
COMMSTACK<FLEXRAY> 1.8

User Manual

Markus Eggenbauer

Version 1.8.0, March, 2006

© 2006 by Dependable Computer Systems, All rights reserved

Contact Information:

DECOMSYS - Dependable Computer Systems Mail
Hardware und Software Entwicklung GmbH
Stumpergasse 48/28
A-1060 Wien, Austria
+43 (1) 599 83 - 0 Phone

+43 (1) 599 83 – 18 Fax

info@decomsys.com E-Mail

www.decomsys.com Web

Copyright Notice, License agreement:

© Copyright 2006 by Dependable Computer Systems. All Rights Reserved.

No part of this document may be photocopied or reproduced in any form without prior written consent from Dependable
Computer Systems.

Trademarks:

All trademarks used in this document are the property of their respective owners.

Copyright DECOMSYS 2006. - ii -

mailto:info@decomsys.com
http://www.decomsys.com/

Table of Contents

Table of Contents

 COMMSTACK<FlexRay> 1.8.. i

 Table of Contents .. 3

1 Introduction ... 4
1.1 Overview .. 4
1.2 Glossary ... 5

2 Architecture ... 6
2.1 COMMSTACK Design ... 6
2.2 State Model .. 7

3 API Documentation .. 11
3.1 Basic Datatypes .. 11
3.2 Specific Datatypes .. 12
3.3 Structure Data Types .. 17
3.4 Basic Constants .. 22
3.5 Initialization & Configuration Services ... 23
3.6 Status Information Services .. 26
3.7 Transmission Services .. 29
3.8 Reception Services ... 34
3.9 Queue Services .. 38
3.10 Time Services ... 42
3.11 Timer & Interrupt Services ... 45

4 CC Type Specific Extensions .. 50
4.1 Freescale MFR4200 .. 50
4.2 Bosch ERAY .. 51
4.3 Freescale MFR4300 .. 52
4.4 Philips Rev1 FlexRay CC (SJA2510) ... 54

5 DESIGNER PRO Integration .. 58
5.1 Use Case Assumption ... 58
5.2 Generating the COMMSTACK Configuration .. 59
5.3 Applying the COMMSTACK Configuration .. 65

6 COMMSTACK Configuration ... 69
6.1 COMMSTACK File Structure ... 69
6.2 COMMSTACK Feature Configuration ... 70
6.3 COMMSTACK Target Hardware Configuration ... 72

 Document Information ... 82

7 Index ... 83

Copyright DECOMSYS 2006. - 3 -

Introduction

1 Introduction
The DECOMSYS::COMMSTACK<FlexRay> is a comprehensible FlexRay controller software driver
package. The main intention of a software driver is to provide an abstract software interface to some
specific hardware device. The DECOMSYS::COMMSTACK provides a FlexRay specific interface on
top of its API while abstracting the peculiarities of specific FlexRay communication controller
hardware implementations.

The DECOMSYS::COMMSTACK<FlexRay> is a flexible library that easily extends applications with
FlexRay capabilities. To obtain this use case, the DECOMSYS::COMMSTACK<FlexRay> was
developed with modularity and flexibility in mind. It is free of any non-FlexRay functionality and free
of dependability on any external components. This enables a simple integration of this library into
your existing application framework.

1.1 Overview
DECOMSYS::COMMSTACK is a software driver that abstracts different FlexRay communication
controller implementations and provides a generic FlexRay application programming interface.

It is intended to be used by higher layer software that has no sense about the different FlexRay
communication controller implementations available, but is familiar with the standard FlexRay
behavior and properties.

Users of DECOMSYS::COMMSTACK are e.g. transport protocols, network management, FlexRay
COM layer (FlexCOM) and all kinds of user applications using FlexRay directly.

FlexRay CC

TP NM FlexCOM

Application

DECOMSYS::COMMSTACK

Hardware

Software

Figure 1: System Overview

Copyright DECOMSYS 2006. - 4 -

Introduction

1.2 Glossary
API Application Programming Interface

BA Buffer Assignment

BE Big Endian

BOR Binary Object Repository (DECOMSYS::DESIGNER PRO data exchange format)

CC Communication Controller

CPU Central Processing Unit

ECU Electronic Control Unit

ERAY10 Bosch ERAY-IP FlexRay Communication Controller

FIBEX Field Bus Exchange

FIFO First-In First-Out

FlexCOM DECOMSYS signal communication layer

GUI Graphical User Interface

LE Little Endian

LSB Least Significant Byte

lsb least significant bit

MFR4200 Freescale MFR4200 FlexRay Communication Controller

MFR4300 Freescale MFR4300 FlexRay Communication Controller

MSB Most Significant Byte

msb most significant bit

NM Network Management

PHIP1 Philips ABL FlexRay Communication Controller (e.g. contained in Philips SJA2510).

