
  

Why so software engineeringy?

Athula Balachandran
Wolf Richter



  

Are we really 
that serious?



  

Actually, yes; yes we are.

But we can have fun too!



  

Case Study: from Industry

Imagine you are a police officer on the road 
at 2:14am  and there is a van weaving 
around on the road in front of you and it is 
obviously full of people who are dressed 
alike and have many different pieces of 
luggage  and other objects that you can't 
quite see clearly in the vehicle.



  

Mission critical applications?

You reach over to your laptop mounted in 
your police car  and key in the make model 
and license number and state.  The 
message on the screen says: Sorry, this 
application is not available for the next 30 
minutes.



  

Just a short outage?

You can imagine any possibility: 

- a church group on an outing, someone 
driving getting tired
- a drunk driving his family
- a smuggler bringing illegal aliens
- a smuggler bringing in illegal drugs
- or for the fun of it, a group of terrorists 
preparing a major attack



  

What do you do now?

You have no information  from a mission critical 
system with access to all sorts of databases 
including who the owners of the vehicle are, who 
might have leased it, rented it, or is the main 
driver for it, and intelligence data bases that can 
tell you if it might be illegals or terrorists, or some 
other sort of criminal.  As a single police officer 
who has to deal with this now, when backup is 20 
minutes away and you do not know if these 
people will be armed and desperate enough to 
shoot first.



  

Why?
The reason the data is not available is that 
there was no backup that took over 
immediately on failure.  We deal with this in 
many ways, short term with clustering 
servers, having mirrors or RAID for data, 
should data storage fail, network 
redundancy should a network connection 
fail.   However, there may also be a deeper 
reason for the failure which is dealt with in 
another way; disaster recovery and above 
that COOP or Continuance Of OPerations 
should a major disaster occur.  



  

Netflix and the Chaos Monkey

● One of a few surviving AWS/EC2 outages
● Randomly fail running instances
● Randomly fail processes
● Randomly introduce network failures
● Execute rarely encountered code paths
● On the production system



  

We'll be focusing on:

Backups
Code Documentation

Source Control Management
Code Structuring and Modularity



  

Subversion: svn

svn Repository

Usually remotely hosted,
shared with a team.

Working Copy

Your private universe,
before commit.

svn commit
svn checkout
svn updatesvn commit



  

Getting started with svn

Roll your own:
● svnadmin create repo

● svn checkout 
file:///.../svn/repo .

Not your own:
● svn checkout https://...



  

Types of Repositories

Type Meaning

file:/// Direct local disk access

http:// WebDAV protocol via Apache

https:// HTTP with SSL

svn:// Access svnserve via custom 
protocol 

svn+ssh:// Same as svn://, via ssh tunnel



  

Daily workflow with svn

● Check for any remote updates
● Do your work
● Test your work
● Check differences, try to isolate changes
● Check for any remote updates
● Commit your work



  

Translated to svn commands

● svn update
● Checks for new commits in remote repository

● vim, emacs, make, create, magic, etc.

● make test (run your changes!)
● svn status

● See all changed files

● svn diff
● Understand differences line by line (like diff util)

● svn update
● svn commit -m 'Isolated changes x and y'



  

Example repository
> svn update
At revision 0.
> echo 'this is a test' > test
> svn add test
A         test
> svn commit -m 'added a test'
Adding         test
Transmitting file data .
Committed revision 1.
> svn update
At revision 1.
> echo 'new text!' > test
> svn status
M       test
> svn diff
Index: test
===================================================================
--- test (revision 1)
+++ test (working copy)
@@ -1 +1 @@
-this is a test
+new text!
> svn update
At revision 1.
> svn commit -m 'updated text'
Sending        test
Transmitting file data .
Committed revision 2.



  

Dealing with collaboration

● Lock-modify-unlock
● svn lock <path>
● Modifications...
● svn unlock <path>

● Copy-modify-merge
● Optimistically edit things
● Merge any files that others also commit



  

Locking in Practice
1> svn lock test
'test' locked by user 'wolf'.

2> svn status --username 'blockme' -u
     O           2   test
Status against revision:      2
2> echo 'i can have lock!?' > test
2> svn commit --username 'blockme' -m 'block on lock?'
Sending        test
Transmitting file data .svn: Commit failed (details follow):
svn: User blockme does not own lock on path '/test' (currently 
locked by wolf)

1> echo "maybe if you're nice..." > test
1> svn commit --username 'wolf' -m 'finished with test'
Sending        test
Transmitting file data .
Committed revision 3.



