Z

You may undo your previous editing activities via this menu item. For example, by selecting it three
times you cancel the last three editing actions. The menu entry always states the last editing action that
will be undone, e.g.,

Undo Insert Program line at 23 (read_image)

The undo functionality purely applies to editing activities. No file operations will be undone. Thus, if
you create an external procedure from some selected lines and undo the operation, the external procedure
will not be removed from the file system.

The undo item does not work for the password assignment for external procedures (see section “Edit
Status of External Procedures” on page 111). To undo the password assignment you either have to
remove the password as long as you can edit the procedure, or you quit HDevelop without saving the
corresponding procedure.

6.2.2.2 Redo

Synopsis: Revoke undo activities.

Shortcut: Ctrl+Y

This is a quick way to restore the state before the last undo operation. The menu action explicitly states
the last Undo action that will be revoked.

6.2.2.3 Cut

Synopsis: Cut the highlighted program lines in the program window to an internal buffer.

Shortcut: Ctrl+X

The highlighted program lines are removed from the selected procedure and placed in an internal buffer
for later use. Additionally, for every procedure call line the corresponding procedure and all procedures
that can be reached from it are copied to the buffer. This is necessary in order to obtain a consistent
program when pasting procedure call lines to a program in which the corresponding procedures might
not exist. The highlighted program lines are also copied to the system clipboard. G

U
IR

ef
er

en
ce

58 Graphical User Interface

6.2.2.4 Copy

Synopsis: Copy the highlighted program lines from the program window to an internal buffer.

Shortcut: Ctrl+C

The highlighted program lines are copied without affecting the program. Additionally, for every proce-
dure call line the corresponding procedure and all procedures that can be reached from it are copied to
the buffer. This is necessary in order to obtain a consistent program when pasting procedure call lines
to a program in which the corresponding procedures might not exist. The highlighted program lines are
also copied to the system clipboard.

6.2.2.5 Paste

Synopsis: Insert the contents of the internal buffer to the currently selected procedure at the IC.

Shortcut: Ctrl+V

To insert the internal buffer in the current HDevelop procedure body, you place the IC at the desired
position and then select this menu item. If the buffer contains procedures that do not exist they are added
to the current program. If the paste buffer contains local procedures that do not exist, they are added to the
current program. If the paste buffer contains calls to external procedures, the paths to those procedures
are copied, too. However, before an external procedure path is added during a paste action, you are asked
whether or not you want to add that particular path to the external procedure paths. The mechanism of
copying and pasting procedure call lines together with the corresponding procedures is an easy way to
transfer procedures between different HDevelop programs. It also works between multiple instances of
HDevelop. The contents of the internal buffer are kept, allowing this command to be repeated.

6.2.2.6 Delete

Synopsis: Delete the highlighted program lines from the program window.

Shortcut: Del

This menu item deletes all highlighted program lines without storing them in an internal buffer. The only
way to get the deleted lines back into your program body is to use the menu item Undo.

6.2.2.7 Activate

Synopsis: Uncomment the highlighted program lines.

Shortcut: F3

All of the highlighted program lines that were previously commented using the Deactivate command
are converted back to executable code. Comment lines created with the operator comment are unaffected
by this command.

6.2.2 Menu Edit 59

Figure 6.8: Find/Replace.

6.2.2.8 Deactivate

Synopsis: Comment out the highlighted program lines.

Shortcut: F4

The highlighted program lines are converted into comments. This is a quick way to suppress the execu-
tion of portions of the program for testing purposes. Comment lines created with the operator comment
are unaffected by this command.

During testing, it is often useful to prevent some lines of the program from being executed. This can be
achieved by selecting the appropriate lines in the program window and then selecting Deactivate. An
asterisk is placed at the beginning of the selected lines, i.e., the lines appear as comments in the program
window and have no influence on the program during runtime.

The deactivated lines are still part of the program, i.e., they are stored like all other lines and their
variables are still needed like all other variables. To reverse this action, select Activate.

Note that you can insert a real comment into your program by using the operator comment.

6.2.2.9 Find/Replace...

Synopsis: Find and replace text in the current program.

Shortcut: Ctrl+F

This dialog provides comprehensive facilities for searching the program code. You can perform a full
text search or search for variable names as well as operator (or procedure) calls. In addition, you can
replace variable names and substitute operator or procedure calls. The dialog is displayed in figure 6.8.

Search Context

The search context can be set to one of the following entities:

Variables Find program lines with variable names that match the search text.

G
U

IR
ef

er
en

ce

60 Graphical User Interface

Operators Find program lines with operator or procedure calls that match the search text.

Texts Full text search. Find program lines that match the search text anywhere. No replacing is allowed
in this mode to prevent breaking the consistency of the program code.

Search Scope

All Search the main procedure, all local and all external procedures.

Program Search the main procedure and all used procedures.

Current Procedure Search the current procedure only.

Please note that locked procedures are not searched (see section “Edit Status of External Procedures” on
page 111).

Search Parameters

Case Sensitive By default, the case of the search text is ignored, thus searching for image will find
Image or IMAGE as well. Check this box to make the search case-sensitive.

Whole Words By default, program lines are matched even if the search text is only part of a word, thus
an operator search for hold matches operator calls to threshold. Check this box to match only
whole words.

Finding Single Occurrences of the Search Text

Enter the search text and click Find. If there is no match, the text field will blink shortly. Otherwise,
the first matching program line in the current procedure is highlighted. Each subsequent click of Find
highlights the next matching program line. If the last matching line of the current scope has been reached,
the text field blinks shortly. The next click on Find starts over at the beginning.

Finding All Occurrences of the Search Text

Enter the search text and click Find All. All matched lines are listed at the bottom of the dialog
along with the corresponding procedure name and line number. Click on a search result to jump to
the corresponding procedure and highlight the matching program line. This function is recommended
before doing a global replace to preview which program lines will be affected. An example is displayed
in figure 6.9.

You can even select multiple lines from the search result by holding the <Ctrl> key. The following
actions may be performed for all selected lines (either from the context menu of the search result or
the corresponding menu entries or tool bar icons): Cut (page 57), Copy (page 58), Delete (page 58),
Activate (page 58), and Deactivate (page 59).

Replacing Variable Names

Click Variables to specify the search context. Enter the search text and the replace text. You can
replace parts of variable names by keeping Whole Words unchecked.

Click Find until the desired line is found. Afterwards, click Replace to replace all occurrences of the
search text in the matched line. The next matching line is highlighted automatically.

Click Replace All to replace all occurrences of the search text in the specified scope. It is recom-
mended to do a Find All beforehand, to estimate the extent of this operation.

6.2.2 Menu Edit 61

Replacing Operator Calls

You can replace one operator or procedure call with another. Because different operators very likely have
different parameters, the source parameters have to be mapped to the target parameters beforehand. See
figure 6.10 for an example.

Click Operators to specify the search context. Enter the source operator or procedure name and the
target operator or procedure name. When both names are specified, the parameters of the target opera-
tor/procedure are listed at the bottom of the dialog. For every target parameter you have to select or enter
a corresponding source parameter.

6.2.2.10 Find Again

Synopsis: Find the next match of the last entered search string.

Shortcut: Ctrl+G

This menu item repeats the search specified via the menu item Find/Replace....

Figure 6.9: Finding all occurrences of the search text.

G
U

IR
ef

er
en

ce

62 Graphical User Interface

Figure 6.10: Replacing operator calls.

6.2.2.11 Preferences...

Synopsis: Set global preferences of HDevelop.

HDevelop maintains a set of preferences that are persistent between sessions. You can customize the ap-
pearance of HDevelop’s user interface (syntax highlighting, fonts, and language) as well as its behavior,
configure the settings of external procedures, and change the default visualization settings of the graphics
windows.

Changes to the settings in this dialog are saved automatically without any user intervention. The location
of the generated file depends on the operating system:

Windows: %APPDATA%\MVTec\HDevelop.ini

UNIX: $HOME/.hdevelop/MVTec/HDevelop.ini

The dialog provides its own menu with the following entries:

Import Using this menu entry you can import a selection of preferences which were previously saved
using the menu entry Export (see below). The dialog is displayed in figure 6.11.

In the import dialog you can select a file with saved HDevelop preferences (default file extension:
.hdp). The check boxes allow to import groups of settings selectively. They correspond to the
tab cards of the dialog. The runtime settings are not persistent and can neither be exported nor
imported.

6.2.2 Menu Edit 63

Export The export dialog is identical to the import dialog. Using the check boxes you can specify
which settings will be saved to the selected file.

Reset Selecting this menu entry resets all preferences (except the window geometry and layout) to the
default settings. If you want to reset the window geometry as well you can start HDevelop with
the following command line switch:

hdevelop -reset_preferences

The functionality of the available tab cards is described in the following sections.

Figure 6.11: Import.

G
U

IR
ef

er
en

ce

64 Graphical User Interface

2 User Interface

This box provides tab cards for setting up the appearance and language of the user interface.

Program Listing

Here, you can specify the font and the syntax highlighting used in the program window. You can choose
one of the pre-defined color schemes, or set up your own by clicking on the colored buttons. Changing
any color automatically switches to the color scheme User defined.

The Indent Size specifies the number of spaces an indenting level in the program window accounts
for. In HDevelop the bodies of loops and conditionals are indented.

Figure 6.12: User Interface . Program Listing.

Fonts

In this tab card, the font settings of HDevelop may be modified.

• General: The font used throughout the user interface (menu entries, labels etc.)

• Help Window: The body font used in the help window (menu Menu Help . Help).

• Program Listing: The font used in the program window. This is the same font as on the tab card
Program Listing (see above).

• Values and Parameters: The font used for displaying values in the variable window and asso-
ciated inspection windows as well as parameters in the operator window.

• Printing: The font used when printing program listings.

6.2.2 Menu Edit 65

Language

In this tab card you can change the language of the user interface. Please note that HDevelop needs to
be restarted if a different language is selected.

Layout

Show full path in main window title This checkbox determines whether the full path of the
current program or only the file name is displayed in the title bar of the HDevelop window.

Default for Organize Windows These combo boxes define the tiled layout of the four main win-
dows of HDevelop when using the menu entry Menu Window . Organize Windows (page 97).

G
U

IR
ef

er
en

ce

66 Graphical User Interface

2 External Procedures

Directories

Use this tab card to manage the list of directories that contain external procedures. The directories are
scanned for external procedures in their listing order. For each directory, the total number of procedures
is displayed. The number of loaded procedures is usually equal to the total number. However, external
procedures are not loaded if a directory contains procedures with the same name as a preceding directory.
The tab card is displayed in figure 6.13.

Figure 6.13: External Procedures . Directories.

Add Select an additional directory from the file selection dialog (page 140). This directory will be
appended to the list. All subdirectories of the selected directory will be scanned as well.

Delete Delete the selected directory from the list. Programs using any external procedure from that
directory will no longer run.

Rescan Rescan all listed directories to reflect any changes in the file system.

6.2.2 Menu Edit 67

External Procedures

This tab card lists all external procedures in the order they are loaded from the configured directories
(page 66). For each procedure, the state (loaded/unloaded), the search directory, the path relative to the
search directory, the number of uses in the current program and the number of unsaved modifications is
listed. The tab card is displayed in figure 6.14.

Figure 6.14: External Procedures . External Procedures.

G
U

IR
ef

er
en

ce

68 Graphical User Interface

Manage Passwords

Using this tab card, you can conveniently manage the editing status and passwords of all external proce-
dures. The external procedures are divided into three categories (from left to right): External procedures
without a password (unprotected), external procedures for which the password has already been entered
in this session (unlocked), and external procedures that are locked with a password. For an explanation
of the different states, see section “Edit Status of External Procedures” on page 111.

Using the arrow buttons between the columns or the left and right cursor key, you can move the selected
external procedures to a different status. If you move procedures from the first to the second column, a
password dialog is displayed which is described in section “Protecting a Procedure” on page 111. The
same password is applied to all selected procedures.

If you move procedures from the second to the third column, the bodies of the corresponding external
procedures will be locked. They can only be accessed if the correct password is supplied. This can either
be done from this dialog by simply moving the corresponding procedures back to the middle column
and entering the password. Or, you can unlock procedures individually from the program window as
described in section “Creating and Editing Procedures” on page 105.

If you select multiple procedures in the third column and move them to the left, a password dialog
appears to unlock the procedures. Only those procedures are moved (and thus unlocked) that match the
supplied password. This way, you can conveniently edit a group of external procedures that share the
same password.

The button Change Password is available if one or more procedures are selected in the middle column.
It assigns a new password to the selected procedures, regardless if the previous passwords were different.

Please note, that password changes or moving procedures from or to the first column require the corre-
sponding procedures to be saved. See Save (page 49) and Save All (page 51).

Figure 6.15: External Procedures . Manage Passwords.

6.2.2 Menu Edit 69

Procedure Use

This tab card lists the usage of procedures grouped by their calling procedures. You can select a proce-
dure and the type of used procedures (either local or external). For the main procedure you can also list
the unused procedures. The tab card is displayed in figure 6.17.

Figure 6.16: External Procedures . Procedure Use.

Unresolved Procedure Calls

This tab card helps you to find unresolved procedures in your current program. If the current program
or the loaded procedures contain unresolved procedure calls, they are listed here along with the calling
procedure name. The tab card is displayed in figure 6.16.

2 General Options

General Options

Select the behavior of pressing the [Return] key in the operator window: Defines
the default button in the operator window. The following options are available:

• OK (Enter and execute): Enter the operator in the program window and execute it (the default
behavior).

• Enter: Enter the operator without executing it.

The selected option may be toggled temporarily in the operator window by pressing <Ctrl>+<Return>,
i.e., if “OK (Enter and execute)” is set, pressing <Ctrl>+<Return> in the operator window enters
the current operator without executing it.

Save program and external procedures automatically before execution. If this option
is enabled and you click any of the execution buttons (like Run or Step Over) and there are unsaved

G
U

IR
ef

er
en

ce

70 Graphical User Interface

Figure 6.17: External Procedures . Unresolved Procedure Calls.

changes in the current program, the program will be saved before being executed. Use this option with
care: You usually do not want to select this option if you are experimenting with a program, e.g., when
trying out different parameter settings.

Number of recent program files: The number of recent program files that are displayed in the
menu Menu File . Recent Programs can be adjusted by altering the value.

Show recent program files: If you select the option Only available, the list of recent programs
contains only programs that are currently available. This option is useful, if the list is likely to contain
files from network drives that might be disconnected at times.

Encoding for saving HDevelop programs and procedures: HDevelop can save programs and
procedures in two different encodings. Upon loading, HDevelop detects the used encoding automatically.
It is recommended to use UTF-8 encoding (Unicode) if the program contains international characters that
exceed the ASCII standard. However, in order to load programs in older versions of HDevelop, you have
to set the encoding to Native.

Precision for displaying real values: This option sets the number of significant digits that
are displayed in the variable window (page 117) and variable inspection windows see “Inspecting and
Editing Variables” on page 122.

6.2.2 Menu Edit 71

Experienced User

• Show HALCON Low Level Error Messages:

Low-level errors are normally invisible for the user because they are transformed into more com-
prehensive error messages or simply ignored. Activating this item generates a message box each
time a low-level error occurs.

• Ignore semantic type:

The lists of the parameter combo boxes in the operator window are extended so that they include
variables whose semantic types do not match the semantic types of the corresponding parameters
of the selected operator.

• Show memory usage:

If this option is activated, the internal temporary memory usage of the last operator or procedure
call is displayed in the status bar.

• Suppress warnings for HALCON operators that are replaced by dev-operators:

Some operators are deprecated in HDevelop, and issue a warning message when selected in the
operator window. Activating this option suppresses the warning message.

2 Visualization Settings

These settings define the default visualization settings for graphics windows when HDevelop is started.
See the description of “Set Parameters...” on page 82. The dialog is displayed in figure 6.18.

Figure 6.18: Visualization Settings . Visualization Parameters.
G

U
IR

ef
er

en
ce

72 Graphical User Interface

2 Runtime Settings

Please note that the runtime settings are not persistent between sessions. The runtime settings are reset
to their default values, when a new HDevelop program is started with Menu File . New Program. The
dialog is displayed in figure 6.19.

Figure 6.19: Runtime Settings.

Give Error See also: dev_set_check

This check box specified the behavior of HDevelop if an error occurs. If it is checked, HDevelop
stops the program execution and displays an error message. Otherwise the error will be ignored.

Show Processing Time See also: dev_update_time

This check box indicates whether the required runtime of the last operator or procedure call should
be displayed after the execution has stopped. It is a measurement of the needed time for the current
operator or procedure call (without output and other management tasks of HDevelop). Along with
the required runtime, the name of the operator or procedure is displayed in the status bar at the
bottom of the main window. Please note that the displayed runtime can vary considerably. This is
caused by the inaccuracy of the operating system’s time measurement procedure.

This option can also be toggled from the context menu of the status bar (see page 44).

Update Program Counter See also: dev_update_pc

This option concerns the display of the current position while running the program. The PC always
indicates the line of the currently executing operator or procedure call or the line before the next
operator or procedure call to execute. Using the PC in this way is time consuming. Therefore, you
may suppress this option after your test phase or while running a program with a lot of “small”
operators inside a loop.

Update Variables See also: dev_update_var

This check box concerns the execution of a program: Every variable (iconic and control) is updated
by default in the variable window. This is very useful in the test phase, primarily to examine the
values of control data, since iconic data is also displayed in the graphics window. If you want

6.2.3 Menu Execute 73

to save time while executing a program with many operator calls you may suppress this output.
Independent of the selected mode, the display of all variables will be updated after the program
has stopped.

Update Graphics Window See also: dev_update_window

This item concerns the output of iconic data in the graphics window after the execution of a HAL-
CON operator. With the default settings, all iconic data computed in the run mode is displayed
in the current graphics window. You may want to suppress this automatic output, e.g., because it
slows down the performance or because the program handles the visualization itself. If the output
is suppressed you have the same behavior as exported C, C++, Visual Basic, Visual Basic .NET,
or C# code, where automatic output of data is not supported.

Enable the Context Menu in the Graphics Window See also: dev_set_preferences

If this option is activated, the context menu is available when clicking in a graphics window with
the right mouse button. This behavior may be undesirable if a program provides user interaction
with the mouse.

6.2.3 Menu Execute

In this menu item you find all necessary functions to execute an HDevelop program. In HDevelop,
program execution is always continued at the top-most procedure call, which in most cases corresponds
to the current procedure call. The procedure body displayed in the program window belongs to the
current procedure.

6.2.3.1 Run

Synopsis: Execute the current program from the PC.

Shortcut: F5

The program line marked by the PC is the first line that is executed. All following program lines are going
to be performed until the end of the current program. After the execution is finished, the main procedure
becomes the current procedure. Note that a break point, stop instruction, or runtime error may interrupt
the execution of your program. If the HDevelop program waits for the user to draw something in the
graphics window, a notification message is printed in the status bar. The program halts until the user
finishes the draw operation and confirms this by clicking the right mouse button.

During the execution of operator or procedure calls the following special behavior occurs:

• You may initiate limited activities. For example, if you double-click variables in the Variable
Window they will be visualized; you may modify parameters for the graphics windows as described
in Menu Visualization; you may even modify the current procedure body.

Note that all user interaction except Stop is disabled during program execution in case the latter
was not started in the main procedure. HDevelop may be slow to react to your actions while the
program is running. This is caused by the fact that HALCON reacts to user input only between
calls to operators.

G
U

IR
ef

er
en

ce

74 Graphical User Interface

• A variable window update during runtime will only be performed if it has not been suppressed (see
section “Runtime Settings” on page 72). In any case, the values of all variables are shown in
the variable window after the execution’s termination.

While the program is running, the menu items Run, Step Over, Step Into, and Step Out (and the
corresponding tool bar buttons) are grayed out, i.e., you cannot execute them.

You have the following possibilities to stop your HDevelop program:

• The program runs until the last operator or procedure call in the current program (i.e., the main
procedure body) has been called. The PC is positioned behind this operator. This is the usual way
a program terminates.

• The menu Menu Execute . Stop (or the corresponding tool bar button) has been pressed.

• A break point has been set (see section “Program Window” on page 102). In this case, the last
operator or procedure call that will be executed is the one before the break point.

• Menu item Menu File . Quit has been executed (see “Quit” on page 56).

• A runtime error occurred. An input variable without a value or values outside a valid range might
be typical reasons. In this case the PC remains in the line of the erroneous operator or procedure
call.

• A stop instruction is executed. The PC remains on the line containing the stop instruction. Note
that stop instructions inside protected external procedures (see “Edit Status of External Proce-
dures” on page 111) are obeyed. However, the code of the protected procedure will only be visible
if the correct password is entered in the program window.

The procedure and procedure call in which program execution was stopped automatically become the
current procedure and procedure call.

6.2.3.2 Run to Insert Cursor

Synopsis: Run from PC to IC.

Shortcut: Shift+F5

The menu entry starts executing the program at the line next to the PC. The execution continues until
the line before the IC is executed. Any break points or stop instructions inbetween cause the program
execution to be stopped.

6.2.3.3 Step Over

Synopsis: Execute the next operator in the current program.

Shortcut: F6

6.2.3 Menu Execute 75

This entry enables you to run a program (even if it is not complete) step by step. HDevelop executes the
operator or procedure call directly to the right of the PC.

After the operator or procedure call has terminated, all computed values are assigned to their respective
variables that are named in the output parameter positions. Their graphical or textual representation in
the variable window is also updated. If iconic data has been computed, you will see its presentation in
the current graphics window.

In the status bar the runtime of the operator or procedure call is indicated (unless the time measurement
has been deactivated).

The PC is then moved to the next operator or procedure call to execute. If the operators or procedure calls
are specified in a sequential order, this is the textual successor. In case of control statements (e.g., if ...
endif or for ... endfor), the PC is set on the end marker (e.g., endif or endfor) after the execution
of the last operator or procedure call inside the statement’s body. After endfor and endwhile, the PC
is always set on the beginning of the loop. If a condition (like if or while) evaluates to FALSE, the PC
is set behind the end marker.

Suggestions in the menu Menu Suggestions are determined for the recently executed operator. Finally,
HDevelop is available for further transactions. Any user input which has been made during execution is
handled now.

6.2.3.4 Step Forward

Synopsis: Execute the next line in the current program.

Shortcut: Shift+F6

This entry always steps forward in the current program. The difference to Step Over is apparent in
loops: Only the first run of the loop is single-stepped. When the closing statement of the loop is reached,
the remaining runs of the loop are executed without interruption, and the line following the loop is
executed stepwise again.

6.2.3.5 Step Into

Synopsis: Step into HDevelop procedure.

Shortcut: F7

This entry allows you to step into procedure calls. Executing Step Into with the PC on a procedure call
line causes the corresponding procedure and procedure call to become the current procedure and proce-
dure call, respectively. The PC is set on the first executable program line in the new current procedure.
Step Into has the same effect as Step Over if the program line to be executed is not a procedure call. G

U
IR

ef
er

en
ce

76 Graphical User Interface

6.2.3.6 Step Out

Synopsis: Step out of HDevelop procedure.

Shortcut: F8

This entry steps out of the current procedure call. Program execution is continued until the first exe-
cutable program line after the previous procedure call in the calling procedure is reached. The previous
calling procedure becomes the current procedure. If the current procedure is the main procedure, the
behavior is the same as Run.

6.2.3.7 Stop

Synopsis: Stop program execution.

Shortcut: F9

HDevelop continues processing until the current operator has completed its computations. This may take
a long time if the operator is taking a lot of time to execute. There is no way of interrupting a HALCON
operator. The procedure and procedure call in which the program execution was stopped becomes the
current procedure and procedure call, respectively. After interrupting a program you may continue it by
selecting Run or Step Over, or Step Into if the next program line is a procedure call.

You may also edit the program before continuing it (e.g., by parameter modification, by exchanging
operators with alternatives, or by inserting additional operators).

6.2.3.8 Call Stack...

Synopsis: Visualize the calling hierarchy.

Selecting this item depicts a dialog that contains a list of the names of all procedures that are currently
called on HDevelop’s internal call stack. The top-most procedure call belongs to the most recently
called procedure, the bottom-most procedure call always belongs to the main procedure. Clicking on a
procedure call in the dialog makes the selected procedure call the current procedure call and thus the
procedure belonging to the selected procedure call the current procedure.

When you click on a procedure call that belongs to a protected external procedure (for protected external
procedures see “Edit Status of External Procedures” on page 111), you can only see the procedure body
if you enter the correct password in the program window.

6.2.3.9 Set Breakpoint

Synopsis: Add break point(s) at selected line(s).

This menu item sets a break point on the lines that are currently selected in the program. In most cases,
however, it is more convenient to set individual break points by holding the <Ctrl> key and clicking in
the left column of the program window as described in “PC, IC, and Break Points” on page 104.

6.2.3 Menu Execute 77

Figure 6.20: Call Stack.

6.2.3.10 Clear Breakpoint

Synopsis: Clear break point(s) at selected line(s).

These menu item clears break points on the lines that are currently selected in the program. In most
cases, however, it is more convenient to clear individual break points by holding the <Ctrl> key and
clicking in the left column of the program window as described in section “PC, IC, and Break Points” on
page 104.

6.2.3.11 Clear All Breakpoints

Synopsis: Clear all break points in the current program.

6.2.3.12 Reset Program Execution

Synopsis: Reset program to its initial state.

Shortcut: F2

The main procedure becomes the current procedure and the call stack is cleared of all procedure calls
except the main procedure call. The latter is reset, i.e., all variables have undefined values and the PC is
set to the first executable line of the main procedure. The break points, however, are not cleared. This
menu item is useful for testing and debugging programs.

6.2.3.13 Reset Procedure Execution

Synopsis: Reset procedure execution.

Shortcut: Shift+F2

The variables of the current procedure are reset, i.e., all variables have undefined values, and the PC is set
to the first executable line of the current procedure. This menu item is useful for debugging procedures
without affecting the calling procedures.

G
U

IR
ef

er
en

ce

78 Graphical User Interface

6.2.3.14 Abort Procedure Execution

Synopsis: Abort execution of current procedure.

Shortcut: Shift+F8

All variables of the current procedure are reset. The PC is set back to the line in the calling procedure
from which the current procedure was called. The calling procedure becomes the current procedure.

6.2.4 Menu Visualization

Via this menu, you can open or close graphics windows and clear their displays. Furthermore, you may
specify their output behavior during runtime. Most functions are also available from the context menu
of the graphics windows.

6.2.4.1 Open Graphics Window...

Synopsis: Open a new graphics window.

See also: dev_open_window

When selecting this menu entry, a dialog window pops up. Here, you may specify some graphics window
attributes. The dialog is displayed in figure 6.21. The position, size and background color of the new
graphics window can be specified. For example, it is more convenient to have a white background while
building graphics for slides or reports (see the HALCON operator dump_window). If the window height
and width are set to -1, the window size is set by HDevelop. It is taken from the persistent preferences of
HDevelop (usually the size of the last graphics window in the previous HDevelop session). A position
value of -1 specifies that the window position is determined by the window manager (in SDI mode).

Figure 6.21: Specifying the parameters of the new graphics window.

The window handle of the new graphics window is displayed in its title bar. This number may be used
in operators that require a window handle (e.g., dev_set_window or dump_window). The handling of
graphics windows is described in more detail in section “Graphics Window” on page 124.

6.2.4 Menu Visualization 79

6.2.4.2 Clear Graphics Window

Synopsis: Clear active graphics window.

See also: dev_clear_window

The history (previously displayed objects) of the window is also removed.

6.2.4.3 Close Graphics Window

Synopsis: Close active graphics window.

See also: dev_close_window

6.2.4.4 Display

Synopsis: Select iconic variable to be displayed in active graphics window.

See also: dev_display

This submenu lists all instantiated iconic variables for quick selection. The submenu is split in three
parts (from top to bottom): images, regions, and XLDs.

6.2.4.5 Window Size

Synopsis: Set window size of active graphics window.

See also: dev_set_window_extents

This submenu offers a list of fixed percentages to resize the graphics window with respect to the size of
the most recently displayed image.

The entries Double and Half change the size of the graphics window to half and double its current
window size, respectively, independent of the size of the displayed image.

The entry Aspect scales down the current window size, so that the aspect ratio of the displayed image
is maintained.

6.2.4.6 Image Size

Synopsis: Zoom image size of active graphics window.

The entry Fit scales the image to completely fill the graphics window.

A list of fixed percentages scales the image with respect to its natural size.

Double and Half double and half the current image size, respectively.

Aspect scales down the image size, so that its aspect ratio is maintained.

G
U

IR
ef

er
en

ce

80 Graphical User Interface

6.2.4.7 Colored

Synopsis: Disambiguate the display of regions and XLDs by using multiple colors.

See also: dev_set_colored

This is an easy way to display multiple regions or XLDs. Each region is displayed in a different color,
where the number of different colors is specified in the submenu. You can choose between 3, 6 and
12 colors. If all regions are still displayed with one color, you have to use the operator connection
beforehand. You can check this also with the operator count_obj. The default setting is to use 12
colors.

6.2.4.8 Color

Synopsis: Display regions, XLDs, and text in a specific color.

See also: dev_set_color

This item allows you to choose a color for displaying segmentation results (regions and XLDs), text
created with write_string, and general line drawings (e.g., 3D plots, contour lines, and bar charts).
The number of colors that are available in the submenu depends on the graphics display (i.e., the number
of bits used for displaying). After selecting a color, the previously displayed region or XLD object will
be redisplayed with this color if the menu entry Apply Immediately is checked.

The default color is red.

6.2.4.9 Draw

Synopsis: Draw type of regions.

See also: dev_set_draw

Here, you can select a visualization mode to display regions. It can either be filled (menu entry fill) or
outlined (menu entry margin). If set to margin, the line thickness of the displayed regions is specified
using the menu item Line Width.

6.2.4.10 Line Width

Synopsis: Line width used for the display of lines in active graphics window.

See also: dev_set_line_width

Here, you determine the line width for painting XLDs, borders of regions, or other types of lines. You
can select between a wide range of widths using the submenu.

6.2.4 Menu Visualization 81

6.2.4.11 Shape

Synopsis: Specify representation shape for regions.

See also: dev_set_shape

Here, you specify the representation shape for regions. You can display not only the region’s original
shape but also its enclosing rectangle or its enclosing circle.

6.2.4.12 Lut

Synopsis: Specify look-up table for gray value mapping.

See also: dev_set_lut

This menu item activates different look-up tables, which can be used to display gray value images and
color images in different intensities and colors. In the case of a true color display the image has to be
redisplayed due to the missing support of a look-up table in the graphics hardware. For color images
only the gray look-up tables can be used, which change each channel (separately) with the same table.

6.2.4.13 Paint

Synopsis: Specify image visualization.

See also: dev_set_paint

This menu item defines the mode to display gray value images. For more information see the menu item
Set Parameters... below.

6.2.4.14 Apply Immediately

Synopsis: Update behavior of visualization changes in active graphics window.

If this menu entry bears a checkmark, any changes to the visualization settings are applied immediately
to the active graphics window. Otherwise, the changes are deferred until the next object is displayed in
the active graphics window.

6.2.4.15 Update Window

Synopsis: Specify the output behavior of the active graphics window.

If this menu entry bears a checkmark, every object (image, region, or XLD) is displayed in the active
graphics window during program execution. Otherwise, the active graphics window is not updated.

G
U

IR
ef

er
en

ce

82 Graphical User Interface

Figure 6.22: Visualization Parameters with multiple graphics windows.

6.2.4.16 Reset Parameters

Synopsis: Reset the visualization parameters of the active graphics window to the default settings.

Here, the display parameters of the active graphics window are set to their initial state (as defined in
the preferences, see page 62). The only exception is the size of the window. To clear the history of
previously displayed objects, use Clear Graphics Window. To set the size, use Window Size.

6.2.4.17 Set Parameters...

Synopsis: Set visualization parameters of the active graphics window with interactive preview.

This menu entry opens the window Visualization Parameters which allows convenient access to
the visualization settings of the active graphics window. Most of the settings are also available as indi-
vidual menu entries in the menu Visualization, but some more advanced settings are only provided
in this window. Furthermore, an interactive preview is provided, which visualizes the current settings.

Select Graphics Window (only with multiple graphics windows) Keep in mind that each graphics
window keeps its own private set of visualization settings. When multiple graphics windows
are opened in the current session, you can switch between the settings of the different graphics
windows by selecting the corresponding window handle.

6.2.4 Menu Visualization 83

Update This check box corresponds to the setting of Menu Visualization . Apply Immediately.
If it is checked, every change of a parameter will immediately lead to a redisplay of the image,
regions, or XLD in the graphics window. Otherwise, the parameters become active for the next
display of an object (double-click on an icon or execution of an operator).

Reset Reset to the visualization settings defined in the Preferences (page 62).

Use settings for new windows Make the current settings also the default settings for new graphics
windows.

2 Pen settings

Here, the display modes for regions and XLDs are specified. You can select the color (single or multiple),
the drawing mode (filled or outlined), the line width, and the shape of the regions.

You can select up to 12 colors by clicking the appropriate check box. They are used to emphasize the
connectivity of different regions in the graphics window. If you choose a single color presentation you
may specify this color by selecting it in the list box.

With the parameter Shape (default is original), you may specify the presentation shape for regions.
You can display not only the region’s original shape but also its enclosing rectangle or its enclosing
circle, etc.

The line width of the presented regions, XLDs, or lines is specified with help of the menu item Line
Width.

For regions the draw mode can be specified: Either it might be filled (item fill) or outlined (item
margin).

These settings are also completely available from the corresponding menu entries in the menu
Visualization. A description of the functionality is provided there. The preview shows the current
settings, which is helpful if the active graphics window does not contain any regions or XLDs.

• “Draw”, see also page 80

• “Colored”, see also page 80

• “Color”, see also page 80

• “Shape”, see also page 81

• “Line Width”, see also page 80

2 LUT settings

Using LUT you are able to load different look-up tables for visualization. With the help of a false color
presentation you often get a better impression of the gray values of an image. In the case of a true
color display, the image has to be redisplayed due to the missing support of a look-up table in the
graphics hardware. For color images only the gray look-up tables can be used, which change each
channel (separately) with the same table.

See the description of the menu entry “Lut” on page 81.

G
U

IR
ef

er
en

ce

84 Graphical User Interface

Figure 6.23: Visualization Parameters: LUT settings.

2 Paint settings

Here, you can select between several graphical presentations for images. Examples are contourline
and 3D-plot. In the default mode the image will be displayed as is, i.e., as a picture.

If you have chosen a presentation mode, the window displays all possible parameters you may modify.
For example, after selecting the item 3D-plot you can specify the following parameters:

• Row and

• Column (position of the center).

• Step (the distance of plot lines in pixels),

• Scale (height of 3D plot),

• Eye height,

• Eye distance (view point),

• Colored (use the gray value of a pixel to draw a line segment instead of one graphic color).

2 Zoom settings

See also: dev_set_part

As opposed to the mouse-based zoom functionality that is available in the tool bar of the graphics win-
dow, the tab card Zoom is parameterized. You can specify the bounding box of the visible area of an
image, or set the center position.

6.2.4 Menu Visualization 85

Figure 6.24: Visualization Parameters: Paint settings.

Figure 6.25: Visualization Parameters: Zoom settings.

This tab card specifies which part of an image, region, XLD, or other graphic item is going to be dis-
played. The four text fields of Set part specify the coordinate system. Upper Left Corner defines

G
U

IR
ef

er
en

ce

86 Graphical User Interface

the pixel which will be displayed at the upper left corner of the window. Lower Right Corner defines
the pixel which will be displayed at the lower right side of the window.

Below the coordinates of the rectangle, you can specify its center.

The buttons Zoom Out and Zoom In activate a zooming with factor 0.5 or 2, respectively.

To get the image’s full view back on your graphics window, you simply click the button Reset.

The button Aspect adjusts the parameters so that the aspect ratio of the image is maintained.

6.2.4.18 Zoom Window

Synopsis: Open zoom window for image details and pixel inspection.

The zoom window is described in section “Zoom Window” on page 131.

6.2.4.19 New Zoom Window

Synopsis: Open additional zoom window.

See section “Zoom Window” on page 131.

6.2.4.20 Gray Histogram

Synopsis: Display gray value histogram of active graphics window.

Selecting this entry opens a sophisticated tool for the inspection of gray value histograms, which can
also be used to select thresholds interactively and to set the range of displayed gray values dynamically.
It is described in section “Gray Histogram Window” on page 133.

6.2.4.21 Feature Histogram

Synopsis: Interactive inspection of feature histograms.

This menu item opens a sophisticated tool for the inspection of feature histograms. It is described in
section “Feature Histogram Window” on page 137.