Rx Reception

TDDLL Time-Driven Data-Link-Layer

TP Transport Protocol

Tx Transmission

XCDEF DECOMSYS::Designer data exchange format

Copyright DECOMSYS 2006. - 5 -

Architecture

2 Architecture

2.1 COMMSTACK Design
The internal structure of DECOMSYS::COMMSTACK 1.8 can be depicted as shown in Figure 2.

ER
AY

10
<0

>

ER
AY

10
<1

>

ER
AY

10
<2

>

M
FR

42
00

<0
>

M
FR

42
00

<1
>

M
FR

42
00

<2
>

MAL

FCAL

API-runtime
 driver abstraction

C
C

 s
pe

ci
fic

co
nf

ig
ur

at
io

n
da

ta
C

C
 a

bs
tra

ct
co

nf
ig

ur
at

io
n

da
ta

C
C

 m
ap

pi
ng

(C
C

 h
an

dl
e,

 re
se

t)

hardware developer

application developer

COMMSTACK porter

system developer

COMMSTACK (source/library)

FlexRay Hardware

ha
rd

w
ar

e
co

nf
ig

ur
at

io
n

ap
pl

ic
at

io
n

co
nf

ig
ur

at
io

n

C
C

 a
bs

tra
ct

co
nf

ig
ur

at
io

n
da

ta
C

C
 s

pe
ci

fic
co

nf
ig

ur
at

io
n

da
ta

C
C

 a
bs

tra
ct

co
nf

ig
ur

at
io

n
da

ta
C

C
 s

pe
ci

fic
co

nf
ig

ur
at

io
n

da
ta

API-precompile time
driver abstraction

M
FR

43
00

 -
AP

I

M
FR

42
00

- A
PI

ER
AY

- A
PI

PH
IP

1
- d

riv
er

C
C

XY
<0

>

Figure 2: COMMSTACK<FlexRay> 1.8 System Architecture

Copyright DECOMSYS 2006. - 6 -

Architecture

FlexRay Hardware and DECOMSYS::COMMSTACK components:

 FlexRay Hardware: The CC hardware consists of one to several FlexRay communication
controllers that might be mixed up of different implementations.

 COMMSTACK: DECOMSYS::COMMSTACK is ported to a dedicated host-CPU, CC-hardware
connection schema and is integrated into a specific development environment. All connection
schemas of communication controllers of the same type must be identical. CCs of one
implementation may differ in their CC-handle only (e.g. different base addresses).

 Hardware Configuration: The hardware configuration contains the device mapping and reset
configuration of the FlexRay CC devices. The configuration of CC-handles identifies dedicated
connected FlexRay controllers. The CC mapping maps FlexRay CC implementation abstract
controller indices to dedicated CC devices. Additionally reset functions (which are strongly
hardware specific) have to be supplied within the hardware configuration. The static
configuration is a post-compile pre build time configuration.

 Application Configuration: The application specific configuration is created by
DECOMSYS::DESIGNER PRO. The application configuration is a post-build configuration.

2.2 State Model
The COMMSTACK behavior is controlled by a state machine that is administrated for each single
FlexRay controller driven by the COMMSTACK. Within the further documentation this state is
referred to as COMMSTACK FlexRay controller state. Figure 3 shows the state machine states and
transitions that are provided by the COMMSTACK.

Figure 3: COMMSTACK FlexRay controller state machine
Copyright DECOMSYS 2006. - 7 -

OffOff Startup On OnlineConfig

Reset

Wakeup

Reset

1

Reset

EnterConfig

LeaveConfig,
Abort

SendWakeup Abort, 1

Startup
Abort

1
Online

Offline

Halt, Abort, 1

Halt, Abort, 1

Init

Ctrl not available

On

State

Initial State

Architecture

The following table describes the states and transitions of the COMMSTACK in detail.

State Transition Description
Off The FlexRay controller does not perform any access to the network and is not able

to be configured. (e.g. FlexRay ready state). This is the start state after
COMMSTACK initialization (TDDLL_Init()) if the CC is detected successfully and
the cluster is not synchronized.

Reset This transition changes into the state “Reset” and performs a
hard reset of the FlexRay CC.

EnterConfig This transition changes into the state “Config” and switches
the CC into config mode.

SendWakeupChA This transition changes into the state “Wakeup” und initiates
the transmission of a wakeup pattern on FlexRay channel A of
the dedicated FlexRay CC.

SendWakeupChB This transition changes into the state “Wakeup” und initiates
the transmission of a wakeup pattern on FlexRay channel B of
the dedicated FlexRay CC.

Startup This transition changes into the state “Startup” and switches
the controller into the startup state. The CC performs an active
or passive startup (depending on the configuration). During
this transition the global interrupt source is disabled.

ctrl not
available

This is the start state after COMMSTACK initialization (TDDLL_Init()) if the CC is
not detected. No transition can be invoked from this state.

Startup The FlexRay controller is in state “Startup” and tries to set up network
communication (active or passive) depending on the configuration.

Abort This transition aborts the startup procedure and changes
immediately into the “Off” state. During this transition the
global interrupt source is disabled.

1 If the startup was successfully (the CC is synchronized to the
cluster) the state “Startup” is left to state “On” automatically
(evaluate the current state using API function
TDDLL_GetCtrlState()).

Copyright DECOMSYS 2006. - 8 -

Architecture

On The CC is synchronized to the cluster. The buffer access for communication of all
COMMSTACK API functions is turned off. This is the start state after COMMSTACK
initialization (TDDLL_Init()) if the CC is detected successfully and the cluster is
synchronized.

Online The transition immediately switches the state machine into the
state “Online”.

Halt The transition “Halt” immediately changes into the state “Off”
and halts the FlexRay communication at the end of the current
communication cycle. During this transition the global interrupt
source is disabled.

Abort The transition “Abort” immediately changes into the state “Off”
and immediately aborts the FlexRay communication. During
this transition the global interrupt source is disabled.

1 If the synchronization is lost the transition to state “Off” is
performed automatically (evaluate the current state using API
function TDDLL_GetCtrlState()).. During this transition the
global interrupt source is disabled.

