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Abstract

One of the main objectives of model-driven software engi-
neering is to produce code automatically from high-level
design models. This goal can be achieved by providing suit-
able models and model-to-code transformations that ensure
the conformance of the produced code to its high-level spec-
ification. In this context we have developed PADL2Java, a
software tool that translates PADL models into Java code.
PADL is a process algebraic architectural description lan-
guage equipped with a rigorous semantics and transfor-
mation rules into multithreaded object-oriented software,
which is employed in the verification tool TwoTowers. This
paper discusses the code generation approach underlying
PADL2Java, the structure of the synthesized code, and the
integration of the translator in TwoTowers. The effective-
ness of PADL2Java is illustrated through the generation of
a Java implementation of a cruise control system.

1. Introduction

The adoption of high-level design models for producing
software artifacts such as code, documentation, and other
deliverables has become a common practice for software
engineers in the last few years. Nevertheless, the model-
driven approach requires attention in selecting the appropri-
ate notation – by taking care of its formal rigor and usabil-
ity – when building models for generating code. Adequate
models and model-to-code transformations should be con-
ceived and the produced code should conform to its high-
level specification.

Several architectural description languages have been
proposed for the purpose of modeling software. Many of
them, like Wright [4, 3], Darwin/FSP [21, 22], LEDA [11],
PADL/Æmilia [1], andπ-ADL [25], are based on process
algebra [24, 18, 5, 6]. The reason is that process algebra
provides a formal support to compositional modeling and
its analysis techniques can be adapted to the verification of

architectural mismatch freedom [4, 19, 12, 1]. From a pro-
cess algebraic perspective, these languages are an improve-
ment in terms of usability, as they highlight architectural
concepts like components, connectors, and styles while hid-
ing process algebra technicalities to the designer.

Process algebraic architectural description languages
support automated code generation by means of techniques
that translate architectural specifications into multithreaded
object-oriented programs. Based on previous work [22,
8, 9, 10], we have developed PADL2Java, a software tool
that translates PADL descriptions into Java code. This
paper discusses the code generation approach underlying
PADL2Java, the structure of the synthesized code, and the
integration of the translator in TwoTowers [7], a verification
tool whose specification language is the performance-aware
variant Æmilia of PADL. The use of PADL2Java is exem-
plified through the generation of a Java implementation of a
cruise control system examined in [20, 1].

This paper is organized as follows. In Sects. 2 and 3
we motivate the choice of PADL as source language and of
Java as target language, respectively. In Sect. 4 we exhibit
the transformation approach on which PADL2Java is based.
In Sect. 5 we illustrate the structure of the generated code by
showing the result of the application of PADL2Java to the
PADL description of the cruise control system mentioned
above. In Sect. 6 we present the integration of PADL2Java
in TwoTowers. Finally, in Sect. 7 we provide some conclud-
ing remarks and directions for future work.

2. The Source Specification Language

Our source specification language is PADL [1]. The rea-
son for concentrating on it among the various process alge-
braic architectural description languages appeared in the lit-
erature is that PADL achieves a reasonable balance among
usability, expressiveness, and analyzability. Moreover, it
is equipped with TwoTowers [7], a software tool for the
functional verification, performance evaluation, and secu-
rity analysis of process algebraic architectural descriptions
expressed in its performance-aware variant Æmilia.



ARCHI TYPE /name and initialized formal parameters.

ARCHI BEHAVIOR
...

...
ARCHI ELEMTYPE /AET name and formal parameters.

BEHAVIOR /sequence of process algebraic equations built from
stop, action prefix, choice, and recursion.

INPUT INTERACTIONS /input synchronous/semi-synchronous/asynchronous
uni/and/or-interactions.

OUTPUTINTERACTIONS /output synchronous/semi-synchronous/asynchronous
uni/and/or-interactions.

...
...

ARCHI TOPOLOGY

ARCHI ELEMINSTANCES /AEI names and actual parameters.
ARCHI INTERACTIONS /architecture-level AEI interactions.
ARCHI ATTACHMENTS /attachments between AEI local interactions.

