

NMEA2000® Rudder Angle Adaptor

- Adapts European or American standard resistive senders to NMEA2000®
- Port / Starboard indicator LEDs simplify mechanical installation
- Switch settable Device Instance
- No calibration required
- No complicated menu setups required
- Very low power
- Manufactured to NMEA2000® network standard

The Offshore Systems 3165 Rudder Angle Adaptor allows standard European or American standard resistive rudder angle senders to transmit their rudder position over the NMEA2000 $^{\circ}$ network.

The unit is designed to greatly simplify installation with NO user setup or calibration required and NO display menus to struggle through.

In multiple rudder installations the sender type selection and the device instance setup is simply done with the small rotary switch on the unit.

The 3165 has a red port LED and a green starboard LED that flash to indicate the unit is transmitting the appropriate rudder position. The mechanical setup of the rudder angle sender is greatly simplified by setting the rudder midships and then adjusting the linkage to the sender until both LEDs illuminate when the sender is also at midships.

It comes with a 1 metre NMEA2000\$ cable and a 2 metre rudder sensor cable to allow the unit to be placed in a convenient location.

It is fully waterproof to IP67 and ruggedly constructed for years of reliable and accurate service.

The unit comes with a detailed user manual and is manufactured to the NMEA2000 $^{\rm \tiny B}$ network standard.

NMEA2000® Rudder Angle Adaptor Part No. 3165

Dimensions

Resistive Rudder Angle to NMEA2000® backbone

Design Standards				
NMEA2000®	Level B			
Maritime Nav & RadioComm	IEC60945			
CE & FCC	Electromagne	tic Compatibility		
NMEA2000® Parameter Group Numbers (PGNs)				
Туре	PGN No.	PGN Name		
Periodic	PGN127245	Rudder		

Periodic	PGN127245	Rudder
Protocol	PGN126464	Tx/Rx PGN List
	PGN126996	Product Information
	PGN059392	ISO Acknowledge
	PGN059904	ISO Request
	PGN060928	ISO Address Claim
	PGN126208	Command/Request Group
Electrical and Mechanical		

Electrical and Mechanical	
Operating Voltage	9 to 16 Volts
Power Consumption	< 50mA
Load Equivalence Number	1
Reverse Battery Protection	Indefinately
Load Dump Protection	Yes to SAE J1113
Size	90 x 30 x 16mm
Weight	225 grams

Environmental	
IEC06954 Classification	Exposed
Degree of protection	IP67
Operating Temperature	-25C to 50C
Storage Temperature	-40C to 70C
Relative Humidity	93%RH @ 40C per IEC 60945-8.2
Electromagnetic Emission	Conduct/Radiated per IEC 60945-9
Electromagnetic Immunity	Conducted/Radiated per IEC 60945-10

Resistive Rudder Angle Sender (not included)

Offshore Systems (UK) Ltd Unit 10-11 Milton Business Centre, Wick Drive, New Milton, Hampshire, BH25 6RH, United Kingdom

Tel: +44(0)1425 610022 Fax: +44(0)1425 614794 Email: sales@osukl.com Web: www.osukl.com

Copyright $\ \odot$ 2015 Offshore Systems (UK) Ltd. All rights reserved.Our policy is one of continuous product improvement so product specifications are subject to change without notice. Offshore Systems products are designed to be accurate and reliable. However, they should be used only as aids to vessel monitoring, and not as a replacement for traditional navigation and vessel monitoring techniques.

 $\ensuremath{\mathsf{NMEA2000}}\xspace{1mu}\xsp$