Online The FlexRay controller is synchronized to the network and the software driver is
activated to actively access buffers for transmission or reception.

Offline The transition immediately switches the state machine into the
state “On”.

Halt The transition “Halt” immediately changes into the state “Off”
and halts the FlexRay communication at the end of the current
communication cycle. During this transition the global interrupt
source is disabled.

Abort The transition “Abort” immediately changes into the state “Off”
and immediately aborts the FlexRay communication. During
this transition the global interrupt source is disabled.

1 If the synchronization is lost the transition to “Off” is performed
automatically (evaluate the current state using API function
TDDLL_GetCtrlState()).. During this transition the global
interrupt source is disabled.

Config The FlexRay controller is in configuration mode. All configuration parameters can be
changed.

LeaveConfig The transition “LeaveConfig” leaves the “Config” state of the
state machine immediately into the “Off” state.

Abort The transition “Abort” leaves the “Config” state of the state
machine immediately into the “Off” state.

Reset The FlexRay controller is being reset. No access to the FlexRay controller should be
performed.

Reset The transition “Reset” immediately performs a reset again.

1 If the reset is completed the state machine automatically
changes into state “Config” (evaluate the current state using
API function TDDLL_GetCtrlState())..

Copyright DECOMSYS 2006. - 9 -

Architecture

Wakeup The FlexRay controller is transmitting a wakeup pattern.

Abort The transition “Abort” immediately aborts the transmission of a
wakeup-pattern and changes into state “Off”.

1 If the transmission of the wakeup pattern is completed, the
state “Wakeup” is left automatically into state “Off” (evaluate
the current state using API function
TDDLL_GetCtrlState()).

Copyright DECOMSYS 2006. - 10 -

API Documentation

3 API Documentation

3.1 Basic Datatypes
Basic datatypes are datatypes every other datatype of the COMMSTACK is built of. The basic
datatypes are required by the COMMSTACK. These datatypes will in general be provided by an
external source if the COMMSTACK is used in an environment already defining these datatypes. If
these datatypes do not exist, the COMMSTACK porter must define them for a proper COMMSTACK
operation.

3.1.1 uint8

This is an integral unsigned datatype that provides a value range of 8bit (0 to 255 decimal).

3.1.2 uint16

This is an integral unsigned datatype that provides a value range of 16bit (0 to 65535 decimal).

3.1.3 uint32

This is an integral unsigned datatype that provides a value range of 32bit (0 to 4294967295
decimal).

3.1.4 uint8_least

This is an integral unsigned datatype that provides at least a value range of 8bit (0 to 255 decimal)
but possibly more if this would improve execution performance on certain hardware.

3.1.5 uint16_least

This is an integral unsigned datatype that provides at least a value range of 16bit (0 to 65535
decimal) but possibly more if this would improve execution performance on certain hardware.

3.1.6 uint32_least

This is an integral unsigned datatype that provides at least a value range of 32bit (0 to 4294967295
decimal) but possibly more if this would improve execution performance on certain hardware.

3.1.7 sint8

This is an integral signed datatype that provides a value range of 8bit (-128 to 127 decimal).

3.1.8 sint16

This is an integral signed datatype that provides a value range of 16bit (-32768 to 32767 decimal).

Copyright DECOMSYS 2006. - 11 -

API Documentation

3.1.9 sint32

This is an integral signed datatype that provides a value range of 32bit (-2147483648 to
2147483647 decimal).

3.2 Specific Datatypes
Specific datatypes are defined by the COMMSTACK and mentioned to be reserved for
COMMSTACK specific usage only. The datatypes described in this chapter are single integral
datatypes.

3.2.1 TDDLL_BooleanType

This datatype is used for variables that have to differ between two states. The states that must be
used for TDDLL_BooleanType are TDDLL_TRUE and TDDLL_FALSE or expressions as provided by
the compiler.

3.2.2 TDDLL_ReturnType

This datatype is an enumerator used as generic function return type. Please consult the API
documentation of a specific function for the exact meaning of the return code in the context of the
specific function call.

Supported values for the datatype TDDLL_ReturnType and the generic meanings of these values
are described in the following table.

Value Description
TDDLL_E_OK Function exited successfully.

TDDLL_E_BAD_CONFIG Some configuration of the FlexRay controller is invalid or bad.

TDDLL_E_ACCESS Error accessing the FlexRay controller.

TDDLL_E_OVERFLOW Some date structure or resource is busy.

TDDLL_E_UNDERFLOW Some data structure or resource is empty.

TDDLL_E_INVALID_IDX Some argument given is invalid.

TDDLL_E_OFFLINE The communication controller is in state offline - function
execution not permitted.

TDDLL_E_NOT_SYNC The communication controller is not synchronized to the cluster -
function execution not permitted.

TDDLL_TX_PENDING The transmission request is pending.

TDDLL_E_INVALID_DATA The data frame received is invalid (implemented for backward
compatibility).

3.2.3 TDDLL_CtrlStateType

This datatype is an enumerator used for the COMMSTACK FlexRay controller state of each distinct
FlexRay controller. The COMMSTACK FlexRay controller state is an abstract state that is
represented in software only. These states do not directly map to vendor-specific FlexRay controller
states but map as close as possible to them. Supported COMMSTACK FlexRay controller states by
the datatype TDDLL_CtrlStateType are listed in the following table. Please refer to the
COMMSTACK FlexRay controller state model in chapter 2.2 for a detailed description of
COMMSTACK FlexRay controller states.