END

Table 1. Structure of a PADL textual description

A PADL description represents an architectural type,
which is a family of software systems sharing certain con-
straints on the observable behavior of their components as
well as on their topology. As shown in Table 1, the textual
description of an architectural type in PADL starts with its
name and its formal parameters (initialized with default val-
ues), then comprises an architectural behavior section and
an architectural topology section.

The first section defines the overall behavior of the sys-
tem family by means of types of software components and
connectors, which are collectively called architectural ele-
ment types. The definition of an AET, which starts with its
name and its formal parameters, consists of the specification
of its behavior and of its interactions.

The behavior of an AET has to be provided in the form of
a sequence of behavioral equations written in a verbose vari-
ant of process algebra allowing only for the inactive process
(rendered asstop ), the action prefix operator supporting
possible boolean guards and value passing, the alternative
composition operator (rendered aschoice ), and recursion.

Interactions are actions occurring in the process alge-
braic specification of the behavior of the AET that act as
interfaces for the AET itself, while all the other actions are
assumed to represent internal activities. Each interaction
has to be equipped with three qualifiers, with the first quali-
fier establishing whether the interaction is an input or output
interaction.

The second qualifier represents the synchronicity of the
communications in which the interaction can be involved.
We distinguish among synchronous interactions which are
blocking (default qualifierSYNC), semi-synchronous inter-

actions which cause no blocking as they raise an exception
if prevented (qualifierSSYNC), and asynchronous interac-
tions which are completely decoupled from the other parties
involved in the communication (qualifierASYNC).

The third qualifier describes the multiplicity of the com-
munications in which the interaction can be involved. We
distinguish among uni-interactions which are mainly in-
volved in one-to-one communications (qualifierUNI), and-
interactions guiding inclusive one-to-many communica-
tions (qualifierAND), and or-interactions guiding selective
one-to-many communications (qualifierOR). It can also be
established that an output or-interaction depends on an in-
put or-interaction, in order to guarantee that a selective one-
to-many output is sent to the same element from which a
selective many-to-one input was received (keywordDEP).

The second section of a PADL description defines the
topology of the system family. This is accomplished in three
steps. Firstly, we have the declaration of the instances of
the AETs – called AEIs – which represent the actual sys-
tem components and connectors, together with their actual
parameters. Secondly, we have the declaration of the archi-
tectural (as opposed to local) interactions, which are some
of the interactions of the AEIs that act as interfaces for the
whole systems of the family. Thirdly, we have the decla-
ration of the architectural attachments among the local in-
teractions of the AEIs, which make the AEIs communicate
with each other. An attachment is admissible only if it goes
from an output interaction of an AEI to an input interaction
of another AEI. Moreover, a uni-interaction can be attached
only to one interaction, whereas an and/or-interaction can
be attached only to uni-interactions.



The semantics for PADL is given by translation into pro-
cess algebra. Basically, the semantics of every AEI is the se-
quence of process algebraic equations defining the behavior
of the corresponding AET. Then, the semantics of an en-
tire architectural description is the parallel composition of
the semantics of the constituent AEIs, with synchronization
sets determined by the attachments.

2.1. Describing a Cruise Control System

We now illustrate PADL by formalizing the cruise control
system considered in [20, 1]. This software system has to be
embedded into an automobile equipped with standard accel-
erator and brake pedals. On the hardware side, we assume
that the interaction between the driver and the cruise con-
trol system is realized by means of three buttons: on, off,
and resume. When on is pressed, the cruise control system
records the current speed and then maintains the automo-
bile at that speed. When the accelerator, the brake, or off is
pressed, the cruise control system disengages but retains the
speed setting. If resume is pressed later on, then the system
is able to accelerate or decelerate the automobile back to the
previously recorded speed. The cruise control system has to
be designed in such a way that deadlock cannot occur.

First of all, we observe that we need at least four types of
software components: a sensor, a speed controller, a speed
detector, and a speed actuator. All of them will be defined
in the sectionARCHI BEHAVIORof the PADL description
of an architectural type that we callCruise Control .