6.2.4.22 Feature Inspection

Synopsis: Inspection of shape and gray value features of individual regions.

This window provides a tool for the convenient inspection of shape and gray value features of individual
regions. It is described in section “Feature Inspection Window” on page 138.

6.2.5 Menu Procedures 87

6.2.4.23 Save Window ...

Synopsis: Save the contents of the active graphics window to an image file.

The graphics window is saved ‘as is’ (including displayed regions and XLDs). A file dialog pops up.
Select the destination directory, enter a file name, and select the output format (TIFF, BMP, JPEG, PNG,
or PostScript). Afterwards, click Save to actually save the image file, or Cancel to abort.

6.2.5 Menu Procedures

The menu Procedures contains all functionality that is needed to create, modify, copy, or delete HDe-
velop procedures. To save procedures, refer to the Menu File menu (page 46).

6.2.5.1 Create New Procedure

Synopsis: Create a new internal or external procedure.

Selecting this item opens the Procedure Interface Dialog window. The procedure interface dialog and the
mechanism of creating procedures are described in section “Creating and Editing Procedures” on page
105.

6.2.5.2 Duplicate...

Synopsis: Copy a procedure under a different name.

Selecting this menu item opens a dialog with which it is possible to copy existing procedures. The dialog
is displayed in figure 6.26. The combo box Source contains all local procedures in the current program
and all external procedures. In the Target text field the name of the copied procedure can be entered.
Clicking the OK button creates a copy of the source procedure, Cancel dismisses the dialog. The copy
retains the status (local or external) of the source procedure. The copy of an external procedure is placed
in the same directory as the source procedure.

Figure 6.26: Duplicate Procedure.

Duplicating external procedures that are protected with a password (see “Edit Status of External Proce-
dures” on page 111) is also possible. The associated password is also used for the duplicated procedure.

G
U

IR
ef

er
en

ce

88 Graphical User Interface

6.2.5.3 Edit Interface

Synopsis: Edit procedure interface.

This menu item opens the procedure interface window and displays the interface of the current procedure
(or the first procedure from the list, if “main” is the current procedure). The menu item has the same
effect as the button Edit Interface (page 107) in the Program Window (see page 102).

The interface of external procedures that are protected with a password can only be edited after the
corresponding password has been entered (see section “Edit Status of External Procedures” on page 111.

6.2.5.4 Delete Current

Synopsis: Delete the current procedure.

If the current procedure is a local procedure, it is deleted from the program and the main procedure
becomes the current procedure. All calls to the local procedure in the current program are marked as
invalid code. This item is disabled if the current procedure is the main procedure, or if it is an external
procedure.

6.2.5.5 Delete All Unused Local

Synopsis: Delete all local procedures that are not used in the current program.

All local procedures that cannot be reached by any procedure call from the main procedure are deleted
from the program. If the current procedure is among the deleted procedures, the main procedure becomes
the current procedure.

6.2.5.6 Insert Used As Local

Synopsis: Insert all used external procedures into the current program as local procedures.

The external procedures used in the current program are copied as local procedures. The external proce-
dure files are left untouched.

6.2.5.7 Insert All As Local

Synopsis: Insert all external procedures into the current program as local procedures.

All external procedures are copied to the current program as local procedures, regardless if they are used
or not. The external procedure files are left untouched.

With this menu item, you can change all of your procedures to become local. If your program contains
protected external procedures, HDevelop issues a warning and inserts only the procedures that are not
locked. Individual procedures can be made local (or external) via the check box Local in the procedures
interface (see section “Procedure Interface Dialog” on page 107). For changing the edit status of an
external procedure see section “Edit Status of External Procedures” on page 111.

6.2.6 Menu Operators 89

6.2.5.8 Make All External

Synopsis: Convert all local procedures into external procedures.

The formerly local procedures are now stored as external procedures in a selectable directory of the list
of external procedure directories (see section “External Procedures” on page 66). If no directories
are configured, you can select a target directory from a dialog. HDevelop will add the selected target
directory to the list if you tell it to. Otherwise, the operation will be cancelled. For changing the edit
status of an external procedure see section “Edit Status of External Procedures” on page 111.

6.2.5.9 External Procedure Settings...

Synopsis: Configure settings for external procedures.

When you select this menu item, the window Preferences... . External Procedures appears.
With it, you can define one or more directories where external procedures are stored and searched for.
Please note that by default no directory is defined. Inside the defined directories, also the contained
subdirectories are scanned. Therefore, it is recommended to select directories with a restricted depth in
order to speed up the search process. If you change the list of directories, the list of all available external
procedures is updated.

See also section “External Procedures” on page 66.

6.2.5.10 Edit Procedure

Synopsis: Select a procedure for editing in the program window.

This submenu lists all procedures in submenus grouped by chapter and section title (see section “Proce-
dure Interface Dialog” on page 107). Procedures without a chapter title are listed directly in the menu
Edit Procedure. If you click on a procedure name, it will become the current procedure in the program
window. You can also select procedures in the combo box of the program window (page 102).

6.2.6 Menu Operators

Synopsis: Select HALCON operators and procedures.

This menu item comprises all HALCON and HDevelop operators including the HDevelop control con-
structs. Furthermore, procedures can be selected from a submenu at the bottom of this menu.

G
U

IR
ef

er
en

ce

90 Graphical User Interface

6.2.6.1 Control

Synopsis: Select control flow operators.

Here, you may select control structures for the program. This involves the execution of a program seg-
ment (henceforth named body) depending on a test (if, ifelse, and elseif) and the repetition of a
program segment (for, while, and repeat) with controlled loop execution (break, continue). Fur-
thermore, you may stop the program’s execution at any position (stop) or terminate HDevelop (exit).
The operators assign and insert do not influence the execution, but serve to specify values for con-
trol data (assignment). The operator comment is used to add a comment, that means any sequence of
characters, to the program. The operator return terminates the current procedure call and returns to
the calling procedure (see section “Creating and Editing Procedures” on page 105 for more information
about HDevelop procedures).

Selecting a menu item displays the corresponding control construct in the operator window, where you
can set the necessary parameters. After specifying all parameters you may transfer the construct into
your program. A direct execution for loops and conditions is not possible, in contrast to other HDevelop
and HALCON operators, because you have to specify the loop’s and condition’s body first to obtain
useful semantics. If necessary, you may execute the program after the input with Step Over or Run.
The IC is positioned after the construct head to ensure the input of the construct’s body occurs in the
correct place. This body is indented to make the nesting level of the control constructs visible, and thus
to help you in understanding the program structure. The semantics for loops and conditions are shown
in section “Control Flow Operators” on page 192.

Assignment

The operator assign serves as an assignment operator for control variables (numbers and strings). Anal-
ogously to “normal” operators the input is made in the operator window by specifying both “parameters”
Input and Result (i.e., right and left side of the assignment). An instruction in C, e.g.,

x = y + z;

is declared inside the operator window as

assign(y + z,x)

and displayed in the program window by

x := y + z

The operator insert implements the assignment of a single value (tuple of length 1) at a specified index
position of a tuple. Thus, an array assignment (here in C syntax)

a[i] = v;

is entered as

6.2.6 Menu Operators 91

insert(a,v,i,a)

in the operator window, and is displayed as

a[i] := v

in the HDevelop program window.

Program termination

The operators stop and exit are used to terminate the program. More precisely, stop interrupts an
execution and exit terminates HDevelop. Having interrupted the execution you may continue the pro-
gram by pressing Step Over or Run. This is useful, e.g., in demo programs to install defined positions
for program interruption. Under UNIX, you can use exit in combination with a startup file and the
command line switch -run. Thus, HDevelop will not only load and run your application automatically,
but also terminate when reaching exit.

Comments

The operator comment allows to add a line of text to the program. This text has no effect on the execution
of the program. A comment may contain any sequence of characters.

6.2.6.2 Develop

Synopsis: Select operators specific to HDevelop.

This menu contains several operators that help to adapt the user interface. These operators offer the
same functionality that you have using mouse interaction otherwise. They are used to configure the
environment from within a program. Using these operators, the program performs actions similar to the
setting of a color in the parameter window, opening a window in the menu bar, or iconifying the program
window with the help of the window manager.

All operators in this menu start with the prefix dev_. It has been introduced to have a distinction to the
underlying basic HALCON operators (e.g., dev_set_color and set_color).

The effects of each operator are described as follows:

dev_open_window, dev_close_window, dev_clear_window The operators dev_open_window and
dev_close_window are used to open and to close a graphics window, respectively. During
opening, the parameterization allows you to specify the window’s size and position. The oper-
ator dev_clear_window clears the active window’s content and its history. This corresponds to
the usage of the button Clear in the graphics window. Please note that dev_open_window and
dev_close_window are not exported to Visual Basic, Visual Basic .NET, and C# because here
one HWindowXCtrl is used.

dev_set_window_extents With this operator, you can set the size and position of the active HDevelop
graphics window.

G
U

IR
ef

er
en

ce

92 Graphical User Interface

dev_set_window This operator activates the graphics window containing the given ID. This ID is an
output parameter of dev_open_window. After the execution, the output is redirected to this win-
dow. This operator is not needed for exported code in C++ or C, because here every window
operation uses the ID as a parameter. The operator has no effect for exported code in Visual Basic,
Visual Basic .NET, and C#.

dev_set_color, dev_set_colored dev_set_color has the same effects as the menu item Menu
Visualization . Color (page 80). dev_set_colored is equal to the menu item Menu
Visualization . Colored (page 80).

dev_set_draw This operator has the same effects as the menu item Menu Visualization . Draw
(page 80).

dev_set_line_width For an explanation see the menu item Menu Visualization . Line Width
(page 80).

dev_set_lut For an explanation see the menu item Menu Visualization . Lut (page 81).

dev_set_paint For an explanation see the menu item Menu Visualization . Paint (page 81). If
you want to specify all possible parameters of a given paint mode, you have to specify them as a
tuple, analogously to the HALCON operator set_paint.

dev_set_shape For an explanation see the menu item Menu Visualization . Shape (page 81).

dev_set_part This operator adjusts the coordinate system for image, region, XLD and other graphic
output. This is done by specifying the upper left and the lower right corner coordinates. This
specified part is shown in the entire graphics window. If the width or height of the specified
rectangle has a negative value (e.g., Row1 > Row2), the result is equivalent to the menu Menu
Visualization . Reset Parameters: the zoom mode is switched off, i.e., the most recently
displayed image fills the whole graphics window. This feature of dev_set_part is not supported
for exported C, C++, Visual Basic, Visual Basic .NET, and C# code.

dev_display Iconic variables are displayed in the active graphics window by this operator. It is rea-
sonable to do this when the automatic output is suppressed (see dev_update_window below and
Menu Edit . Preferences... . Runtime Settings (page 72).

dev_clear_obj This operator deletes the iconic object stored in the HDevelop variable that is passed
as the input parameter. In the variable window, the object is displayed as undefined (with a ? as
its icon).

dev_inspect_ctrl This operator opens an inspection window displaying the values of the variable
passed to the operator. To inspect multiple variables at once, you can pass a tuple of variable
names. In most cases a list dialog is opened, which shows all values of the variable (see also
section “Inspecting and Editing Variables” on page 122). In the case of an image acquisition
device handle, a description of this image acquisition device is opened. In addition, this dialog
allows online grabbing of images (see page 122). This operator is not supported for exported
code.

dev_close_inspect_ctrl This is the opposite operator to dev_inspect_ctrl, and closes the in-
spect window. This operator is not supported for exported code.

6.2.6 Menu Operators 93

dev_map_par, dev_unmap_par These operators open and close the parameter dialog, which can also
be opened using the menu Menu Visualization . Set Parameters.... This operator is not
supported for exported code.

dev_map_var, dev_unmap_var These operators iconify the variable window (dev_unmap_var), and
retransform the iconified window to the normal visualization size, respectively (dev_map_var).
This means that the variable window always remains visible on the display in one of the two ways
of visualization. These operators can be executed with the help of the window manager. These
operators are not supported for exported code.

dev_map_prog, dev_unmap_prog Analogously to dev_map_var and dev_unmap_var, these opera-
tors iconify or deiconify the program window. These operators are not supported for exported
code.

dev_update_window, dev_update_var, dev_update_time, dev_update_pc Using these opera-
tors, you may configure the output at runtime. It corresponds to the settings in menu Menu Edit
. Preferences... . Runtime Settings (page 72). These operators are not supported for
exported code.

dev_set_check This operator is equivalent to set_check of the HALCON library. It is used to handle
runtime errors caused by HALCON operators that are executed inside HDevelop. The parameter
value ’give_error’, which is the default, leads to a stop of the program together with an error
dialog if a value not equal to H_MSG_TRUE is returned. Using the value ’~give_error’, errors or
other messages are ignored and the program can continue. This mode is useful in connection with
operators like get_mposition, file_exists, read_image, or test_region_point, which
can return H_MSG_FAIL.

dev_error_var This operator specifies a variable that contains the return value (error code) of an
operator after execution. This value can be used to continue, depending on the given value.
dev_error_var is normally used in connection with dev_set_check. Note that, as the proce-
dure concept in HDevelop only allows for local variables, the variable set by dev_error_var will
only be valid in calls to the relevant procedure. Furthermore, every corresponding procedure call
will have an own instance of the variable, i.e. the variable might have different values in different
procedure calls. For an example how to use dev_error_var in connection with dev_set_check
see %HALCONROOT%\examples\hdevelop\Graphics\Mouse\get_mposition.dev.

Please note that operations concerning graphics windows and their corresponding operators have addi-
tional functionality in comparison to HALCON operators with corresponding names (without dev_):
graphics windows in HDevelop are based on HALCON windows (see open_window in the HALCON
reference manual), but in fact, they have an enhanced functionality (e.g., history of displayed objects,
interactive modification of size, and control buttons). This is also true for operators that modify visualiza-
tion parameters (dev_set_color, dev_set_draw, etc.). For example, the new visualization parameter
is registered in the parameter window when the operator has been executed. You can easily check this
by opening the dialog Menu Visualization . Set Parameters... . Pen and apply the operator
dev_set_color. Here you will see the change of the visualization parameters in the dialog box. You
have to be aware of this difference if you export dev_* to C, C++, Visual Basic, Visual Basic .NET, and
C# code.

G
U

IR
ef

er
en

ce

94 Graphical User Interface

In contrast to the parameter dialog for changing display parameters like color, the corresponding opera-
tors (like dev_set_color) do not change the contents of the graphics window (i.e., they don’t cause a
redisplay). They are used to prepare the parameters for the next display action.

6.2.6.3 Classification, File, Filter, ...

Synopsis: Select HALCON operators.

In the these menu entries, you can find all HALCON operators, arranged in chapters and subchapters.
This set of image analysis operators forms the most important part of HALCON: the HALCON library.
HALCON operators implement the different image analysis tasks such as preprocessing, filtering, or
measurement.

You may look for a detailed description of each operator in the HALCON reference manual. Operators
in the menus Control and Develop are special operators of HDevelop. Thus, you will not find them in
the reference manuals for HALCON/C, HALCON/C++, or HALCON/COM.

The menu has a cascade structure, according to the chapter structure of the HALCON reference manual.
As this menu is built up dynamically when HDevelop starts, it might take some time until it is available.
During the build-up time the menu is “grayed out”. Selecting a chapter of the menu opens a pulldown
menu with the corresponding subchapters or operators, respectively.

This operator hierarchy is especially useful for novices because it offers all operators sorted by thematic
aspects. This might be interesting for an experienced user, too, if he wants to compare, e.g., different
smoothing filters, because they reside in the same subchapter. To get additional information, a short
description of an operator (while activating its name in the menu) is displayed in the status bar.

Note, that some operators are visible in the menus but should not be used, e.g., open_window (in Menu
Operators . Graphics . Window) or reset_obj_db (in Menu Operators . System . Database). If
you select one of these operators, a warning text is displayed in the operator window. This warning will
usually refer to a legal substitute. In the case of most of these operators, you should use the corresponding
Develop operator (e.g., dev_open_window instead of open_window) within HDevelop.

6.2.7 Menu Suggestions

Synopsis: Let HDevelop suggest operators based on the current operator.

This menu shows you another possibility how to select HALCON operators. But here they are proposed
to you in a different manner. It is assumed that you have already selected an operator in a previous step.
Depending on this operator, five different suggestions are offered.

Suggestions are separated into groups as described below.

6.2.7.1 Predecessors

Many operators require a reasonable or necessary predecessor operator. For example, before comput-
ing junction points in a skeleton (junctions_skeleton), you have to compute this skeleton itself

6.2.8 Menu Assistants 95

(skeleton). To obtain a threshold image you usually use a lowpass filter before executing a dynamic
threshold (dyn_threshold). Using the watershed algorithms (watersheds), it is reasonable to apply a
smoothing filter on an image first, because this reduces runtime considerably.

6.2.7.2 Successors

In many cases the task results in a “natural” sequence of operators. Thus, as a rule you use a thresholding
after executing an edge filter or you execute a region processing (e.g., morphological operators) after a
segmentation. To facilitate a reasonable processing, all the possible operators are offered in this menu
item.

6.2.7.3 Alternatives

Since HALCON includes a large library, this menu item suggests alternative operators. Thus, you
may, for example, replace mean_image with operators such as gauss_image, sigma_image, or
smooth_image.

6.2.7.4 See also

Contrary to Alternatives, operators are offered here which have some connection to the current oper-
ator. Thus, the median filter (median_image) is not a direct alternative to the mean filter (mean_image).
Similarly, the regiongrowing operator (regiongrowing) is no alternative for a thresholding. In any
case, they offer a different approach to solve a task. References might consist of pure informative nature,
too: the operator gen_lowpass, which is used to create a lowpass filter in the frequency domain, is a
reasonable reference to a Gaussian filter.

6.2.7.5 Keywords...

This menu item gives access to HALCON operators through keywords which are associated with each
operator. The tab card Keywords of the online help window is opened. It is described in section
“Keywords” on page 129.

6.2.8 Menu Assistants

This menu assembles assistants for specific machine vision tasks. Each assistant provides a user interface
tailored to the requirements of its task. Using this interface, the user can interactively set up and configure
the assistant to solve a specific machine vision problem. Once the configuration is working satisfactorily,
the assistant can be instructed to generate HDevelop code into the current program. You can also save
an assistant’s configuration for later use.

Currently, the following assistants are available:

• Image Acquisition: Using this assistant you can generate code to acquire images from different
sources (files, directories, image acquisition interfaces). It is described in section 4.3 on page 23.

G
U

IR
ef

er
en

ce

96 Graphical User Interface

• Matching: Using this assistant you can generate code to perform shape-based matching in your
HDevelop program. You can load a reference image to train a model. Using a selection of test
images containing the model you can tweak a set of parameters to find the model in all varia-
tions permitted by the application. Furthermore, the parameters can be optimized to increase the
processing speed. The assistant is described in the online help of HDevelop.

Common Features of all HDevelop Assistants

Some features are common to all HDevelop assistants. First of all, you can open multiple assistants. As-
sistants of the same type are numbered consecutively, e.g., if you open two image acquisition assistants,
they are labeled Image Acquisition 01 and Image Acquisition 02, respectively. When you open
a new assistant, a menu entry is added to the top of the menu Assistants, from which the correspond-
ing assistant can be restored if it has been closed. The current setup is lost and the menu entry disappears
if the associated assistant is exited explicitly (see below). If you want to keep the setup for later sessions,
you can always save it to a file.

Different assistants have different menus (usually corresponding to the available tab cards). These menus
provide functionality specific to the assistant’s task. There are also some menu entries that are available
in every assistant. They are described in the following.

File . Load Assistant Settings Using this entry, a previous configuration can be loaded from a
file which has been generated using the menu entry Save Current Assistant Settings.

File . Save Current Assistant Settings You can save the configuration of an assistant to a file
for later use. The default extension for these configuration files is .das.

File . Close Dialog The assistant is closed, but the current configuration is preserved. This menu
entry performs the same function as the assistant’s close button. You can restore a closed assistant
by clicking the numbered entry in the menu Assistants which is generated when a new assistant
is opened.

File . Exit Assistant The assistant is quit. The resources used by the assistant are released. The
link to the generated code is lost, i.e., it is not possible to restore the assistant unless the setup has
been saved to a file. The menu entry in the menu Assistants is also removed.

Code Generation . Insert Code Insert HDevelop code based on the current settings of the assistant.
The code is inserted at the IC. As long as the associated assistant is not quit, you can change the
settings and update the code accordingly.

Code Generation . Release Generated Code Lines The link to the generated code is cut off.
The code remains in the program, but can no longer be updated or removed from the (formerly)
associated assistant. Nevertheless, you can generate new code with the current settings of the
assistant.

Code Generation . Delete Generated Code Lines The generated code is deleted from the pro-
gram. Please note that any manual changes to the generated lines are deleted as well.

Code Generation . Show Code Preview Generate a preview of the code based on the current setup
of the assistant. If the program already contains generated code which is linked to the current
assistant, the changed code lines can be compared side-by-side in the preview.

6.2.9 Menu Window 97

6.2.9 Menu Window

This menu offers support to manage the sub-windows of the main window, i.e., the program, operator,
variable, graphics window(s), and possibly other dialogs. At the bottom of the menu all open windows
are listed. Clicking an entry here brings the corresponding window to the front.

6.2.9.1 Open Graphics Window

Synopsis: Open an additional graphics window.

See also: dev_open_window, and section “Open Graphics Window...” on page 78.

6.2.9.2 Open Program Listing

Synopsis: Open the program window.

See also: dev_map_prog

This menu item is grayed out if the program window is already open.

6.2.9.3 Open Variable Window

Synopsis: Open the variable window.

See also: dev_map_var

This menu item is grayed out if the variable window is already open.

6.2.9.4 Open Operator Window

Synopsis: Open the operator window.

This menu item is grayed out if the operator window is already open.

6.2.9.5 Organize Windows

Synopsis: Clean up window area of main window.

When selecting this item, the main window is split into four areas: by default, all graphics windows are
cascaded to fit the upper left quarter, the operator window fits the upper right quarter, the variable window
fits the lower left quarter, and the program window fits the lower right quarter. The positioning can be
adjusted in the preferences (see page 65). All other windows that are currently open are cascaded at the
center of the main window. In this arrangement, the four most important windows are placed in a non-
overlapping fashion to provide maximum accessibility. It is therefore the default layout of HDevelop.
The tiled layout is displayed in figure 6.27.

G
U

IR
ef

er
en

ce

98 Graphical User Interface

Figure 6.27: Tiled window layout of HDevelop.

6.2.9.6 Cascade Windows

Synopsis: Arrange windows in a cascade.

By selecting this item, HDevelop arranges the currently open windows in a cascade. The cascaded
window layout is displayed in figure 6.28.

6.2.9.7 SDI / MDI

Synopsis: Switch between multiple-document interface (the default) and single-document interface.

The different modes are explained in section “Main Window” on page 43.

6.2.10 Menu Help 99

Figure 6.28: Cascaded window layout of HDevelop.

6.2.10 Menu Help

Here, you may query information about HALCON itself and all HALCON and HDevelop operators.

6.2.10.1 Help

Synopsis: Open the online help window.

Shortcut: F1

The help window provides access to the documentation of HDevelop and HALCON. In particular, the
complete HALCON Reference Manual is available with extensive documentation of each operator. An-
other possibility of requesting information about the current operator is pressing the button Help inside
the operator window (see section “Operator Window” on page 113).

The help window is described in section “Help Window” on page 127.

6.2.10.2 HALCON Reference

Synopsis: Display the HALCON Reference Manual in the online help window.

6.2.10.3 HDevelop Reference

Synopsis: Display the HDevelop Reference chapter in the online help window.

G
U

IR
ef

er
en

ce

100 Graphical User Interface

6.2.10.4 HDevelop Language

Synopsis: Display the HDevelop Language chapter in the online help window.

6.2.10.5 Search Documentation

Synopsis: Open the online help window and show the search tab to enter search queries.

The online help provides an integrated search engine. You can enter search queries there and search the
HALCON documentation suite.

The search syntax is described in section “Help Window” on page 127.

6.2.10.6 HALCON News (WWW)

Synopsis: Visit the HALCON home page.

This menu item lets you check for the latest news about HALCON on MVTec’s WWW server, e.g.,
whether new extension packages, image acquisition interfaces, or HALCON versions are available.

6.2.10.7 About

Synopsis: Display HDevelop version and licensing host IDs.

This menu item delivers information about the current HALCON and HDevelop version. Furthermore,
it lists host IDs detected by the license manager (see the Installation Guide for more information).

6.3 Tool Bar 101

6.3 Tool Bar

You use most icons in this tool bar to accelerate accessing important HDevelop features. These are
features which you are performing many times while working with HDevelop. Hence, there are buttons
to handle your HDevelop programs and to edit them. The most important buttons are used to start and to
stop a program (or parts of a program).

New program (Ctrl+N) (see page 46).

Open program (Ctrl+O) (see page 46).

Save program or selected external procedure (Ctrl+S) (see page 49).

Save all modifications in the program and external procedures (Ctrl+Alt+S) (see page 51).

Cut highlighted program lines to internal buffer and system clipboard (Ctrl+X) (see page 57).

Copy highlighted program lines to internal buffer and system clipboard (Ctrl+C) (see page 58).

Paste program lines from internal buffer (Ctrl+V) (see page 58).

Delete highlighted program lines (Del) (see page 58).

Undo last editing action (Ctrl+Z) (see page 57).

Redo last editing action (Ctrl+Y) (see page 57).

Activate highlighted program lines (F3) (see page 58).

Deactivate highlighted program lines (F4) (see page 59).

Run program from PC (F5) (see page 73).

Step over next program line (F6) (see page 74).

Step into procedure call (F7) (see page 75).

Step out of procedure (F8) (see page 76).

Stop program execution (F9) (see page 76).

Reset program execution (F2) (see page 77).

Reset current procedure execution (Shift+F2) (see page 77).

G
U

IR
ef

er
en

ce

102 Graphical User Interface

About current procedure execution (Shift+F8) (see page 78).

Display visualization settings (see page 82).

Open zoom window (see page 86).

Open gray histogram window (see page 86).

Open feature histogram window (see page 86).

Open feature inspection window (see page 86).

Open help window (F1) (see page 99).

6.4 Program Window

The program window (see figure 6.30 on page 104) is divided into three areas:

• At the top, you find elements for selecting procedures or editing the interface of existing proce-
dures.

• Below this, the column at the left side contains the PC, the IC, and optionally, one or more break
points.

• The main part of the program window contains the program code of the current HDevelop proce-
dure.

These three parts are described in the following sections, but in the reverse sequence.

6.4.1 The Program Area

The main part of the program window contains the program code of the current HDevelop procedure.
Here, the user can obtain information about the inserted operators or procedure calls. A program is
built up such that every line contains exactly one operator or procedure call with its parameters, or an
assignment. An exception are the conditional constructs if and ifelse, and the loop constructs while,
for, and until. They contain two, and in case of ifelse three program lines, which enclose the body.
Every line starts with an operator or procedure name, which is indented, if necessary, to highlight the
structure created by the above mentioned control structures. After the operator or procedure name the
parameters are displayed in parentheses. Parameters are separated by commas.

The program window is used to visualize program lines, but not to modify them. You cannot change
a program body by modifying the text directly. Editing the program text in HDevelop is done in the
operator window (see section “Operator Window” on page 113). The main reason for this principle is
the advantage that it facilitates providing sophisticated help. Thus, many input errors can be avoided.

6.4.1 The Program Area 103

Figure 6.29: Editing a program line.

Editing Program Lines

To edit a line of a program, you double-click it with the left mouse button. In case of conditions and
loops the operator line with the parameters has to be selected. For example, you have to double-click
for in a for...endfor loop, but until in a repeat...until loop. You may edit only one operator
or procedure call at a time.

After double-clicking a program line, note the following:

• The program line is highlighted in a slanted font. This serves as a reminder that you are altering an
existing program line instead of adding a new one.

• The operator or procedure call of the program line is displayed in the operator window and can be
edited there.

• The window title of the operator window clearly indicates that you are editing an existing program
line. It also displays the procedure name and the line number.

• Unless the program line is deleted while still being edited, clicking OK or Replace in the operator
window will replace the original program line. This is even the case if the corresponding program
line is no longer in view, e.g., if a different procedure is selected in the program window.

If the program line is deleted before the changes are committed in the operator window, the edited
line will be inserted as a new program line at the IC. If you are in doubt about the current status,
check the window title of the operator window.

Figure 6.29 illustrates the editing process.

Copy, Paste, Delete

Besides editing the parameters of a single operator or procedure call, single and multiple lines can be
deleted, cut, or pasted in one step using simple mouse functions. To use this feature, you select one or
more lines using the mouse:

• You select one line by clicking on it. Previously activated lines will then become deactivated.

G
U

IR
ef

er
en

ce

104 Graphical User Interface

PC

IC

BP

current procedure

Figure 6.30: Program example with the PC, IC, and a break point (BP).

• To activate more than one line you have to press the <Ctrl> key while clicking on the line.

• The <Shift> key is used to activate a sequence of lines using one mouse click: All lines between
the most recent activation and the new one will become activated.

After the selection of lines, the edit function can be activated by either using the menu Menu Edit, or
the tool bar (see section “Tool Bar” on page 101), or via the context menu of the program window (see
page 105).

6.4.2 PC, IC, and Break Points

The column to the left of the displayed program body contains the PC, represented as a green arrow
pointing to a program line, the IC (a black triangle between two program lines) and optionally one or
more break points (BP–a red STOP sign).

The program counter resides in the line of the next operator or procedure call to execute. The IC indicates
the position to insert a new program line. A break point shows the program line on which the program is
stopped.

You may position or activate these three labels by clicking in the left column of the program window.
That column itself is divided into three areas: Depending on the horizontal position of the mouse cursor,
all three label types are available. The actual type is indicated through a change of the mouse cursor.

6.4.3 Creating and Editing Procedures 105

At the leftmost position, break points can be placed. In the middle position, the PC can be placed. And
finally, in the rightmost position, the IC can be placed. HDevelop assists you by displaying the icon that
would be inserted. If this seems confusing, you can force a specific label by holding down the following
keys regardless of the horizontal position:

• Hold <Shift> to place the IC.

• Hold <Ctrl> to place or delete a BP.

• Hold <Shift>+<Ctrl> to place the PC.

Context Menu

By clicking into the program window with the right mouse button you can open a context menu, which
contains shortcuts to some of the actions of the menus Menu Edit, e.g., copy and paste lines, and Menu
Execute, e.g., activate and deactivate lines or set and clear break points. Please note that these actions
behave slightly differently than their counterparts in the main menus: When called via the main menus,
the actions are performed only on the selected part of the program; if nothing is selected, no action is
performed. In contrast, when an action is called via the context menu and no line is selected in the
program, the action is performed for the line onto which you clicked with the right mouse button.

Note that any actions that modify the position of the PC will cause the call stack to pop all procedure
calls until the current procedure call remains on top. This is relevant in case the current procedure call is
not the top-most procedure call and is necessary to secure the consistency of the call stack. Modification
of the PC can happen as well directly as described above or indirectly by, e.g., inserting a program line
above the PC in the current procedure body.

The following entries of the context menu are not available elsewhere:

Run Until Here Execute the lines from the PC to the line under the mouse cursor.

Help If the line under the mouse cursor contains an operator call, the corresponding page is opened in
the online help window. This is a shortcut to double-clicking the program line and clicking Help
in the operator window.

Show Procedure If the line under the mouse cursor contains a procedure call, the corresponding pro-
cedure becomes the current procedure, i.e., it is displayed for editing.

Show Caller This menu item lists all the places in the current program where the currently displayed
procedure is called. Clicking on an entry takes you to the corresponding program line.

6.4.3 Creating and Editing Procedures

HDevelop always displays one procedure, the current procedure, at a time. The combo box on top of the
program window displays the name of the current procedure. You can select another procedure from this
box. The first element of the list is the main procedure, followed by the local procedures of the current
program, followed by the external procedures. The procedures are sorted alphabetically. After being
selected from the list, a procedure becomes the current procedure and the corresponding procedure call
becomes the current procedure call. If the selected procedure has multiple calls on the stack, the last of
the procedure calls is displayed.

G
U

IR
ef

er
en

ce

106 Graphical User Interface

Figure 6.31: Context menu of the program window.

Figure 6.32: Display of a locked procedure in the program window.

If the procedure is locked, a password button is displayed instead of the procedure body. See figure 6.32
for an illustration. In order to access the code, the correct password has to be entered (see also section
“Edit Status of External Procedures” on page 111).

While the body of the current procedure is visualized in the program window, the procedure interface can
optionally be viewed or modified in the procedure interface dialog displayed in a separate window. The
button Edit Interface at the top of the program window performs the same action as the menu item
Menu Procedures . Edit Interface. Activating this button invokes the procedure interface dialog.

6.4.3 Creating and Editing Procedures 107

control parameters

output

input

iconic parameters

input

output

add new parameter

only for external procedures

Figure 6.33: Creating a new procedure.

6.4.3.1 Procedure Interface Dialog

The procedure interface dialog enables you to define the interface of new procedures, and view and edit
the interface of existing procedures. It is displayed in figure 6.33.

2 Properties

Procedure Name This text field specifies the name of the procedure. If the dialog is opened in order to
create a new procedure, it contains a text field for the procedure name to be entered. If you edit an
existing procedure, the name of the procedure is displayed in the combo box Procedure Name on
top of the dialog. You can edit the interface of another procedure by selecting it from the combo
box.

Local The check box to the right of the combo box determines whether the procedure is a local or ex-
ternal procedure. Local procedures are always saved within the HDevelop program while external
procedures are saved as stand-alone files.

Password For external procedures additionally the edit status can be specified that determines if the
procedure can be viewed and modified by all users or if it is protected by a password (see section
“Edit Status of External Procedures” on page 111). Local procedures cannot be protected.

G
U

IR
ef

er
en

ce

108 Graphical User Interface

Short Description The text field Short Description below the combo box can be used to enter
an optional short description for the procedure. The short description of a procedure is treated like
the short description of a HALCON operator, i.e., it is displayed in HDevelop’s status bar when
selecting a procedure from the menu.

Chapter The text field Chapter can be used to specify chapter and subchapter, separated by a slash
(’/’), so that your procedures can be displayed thematically ordered in the list at the bottom of the
menus Menu Procedures and Menu Operators.

Directory Next, the path is displayed where the procedure is stored if it is an external procedure. When
storing the external procedure for the first time, this path corresponds always to the first path in
the list of external procedure paths in the dialog Menu Procedures . External Procedure
Settings... (see page 89). You can select any of the configured external procedure paths
from the combo box. If you are editing an existing external procedure, the corresponding path is
displayed but cannot be altered. Thus, once created external procedures can only be relocated in
the file system.

You can also specify a new target directory by clicking the browse button next to the combo box.
When you commit the new procedure later, HDevelop will suggest to add this directory to the list
of external procedures automatically. If the addition is canceled, the new procedure will not be
available unless you add the corresponding directory manually.

If the specified directory is a subdirectory of one of the pre-configured paths, it will not be added
to the list. This is because subdirectories are automatically searched in HDevelop.

Note that the structure created by chapters and subchapters in the text field before does not cor-
respond to the automatically created directory structure. At least for the external procedures, you
can create the corresponding directory structure afterwards, outside of HDevelop. The recognition
of the procedures in HDevelop is still ensured, as all subdirectories of the external procedure paths
are scanned as well. When editing already existing external procedures, the changed procedures
are stored in the paths they were originally found in.

2 Parameters

The next part of the dialog is used for the procedure interface parameters. As mentioned earlier, HDe-
velop procedure interfaces have the same structure as HALCON operator interfaces, that is, they may
contain parameters of the four categories iconic input, iconic output, control input, and control output in
this order. The procedure interface dialog contains four separate areas that offer the necessary functional-
ity for manipulating parameters. These areas correspond to above parameter classes and are independent
of each other. Every area is marked with an icon that describes the parameter class. It contains a button
for inserting new parameters, which are always appended at the end of the parameter list. The latter is
displayed by an array of text fields containing the parameter names.

Reset If you are creating a new procedure, clicking this button removes all entered parameters. If you
are editing an existing procedure, the first click of this button restores the original interface, i.e.,
any changes to the parameters are undone. The second click removes all parameters.

Remove Using this button you can remove single parameters from the list. Before clicking this button,
focus the corresponding parameter by clicking its text field.

6.4.3 Creating and Editing Procedures 109

Move Up, Move Down Using these buttons you can alter the order of the parameters. Select a parameter
by clicking its text field and use the buttons to change its position.