Copyright DECOMSYS 2006. - 12 -

API Documentation

Value Description
TDDLL_S_CTRL_NOT_AVAILABLE No FlexRay controller could be detected on the configured

port.

TDDLL_S_OFF The FlexRay controller is halted, no communication nor
synchronization mechanism is carried out.

TDDLL_S_RESET The FlexRay controller is being reset (hard-reset).

TDDLL_S_CONFIG The FlexRay controller is in config mode.

TDDLL_S_WAKEUP A wakeup pattern is being transmitted in the FlexRay
controller.

TDDLL_S_STARTUP The FlexRay controller is performing some start-up
procedure to get synchronized to the network (or start-up the
network communication).

TDDLL_S_ON The FlexRay controller is synchronized to the network. The
buffer access for transmission and reception from API is
disabled by software.

TDDLL_S_ONLINE The FlexRay controller is synchronized to the network. The
buffer access for transmission and reception from API is
enabled.

3.2.4 TDDLL_CtrlTransitionType

This datatype is an enumerator used for the COMMSTACK FlexRay controller state transitions that
can be performed for each distinct FlexRay controllers. These transitions are required to change the
COMMSTACK FlexRay controller state of a FlexRay controller.

Supported COMMSTACK FlexRay controller transitions by the datatype
TDDLL_CtrlTransitionType are listed in the following table. Please refer to the COMMSTACK
FlexRay controller state model in chapter 2.2 for a detailed description of COMMSTACK FlexRay
controller transitions.

Value Description
TDDLL_T_RESET Perform a hard-reset on the FlexRay controller.

TDDLL_T_ENTER_CONFIG Enter the FlexRay controller config mode (into state
TDDLL_S_CONFIG).

TDDLL_T_LEAVE_CONFIG Leave the FlexRay controller config mode (into state
TDDLL_S_OFF).

TDDLL_T_STARTUP Trigger a “start communication” request on a FlexRay
controller.

TDDLL_T_ONLINE Set the COMMSTACK FlexRay controller state to
TDDLL_S_ONLINE.

TDDLL_T_OFFLINE Set the COMMSTACK FlexRay controller state from
TDDLL_S_ONLINE to TDDLL_S_ON.

TDDLL_T_HALT Halt the FlexRay controller at the end of the current
communication cycle.

TDDLL_T_ABORT Immediately abort communication and synchronization of
the FlexRay controller.

TDDLL_T_WAKEUP_CHA Transmit a wakeup pattern on FlexRay channel A.

TDDLL_T_WAKEUP_CHB Transmit a wakeup pattern on FlexRay channel B.
Copyright DECOMSYS 2006. - 13 -

API Documentation

TDDLL_T_CTRL_NOT_AVAILABLE Set the FlexRay controller to the state
TDDLL_S_CTRL_NOT_AVAILABLE.

3.2.5 TDDLL_CtrlTypesType

This datatype is used for variables that represent the different FlexRay vendor-specific controllers.
The values allowed for this type are TDDLL_CTRL_TYPE_ERAY10 for representing a Bosch E-RAY-
based FlexRay controller, TDDLL_CTRL_TYPE_MFR4200 for a Freescale FlexRay controller
MFR4200, TDDLL_CTRL_TYPE_MFR4300 for a Freescale FlexRay controller MFR4300 and
TDDLL_CTRL_TYPE_PHIP1 for a Philips FlexRay Controller Rev1 (SJA2510).

3.2.6 TDDLL_FrameDscRefIDXType

This datatype is used for identifying frame to transmit or receive via the COMMSTACK API. Each
FlexRay frame is assigned a unique ID within the COMMSTACK configuration. Using this ID
identifies the frame when calling API functions operating on FlexRay frames.

3.2.7 TDDLL_CtrlIDXType

This datatype is used for variables that represent an index for a FlexRay controller. FlexRay
controller indices are used for distinctly identifying a FlexRay controller within the software.

3.2.8 TDDLL_FrameIDType

This datatype is used for variables that represent a FlexRay frame identifier of a particular frame.

3.2.9 TDDLL_ChannelIDXType

This datatype is used for variables that represent a channel identifier. Possible values for this
datatype are provided by the symbolic constants TDDLL_CHA for identifying FlexRay channel A,
TDDLL_CHB for identifying FlexRay channel B and TDDLL_CHAB for identifying FlexRay channel A
and B.

3.2.10TDDLL_CycleType

This datatype is used for variables that are used to carry FlexRay cycle filtering information as the
cycle repetition value or the base cycle. The cycle repetition value states the period of a FlexRay
frame in units of communication cycles. The COMMSTACK provides cycle repetition values of
1,2,4,8,16,32,64 only.

The base cycle represents the offset in the cycle repetition interval. Allowed values for the base
cycle are 0 to (Repetition cycle value – 1).

3.2.11TDDLL_LengthType

This datatype is used for variables that represent FlexRay payload length information.

3.2.12TDDLL_BufferIDXType

This datatype is used for variables that represent a buffer index that maps to a
transmission/reception resource of a FlexRay controller.

Copyright DECOMSYS 2006. - 14 -

API Documentation

3.2.13TDDLL_TickType

This type is used for variables that represent time in units of FlexRay macroticks.

3.2.14TDDLL_TimeType

This type is used for variables that represent time in units of nanoseconds.

3.2.15TDDLL_Interrupt SourceType

This datatype is used for variables that are able to hold interrupt sources supported by the FlexRay
controller. The interrupt sources are identified using bitmasks enabling to combine several interrupt
sources into a single variable and operation.