The sensor detects the driver’s commands – turning the
engine on/off, pressing the accelerator/brake, and pressing
one of the on/off/resume buttons – and forwards them to the
speed controller. The sensor AET is defined as follows:

ARCHI_ELEM_TYPE Sensor_Type(void)
BEHAVIOR

Sensor_Off(void; void) =
turn_engine_on . Sensor_On();

Sensor_On(void; void) =
choice
{

press_accelerator . Sensor_On(),
press_brake . Sensor_On(),
press_on . Sensor_On(),
press_off . Sensor_On(),
press_resume . Sensor_On(),
turn_engine_off . Sensor_Off()

}
INPUT_INTERACTIONS void
OUTPUT_INTERACTIONS SYNC UNI press_accelerator;

press_brake;
press_on;
press_off;
press_resume

SYNC AND turn_engine_on;
turn_engine_off

The speed controller triggers the speed actuator on the
basis of the driver’s commands received through the sensor.
It can be in one of the following four states: inactive (when
the engine is off), active (when the engine is on), cruising

(after pressing the on button in the active state or the re-
sume button in the suspended state), and suspended (after
pressing any pedal or button different from on/resume in the
cruising state). The controller AET is defined as follows:

ARCHI_ELEM_TYPE Controller_Type(void)
BEHAVIOR

Inactive(void; void) =
turned_engine_on . Active();

Active(void; void) =
choice
{

pressed_accelerator . Active(),
pressed_brake . Active(),
pressed_on . trigger_record . Cruising(),
pressed_off . Active(),
pressed_resume . Active(),
turned_engine_off . Inactive()

};
Cruising(void; void) =

choice
{

pressed_accelerator . trigger_disable . Suspended(),
pressed_brake . trigger_disable . Suspended(),
pressed_on . Cruising(),
pressed_off . trigger_disable . Suspended(),
pressed_resume . Cruising(),
turned_engine_off . trigger_disable . Inactive()

};
Suspended(void; void) =

choice
{

pressed_accelerator . Suspended(),
pressed_brake . Suspended(),
pressed_on . trigger_record . Cruising(),
pressed_off . Suspended(),
pressed_resume . trigger_enable . Cruising(),
turned_engine_off . Inactive()

}
INPUT_INTERACTIONS SYNC UNI turned_engine_on;

turned_engine_off;
pressed_accelerator;
pressed_brake;
pressed_on;
pressed_off;
pressed_resume

OUTPUT_INTERACTIONS SYNC UNI trigger_enable;
trigger_disable;
trigger_record

The speed detector periodically communicates the num-
ber of wheel revolutions per time unit to the speed actuator.
The speed detector AET is defined as follows:

ARCHI_ELEM_TYPE Detector_Type(void)
BEHAVIOR

Detector_Off(void; void) =
turned_engine_on . Detector_On();

Detector_On(void; void) =
choice
{

measure_speed . signal_speed . Detector_On(),
turned_engine_off . Detector_Off()

}
INPUT_INTERACTIONS SYNC UNI turned_engine_on;

turned_engine_off
OUTPUT_INTERACTIONS SYNC UNI signal_speed

The speed actuator adjusts the throttle on the basis of the
triggers received from the controller and of the speed mea-
sured by the detector. It can be in one of the following two
states: disabled (until the on/resume button is pressed) and
enabled (until any pedal or button different from on/resume
is pressed). The speed actuator AET is defined as follows:



ARCHI_ELEM_TYPE Actuator_Type(void)
BEHAVIOR

Disabled(void; void) =
choice
{

signalled_speed . Disabled(),
triggered_enable . enable_speed_ctrl . Enabled(),
triggered_record . record_speed . Enabled()

};
Enabled(void; void) =

choice
{

signalled_speed . adjust_throttle . Enabled(),
triggered_disable . disable_speed_ctrl . Disabled()

}
INPUT_INTERACTIONS SYNC UNI signalled_speed;

triggered_enable;
triggered_disable;
triggered_record

OUTPUT_INTERACTIONS void

Finally, the sectionARCHI TOPOLOGYcontains the
declaration of the four software components together with
the attachments among their local interactions, which result
in a cyclic topology:

ARCHI_ELEM_INSTANCES
S : Sensor_Type();
C : Controller_Type();
D : Detector_Type();
A : Actuator_Type()