OK Activating the button OK on bottom of the dialog either creates a new procedure or commits the
changes made in the procedure interface, depending on whether the interface dialog was invoked
in order to create a new procedure or to modify the interface of an existing procedure. In the
latter case not only the interface itself might be changed but also the procedure’s program body
and variable lists, as new variables might have been added or existing variables might have been
removed or renamed.

If you are editing an existing procedure interface, the checkbox Adapt program becomes avail-
able. If it is checked, all calls to the procedure in the current program are checked for consistency
and updated if necessary. Note that if new parameters are added to an existing procedure inter-
face, the corresponding procedure calls are modified by adding new variables as input parameters,
which most likely will not be initialized at the time of the procedure call.

If you change the interface of an external procedure, be aware of the fact that other programs
containing it do not update the procedure calls. When loading these programs, the procedure calls
are disabled. If the changes were applied to a procedure that is called from inside a protected
external procedure, that procedure call is not even updated in the current program.

Cancel This button dismisses the dialog. Any changes to the interface of the edited procedure are lost
(with the exception of the editing status, see section “Edit Status of External Procedures” on page
111).

6.4.3.2 Creating Procedures

Depending on the corresponding procedure options and a possible selection of lines in the program
window, there are different ways on how a procedure can be created. When clicking Menu Procedures
. Create New Procedure, the program lines marked in the program window are copied and inserted
in the program body of the new procedure. This is illustrated in figure 6.34. If the last selected program
line is not a return operator, a return call is added at the end of the procedure body. If no lines are
selected in the program window, the newly created procedure body contains only the return operator.

By default, a local procedure is created. If you want to create an external procedure instead, you have to
disable the check box Local and optionally specify chapter and subchapter. Additionally, you can select
the path the procedure is stored in, which by default is the first path specified in the preferences (see
section “External Procedures” on page 66). Further, section “Edit Status of External Procedures”
on page 111 shows how to protect an external procedure by a password so that only authorized persons
can view and modify it.

When creating a new procedure from selected program lines, HDevelop automatically determines suit-
able interface parameters for the procedure from the usage of the variables in the selected code. The
following different options can be selected in the combo box Selection Scheme to determine the pro-
cedure parameters:

Only In Only Out Variables that are exclusively input and output variables become input and output
procedure parameters, respectively.

G
U

IR
ef

er
en

ce

110 Graphical User Interface

Figure 6.34: Creating a procedure from selected lines.

Only In All Out Variables that are exclusively input variables become input parameters, while all
output variables become output parameters. This is the default option in HDevelop.

All In Only Out This setting is symmetrical to the previous setting.

6.4.3 Creating and Editing Procedures 111

All In All Out All input and output variables become input and output procedure parameters, re-
spectively.

The classification of variables in the selected program lines is performed separately for iconic and control
variables. If a variable is an input as well as an output variable, it is assigned to the first category, i.e.,
the corresponding procedure parameter becomes an input parameter.

If the option Replace selected program lines is checked, the selected program lines are replaced
by an appropriate call of the new procedure. Otherwise, the lines are kept and no procedure call is added.
In any case, the selected program lines are copied to the body of the new procedure as stated above.

The newly defined procedure is now available for selection in the operator window. The variables that
were used to determine the procedure interface parameters are now being offered as input parameters for
the procedure call.

6.4.3.3 Edit Status of External Procedures

External procedures can be protected with a password. The bodies of protected external procedures can
only be accessed if the correct password is supplied. They can be applied by all users but viewed and
modified only by authorized people who know the password. The edit status of a procedure can be
changed via the procedure interface dialog (page 107). To manage the edit status of multiple external
procedures at once, click Menu Procedures . External Procedure Settings... and select the
tab card Manage Passwords (page 68).

By default, new procedures are local procedures, which cannot be protected. To make them external, the
check box Local has to be disabled. Now, the button Password becomes available.

Protecting a Procedure

If you want to protect a procedure with a password, do the following:

• Select the corresponding procedure in the program window.

• Click Edit Interface to edit the interface of the selected procedure.

• Make sure Local is unchecked. Only external procedures can be protected.

• Click the button Password to assign a password to the procedure.

Then, a separate window appears and the new password must be entered twice. See figure 6.35 for an
example. If both times the same password is used, clicking OK assigns the password. Otherwise, an error
message is raised and you have to repeat the password assignment. When a protected procedure is finally
saved, it is stored in a binary format.

When you start HDevelop the next time, the protected procedure is locked, i.e., when trying to edit the
procedure, e.g., by selecting it from the combo box in the program window, a corresponding message
is displayed in the program window. See figure 6.36 for an example. Additionally, a password button
is displayed in the program window. Upon entering the correct password, the procedure is temporarily
unlocked and stays unlocked as long as you do not close HDevelop.

G
U

IR
ef

er
en

ce

112 Graphical User Interface

Figure 6.35: Entering a password to protect an external procedure.

Figure 6.36: A locked external procedure.

Changing the Edit Status of a Protected Procedure

To change the status of a protected procedure, you must first unlock it temporarily by entering the pass-
word. Then, you can use the procedure interface dialog (page 107) to change the password or remove the
password to turn the protected external procedure into an unprotected external or even a local procedure.
Click the button Password to change the edit status.

The following options are available:

Lock You can lock the protected procedure so its body cannot be accessed in the current session without
supplying the password again.

Remove Selecting this option removes the password. When the procedure is saved, it is no longer pro-
tected. For turning a protected external procedure into a local procedure (without a password) it is
sufficient to activate the check box Local in the procedure interface dialog (page 107).

6.5 Operator Window 113

Figure 6.37: Changing the edit status of a protected procedure.

New password The password window appears and you assign the new password by the same process
you used for the old one.

Cancel The operation is cancelled without altering the status.

Warning

When working with protected procedures, be aware that the password cannot be reconstructed, so be
very careful not to forget it and not to repeat a typing error when assigning it! Further, in some situations
protected external procedures behave different from common external or local procedures. In particular,
as they can not be viewed and modified by unauthorized users, they also can not be copied, printed,
or exported to any programming language (however, they can be duplicated using the menu entry Menu
Procedures . Duplicate...). Additionally, if a protected external procedure contains a call to another
procedure for which the interface was changed, the procedure call is not adapted to the changes but is
disabled for the current program. At last, if a protected external procedure contains any stop instructions,
they are ignored.

6.5 Operator Window

This window is used to edit and display an operator or procedure call with all its parameters. Here you
will obtain information about the number of the parameters of the operator or procedure, the parameter
types, and parameter values. You can modify the parameter values according to your image processing
tasks. For this you may use the values proposed by HDevelop or specify your own values.

The operator window consists of the following three parts:

• At the top you find the operator name field, with which you can select operators or procedures.

• The large area below the operator name field is called the parameter display; it is used to edit the
parameters of an operator or procedure.

• The row of buttons at the bottom allows to control the parameter display.

G
U

IR
ef

er
en

ce

114 Graphical User Interface

Figure 6.38: Selecting an operator after typing select_.

6.5.1 Operator Name Field

The operator name field allows to select operators or procedures by specifying a substring of their name.
After pressing <Return> or pressing the button of the combo box, the system is looking for all operators
or procedures that contain the user-specified substring. The order of the listed result is as follows:
Operators and procedures whose names begin with the given substring are listed first, followed by all
operators and procedures that contain the substring elsewhere. Both parts of the list are arranged in
alphabetical order.

If there is an unambiguous search result, the operator or procedure is displayed immediately in the
operator window. If there are several matching results, a combo box opens and displays all operators or
procedures containing the specified substring. By clicking the left mouse button you select one operator
and the combo box disappears. Now, the operator’s parameters are shown in the operator window.

The short description of the selected operator is displayed in the status bar. The operator name is dis-
played in the window title of the operator window.

If you are already more familiar with HDevelop, it is useful to select an operator or procedure in the
operator name field. However, in order to do so, you obviously have to be familiar with the operator
names.

6.5.2 Parameter Display

The parameter display is the main part of the operator window. It is empty in its initial state. If you have
selected an operator or procedure call, HDevelop displays its parameter data, i.e., name, number, type,
and default values, in the display.

6.5.2 Parameter Display 115

Figure 6.39: Specifying parameters for the operator select_shape.

• In the first column of the parameter display the parameter types are indicated by icons. Note that
icons are not repeated if a parameter is of the same type as its predecessor. Hover the mouse cursor
over the icons to get a tool tip.

• In the second column of the operator window you find the parameter names.

• The third column consists of the text fields, which contain variable names in case of iconic and
control output parameters and expressions in case of control input parameters. If you want to
change the suggestions offered by the system (variable names or default values), you may do so
either manually or by pressing the arrow button connected with the respective text field. This
opens a list containing a selection of already defined variables and other reasonable values from
the operator knowledge base. By clicking the appropriate item you set the text field and the list
disappears.

• The fourth column indicates the parameter’s default semantic type and its data type in parentheses.

Hover the mouse cursor over the second to fourth column to get a short description for the corresponding
parameter as a tool tip.

Please refer to the following rules on how parameters obtain their values and how you may specify them:

Iconic input parameters Possible inputs for these parameters are iconic variables of the corresponding
list. If there is no need to execute the operator or procedure call immediately, you may even
specify new variable names, i.e., names, that do not already exist in the variable window, but will
be instantiated later by adding further operators or procedure calls to the program body. In any
case, you have to specify iconic parameters exclusively with variable names. It is not possible to
use expressions.

G
U

IR
ef

er
en

ce

116 Graphical User Interface

Iconic output parameters These parameters contain default variables, which have the same names as
the parameters themselves. If a variable with the same name as the output parameter is already
being used, a number is added to the name to make it unique. Because the parameter names
characterize the computed result very well, you may adopt these default names in many cases.
Besides this, you are free to choose arbitrary names either by yourself or by opening the list (see
above). If you use a variable that already has a value, this value is deleted during execution before
overwriting it with new results. It is possible to specify a variable both in an input and output
position.

Control input parameters These parameters normally possess a default value. As an alternative, you
may use the text field’s button to open a combo box and to select a value suggestion. In addition,
this combo box contains a list of variables that contain values of the required type. A restriction of
proposed variables is especially used for parameters that contain data like file, image acquisition,
or OCR handles.

Input control parameters may contain constants, variables, and expressions. Common types are
integer numbers (integer), floating-point numbers (real), boolean values (true and false),
and character strings (string).

You can also specify multiple values of these types at once by using tuples. This is an array of
values, separated by commas and enclosed in brackets. Furthermore, you may build up expressions
with these values. The possibilities of using tuples are very extensive. You may use expressions
in HDevelop similar to the use of expressions in C or in Pascal. You will find a more detailed
description in section “Expressions for Input Control Parameters” on page 173.

Control output parameters: These parameters are handled in the same way as iconic output parame-
ters. Their defaults are named as their parameter names. Other possibilities to obtain a control
output variable name are either using the combo box or specifying variable names manually. You
cannot use any expressions for these parameters, either.

After discussing what can be input for different parameters, it is explained how this is done. Nevertheless,
you have to keep in mind that you need to modify a parameter only if it contains no values or if you are
not satisfied with the HALCON default values.

Text input: To specify a parameter using your keyboard is the simplest but not the most often used
method. Here you have to click into a text field with the left mouse button. This activates the field
and prepares it for user input. Simultaneously, the writing position is marked by a vertical bar.
Now you may input numbers, strings, expressions, or variables. There are some editing functions
to help you doing input: <Backspace> deletes the character to the left and <Delete> deletes the
one to the right. You may also select (invert) a sequence of characters in the text field using the
mouse or holding <Shift> and using the cursor keys. If there is a succeeding input, the marked
region is going to be deleted first and afterwards the characters are going to be written in the text
field. See page 221 for a summary of the keyboard mappings.

Combo box selection: Using this input method, you can obtain rapid settings of variables and constants.
To do so, you have to click the button on the text field’s right side. A combo box is opened, in
which you may select an item. Thus, you are able to choose a certain variable or value without
risking erroneous typing. This item is transferred to the operator name field. Previous entries are
deleted. Afterwards, the combo box is closed. If there are no variables or appropriate values, the
combo box remains closed.

6.5.3 Control Buttons 117

6.5.3 Control Buttons

Below the parameter edit fields, you find five buttons that comprise the following functions:

Ok By clicking Ok you execute the operator or procedure call with the specified parameters. When doing
so, the execution mode depends on the position of the PC: If the PC is placed above the insertion
position, the system executes the program from the PC until the insertion position first. Then, the
operator or procedure call that has been edited in the operator window is executed. The reason for
this is that the parameter values that are used as input values for the currently edited operator or
procedure call have to be calculated. If the PC is placed at or after the insertion position, only the
currently edited operator or procedure call is executed.

The operator or procedure call is entered into the program window before it is executed. After the
execution, the PC is positioned on the next executable program line after the edited operator or
procedure call.

The computed output parameter values are displayed in the variable window. Iconic variables
are shown in the current graphics window if you haven’t suppressed this option (compare section
“Runtime Settings” on page 72). Afterwards, the operator window is cleared. If you did not
specify all parameters or if you used wrong values, an error dialog is raised and execution is
canceled. In this case, the operator window remains open to allow appropriate changes.

Enter / Replace By clicking the button Enter, the currently edited operator or procedure call is trans-
ferred into the program window without being executed. When editing existing program lines
(through double-clicking in the program window, see page 103), the button label changes to
Replace. When clicked, the original program line is replaced.

Apply If you click Apply the operator is executed with the specified parameters, but not entered into
or changed in the program. This enables you to determine the optimum parameters rapidly since
the operator dialog remains open, and hence you can change parameters quickly. Note that this
functionality is not available for procedure calls, and thus the button is grayed out in this case.

Unlike the button Ok, only the single line you edit or enter is executed, no matter where the PC
is located. Thus, you have to ensure that all the input variables contain meaningful values. By
pressing Apply, the corresponding output variables are changed or created, if necessary, to allow
you to inspect their values. If you decide not to enter the line into the program body, some unused
variables may thus be created. You can easily remove them by selecting Menu File . Cleanup.

Cancel Clicking Cancel clears the contents of the operator window. Thus, there are neither changes in
the program nor in any variables.

Help Clicking Help invokes an appropriate help text for the selected operator. For this the system
activates the online help window (see Help Window). Note that this functionality is not available
for procedure calls, and thus the button is grayed out in this case.

6.6 Variable Window

There are two kinds of variables in HALCON, corresponding to the two parameter types of HALCON:
iconic objects (images, regions, and XLDs) and control data (numbers, strings). The corresponding vari-
ables are called iconic and control variables. These variables may possess a value or may be undefined.

G
U

IR
ef

er
en

ce

118 Graphical User Interface

Figure 6.40: Variable window with instantiated iconic and control variables.

An undefined variable is created, for example, when loading a program or after inserting an operator
with a new variable that is not executed immediately into a program. You may access these undefined
variables only by writing to them. If you try to read such a variable, a runtime error occurs. If a vari-
able obtains a value, the variable type is specified more precisely. A control variable that contains, for
example, an integer is of type integer. This type might change to real or a tuple of integer after
specifying new values for this variable. But it always remains a control variable. Similarly, this is the
case for iconic variables, which may contain regions, images, or XLDs. You may assign new values to
an iconic variable as often as you want to, but you cannot change its type so that it becomes a control
variable.

In addition to classifying HDevelop variables by whether they are iconic or control variables, they can
also be distinguished by whether they are interface parameters of the current procedure or local variables.
Generally, both kinds of variables are treated equally.

New variables are created in the operator dialog area during specification of operator or procedure call
parameters. Here, every sequence of characters without single quotation marks is interpreted as a variable
name. If this name did not exist before, the variable is created in the operator dialog area by pressing
Ok or Enter. The variable type is specified through the type of the parameter where it was used for the
first time: Variables that correspond to an iconic object parameter create an iconic variable; variables for
a control parameter create a control variable. Every time an operator or procedure call is executed, the
results are stored in variables connected to its output parameters. This is achieved by first deleting the
contents of the variable and then assigning the new value to it.

The variable window is similar to a watch window used in window-oriented debuggers. Inside this
window you are able to keep track of variable values. Corresponding to the two variable types, there
are two areas in the variable window. One for iconic data (above or left) and the other for control data
(below or right).

All computed variables are displayed showing their iconic or control values (if the automatic update has

6.6 Variable Window 119

not been switched off, see section “Runtime Settings” on page 72). In case of a tuple result which
is too long, the tuple presentation is shortened, indicated by three dots. In this case the full content
of a variable can be displayed in an inspection window by double-clicking the value list. See also the
following sections.

Switching Between Horizontal and Vertical Layout

You can toggle the orientation of the two parts of the variable window. To do this, double-click the
dividing line between both parts. You can also drag that line to resize the parts.

Managing Variables

In large programs the variable window can become quite cluttered which makes watching selected vari-
ables difficult. Therefore, you can customize the selection of displayed variables. At the bottom of the
variable window, three tabs are available:

• All: All variables are displayed at once.

• Auto: The variables of the current and the previous operator call are displayed. This is useful when
single-stepping through the program, because only the variables relevant to the current context are
displayed.

• User: A user-defined selection of variables is displayed. Variables may be added and removed
using the context menu of the variable window (see below). If the tab User is active, variables may
be added from a list in the context menu. In the other two tabs variables are added by selecting
them first and clicking Add to User Tab in the context menu.

Context menu

In both parts of the variable window distinct context menus are available by right-clicking in the window.
The entries that are common in both parts are described here.

• Clear Variable: The selected variables are cleared and appear as undefined.

• Add to User Tab: The selected variables are added to the tab User.

• Sort by Name: The variables are sorted in alphabetical order.

• Sort by Occurrence: The variables appear in the same order as they are defined in the program.

• Update Variables: Toggle whether variables will be updated during program execution. This is
the same setting as in the runtime preferences (see page 72).

• Cleanup: Delete all unused variables (see page 54).

Only applicable when the tab User is selected:

• Add Variable: This submenu contains a list of all variables that are currently not displayed in
the tab User. Clicking a variable name adds the variable to the tab.

• Remove from User Tab: The selected variables are removed from the tab User.

G
U

IR
ef

er
en

ce

120 Graphical User Interface

Figure 6.41: Displaying information about an iconic variable with a reduced domain.

6.6.1 Iconic Variables

The iconic variables are represented by icons, which contain an image, a region or an XLD, depending
on the current value. The icons are created depending on the type of data according to the following
rules:

• For images the icon contains a zoomed version of them, filling the icon completely. Due to the
zooming onto the square shape of the icon, the aspect ratio of the small image might be wrong. If
there is more than one image in the variable, only the first image is used for the icon. Similarly, for
multi-channel images only the first channel is displayed. An exception is made for images with 3
channels: These are displayed as color icons (RGB).

The domain of the image is not reflected in the displayed icon. Information about the domain
can be obtained from the tool tip which appears when the mouse cursor points to the icon. See
figure 6.41 for an illustration.

• Regions are displayed by first calculating the smallest surrounding rectangle and then zooming it
so that it fills the icon using a border of one pixel. In contrast to images, the aspect ratio is always
correct. This can lead to black bars at the borders. The color used to draw the region is always
white without further modifications (except zooming).

• XLD data is displayed using the coordinate system of the largest image used so far. The color used
for XLD objects is white on black background.

Because of the different ways of displaying objects, you have to be aware that the coordinates cannot be
compared. The variable name is positioned below each icon. They are displayed in the variable window
in the order of occurrence or name from left to right. If there is not enough space, a scrollbar is created,
which you can use to scroll the icons.

Displaying iconic variables

Double-clicking an icon with the left mouse button displays the data in the active graphics window. If
you use images of different sizes in a program, the system uses the following output strategy for an
automatic adaption of the zooming: Every window keeps track of the size of the most recently displayed

6.6.1 Iconic Variables 121

image. If you display an image with a different size, the system modifies the graphics window coordinate
system in a way that the image is visible completely in the graphics window. If a partial zooming has
been activated before (see section “Graphics Window” on page 124), it is going to be suppressed.

Displaying information about iconic variables

You can get information about an instantiated variable by placing the mouse pointer over the correspond-
ing icon in the variable window. See also figure 6.41 on page 120 for an illustration. The information
depends on the contents of the corresponding variable:

• Images: The image type and size and the number of channels is displayed. If the iconic variable
contains multiple images, the properties of the first image are reported.

• Regions: The area and the center of the region is displayed. If the iconic variable contains multiple
regions, the properties of the first region are reported.

• XLDs: The number of contour points and the length is displayed. If the iconic variable contains
multiple XLDs, the properties of the first XLD are reported.

Context Menu

Clicking on an icon with the right mouse button opens a context menu with several options. You can
display the corresponding iconic variable in the active graphics window (with or without clearing the
window first), and you can clear the iconic variable. If an iconic variable contains multiple items, you
can also select a specific item from a submenu. If you click Select... in this submenu, you can quickly
browse the items of the iconic variable from a dialog. This also works for multi-channel images. See
figure 6.42 for an example.

Normally, regions, images, and XLDs are represented in variable icons. Besides this there are three
exceptions, which are shown by special icons:

• Undefined variables are displayed as a question mark (?) icon. You may write to but not read them,
because they do not have any value.

• Brackets ([]) are used if a variable is instantiated but does not contain an iconic object (empty
tuple). This may be the case using operators like select_shape with “wrong” specified thresholds
or using the operator gen_empty_obj. Such a value might be reasonable if you want to collect
iconic objects in a variable gradually in a loop using concat_obj. Here, an empty tuple is used as
starting value for the loop.

• A last exception is an empty region. This is one region that does not contain any pixels (points),
i.e., the area (number of points) is 0. You must not confuse this case with the empty tuple, because
there the area is not defined. The empty region is symbolized by an empty set icon (∅).

G
U

IR
ef

er
en

ce

122 Graphical User Interface

channel 1 channel 2 channel 3

Figure 6.42: Interactive channel selection from an RGB image.

6.6.2 Control Variables

To the right of the variable name you find its values in the default representation (you have to keep in
mind that a floating point number without significant fractional part is represented as an integer, e.g., 1.0
is represented as 1). If you specify more than one value for one variable (tuple), they are separated by
commas and enclosed by brackets. If the number of values exceeds an upper limit, the output is clipped.
This is indicated by three dots at the end of the tuple. For undefined variables, their name and a ? are
shown in the variable field. An empty tuple is represented by []. Both exceptions use the same symbols
as the corresponding cases for the iconic variables.

Inspecting and Editing Variables

See also: dev_inspect_ctrl

Double-clicking a control variable opens a window that displays all its values in a tabular format. This is
helpful if you have tuple variables with a large number of values that you want to inspect. Below the list,
some statistical data may be displayed (minimum value, maximum value, sum of values, mean value,
deviation, types, number of values, and the semantics if appropriate. You can select which statistical data
is displayed by right-clicking on the statistics table and selecting the corresponding entries.

You can also select multiple control variables at once in the variable window by holding down the <Ctrl>
key. To inspect these variables in a single inspection window, right click on the selected variables and
select Inspect.

6.6.2 Control Variables 123

Figure 6.43: Variable inspection.

An example inspection window is displayed in figure 6.43.

Copying Values to the Clipboard

Within the variable window, the context menu offers an entry for copying the values of the selected
variable to the system clipboard. If the variable window has the keyboard focus, <Ctrl-C> can be used
as an alternative. Tuples with zero or more than one values are returned in tuple notation: [.., ..]. If
several variables are selected, the tuples of the different variables are separated by a new line.

Inspecting Image Acquisition Device Handles

For an image acquisition device handle, a dialog representing basic image acquisition device parameters
is opened. Here you find the size, name, device, port, and other features of the image acquisition device.
The toggle button Online allows to grab images continuously and to display them in the active graphics
window. Multiple online inspections from different image acquisition devices at the same time are also
supported by opening additional graphics windows before clicking the corresponding button Online. If
an error occurs during grabbing, it is displayed in the status bar of the dialog. The dialog is displayed in
figure 6.44. G

U
IR

ef
er

en
ce

124 Graphical User Interface

grab images

Figure 6.44: Inspecting an image acquisition device handle.

6.7 Graphics Window

This window displays iconic data. It has the following properties:

• The user may open several graphics windows.

• The active graphics window is shown by the lit bulb in the window’s tool bar.

• Pressing the clear button clears the graphics window content and the history of the window.

• You close a graphics window using the close button of the window frame.

Figure 6.45 shows an example graphics window which is displaying a gray value image of a tooth rim
overlaid with region data. One of the displayed regions is selected (illustrated by the dashed border).
The variable name and index of the selected region is displayed in the title bar.

Every HDevelop graphics window has its own visualization parameters. Thus, modifying the parameters
(see section “Menu Visualization” on page 78) applies to the currently active graphics window only,
i.e., the parameter settings of all other open graphics windows remain unchanged. Additionally, the new
parameter settings are used as the default settings in all graphics windows yet to be opened.

The origin of the graphics window is the upper left corner with the coordinates (0,0). The x values
(column) increase from left to right, the y values (row) increase from top to bottom. When the mouse
cursor is placed inside a graphics window, the coordinates (row, column) and the gray value at that
position are displayed in the status bar (see page 44). Sometimes, it is desired to display this information
close to the mouse cursor. This can be achieved by holding down the <Ctrl> key (note: this does not
work when the zoom in and out tool is selected since pressing <Ctrl> inverts the corresponding zoom
action). Figure 6.46 shows the coordinate/gray value display.

Normally, the coordinate system of the graphics window corresponds to the most recently displayed im-
age, which is automatically zoomed so that every pixel of the image is visible. The coordinate system can
be changed interactively using the tool bar of the graphics window or the menu Menu Visualization

6.7 Graphics Window 125

Figure 6.45: Graphics Window.

Figure 6.46: Coordinate display in the graphics window.

. Set Parameters... . Zoom (see section “Menu Visualization” on page 78) or with the operator
dev_set_part (see section “Develop” on page 91). Every time an image with another size is displayed,
the coordinate system will be adapted automatically.

Each window has a history that contains all

• objects and

• display parameters

that have been displayed or changed since the most recent clearing or display of an image. This history
is used for redrawing the contents of the window. The history is limited to a maximum number of 30
“redraw actions”, where one redraw action contains all objects of one displayed variable.

G
U

IR
ef

er
en

ce

126 Graphical User Interface

Other output like text or general graphics like disp_line or disp_circle or iconic data that is dis-
played using HALCON operators like disp_image or disp_region are not part of the history, and
are not redrawn. Only the object classes image, region, and XLD that are displayed with the HDevelop
operator dev_display or by double-clicking on an icon are part of the history.

You may change the size of the graphics window interactively by “gripping” the window border with the
mouse. Then you can resize the window by dragging the mouse pointer. After this size modification the
window content is redisplayed. Now, you see the same part of the window with changed zoom.

Tool Bar Icons

Clear the graphics window and its history.

Switch to select mode. In this mode, you can select regions or XLDs that are displayed in the graph-
ics window. A selected item is highlighted with a dashed border. If multiple layers of region/XLD
data are displayed in the graphics window, the first click selects the uppermost region/XLD under
the mouse cursor. Each subsequent click at the same position selects the region/XLD below the
currently selected item. The variable name of the selected item is displayed in the title bar of the
graphics window.

You can use the select mode to inspect gray value histograms and features of individual regions or
XLDs.

In the example image illustrated in figure 6.45 on page 125, the displayed image of a tooth rim is
overlaid with region data. A single region is selected.

Combined move/zoom tool. Drag the displayed image with the left mouse button to alter the
displayed portion. Use the mouse wheel to zoom in and out.

Magnifying glass. Click into the graphics window to magnify the area at the mouse cursor. See
figure 6.47 for an illustration of this tool.

Zoom in or out. Click the small arrow next to the icon to switch between these tools.

Set image size. Clicking this icon sets the image size to the shown value. The value can be selected
from the menu attached to the small arrow. See section “Image Size” on page 79 for additional
information.

Set window size. Clicking this icon sets the window size to the shown value. The value can be
selected from the menu attached to the small arrow. See section “Window Size” on page 79 for
additional information.

Show state of graphics window (active / non-active). Non-active graphics window can be
activated by clicking this button. Only one graphics window may be active any given time.

If you want to specify display parameters for a window, you may select the menu item Visualization
in the menu bar. Here you can set the appropriate parameters by clicking the desired item (see section

6.8 Help Window 127

Figure 6.47: Magnifying glass.

“Menu Visualization” on page 78). The parameters you have set this way are used for the active
window. The effects of the new parameters will be applied directly to the last object of the window
history and alter its parameters only.

6.8 Help Window

The help window provides access to the integrated online help of HDevelop. The window is split in two
areas: On the left, navigational aids are available as tab cards. They are described below. On the right,
the online help itself is displayed. Anyone familiar with a web browser will be able to navigate through
the hypertext. The size of the two parts of the help window can be altered by dragging the dividing line.

With the help window you can easily browse the HALCON Reference Manual and the HDevelop Refer-
ence Manual. Furthermore, the complete offline documentation of HALCON, which is available in PDF
format, can be accessed from this window. The help window also includes a full-text search engine to
rummage both online and offline documentation.

Contents

This tab card presents the chapters and sections of the online documentation as a hierarchical tree. Click
on a node of the tree to display the associated document.

Operators

This tab card lists all operators in alphabetical order. Click on an operator name to display the corre-
sponding page from the Reference Manual. Enter any substring into the text field Filter to show only
operator names matching that substring.

G
U

IR
ef

er
en

ce

128 Graphical User Interface

Figure 6.48: Help Window.

Search

Enter a search query into the text field, and click Search to start a full-text search. Both online docu-
mentation (HTML) and offline documentation (PDF) are searched. The search result is displayed below
the query. The rank (in percent) indicates how well each found document satisfies the query.

The query may consist of one or multiple words. HDevelop will find all documents that contain any of
the specified words.

To search for a phrase, enclose it in double quotes:

"radiometric calibration"

Boolean searches with and, or, and not can also be specified. To find all documents that say anything
about filters except Gaussian filters, enter:

filter not gauss

6.8 Help Window 129

Figure 6.49: Keywords and associated HALCON operators.

Keywords

This tab card gives access to HALCON operators by using keywords which are associated with each
operator. It contains a list all known keywords and the selected operators below. The list of keywords
can be filtered by entering any substring into the text field Filter.

After the suggestions for an operator have been generated, all keywords belonging to this operator are
marked (reversed). Because there are many entries in the keyword list, you may see all marked keywords
only by scrolling it. On the list below the keywords you will find all operators associated with at least
one of these keywords. Clicking a keyword causes the addition of operators belonging to this keyword.

Bookmarks

This tab card lists all user-defined bookmarks. You can add the currently displayed document to the list
by clicking the button Add. To remove a bookmark from the list, select it and click the button Delete.

Help Window Tool Bar Icons

Go back in the browse history.

Go forward in the browse history.

G
U

IR
ef

er
en

ce

130 Graphical User Interface

Go to the starting page of the HALCON Reference Manual.

Increase the font size of the help window.

Decrease the font size of the help window.

Add the currently displayed document to the tab card Bookmarks (page 129).

Open the operating system dependent printer selection dialog to print the currently displayed page.

If the currently displayed document is the reference page of a HALCON operator, select this oper-
ator in the operator window.

Syntax The online pages of the HALCON Reference Manual are available for the language interfaces
HDevelop, C++, C, .NET, and COM. The displayed variant can be selected through this list box.

Find Enter a word or substring to find it in the currently displayed document. The first match is high-
lighted as you type. If no match is found, the text field blinks shortly. You can use the cursor keys
(down and up) to highlight the next match or the previous match, respectively. Alternatively, you
can use the following two buttons.

Next Highlight the next match.

Prev Highlight the previous match.

Special Keyboard Shortcuts in the Help Window

<Alt>+<Left> go back in the browse history
<Alt>+<Right> go forward in the browse history
<Alt>+<Home> go to starting the page of the HALCON Refer-

ence Manual
<Alt>+<Return> enter operator into operator window
<Ctrl>+<f> search text on the current page
<Ctrl>+<p> print current page
<Ctrl>+<+> increase font size
<Ctrl>+<-> decrease font size
<Ctrl>+<d> add current page to the bookmarks
<Tab> highlight next link
<Shift>+<Tab> highlight previous link
<Enter> jump to highlighted link

Text in the help window can be selected, e.g., for copying, with the mouse or the keyboard. Click into
the help window to place a text cursor. This text cursor can be moved around the page using the arrow
keys. Holding down shift and pressing the arrow keys starts a text selection.

6.9 Zoom Window 131

Figure 6.50: Zoom.

6.9 Zoom Window

Synopsis: Zoom window for image details and pixel inspection.

See also: Menu Visualization . Zoom Window

The zoom window enables the interactive inspection of image details. You can open up any number
of zoom windows with different zoom levels (see Menu Visualization . New Zoom Window). The
window also displays the gray values of each image channel at the mouse cursor position. Apart from
this, the pixel type, the number of channels, and the current position of the mouse cursor are displayed.
The percental scale can be selected from the combo box. It is related to the original size of the image.

There are multiple methods to navigate the zoom window:

Check Follow Mouse and move the mouse pointer over the image to select the zoomed area. Click
once to keep the currently displayed area in the zoom window, when the mouse cursor moves out of the
image window. Or, uncheck Follow Mouse and click (or drag) inside the image to select the zoomed
area. The red square in the center of the zoom window indicates the position of the mouse cursor. The
corresponding coordinates are also displayed at the bottom of the window.

You can select a particular pixel by single-clicking on it with the left mouse button. The zooming tool
stores this position internally, and will redisplay the thus selected part of the image object when you
leave the graphics window. This enables you to have a meaningful display in the zooming tool whenever
you want to do actions outside of the graphics window.

For finer control of the zoomed area, click inside the zoom window to give it the focus and use the cursor
keys to move pixel-wise. Press and hold the Alt key and use the cursor keys to move ten pixels at a time.

G
U

IR
ef

er
en

ce

132 Graphical User Interface

Click inside the zoom window to move relative to the center position. For example, clicking ten pixels
above the center will move the view up ten pixels.

The lower part of the window contains a gauge to display the gray value of the center pixel graphically.
The range goes from 0 (left) to 255 (right). Normally, the gray value of the first channel is displayed
with a black bar. For images with multiple channels the gauge is split accordingly to show individual
bars for each channel. Thus, for color images in RGB-space (three channels with red, green, and blue
values) three colored bars are used. If the gray value is below 1, the gauge is light gray (background). If
the value is above 255, the gauge is dark gray or colored for RGB images.

Above the gauge, the gray values are displayed as numbers. Up to five channels are displayed. If more
than five channels are present, the remaining channel values are truncated.

Next to the gauge, the coordinates of the mouse position is displayed. Below these, the image size, pixel
type, and the number of channels are shown.

The button next to the scale combo box enlarges the zoom window so that partially visible pixels at
the border become fully visible.

6.10 Gray Histogram Window 133

6.10 Gray Histogram Window

Synopsis: Display gray value histogram of active graphics window.

See also: Menu Visualization . Gray Histogram

The gray histogram window is a sophisticated tool for the inspection of gray value histograms, which can
also be used to select thresholds interactively and to set the range of displayed gray values dynamically.

Figure 6.51: Gray Histogram.

When opening the tool, the histogram of the image shown in the currently active graphics window is
displayed. When the tool is already open, the following means of sending new image data to the tool are
available:

G
U

IR
ef

er
en

ce

134 Graphical User Interface

• Make another graphics window active or display another image in the active graphics window.
Whenever you do so, the histogram of this image is computed and drawn, and the tool records the
graphics window from which the image was sent (the originating window).

• Whenever image data is displayed overlaid with region data in a graphics window (the graphics
window does not need to be active for this), you can click into any of the segmented regions, and
the histogram of the image within that region will be computed and shown. If you click into a part
of the image that is not contained in any of the overlaid regions, the histogram of the entire image
will be displayed.

• The same mechanism is used for regions that have gray value information, e.g., image objects
created by reduce_domain or add_channels. Here, the histogram of the image object you click
into will be displayed.

Channel When a multi-channel image, e.g., a RGB color image, is sent to the tool, by default the
histogram of the first channel is displayed. The combo box Channel lets you select the channel
from which to compute the histogram.

Update Sometimes, it is desirable to suppress the updating of the histogram when new image data is
available, e.g., if you want to select thresholds for a gradient image, but want to visualize the
original image along with the segmentation (see below). In that case you can freeze the histogram
by unchecking Update. The currently displayed histogram is preserved until Update is checked
again in which case the histogram will be re-calculated from the active graphics window.