Supported values for interrupt sources are described in the following table.

Value Description
TDDLL_BM_GLOBAL_INTERRUPT This bitmask identifies the global interrupt enable

switch for the FlexRay controller.

TDDLL_BM_ABSOLUTE_TIMER_INTERRUPT This bitmask identifies the FlexRay absolute timer
interrupt.

TDDLL_BM_RELATIVE_TIMER_INTERRUPT This bitmask identifies the FlexRay relative timer
interrupt.

TDDLL_BM_CYCLE_INTERRUPT This bitmask identifies the FlexRay cycle start
interrupt.

3.2.16TDDLL_POCStateType

This enumerator is used to represent the FlexRay controller POC state (see FlexRay specification
type T_POCState).

Value Description
TDDLL_POCSTATE_CONFIG The POC state of the FlexRay controller is CONFIG.

TDDLL_POCSTATE_DEFAULT_CONFIG The POC state of the FlexRay controller is
DEFAULT_CONFIG.

TDDLL_POCSTATE_HALT The POC state of the FlexRay controller is HALT.

TDDLL_POCSTATE_NORMAL_ACTIVE The POC state of the FlexRay controller is
NORMAL_ACTIVE.

TDDLL_POCSTATE_NORMAL_PASSIVE The POC state of the FlexRay controller is
NORMAL_PASSIVE.

TDDLL_POCSTATE_READY The POC state of the FlexRay controller is READY.

TDDLL_POCSTATE_STARTUP The POC state of the FlexRay controller is STARTUP.

TDDLL_POCSTATE_WAKEUP The POC state of the FlexRay controller is WAKEUP.

3.2.17TDDLL_SlotModeType

This enumerator is used to represent the FlexRay controller POC slot mode (see FlexRay
specification type T_SlotMode).

Copyright DECOMSYS 2006. - 15 -

API Documentation

Value Description
TDDLL_SLOTMODE_SINGLE The POC slot mode of the FlexRay controller is SINGLE.

TDDLL_SLOTMODE_ALL_PENDING The POC slot mode of the FlexRay controller is
ALL_PENDING.

TDDLL_SLOTMODE_ALL The POC slot mode of the FlexRay controller is ALL.

3.2.18TDDLL_ErrorModeType

This enumerator is used to represent the FlexRay controller POC error mode (see FlexRay
specification type T_ErrorMode).

Value Description
TDDLL_ERRORMODE_ACTIVE The error mode of the FlexRay controller POC is ACTIVE.

TDDLL_ERRORMODE_PASSIVE The error mode of the FlexRay controller POC is PASSIVE.

TDDLL_ERRORMODE_COMM_HALT The error mode of the FlexRay controller POC is
COMM_HALT.

3.2.19TDDLL_WakeupStatusType

This enumerator is used to represent the FlexRay controller wakeup status (see FlexRay
specification type T_WakeupStatus).

Value Description
TDDLL_WAKEUP_UNDEFINED The wakeup status is UNDEFINED.

TDDLL_WAKEUP_RECEIVED_HEADER The wakeup status is
RECEIVED_HEADER.

TDDLL_WAKEUP_RECEIVED_WUP The wakeup status is
RECEIVED_WUP.

TDDLL_WAKEUP_COLLISION_HEADER The wakeup status is
COLLISION_HEADER.

TDDLL_WAKEUP_COLLISION_WUP The wakeup status is
COLLISION_WUP.

TDDLL_WAKEUP_COLLISION_UNKNOWN The wakeup status is
COLLISION_UNKNOWN.

TDDLL_WAKEUP_TRANSMITTED The wakeup status is
TRANSMITTED.

3.2.20TDDLL_StartupStateType

This enumerator is used to represent the FlexRay controller startup substate (see FlexRay
specification type T_StartupState).

Value Description
TDDLL_STARTUP_UNDEFINED The startup substate is UNDEFINED.

TDDLL_STARTUP_COLDSTART_LISTEN The startup substate is
COLDSTART_LISTEN.

TDDLL_STARTUP_INTEGRATION_COLDSTART_CHE
CK

The startup substate is
COLDSTART_CHECK.

Copyright DECOMSYS 2006. - 16 -

API Documentation

TDDLL_STARTUP_COLDSTART_JOIN The startup substate is
COLDSTART_JOIN.

TDDLL_STARTUP_COLDSTART_COLLISION_RESOL
UTION

The startup substate is
COLDSTART_COLLISION_RESOLUTIO
N.

TDDLL_STARTUP_COLDSTART_CONSISTENCY_CHE
CK

The startup substate is
COLDSTART_CONSISTENCY_CHECK.

TDDLL_STARTUP_INTEGRATION_LISTEN The startup substate is
INTEGRATION_LISTEN.

TDDLL_STARTUP_INITIALIZE_SCHEDULE The startup substate is
INITIALIZE_SCHEDULE.

TDDLL_STARTUP_INTEGRATION_CONSISTENCY_C
HECK

The startup substate is
INTEGRATION_CONSISTENCY_CHECK
.

TDDLL_STARTUP_COLDSTART_GAP The startup substate is
COLDSTART_GAP.

3.3 Structure Data Types

3.3.1 TDDLL_POCStatusType

This compound datatype represents the FlexRay controller POC status (see FlexRay specification
type T_POCStatus).

This datatype is intended to be used at the COMMSTACK user API.