ARCHI_INTERACTIONS
void

ARCHI_ATTACHMENTS
FROM S.turn_engine_on TO C.turned_engine_on;
FROM S.turn_engine_on TO D.turned_engine_on;
FROM S.turn_engine_off TO C.turned_engine_off;
FROM S.turn_engine_off TO D.turned_engine_off;
FROM S.press_accelerator TO C.pressed_accelerator;
FROM S.press_brake TO C.pressed_brake;
FROM S.press_on TO C.pressed_on;
FROM S.press_off TO C.pressed_off;
FROM S.press_resume TO C.pressed_resume;
FROM C.trigger_enable TO A.triggered_enable;
FROM C.trigger_record TO A.triggered_record;
FROM C.trigger_disable TO A.triggered_disable;
FROM D.signal_speed TO A.signalled_speed

In [1] it has been verified through the architectural inter-
operability check that the PADL description shown above is
deadlock free, as initially requested.

3. The Target Programming Language

Our target programming language is Java. As in [22], this
choice has been made for the following two reasons. First,
Java supports multithreading and offers a set of mechanisms
for the well-structured management of threads and their
shared data, which should simplify the code generation task
given the concurrency inherent in process algebraic archi-
tectural descriptions.

Second, its object-oriented nature – and specifically its
encapsulation capability – makes Java an appropriate can-
didate for coping with the high level of abstraction typical
of process algebraic architectural description languages. In
fact, as can be expected, the translation of PADL descrip-
tions into Java software cannot be complete, and hence will

require the intervention of the software developer in spe-
cific positions of the generated code, e.g. for inserting the
Java statements corresponding to internal actions

Another good reason for selecting Java is that it is
equipped with software model-checking tools, like e.g. Java
PathFinder [26]. These tools complement the analysis con-
ducted on PADL descriptions by making it possible the ver-
ification of property preservation at the code level. In fact,
although property preservation is guaranteed under certain
constraints [8, 9], an inappropriate intervention of the soft-
ware developer on the generated code may lead to the vio-
lation of properties proved at the architectural level.

4. The Code Generation Approach

Among the various approaches for automatically generat-
ing code from architectural descriptions, we can distinguish
two families on the basis of the distance between the formal-
ism used for describing software architectures (in our case,
PADL) and the implementation language in which code is
generated (in our case, Java).

The first family, characterized by an exogenous transfor-
mation, is the long-distance one. In this family, the for-
malism is kept well separated from the implementation lan-
guage, and descriptions are entirely translated into code. To
this family belong architectural description languages en-
dowed with code generation facilities such as Aesop [16],
C2SADEL [23], and Darwin [21].

The second family, characterized by a semi-endogenous
transformation, is the short-distance one. In this family, the
architectural formalism is embedded in the implementation
code in the form of special comments, as in SyncGen [14],
or in the form of special keywords and statements, as in
ArchJava [2]. Here, only special symbols are translated into
implementation code, whereas the rest is left unchanged.

While the latter transformation can offer a flexible sup-
port to software developers – as classical programming
techniques and patterns can be applied when designing sys-
tems – the level of abstraction of the underlying architec-
tural formalism is usually low. In the case of process al-
gebraic architectural description languages, the transforma-
tion typically adopted for generating code is the former. The
reason is that such languages are specifically conceived for
abstracting high-level properties of entire software systems,
hence they are distant from implementation languages.

One of the ideas at the basis of the approach of
PADL2Java is the provision of a library of software com-
ponents – a package calledSync – for adding architec-
tural capabilities to the target programming language in or-
der to shorten its distance from the architectural description
language from which the code will be generated. Hence,
the approach underlying our translator can be viewed as
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Figure 1. Class diagrams of the conceptual layers of Sync



a semi-exogenous transformation, as opposed to the semi-
endogenous approach.

On the basis of the classification given in [13], we
can say that if the target model is considered as a text, a
semi-endogenous transformation can be easily realized as
a model-to-text, template-based transformation. Unfortu-
nately, this transformation cannot be applied with the same
facility to our semi-exogenous approach, as the distance
from model to text is still long. However, thanks to pack-
ageSync , a model-to-text, visitor-based transformation has
been implemented very easily in PADL2Java.

We now discuss the two transformation models on which
PADL2Java relies together with the implementation of the
translator itself and in particular of packageSync .