The main part of the tool is the area, in which the histogram of the image is displayed in blue. This area
contains static parts and parts that can be interactively manipulated. The first static part is the horizontal
coordinate axis, which displays the gray values in the image. For byte images, this range is always
0...255. For all other image types, e.g., real images, the horizontal axis runs from the minimum to the
maximum gray value of the image, and the labeling of the axis is changed accordingly. To the left of the
display, the vertical axis representing the frequency of the gray values is drawn. The final static parts of
the display are three gray arrows. The two upward pointing arrows denote the maximum and minimum
gray value of the image. The downward pointing arrow denotes the peak of the histogram, i.e., the gray
value that occurs most frequently. This data is displayed in textual form within the Statistics area of
the display. For int4, int8, or real images, the peak value is displayed as a value range in the Statistics.
That is, the range of input values is divided in quantization steps to obtain a meaningful histogram, and,
as a consequence, the histogram’s “peak value” may actually represent a whole range of input values.

The dynamic parts of the histogram area are the two colored lines, which can be manipulated. The
vertical green and red lines denote the minimum and maximum selected gray value of the histogram,
respectively. The gray values on which the two vertical lines lie are displayed next to the lines in the
same color.

Display linear histogram (the default).

Display logarithmic histogram.

Initially, the histogram is displayed at full vertical range, i.e., up to the peak value. The displayed part
can be manipulated with the following buttons:

6.10 Gray Histogram Window 135

Zoom histogram display to a selected area. Click this button and drag an area inside the histogram
to view that area.

Spread the histogram horizontally so that only the area between the lines is displayed.

Display the full histogram.

Reset the display of the histogram vertically.

Reset the display of the histogram horizontally.

Force minimum histogram width. Do not adjust the width of the histogram when resizing the
window.

Histogram Options

• Quantization: Display the histogram quantized. The bucket size can be specified with the slider
or entered into the spinner box.

• Smoothing: Display the histogram smoothed. The smoothing factor can be specified with the
slider or entered into the spinner box.

Horizontal/Vertical: The visible part of the histogram can be specified parametrically by entering
the minimum and maximum values into the spinner boxes. These values are adapted when the visible
area is set with the buttons next to the histogram.

Whenever new image data is evaluated in the gray histogram window, the adaptation of these values
depends on the selected adaptation mode, which can be set independently for horizontal and vertical
ranges:

• adaptive

The corresponding range is adapted to the new values.

• increasing

The corresponding range is only adapted if it has increased, i.e., the new minimum value is smaller,
or the new maximum value is greater, or both.

• fixed

The corresponding range is not changed at all.

Output

The selected range of gray values can be used for two major purposes: thresholding (segmentation) and
scaling the gray values.

The gray values between Min and Max can be visualized either in the originating or the active graphics
window as specified in Output Destination. The type of visualization is specified in the list box
Display:

G
U

IR
ef

er
en

ce

136 Graphical User Interface

• none: no visualization.

• threshold: Segment image. The image from which the histogram was computed is segmented
with a threshold operation with the selected minimum and maximum gray value. Depending on
the setting of the combo box Display, the segmentation result is either displayed in the graph-
ics window, from which the image was originally sent (originating window), or in the active
graphics window (active window). With the three combo boxes Color, Draw, and Line Width,
you can specify how the segmentation results are displayed (see also Colored, Draw, and Line
Width).

If you want to select threshold parameters for a single image, display the image in the active
graphics window and open the histogram tool. For optimum visualization of the segmentation
results, it is best to set the visualization color to a color different from black or white. Now, set
Display to threshold and interactively drag the two vertical bars until you achieve the desired
segmentation result. The parameters of the threshold operation can now be read off the two vertical
lines.

If you want to select threshold parameters for an image that is derived from another image, but
want to display the segmentation on the original image, e.g., if you want to select thresholds for a
gradient image, two different possibilities exist. First, you can display the derived image, open the
histogram tool, deselect Update, display the original image, and then select the appropriate thresh-
olds. This way, only one window is needed for the visualization. For the second possibility you
can display the derived image in one window, activate another window or open a new window, dis-
play the original image there, activate the first window again, open the histogram tool, activate the
second window again, set Output Destination to active window, and select your thresholds.
Although in this case it is not necessary to deselect Update, it is advantageous to do so, because
this prevents the histogram from being updated if you click into a graphics window accidentally.

• connection: Display the connected regions of the selected gray values in the style specified with
Color, Draw, and Line Width.

This display mode is similar to threshold. Additionally, it performs a connection operation.
The separate regions can only be distinguished if Color is set to colored 3, colored 6, or
colored 12.

• scale: Map the gray values between Min and Max to the full range (usually 0...255). See also
scale_image.

The gray values of the image are scaled such that the gray value 0 of the scaled image corresponds
to the selected minimum gray value and the gray value 255 to the selected maximum gray value.
Again, the combo box Output Destination determines the graphics window, in which the result
is displayed. This mode is useful to interactively set a “window” of gray values that should be
displayed with a large dynamic range.

6.11 Feature Histogram Window 137

6.11 Feature Histogram Window

Synopsis: Interactive inspection of feature histograms.

See also: Menu Visualization . Feature Histogram

This window provides a sophisticated tool for the inspection of feature histograms. In contrast to the
gray value histogram described above, this tool does not inspect individual pixels, but regions or XLDs;
for these iconic objects, it displays the distribution of values of a selected feature, e.g., the area of an
XLD or the mean gray value of the pixels within a region. The feature histogram can also be used to
select suitable thresholds for the operators select_shape and select_shape_xld interactively.

Upon opening, the tool displays the histogram of the area (default feature selection) of the regions or
XLDs that were displayed most recently in the currently active graphics window. You can select various
features in the combo box Feature; Further information about region features can be found in section
“Feature Inspection Window” on page 138.

Most parts of the tool are built up similarly to the gray value histogram, which is described in detail in sec-
tion “Gray Histogram Window” on page 133 (menu entry Menu Visualization . Gray Histogram);
in the following, we concentrate on points specific to the feature histogram. An important point regards
the “source” of the regions or XLDs: The feature histogram is calculated for the regions or XLDs that
were displayed most recently in the graphics window. Thus, if you display an image, and there are no
regions or XLDs, the histogram remains “empty”. As soon as you display regions or XLDs on top of
an image, the histogram is calculated. If you display regions or XLDs without an image, you can still
calculate feature histograms, but only for shape features. Please keep in mind that only the most recently
displayed regions or XLDs are the source of the histogram, not all objects currently displayed in the
graphics window!

The histogram itself is displayed with the horizontal axis corresponding to the feature values and the
vertical axis corresponding to the frequency of the values, i.e., to the number of regions or XLDs with a
certain feature value.

When comparing feature histograms to gray value histograms, you will note a typical difference: Because
in most cases the overall number of regions or XLDs is much smaller than the overall number of pixels,
feature histograms often consist of individual lines, most of them having the height 1 Of course, this
effect depends on the selected feature: For features with floating-point values, e.g., the orientation, the
probability that two regions or XLDs have the same feature value is very small, in contrast to features
with integer values, e.g., the number of holes.

You can influence the calculation of the histogram with the slider Quantization. The selected value
is used to discretize the horizontal axis: Instead of determining the frequency of an “exact” feature
value, regions with feature values falling within discrete intervals are summed. Graphically speaking,
the horizontal axis is subdivided into “bins” with a width equal to the value selected with the slider
Quantization. G

U
IR

ef
er

en
ce

138 Graphical User Interface

Automatic Selection

As already noted, the region feature histogram facilitates the task of finding suitable threshold parameters
for the operators select_shape, select_gray, and select_shape_xld: Select the entry selected
in the combo box Display, choose suitable visualization parameters in the three combo boxes Color,
Draw, and Line Width, and then position the two vertical lines such that the desired regions are high-
lighted.

6.12 Feature Inspection Window

Synopsis: Inspection of shape and gray value features of individual regions.

See also: Menu Visualization . Feature Inspection

This window provides a tool for the convenient inspection of shape and gray value features of individual
regions and XLDs. It can, for instance, be used to determine thresholds for operators that select regions
based on these features, e.g., select_shape or select_gray.

The strategy to determine the data from which to compute the features is very similar to that of the gray
histogram inspection window (see section “Gray Histogram Window” on page 133). You can display
an image or region by double-clicking on it in the variable window or you can select a region or an
image which is already displayed by single-clicking it. If you display or click into an image, the gray
value features of the entire image will be calculated. If you click into a region that is not underlaid
with an image, only the shape features of this region will be displayed. If you click into a region that is
underlaid with an image or into a region that has gray value information (e.g., from reduce_domain or
add_channels), both the shape and gray value features of that region will be displayed. Finally, if you
have overlaid an image with a region, but click into a part of the image that is outside the region, only
the gray value features of the entire image will be calculated.

Use the “select” tool of the graphics window to select a region or XLD. The selected region or XLD is
highlighted in the graphics window. The corresponding variable name and index are displayed in the
title of the feature inspection window.

The gray value features of a multi-channel image are calculated from all channels independently.

The tree on the left side of the feature inspection window groups the features into several categories. At
the top-most level, the following groups of features are distinguished:

• Region features: This group contains features that describe the selected region, e.g., area, center,
and orientation.

• Gray value features: The feature values of this group are calculated from the gray values of the
image under the selected region, e.g., minimum and maximum gray value, mean gray value,
anisotropy and entropy.

• XLD features: This group contains features that describe the selected XLD (e.g., its dimensions or
shape properties).

You can select the features to be inspected by ticking the corresponding check boxes in the tree. The
selected features are displayed on the right side of the window. For each feature the calculated value

6.12 Feature Inspection Window 139

select selected region

feature value of selected region specified rangevisualization

Figure 6.52: Inspection of selected features.

of the selected region or XLD is displayed (or the value for the entire image). The current value is
also visualized as a gauge in a value range that can be set to the desired values. Simply select Show
Minimum/Maximum, which is available in the context menu of the right side of the window.

See figure 6.52 for an illustration of a clip inspection. The range for the area feature has been set to
[4000, 6200]. Individual clips can be inspected by selecting them in the graphics window.

Moving the mouse pointer over a feature value displays a tool tip. It shows the name and short description
of the HALCON operator used for the calculation of that value. Using the context menu, you can insert
the corresponding operator into the operator window.

G
U

IR
ef

er
en

ce

140 Graphical User Interface

6.13 Dialogs

6.13.1 File Selection Dialog

The file selection dialogs opened by actions such as Open Program..., Save , or Read Image are
native windows of the operating system and thus their appearance and internal functionality is beyond
HDevelop’s control. Their basic functionality is to browse the file system, and to select one or multiple
files (or in some cases: directories). Usually, they have two buttons: The one labeled Open or OK confirms
the selection and thus performs the initial action (e.g., loading a file) while the other (labeled Cancel)
aborts the initial action.

As an example, the dialog Menu File . Open Program... is explained.

Figure 6.53: Example of a file selection dialog under Windows.

In the top-most text field you may specify a directory which contains your HDevelop programs. A combo
box at the right hand side helps you browsing your directories. To move one directory level up, you press
the button on the right hand side of this text field. The next button creates a new folder to store HDevelop
programs. By pressing the last button you can activate or deactivate the option to see more details about
your HDevelop programs, i.e., the program size, the program type, the date when the most recent user
update occurred, and file attributes.

The middle text area displays all available HDevelop files to choose from. By clicking the left mouse
button on a file name you select it. Double-clicking a file name opens the file immediately and displays
it in the program window (page 102).

Furthermore, you may specify the file name in the text field below. The combo box for file type has no
effect because only HDevelop programs with the extension .dev can be loaded. If you want to open

6.13.2 Unsaved Changes 141

your file with a write protection, choose the check box at the bottom of this dialog window. To open
your specified file, you press the button Open. This action deletes an already loaded HDevelop program
and all created variables. The same actions as with File . New Program are performed. Now you can
see the main procedure body of your new program in the program window. The file name is displayed in
the title bar of the main window. All its (uninstantiated) variables are shown in the variable window. To
indicate that they do not have any computed values, the system provides the iconic and control variables
with a question mark. The program counter is placed on top of the program body and you are ready to
execute the program. The visualization and options will be reset after loading (same as Menu File .
New Program, see page 46).

You can cancel this task by pressing the corresponding button. By using one of the two buttons Open or
Cancel the dialog window disappears.

6.13.2 Unsaved Changes

File operations that will delete the current program (such as loading a new program) trigger a security
check. This security check prevents you from deleting the current program accidentally if the program
has not been saved. A dialog box appears and asks whether you want to save the HDevelop program
before its dismissal:

Figure 6.54: Confirmation dialog.

Save Save the current program under its current name and proceed. If no name has been specified yet,
a file dialog pops up to enter the name.

Save As Save the current program under a different name and proceed.

Discard Discard unsaved changes and proceed.

Cancel Abort the current action.

G
U

IR
ef

er
en

ce

142 Graphical User Interface

Matching Assistant 143

Chapter 7

Matching Assistant

7.1 Introducing the Matching Assistant of HDevelop

The Matching Assistant of HDevelop is a front-end to HALCON’s powerful shape-based matching,
which lets you locate objects with sub-pixel accuracy at a high speed, even when they appear rotated,
partly occluded, or under changing illumination. Using the Matching Assistant you can

• configure and test the matching process with a few mouse clicks and

• optimize the parameters interactively to get the maximum matching speed and recognition rate.

All you need is a single model image and a set of test images. The Matching Assistant further assists
you by automatically calculating suitable parameter values based on your selections.

How to use the Matching Assistant is described here.

A reference to the elements of the Matching Assistant can be found here (page 146).

In this online help, the following special terms are used:

Matching Matching is the process of locating an object described by a model in an image. The results
of the matching process are the position and orientation of the object and the matching score.

Model In order to locate an object, you must provide the Matching Assistant with an example image of
the object. From this, the Matching Assistant creates the so-called model, an internal representa-
tion of the object containing only the information characterizing the object. This representation is
then used when searching for the object in the test images.

Model Image This is the image containing your example of the object to be searched for. This image
should be a characteristic image of the object, i.e., the object should appear in its default position
and orientation and not be occluded; furthermore, the image should not contain clutter. You can
open this image via the menu item File . Open Model Image (page 147).

Model Region of Interest (ROI) This is the region in the model image which contains the object to be
found. You can mark this region via the menu item Create Model . Create ROI (page 149).

G
U

IR
ef

er
en

ce

144 Matching Assistant

Test Image You can test the performance of the matching process by providing test images via the menu
item Use Model . Test Images . Load Test Images (page 158). These images should be
representative images from your matching application, i.e., the object should appear in all allowed
variations of its position, orientation, occlusion, and illumination.

Score When comparing a region in a test image with the model, the Matching Assistant calculates a
measure of similarity, the so-called score, which ranges between 0 (no similarity) and 1 (perfect
similarity).

7.2 How to Use the Matching Assistant of HDevelop

By using the Matching Assistant, you can set up and optimize your matching application quickly and
easily in three steps:

• Create the model,

• Test the model, and

• Optimize the matching speed.

We recommend to reset all parameters via the button Reset (page 157) inside the tab Model Creation
(page 148) before starting with a new matching application.

7.2.1 Creating the Model

A model (page 143) is created in three steps:

• Open the so-called model image (page 143) via the menu item File . Open Model Image (page
147), the corresponding button in the tool bar, or the text field and button of Model Image inside
the tab Model Creation.

• Create an ROI (page 143) around the object either via the menu items at Create Model . Create
ROI (page 149) or via the corresponding buttons inside the tab Model Creation.

• Specify the parameter Contrast (page 151) inside the tab Model Creation (accessible also
via Create Model . Standard Model Parameters (page 150)) so that the model consists of
enough points to be recognizable.

Alternatively, you can load a model (page 147) that you have saved (page 148) with the Matching Assis-
tant or HALCON.

Now, you can test the model on test images (page 143).

7.2.2 Testing the Model

After you created the model (page 143) you test it in the following steps:

7.2.3 Optimizing the Parameters 145

• Load one or more test images (page 143) via the menu item Use Model . Test Images . Load
Test Images (page 158) or via the button Load inside the dialog Test Images in the tab Model
Use.

• Specify standard search parameters via the menu item Use Model . Standard Model Use
Parameters (page 161), which opens the corresponding dialog in the tab Model Use. Espe-
cially the number of object instances (page 162) to search for in an image should be specified. If
the number of object instances varies from test image to test image, you can specify the number of
visible objects (page 160) for each image separately; in this case the search parameter mentioned
above should be set to 0 or to the maximum number of visible objects.

• Assure that all objects are found (page 160) in all test images.

Now, you can optimize the speed of the matching process by tuning the parameters.

7.2.3 Optimizing the Parameters

After you configured the matching (page 143) process such that the search is successful in all test images,
you can start to optimize the parameters to speed up the matching as far as possible.

To support this process, the Matching Assistant allows to optimize the search parameters Minimum
Score (page 162) and Greediness (page 163) automatically via the menu item Use Model . Optimize
Recognition Speed (page 164), which can be accessed also via the tab Model Use.

If the reached recognition speed is not sufficient, you can try to modify parameters manually. However,
please be aware that such a modification may result in a lower accuracy of the calculated position, orienta-
tion, or scale, or even prevent the Matching Assistant from finding the object! Therefore, we recommend
to check whether the matching still succeeds in all test images (page 143) after each modification.

How the different parameters influence the recognition speed is described below. Please note that when-
ever you modify a model parameter, the internally stored model must be created anew; you must start
this creation (and the search) explicitly using the button Find Model or the button Detect All in the
tab Model Use. After each modification determine the resulting recognition speed using the dialog
Optimize Recognition Speed (page 164).

The following modifications can speed up the matching processes:

Create Model . Standard Model Parameters (page 150):

• Number of Pyramid Levels (page 152)

Increase the value and check whether the matching still succeeds in all images.

• Allowed ranges of rotation (page 153) and scale (page 154)

Set the parameters Start Angle (page 153), Angle Extent (page 153), Min Row Scale (page
154), Max Row Scale (page 154), Min Column Scale (page 154), and Max Column Scale
(page 154), according to the ranges probably needed for your images.

Create Model . Advanced Model Parameters (page 154):

• Minimum Contrast (page 157)

Increase the value and check whether the matching still succeeds in all images.

G
U

IR
ef

er
en

ce

146 Matching Assistant

• Optimization (page 156) (Point Reduction)

Select a higher reduction rate and check whether the matching still succeeds in all images.

• Angle Step (page 155) size and Scale Step (page 155) size

Increase the values and check whether the matching still succeeds in all images. Please note that
the accuracy may suffer if you increase the step size!

Use Model . Advanced Model Use Parameters (page 162):

• Subpixel (page 163)

If your application doesn’t require sub-pixel accuracy, you can speed up the matching by selecting
the value ’none’.

Last Pyramid Level (page 163)

Increase the value and check whether the matching still succeeds in all images. Note that as a result
of this modification wrong instances of the model may be found. Furthermore, the accuracy of the
calculated position, orientation, and scale may decrease.

7.3 Matching Assistant Reference

The Matching Assistant consists of the following elements:

• the pull-down menus File, Create Model (page 148), Use Model (page 158), Inspect (page
165), Code Generation (page 166), and Help (page 168),

• a tool bar with a selection of important buttons (Load Assistant Settings (page 148), Save
Current Assistant Settings (page 148), Insert Code (page 167), Open Model Image,
Display Model (page 149), Optimize Recognition Speed (page 164), and Determine
Recognition Rate (page 165)),

• tabs with the dialogs for most of the tasks that can be done with the Matching Assistant (Model
Creation (page 148), Model Use (page 158), Inspect (page 165), Code Generation (page
166)), and

• a status bar at the bottom in which messages are displayed. Futhermore, the status bar displays
the matching results, i.e., the number of found instances, the needed time, and for each found
instance the position, orientation, scale, and score. Please note that the status bar does not provide
a scrolling mechanism; if the displayed message is to long, move the mouse over it, so that a tool
tip displaying the full message pops up. Alternatively, if the message is only slighly larger than the
status bar, you can also drag the left or right border of the Matching Assistant window to enlarge
it.

Images and models are displayed in the graphics window of HDevelop.

7.3.1 The Menu File

Via the menu File you can

7.3.1 The Menu File 147

• open the model image,

• load an already existing shape model,

• save a shape model,

• load formerly used and saved settings of the Matching Assistant,

• save the current settings of the Matching Assistant for later use,

• close the Matching Assistant dialog (while retaining the current settings as long as the HDevelop
session is active), and

• exit the Matching Assistant dialog (discarding the settings).

7.3.1.1 Opening the Model Image

The so-called model image (page 143) is used to create the model (page 143) of the object you want to
find later. This image should be a characteristic image of the object, i.e., the object should appear in its
default position and orientation and not be occluded; furthermore, the image should not contain clutter.

When you select the menu item File . Open Model Image or press the corresponding button either
in the tool bar or in the dialog Model Image in the tab Model Creation, a standard file selection box
appears. The Matching Assistant can read the image file types TIFF, BMP, GIF, JPEG, PPM, PGM,
PNG, and PBM.

The selected image is displayed automatically. Typically, the next step is to create a region of interest
(page 149) around the object.

As an alternative to loading a model image and creating the model (page 144) interactively, the menu
item File . Load Model can be used to load a model that you have saved with the Matching Assistant
or HALCON.

7.3.1.2 Loading a Shape Model

As an alternative to opening a model image (page 143) and creating (page 144) the model (page 143)
interactively, the menu item File . Load Model or the corresponding button Load in the tab Model
Use can be used to load a model that you have saved with the Matching Assistant or HALCON.

Note that when you load the model from a file, all the menu items, buttons, and dialogs that enable
you to change the model parameters or display the model image will not be selectable because a loaded
model cannot be changed and contains no information about the image from which it was created. Thus,
e.g., the menu items Create Model . Create ROI (page 149), Create Model . Standard Model
Parameters (page 150), and Create Model . Advanced Model Parameters (page 154), and the
Display button of the dialog accessed by Create Model . Display Image Pyramid (page 149),
which is used to inspect the model, are enabled.

G
U

IR
ef

er
en

ce

148 Matching Assistant

7.3.1.3 Saving a Shape Model

The menu item File . Save Model enables you to save the created model (page 144) in a file for later
use. For example, the model (page 143) can be loaded into the Matching Assistant again in a later session
with File . Load Model.

7.3.1.4 Loading Assistant Settings

If you have saved the settings of a former Matching Assistant session, you can load them again by the
menu item File . Load Assistant Settings or via the corresponding button of the tool bar.

7.3.1.5 Save Current Assistant Settings

You can save the current settings of a Matching Assistant session using the menu item File . Save
Current Assistant Settings or the corresponding button in the tool bar. Then, you can load them
again in a later session.

7.3.1.6 Close the Matching Assistant Dialog

When closing the Matching Assistant dialog with the menu item File . Close Dialog, the current
settings are stored for the duration of the current HDevelop session. That is, aslong as you do not exit
HDevelop, you can again open the Matching Assistant with the same settings. In contrast to this, when
you exit the Matching Assistant, the settings are lost also for the current HDevelop session.

7.3.1.7 Exit the Matching Assistant

When you exit the Matching Assistant with the menu item File . Exit Assistant, the assistant’s
dialog is closed and the current settings are lost unless you have not stored them via the menu item
File . Save Current Assistant Settings. If you want to close the dialog so that the settings are
retained for the current HDevelop session, you should use the menu item Close Dialog instead.

7.3.2 The Menu Create Model and the Tab Model Creation

Via the menu Create Model as well as the tab Model Creation you can

• create a model ROI,

• display the image pyramid, and

• specify standard (page 150) and advanced model parameters (page 154).

In the tab Model Creation you can additionally reset (page 157) the model.

7.3.2 The Menu Create Model and the Tab Model Creation 149

7.3.2.1 Creating a Region of Interest Around the Object

Via the menu items in Create Model . Create ROI or the corresponding buttons in the tab Model
Creation you can mark the region that serves as the model by drawing it on the displayed model image.
The Matching Assistant provides different ROI (page 143) shapes: axis-parallel and arbitrarily oriented
rectangles, circles and ellipses, as well as free-form shapes including polygons.

You draw rectangular, circular, and elliptic ROIs as follows: Select the corresponding drawing mode and
click into the image. Then, move the mouse over the object while keeping the left mouse button pressed;
the selected shape appears. After releasing the mouse button you can move the ROI by dragging its center
(marked with a cross) with the left mouse button. Furthermore, you can edit the shape by dragging its
boundaries. You finish the creation by clicking once with the right mouse button or by clicking the Stop
button in the tool bar of the main window.

By selecting the menu item Create Model . Create ROI . Arbitrary Region or the corresponding
button in the tab Model Creation you can create polygons and free-form shapes. To create a polygon
click with the left mouse button to mark each corner point; a click with the right mouse button closes
the polygon and finishes the creation. To create a free-form ROI draw it directly while keeping the left
mouse button pressed; a click with the right mouse button closes the shape and finishes the creation.
Note that in both cases you cannot edit the ROI after its creation!

In order to create an optimal model, please assure that the region of interest contains only characteristic
parts of the object and no clutter!

After creating an ROI, you can specify standard model parameters. Typically, you now select what
contrast (page 151) the points must have in order to be included in the model.

7.3.2.2 Displaying the Model Image

Pressing the button Display Model in the tool bar of the Matching Assistant, you can display the model
image if available (if you loaded a shape model (page 147) from file, the model image is not available).

You can alternatively display the model image via the button Display in the dialog Display Image
Pyramid of the tab Model Creation (accessed also via the menu item Create Model . Display
Image Pyramid). If you already created a model ROI (page 143), the model itself is displayed as well.
When increasing the values for Image and Model using the sliders or the text boxes, you can display the
pyramid levels (see the corresponding section about pyramid images).

7.3.2.3 Displaying the Image Pyramid

Using the dialog Display Image Pyramid (accessed via the menu item Create Model . Display
Image Pyramid or directly inside the tab Model Creation), you can display the model image (page
143) (see how to display the model image) and inspect the pyramid of models and the corresponding
images by

• selecting which model level is displayed,

• selecting which image level is displayed, and

• locking or unlocking model and image level.

G
U

IR
ef

er
en

ce

150 Matching Assistant

7.3.2.4 Displaying the Model on the Different Pyramid Levels

You can select the desired pyramid level of the model by using the slider or text box for Model inside the
dialog Display Image Pyramid of the tab Model Creation. The model is overlaid onto the pyramid
image selected with the slider or text box Image within the same dialog. By default, the model and
the image are displayed on the same pyramid level; you can unlock and again lock the levels using the
lock/unlock button right to the sliders.

Note that the highest available pyramid level is determined automatically by the Matching Assistant
based on the size of the model ROI (page 143); depending on the selected Contrast and Minimum
Component Size (page 152), higher pyramid levels may not contain any model points.

Detailed information about the model image pyramid can be found here (page 152).

7.3.2.5 Displaying the Model Image on the Different Pyramid Levels

You can select the desired pyramid level of the model image using the slider or text box for Image
inside the dialog Display Image Pyramid of the tab Model Creation. Onto this image, the model
on the pyramid level selected with the slider or text box for Model within the same dialog is overlaid.
By default, the model and the image are displayed on the same pyramid level; you can unlock and again
lock the levels using the lock/unlock button right to the sliders.

Note that the highest available pyramid level is determined automatically by the Matching Assistant
based on the size of the model ROI (page 143); depending on the selected Contrast and Minimum
Component Size (page 152), higher pyramid levels may not contain any model points.

Detailed information about the model image pyramid can be found here (page 152).

7.3.2.6 Locking the Display of Model and Image Pyramid

By default, the pyramid levels of the displayed model and model image are locked. When pressing
the unlock button right to the sliders, which are used for specifying the pyramid levels, you can select
different pyramid levels for the model image and the model. When pressing the button again, both levels
are locked again.

Detailed information about the model image pyramid can be found here (page 152).

7.3.2.7 Specifying Standard Model Parameters

Via the menu item Create Model . Standard Model Parameters the tab Model Creation is
opened and you can specify basic parameters for the model, which describe the appearance of the object
to recognize, e.g., the contrast of significant points or the allowed range of rotation.

By default, these parameters are set to values which work well for most tasks; by modifying them you
can optimize the model for your application and speed up the search process.

The following parameters can be specified in this dialog:

• the Contrast which points must have in order to be included in the model,

7.3.2 The Menu Create Model and the Tab Model Creation 151

• the Minimum Component Size (page 152) of model components,

• the number of Pyramid Levels (page 152) on which the model is created,

• the Start Angle (page 153) of the allowed range of rotation,

• the allowed range of rotation (Angle Extent (page 153)), and

• the scale range (page 154).

In most applications, specifying the standard parameters will already suffice. Therefore, you can directly
test the model (page 144) now. Additionally, advanced model parameters can be specified via the menu
item Create Model . Advanced Model Parameters (page 154).

7.3.2.8 The Model Parameter Contrast (Low/High)

The two parameters Contrast (Low) and Contrast (High) determine which pixels in the selected
ROI (page 143) are included in the model (page 143); typically, the points corresponding to the contours
of the object should be selected.

When you select a value, either by using the sliders or by entering a value in the text fields next to them,
the included pixels are marked in the displayed image. In order to obtain a suitable model we recommend
to choose the contrast in such a way that the significant pixels of the object are included, i.e., those pixels
that characterize it and allow to discriminate it clearly from other objects or from the background. Please
assure that no clutter is included, i.e., pixels that do not belong to the object!

You can use the parameters in two ways:

1. Simple threshold:

Set both parameters to the same value. Then, all pixels with a contrast higher than this value are
included in the model.

You can modify both parameters at the same time as follows: To increase the value, use the slider
of Contrast (Low); then, the value Contrast (High) will follow automatically. Vice versa, to
decrease the value use the slider of Contrast (High).

2. Hysteresis threshold:
If there is no single contrast value that selects all significant object pixels without including clutter,
try using different values for Contrast (Low) and Contrast (High). Then, pixels are selected
in two steps: First pixels that have a contrast higher than Contrast (High) are selected; then,
pixels that have a contrast higher than Contrast (Low) and that are connected to a high-contrast
pixel, either directly or via another pixel with contrast above the lower threshold, are added.

We recommend to proceed as follows: Increase both values (using the slider of Contrast (Low)),
until no clutter pixels are selected anymore. Then, decrease Contrast (Low) to add more object
pixels. If significant object parts remain unselected, decrease Contrast (High).

Note that these parameters are used only to select model points in the model image. In the test images,
the object may have a lower contrast.

You can also let the Matching Assistant select suitable values automatically based on the model image.

G
U

IR
ef

er
en

ce

152 Matching Assistant

An additional method for removing clutter is to specify a minimum size for the model components. If
you cannot find suitable parameter values that exclude the clutter, we recommend to create a new model
ROI via the menu item Create Model . Create ROI (page 149).

7.3.2.9 Letting the Matching Assistant Select a Suitable Value for Contrast

When you click the button Auto Select that is placed right beside the sliders for the parameters
Contrast (Low/High) (page 151) the Matching Assistant selects suitable values for the contrast by
trying to obtain many long and straight contour segments.

Note that you may need to set the value manually if certain model components should be included or
suppressed because of application-specific reasons or if the object contains several different contrasts.

7.3.2.10 The Model Parameter Minimum Component Size

The parameter Min Component Size specifies the minimum size, i.e., number of pixels, which contour
parts must have to be included in the model (page 143). This parameter is useful to exclude clutter.

You can also let the Matching Assistant select a suitable value automatically based on the model image
(page 143).

Note that the selected value is divided by two for each successive pyramid level.

7.3.2.11 Letting the Matching Assistant Select a Suitable Value for Minimum Component
Size

When you click the button Auto Select that is placed right beside the slider for the parameter Minimum
Component Size the Matching Assistant selects a suitable value for the minimum component size based
on the model image.

7.3.2.12 The Model Parameter Pyramid Levels

To speed up the matching process, a so-called image pyramid is created, both for the model image and
for the search images. The pyramid consists of the original, full-sized image and a set of downsampled
images. For example, if the original image (first pyramid level) has the size 600x400, the second level
image has the size 300x200, the third level 150x100, and so on. The object is then searched first on the
highest pyramid level, i.e., in the smallest image. The results of this fast search are then used to limit the
search in the next pyramid image, whose results are used on the next lower level until the lowest level is
reached. Using this iterative method the search is both fast and accurate.

You can inspect the model image pyramid together with the corresponding models via the menu item
Create Model . Display Image Pyramid (page 149), which opens the corresponding dialog of the
tab Model Creation. We recommend to choose the highest pyramid level at which the model contains
at least ten pixels (and still resembles the original shape). You can enter the value directly in the text
field or by using the slider next to it. Alternatively, you can let the Matching Assistant select a suitable
value automatically.

7.3.2 The Menu Create Model and the Tab Model Creation 153

Note that the Matching Assistant can check whether the model contains enough points on the selected
number of pyramid levels only when actually creating the model. In case the model does not contain
enough model points a corresponding error dialog appears.

7.3.2.13 Letting the Matching Assistant Select a Suitable Value for Pyramid Levels

When you click the button Auto Select that is placed right beside the slider for the parameter Pyramid
Levels (page 152) the Matching Assistant selects a suitable number of pyramid levels automatically,
thus relieving you of the task of examining the model image pyramid.

Please note that in rare cases the automatic selection will yield a too low value and thereby slow down
the search process, or a too high value, resulting in failures to recognize the object. In such a case we
recommend to inspect the model image pyramid (page 149) and select a suitable value manually.

7.3.2.14 The Model Parameter Start Angle

With the parameter Start Angle you can specify the starting angle of the allowed range of rotation
(unit:◦). With another parameter you can specify the extent of the allowed range. Note that the range of
rotation is defined relative to the model image, i.e., a starting angle of 0◦ corresponds to the orientation
the object has in the model image. Therefore, to allow rotations up to +/-5◦, e.g., you should set the
starting angle to -5◦ and the angle extent to 10◦.

7.3.2.15 The Model Parameter Angle Extent

With the parameter Angle Extent you can specify how much the object is allowed to rotate (unit:◦).
With another parameter you can specify the starting angle of this allowed range. Note that the range of
rotation is defined relative to the model image, i.e., a starting angle of 0◦ corresponds to the orientation
the object has in the model image. Therefore, to allow rotations up to +/-5◦, e.g., you should set the
starting angle to -5◦ and the angle extent to 10◦.

We recommend to limit the allowed range of rotation as much as possible in order to speed up the search
process and to minimize the required memory. If the loaded test images (page 158) show the object
in its extreme orientations, you can let the Matching Assistant determine the range of rotation, i.e., the
Pose Bounds (page 166), by pressing the Run button of the tab Inspect and viewing the result in the
Statistics output of the same tab.

Furthermore, you must limit the allowed range if the object is (almost) symmetrical. Otherwise the
search process will find multiple, almost equally good matches on the same object at different angles;
which match (at which angle) is returned as the best can therefore "jump" from image to image. The
suitable range of rotation depends on the symmetry: For a cross-shaped or square object the allowed
extent must be less than 90◦, for a rectangular object less than 180◦, and for a circular object 0◦.

Note that if you have chosen a very large angle and scale range you may find it useful to switch off the
complete pregeneration (page 157) of the model.

G
U

IR
ef

er
en

ce

154 Matching Assistant

7.3.2.16 The Model Parameters for the Scale Range

The allowed range of scale is defined separately in row and column direction. Thus, it is described by
the parameters:

• Minimum Row Scale

• Maximum Row Scale

• Minimum Column Scale

• Maximum Column Scale

In the model image, the scales all have the value 1.0.

Note that if you have chosen a very large angle extent (page 153) and scale range you may find it useful
to switch off the complete pregeneration (page 157) of the model.

Depending on the specified parameters, the most efficient matching method is used. This method deter-
mines how the shape model is created in the generated code.

• Unscaled matching:

This method is used if all four scale factors are equal to 1.0.

• Scale invariant matching:

This method is used if all four scale factors are equal (but not 1.0) or locked.

• Anisotropic scale invariant matching:

This method is used if none of the above applies.

7.3.2.17 Specifying Advanced Model Parameters

In most applications, specifying the Standard Model Parameters (page 150) will already suffice.
The menu item Create Model . Advanced Model Parameters provides additional parameters that
let you handle special cases like changing the contrast polarity or enable you to further optimize the
model.

The following parameters can be specified in this dialog:

• the Angle Step at which the model is created,

• the scale steps at which the model is created,

• whether to use the polarity of the contrast (Metric (page 156)) in the model,

• whether to optimize the model (page 156) by using a reduced number of points,

• whether to pregenerate the model completely (page 157), and

• the Minimum Contrast (page 157) points must have in a search image to be compared with the
model.

7.3.2 The Menu Create Model and the Tab Model Creation 155

7.3.2.18 The Model Parameter Angle Step

The standard model parameters Start Angle (page 153) and Angle Extent (page 153) specify how
much the object is allowed to rotate. To speed up the matching process the Matching Assistant pre-
computes instances of the model at intermediate angles in this range, at steps specified in the parameter
Angle Step.