Member Description
TDDLL_POCStateType POCState This member holds the FlexRay controller POC state.

TDDLL_BooleanType Freeze This member shows whether the FlexRay POC has
entered the halt state due to an error condition.

TDDLL_BooleanType
CHIHaltRequest

This member shows whether a CHI halt request was
performed on the FlexRay controller.

TDDLL_BooleanType
ColdstartNoise

This member shows whether the FlexRay controller
startup mechanism completed under a noisy channel.

TDDLL_ErrorSlotModeType
SlotMode

This member holds the POC slot mode.

TDDLL_WakeupStatusType
WakeupStatus

This member holds the FlexRay controller wakeup status.

TDDLLStartupStateType
StartupState

This member holds the FlexRay controller startup state.

3.3.2 TDDLL_FrameDscType

This compound datatype holds the constant configuration data of a FlexRay frame that can be
transmitted/received by the user. Additionally buffers are configured by the same datatype because
all required information is stored within this datatype.

This datatype is usually created within the COMMSTACK.

Copyright DECOMSYS 2006. - 17 -

API Documentation

Member Description
void *pExtendedConfig This member is a pointer to an extended configuration

structure if this is necessary for the buffer configuration of
some vendor-specific FlexRay controller type. If no
extended configuration is required, this member must
contain NULL.

const TDDLL_QueueDscType
*pQueueDsc

This member is a pointer to a queue configuration
structure for the frame. If no queue is assigned to this
frame this member must contain NULL.

const TDDLL_PoolDscType
*pPoolDsc

This member is a pointer to the bufferpool configuration
structure of the bufferpool this frame is assigned to. If no
bufferpool is assigned to the frame this member must
contain NULL.

uint32 nFrameSig This member contains an unique FlexRay frame signature
that is built up by the following information (bitwise):

0-8: FlexRay controller index of the FlexRay frame.

9: Tx/Rx FlexRay frame.

10-20: FlexRay frame identifier.

21: FlexRay channel A usage.

22: FlexRay channel B usage.

23-25: Cycle repetition value.

26-31: Base cycle value.

uint32 nConfigFlags This member contains some buffer configuration flags that
are used for abstract buffer configuration (bitwise):

0-9: FlexRay controller buffer index.

10-16: Maximum payload length allowed for this buffer.

17: Transmission mode.

29-32: Not used.

uint16 nHeaderCRC CRC calculated for the header of the FlexRay frame.

NOTE: For obtaining a reference to data structures of this type of a dedicated frame the
COMMSTACK user API functions TDDLL_LookupTxFrame()/TDDLL_LookupRxFrame() should be
used.

3.3.3 TDDLL_QueueDscType

This compound datatype is used for the constant configuration data of software queue assigned to a
receive/transmit FlexRay frame. FlexRay frames assigned a queue to them can be
received/transmitted using API function TDDLL_RxFrameByIDQueued() /
TDDLL_TxFrameByIDQueued().
This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
uint16 nQueueMemoryIndex This member is an index into a memory assigned to the

Copyright DECOMSYS 2006. - 18 -

API Documentation

software queues. The memory area assigned to the queue
starts at this offset within the queue memory.

uint16 nPayloadLength This member holds the length of the maximum data
payload for this queue in units of 16bits.

uint16 nQueueLength This member holds the number of entries the queue can
store (increased by 1).

NOTE: The memory required by a queue (in units of sizeof(uint16) bytes) is calculated by
(2 + ((nPayloadLength + 1) * nQueueLength)).

3.3.4 TDDLL_PoolDscType

This compound datatype is used for the constant configuration of a transmit bufferpool. Transmit
frames of the dynamic FlexRay segment that are assigned to a bufferpool, share buffers among
other frames assigned to the same bufferpool. This can be useful for saving buffers when
transmitting frames with low frequency.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
const TDDLL_FrameDscType
*pPoolStart

This member points to an array of consecutive buffer
configurations assigned to the bufferpool.

uint16 nBuffer This member holds the number of buffers assigned to the
bufferpool.

uint16 nPoolAdminIndex This member is an index into an administrative memory
assigned to bufferpooling. The memory assigned to the
bufferpool starts at this offset within the pooled
administrative memory.

NOTE: The memory required by a pool (in units of sizeof(TDDLL_FrameDscType*) bytes) is equal
to the number of buffers assigned to that pool.

3.3.5 TDDLL_CtrlDscType

This compound datatype contains the FlexRay controller global configuration data.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
Const TDDLL_FrameDscType
*pBufferList

This member holds a pointer to an array of configuration
structures for initial configuration of all buffers of this
FlexRay controller.

const void* pCHICommands This member holds a pointer to an array of configuration
structures for initial generic register initialization of this
FlexRay controller. The type of the structure is defined by
the vendor-specific type of the FlexRay controller
(TDDLL_CHI_MFR4200_CommandType
/TDDLL_CHI_ERAY10_CommandType).

uint32 nFactorTicks

Copyright DECOMSYS 2006. - 19 -

API Documentation

uint32 nFactorTime
uint16 nBuffer This member holds the number of buffers within the array

the member pBufferList points to.

uint16 nComands This member holds the number of registers within the
array the member pCHICommands points to.