4.1. Transformation Models

Two models have been considered for treating separately
the thread communication management and the thread be-
havior management.

Thread Communication Model. The first model [8] is
strongly based on the availability of the packageSync on
the target side, which provides a set of Java classes and in-
terfaces for handling communications and for implement-
ing AETs as threads. As shown in Fig. 1, packageSync
is structured into four conceptual layers, each correspond-
ing to a different architectural abstraction. In particular,
theSync -based code generated for thread communication
complies with the communication model defined for PADL,
which relies on two roles (sender and receiver) and encom-
passes two different dimensions.

The first dimension is the communication synchronic-
ity and comprises nine values: synchronous to syn-
chronous, synchronous to semi-synchronous, synchronous
to asynchronous, semi-synchronous to synchronous, semi-
synchronous to semi-synchronous, semi-synchronous to
asynchronous, asynchronous to synchronous, asynchronous
to semi-synchronous, and asynchronous to asynchronous.
In the synchronous case, the thread waits for the other to
become ready. In the semi-synchronous case, the thread
checks whether the other is ready and, if not, raises an ex-
ception without blocking. In the asynchronous case, the
thread simply sends/receives a signal or message through a
buffer and then proceeds independently of the status of the
other thread (an exception is raised at the asynchronous re-
ceiving side if no signal/message is available in the buffer).

The second dimension refers to the communication mul-
tiplicity and comprises three values: uni-uni, and-uni, or-
uni. In a uni-uni communication, only two threads are in-
volved (point-to-point). In an and-uni communication, a
thread communicates with several other threads (broadcast).
Finally, in an or-uni communication, a thread communicates

with only one thread selected out of a set of other threads
(server-clients).

Thread Behavior Model. In the second model [9], the only
process algebraic operators admitted in the behavioral equa-
tions of an AET – inactive process (stop ), action prefix, al-
ternative composition (choice ), and recursion – are trans-
lated into Java code. As already mentioned, the translation
into a thread cannot be completely automated, due to the
different level of abstraction of an architectural description
language with respect to a programming language.

In particular, a different treatment is needed for the ac-
tion prefix operator depending on whether the action –
which corresponds to a sequence of thread statements – is
an internal action or an interaction. While the latter is in-
volved in communications, hence it is managed as the com-
munication model prescribes, the former can only be ren-
dered as a stub during the translation of the thread behavior,
which will have to be manually filled in by the developer.

4.2. Implementation of PADL2Java

The translator PADL2Java is composed of a set of Java
classes created by the parser generator JavaCC from the
grammar specification of PADL. Other classes, based on
the visitor pattern [15], have been developed for inspect-
ing and transforming the internal representation of a parsed
PADL description and for generating code from it. In fact,
as already mentioned, PADL2Java follows a model-to-text,
visitor-based approach for generating code.

Abstract level

Concrete base level

Concrete level

ExplorerVisitorBase DuplicatorVisitorBase

<<interface>>

Visitor

visitor family
Inspector/Generator Manipulator

visitor family

Figure 2. PADL2Java visitor class hierarchy

In order to facilitate the development of the visitor
classes, a further template-based transformation has been
adopted during the implementation of PADL2Java. Since
JavaCC generates a visitor interface in which an overloaded
methodvisit() is declared for each different node type
of the internal representation, a very simple tool called vis-
itorExpander has been developed to be used in conjunction
with JavaCC. This tool is in charge of generating concrete



visitor classes from the visitor interface and from a template
where a single generic methodvisit() is defined – to-
gether with possible additional utility methods. The generic
method is expanded for each of the overloaded methods de-
clared in the interface. Each of the generated classes can
then be used as a base for more advanced visitor classes in
which only a subset of thevisit() methods needs to be
overridden, depending on the specific task to be performed.

In particular, two concrete base classes have been
generated with the tool visitorExpander, as illustrated
in the intermediate level of Fig. 2. The first one,
ExplorerVisitorBase , which simply explores the in-
ternal representation, has been employed as a base class for
developing a family of inspector visitors and code generator
visitors. The second one,DuplicatorVisitorBase ,
which duplicates each node of the internal representation
encountered during its visit, has been used instead as a base
class for developing a family of manipulator visitors. The
rules adopted by the two families of visitors are those pre-
scribed by the two models of Sect. 4.1.