Note that each time you create a model ROI (page 143) or change the parameter Contrast (page 151),
the Matching Assistant automatically selects a suitable value to obtain the highest possible accuracy. You
can select a higher value manually. This may be useful to speed up the search process in special cases;
please note however, that a large value may decrease the accuracy of the estimated orientation and even
prevent the Matching Assistant from finding the object! You can restore the automatically selected value
by clicking the button Auto Select.

If you already loaded test images (page 158) you can quickly test the effect of the selected parameter
value via the menu item Inspect . Determine Recognition Rate (page 165).

7.3.2.19 Letting the Matching Assistant Select a Suitable Value for Angle Step

When you click the button Auto Select that is placed right beside the slider for the parameter Angle
Step the Matching Assistant selects a suitable value for the angle step size to obtain the highest possible
accuracy.

7.3.2.20 The Model Parameters Row Scale Step and Column Scale Step

The standard model parameters for the scale range (page 154) specify how much the object is allowed
to be scaled in row and column direction. To speed up the matching process the Matching Assistant pre-
computes instances of the model at intermediate scales in this range, at steps specified in the parameters
Row Scale Step and Column Scale Step.

Note that each time you create a model ROI (page 143) or change the parameter Contrast (page 151),
the Matching Assistant automatically selects a suitable value to obtain the highest possible accuracy. You
can select a higher value manually. This may be useful to speed up the search process in special cases;
please note however, that a large value may decrease the accuracy of the estimated orientation and even
prevent the Matching Assistant from finding the object! You can restore the automatically selected value
by clicking the button Auto Select.

If you already loaded test images (page 158) you can quickly test the effect of the selected parameter
value via the menu item Inspect . Determine Recognition Rate (page 165).

7.3.2.21 Letting the Matching Assistant Select a Suitable Value for Row Scale Step and
Column Scale Step

When you click the button Auto Select that is placed right beside the sliders for the parameters
Row/Column Step Size the Matching Assistant selects suitable values for both scale step sizes based
on the model image.

G
U

IR
ef

er
en

ce

156 Matching Assistant

7.3.2.22 The Model Parameter Metric

The parameter Metric lets you choose whether the polarity of the contrast is to be observed when
comparing a test image with the model. By default, the polarity is used (’use_polarity’), i.e., the points
in the test image must show the same direction of the contrast as the corresponding points in the model.

You can choose to ignore the polarity globally (’ignore_global_polarity’), at the cost of a slightly lower
recognition speed. In this mode, an object is recognized also if the direction of its contrast reverses, e.g.,
if your object can appear both as a dark shape on a light background and vice versa.

A third mode lets you ignore the polarity locally (’ignore_local_polarity’), i.e., objects are also recog-
nized if the direction of the contrast changes only in some parts. This mode can be useful, e.g., if the
object consists of a part with a medium gray value, within which either darker or brighter sub-objects lie.
Please note, however, that the recognition speed decreases dramatically in this mode, especially if you
allowed a large range of rotation (page 153).

Finally, you can choose to ignore the color polarity (’ignore_color_polarity’) to apply shape based match-
ing to multi-channel images.

If you already loaded test images (page 158) you can quickly test the effect of the selected parameter
value via the menu item Inspect . Determine Recognition Rate (page 165).

7.3.2.23 The Model Parameter Optimization

After you created a model ROI (page 143), by default all points showing the required Contrast (page
151) (and belonging to components larger than the Minimum Size (page 152)) are selected for the model
(page 143) and marked in the image. For particularly large models, i.e., a large number of model points,
it might be useful to reduce the number of points using the parameter Optimization in order to speed up
the matching (page 143) process and to reduce memory requirements. You can select a low, medium, or
high point reduction; please note that regardless of your selection all points passing the contrast criterion
are displayed, i.e., you cannot check which points are part of the model.

You can also let the Matching Assistant select a suitable value automatically based on the model image.

Another possibility to reduce the memory requirements of the model is to switch off the complete pre-
generation of the model.

If you already loaded test images (page 158) you can quickly test the effect of the selected parameter
value via the menu item Inspect . Determine Recognition Rate (page 165).

7.3.2.24 Letting the Matching Assistant Select a Suitable Value for Optimization

When you click the button Auto Select that is placed right beside the slider for the parameter
Optimization the Matching Assistant optimizes, i.e., reduces the number of model points based on
the model image.

7.3.2 The Menu Create Model and the Tab Model Creation 157

7.3.2.25 The Model Parameter Pregenerate Shape Model

The parameter Pregenerate Shape Model specifies whether the internal representation of the shape
model is pregenerated completely whenever the model is created.

If you select a complete pregeneration by checking the check box Pregenerate Shape Model the
model generation may require a substantial amount of time and memory. In contrast, if you switch
off the complete pregeneration, the model creation will be very fast and the model will consume less
memory.

The advantage of selecting a complete pregeneration is that the model can typically be found slightly
faster than if the complete pregeneration is switched off. Typically, you may find it useful to switch off
the complete pregeneration if your model uses a large angle and scale range.

7.3.2.26 The Model Parameter Minimum Contrast

In order to select significant object points for the model (page 143) you specified which Contrast (page
151) the points must show in the model image (page 143). With the parameter Minimum Contrast you
can specify a separate minimum contrast for the matching (page 143) process itself, i.e., when searching
for the object in the test images (page 143). The main use of this parameter is to exclude noise, i.e., gray
value fluctuations, from the matching process.

Note that a low value for Minimum Contrast slows down the matching process because more points in
the test image must be compared with the model. Therefore, we recommend to choose a value which is
higher than the noise in the test images. You can also let the Matching Assistant select a suitable value
automatically based on the model image.

Note that although this parameter is only used during the search, it is already included when creating the
model in order to speed up the matching process.

If you already loaded test images you can quickly test the effect of the selected parameter value via the
menu item Inspect . Determine Recognition Rate (page 165).

7.3.2.27 Letting the Matching Assistant Select a Suitable Value for Minimum Contrast

When you click the button Auto Select that is placed right beside the slider for the parameter Minimum
Contrast the Matching Assistant selects a suitable value for the minimum contrast by evaluating the
gray value fluctuations, i.e., the noise in the model image.

Note that an automatic determination only makes sense if the image noise during the recognition is
similar to the noise in the model image. For this reason, it is typically not useful when using a synthetic
model image (without noise).

7.3.2.28 Reset All Parameters

The button Reset inside the tab Model Creation resets all model and search parameters to their default
settings and deletes the model image (page 143), the model ROI (page 143), and the test images (page
143).

G
U

IR
ef

er
en

ce

158 Matching Assistant

7.3.3 The Menu Use Model and the Tab Model Use

Via the menu Use Model as well as the tab Model Use you can

• load test images,

• delete a selected test image,

• delete all test images at once,

• display the selected test image (page 160),

• access the test image settings in the tab Model Use,

• open the dialog for the standard (page 161) and advanced search parameters (page 162),

• open the dialog for the optimization of the recognition speed (page 164), and

• directly start to optimize the recognition speed (page 164).

In the tab Model Use you can additionally

• select a test image (page 160),

• specify the number of visible objects (page 160) in the image, and

• start the matching for a selected test image or

• for the whole sequence of test images.

7.3.3.1 Loading Test Images

The so-called test images (page 143) should be representative images from your matching application,
i.e., the object should appear in all allowed variations of its position, orientation, occlusion, and illumi-
nation.

When you select the menu item Use Model . Test Images . Load Test Images (or click the cor-
responding button Load in the tab Model Use), a standard file selection box appears, in which you can
select one or more images to load. The Matching Assistant can read the image file types TIFF, BMP,
GIF, JPEG, PPM, PGM, PNG, and PBM. Please note that the test images must have the same size as the
model image!

A dialog appears in the tab Model Use which enables you to test the matching on the loaded images.

7.3.3.2 Deleting a Test Image

When you select the menu item Use Model . Test Images . Delete Test Image or click the but-
ton Delete inside the dialog Test Images of the tab Model Use, the currently selected test image is
deleted from the list of test images. You can select a test image (page 160) by clicking onto its index
number or path in the text field left to the buttons.

You can also delete all test images at once.

7.3.3 The Menu Use Model and the Tab Model Use 159

7.3.3.3 Deleting All Test Images

When you select the menu item Use Model . Test Images . Delete All Test Images or click the
button Delete All in the dialog Test Images of the tab Model Use, all test images are deleted from
the list of test images.

You can also delete a selected test image (page 158).

7.3.3.4 Test Images

With the menu item Use Model . Test Images you can

• load (page 158) test images,

• delete (page 158) a selected test image or delete all test images,

• display an already selected test image, and

• open the dialog Test Images inside the tab Model Use

The dialog Test Images inside the tab Model Use you need to additionally

• select a test image for display or deletion,

• specify the number of visible objects for each image, and

• search for the model in the complete sequence of test images, in the currently selected test image,
or automatically after each selection.

7.3.3.5 Searching for the Object in a Test Image

When you click the button Find Model in the dialog Test Images of the tab Model Use the object is
searched for in the currently selected test image; the result is displayed in the graphics window.

Please note that if the button is clicked for the first time or after you changed a model parameter, the
internally stored model is actually created, which takes some time. If the model creation takes a long
time (i.e., if you have chosen a very large angle (page 153) and scale range (page 154)), you may find it
useful to switch off the complete pregeneration (page 157) of the model.

You can also search for the object in the whole sequence of test images at once.

7.3.3.6 Searching for the Object in All Test Images

When you click the button Detect All inside the dialog Test Images of the tab Model Use, the
object is searched for in the complete sequence of test images that were loaded (page 158) before. The
results are displayed successively in the graphics window.

Please note that if the button is clicked for the first time or after you changed a model parameter, the
internally stored model is actually created, which takes some time. If the model creation takes a long
time (i.e., if you have chosen a very large angle (page 153) and scale range (page 154)), you may find it
useful to switch off the complete pregeneration (page 157) of the model.

You can also search for the object in a single test image.

G
U

IR
ef

er
en

ce

160 Matching Assistant

7.3.3.7 Automatically Searching for the Object in the Test Images

If you check the box Always Find in the dialog Test Images of the tab Model Use (also accessible
via the menu item Use Model . Test Images . Show Test Image Settings), the object is searched
for automatically whenever you select a new test image.

Please note that if the matching process is started for the first time or after you changed a model param-
eter, the internally stored model is created, which takes some time. If the model creation takes a long
time (i.e., if you have chosen a very large angle and scale range), you may find it useful to switch off the
complete pregeneration (page 157) of the model.

7.3.3.8 Selecting and Displaying a Test Image

You can select a test image by clicking with the left mouse button onto its number (index) or path in
the text box of the dialog Test Images of the tab Model Use. The selected image is automatically
displayed in the graphics window of HDevelop.

If the checkbox labelled Always Find is checked, the matching process is started automatically on the
selected test image; its result is displayed in the graphics window.

If you want to redisplay the selected test image in a later step, e.g., after you displayed the model image
(page 149) again, you can also display it via the menu item Use Model . Test Images . Display
Selected Test Image without newly selecting it.

7.3.3.9 Specifying the Number of Objects Visible in a Test Image

In the dialog Test Images (page 159) in the tab Model Use, you can specify how many objects are
visible in the current test image using the corresponding text box that appears when clicking onto the
currently displayed number of visible objects in the text field of the currently selected test image. The
default value is 1.

If you select the corresponding recognition mode in the dialog accessed via Use Model . Go To
Optimize Recognition Speed (page 164), the specified numbers of visible objects are used when
determining the recognition rate, i.e., the recognition rate is 100% when the sum of all objects found in
the test images is equal to the sum of the specified numbers.

7.3.3.10 Assuring the Matching Success

After loading (page 158) the test images you can quickly test whether all objects are found successfully
via the dialog Inspect . Determine Recognition Rate (page 165). If the matching succeeds in all
test images, i.e., if a recognition rate of 100% is reached, you can start to optimize the speed (page 145)
of the matching process.

If the matching fails in one or more test images, proceed as follows:

• Open the dialog Test Images (page 159) in the tab Model Use.

• Check the box Always Find.

7.3.3 The Menu Use Model and the Tab Model Use 161

• Step through the test images to determine the images where the matching fails.

• If an object is not found check whether one of the following situations causes your problem:

• Is the object crossing the image border, i.e., does it lie partially outside the test image?

By default the objects must lie completely within the test image in order to be found. This
behavior can be changed in the dialog Advanced Model Use Parameters in the tab Model
Use via the parameter Shape models may cross the image border (page 164).

• Is the Matching Assistant too greedy ?

By default, the Matching Assistant uses a fast search heuristic which might overlook an
object. Therefore, try reducing the corresponding parameter Greediness (page 163) in the
dialog Advanced Model Use Parameters manually or automatically via the menu item
Inspect . Optimize Recognition Speed (page 164).

• Is the object partly occluded?

If the object is to be recognized in this state nevertheless, try reducing the parameter Minimum
Score in the dialog Standard Model Use Parameters in the tab Model Use manually or
automatically via the menu item Inspect . Optimize Recognition Speed (page 164).

• Has the object a low contrast?

If the object is to be recognized in this state nevertheless, try reducing the parameter Minimum
Contrast (page 157) in the dialog Standard Model Parameters (page 150) in the tab
Model Creation.

• Do multiple objects overlap?

If the objects are to be recognized in this state nevertheless, try decreasing the Maximum
Overlap (page 163) in the dialog Advanced Model Use Parameters in the tab Model
Use.

• If the object is found but not at the expected position or orientation check the following:

• If multiple matches are found on one and the same object, decrease the Maximum Overlap
(page 163) in the dialog Advanced Model Use Parameters.

• If an almost symmetric object is found at the wrong orientation try reducing the param-
eters specifying the allowed range of rotation (page 153) in the dialog Standard Model
Parameters (page 150) in the tab Model Creation.

7.3.3.11 Specifying Standard Model Use Parameters

Via the menu item Use Model . Standard Model Use Parameters, you can specify

• the Minimum Score the object must have and

• the number of instances of the object that are searched for in an image (Maximum Number of
Matches).

Additionally, advanced search parameters can be specified via the menu item Use Model . Advanced
Model Use Parameters.

G
U

IR
ef

er
en

ce

162 Matching Assistant

7.3.3.12 The Search Parameter Minimum Score

When comparing a region in a test image with the model (page 143), the Matching Assistant calculates
a measure of similarity, the so-called score (page 144), which ranges between 0 (no similarity) and 1
(perfect similarity). With the parameter Minimum Score you can specify a minimum score that a match
must reach.

Graphically speaking, the parameter specifies how much of the object, i.e., of the model points, must
be visible. A part of the object may be invisible not only because it is occluded, but also if its contrast
is lower than the selected minimum contrast value (page 157) or has the wrong polarity (page 156). A
further cause of invisibility could be a (too) large angle step size (page 155).

The larger the value is chosen, the faster the search is, because candidate matches can be discarded
earlier. Therefore, this parameter can be optimized easily: Starting from the maximum value, reduce the
value until the object is found in all test images (page 143); in fact, this method is used by the Matching
Assistant itself when you start the optimization via the menu item Inspect . Optimize Recognition
Speed (page 164).

Choosing small values may cause the program to search for quite a while. In such a case we recommend
to enter a larger value in the text box instead of using the slider.

Please note that by default the objects must lie completely within the test images in order to be found.
This behavior can be changed via the parameter Shape models may cross the image border
(page 164) in the dialog accessed via the menu item Use Model . Advanced Model Use Parameters.

7.3.3.13 The Search Parameter Maximum Number of Matches

The parameter Maximum Number of Matches specifies how many instances of the object are searched
for in the image. Note that the parameter sets a maximum value, i.e., if more object instances are present
in the image only the best instances of the specified number are displayed. If you specify the value 0, all
found instances are displayed.

7.3.3.14 Specifying Advanced Model Use Parameters

Via the menu item Use Model . Advanced Model Use Parameters, you can specify:

• the Greediness of the search algorithm,

• how much the objects may overlap (Maximum Overlap),

• the accuracy (Subpixel) of the calculated position, orientation, and scale,

• the lowest pyramid level Last Pyramid Level to which the found matches are tracked, and

• whether objects that lie partially outside the image (Shape model may cross the image
border (page 164)) should be searched.

7.3.3 The Menu Use Model and the Tab Model Use 163

7.3.3.15 The Search Parameter Greediness

The parameter Greediness influences the search algorithm used by the Matching Assistant. It ranges
between 0 and 1. If you select a low value, the search is thorough but relatively slow. The higher the
value, the faster the search algorithm becomes, but at the cost of thoroughness, i.e., an object might not
be found even though it is visible in the image.

This parameter can be optimized easily: Starting from the value 0, increase the value until the matching
fails in a test image, and then use the last value for which the object is found; in fact, this method is
used by the Matching Assistant itself when you start the optimization via the menu item Use Model .
Optimize Recognition Speed.

7.3.3.16 The Search Parameter Maximum Overlap

The parameter Maximum Overlap specifies how much two matches may overlap in the image; its value
ranges between 0 and 1. Especially in the case of an almost symmetric object the allowed overlap should
be reduced to prevent multiple matches on the same object.

7.3.3.17 The Search Parameter Subpixel

The parameter Subpixel allows to select the accuracy with which the position, orientation, and scale
are calculated. If you select the value ’none’, the position is determined only with pixel accuracy, and
the accuracy of the orientation and scale is equal to the angle step size (page 155) and scale step size
(page 155), respectively.

If you select the value ’interpolation’, the Matching Assistant examines the matching scores at the neigh-
boring positions, angles, and scales around the best match and determines the maximum by interpolation.
Using this method, the position is therefore estimated with sub-pixel accuracy. The accuracy of the es-
timated orientation and scale depends on the size of the object: The larger the size, the more accurately
the orientation and scale can be determined. For example, if the maximum distance between the center
and the boundary is 100 pixel, the orientation is determined with an accuracy of about 0.1◦.

Because the interpolation is very fast, you can select ’interpolation’ in most applications.

When you choose the values ’least_squares’, ’least_squares_high’, or ’least_squares_very_high’, a least-
squares approximation is used instead of an interpolation, resulting in an even higher accuracy. However,
this method requires additional computation time.

7.3.3.18 The Search Parameter Last Pyramid Level

With the parameter Last Pyramid Level you can select the lowest pyramid level to which the found
matches are tracked. For example, when selecting the value 2, the matching starts at the highest pyramid
level and tracks the matches to the second lowest pyramid level (the lowest pyramid level is denoted by
a value of 1).

This mechanism can be used to speed up the matching. It should be noted, however, that in general the
accuracy of the extracted position, orientation, and scale is lower in this mode than in the normal mode,

G
U

IR
ef

er
en

ce

164 Matching Assistant

in which the matches are tracked to the lowest pyramid level. Hence, if a high accuracy is desired, the
parameter Subpixel should be set to at least ’least_squares’.

Note that if the lowest pyramid level to use is chosen too large, it may happen that the desired accuracy
cannot be achieved, or that wrong instances of the model are found because the model is not specific
enough on the higher pyramid levels to facilitate a reliable selection of the correct instance of the model.
In this case, the lowest pyramid level to use must be set to a smaller value.

7.3.3.19 The Search Parameter Shape models may cross the image border

With the parameter Shape models my cross the image border you can specify whether shape
models that cross the image border, i.e., that lie partially outside the test images, should be searched.

If you switch off the check box Shape models may cross the image border the shape model will
only be searched within those parts of the test images in which the shape model completely lies within
the image.

If you switch on the check box Shape models may cross the image border the shape model will
be searched for in all positions in which the model additionally lies partially outside the test images, i.e.,
in which the shape model extends beyond the image border. Here, points lying outside the image are
regarded as being occluded, i.e., they lower the score. This should be taken into account while selecting
the Minimum Score (page 162). Please note that the runtime of the search will increase in this mode.

7.3.3.20 Optimizing the Recognition Speed

When you select the menu item Use Model . Optimize Recognition Speed or click either the corre-
sponding button in the tool bar or the button Run Optimization in the dialog Optimize Recognition
Speed of the tab Model Use, the Matching Assistant automatically determines values for the parameters
Minimum Score (page 162) and Greediness (page 163) to optimize the recognition speed. The speed
is calculated as the average recognition speed over all test images. You can interrupt this process by
clicking the button labelled Stop; please note however, that this event is processed only after the current
search has finished.

The two parameters are optimized as follows: At the beginning, the greediness is set to 0 and the mini-
mum score to 1. Then, the minimum score is decreased until the matching succeeds in all test images,
i.e., until the recognition rate is 100%. Now, the greediness is increased as long as the matching suc-
ceeds. This process is repeated until the optimum parameters are found. You can lower the threshold of
acceptance for the recognition rate manually using the corresponding slider or text box at the bottom of
the dialog.

The Matching Assistant then displays the optimal minimum score and greediness and the reached recog-
nition time. It automatically enters the parameter values in the dialogs Use Model . Standard Model
Use Parameters (page 161) and Use Model . Advanced Model Use Parameters (page 162), re-
spectively.

If a test image can contain more than one object, the term ’recognition rate’ is ambiguous. Therefore,
you can choose between three recognition modes:

7.3.4 The Menu and Tab Inspect 165

• In each test image, at least one object is expected. The recognition rate is calculated as the per-
centage of test images which fulfill this condition, i.e., it is 100% if in all test images at least one
object is found.

• In each test image, as many objects are expected as specified in the parameter Maximum
Number of Matches (page 162) in the dialog accessed via Use Model . Standard Model Use
Parameters (page 161). The recognition rate is calculated as the relation of found objects to the
sum of expected objects over all images, i.e., it is 100% if in all test images (at least) Maximum
Number of Matches objects are found.

• In each test image, as many objects are expected as specified manually (page 160) in the dialog
Test Images (page 159) of the tab Model Use. The recognition rate is calculated as the relation
of found objects to the sum of expected objects over all images, i.e., it is 100% if in each image
exactly as many objects are found as specified.

Note that if you select Maximum Number of Matches = 0 and by mistake specify a lower num-
ber of visible objects than actually present in a test image, a recognition rate . 100% results, which
completely confuses the optimization algorithm. You may handle this case by selecting the condi-
tion . = 100% for the recognition rate.

7.3.4 The Menu and Tab Inspect

Via the menu Inspect you can determine the recognition rate and the pose bounds of the object for the
used set of test images. Besides the automatical determination of the recognition rate, the tab Inspect
is opened. Alternatively, you can directly open the tab and select the button Run. Inside the tab, you can
also specify the maximum number (page 162) of object instances the Matching Assistant should search
for.

7.3.4.1 Determining the Recognition Rate

With the menu item Inspect . Determine Recognition Rate or when you click either the corre-
sponding button in the tool bar or the button Run in the tab Inspect, the Matching Assistant determines
the recognition rate by searching the object in all loaded test images. You can interrupt this process by
clicking the button labelled Stop; please note however, that this event is processed only after the current
search has finished.

The Matching Assistant then displays at Recognition Rate the recognition rate calculated for different
criteria and at Statistics the mean, minimum, and maximum score (page 144), as well as the mean,
minimum, and maximum matching time.

You can choose between three recognition modes:

• In each test image, at least one object is expected. The recognition rate is calculated as the per-
centage of test images which fulfill this condition.

• In each test image, as many objects are expected as specified in the parameter Maximum
Number of Matches (page 162) in the dialog accessed via Use Model . Standard Model Use
Parameters (page 161). The recognition rate is calculated as the relation of found objects to the
sum of expected objects over all images (in percent).

G
U

IR
ef

er
en

ce

166 Matching Assistant

Please keep in mind that if an image contains more objects than specified in the parameter Maximum
Number of Matches, only the best Maximum Number of Matches instances are found! There-
fore, if there are, e.g., two test images containing 1 and 3 objects, respectively, and you select
Maximum Number of Matches = 2, the recognition rate will be 75%, i.e., 3 out of 4 expected
objects.

• In each test image, as many objects are expected as specified manually (page 160) in the dialog
accessed via Use Model . Standard Model Use Parameters (page 161). The recognition rate
is calculated as the relation of found objects to the sum of expected objects over all images (in
percent).

Before using this mode, please check the value specified for the parameter Maximum Number of
Matches (page 162): If it is not set to 0, it should not be smaller than the maximum number of
objects visible in a test image; otherwise, the recognition rate will be below 100%.

Note that if you select Maximum Number of Matches = 0 and by mistake specify a lower num-
ber of visible objects than actually present in a test image, a recognition rate . 100% results. To
further extend this line of thought: If for some reason in another test image an object is not found,
the two errors cancel each other out, i.e., the recognition rate is 100%! Therefore, we recommend
to check whether the correct objects are found via the dialog Test Images (page 159) in the tab
Model Use.

7.3.4.2 Determining the Pose Bounds

When you click the button Run in the tab Inspect, besides the recognition rate (page 165) the Matching
Assistant determines so-called pose bounds, i.e., the range of positions, orientations, and scales in which
the object appears in the test images. You can interrupt this process by clicking the button labelled Stop;
please note however, that this event is processed only after the current search has finished.

If the test images cover the whole ranges of allowed orientations and scales of the object you can use the
calculated ranges to optimize the parameters Angle Extent (page 153), Start Angle (page 153), and
the parameters for the scale range (page 154) in the dialog accessed via the menu item Create Model .
Standard Model Parameters (page 150); we recommend to use slightly larger values to get accurate
results at the boundaries of the ranges.

In a corresponding HALCON program you can use the calculated range of positions as a region of
interest and thus further speed up the matching process.

7.3.5 The Menu and Tab Code Generation

Via the menu Code Generation you can

• open the dialog Options inside the tab Code Generation, where options for the code generation
can be set,

• open the dialog Variable Names inside the tab Code Generation, where the names for the used
variables can be specified,

• insert code to the program window of HDevelop according to the current settings of the Matching
Assistant,

7.3.5 The Menu and Tab Code Generation 167

• release the generated code lines in the program window,

• delete the generated code lines from the program window as long as you did not released them,
and

• open the dialog for the code preview inside the tab Code Generation.

7.3.5.1 Specifying the Options for the Code Generation

Via the menu item Code Generation . Show Code Generation Options you can open the dialog
for determining the options for the code generation inside the tab Code Generation. The dialog con-
sists of the following parts:

• radio buttons for selecting whether the shape model is created at run time from the model image
(page 143) or if an already existing shape model is to be loaded. For the first case, you can
additionally select whether to use the model image and the ROI (page 143) that were specified
inside the Matching Assistant or whether a new ROI has to be drawn at run time,

• a check box to select whether to display the detected model instances in a loop, and

• the button Insert Code to insert the code generated by the Matching Assistant into the program
window of HDevelop.

7.3.5.2 Specifying the Variables for the Code Generation

Via the menu item Code Generation . Show Variables for Code Generation you can open the
dialog for determining the variables used for the code generation inside the tab Code Generation. The
dialog consists of several text fields for the individual variables needed for the code lines. The Matching
Assistant automatically generates reasonable variable names, but you can change the individual names
via the text fields.

7.3.5.3 Inserting the Generated Code Lines

Via the menu item Code Generation . Insert Code (also accessible as tool bar button or as button
inside the tab Code Generation), you can insert the code that is generated according to the current
settings of the Matching Assistant into the program window.

7.3.5.4 Releasing the Generated Code Lines

Via the menu item Code Generation . Release Generated Code Lines you can release the gen-
erated and inserted code lines. After releasing the code lines, all connections between the Matching
Assistant and the program window of HDevelop are lost. That is, changes, e.g., the deletion of code
lines, can then only be applied directly in the program window and not from within the Matching Assis-
tant anymore.

G
U

IR
ef

er
en

ce

168 Matching Assistant

7.3.5.5 Deleting the Generated Code Lines

Via the menu item Code Generation . Delete Generated Code Lines you can delete the code
lines that you have previously generated and inserted to the program window of HDevelop from within
the Matching Assistant. Note that this works only as long as you have not yet released the code lines.

7.3.5.6 Preview of the Generated Code Lines

Via the menu item Code Generation . Show Code Preview you can open the dialog for the Code
Preview in the tab Code Generation. Here, you have the possibility to, e.g., edit or replace individual
operators of the code lines proposed by the Matching Assistant.

7.3.6 The Menu Help

Via the menu Help you can access this online documentation.

HDevelop Language 169

Chapter 8

HDevelop Language

This chapter introduces the syntax and the semantics of the HDevelop language. In other words, it
illustrates what you can enter into a parameter slot of an operator or procedure call. In the simplest case
this is the name of a variable, but it might also be an arbitrary expression like sqrt(A). Besides, control
structures (like loops) and the semantics of parameter passing are described.

Note that the HALCON operators themselves are not described in this chapter. For this purpose refer
to the HALCON reference manual. All program examples used in this chapter can also be found in the
directory %HALCONROOT%\examples\hdevelop\Manuals\HDevelop.

8.1 Basic Types of Parameters

HALCON distinguishes two kinds of data: control data (numbers or strings) and iconic data (images,
regions, etc.)

By further distinguishing input from output parameters, we get four different kinds of parameters. These
four kinds always appear in the same order in the HDevelop parameter list. In the reference manual
operator signatures are visualized in the following way:

operator (iconic input : iconic output : control input : control output)

As you see, iconic input objects are always passed first, followed by the iconic output objects. The iconic
data is followed by the control data, and again, the input parameters succeed the output parameters.

Any of the four types of parameters may be empty. For example, the signature of read_image reads

read_image (: Image : FileName :)

The operator read_image has one output parameter for iconic objects read_image.Image and one
input control parameter read_image.FileName. The parameter types are reflected when entering op-
erators in the operator window. The actual operator call displayed in the HDevelop program window
is:

La
ng

ua
ge

170 HDevelop Language

read_image (Image, ’Name’)

The parameters are separated by commas. Input control parameters can either be variables, constants or
expressions. An expression is evaluated before it is passed to a parameter that receives the result of the
evaluation. Iconic parameters must be variables. Control output parameters must be variables, too, as
they store the results of an operator evaluation.

8.2 Control Types and Constants

All non-iconic data is represented by so called control data (numbers or strings) in HDevelop. The name
is derived from their respective functions within HALCON operators where they control the behaviour
(the effect) of image processing (e.g., thresholds for a segmentation operator). Control parameters in
HDevelop may contain arithmetic or logical operations. A control data item can be of one of the follow-
ing types: integer, real, string, and boolean.

integer and real The types integer and real are used under the same syntactical rules as in C.
Integer numbers can be input in the standard decimal notation, in hexadecimal by prefixing the
number with 0x, and in octal by prefixing the number with 0. For example:

4711
-123
0xfeb12
073421
73.815
0.32214
.56
-17.32e-122
32E19

Data items of type integer or real are converted to their machine-internal representations: real
becomes the C-type double (8 bytes) and integer becomes the C-type long (4 or 8 bytes).

string A string is a sequence of characters that is enclosed in single quotes (’). The maximum string
length is limited to 1024 characters. Special characters, like the line feed, are represented in the
C-like notation, as you can see in table 8.1 (see the reference of the C language for comparison).
You can enter arbitrary characters using the format \xnn where nn is a two-digit hexadecimal
number, or using the format \0nnn where nnn is a three-digit octal number. Less digits may be
used if the string is unambiguous. For example, a line feed may be specified as \xa unless the
string continues with another hexadecimal digit (0-F).

For example: The string Sobel’s edge-filter has to be specified as
’Sobel\’s edge-filter’. A Windows directory path can be entered as
’C:\\Programs\\MVTec\\Halcon\\images’

boolean The constants true and false belong to the type boolean. The value true is internally
represented by the number 1 and the value false by 0. This means, that in the expression Val

8.2 Control Types and Constants 171

Meaning Abbreviation Notation

line feed NL (LF) \n

horizontal tabulator HT \t

vertical tabulator VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

bell BEL \a

backslash \ \\

single quote ’ \’

arbitrary character (hexadecimal) \xnn

arbitrary character (octal) \0nnn

Table 8.1: Surrogates for special characters.

:= true the effective value of Val is set to 1. In general, every integer value other than 0 means
true. Please note that some HALCON operators take logical values for input (e.g., set_system).
In this case the HALCON operators expect string constants like ’true’ or ’false’ rather than
the boolean values true or false.

In addition to these general types, there are special constants and the type tuple, which are specific to
HALCON or HDevelop, respectively.

constants There are constants for the return value (result state) of an operator. The constants can be used
together with the operator dev_error_var and dev_set_check. These constants represent the
normal return value of an operator, so called messages. For errors no constants are available (there
are more than 400 error numbers internally, see the Extension Package Programmer’s Manual).

In table 8.2 all return messages can be found.

tuple The control types are only used within the generic HDevelop type tuple. A tuple of length 1 is
interpreted as an atomic value. A tuple may consist of several numerical data items with different

Constant Meaning Value

H_MSG_TRUE No error; for tests: (true) 2

M_MSG_FALSE For tests: false 3

H_MSG_VOID No result could be computed 4

H_MSG_FAIL Operator did not succeed 5

Table 8.2: Return values for operators.

La
ng

ua
ge

172 HDevelop Language

,

boolean

[]

string

integer

real

Value

Value

ValueTuple constant

Figure 8.1: The syntax of tuple constants.

types. The standard representation of a tuple is a listing of its elements included into brackets.
This is illustrated in figure 8.1.

[] specifies the empty tuple. A tuple with just one element is to be considered as a special case,
because it can either be specified in the tuple notation or as an atomic value: [55] defines the same
constant as 55. Examples for tuples are:

[]
4711
0.815
’Text’
[16]
[100.0,100.0,200.0,200.0]
[’FileName’,’Extension’]
[4711,0.815,’Hugo’]

8.3 Variables

Names of variables are built up as usual by composing letters, digits and the underscore ‘_’. The max-
imum length of a variable name is limited to 256 characters. The kind of a variable (iconic or control
variable) depends on its position in the parameter list in which the variable identifier is used for the first
time (see also section 8.1 on page 169). The kind of the variable is determined during the input of the
operator parameters: whenever a new identifier appears, a new variable with the same identifier is cre-
ated. Control and iconic variables must have different names. The value of a variable (iconic or control)
is undefined until the first assignment defines it (the variable has not been instantiated yet). A read access
to an undefined variable leads to a runtime error (Variable <x> not instantiated).

HDevelop provides a pre-defined variable named _ (single underscore). You can use this variable for
output control parameters whose value you are not interested in. Please note that it is not allowed to
use this variable for HDevelop-specific operators (chapters Control and Develop in the HALCON

8.4 Operations on Iconic Objects 173

reference manual). It is not recommended to use the variable _ in programs that will later be exported
to a foreign programming language.

Instantiated variables contain tuples of values. Depending on the kind of the variable, the data items are
either iconic objects or control data. The length of the tuple is determined dynamically by the performed
operation. A variable can get new values any number of times, but once a value has been assigned the
variable will always keep being instantiated, unless you select the menu item Menu Execute . Reset
Program Execution. The content of the variable is deleted before the variable is assigned new values.

The concept of different kinds of variables allows a first (“coarse”) typification of variables (control or
iconic data), whereas the actual type of the data (e.g., real, integer, string, etc.) is undefined until
the variable gets assigned with a concrete value. Therefore, it is possible that the type of a new data item
differs from that of the old.

8.4 Operations on Iconic Objects

Iconic objects are exclusively processed by HALCON operators. HALCON operators work on tuples of
iconic objects, which are represented by their surrogates in the HALCON data management. The results
of those operators are again tuples of iconic objects or control data elements. For a detailed description
of the HALCON operators refer to the HALCON reference manual and the remarks in section 8.5.3 on
page 177.

8.5 Expressions for Input Control Parameters

In HDevelop, the use of expressions like arithmetic operations or string operations is limited to control
input parameters; all other kinds of parameters must be assigned by variables.

8.5.1 General Features of Tuple Operations

This section intends to give you a short overview over the features of tuples and their operations. A more
detailed description of each operator mentioned here is given in the following sections.

Please note that in all following tables variables and constants have been substituted by letters which
indicate allowed data types. These letters provide information about possible limitations of the areas of
definition. The letters and their meaning are listed in table 8.3. Operations on these symbols can only be
applied to parameters of the indicated type or to expressions that return a result of the indicated type.

The symbol names i, a, l, and s can denote atomic tuples (tuples of length 1) as well as tuples with
arbitrary length.

Operations are normally described assuming atomic tuples. If the tuple contains more than one element,
most operators work as follows:

• If one of the tuples is of length one, all elements of the other tuples are combined with that single
value for the chosen operation.

La
ng

ua
ge

174 HDevelop Language

Symbol Types

i integer

a arithmetic, that is: integer or real

b boolean

s string

v all types (atomic)

t all types (tuple)

Table 8.3: Symbols for the operation description.