3.3.6 TDDLL_ConfigType

This compound datatype holds the global COMMSTACK root configuration.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
const TDDLL_FrameDscType
*(*pFrameLookupFct)(uint32)

This member holds a pointer to a lookup
function that returns a pointer to a frame
description structure by passing a frame
signature.

const TDDLL_FrameDscType *const*
pFrameList

This member holds a pointer to an array of
pointers to frame description structures.

const TDDLL_CtrlDscType
*pCtrlTypeList[TDDLL_NUM_CTRL_TYPES]

This member is an array of pointers each entry
pointing to an array of vendor-specific
controller description structures of type
TDDLL_CtrlDscType.

uint16 nNumFrames This member holds the number of frames in
array pointed to by member pFrameList.

TDDLL_CtrlIDXType
nNumCtrlType[TDDLL_NUM_CTRL_TYPES]

This member is an array that holds the
numbers of FlexRay controllers per vendor-
specific FlexRay controller type.

3.3.7 TDDLL_APIListType

This compound datatype holds the vendor-specific FlexRay controller API function implementations.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
TDDLL_ReturnType (*pCtrlInit)
(TDDLL_CtrlIDXType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_CtrlInit().

TDDLL_ReturnType (*pCheckCtrl)
(TDDLL_CtrlIDXType)

This member holds a pointer to a vendor-specific
implementation of the non API function
TDDLL_CheckCtrl().

TDDLL_ReturnType (*pConfigBuffer)
(TDDLL_CtrlIDXType,
TDDLL_BufferIDXType,
const TDDLL_FrameDcsType *)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_ConfigBuffer().

TDDLL_CtrlStateType
(*pDoCtrlTransition)
(TDDLL_CtrlIDXType,

This member holds a pointer to a vendor-specific
implementation of the API function

Copyright DECOMSYS 2006. - 20 -

API Documentation

TDDLL_CtrlTransitionType) TDDLL_DoCtrlTransition().

TDDLL_CtrlStateType
(*pGetCtrlState)
(TDDLL_CtrlIDXType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_GetCtrlState().

TDDLL_ReturnType (*pRxFrameByID)
(TDDLL_CtrlIDXType,
TDDLL_FrameDscRefIDXType,
void *,
TDDLL_LengthType,
TDDLL_LengthType *)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_RxFrameByID().

TDDLL_ReturnType (*pTxFrameByID)
(TDDLL_CtrlIDXType,
TDDLL_FrameDscRefIDXType
const void *,
TDDLL_LengthType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_TxFrameByID().

TDDLL_ReturnType (*pGetTime)
(TDDLL_CtrlIDXType,
TDDLL_TickType *,
TDDLL_CycleType *)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_GetTime().

TDDLL_ReturnType
(*pGetCycleLength)
(TDDLL_CtrlIDXType,
TDDLL_TickType *)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_GetCycleLength().

void (*pInterruptResetStatus)
(TDDLL_CtrlIDXType,
TDDLL_InterruptSrcType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_InterruptResetStatus().

void (*pInterruptEnable)
(TDDLL_CtrlIDXType,
TDDLL_InterruptSrcType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_InterruptEnable().

void (*pInterruptDisable)
(TDDLL_CtrlIDXType,
TDDLL_InterruptSrcType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_InterruptDisable().

TDDLL_InterruptSrcType
(*pInterruptStatus)
(TDDLL_CtrlIDXType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_InterruptStatus().

TDDLL_ReturnType (*pGetPOCStatus)
(TDDLL_CtrlIDXType,
TDDLL_POCStatusType *)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_GetPOCStatus().

TDDLL_ReturnType
(*pCheckTxFrameByID)
(TDDLL_CtrlIDXType,
TDDLL_FrameDscRefIDXType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_CheckTxFrameByID().

TDDLL_ReturnType
(*pCheckTxFrameByID)
(TDDLL_CtrlIDXType,
TDDLL_FrameDscRefIDXType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_CheckTxFrameByIDPtr().

TDDLL_ReturnType
(*pAbortTxFrameByID)
(TDDLL_CtrlIDXType,
TDDLL_FrameDscRefIDXType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_AbortTxFrameByID().

Copyright DECOMSYS 2006. - 21 -

API Documentation

TDDLL_ReturnType (*pSetTimerAbs)
(TDDLL_CtrlIDXType,
TDDLL_TickType, uint8, uint8)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_SetTimerAbs().

TDDLL_ReturnType (*pSetTimerRel)
(TDDLL_CtrlIDXType,
TDDLL_TickType)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_SetTimerRel().

TDDLL_ReturnType (*pRxFIFOFrame)
(TDDLL_CtrlIDXType,
TDDLL_FrameIDType *,
TDDLL_ChannelIDXType *,
TDDLL_CycleType *,
void *,
TDDLL_LengthType,TDDLL_LengthType
*)

This member holds a pointer to a vendor-specific
implementation of the API function
TDDLL_RxFIFOFrame().

3.3.8 TDDLL_CtrlMappingType

This compound datatype contains a mapping from a generic FlexRay controller to a vendor-specific
FlexRay controller implementation.

At the COMMSTACK user API an index into an array based on this datatype is required to access a
generic FlexRay controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
TDDLL_CtrlTypesType
nCtrlType

This member holds the vendor-specific FlexRay controller
implementation.

TDDLL_CtrlIDXType
nDeviceListIndex

This member holds the index within the vendor-specific
FlexRay controller list of this generic FlexRay controller.

NOTE: An entry of this type refers to a vendor-specific FlexRay controller list entry of a list of the
type TDDLL_ERAY10_CtrlListType or TDDLL_MFR4200_CtrlListType or
TDDLL_MFR4300_CtrlListType .