  

Merging in Practice

2> svn update
Conflict discovered in 'test'.
Select: (p) postpone, (df) diff-full, (e) edit,
        (mc) mine-conflict, (tc) theirs-conflict,
        (s) show all options: 



  

Merging options

Type Meaning

postpone Mark conflict for later resolve

diff-full Show all changes

edit Use an editor to resolve

mine-conflict Accept your version only

theirs-conflict Accept their version only

show Show more/all options



  

svn Resources

1) svn help

2) svn book
http://svnbook.red-bean.com/en/1.6/svn-book.html

3) svn Cheatsheet
http://www.addedbytes.com/cheat-sheets/subversion-cheat-sheet/

http://svnbook.red-bean.com/en/1.6/svn-book.html
http://www.addedbytes.com/cheat-sheets/subversion-cheat-sheet/


  

git

● Fun, fun, fun!
● You already use it right? GitHub?
● If not, let's go down the rabbit hole...
● Resume padding
● Resume creator!



  

git

torvalds

git pull

git pullgit push

jaharkes

bgilbert

wolf

abalacha

kernel@ghub

git pull

git pull git pull

git push git push

git pull

No notion of “working copy”–each
is a full repository.



  

Getting started with git

Roll your own:
● git config --global user.name 

“Wolfgang Richter”

● git config --global 
user.email “wolf@cs.cmu.edu”

● git init .

Not your own:
● git config --global user.name 

“Wolfgang Richter”

● git config --global 
user.email “wolf@cs.cmu.edu”

● (1) git clone 
git://git.kernel.org/pub/scm/
git/git.git

● (2) git remote add origin 
git@github.com:username/Hello
-World.git

mailto:wolf@cs.cmu.edu
mailto:wolf@cs.cmu.edu


  

Types of Repositories

Type Meaning

rsync:// rsync client to git repo

http:// HTTP hosted repo

https:// HTTP with SSL

git:// Special git server/protocol

ssh:// git via ssh



  

Daily workflow with git

● Check for any remote updates
● Do your work
● Test your work
● Check differences, try to isolate changes
● Commit your work; repeat as needed
● Check for any remote updates
● Push changes, or submit pull request



  

Translated to git commands

● git pull
● Checks for new commits in remote repository

● vim, emacs, make, create, magic, etc.

● make test (run your changes!)

● git status
● See all changed files

● git diff
● Understand differences line by line (like diff util)

● git add
● Stage changes, potentially line by line

● git commit -m 'Isolated changes x and y'

● git push



  

Example repository

> git pull
Already up-to-date.
> git status
# On branch master
# Your branch is ahead of 'origin/master' by 1 commit.
#
# Changed but not updated:
#   (use "git add <file>..." to update what will be committed)
#   (use "git checkout -- <file>..." to discard changes in working directory)
#
# modified:   src/recitation2.odp
#
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# src/liso.c~
no changes added to commit (use "git add" and/or "git commit -a")
> git diff
diff --git a/recitation2/src/recitation2.odp b/recitation2/src/recitation2.odp
index d3289ed..9a1fec3 100644
Binary files a/recitation2/src/recitation2.odp and 
b/recitation2/src/recitation2.odp differ



  

Example repository
> git add src/recitation2.odp
> git status
# On branch master
# Your branch is ahead of 'origin/master' by 1 commit.
#
# Changes to be committed:
#   (use "git reset HEAD <file>..." to unstage)
#
# modified:   src/recitation2.odp
#
# Untracked files:
#   (use "git add <file>..." to include in what will be committed)
#
# src/liso.c~
> git commit -m 'working on git section, also hello class!'
[master 73d717b] working on git section, also hello class!
 1 files changed, 0 insertions(+), 0 deletions(-)
> git push
Counting objects: 12, done.
Delta compression using up to 2 threads.
Compressing objects: 100% (9/9), done.
Writing objects: 100% (11/11), 653.27 KiB, done.
Total 11 (delta 3), reused 0 (delta 0)
To git@github.com:theonewolf/15-441-Recitation-Sessions.git
   2e7a763..73d717b  master -> master



  

Dealing with collaboration

● Branching – Cheap and effective
● Make development or feature branches
● Rebase and merge when features complete
● git branch https
● git checkout https
● ...