5. Structure of the Generated Code

The structure of the code generated by PADL2Java is il-
lustrated in Fig. 3. As shown in the upper part of the
figure, PADL2Java synthesizes a class implementing the
interfaceRunnableArchi plus as many classes imple-
menting the interfaceRunnableElem as there are AETs
in the PADL description. We point out that, in order to
provide a Java abstraction for representing hierarchical or
composite architectural types, withinSync the interface
RunnableArchi has been defined by extending the inter-
faceRunnableElem , which extends in turn the standard
interfaceRunnable .
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...

...
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Figure 3. Generated Java files

The instances generated from the classes implementing
RunnableElem , i.e. threads, are guaranteed to interact
as expected thanks to the generation of suitablePort and
Connector objects from packageSync . While Port is
a family of public interfaces and classes used by the code
generated by PADL2Java,Connector is a family of pri-
vate pieces of software that are accessible only within pack-
ageSync . Connector classes are transparently instanti-
ated whenever two threadPort objects are attached to each
other through methodattach() of Fig. 1.

The lower part of Fig. 3 shows the stub classes to
be manually filled in. These are generated for man-
aging internal actions of AETs implemented as thread
classes (IAS) and for handling exceptions that may
be raised by interactions implemented within thread
classes (EHS), e.g.UnattachedPortException and
NotReadyPortException . Fig. 3 also shows a pack-
age calledStructs , which handles those PADL data types
that cannot be translated into built-in Java data types.

Each of the classes generated by PADL2Java for a given
PADL description is stored into a distinct.java file. All
these files are contained in a single package with the same
name as the PADL description source file. Further.java
files may be generated depending on the translation option
specified upon invoking PADL2Java (default option -c).

If option -p is used, a full Java program is synthesized.
This is done by PADL2Java through the generation of a fur-
ther public class containing only methodmain() , which
acts as a wrapper for theRunnableArchi -implementing
class. Instead, if option-a is used, a Java applet is syn-
thesized. This is done by PADL2Java through the gen-
eration of a further public class derived from the stan-
dard JApplet class, which results in a wrapper for the
RunnableArchi -implementing class.

5.1. Generating the Cruise Control System

We now illustrate the use of PADL2Java by means of the
synthesis of Java code for the cruise control system de-
scribed with PADL in Sect. 2.1. Due to lack of space, we
only show the translation of AETDetector Type and of
sectionARCHI TOPOLOGYof the PADL description.

The former is generated as a thread class in which the
core sectionDEFINING BEHAVIORtranslates each orig-
inal PADL behavioral equation into a homonymous in-
stance of an anonymous class implementing the interface
BehavioralEquationInterface :

class Detector_Type implements RunnableElem {
//- DECLARING BEHAVIORAL EQUATIONS INTERFACES -//
interface BehavioralEquationInterface {

void behavEqCall();
}
BehavioralEquationInterface Detector_Off,

Detector_On;
BehavioralEquationInterface nextBehavEq;



Object[] actualPars;
//-------- INSTANTIATING INTERACTIONS ---------//
SyncUniReceiverPort turned_engine_on =

new SyncUniReceiverPort(this);
SyncUniReceiverPort turned_engine_off =

new SyncUniReceiverPort(this);
SyncUniSenderPort signal_speed =

new SyncUniSenderPort(this);
//-------------- DECLARING STUBS --------------//
IAS_Detector_Type internal_Detector_Type;
// No EHS declaration as there are
// no architectural interactions and
// no semi-synchronous interactions.
//----------- DEFINING CONSTRUCTOR ------------//
Detector_Type() {

defineBehavEquations();
}
//------------- DEFINING BEHAVIOR -------------//
void defineBehavEquations() {

Detector_Off = new BehavioralEquationInterface() {
public void behavEqCall() {

_Detector_Off();
}
private void _Detector_Off() {

try {
turned_engine_on.receive();

} catch(SyncException e) {}
nextBehavEq = Detector_On;
actualPars = null;