Input Result

5 * 5 25

[5] * [5] 25

[1,2,3] * 2 [2,4,6]

[1,2,3] * 2.1 + 10 [12.1,14.2,16.3]

[1,2,3] * [1,2,3] [1,4,9]

[1,2,3] * [1,2] runtime error

’Text1’ + ’Text2’ ’Text1Text2’

17 + ’3’ ’173’

’Text ’ + 3.1 * 2 ’Text 6.2’

3.1 * (2 + ’Text’) runtime error

3.1 + 2 + ’ Text’ ’5.1 Text’

3.1 + (2 + ’Text’) ’3.12 Text’

Table 8.4: Examples for arithmetic operations with tuples and strings.

• If both tuples have a length greater than one, both tuples must have the same length (otherwise a
runtime error occurs). In this case, the selected operation is applied to all elements with the same
index. The length of the resulting tuples is identical to the length of the input tuples.

• If one of the tuples is of length 0 ([]), a runtime error occurs.

In table 8.4 you can find some examples for arithmetic operations with tuples. Pay special attention to
the order in which the string concatenations are performed. The basic arithmetic operations in HDevelop
are +, -, *, /. Please note that + is a dimorphic operation: If both operands are numeric, it adds numbers.
If at least one of the operands is a string, it concatenates both operands as strings.

8.5.2 Assignment 175

8.5.2 Assignment

In HDevelop, an assignment is treated like an operator. To use an assignment you have to select the
operator assign(Input, Result). This operator has the following semantics: It evaluates Input
(right side of assignment) and stores it in Result (left side of assignment). However, in the program
text the assignment is represented by the usual syntax of the assignment operator: Result := Input.
The following example outlines the difference between an assignment in C syntax and its transformed
version in HDevelop:

The assignment in C syntax

u = sin(x) + cos(y);

is defined in HDevelop using the assignment operator as

assign(sin(x) + cos(y), u)

which is displayed in the program window as:

u := sin(x) + cos(y)

If the result of the expression does not need to be stored into a variable, the expression can directly be
used as input value for any operator. Therefore, an assignment is necessary only if the value has to be
used several times or if the variable has to be initialized (e.g., for a loop).

A second assignment operator is available: insert(Input, Value, Index, Result). It is used to
assign tuple elements. If the first input parameter and the first output parameter are identical, the call:

insert (Areas, Area, Radius-1, Areas)

is not presented in the program text as an operator call, but in the more intuitive form as:

Areas[Radius-1] := Area.

As an example:

assign([1,2,3], Area)
assign(9, Areas)
insert(Areas, Area, 1, Areas)

sets Areas to [1,9,3].

To construct a tuple with insert, normally an empty tuple is used as initial value and the elements are
inserted in a loop:

La
ng

ua
ge

176 HDevelop Language

Tuple := []
for i := 0 to 5 by 1
Tuple[i] := sqrt(real(i))

endfor

As you can see from the examples, the indices of a tuple start at 0.

An insertion into a tuple can generally be performed in one of the following ways:

1. In case of appending the value at the ‘back’ or at the ‘front’, the tuple concatenation operation ,
(comma) can be used. Here the operator assign is used with the following parameters:

assign([Tuple,NewVal],Tuple)

which is displayed as

Tuple := [Tuple,NewVal]

2. If the index position is somewhere in between, the operator insert has to be used. It takes the
following arguments as input: first the tuple in which the new value should be inserted; then the
new value and after that the index position as the third input parameter. The result (the fourth
parameter) is almost identical with the input tuple, except of the new value at the defined index
position (see the example above).

In the following example regions are dilated with a circle mask and afterwards the areas are stored into
the tuple Areas. In this case the operator insert is used.

read_image (Mreut, ’mreut’)
threshold (Mreut, Region, 190, 255)
Areas := []
for Radius := 1 to 50 by 1
dilation_circle (Region, RegionDilation, Radius)
area_center (RegionDilation, Area, Row, Column)
Areas[Radius-1] := Area

endfor

Please note that first the variable Areas has to be initialized in order to avoid a runtime error. In the
example Areas is initialized with the empty tuple ([]). Instead of insert the operator assign with
tuple concatenation

Areas := [Areas,Area]

could be used, because the element is appended at the back of the tuple. More examples can be found in
the program assign.dev.

8.5.3 Basic Tuple Operations 177

[t1,t2] => t concatenate tuples

|t| => i get number of elements of tuple t

t[i] => v select element i of tuple t; 0 <= i < |t|

t[i1:i2] => t select from element i1 to element i2 of tuple t

subset(t,i) => t select elements specified in i from t

remove(t,i) => t remove elements specified in i from t

find(t1,t2) => i get indices of all occurrences of t2 within t1 (or -1 if no match)

uniq(t) => t discard all but one of successive identical elements from t

Table 8.5: Basic operations on tuples (control data).

8.5.3 Basic Tuple Operations

A basic tuple operation may be selecting one or more values, combining tuples (concatenation) or getting
the number of elements (see table 8.5 for operations on tuples containing control data).

The concatenation accepts one or more variables or constants as input. They are all listed between the
brackets, separated by commas. The result again is a tuple. Please note the following: [[t]] = [t] =
t.

|t| returns the number of elements of a tuple. The indices of elements range from zero to the number
of elements minus one (i.e., |t|-1). Therefore, the selection index has to be within this range. 1

Tuple := [V1,V2,V3,V4]
for i := 0 to |Tuple|-1 by 1
fwrite_string (FileHandle,Tuple[i]+’\n’)

endfor

In the following examples the variable Var contains [2,2,3,’a’,’a’,2,3,’b’,’b’]:

[3,Var,[8,9]] [3,2,2,3,’a’,’a’,2,3,’b’,b’,8,9]
|Var| 9
Var[4] ’a’

Var[4:6] [’a’,2,3]
subset(Var,[3,6,7]) [’a’,3,’b’]
remove(Var,[3,6,7]) [2,2,3,’a’,2,’b’]

find(Var,[2,3]) [1,5]
uniq(Var) [2,3,’a’,2,3,’b’]

Further examples can be found in the program tuple.dev. The HALCON operators that correspond to
the basic tuple operations are listed in table 8.6.

Note that these direct operations cannot be used for iconic tuples, i.e., iconic objects cannot be selected
from a tuple using [] and their number cannot be directly determined using ||. For this purpose,

1Please note that the index of objects (e.g., select_obj) ranges from 1 to the number of elements.

La
ng

ua
ge

178 HDevelop Language

Operation HALCON operator

[t1,t2] tuple_concat

|t| tuple_length

t[i] tuple_select

t[i1:i2] tuple_select_range

subset(t,i) tuple_select

remove(t,i) tuple_remove

find(t1,t2) tuple_find

uniq(t) tuple_uniq

Table 8.6: Tuple operations and the corresponding HALCON operators.

control iconic

[] gen_empty_obj ()

[t1,t2] concat_obj (p1, p2, q)

|t| count_obj (p, num)

t[i] select_obj (p, q, i+1)

t[i1:i2] copy_obj (p, q, i1+1, i2-i1+1)

Table 8.7: Equivalent tuple operations for control and iconic data.

however, HALCON operators are offered that carry out the equivalent tasks. In table 8.7 you can see
tuple operations that work on control data (and which are applied via assign or insert) and their
counterparts that work on iconic data (and which are independent operators). In the table the symbol t
represents a control tuple, and the symbols p and q represent iconic tuples.

8.5.4 Tuple Creation

The simplest way to create a tuple, as mentioned in section 8.2 on page 170, is the use of constants
together with the operator assign (or in case of iconic data one of its equivalents shown in table 8.7):

assign ([],empty_tuple)
assign (4711,one_integer)
assign ([4711,0.815],two_numbers)

This code is displayed as

empty_tuple := []
one_integer := 4711
two_numbers := [4711,0.815]

8.5.4 Tuple Creation 179

This is useful for constant tuples with a fixed (small) length. More general tuples can be created by
successive application of the concatenation or the operator insert together with variables, expressions
or constants. If we want to generate a tuple of length 100, where each element has the value 4711, it
might be done like this:

assign ([],tuple)
for (1,100,1,i)
assign ([tuple,4711],tuple)

endfor

which is displayed as

tuple := []
for i := 1 to 100 by 1
tuple := [tuple,4711]

endfor

Because this is not very convenient a special function called gen_tuple_const is available to construct
a tuple of a given length, where each element has the same value. Using this function, the program from
above is reduced to:

assign(gen_tuple_const(100,4711),tuple)

which is displayed as

tuple := gen_tuple_const(100,4711)

If we want to construct a tuple with the same length as a given tuple there are two ways to get an easy
solution, The first one is based on gen_tuple_const:

assign(gen_tuple_const(|tuple_old|,4711),tuple_new)

which is displayed as

tuple_new := gen_tuple_const(|tuple_old|,4711)

The second one is a bit tricky and uses arithmetic functions:

assign((tuple_old * 0) + 4711,tuple_new)

which is displayed as

tuple_new := (tuple_old * 0) + 4711

La
ng

ua
ge

180 HDevelop Language

Operation Meaning HALCON operator

a1 / a2 division tuple_div

a1 * a2 multiplication tuple_mult

a1 % a2 modulus tuple_mod

a1 + a2 addition tuple_add

a1 - a2 subtraction tuple_sub

-a negation tuple_neg

Table 8.8: Basic arithmetic operations.

Here we get first a tuple of the same length with every element set to zero. Then, we add the constant to
each element.

In the case of tuples with different values we have to use the loop version to assign the values to each
position:

assign([],tuple)
for (1,100,1,i)
assign([tuple,i*i],tuple)

endfor

which is displayed as

tuple := []
for i := 1 to 100 by 1
tuple := [tuple,i*i]

endfor

In this example we construct a tuple with the square values from 12 to 1002.

8.5.5 Simple Arithmetic Operations

See table 8.8 for an overview of the available simple arithmetic operations.

All operations are left-associative, except the right-associative unary minus operator. The evaluation
usually is done from left to right. However, parentheses can change the order of evaluation and some
operators have a higher precedence than others (see section 8.5.14).

The arithmetic operations in HDevelop match the usual definitions. Expressions can have any number of
parentheses.

The division operator (a1 / a2) can be applied to integer as well as to real. The result is of type
real, if at least one of the operands is of type real. If both operands are of type integer, the division
is an integer division. The remaining arithmetic operators (multiplication, addition, subtraction, and

8.5.6 Bit Operations 181

Operation Meaning HALCON operator

lsh(i1,i2) left shift tuple_lsh

rsh(i1,i2) right shift tuple_rsh

i1 band i2 bitwise and tuple_band

i1 bxor i2 bitwise xor tuple_bxor

i1 bor i2 bitwise or tuple_bor

bnot i bitwise complement tuple_bnot

Table 8.9: Bit operations.

negation) can be applied to either integer or real numbers. If at least one operand is of type real, the
result will be a real number as well.

Examples:

Expression Result
4/3 1

4/3.0 1.3333333
(4/3) * 2.0 2.0

Simple examples can be found in the program arithmetic.dev.

8.5.6 Bit Operations

This section describes the operators for bit processing of numbers. The operands have to be integers.

The result of lsh(i1,i2) is a bitwise left shift of i1 that is applied i2 times. If there is no overflow
this is equivalent to a multiplication by 2i2. The result of rsh(i1,i2) is a bitwise right shift of i1 that
is applied i2 times. For non-negative i1 this is equivalent to a division by 2i2. For negative i1 the
result depends on the used hardware. For lsh and rsh the result is undefined if the second operand has
a negative value or the value is larger than 32. More examples can be found in the program bit.dev.

8.5.7 String Operations

There are several string operations available to modify, select, and combine strings. Furthermore, some
operations allow to convert numbers (real and integer) to strings.

$ (string conversion)

See also: tuple_string

$ converts numbers to strings or modifies strings. The operation has two operands: The first one (left of
the $) is the number that has to be converted. The second one (right of the $) specifies the conversion.
It is comparable to the format string of the printf() function in the C programming language. This
format string consists of the following four parts

La
ng

ua
ge

182 HDevelop Language

<flags><width>.<precision><conversion>

or as a regular expression:

[-+ #]?([0-9]+)?(\.[0-9]*)?[doxXfeEgGsb]?

(which roughly translates to zero or more of the characters in the first bracket pair followed by zero or
more digits, optionally followed by a dot which may be followed by digits followed by a conversion
character from the last bracket pair).

Some conversion examples might show it best:

Input Output
23 $ ’10.2f’ ’ 23.00’
23 $ ’-10.2f’ ’23.00 ’
4 $ ’.7f’ ’4.0000000’
1234.56789 $ ’+10.3f’ ’ +1234.568’
255 $ ’x’ ’ff’
255 $ ’X’ ’FF’
0xff $ ’.5d’ ’00255’
’total’ $ ’10s’ ’ total’
’total’ $ ’-10s’ ’total ’
’total’ $ ’10.3’ ’ tot’

flags Zero or more flags, in any order, which modify the meaning of the conversion specification. Flags
may consist of the following characters:

v$s convert v using specification s

v1 + v2 concatenate v1 and v2

strchr(s1,s2) search character s2 in s1

strstr(s1,s2) search substring s2 in s1

strrchr(s1,s2) search character s2 in s1 (reverse)

strrstr(s1,s2) search substring s2 in s1 (reverse)

strlen(s) length of string

s{i} select character at position i; 0 <= i <= strlen(s)

s{i1:i2} select substring from position i1 to position i2

split(s1,s2) split s1 in substrings at s2

regexp_match(s1,s2) extract substrings of s1 matching the regular expression s2

regexp_replace(s1,s2,s3) replace substrings of s1 matching the regular expression s2 with s3

regexp_select(s1,s2) select tuple elements from s1 matching the regular expression s2

regexp_test(s1,s2) return how many tuple elements in s1 match the regular expression s2

Table 8.10: String operations.

8.5.7 String Operations 183

- The result of the conversion is left justified within the field.

+ The result of a signed conversion always begins with a sign, + or -.

<space> If the first character of a signed conversion is not a sign, a space character is prefixed to
the result. This means that if the space flag and + flag both appear, the space flag is ignored.

The value is to be converted to an “alternate form”. For d and s (see below) conversions, this
flag has no effect. For o conversion (see below), it increases the precision to force the first
digit of the result to be a zero. For x or X conversion (see below), a non-zero result has 0x
or 0X prefixed to it. For e, E, f, g, and G conversions, the result always contains a radix
character, even if no digits follow the radix character. For g and G conversions, trailing zeros
are not removed from the result, contrary to usual behavior.

width An optional string of decimal digits to specify a minimum field width. For an output field, if the
converted value has fewer characters than the field width, it is padded on the left (or right, if the
left-adjustment flag - has been given) to the field width.

precision The precision specifies the minimum number of digits to appear for integer conversions (the
field is padded with leading zeros), the number of digits to appear after the radix character for
the e and f conversions, the maximum number of significant digits for the g conversion, or the
maximum number of characters to be printed from a string conversion. The precision takes the
form of a period . followed by a decimal digit string. A null digit string is treated as a zero.

conversion A conversion character indicates the type of conversion to be applied:

d, o, x, X The integer argument is printed in signed decimal (d), unsigned octal (o), or unsigned
hexadecimal notation (x and X). The x conversion uses the numbers and lower-case let-
ters 0123456789abcdef, and the X conversion uses the numbers and upper-case letters
0123456789ABCDEF. The precision component of the argument specifies the minimum num-
ber of digits to appear. If the value being converted can be represented in fewer digits than
the specified minimum, it is expanded with leading zeroes. The default precision is 1. The
result of converting a zero value with a precision of 0 is no characters.

f The floating-point number argument is printed in decimal notation in the style [-]ddd.ddd,
where the number of digits after the radix character, ., is equal to the precision specifica-
tion. If the precision is omitted from the argument, six digits are output; if the precision is
explicitly 0, no radix appears.

e,E The floating-point-number argument is printed in the style [-]d.ddde+dd, where there is
one digit before the radix character, and the number of digits after it is equal to the precision.
When the precision is missing, six digits are produced; if the precision is 0, no radix character
appears. The E conversion character produces a number with E introducing the exponent
instead of e. The exponent always contains at least two digits. However, if the value to be
printed requires an exponent greater than two digits, additional exponent digits are printed as
necessary.

g, G The floating-point-number argument is printed in style f or e (or in style E in the case of a
G conversion character), with the precision specifying the number of significant digits. The
style used depends on the value converted; style e is used only if the exponent resulting from
the conversion is less than -4 or greater than or equal to the precision. Trailing zeros are
removed from the result. A radix character appears only if it is followed by a digit.

La
ng

ua
ge

184 HDevelop Language

s The argument is taken to be a string, and characters from the string are printed until the end of
the string or the number of characters indicated by the precision specification of the argument
is reached. If the precision is omitted from the argument, it is interpreted as infinite and all
characters up to the end of the string are printed.

In no case does a nonexistent or insufficient field width cause truncation of a field; if the result of
a conversion is wider than the field width, the field is simply expanded to contain the conversion
result.

Examples for the string conversion can be found in the program string.dev.

+ (string concatenation)

The string concatenation (+) can be applied in combination with strings or all numerical types; if neces-
sary, the operands are first transformed into strings (according to their standard representation). At least
one of the operands has to be already a string so that the operator can act as a string concatenator. In the
following example a file name (e.g., ’Name5.tiff’) is generated. For this purpose two string constants
(’Name’ and ’.tiff’) and an integer value (the loop-index i) are concatenated:

for i := 1 to 5 by 1
read_image (Image, ’Name’+i+’.tiff’)

endfor

str(r)chr

See also: tuple_strchr, tuple_strrchr

str(r)chr(s1,s2) returns the index of the first (last) occurrence of one of the character in s2 in string
s1, or -1 if none of the characters occur in the string. s1 may be a single string or a tuple of strings.

str(r)str

See also: tuple_strstr, tuple_strrstr

str(r)str(s1,s2) returns the index of the first (last) occurrence of string s2 in string s1, or -1 if s2
does not occur in the string. s1 may be a single string or a tuple of strings.

strlen

See also: tuple_strlen

strlen(s) returns the number of characters in s.

{}

See also: tuple_str_bit_select

s{i} selects a single character (specified by index position) from s. The index ranges from zero to the
length of the string minus 1. The result of the operator is a string of length one.

s{i1:i2} returns all characters from the first specified index position (i1) up to the second specified
position (i2) in s as a string. The index ranges from zero to the length of the string minus 1.

8.5.7 String Operations 185

split

See also: tuple_split

split(s1,s2) divides the string s1 into single substrings. The string is split at those positions where it
contains a character from s2. As an example the result of

split(’/usr/image:/usr/proj/image’,’:’)

consists of the two strings

[’/usr/image’,’/usr/proj/image’]

Regular Expressions

HDevelop provides string functions that use Perl compatible regular expressions. Detailed infor-
mation about them can be found in the Reference Manual at the descriptions of the corresponding
operators, which have the same name but start with tuple_. In particular, at the description of
tuple_regexp_match you find further information about the used syntax, a list of possible options,
and a link to suitable literature about regular expressions.

regexp_match

See also: tuple_regexp_match

regexp_match(s1,s2) searches for elements of the tuple s1 that match the regular expression s2.
It returns a tuple with the same size as the input tuple (exceptions exist when working with capturing
groups, see the description of tuple_regexp_match in the Reference Manual for details). The resulting
tuple contains the matching results for each tuple element of the input tuple. For a successful match the
matching substring is returned. Otherwise, an empty string is returned.

regexp_replace

See also: tuple_regexp_replace

regexp_replace(s1,s2,s3) replaces substrings in s1 that match the regular expression s2 with the
string given in s3. By default, only the first matching substring of each element in s1 is replaced. To
replace all occurrences, the option ’replace_all’ has to be set in s2 (see tuple_regexp_replace).

For example:

assign(regexp_replace(List, ’\\.jpg$’, ’.png’), List)

substitutes file names that look like JPEG images with PNG images.

La
ng

ua
ge

186 HDevelop Language

Operation Meaning HALCON operator

t1 < t2 less than tuple_less

t1 > t2 greater than tuple_greater

t1 <= t2 less or equal tuple_less_equal

t1 >= t2 greater of equal tuple_greater_equal

t1 = t2 equal tuple_equal

t1 # t2 not equal tuple_not_equal

Table 8.11: Comparison operations.

regexp_select

See also: tuple_regexp_select

regexp_select(s1,s2) returns only the elements of the tuple s1 that match the regular expression
s2. In contrast to regexp_match, the original tuple elements instead of the matching substrings are
returned. Tuple elements that do not match the regular expression are discarded.

For example:

assign(regexp_select(List, ’\\.jpg$’), Selection)

sets Selection to all the strings from List that look like file names of JPEG images. Please note that
the backslash character has to be escaped to be preserved.

regexp_test

See also: tuple_regexp_test

regexp_test(s1,s2) returns the number of elements of the tuple s1 that match the regular expression
s2. Additionally, a short-hand notation of the operator is available, which is convenient in conditional
expressions:

s1 =~ s2

8.5.8 Comparison Operations

In HDevelop, the comparison operations are defined not only on atomic values, but also on tuples with
an arbitrary number of elements. They always return values of type boolean. table 8.11 shows all
comparison operations.

t1 = t2 and t1 # t2 are defined on all types. Two tuples are equal (true), if they have the same length
and all the data items on each index position are equal. If the operands have different types (integer
and real), the integer values are first transformed into real numbers. Values of type string cannot be
mixed up with numbers, i.e., string values are considered to be not equal to values of other types.

8.5.9 Boolean Operations 187

The four comparison operations compute the lexicographic order of tuples. On equal index positions
the types must be identical, however, values of type integer, real, and boolean are adapted auto-
matically. The lexicographic order applies to strings, and the boolean false is considered to be smaller
than the boolean true (false < true). In the program compare.dev you can find examples for the
comparison operations.

8.5.9 Boolean Operations

The boolean operations and, xor, or, and not are defined only for tuples of length 1. l1 and l2 is set
to true (1) if both operands are true (1), whereas l1 xor l2 returns true (1) if exactly one of both
operands is true. l1 or l2 returns true (1) if at least one of the operands is true (1). not l returns
true (1) if the input is false (0), and false (0), if the input is true (1).

8.5.10 Trigonometric Functions

All these functions work on tuples of numbers as arguments. The input can either be of type integer
or real. However, the resulting type will be of type real. The functions are applied to all tuple values,
and the resulting tuple has the same length as the input tuple. For atan2 the two input tuples have to be
of equal length. table 8.14 shows the provided trigonometric functions. For the trigonometric functions
the angle is specified in radians.

1st Operand 2nd Operand Operation Result

1 1.0 = true

[] [] = true

’’ [] = false

[1,’2’] [1,2] = false

[1,2,3] [1,2] = false

[4711,’Hugo’] [4711,’Hugo’] = true

’Hugo’ ’hugo’ = false

2 1 > true

2 1.0 > true

[5,4,1] [5,4] > true

[2,1] [2,0] > true

true false > true

’Hugo’ ’hugo’ < true

Table 8.12: Examples for the comparison of tuples.

La
ng

ua
ge

188 HDevelop Language

Operation Meaning HALCON operator

l1 and l2 logical ’and’ tuple_and

l1 xor l2 logical ’xor’ tuple_xor

l1 or l2 logical ’or’ tuple_or

not l negation tuple_not

Table 8.13: Boolean operations.

8.5.11 Exponential Functions

All these functions work on tuples of numbers as arguments. The input can either be of type integer or
real. However, the resulting type will be of type real. The functions are applied to all tuple values and
the resulting tuple has the same length as the input tuple. For pow and ldexp the two input tuples have
to be of equal length.

See table 8.15 for the provided exponential functions.

8.5.12 Numerical Functions

The numerical functions shown in table 8.16 work on different data types.

The functions min and max select the minimum and the maximum values of the tuple values. All of
these values either have to be of type string, or integer/real. It is not allowed to mix strings with
numerical values. The resulting value will be of type real, if at least one of the elements is of type
real. If all elements are of type integer the resulting value will also be of type integer. The same

Operation Meaning HALCON Operator

sin(a) sine of a tuple_sin

cos(a) cosine of a tuple_cos

tan(a) tangent of a tuple_tan

asin(a) arc sine of a in the interval [−π/2, π/2], a ∈ [−1, 1] tuple_asin

acos(a) arc cosine a in the interval [−π/2, π/2], a ∈ [−1, 1] tuple_acos

atan(a) arc tangent a in the interval [−π/2, π/2], a ∈ [−∞,+∞] tuple_atan

atan2(a1,a2) arc tangent a1/a2 in the interval [−π, π] tuple_atan2

sinh(a) hyperbolic sine of a tuple_sinh

cosh(a) hyperbolic cosine of a tuple_cosh

tanh(a) hyperbolic tangent of a tuple_tanh

Table 8.14: Trigonometric functions.

8.5.12 Numerical Functions 189

Operation Meaning HALCON operator

exp(a) exponential function ea tuple_exp

log(a) natural logarithm ln(a), a > 0 tuple_log

log10(a) decadic logarithm, log10(a), a > 0 tuple_log10

pow(a1,a2) a1a2 tuple_pow

ldexp(a1,a2) a1 · 2a2 tuple_ldexp

Table 8.15: Exponential functions.

Operation Meaning HALCON operator

min(t) minimum value of the tuple tuple_min

min2(t1,t2) element-wise minimum of two tuples tuple_min2

max(t) maximum value of the tuple tuple_max

max2(t1,t2) element-wise maximum of two tuples tuple_max2

sum(t) sum of all tuple elements or string concatenation tuple_sum

mean(a) mean value tuple_mean

deviation(a) standard deviation tuple_deviation

cumul(a) cumulative sums of a tuple tuple_cumul

median(a) median of a tuple tuple_median

select_rank(a,i) element at rank i of a tuple tuple_select_rank

sqrt(a) square root
√

a tuple_sqrt

deg(a) convert radians to degrees tuple_deg

rad(a) convert degrees to radians tuple_rad

real(a) convert integer to real tuple_real

int(a) truncate real to integer tuple_int

round(a) convert real to integer tuple_round

abs(a) absolute value of a (integer or real) tuple_abs

fabs(a) absolute value of a (always real) tuple_fabs

ceil(a) smallest integer value not smaller than a tuple_ceil

floor(a) largest integer value not greater than a tuple_floor

fmod(a1,a2) fractional part of a1/a2, with the same sign as a1 tuple_fmod

sgn(a) element-wise sign of a tuple tuple_sgn

Table 8.16: Numerical functions.

applies to the function sum that determines the sum of all values. If the input arguments are strings, string
concatenation will be used instead of addition.

La
ng

ua
ge

190 HDevelop Language

The functions mean, deviation, sqrt, deg, rad, fabs, ceil, floor and fmod work with integer and
real; the result is always of type real. The function mean calculates the mean value and deviation
the standard deviation of numbers. sqrt calculates the square root of a number.

cumul returns the different cumulative sums of the corresponding elements of the input tuple, and
median calculates the median of a tuple. For both functions, the resulting value will be of type real, if
at least one of the elements is of type real. If all elements are of type integer the resulting value will
also be of type integer. select_rank returns the element at rank i and works for tuples containing
int or real values. The index i is of type int.

deg and rad convert numbers from radians to degrees and from degrees to radians, respectively.

real converts an integer to a real. For real as input it returns the input. int converts a real to an
integer and truncates it. round converts a real to an integer and rounds the value. For integer it
returns the input. The function abs always returns the absolute value that is of the same type as the input
value.

The following example (file name: euclid_distance.dev) shows the use of some numerical functions:

V1 := [18.8,132.4,33,19.3]
V2 := [233.23,32.786,234.4224,63.33]
Diff := V1 - V2
Distance := sqrt(sum(Diff * Diff))
Dotvalue := sum(V1 * V2)

First, the Euclidian distance of the two vectors V1 and V2 is computed, by using the formula:

d =
√∑

i

(V 1i − V 2i)2

The difference and the multiplication (square) are successively applied to each element of both vectors.
Afterwards sum computes the sum of the squares. Then the square root of the sum is calculated. After
that the dot product of V1 and V2 is determined by the formula:

〈V 1, V 2〉 =
∑

i

(V 1i ∗ V 2i)

8.5.13 Miscellaneous Functions

sort sorts the tuple values in ascending order, that means, that the first value of the resulting tuple is the
smallest one. But again: strings must not be mixed up with numbers. sort_index sorts the tuple values
in ascending order, but in contrast to sort it returns the index positions (0..) of the sorted values.

The function inverse reverses the order of the tuple values. Both sort and inverse are identical, if
the input is empty, if the tuple is of length 1, or if the tuple contains only one value in all positions, e.g.,
[1,1,...,1].

8.5.14 Operation Precedence 191

Operation Meaning HALCON operator

sort(t) sorting in increasing order tuple_sort

sort_index(t) return index instead of values tuple_sort_index

inverse(t) reverse the order of the values tuple_inverse

is_number(v) test if value is a number tuple_is_number

number(v) convert string to a number tuple_number

environment(s) value of an environment variable tuple_environment

ord(a) ASCII number of a character tuple_ord

chr(a) convert an ASCII number to a character tuple_chr

ords(s) ASCII number of a tuple of strings tuple_ords

chrt(i) convert a tuple of integers into a string tuple_chrt

rand(a) create random numbers tuple_rand

Table 8.17: Miscellaneous functions.

is_number returns true for variables of the type integer or real and for variables of the type string
that represent a number.

The function number converts a string representing a number to an integer or a real depending on
the type of the number. Note that strings starting with 0x are interpreted as hexadecimal numbers, and
strings starting with 0 (zero) as octal numbers; for example, the string ’20’ is converted to the integer
20, ’020’ to 16, and ’0x20’ to 32. If called with a string that does not represent a number or with a
variable of the type integer or real, number returns a copy of the input.

environment returns the value of an environment variable. Input is the name of the environment variable
as a string.

ord gives the ASCII number of a character as an integer. chr converts an ASCII number to a character.

ords converts a tuple of strings into a tuple of (ASCII) integers. chrt converts a tuple of integers into a
string.

8.5.14 Operation Precedence

See table 8.18 for the precedence of the operations for control data. Some operations (like functions, |
|, t[], etc.) are left out, because they mark their arguments clearly.

8.6 Reserved Words

The identifiers listed in table 8.19 on page 193 are reserved words and their usage is strictly limited to
their predefined meaning. They cannot be used as variable names.

La
ng

ua
ge

192 HDevelop Language

band

bxor bor

and

xor or

=

<= >= < >

+ -

/ * %

- (unary minus) not

$

Table 8.18: Operation precedence (increasing from top to bottom).

8.7 Control Flow Operators

The operators introduced in this section execute a block of operators conditionally or repeatedly. Usually,
these operators come in pairs: One operator marks the start of the block while the other marks the end.
The code lines inbetween are referred to as the body of a control flow structure.

When you enter a control flow operator to start a block, HDevelop also adds the corresponding closing
operator by default to keep the program code balanced. In addition, the IC is placed between the control
flow operators. This is fine for entering new code blocks. If you want to add control flow operators to
existing code, you can also add the operators individually. Keep in mind, however, that a single control
flow operator is treated as invalid code until its counterpart is entered as well.

In the following, <condition> is an expression that evaluates to an integer or boolean value. A
condition is false if the expression evaluates to 0 (zero). Otherwise, it is true. HDevelop provides the
following operators to control the program flow:

if ... endif This control flow structure executes a block of code conditionally. The operator if takes
a condition as its input parameter. If the condition is true, the body is executed. Otherwise the
execution is continued at the operator call that follows the operator endif.

To enter both if and endif at once, select the operator if in the operator window and make sure
the check box next to the operator is ticked.

if (<condition>)
...

endif

ifelse (if ... else ... endif) Another simple control flow structure is the condition with alternative.
If the condition is true, the block between if and else is executed. If the condition is false, the
part between else and endif is executed.

To enter all three operators at once, select the operator ifelse in the operator window and make
sure the check box next to the operator is ticked.

8.7 Control Flow Operators 193

abs acos and asin

assign atan atan2 band

bnot bor break bxor

catch ceil chr chrt

comment continue cos cosh

cumul deg deviation else

elseif endfor endif endtry

endwhile environment exit exp

fabs false find floor

fmod for gen_tuple_const H_MSG_FAIL

H_MSG_FALSE H_MSG_TRUE H_MSG_VOID if

ifelse insert int inverse

is_number ldexp log log10

lsh max max2 mean

median min min2 not

number or ord ords

pow rad rand real

regexp_match regexp_replace regexp_select regexp_test

remove repeat return round

rsh select_rank sgn sin

sinh sort sort_index split

sqrt stop strchr strlen

strrchr strrstr strstr subset

sum tan tanh throw

true try uniq until

while xor

Table 8.19: Reserved words.

if (<condition>)
...

else
...

endif

elseif This operator is similar to the else-part of the previous control flow structure. However, it
allows to test for an additional condition. The block between elseif and endif is executed if
<condition1> is false and <condition2> is true. elseif may be followed by an arbitrary number
of additional elseif instructions. The last elseif may be followed by a single else instruction.

La
ng

ua
ge

194 HDevelop Language

if (<condition1>)
...

elseif (<condition2>)
...

endif

This is syntactically equivalent and thus a shortcut for the following code block:

if (<condition1>)
...

else
if (<condition2>)
...

endif
endif

while ... endwhile This is a looping control flow structure. As long as the condition is true, the body
of the loop is executed. In order to enter the loop, the condition has to be true in the first place.
The loop can be restarted and terminated immediately with the operator continue and break,
respectively (see below).

To enter both while and endwhile at once, select the operator while in the operator window and
make sure the check box next to the operator is ticked.

while (<condition>)
...
endwhile

repeat ... until This loop is similar to the while loop with the exception that the condition is tested
at the end of the loop. Thus, the body of a repeat ... until loop is executed at least once. Also in
contrast to the while loop, the loop is repeated if the condition is false, i.e., until it is finally true.

To enter both repeat and until at once, select the operator until in the operator window and
make sure the check box next to the operator is ticked.

repeat
...

until (<condition>)

for ... endfor The for loop is controlled by a start and an end value and an increment value, step, that
determines the number of loop steps. These values may also be expressions, which are evaluated
immediately before the loop is entered. The expressions may be of type integer or of type real.
If all input values are of type integer, the loop variable will also be of type integer. In all other
cases the loop variable will be of type real.

Please note that the for loop is displayed differently in the program window than entered in the
operator window. What you enter in the operator window as for(start,end,step,index) is
displayed in the program window as:

8.7 Control Flow Operators 195

for <index> := <start> to <end> by <step>
...

endfor

To enter both for and endfor at once, select the operator for in the operator window and make
sure the check box next to the operator is ticked.

The start value is assigned to the index variable. The loop is executed as long as the following
conditions are true: 1) The step value is positive, and the loop index is smaller than or equal to
the end value. 2) The step value is negative, and the loop index is greater than or equal to the end
value. After a loop cycle, the loop index is incremented by the step value and the conditions are
evaluated again.

Thus, after executing the following lines,

for i := 1 to 5 by 1
j := i

endfor

i is set to 6 and j is set to 5, while in

for i := 5 to 1 by -1
j := i

endfor

i is set to 0, and j is set to 1.

The loop can be restarted and terminated immediately with the operator continue and break,
respectively. (see below).

Please note, that the expressions for start and termination value are evaluated only once when en-
tering the loop. A modification of a variable that appears within these expressions has no influence
on the termination of the loop. The same applies to the modifications of the loop index. It also has
no influence on the termination. The loop value is assigned to the correct value each time the for
operator is executed.

If the for loop is left too early (e.g., if you press Stop and set the PC) and the loop is entered
again, the expressions will be evaluated, as if the loop were entered for the first time.

In the following example the sine from 0 up to 6π is computed and printed into the graphical
window (file name: sine.dev):

old_x := 0
old_y := 0
dev_set_color (’red’)
dev_set_part(0, 0, 511, 511)
for x := 1 to 511 by 1

y := sin(x / 511.0 * 2 * 3.1416 * 3) * 255
disp_line (WindowID, -old_y+256, old_x, -y+256, x)
old_x := x
old_y := y

endfor

La
ng

ua
ge

196 HDevelop Language

In this example the assumption is made that the window is of size 512×512. The drawing is always
done from the most recently evaluated point to the current point.

continue The operator continue forces the next loop cycle of a for, while, or repeat loop. The
loop condition is tested, and the loop is executed depending on the result of the test.