● Pull/Push with Merge
● Standard model: pull requests
● Or push into “central” repository



  

Merging in Practice

> git pull
Auto-merging test
CONFLICT (content): Merge conflict in test
Automatic merge failed; fix conflicts and then commit the result.
> cat test
<<<<<<< HEAD
helloX world
=======
helloY world
>>>>>>> 29a240d5017c73ca4f78466afcf1fd5b8f46808f

Choose how to merge—yours or other author's.
Finalize, commit, then push, or request a pull.



  

svn vs git

svn git

Costly branching Cheap local branching

No local repository Everything is local

Large repos are slow Designed for very large repos

Centralized Distributed

Restricted workflows Multiple workflows

http://whygitisbetterthanx.com/

http://whygitisbetterthanx.com/


  

git's Superiority

It just is.  Trust me.

svn: every commit makes trusted code untrusted

git: commit, commit, commit...; rebase; merge



  

Extra git tips

● gitk – GUI to interact with git repository
● git svn – Use git on top of svn...
● git branch – create dev branches
● git tag – create release tag
● git bisect – binary search for bad 

commit
● git rebase – forward-port local commits



  

git Resources

1) man gittutorial

2) Git User's Manual
http://www.kernel.org/pub/software/scm/git/docs/user-manual.html

3) Git Immersion
http://gitimmersion.com/

4) Git Cheatsheet
https://github.com/AlexZeitler/gitcheatsheet

http://www.kernel.org/pub/software/scm/git/docs/user-manual.html
http://gitimmersion.com/
https://github.com/AlexZeitler/gitcheatsheet


  

Code Structure: GNU make

● Recipes for your code
● Compilation
● Installation
● Cleanup
● Testing

● Composed of a series of
● targets [the recipes]
● which have dependencies
● and commands
● also, variables...



  

Makefile from recitation1
################################################################################
# Makefile                                                                     #
#                                                                              #
# Description: This file contains the make rules for Recitation 1.             #
#                                                                              #
# Authors: Athula Balachandran <abalacha@cs.cmu.edu>,                          #
#          Wolf Richter <wolf@cs.cmu.edu>                                      #
#                                                                              #
################################################################################

SERVER_SRC = echo_server.c
CLIENT_SRC = echo_client.c
OPTIONS = -Wall

default: echo_server echo_client

echo_server:
@gcc $(SERVER_SRC) -o echo_server $(OPTIONS)

echo_client:
@gcc $(CLIENT_SRC) -o echo_client $(OPTIONS)

clean:
@rm echo_server echo_client



  

GNU make Resources

1) GNU make Manual
http://www.gnu.org/software/make/manual/html_node/index.html

http://www.gnu.org/software/make/manual/html_node/index.html


  

Wanna be “official”?

● Learn GNU autotools
● Standardize workflow with

● Generation of ./configure script
● Generation of Makefiles and make install target
● Generation of helper scripts

● Preparing to release open source?
● (1) Pick a license
● (2) autotoolize
● (3) GitHub !



  

Project 1 Sneak Peek
#include <stdio.h>
#include <stdlib.h>
#include "select_engine.h"
#include "http_parser.h"
#include "logging.h"

#define USAGE "\nUsage: %s <PORT> <LOG_FILE> <LOCK_FILE>\n\n"

int main(int argc, char* argv[])
{
        int port;
        char* flog, * flock;

        if (argc < 4)
        {
                fprintf(stdout, USAGE, argv[0]);
                return EXIT_FAILURE;
        }

        port = atoi(argv[1]);
        flog = argv[2];
        flock = argv[3];

        struct select_engine engine;
        liso_engine_create(&engine, port, flog, flock);
        liso_engine_register_http_handler(&engine, parser_http_handler);
        liso_engine_register_http_disconnect_handler(&engine, parser_disconnect_handler);

        liso_logging_log("liso", "main", "Starting Liso server on port %d", port);
        
        return liso_engine_event_loop(&engine);
}



  

GitHub:

Git it, got it, good.

git clone git://github.com/theonewolf/15-441-Recitation-Sessions.git


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	page42