}
}; // end of behavioral equation Detector_Off

Detector_On = new BehavioralEquationInterface() {
public void behavEqCall() {

_Detector_On();
}
private void _Detector_On() {

switch (
ElemMeth.choice(

new ChAct[] {
new ChAct(true, null),
new ChAct(true, turned_engine_off)

}
)

) // Choice body :
{

case 0:
internal_Detector_Type.measure_speed();
try {

signal_speed.send();
} catch(SyncException e) {}
nextBehavEq = Detector_On;
actualPars = null;
break;

case 1:
try {

turned_engine_off.receive();
} catch(SyncException e) {}
nextBehavEq = Detector_Off;
actualPars = null;
break;

default:
nextBehavEq = null; // STOP
actualPars = null;

}
}

}; // end of behavioral equation Detector_On
}
//--------- RUNNING ELEMENT [thread] ----------//
Thread th_Detector_Type = null;
public void start() {

(th_Detector_Type = new Thread(this)).start();
}
public void join() throws InterruptedException {

th_Detector_Type.join();
}
public void run() {

internal_Detector_Type = new IAS_Detector_Type();
nextBehavEq = Detector_Off;
actualPars = null;

while (nextBehavEq != null)
nextBehavEq.behavEqCall();

}
}

The only internal actionmeasure speed is translated
into a method of the following stub class:

class IAS_Detector_Type {
IAS_Detector_Type() {

// FILL IN THE CONSTRUCTOR BODY IF NEEDED
}
void measure_speed() {

// FILL IN THE METHOD BODY
}

}

SectionARCHI TOPOLOGYof the PADL description
is translated into a thread class with a core section called
BUILDING ARCHITECTURE:

public class Cruise_Control implements RunnableArchi {
//-------- DECLARING RUNNABLE ELEMENTS --------//
Sensor_Type S;
Controller_Type C;
Detector_Type D;
Actuator_Type A;
//--- DECLARING ARCHITECTURAL INTERACTIONS ----//
// No architectural interactions are declared
//----------- DEFINING CONSTRUCTOR ------------//
Cruise_Control() {

buildArchiTopology();
}
//----------- BUILDING ARCHITECTURE -----------//
void buildArchiTopology() {

// INSTANTIATING RUNNABLE ELEMENTS:
S = new Sensor_Type();
C = new Controller_Type();
D = new Detector_Type();
A = new Actuator_Type();
// ASSIGNING ARCHITECTURAL INTERACTIONS:
// No architectural interactions are declared
// ATTACHING LOCAL INTERACTIONS:
try {

ArchiMeth.attach(S.turn_engine_on,
C.turned_engine_on);

ArchiMeth.attach(S.turn_engine_on,
D.turned_engine_on);

ArchiMeth.attach(S.turn_engine_off,
C.turned_engine_off);

ArchiMeth.attach(S.turn_engine_off,
D.turned_engine_off);

ArchiMeth.attach(S.press_accelerator,
C.pressed_accelerator);

ArchiMeth.attach(S.press_brake,
C.pressed_brake);

ArchiMeth.attach(S.press_on,
C.pressed_on);

ArchiMeth.attach(S.press_off,
C.pressed_off);

ArchiMeth.attach(S.press_resume,
C.pressed_resume);

ArchiMeth.attach(C.trigger_enable,
A.triggered_enable);

ArchiMeth.attach(C.trigger_record,
A.triggered_record);

ArchiMeth.attach(C.trigger_disable,
A.triggered_disable);

ArchiMeth.attach(D.signal_speed,
A.signalled_speed);

} catch(BadAttachmentException e) {}
}
//----------- RUNNING ARCHITECTURE ------------//
Thread th_Cruise_Control = null;
public void start() {

(th_Cruise_Control = new Thread(this)).start();
}



public void join() throws InterruptedException {
th_Cruise_Control.join();

}
public void run() {

S.start();
C.start();
D.start();
A.start();
try {

S.join();
C.join();
D.join();
A.join();

} catch(InterruptedException e) {}
}

}

AETs Sensor Type , Controller Type , and
Actuator Type are translated into thread classes in a
way very similar toDetector Type .