In the following example, a selection of RGB color images is processed. Images with channel
numbers other than three are skipped through the use of the operator continue. An alternative is
to invert the condition and put the processing instructions between if and endif. But the form
with continue tends to be much more readable when very complex processing with lots of lines
of code is involved.

i := |Images|
while (i)
Image := Images[i]
count_channels (Image, Channels)
if (Channels # 3)
continue

endif
* extensive processing of color image follows

endwhile

break The opeator break enables you to exit for, while, and repeat loops. The program is then
continued at the next line after the end of the loop.

A typical use of the operator break is to terminate a for loop as soon as a certain condition
becomes true, e.g., as in the following example:

Number := |Regions|
AllRegionsValid := 1
* check whether all regions have an area <= 30
for i := 1 to Number by 1
ObjectSelected := Regions[i]
area_center (ObjectSelected, Area, Row, Column)
if (Area > 30)
AllRegionsValid := 0
break ()

endif
endfor

In the following example, the operator break is used to terminate an (infinite) while loop as soon
as one clicks into the graphics window:

while (1)
grab_image (Image, FGHandle)
dev_error_var (Error, 1)
dev_set_check (’~give_error’)
get_mposition (WindowHandle, R, C, Button)

8.8 Limitations 197

dev_error_var (Error, 0)
dev_set_check (’give_error’)
if ((Error = H_MSG_TRUE) and (Button # 0))
break ()

endif
endwhile

stop The operator stop stops the program after the operator is executed. The program can be continued
by pressing the Step Over or Run button.

exit The exit operator terminates the HDevelop session.

return The operator return returns from the current procedure call to the calling procedure. If return
is called in the main procedure, the PC jumps to the end of the program, i.e., the program is
finished.

8.8 Limitations

This section summarizes the restrictions of the HDevelop language:

• Maximum number of objects per parameter: 100000

• Maximum length of strings: 1024 characters

• Maximum length of a variable or procedure name: 256 characters

La
ng

ua
ge

198 HDevelop Language

Code Export 199

Chapter 9

Code Export

The idea of code export or code generation is as follows: After developing a program according to the
given requirements it has to be translated into its final environment. For this, the program is transferred
into another programming language that can be compiled.

HDevelop allows to export a developed HDevelop program to the programming languages C++, Visual
Basic, Visual Basic .NET, C#, and C by writing the corresponding code to a file. The following sections
describe the general steps of program development using this feature for the languages

• C++ (section 9.1),

• C# - HALCON/.NET (section 9.2 on page 203),

• C# - HALCON/COM (section 9.3 on page 205),

• Visual Basic .NET - HALCON/.NET (section 9.4 on page 208),

• Visual Basic .NET - HALCON/COM (section 9.5 on page 210),

• Visual Basic 6 - HALCON/COM (section 9.6 on page 213),

• C (section 9.7 on page 215),

including some language-specific details of the code generation and optimization aspects.

Because HDevelop does more than just execute a HALCON program, the behavior of an exported pro-
gram will differ in some points from its HDevelop counterpart. A prominent example is that in HDe-
velop, all results are automatically displayed, while in the exported programs you have to insert the
corresponding display operators explicitly. Section 9.8 on page 217 describes these differences in more
detail.

9.1 Code Generation for C++

This section describes how to create a HALCON application in C++, starting from a program developed
in HDevelop.

C
od

e
E

xp
or

t

200 Code Export

9.1.1 Basic Steps

9.1.1.1 Program Export

The first step is to export the program using the menu File . Export.... Here, select the language
(C++ - HALCON/C++) and save it to a file. A file will be created that contains the HDevelop program as
C++ source code. For every HDevelop procedure except the main procedure, the exported file contains
a C++ procedure with the corresponding name. Iconic input and output parameters of a procedure
are declared as Hobject and Hobject*, respectively, while control input and output parameters are
declared as HTuple and HTuple*, respectively. All procedures are declared at the beginning of the file.
The program body of the HDevelop main procedure is contained in a procedure action() which is
called in the function main(). action() and main() can be excluded from compilation by inserting
the instruction #define NO_EXPORT_MAIN at the appropriate position in the application. Using the
instruction #define NO_EXPORT_APP_MAIN only the main() procedure is excluded from compilation.
This can be useful if you want to integrate exported HDevelop code into your application through specific
procedure interfaces. In that case, there is typically no need to export the main procedure, which was
probably used only for testing the functionality implemented in the corresponding ’real’ procedures.

Besides the program code, the file contains all necessary #include instructions. All local variables
(iconic as well as control) are declared in the corresponding procedures. Iconic variables belong to the
class Hobject and all other variables belong to HTuple.

9.1.1.2 Compiling and Linking in Windows Environments

The next step is to compile and link this new program. In the Windows environment, Visual
C++ is used for the compiling and linking. Example projects can be found in the directory
%HALCONROOT%\examples\cpp.

If you want to use Parallel HALCON, you have to include the libraries parhalcon.lib/.dll and
parhalconcpp.lib/.dll instead of halcon.lib/.dll and halconcpp.lib/.dll in your project
(see the Programmer’s Guide, chapter 7 on page 71, for more details).

9.1.1.3 Compiling and Linking in UNIX Environments

To compile and link the new program (called, e.g., test.cpp) under UNIX, you can use the example
makefile, which can be found in the directory $HALCONROOT/examples/cpp , by calling

make PROG=test

Alternatively, you can set the variable PROG in makefile to test and then just type make.

You can link the program to the Parallel HALCON libraries by calling

make PROG=test PAR=1

or just type make PAR=1 if you set the variable PROG as described above.

For more details see the Programmer’s Guide, chapter 7 on page 71.

9.1.2 Optimization 201

9.1.2 Optimization

Optimization might be necessary for variables of class HTuple. This kind of optimization can either
be done in HDevelop or in the generated C++ code. In most cases optimization is not necessary if you
program according to the following rules.

1. Using the tuple concatenation, it is more efficient to extend a tuple at the “right” side, like:

T := [T,New]

because this can be transformed to

T.Append(New);

in C++ and requires no creation of a new tuple, whereas

T := [New,T]

which is translated into

T = New.Append(T);

would need the creation of a new tuple.

2. Another good way to modify a tuple is the operator insert (see section 8.5.2 on page 175). In
this case HDevelop code like

T[i] := New

can directly be translated into the efficient and similar looking code

T[i] = New;

9.1.3 Used Classes

There are only two classes that are used: HTuple for control parameters and Hobject for iconic data.
There is no need for other classes as long as the program has the same functionality as in HDevelop.
When editing a generated program you are free to use any of the classes of HALCON/C++ to extend the
functionality.

9.1.4 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 9.8 on page 217, please also check the
description of the HDevelop operators in section 6.2.6.2 on page 91.

C
od

e
E

xp
or

t

202 Code Export

9.1.4.1 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in C++. In addition, there are different default behaviors
concerning the result state of operators.

Messages

In HALCON/C++ only severe errors cause an exception handling which terminates the program and
prints an error message. This might cause problems with minor errors, so called messages in HALCON.
These messages are handled as return values of the operators and can have the following values, which
are also available in HDevelop as constants:

H_MSG_TRUE

H_MSG_FALSE

H_MSG_FAIL

H_MSG_VOID

One of these messages is always returned indicating the status of the operator. Normally, the result is
H_MSG_TRUE. Some operators return H_MSG_FAIL like read_image or read_region to indicate that
they could not open a file or there was no permission to read it. In this case the programmer has to check
the return value and apply some adequate action. If the message H_MSG_FALSE is ignored, errors like

Halcon Error #4056: Image data management: object-ID is NULL

will happen in successive operators, because the predecessor operator did not calculate an appropriate
value.

Errors

In the case of hard errors (i.e., no message as described above) the program stops with an error message.
To prevent this behavior the HDevelop operators dev_error_var and dev_set_check can be used to
control the exception handling in the application. This works similarly in HDevelop and C++. One
difference is caused by the dynamic evaluation of dev_error_var in HDevelop. This means that each
time the operator is executed (e.g., in a loop) the use of the error variable might change. In contrast to
this, in C++ special code is added to store the return values of operators. This code will therefore be
static and cannot change during program execution. To understand how the code generation works let us
have a look at a short example. Here at first the HDevelop program:

dev_set_check(’~give_error’)

dev_error_var(error,true)

threshold(image,region,100,255)

dev_error_var(error,false)

if (error # H_MSG_TRUE)

write_string(WindowId,’error number = ’ + error)

exit()

endif

dev_set_check(’give_error’)

9.2 Code Generation for C# (HALCON/.NET) 203

This program will be translated into

HTuple error;

set_check("~give_error");

error = threshold(image,®ion,100,255);

if (error != 2)

{

write_string(WindowId,HTuple("error number = ") + HTuple(error));

exit(1);

}

set_check("give_error");

As can be seen, the operator dev_error_var is eliminated and replaced by the use of the error variable
later on.

The points mentioned above might cause these two problems:

• If the second parameter of dev_error_var cannot be derived from the program (because no con-
stant false or true are used but expressions, the value will be interpreted as true, that means:
“start to use the variable”. To avoid confusion use only the constants false or true as values for
the second parameter.

• The usage of a variable starts after the first call of dev_error_var(ErrVariable,true).
In C++ this means that all successive lines (i.e., lines “below”), until the first
dev_error_var(ErrVariable,false) will have the assignment to ErrVariable. This might
lead to a different behavior compared with HDevelop, if dev_error_var is called inside a loop,
because here the operators inside the loop before dev_error_var might also use ErrVariable
after the second execution of the loop body. Therefore: Try not to use dev_error_var inside a
loop. Use it right at the beginning of the program.

9.2 Code Generation for C# (HALCON/.NET)

This section describes how to create a HALCON application in C#, starting from a program developed
in HDevelop. HALCON can be used together with C# based on the .NET interface of HALCON. A
detailed description of this interface can be found in the Programmer’s Guide, part III on page 83.

9.2.1 Basic Steps

9.2.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language
(C# - HALCON/.NET) and save it to file. The result is a new file with the given name and the extension
“.cs”.

C
od

e
E

xp
or

t

204 Code Export

9.2.1.2 The C# Template

The exported file is intended to be used together with the predefined C# project that can be found in the
directory

%HALCONROOT%\examples\c#\HDevelopTemplate

This project contains a form with a display window (HWindowControl) and a button labeled Run. Add
the file generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the
project is ready for execution: Run the project and then press the button Run on the form, which will call
the exported code.

Additional information about using the template can be found in the Programmer’s Guide, section 11.3.1
on page 109.

9.2.2 Program Structure

The file created by HDevelop contains a subroutine with the corresponding name for every HDevelop
procedure except the main procedure, which is contained in the subroutine action(). Iconic input
and output parameters of a procedure are passed as HObject and out HObject, respectively, while
control input and output parameters are passed as HTuple and out HTuple, respectively. The subroutine
RunHalcon() contains a call to the subroutine action() and has a parameter Window, which is of type
HTuple. This is the link to the window on the form to which all output operations are passed. In
addition, another subroutine is created with the name InitHalcon(). This subroutine applies the same
initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HObject and control variables belong to HTuple.

Depending on the program, additional subroutines and variables are declared.

9.2.2.1 Stop

The HDevelop operator stop is translated into a subroutine in C# that creates a message box. This
message box causes the program to halt until the button is pressed.

9.2.2.2 Used Classes

There are only four classes/types that are used: HTuple for control parameters and HObject for iconic
data. In addition, there is the class HWindowControl. It is used inside the project for the output window
and a variable of class HTuple directs the output to this window. Finally, the class HOperatorSet is
used as a container for all HALCON operators. There is no need for other classes as long as the program
has the same functionality as in HDevelop. When editing a generated program you are free to use any of
the classes of HALCON/.NET to extend the functionality.

9.2.3 Limitations and Troubleshooting 205

9.2.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 9.8 on page 217, please also check the
description of the HDevelop operators in section 6.2.6.2 on page 91.

9.2.3.1 Variable Names

The export adds the prefix ho_ to all local iconic and hv_ to all local control variables, respectively, in
order to avoid collisions with reserved words.

9.2.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in C#. The standard way to handle this in C# is by using the
try/catch mechanism. This allows to access the reason for the exception and to continue accordingly.
Thus, for HDevelop programs containing error handling ((dev_)set_check("˜give_error")) the
corresponding code is automatically included. Every operator call, for which it is assumed that the
HALCON error mechanism is turned off, is enclosed in a try block followed by a catch block. The
latter handles the exception and assigns the corresponding HALCON error number to the error variable
activated by dev_error_var or to a local error variable, otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

9.2.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported C# code every iconic object is represented by a .NET
HObject object. From the garbage collector’s point of view, a .NET HObject object is rather small.
Thus, it might not be collected from memory although the underlying iconic object (e.g., an image)
might in fact occupy a large portion of memory. In order to avoid memory leaks caused by this effect, in
the exported code every iconic object is deleted explicitly before it is assigned a new value.

9.3 Code Generation for C# (HALCON/COM)

This section describes how to create a HALCON application in C#, starting from a program developed
in HDevelop. HALCON can be used together with C# based on the COM interface of HALCON. A
detailed description of this interface can be found in the Programmer’s Guide, part IV on page 113.

Note that this export is only provided for backwards compatibility. We recommend to use the export
based on HALCON/.NET (see section 9.2 on page 203).

C
od

e
E

xp
or

t

206 Code Export

9.3.1 Basic Steps

9.3.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language (C#
- HALCON/COM) and save it to file. The result is a new file with the given name and the extension “.cs”.

9.3.1.2 The C# Template

The exported file is intended to be used together with the predefined C# project that can be found in the
directory

%HALCONROOT%\examples\c#\HDevelopTemplateCOM

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. Add
the file generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the
project is ready for execution: Run the project and then press the button Run on the form, which will call
the exported code.

9.3.2 Program Structure

The file created by HDevelop contains a subroutine with the corresponding name for every HDevelop
procedure except the main procedure, which is contained in the subroutine action(). Iconic input and
output parameters of a procedure are passed as HUntypedObjectX and out HUntypedObjectX, respec-
tively, while control input and output parameters are passed as object and out object, respectively.
The subroutine RunHalcon() contains a call to the subroutine action() and has a parameter Window,
which is of type HWindowX. This is the link to the window on the form to which all output operations
are passed. In addition, another subroutine is created with the name InitHalcon(). This subroutine
applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to object.

Depending on the program, additional subroutines and variables are declared.

9.3.2.1 Arrays

If a single value is inserted into an object array, a special subroutine is called to ensure that the array is
valid. If the array is too small or of the wrong type, it is recreated in the appropriate way.

9.3.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions can
be changed to simple C# expressions. For example, TupleSub becomes a simple subtraction. To ensure
that the exported program has the same effect in C#, this exchange is not applied automatically because
the semantics are not always identical.

9.3.3 Limitations and Troubleshooting 207

9.3.2.3 Used Classes

There are only six classes/types that are used: object for control parameters and HUntypedObjectX for
iconic data. In addition, there is the container class HTupleX, which comprises all operators of HALCON
processing tuples, in this case the data type object. Then, there are the classes HWindowXCtrl and its
low-level content HWindowX. HWindowXCtrl is used inside the project for the output window and a
variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is used
as a container for all HALCON operators. There is no need for other classes as long as the program has
the same functionality as in HDevelop. When editing a generated program you are free to use any of the
classes of HALCON/COM to extend the functionality.

9.3.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 9.8 on page 217, please also check the
description of the HDevelop operators in section 6.2.6.2 on page 91.

9.3.3.1 Variable Names

The export adds the prefix ho_ to all local iconic and hv_ to all local control variables, respectively, in
order to avoid collisions with reserved words.

9.3.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in C#. The standard way to handle this in C# is by using the
try/catch mechanism. This allows to access the reason for the exception and to continue accordingly.
Thus, for HDevelop programs containing error handling ((dev_)set_check("˜give_error")) the
corresponding code is automatically included. Every operator call, for which it is assumed that the
HALCON error mechanism is turned off, is enclosed in a try block followed by a catch block. The
latter handles the exception and assigns the corresponding HALCON error number to the error variable
activated by dev_error_var or to a local error variable, otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

9.3.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from

C
od

e
E

xp
or

t

208 Code Export

memory. As mentioned earlier, in the exported C# code every iconic object is represented by a .NET
HUntypedObjectX object, which contains a reference to a COM HUntypedObjectX object. From the
garbage collector’s point of view, a .NET HUntypedObjectX object is rather small. Thus, it might not
be collected from memory although the underlying iconic object (e.g., an image) might in fact occupy
a large portion of memory. In order to avoid memory leaks caused by this effect, in the exported code
every iconic object is deleted explicitly before it is assigned a new value.

9.4 Code Generation for Visual Basic .NET (HALCON/.NET)

This section describes how to create a HALCON application in Visual Basic .NET, starting from a
program developed in HDevelop. HALCON can be used together with Visual Basic .NET based on the
.NET interface of HALCON. A detailed description of this interface can be found in the Programmer’s
Guide, part III on page 83.

9.4.1 Basic Steps

9.4.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language
(Visual Basic .NET - HALCON/.NET) and save it to file. The result is a new file with the given name
and the extension “.vb”.

9.4.1.2 The Visual Basic .NET Template

The exported file is intended to be used together with the predefined Visual Basic .NET project that can
be found in the directory

%HALCONROOT%\examples\vb.net\HDevelopTemplate

This project contains a form with a display window (HWindowControl) and a button labeled Run. Add
the file generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the
project is ready for execution: Run the project and then press the button Run on the form, which will call
the exported code.

Additional information about using the template can be found in the Programmer’s Guide, section 11.3.1
on page 109.

9.4.2 Program Structure

The file created by HDevelop contains a subroutine with the corresponding name for every HDevelop
procedure except the main procedure, which is contained in the subroutine action(). Iconic input
and output parameters of a procedure are passed as ByVal HObject and ByRef HObject, respectively,

9.4.3 Limitations and Troubleshooting 209

while control input and output parameters are passed as ByVal HTuple and ByRef HTuple, respec-
tively. The subroutine RunHalcon() contains a call to the subroutine action() and has a parameter
Window, which is of type HTuple. This is the link to the window on the form to which all output
operations are passed. In addition, another subroutine is created with the name InitHalcon(). This
subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HObject and control variables belong to HTuple.

Depending on the program, additional subroutines and variables are declared.

9.4.2.1 Stop

The HDevelop operator stop is translated into a subroutine in Visual Basic .NET that creates a message
box. This message box causes the program to halt until the button is pressed.

9.4.2.2 Exit

The HDevelop operator exit is translated into the Visual Basic .NET routine End. Because this routine
has no parameter, the parameters of exit are suppressed.

9.4.2.3 Used Classes

There are only four classes/types that are used: HTuple for control parameters and HObject for iconic
data. In addition, there is the class HWindowControl. It is used inside the project for the output window
and a variable of class HTuple directs the output to this window. Finally, the class HOperatorSet is
used as a container for all HALCON operators. There is no need for other classes as long as the program
has the same functionality as in HDevelop. When editing a generated program you are free to use any of
the classes of HALCON/.NET to extend the functionality.

9.4.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 9.8 on page 217, please also check the
description of the HDevelop operators in section 6.2.6.2 on page 91.

9.4.3.1 Variable Names

In contrast to C, C++, or HDevelop, Visual Basic .NET has many reserved words. Thus, the export adds
the prefix ho_ to all iconic and hv_ to all control variables, respectively, in order to avoid collisions with
these reserved words.

C
od

e
E

xp
or

t

210 Code Export

9.4.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in
a dialog window. This might not be useful in Visual Basic .NET. The standard way to handle this
in Visual Basic .NET is by using the Try/Catch mechanism. This allows to access the reason for
the exception and to continue accordingly. Thus, for HDevelop programs containing error handling
((dev_)set_check("˜give_error")) the corresponding code is automatically included. Every op-
erator call, for which it is assumed that the HALCON error mechanism is turned off, is enclosed in a
Try block followed by a Catch block. The latter handles the exception and assigns the corresponding
HALCON error number to the error variable activated by dev_error_var or to a local error variable,
otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

9.4.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported Visual Basic .NET code every iconic object is represented
by a .NET HObject object. From the garbage collector’s point of view, a .NET HObject object is rather
small. Thus, it might not be collected from memory although the underlying iconic object (e.g., an
image) might in fact occupy a large portion of memory. In order to avoid memory leaks caused by this
effect, in the exported code every iconic object is deleted explicitly before it is assigned a new value.

9.5 Code Generation for Visual Basic .NET (HALCON/COM)

This section describes how to create a HALCON application in Visual Basic .NET, starting from a
program developed in HDevelop. HALCON can be used together with Visual Basic .NET based on the
COM interface of HALCON. A detailed description of this interface can be found in the Programmer’s
Guide, part IV on page 113.

Note that this export is only provided for backwards compatibility. We recommend to use the export
based on HALCON/.NET (see section 9.4 on page 208).

9.5.1 Basic Steps

9.5.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language
(Visual Basic .NET - HALCON/COM) and save it to file. The result is a new file with the given name
and the extension “.vb”.

9.5.2 Program Structure 211

9.5.1.2 The Visual Basic .NET Template

The exported file is intended to be used together with the predefined Visual Basic .NET project that can
be found in the directory

%HALCONROOT%\examples\vb.net\HDevelopTemplateCOM

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. Add
the file generated by HDevelop to the project in the Solution Explorer (Add Existing Item). Now the
project is ready for execution: Run the project and then press the button Run on the form, which will call
the exported code.

9.5.2 Program Structure

The file created by HDevelop contains a subroutine with the corresponding name for every HDe-
velop procedure except the main procedure, which is contained in the subroutine action(). Iconic
input and output parameters of a procedure are passed as ByVal HUntypedObjectX and ByRef
HUntypedObjectX, respectively, while control input and output parameters are passed as ByVal
Object and ByRef Object, respectively. The subroutine RunHalcon() contains a call to the subrou-
tine action() and has a parameter Window, which is of type HWindowX. This is the link to the window
on the form to which all output operations are passed. In addition, another subroutine is created with the
name InitHalcon(). This subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to Object.

Depending on the program, additional subroutines and variables are declared.

9.5.2.1 Arrays

If a single value is inserted into an Object array, a special subroutine is called to ensure that the array is
valid. If the array is too small or of the wrong type, it is recreated in the appropriate way.

9.5.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions
can be changed to simple Visual Basic .NET expressions. For example, TupleSub becomes a simple
subtraction. To ensure that the exported program has the same effect in Visual Basic .NET, this exchange
is not applied automatically because the semantics are not always identical.

9.5.2.3 Stop

The HDevelop operator stop is translated into a subroutine in Visual Basic .NET that creates a message
box. This message box causes the program to halt until the button is pressed.

C
od

e
E

xp
or

t

212 Code Export

9.5.2.4 Exit

The HDevelop operator exit is translated into the Visual Basic .NET routine End. Because this routine
has no parameter, the parameters of exit are suppressed.

9.5.2.5 Used Classes

There are only six classes/types that are used: Object for control parameters and HUntypedObjectX for
iconic data. In addition, there is the container class HTupleX, which comprises all operators of HALCON
processing tuples, in this case the data type Object. Then, there are the classes HWindowXCtrl and its
low-level content HWindowX. HWindowXCtrl is used inside the project for the output window and a
variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is used
as a container for all HALCON operators. There is no need for other classes as long as the program has
the same functionality as in HDevelop. When editing a generated program you are free to use any of the
classes of HALCON/COM to extend the functionality.

9.5.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 9.8 on page 217, please also check the
description of the HDevelop operators in section 6.2.6.2 on page 91.

9.5.3.1 Variable Names

In contrast to C, C++, or HDevelop, Visual Basic .NET has many reserved words. Thus, the export adds
the prefix ho_ to all iconic and hv_ to all control variables, respectively, in order to avoid collisions with
these reserved words.

9.5.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in
a dialog window. This might not be useful in Visual Basic .NET. The standard way to handle this
in Visual Basic .NET is by using the Try/Catch mechanism. This allows to access the reason for
the exception and to continue accordingly. Thus, for HDevelop programs containing error handling
((dev_)set_check("˜give_error")) the corresponding code is automatically included. Every op-
erator call, for which it is assumed that the HALCON error mechanism is turned off, is enclosed in a
Try block followed by a Catch block. The latter handles the exception and assigns the corresponding
HALCON error number to the error variable activated by dev_error_var or to a local error variable,
otherwise.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

9.6 Code Generation for Visual Basic 6 (HALCON/COM) 213

9.5.3.3 Memory Management

The .NET Framework’s runtime environment CLR (Common Language Runtime) has a mechanism
called garbage collector, which is used by the CLR to remove no longer needed .NET objects from
memory. As mentioned earlier, in the exported Visual Basic .NET code every iconic object is represented
by a .NET HUntypedObjectX object, which contains a reference to a COM HUntypedObjectX object.
From the garbage collector’s point of view, a .NET HUntypedObjectX object is rather small. Thus, it
might not be collected from memory although the underlying iconic object (e.g., an image) might in fact
occupy a large portion of memory. In order to avoid memory leaks caused by this effect, in the exported
code every iconic object is deleted explicitly before it is assigned a new value.

9.6 Code Generation for Visual Basic 6 (HALCON/COM)

This section describes how to create a HALCON application in Visual Basic 6, starting from a program
developed in HDevelop. HALCON can be used together with Visual Basic 6 based on the COM interface
of HALCON. A detailed description of this interface can be found in the Programmer’s Guide, part IV
on page 113.

9.6.1 Basic Steps

9.6.1.1 Export

The first step is to export the program using the menu File . Export.... Here, select the language
(Visual Basic 6.0 - HALCON/COM) and save it to file. The result is a new file with the given name
and the extension “.bas”.

9.6.1.2 The Visual Basic 6 Template

The exported file is intended to be used together with the predefined Visual Basic 6 project that can be
found in the directory

%HALCONROOT%\examples\vb\HDevelopTemplate

This project contains a form with a display window (HWindowXCtrl) and a button labeled Run. The file
generated by HDevelop has to be added to this project. This is done by using the menu Project . Add
Module . Existing and selecting the file. Now the project is ready for execution: Run the project and
then press the button Run on the form, which will call the exported code.

9.6.2 Program Structure

The file created by HDevelop contains a subroutine with the corresponding name for every HDe-
velop procedure except the main procedure, which is contained in the subroutine action(). Iconic

C
od

e
E

xp
or

t

214 Code Export

input and output parameters of a procedure are passed as ByVal HUntypedObjectX and ByRef
HUntypedObjectX, respectively, while control input and output parameters are passed as ByVal
Variant and ByRef Variant, respectively. The subroutine RunHalcon() contains a call to the subrou-
tine action() and has a parameter Window, which is of type HWindowX. This is the link to the window
on the form to which all output operations are passed. In addition, another subroutine is created with the
name InitHalcon(). This subroutine applies the same initializations that HDevelop performs.

Most of the variables (iconic as well as control) are declared locally inside the corresponding subroutines.
Iconic variables belong to the class HUntypedObjectX and control variables belong to Variant. The
subroutine RunHalcon() has a parameter Window, which is of type HWindowX. This is the link to the
window in the panel to which all output operations are passed.

Depending on the program, additional subroutines and variables are declared.

9.6.2.1 Arrays

If a single value is inserted into a Variant array, a special subroutine is called to ensure that the index
is valid. If the array is too small it is resized.

9.6.2.2 Expressions

All parameter expressions inside HDevelop are translated into expressions based on the HALCON tuple
operators. Therefore, an expression might look somewhat complex. In many cases these expressions can
be changed to simple Visual Basic expressions. For example, TupleSub becomes a simple subtraction.
To ensure that the exported program has the same effect in Visual Basic, this exchange is not applied
automatically because the semantics are not always identical.

9.6.2.3 Stop

The HDevelop operator stop is translated into a subroutine in Visual Basic that creates a message box.
This message box causes the program to halt until the button is pressed.

9.6.2.4 Exit

The HDevelop operator exit is translated into the Visual Basic routine End. Because this routine has no
parameter, the parameters of exit are suppressed.

9.6.2.5 Used Classes

There are only six classes/types that are used: Variant for control parameters and HUntypedObjectX
for iconic data. In addition, there is the container class HTupleX, which comprises all operators of HAL-
CON processing tuples, in this case the data type Variant. Then, there are the classes HWindowXCtrl
and its low-level content HWindowX. HWindowXCtrl is used inside the project for the output window
and a variable of class HWindowX directs the output to this window. Finally, the class HOperatorSetX is

9.6.3 Limitations and Troubleshooting 215

used as a container for all HALCON operators. There is no need for other classes as long as the program
has the same functionality as in HDevelop. When editing a generated program you are free to use any of
the classes of HALCON/COM to extend the functionality.

9.6.3 Limitations and Troubleshooting

Besides the restrictions mentioned in this section and in section 9.8 on page 217, please also check the
description of the HDevelop operators in section 6.2.6.2 on page 91.

9.6.3.1 Variable Names

In contrast to C, C++, or HDevelop, Visual Basic has many reserved words. Thus, the export adds the
prefix ho_ to all iconic and hv_ to all control variables, respectively, in order to avoid collisions with
these reserved words.

9.6.3.2 Exception Handling

In HDevelop, every exception normally causes the program to stop and report an error message in a
dialog window. This might not be useful in Visual Basic. The standard way to handle this in Visual
Basic is by using the On Error Goto command. This allows to access the reason for the exception and
to continue accordingly. Thus, for HDevelop programs containing error handling (dev_error_var) the
corresponding code is automatically included.

Please note that a call of (dev_)set_check("˜give_error") has no influence on the operator call.
The exception will always be raised. This is also true for messages like H_MSG_FAIL, which are not
handled as exceptions in C++, for example.

When handling exceptions you also have to be aware that the COM interface always resets the output
parameters at the beginning of the operator execution. Thus, when the exception occurs, output variables
are set to Nothing. Therefore, you cannot use the values of variables used as output parameters of the
operator causing the exception.

9.7 Code Generation for C

This section describes how to create a HALCON application in C, starting from a program developed in
HDevelop.

9.7.1 Basic Steps

9.7.1.1 Program Export

The first step is to export the program using the menu File . Export.... Here, select the language
(C - HALCON/C) and save it to file. A file will be created that contains the HDevelop program as C

C
od

e
E

xp
or

t

216 Code Export

source code. For every HDevelop procedure except the main procedure, the exported file contains a
C procedure with the corresponding name. Iconic input and output parameters of a procedure are de-
clared as Hobject and Hobject*, respectively, while control input and output parameters are declared
as Htuple and Htuple*, respectively. All procedures are declared at the beginning of the file. The
program body of the HDevelop main procedure is contained in a procedure action() which is called
in function main(). action() and main() can be excluded from compilation by inserting the instruc-
tion #define NO_EXPORT_MAIN at the appropriate position in the application. Using the instruction
#define NO_EXPORT_APP_MAIN only the main() procedure is excluded from compilation. This can
be useful if you want to integrate exported HDevelop code into your application through specific proce-
dure interfaces. In that case, there is typically no need to export the main procedure, which was probably
used only for testing the functionality implemented in the corresponding ’real’ procedures.

Besides the program code, the file contains all necessary #include instructions. All local variables
(iconic as well as control) are declared in the corresponding procedures. Iconic variables belong to the
class Hobject and all other variables belong to Htuple.

Please note that in the current version the generated C code is not optimized for readability. It is output
such that it always produces identical results as the HDevelop code.

9.7.1.2 Compiling and Linking in Windows Environments

The next step is to compile and link this new program. In the Windows environment, Visual
C++ is used for the compiling and linking. Example projects can be found in the directory
%HALCONROOT%\examples\c.

If you want to use Parallel HALCON, you have to include the libraries parhalcon.lib/.dll and
parhalconc.lib/.dll instead of halcon.lib/.dll and halconc.lib/.dll in your project (see
the Programmer’s Guide, chapter 18 on page 151, for more details).

9.7.1.3 Compiling and Linking in UNIX Environments

To compile and link the new program (called, e.g., test.c) under UNIX, you can use the example
makefile, which can be found in the directory $HALCONROOT/examples/c , by calling

make TEST_PROG=test

Alternatively, you can set the variable TEST_PROG in makefile to test and then just type make.

You can link the program to the Parallel HALCON libraries by calling

make TEST_PROG=test PAR=1

or just type make PAR=1 if you set the variable TEST_PROG as described above.

For more details see the Programmer’s Guide, chapter 18 on page 151.

9.8 General Aspects of Code Generation 217

Prefix Where the text following the prefix goes in the exported program

The place of insertion

#ˆˆ Beginning of the program

#$$ End of the program

#ˆ Before the current procedure

#$ After the current procedure

Table 9.1: Special comments in HDevelop.

9.8 General Aspects of Code Generation

In the following, general differences in the behavior of a HDevelop program and its exported versions
are described.

9.8.1 User-Defined Code Blocks

HDevelop comments containing the # symbol as the first character are exported as plain text statements.
For example, the line

* #Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in HDevelop will result in

Call MsgBox("Press button to continue",vbYes,"Program stop","",1000)

in Visual Basic 6. This feature can be used to integrate Visual Basic, Visual Basic .NET, C#, C++, or
C code into a HDevelop program. Furthermore, some additional special comments are recognized to
specify the destination of the plain text statements. For example, the line

* #^^#define NO_EXPORT_APP_MAIN

puts the given text at the very beginning of the exported program. Comments in this format are collected
from the main procedure first, followed by #^^ comments in other procedures.

The recognized special comments are summarized in table 9.1.

9.8.2 Assignment

In HDevelop each time a new value is assigned to a variable its old contents are removed automatically,
independent of the type of the variable. In the exported code, this is also the case for iconic objects

C
od

e
E

xp
or

t

218 Code Export

(HALCON/C++: Hobject, HALCON/.NET: HObject, HALCON/COM: HUntypedObjectX) and for
the class HTuple (HALCON/C++, HALCON/.NET), the type Variant (Visual Basic 6), and the class
object (HALCON/COM for .NET languages), as they all have a destructor that removes the stored
data. Because C does not provide destructors, the generated C code calls the operators clear_obj and
destroy_tuple to remove the content of iconic output parameters (Hobject) and control output pa-
rameters (Htuple) before each operator call. Memory issues regarding iconic objects in HALCON/.NET
are described in section 9.4.3.3 (Visual Basic .NET) and section 9.2.3.3 (C#). Memory issues regarding
iconic objects in HALCON/COM are described in section 9.5.3.3 (Visual Basic .NET) and section 9.3.3.3
(C#).

However, problems arise if a tuple (variant) contains a handle, for example for a file, a window, or for
OCR. In this case, the memory of the handle is automatically removed but not the data to which it points.
In the exported programs, this data therefore has to be removed explicitly by calling the corresponding
operators close_* like close_ocr or close_ocv. Please insert the close_* operators for all handles
in use

• before a new value is assigned to a handle and

• at the end of the program.

9.8.3 for Loops

HDevelop and the programming languages have different semantics for loops, which may cause confu-
sion. Because the problems are so rare and the generated code would become very difficult to understand
otherwise, the code generation ignores the different semantics. These differences are:

1. In the programming languages, you can modify the loop variable (e.g., by setting it to the end
value of the condition) to terminate the loop. This can’t be done in HDevelop because here the
current value is stored “inside” the for-operator and is automatically updated when it is executed
again.

2. In the programming languages, you can modify the step range if you use a variable for the
increment. This is also not possible with HDevelop because the increment is stored “inside” the
for-operator when the loop is entered.

3. The last difference concerns the value of the loop variable after exiting the loop. In the program-
ming languages, it has the value with which the condition becomes false for the first time. In
HDevelop it contains the end value, which was calculated when the loop was entered.

Looking at the mentioned points, we recommend to program according to the following rules:

1. Don’t modify the loop variable or the step value inside the loop. If you need this behavior, use
the while-loop.

2. Don’t use the loop variable after the loop.

9.8.4 Protected External Procedures

As described for the different programming languages, HDevelop procedures are exported automatically
to procedures or subroutines of the selected programming language. This does not hold for the protected

9.8.5 System Parameters 219

external procedures described in section 6.4.3.3 on page 111. These procedures are protected by a
password so that they cannot be viewed and modified by unauthorized users. Thus, as long as they are
locked by the password, they can not be exported to any programming language.

9.8.5 System Parameters

You should know that HDevelop performs some changes of system parameters of HALCON by calling
the operator set_system (see the reference manual). This might cause the exported program not to
produce identical output. If such a problem arises, you may query the system parameters by means
of get_system in HDevelop after or while running the original HDevelop version of the program.
Depending to the problem, you can now modify relevant parameters by explicitly calling the operator
set_system in the exported program.

9.8.6 Graphics Windows

The graphics windows of HDevelop and the basic windows of the HALCON libraries

• HALCON/C++: class HWindow,

• HALCON/.NET: class HWindowControl,

• HALCON/COM: class HWindowXCtrl, and

• HALCON/C: addressed via handles

have different functionality.