The only intervention of the software developer
has to do with the stubsIAS Detector Type and
IAS Actuator Type for the management of the
internal actions measure speed , record speed ,
enable speed ctrl , disable speed ctrl , and
adjust throttle . If the guidelines provided in [9] are
observed while filling in those stubs, then the code gener-
ated by PADL2Java conforms to the architectural descrip-
tion of Sect. 2.1 – from which it has been synthesized – and
hence it turns out to be deadlock free as requested at the
beginning of Sect. 2.1.

6. Integrating PADL2Java in TwoTowers

In order to support property prediction and preservation at
the software architecture level of design, we have extended
the open-source software tool TwoTowers [7] with the ca-
pability of generating software. TwoTowers automates the
functional verification, security analysis, and performance
evaluation of systems modeled in Æmilia [1], a variant of
PADL in which action durations can be expressed too.

As shown in Fig. 4, TwoTowers is equipped with a
graphical user interface through which the user can invoke
several routines by means of suitable menus. The graphi-
cal user interface takes care of the integrated management
of the various file types needed by the different routines.
These routines belong to the Æmilia compiler, the equiva-
lence verifier, the model checker, the security analyzer, and
the performance evaluator.

The novelty of version 6.0 is the integration of the
PADL2Java code generator. Although PADL2Java has been
initially designed for PADL, it can also synthesize Java code
out of a correct Æmilia description – differences in the ac-
tion structure of the two languages are overridden at pars-
ing time. A package synthesized with PADL2Java can be
augmented with a class containing methodmain() or a
JApplet -derived class, thus resulting in a Java program
or a Java applet, respectively.

.psm

.fsm

.ism

.siz

.lis

.mcr

.evr
- Strong Bisimulation Equivalence Verifier
- Weak Bisimulation Equivalence Verifier
- Strong Markovian Bisimulation Equivalence Verifier
- Weak Markovian Bisimulation Equivalence Verifier

- Parser
- Semantic Model Size Calculator
- Semantic Model Generator

GRAPHICAL USER INTERFACE

EQUIVALENCE VERIFIER:

.aem

.ltl

.sec

SECURITY ANALYZER:

.rew

.sim

.trc

- Simulator

PERFORMANCE EVALUATOR:
.dis

.val

.est

- Non-Interference Analyzer
- Non-Deducibility on Composition Analyzer

- Stationary/Transient Reward-Based Measure Calculator
- Stationary/Transient Probability Distribution Calculator

- Symbolic LTL Model Checker (via NuSMV)
MODEL CHECKER:

- Applet Generator

JAVA CODE GENERATOR:

AEMILIA COMPILER:

.sar

.java
- Program Generator
- Package Generator

Figure 4. Architecture of TwoTowers 6.0

7. Conclusion

In this paper we have presented the code generation tool
PADL2Java, together with its integration in the modeling
and verification tool TwoTowers. Such an integration real-
izes an architecture-centric approach to software system de-
sign that goes from specification down to code in a formal
and automated manner. This has been used in case studies
ranging from systems for cruise control, audio processing,
and video animation to leader election algorithms.

Comparisons with related approaches to code generation
from architectural descriptions can be found in [8, 9, 10].
As far as implementation issues are concerned, it has turned
out to be quite helpful the adoption of generative techniques
for the rapid construction of visitor class hierarchies, used
for inspecting the internal structure of architectural descrip-
tions and synthesizing code from it. With regard to stubs,
we have found them more appropriate than abstract classes
because they allow the generated code to be compiled, in-
cluding invocations of stub methods as they are concrete. In
order to effectively remind the software developer to fill in
the stubs, it would suffice to cause PADL2Java to introduce
a statement in the definition of each stub method, which
prints out an explicative message whenever an empty stub
method is invoked at run time.

Concerning future work, we would like to extend
our toolset with software model-checking tools, like Java



PathFinder [26], and to define specific rules for static analy-
sis tools, like TPTP [17]. The reason is that the preservation
at the code level of the properties proved at the architec-
tural level is guaranteed only if – the underlying platform is
correct and – the guidelines prescribed by the second trans-
formation model are followed when filling in the stubs for
internal actions and interaction exceptions (see [9] for more
details). Having a software model-checker available within
TwoTowers would permit the verification of the overall sys-
tem after possible manual interventions of the software de-
veloper, while customized static analysis tools may be ex-
ploited for guiding the interventions themselves.
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