• Multiple windows
If you use the operator dev_open_window to open multiple graphics windows in HDevelop, these
calls will be converted into corresponding calls of open_window only for C++ and C programs.
In the export of Visual Basic, Visual Basic .NET, and C# programs, all window operations are sup-
pressed, because the exported code is intended to work together with the corresponding template.
If you want to use more than one window in Visual Basic, Visual Basic .NET, or C#, you have to
modify the code and project manually.

Note that the export of programs containing multiple windows to C++ or C might be incorrect if the
button Activate was used during program execution. Note also that HDevelop window operations
that do not have a window handle parameter like dev_open_window, dev_close_window, or
dev_set_line_style are suppressed in all HDevelop procedures except the main procedure. In
order to perform windows operations in HDevelop procedures aimed to be exported to C++ or C,
the corresponding HALCON operators like open_window, close_window, or set_line_style
should be used instead (in that case ignore the warning issued by HDevelop).

• Window size
In exported Visual Basic, Visual Basic .NET, and C# programs, the size of the window on the form
is predefined (512× 512); thus, it will normally not fit your image size. Therefore, you must adapt
the size interactively or by using the properties of the window.

C
od

e
E

xp
or

t

220 Code Export

• Displaying results
Normally, the result of every operator is displayed in the graphics window of HDevelop. This
is not the case when using an exported program. It behaves like the HDevelop program running
with the option: “update window = off”. We recommend to insert the operator dev_display in
the HDevelop program at each point where you want to display data. This will not change the
behavior of the HDevelop program but result in the appropriate call in the exported code.

When generating code for C++ or C, close the default graphics window (using
dev_close_window) and open a new one (using dev_open_window) before the first call
of dev_display in order to assure a correct export.

• Displaying images
In HDevelop, images are automatically scaled to fit the current window size. This is not the case in
exported programs. For example, if you load and display two images of different size, the second
one will appear clipped if it is larger than the first image or filled up with black areas if it is smaller.
For a correct display, you must use the operator dev_set_part before displaying an image with
dev_display as follows:

dev_set_part (0, 0, ImageHeight-1, ImageWidth-1)

dev_display (Image)

In this example, Image is the image variable, ImageHeight and ImageWidth denote its size.
You can query the size of an image with the operator get_image_pointer1. Please consult the
HALCON Reference Manuals for more details.

Note that the operator dev_set_part (and its HALCON library equivalent set_part) is more
commonly used for displaying (and thereby zooming) parts of images. By calling it with the full
size of an image as shown above, you assure that the image exactly fits the window.

• Changing display parameters
If you change the way how results are displayed (color, line width, etc.) in HDevelop interac-
tively via the menu Visualization, these changes will not be incorporated in the exported pro-
gram. We recommend to insert the corresponding Develop operators (e.g., dev_set_color or
dev_set_line_width) in the HDevelop program explicitly. This will result in the appropriate
call (set_color, set_line_width, etc.) in the exported code.

Tips & Tricks 221

Chapter 10

Tips & Tricks

This chapter contains helpful information for working with HDevelop.

10.1 Keycodes

In order to speed up the entering of values in the input fields of HDevelop (e.g., operator parameters),
several keycodes are defined, which have special functions. These keyboard mappings are shown in
table 10.1.

10.2 Online Help

Online documentation is available in PDF and partly in HTML format.

HDevelop provides an integrated online help window. You can conveniently browse the HTML-based
documentation in this window view the HTML files in your web browser. In HDevelop you may call the
online help window via the menu Help . Help or by pressing <F1>. The functionality is described in
section 6.8 on page 127.

Besides HTML, the documentation is available in PDF format as well. To display the manuals, the
Adobe file viewer Acrobat Reader is included in the distribution for Windows systems. If you click on
a PDF document in the online help window, the registered application for viewing PDF files starts up
automatically.

10.3 Warning and Error Windows

Warning and error windows are popups that make the user aware of user errors. Usually, they interrupt
the faulty actions with a description of the error. For this purpose information about the kind of the error
is determined during the execution. Figure 10.1 shows an example of an error window.

Ti
ps

222 Tips & Tricks

Text editing
<Home> Move cursor to the beginning of the line.
<End> Move cursor to the end of the line.
<Left> Move cursor left one character.
<Right> Move cursor right one character.
<Ctrl> <Left> Move cursor left one word.
<Ctrl> <Right> Move cursor right one word.
<Delete> Delete single character to the right of the cursor position.
<Backspace> Delete single character to the left of the cursor position.
<Ctrl> <Backspace> Delete word to the left of the cursor.
<Ctrl> <Delete> Delete word to the right of the cursor.
<Shift> <Left> Select character to the left of the cursor (or extend the selection

by one character).
<Shift> <Right> Select character to the right of the cursor (or extend the selection

by one character).
<Ctrl> <Shift> <Left> Select word to the left of the cursor (or extend the selection by

one word).
<Ctrl> <Shift> <Right> Select word to the right of the cursor (or extend the selection by

one word).
<Ctrl> a Select all.
<Ctrl> d UNIX: Analogous to Delete
<Ctrl> e UNIX: Move cursor to last character in line.
<Ctrl> k UNIX: Delete all characters from current position to end of line.
<Ctrl> u UNIX: Delete entire input line.

GUI Navigation
<Ctrl> <Tab> Focus next window and bring it to the front.
<Shift> <Tab> Focus the previous window and bring it to the front.
<Tab> Select the following GUI element.
<Shift> <Tab> Select the previous GUI element.
<Space> Activate the focused button (highlighted with a dashed border)
<Up> Scroll up one line.
<Down> Scroll down one line.
<Pg Up> Scroll up one page.
<Pg Down> Scroll down one page.
<Home> Scroll to the beginning.
<End> Scroll to the end.

Table 10.1: Keycodes for special editing functions.

10.3 Warning and Error Windows 223

Figure 10.1: Example for an error window.

Ti
ps

224 Tips & Tricks

Glossary 225

Appendix A

Glossary

Boolean is the type name for the truth values true and false as well as for the related boolean expres-
sions.

Body A body is part of a conditional instruction (if) or a loop (while or for) and consists of a sequence
of operator calls. If you consider the for-loop, for instance, all operator calls, that are located
between for and endfor form the body.

Button A button is part of a graphical user interface. With the mouse the user can press a button to
cause an action to be performed.

Control data Control data can be either numbers (↑integer and ↑real), character strings (↑string)
and truth values (boolean). This data can be used as atomic values (i.e., single values) or as
↑tuples (i.e., arrays of values).

Empty region An empty ↑region contains no points at all, i.e., its area is zero.

Graphics window A graphics window is used in ↑HDevelop for displaying, e.g., ↑images, ↑regions,
and ↑XLD.

HDevelop is an interactive program for the creation of HALCON applications.

Iconic data are image data, i.e., image arrays and data, which are described by coordinates and are
derived from image arrays, e.g., ↑regions, ↑images and ↑XLD.

Image An image consists of one or more (multi-channel image) image arrays and a ↑region as the
definition domain. All image arrays have the same dimension, but they can be of different pixel
types. The size of the ↑region is smaller or equal than the size of the image arrays. The ↑region
determines all image points that should be processed.

Iconic object Generic implementation of ↑iconic data in HALCON.

integer is the type name for integer numbers.

Operator data base The operator data base contains information about the HALCON operators. It is
loaded at runtime from the binary files in %HALCONROOT%\help.

G
lo

ss
ar

y

226 Glossary

Program window In HDevelop the program window contains the program. It is used to edit (copy,
delete, and paste lines) and to run or debug the program.

Operator window In the operator window of HDevelop the parameters of the selected operators can be
entered or modified.

Real is the type name for floating point numbers. They are implemented using the C-type double (8
bytes).

Region A region is a set of image points without gray values. A region can be imagined as a binary
image (mask). Regions are implemented using runlength encoding. The region size is not limited
to the image size (see also set_system(’clip_region’,’true’/’false’) in the HALCON
reference manual).

String is the type name for character strings. A string starts and ends with a single quote; in between
any character can be used except single quote. The empty string consists of two consecutive single
quotes. The maximum length of a character string is limited to 1024 characters.

Tuple A tuple is an ordered multivalue set. In case of ↑control data a tuple can consist of a large number
of items with different data types. The term tuple is also used in conjunction with ↑iconic objects,
if it is to be emphasized that several ↑iconic objects will be used.

Type ↑iconic variables can be assigned with data items of type ↑image, ↑region, and ↑XLD. The types
of ↑control data items can be one of ↑integer, ↑real, ↑boolean, or ↑string.

Variable window In HDevelop the variable window manages the ↑control and ↑iconic data.

XLD is the short term for eXtended Line Description. It is used as a superclass for contours, polygons,
and lines.

Command Line Switches 227

Appendix B

Command Line Switches

HDevelop accepts the following command line switches:

hdevelop [options]
HDevelop options:
<program>.dev - open the program for editing
-run <program>.dev - load the program and start execution
<image_file> - load an image file with read_image
-help - show this help info in a message box
-version - show version information in a message box
--help - show this help information on the console
--version - show version information on the console
-convert <program>.dev <program>.{cpp,c,cs,vb,bas,cs,vb,txt,dev}

[-COM]
[-external_proc_path:<external procedure path>]
[-external_procs_only_interfaces]

- convert an HDevelop program into a source
file of the specified type

-reset_preferences - reset all persistent settings from
previous sessions

-preferences <file> - start HDevelop with the preferences
from a file

Qt options:
-style[=] <style> - sets the application GUI style. Possible

values are: Windows Motif CDE Plastique Cleanlooks
X11 options:
-display <display> - sets the X display (default is $DISPLAY).
-geometry <geometry>- sets the client geometry of the first

window that is shown.
-{fn|font} - defines the application font. The font

should be specified using an X logical
font description.

G
lo

ss
ar

y

228 Command Line Switches

-{bg|background} <color>
- sets the default background color and an
application palette (light and dark shades
are calculated).

-{fg|foreground} <color>
- sets the default foreground color.

-{btn|button} <color>
- sets the default button color.

-name <name> - sets the application name.
-title <title> - sets the application title.
-visual TrueColor - forces the application to use a TrueColor

visual on an 8-bit display.
-ncols <count> - limits the number of colors allocated in

the color cube on an 8-bit display, if the
application is using the
QApplication::ManyColor color
specification. If count is 216 then a
6x6x6 color cube is used (i.e., 6 levels of
red, 6 of green, and 6 of blue); for other
values, a cube approximately proportional
to a 2x3x1 cube is used.

-cmap - causes the application to install a
private color map on an 8-bit display.

Index 229

Index

* (asterisk)
external procedure, 49
in window title, 33, 43

.NET, 203, 208

.avi, 26

.seq, 26
#, 217
#$, 217
#$$, 217
#ˆ, 217
#ˆˆ, 217
$, 181
IC, 15
PC, 15
Source

image, 23
_COPY_1, 48, 49
Live, 26
Detect, 27
Reset All, 27
Snap, 26
File, 26

Abort Procedure Execution, 78
About, 100
Activate, 58
Add to User Tab, 119
Add Variable, 119
add_channels, 134, 138
advanced model parameters, 154
advanced search parameters, 162
All, 119
Alternatives, 95
Always Find, 160
Angle Extent, 153
Angle Step, 155
Apply Immediately, 81
area_center, 40

assign, 90, 175, 176, 178
assistant

Close Dialog, 96
Delete Generated Code Lines, 96
Exit Assistant, 96
image acquisition, 23, 95
Insert Code, 96
Load Assistant Settings, 96
matching, 95
Release Generated Code Lines, 96
Save Current Assistant Settings,

96
Show Code Preview, 96

assistant settings, load, 148
assistant settings, save, 148
assure success, 160
Auto, 119
AVI, 26

boolean, 225
boolean

operations, 187
break, 90, 194–196
break point, 15, 74

clear, 77
clear all, 77
set, 76

button, 225

C, 9, 215
compile and link (UNIX), 216
compile and link (Windows), 216
export of HDevelop programs, 9, 215

C++, 9
compile and link (UNIX), 200
compile and link (Windows), 200
export of HDevelop programs, 199

C#, 9
export of HDevelop programs, 203, 205

In
de

x

230 Index

Call Stack..., 76
Cascade Windows, 98
categories

example programs, 47
channel

gray value, 86, 131
channel number, 132
channel selection

gray histogram, 134
check box Always Find, 160
check box Pregenerate Shape Model, 157
check box Shape models may cross the

image border, 164
Cleanup, 54, 119
Clear All Breakpoints, 77
Clear Breakpoint, 77
Clear Graphics Window, 79
Clear Variable, 119
click, 11
clipboard, 57, 58
Close Assistant, 148
Close Dialog, 96
Close Graphics Window, 79
close_window, 219
Code Generation, 166
Code generation, 199
code generation

file, 24
image acquisition interface, 28

code generation, preview, 168
code lines, delete, 168
code lines, insert, 167
code lines, release, 167
code options, 167
code variables, 167
Color, 80
color

graphics window, 80
Colored, 80
column, 44
Column Scale Step, 155
COM, 205, 210, 213
comment, 58, 59, 90, 91
comment, 59, 91

#, 217
#$, 217
#$$, 217

#ˆ, 217
#ˆˆ, 217

comparison
operations, 186

concat_obj, 121, 178
connection, 35, 80, 136
continue, 90, 194–196
Contrast, 151
Control, 90
control data, 225
control flow

break, 196
continue, 196
elseif, 193
exit, 197
for ... endfor, 194
if ... else ... endif, 192
if ... endif, 192
operators, 192
repeat ... until, 194
return, 197
stop, 197
while ... endwhile, 194

coordinates
status bar, 44

Copy, 58
variable values, 123

Copy History to Clipboard, 44
copy_obj, 178
count_obj, 80, 178
Create Model, 148
create model, 144
Create New Procedure, 87
Create ROI, 149
Cut, 57

Deactivate, 59
Delete, 58
Delete All Test Images, 159
Delete All Unused Local, 88
Delete Current, 88
Delete Generated Code Lines, 96, 168
Delete Test Image, 158
Delphi (Borland), 9
Detect All, 159
determine pose bounds, 166
Determine Recognition Rate, 165

Index 231

dev_ operators, 91
dev_clear_obj, 92
dev_clear_window, 79, 91
dev_close_inspect_ctrl, 92
dev_close_window, 79, 91, 219, 220
dev_display, 79, 92, 126, 220
dev_display, 220
dev_error_var, 93, 171
dev_error_var, 202
dev_inspect_ctrl, 92, 122
dev_map_par, 93
dev_map_prog, 93, 97
dev_map_var, 93, 97
dev_open_window, 78, 91, 92, 94, 97, 219,

220
dev_open_window, 220
dev_set_check, 72, 93, 171
dev_set_check, 202
dev_set_color, 80, 91–94, 220
dev_set_colored, 80, 92
dev_set_draw, 80, 92, 93
dev_set_line_style, 219
dev_set_line_width, 80, 92, 220
dev_set_lut, 81, 92
dev_set_paint, 81, 92
dev_set_part, 84, 92, 125, 220
dev_set_part, 220
dev_set_preferences, 73
dev_set_shape, 81, 92
dev_set_window, 78, 92
dev_set_window_extents, 79, 91
dev_unmap_par, 93
dev_unmap_prog, 93
dev_unmap_var, 93
dev_update_pc, 72, 93
dev_update_time, 72, 93
dev_update_var, 72, 93
dev_update_window, 73, 92, 93
Develop, 91
disp_circle, 126
disp_image, 126
disp_line, 126
disp_region, 126
Display, 79
Display Image Pyramid, 149
Display Model, 149
Display Selected Test Image, 160

drag-and-drop, 11, 21
Draw, 80
dump_window, 78
Duplicate..., 87
dyn_threshold, 95

Edit
program line, 103

Edit Interface, 88
Edit menu

Activate, 58
Copy, 58
Cut, 57
Deactivate, 59
Delete, 58
Find Again, 61
Find/Replace..., 59
Paste, 58
Preferences..., 62
Redo, 57
Undo, 57

Edit Procedure, 89
else, 192, 193
else, 192
elseif, 90, 193
Enable the Context Menu in the

Graphics Window, 73
encoding, 53

native, 53, 70
UTF-8, 53, 70

endfor, 41, 75, 194, 195
endfor, 194
endif, 75, 192, 193, 196
endif, 192
endwhile, 75, 194
endwhile, 194
Error message, 221
escape

strings, 170
example programs, 47
Exception handling, 202, 205, 207, 210, 212,

215
Execute menu

Abort Procedure Execution, 78
Call Stack..., 76
Clear All Breakpoints, 77
Clear Breakpoint, 77

In
de

x

232 Index

Reset Procedure Execution, 77
Reset Program Execution, 77, 173
Run, 73
Run to Insert Cursor, 74
Set Breakpoint, 76
Step Forward, 75
Step Into, 75
Step Out, 76
Step Over, 74
Stop, 76

exit, 56, 90, 91, 197
Exit Assistant, 96, 148
exponential

functions, 188
Export, 63
Export..., 51

UTF-8 encoding, 53
External Procedure Settings..., 89
external procedure, modified, 49
External Procedures, 66

false, 225
Feature Histogram, 86
Feature Inspection, 86
File, 146

menu, 46
file history, 46
File menu

Cleanup, 54
Export..., 51
Insert All..., 48
Insert Mainbody..., 49
Insert Procedures..., 49
Insert Program, 48
New Program, 46
Open Example..., 47
Open Program..., 46
Print..., 55
Properties..., 54
Quit, 56
Read Image, 53
Recent Programs, 48
Save , 49
Save All, 51
Save Procedure As..., 50
Save Program As..., 50

file_exists, 93

Find Again, 61
Find Model, 159
Find/Replace..., 59
for, 41, 42, 75, 90, 102, 103, 194–196
for

loop, 194
for, 218, 225

gauss_image, 95
gen_empty_obj, 121, 178
gen_lowpass, 95
gen_tuple_const, 179
General Options, 69
get_image_pointer1, 220
get_mposition, 93
get_system, 219
Give Error, 72
graphics

window, 124
graphics window, 15, 219, 225

clear, 79
close, 79
colors, 80
image size, 79
line width, 80
open, 78
regions, 80, 81
select iconic variable, 79
window size, 79

Gray Histogram, 86
gray value

histogram, 86, 133
inspection, 86, 131
status bar, 44

Greediness, 163
GUI, 3

H_MSG_FAIL, 202
H_MSG_FALSE, 202
H_MSG_TRUE, 202
H_MSG_VOID, 202
HALCON

example programs, 47
modules, 54

HALCON News (WWW), 100
HALCON Reference, 99
HALCONIMAGES, 53
HALCONROOT, 53

Index 233

HDevelop
procedures, 10

export, 219
external, 11
hierarchy, 11
local, 11
main, 10, 200, 204, 206, 208, 211, 213,

216, 219
program

export to C, 9, 215
export to C++, 199
export to C#, 203, 205
export to Visual Basic, 213
export to Visual Basic .NET, 208, 210

HDevelop
dev_ operators, 91
example programs, 47
language, 169
runtime error, 74
warning, 141

HDevelop Language, 100
HDevelop Reference, 99
Help, 99, 105

About, 100
HALCON News (WWW), 100
HALCON Reference, 99
HDevelop Language, 100
HDevelop Reference, 99
Help, 99
Search Documentation, 100

history
of files, 46

IC, 102
iconic data, 225
iconic object, 225
if, 75, 90, 102, 192, 196
if, 192
if, 225
ifelse, 90, 102, 192
ifelse, 192
image, 225
image acquisition

assistant, 23
Image Acquisition Assistant, 95
image coordinates

status bar, 44

image properties
status bar, 44

image pyramid, display, 149
Image Size, 79
Import, 62
insert, 90, 175, 176, 178, 179
insert, 201
Insert All As Local, 88
Insert All..., 48
Insert Code, 96, 167
insert cursor, 15
Insert Mainbody..., 49
Insert Procedures..., 49
Insert Program, 48
Insert Used As Local, 88
Inspect, 165

junctions_skeleton, 94

Keep dialog open, 48, 53
keyboard, 12
keyboard

menu access, 46
Keycodes, 221
Keywords..., 95

Last Pyramid Level, 163
Line Width, 80
Load Assistant Settings, 96, 148
Load in new HDevelop, 48
Load Model, 147
Load Test Images, 158
local procedure, 49
look-up table, 81
loop

body, 225
Lut, 81

main window, 43
window title, 43

Make All External, 89
Manage Passwords, 68
Matching Assistant, 95
Max Column Scale, 154
Max Row Scale, 154
Maximum Number of Matches, 162
Maximum Overlap, 163
MDI, 98

In
de

x

234 Index

MDI, 45
mean_image, 95
median_image, 95
menu

Assistants, 95
Edit, 56
Execute, 73
File, 46
Help, 99
Operators, 89
Procedures, 87
Suggestions, 94
Visualization, 78
Window, 97

menu bar, 46
messages

status bar, 44
Metric, 156
Min Column Scale, 154
Min Row Scale, 154
Minimum Component Size, 152
Minimum Contrast, 157
Minimum Score, 162
Miscellaneous, 221
model creation, 144, 148
model image, display, 149
model image, open, 147
model parameters, advanced, 154
model parameters, standard, 150
model use parameters, advanced, 162
model use parameters, standard, 161
modified

external procedure, 49
program, 43

mouse
click, 11

multiple-document interface, 45

native encoding, 53, 70
New Program, 46
New Zoom Window, 86
number of visible objects, 160

Open, 48
Open Example..., 18
Open Example..., 47
Open Graphics Window, 97
Open Graphics Window..., 78

Open Model Image, 147
Open Operator Window, 97
Open Program Listing, 97
Open Program..., 46
open test images, 158
Open Variable Window, 97
open_framegrabber, 26
open_window, 93, 94, 219
operating systems

UNIX, 200, 216
Windows, 200, 216

operation
precedence, 191

operator
data base, 225
window, 113

operator window, 15
operator window, 226
Operators

Control, 90
Develop, 91
submenus, 94

Optimization, 201
Optimization, 156
optimize parameters, 145
Optimize Recognition Speed, 164
Organize Windows, 97
orientation_region, 40

Paint, 81
Parallel HALCON, 200, 216
parameter

expressions, 173
parameter Angle Extent, 153
parameter Angle Step, 155
parameter Column Scale Step, 155
parameter Contrast, 151
parameter Greediness, 163
parameter Last Pyramid Level, 163
parameter Max Column Scale, 154
parameter Max Row Scale, 154
parameter Maximum Number of Matches,

162
parameter Maximum Overlap, 163
parameter Metric, 156
parameter Min Column Scale, 154
parameter Min Row Scale, 154

Index 235

parameter Minimum Component Size, 152
parameter Minimum Contrast, 157
parameter Minimum Score, 162
parameter Optimization, 156
parameter optimization, 145
parameter Pyramid Levels, 152
parameter Row Scale Step, 155
parameter Start Angle, 153
parameter Subpixel, 163
parameters, reset, 157
Paste, 58
PC, 102
pixel

type, 132
pixel info, 86, 131
pose bounds, determine, 166
Predecessors, 94
preferences

export, 63
import, 62

Preferences..., 62
Pregenerate Shape Model, 157
print

HDevelop procedure, 55
HDevelop program, 55
procedure, 55
program, 55

Print..., 55
procedures (HDevelop), 10

export, 219
C, 216
C++, 200
C#, 204, 206
Visual Basic, 213
Visual Basic .NET, 208, 211

external, 11
hierarchy, 11
local, 11
main, 10, 200, 204, 206, 208, 211, 213,

216, 219
Procedures menu

Create New Procedure, 87
Delete All Unused Local, 88
Delete Current, 88
Duplicate..., 87
Edit Interface, 88
Edit Procedure, 89

External Procedure Settings...,
89

Insert All As Local, 88
Insert Used As Local, 88
Make All External, 89

program counter, 15
program window, 15, 102, 226

edit line, 103
Properties..., 54
pull-down menu, 46
Pyramid Levels, 152
pyramid levels, lock model and model image,

150
pyramid levels, model, 150
pyramid levels, model image, 150
pyramid, display, 149

Quit, 56

Read Image, 53
read_image, 21, 32–34, 53, 54, 93, 169
read_image.FileName, 169
read_image.Image, 169
Recent Programs, 46, 48
recognition rate, determine, 165
recognition speed, optimize, 164
Redo, 57
reduce_domain, 134, 138
reference to assistant elements, 146
regexp_match, 185
regexp_replace, 185
regexp_select, 186
regexp_test, 186
region, 226

colors, 80
empty, 225
line width, 80
shape, 81

regiongrowing, 95
regions

visualization, 80
regular expressions, 185
Release Generated Code Lines, 96, 167
Remove from User Tab, 119
repeat, 90, 194, 196
repeat, 194
replace

Find/Replace..., 59

In
de

x

236 Index

reserved words, 191
Reset, 63, 157
reset

graphics window, 82
Reset Parameters, 82
Reset Procedure Execution, 77
Reset Program Execution, 77
reset_obj_db, 94
Restrictions, 201, 205, 207, 209, 212, 215
return, 90, 109, 197
ROI creation, 149
row, 44
Row Scale Step, 155
Run, 73
Run to Insert Cursor, 74
Run Until Here, 105
runtime

status bar, 44
Runtime error, 202
Runtime Settings, 72

save
local procedure, 49

Save , 49
Save All, 51
Save Current Assistant Settings, 96,

148
Save Model, 148
Save Procedure As..., 50
Save Program As..., 50
Save Window ..., 87
scale range, 154
scale step size, 155
scale_image, 136
SDI, 98
SDI, 45
Search Documentation, 100
search object, 159
search parameters, advanced, 162
search parameters, standard, 161
See also, 95
Select Graphics Window, 82
select test image, 160
select_gray, 138
select_obj, 177, 178
select_shape, 115, 121, 137, 138
select_shape_xld, 137, 138

semantics, 169
sequence file, 26
Set Breakpoint, 76
Set Parameters..., 82
set_check, 93
set_color, 91, 220
set_line_style, 219
set_line_width, 220
set_paint, 92
set_part, 220
set_system, 171
set_tposition, 42
set_system, 219
Shape, 81
shape model, load, 147
shape model, save, 148
Shape models may cross the image

border, 164
shortcuts, 12
Show Caller, 105
Show Code Preview, 96, 168
Show Procedure, 105
Show Processing Time, 44, 72
sigma_image, 95
single-document interface, 45
skeleton, 95
smooth_image, 95
Sort by Name, 119
Sort by Occurrence, 119
split, 185
standard model parameters, 150
standard search parameters, 161
Start Angle, 153
status bar, 44
Step Forward, 75
Step Into, 75
Step Out, 76
Step Over, 74
Stop, 76
stop, 19, 73, 74, 90, 91, 197
stop

HDevelop program, 74
program, 74

strchr, 184
string, 226

concatenation, 174, 184
operations, 181

Index 237

special characters, 170
strlen, 184
strrchr, 184
strrstr, 184
strstr, 184
Subpixel, 163
Successors, 95
Suggestions

Alternatives, 95
Keywords..., 95
Predecessors, 94
See also, 95
Successors, 95

syntax, 169

terminology, 11
test image sequence, delete, 159
test image, delete, 158
test image, display, 160
test image, select, 160
Test Images, 159
test images, load, 158
test model, 144, 158
test_region_point, 93
threshold, 34, 35, 37, 136
trigonometric

functions, 187
true, 225
tuple, 226

concatenation, 176, 177
tuple_abs, 189
tuple_acos, 188
tuple_add, 180
tuple_and, 188
tuple_asin, 188
tuple_atan, 188
tuple_atan2, 188
tuple_band, 181
tuple_bnot, 181
tuple_bor, 181
tuple_bxor, 181
tuple_ceil, 189
tuple_chr, 191
tuple_chrt, 191
tuple_concat, 178
tuple_cos, 188
tuple_cosh, 188

tuple_cumul, 189
tuple_deg, 189
tuple_deviation, 189
tuple_div, 180
tuple_environment, 191
tuple_equal, 186
tuple_exp, 189
tuple_fabs, 189
tuple_find, 178
tuple_floor, 189
tuple_fmod, 189
tuple_greater, 186
tuple_greater_equal, 186
tuple_int, 189
tuple_inverse, 191
tuple_is_number, 191
tuple_ldexp, 189
tuple_length, 178
tuple_less, 186
tuple_less_equal, 186
tuple_log, 189
tuple_log10, 189
tuple_lsh, 181
tuple_max, 189
tuple_max2, 189
tuple_mean, 189
tuple_median, 189
tuple_min, 189
tuple_min2, 189
tuple_mod, 180
tuple_mult, 180
tuple_neg, 180
tuple_not, 188
tuple_not_equal, 186
tuple_number, 191
tuple_or, 188
tuple_ord, 191
tuple_ords, 191
tuple_pow, 189
tuple_rad, 189
tuple_rand, 191
tuple_real, 189
tuple_regexp_match, 185
tuple_regexp_replace, 185
tuple_regexp_select, 186
tuple_regexp_test, 186
tuple_remove, 178

In
de

x

238 Index

tuple_round, 189
tuple_rsh, 181
tuple_select, 178
tuple_select_range, 178
tuple_select_rank, 189
tuple_sgn, 189
tuple_sin, 188
tuple_sinh, 188
tuple_sort, 191
tuple_sort_index, 191
tuple_split, 185
tuple_sqrt, 189
tuple_str_bit_select, 184
tuple_strchr, 184
tuple_string, 181
tuple_strlen, 184
tuple_strrchr, 184
tuple_strrstr, 184
tuple_strstr, 184
tuple_sub, 180
tuple_sum, 189
tuple_tan, 188
tuple_tanh, 188
tuple_uniq, 178
tuple_xor, 188
type, 226

boolean, 225
integer, 225
real, 225, 226
string, 225, 226

Undo, 57
Unicode, 53
UNIX, 200, 216
unnamed, 43
unsaved changes, 43
until, 102, 103, 194
until, 194
Update Graphics Window, 73
Update Program Counter, 72
Update Variables, 72, 119
Update Window, 81
Use Model, 158
User, 119
User Interface, 64
UTF-8 encoding, 53, 70

variable

_, 172
variable window, 15
variable window, 117, 226

layout, 119
resize, 119
tabs (All, Auto, User), 119

variables, 172
view image pyramid, 149
view model image, 149
view test image, 160
visible objects, 160
Visual Basic, 9

export of HDevelop programs, 213
Visual Basic .NET, 9

export of HDevelop programs, 208, 210
Visualization menu

Apply Immediately, 81
Clear Graphics Window, 79
Close Graphics Window, 79
Color, 80
Colored, 80
Display, 79
Draw, 80
Feature Histogram, 86, 137
Feature Inspection, 86, 138
Gray Histogram, 86, 133
Image Size, 79
Line Width, 80
Lut, 81
New Zoom Window, 86
Open Graphics Window..., 78
Paint, 81
Reset Parameters, 82
Save Window ..., 87
Set Parameters..., 82
Shape, 81
Update Window, 81
Window Size, 79
Zoom Window, 86, 131

Visualization Settings, 71

warning, 141
watersheds, 95
while, 75, 90, 102, 194, 196
while

loop, 194
while, 218, 225

Index 239

Window
Cascade Windows, 98
Open Graphics Window, 97
Open Operator Window, 97
Open Program Listing, 97
Open Variable Window, 97
Organize Windows, 97

Window Size, 79
window title, 43
Windows, 200, 216
write_string, 42, 80

XLD, 226
colors, 80
line width, 80

Zoom, 131
Zoom Window, 86

In
de

x

	1 Introducing HDevelop
	1.1 Facts about HDevelop
	1.2 HDevelop Procedures
	1.3 Parallel HDevelop
	1.4 Terminology & Usage

	2 Getting Started
	3 Running Example Programs
	4 Acquiring Images with HDevelop
	4.1 Reading Images From Files
	4.2 Viewing Images
	4.3 Image Acquisition Assistant
	4.3.1 Acquiring Images From Files or Directories
	4.3.2 Acquiring Images Through Image Acquisition Interfaces
	4.3.3 Modifying the Generated Code

	5 Programming HDevelop
	5.1 Start a New Program
	5.2 Enter an Operator
	5.3 Specify Parameters
	5.4 Getting Help
	5.5 Add Additional Program Lines
	5.6 Understanding the Image Display
	5.7 Inspecting Variables
	5.8 Improving the Threshold Using the Gray Histogram
	5.9 Edit Lines
	5.10 Re-Execute the Program
	5.11 Save the Program
	5.12 Selecting Regions Based on Features
	5.13 Looping Over the Results
	5.14 Summary

	6 Graphical User Interface
	6.1 Main Window
	6.2 Menu Bar
	6.2.1 Menu File
	6.2.2 Menu Edit
	6.2.3 Menu Execute
	6.2.4 Menu Visualization
	6.2.5 Menu Procedures
	6.2.6 Menu Operators
	6.2.7 Menu Suggestions
	6.2.8 Menu Assistants
	6.2.9 Menu Window
	6.2.10 Menu Help

	6.3 Tool Bar
	6.4 Program Window
	6.4.1 The Program Area
	6.4.2 PC, IC, and Break Points
	6.4.3 Creating and Editing Procedures

	6.5 Operator Window
	6.5.1 Operator Name Field
	6.5.2 Parameter Display
	6.5.3 Control Buttons

	6.6 Variable Window
	6.6.1 Iconic Variables
	6.6.2 Control Variables

	6.7 Graphics Window
	6.8 Help Window
	6.9 Zoom Window
	6.10 Gray Histogram Window
	6.11 Feature Histogram Window
	6.12 Feature Inspection Window
	6.13 Dialogs
	6.13.1 File Selection Dialog
	6.13.2 Unsaved Changes

	7 Matching Assistant
	7.1 Introducing the Matching Assistant of HDevelop
	7.2 How to Use the Matching Assistant of HDevelop
	7.2.1 Creating the Model
	7.2.2 Testing the Model
	7.2.3 Optimizing the Parameters

	7.3 Matching Assistant Reference
	7.3.1 The Menu File
	7.3.2 The Menu Create Model and the Tab Model Creation
	7.3.3 The Menu Use Model and the Tab Model Use
	7.3.4 The Menu and Tab Inspect
	7.3.5 The Menu and Tab Code Generation
	7.3.6 The Menu Help

	8 HDevelop Language
	8.1 Basic Types of Parameters
	8.2 Control Types and Constants
	8.3 Variables
	8.4 Operations on Iconic Objects
	8.5 Expressions for Input Control Parameters
	8.5.1 General Features of Tuple Operations
	8.5.2 Assignment
	8.5.3 Basic Tuple Operations
	8.5.4 Tuple Creation
	8.5.5 Simple Arithmetic Operations
	8.5.6 Bit Operations
	8.5.7 String Operations
	8.5.8 Comparison Operations
	8.5.9 Boolean Operations
	8.5.10 Trigonometric Functions
	8.5.11 Exponential Functions
	8.5.12 Numerical Functions
	8.5.13 Miscellaneous Functions
	8.5.14 Operation Precedence

	8.6 Reserved Words
	8.7 Control Flow Operators
	8.8 Limitations

	9 Code Export
	9.1 Code Generation for C++
	9.1.1 Basic Steps
	9.1.2 Optimization
	9.1.3 Used Classes
	9.1.4 Limitations and Troubleshooting

	9.2 Code Generation for C# (HALCON/.NET)
	9.2.1 Basic Steps
	9.2.2 Program Structure
	9.2.3 Limitations and Troubleshooting

	9.3 Code Generation for C# (HALCON/COM)
	9.3.1 Basic Steps
	9.3.2 Program Structure
	9.3.3 Limitations and Troubleshooting

	9.4 Code Generation for Visual Basic .NET (HALCON/.NET)
	9.4.1 Basic Steps
	9.4.2 Program Structure
	9.4.3 Limitations and Troubleshooting

	9.5 Code Generation for Visual Basic .NET (HALCON/COM)
	9.5.1 Basic Steps
	9.5.2 Program Structure
	9.5.3 Limitations and Troubleshooting

	9.6 Code Generation for Visual Basic 6 (HALCON/COM)
	9.6.1 Basic Steps
	9.6.2 Program Structure
	9.6.3 Limitations and Troubleshooting

	9.7 Code Generation for C
	9.7.1 Basic Steps

	9.8 General Aspects of Code Generation
	9.8.1 User-Defined Code Blocks
	9.8.2 Assignment
	9.8.3 'for' Loops
	9.8.4 Protected External Procedures
	9.8.5 System Parameters
	9.8.6 Graphics Windows

	10 Tips & Tricks
	10.1 Keycodes
	10.2 Online Help
	10.3 Warning and Error Windows

	A Glossary
	B Command Line Switches
	Index