3.4 Basic Constants
Basic constants are constants that are used by the COMMSTACK but are usually defined outside
the COMMSTACK.

If these datatypes do not exist, the COMMSTACK porter must define them for a proper
COMMSTACK operation.

3.4.1 NULL

This constant should represent a pointer to an invalid memory location – in most cases 0. The
COMMSTACK uses NULL for checking arguments for validity and optional (not used) configuration
options.

Copyright DECOMSYS 2006. - 22 -

API Documentation

3.5 Initialization & Configuration Services
Functions in this chapter are required for proper COMMSTACK initialization and configuration
procedure before invoking any FlexRay operational functionality.

3.5.1 TDDLL_Init()

3.5.1.1 Synopsis

TDDLL_ReturnType TDDLL_Init(void)

3.5.1.2 Semantics

This function initializes the COMMSTACK and checks all connected FlexRay controllers for
availability. Initially the COMMSTACK FlexRay controller states are set to the following states
depending on the detected state of the FlexRay controllers:

State Condition
TDDLL_S_CTRL_NOT_AVAILABLE There was an error while accessing the FlexRay controller.

The device is not available for further the COMMSTACK
operations.

TDDLL_S_OFF The FlexRay controller was detected successfully and it is
not synchronized to any FlexRay cluster.

TDDLL_S_ON The FlexRay controller was detected successfully and it is
synchronized to a FlexRay cluster.

3.5.1.3 Parameters

None.

3.5.1.4 Return Values

Value Description
TDDLL_E_OK The COMMSTACK initialization was successfully performed.

3.5.2 TDDLL_GetNumCtrl()

3.5.2.1 Synopsis

TDDLL_CtrlIDXType TDDLL_GetNumCtrl(void)

3.5.2.2 Semantics

This function returns the number of FlexRay controllers the COMMSTACK has access to.

3.5.2.3 Parameters

None.

3.5.2.4 Return Values

Value Description
value Number of FlexRay controller the COMMSTACK is configured to

own.

Copyright DECOMSYS 2006. - 23 -

API Documentation

3.5.3 TDDLL_SetConfig()

3.5.3.1 Synopsis

const TDDLL_ConfigType* TDDLL_SetConfig(
const TDDLL_ConfigType* pNewConfig
)

3.5.3.2 Semantics

This function sets a new configuration to be active. The new configuration is set immediately after
the function call without any delay.

3.5.3.3 Parameters

Value Description
pNewConfig Pointer to a COMMSTACK configuration root entry.

3.5.3.4 Return Values

Value Description
value Address of the previously active configuration root entry.

3.5.4 TDDLL_CtrlInit()

3.5.4.1 Synopsis

TDDLL_ReturnType TDDLL_CtrlInit(
TDDLL_CtrlIDXType nCtrlIDX
)

3.5.4.2 Semantics

This function initializes the registers and all buffers of a FlexRay controller passed as argument
according to the current active COMMSTACK configuration data.

NOTE: This function must be called in COMMSTACK controller state TDDLL_S_CONFIG only.
Otherwise TDDLL_E_BAD_CONFIG is returned.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_CtrlInit_Static() can be called
instead of TDDLL_CtrlInit() which consumes less runtime, by saving one function call overhead.

3.5.4.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index this function should be performed

on.

3.5.4.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_BAD_CONFIG Some precondition for initializing the FlexRay communication
Copyright DECOMSYS 2006. - 24 -

API Documentation

controller is not met.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

3.5.5 TDDLL_ConfigBuffer()

3.5.5.1 Synopsis

TDDLL_ReturnType TDDLL_ConfigBuffer(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_BufferIDXType nBufferID,
const TDDLL_FrameDscType *pBufferDsc
)

3.5.5.2 Semantics

This function initializes a FlexRay buffer with a FlexRay buffer configuration of a dedicated FlexRay
controller, with all parameters passed as arguments.

NOTES:

 This function must be called in COMMSTACK controller states TDDLL_S_CONFIG,
TDDLL_S_OFF, TDDLL_S_ON or TDDLL_S_ONLINE only. Otherwise
TDDLL_E_BAD_CONFIG is returned.

 The buffer configuration during COMMSTACK FlexRay controller states TDDLL_S_OFF,
TDDLL_S_ON and TDDLL_S_ONLINE strongly depend on hardware facilities. If some
reconfiguration option is not possible at the current COMMSTACK state because of some
hardware restrictions TDDLL_E_BAD_CONFIG is returned.

HINT: If the argument nCtrlIDX and pBufferDsc are ensured to be constant,
TDDLLConfigBuffer_Static() can be called instead of TDDLL_ConfigBuffer(), which consumes less
runtime, by saving one function call overhead.

3.5.5.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nBufferID The FlexRay controller buffer index this function should be
performed on.

pBufferDsc The FlexRay buffer configuration that should be used by this
function.

3.5.5.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_BAD_CONFIG Some precondition for initializing the FlexRay communication
buffer is not met.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay

Copyright DECOMSYS 2006. - 25 -

API Documentation

communication controller.

3.5.6 TDDLL_ConfigAllBuffers()

3.5.6.1 Synopsis

TDDLL_ReturnType TDDLL_ConfigAllBuffers(
TDDLL_CtrlIDXType nCtrlIDX
)

3.5.6.2 Semantics

This function initializes all FlexRay buffers according to the current active COMMSTACK
configuration.

NOTES:

 This function must be called in COMMSTACK controller states TDDLL_S_CONFIG,
TDDLL_S_OFF, TDDLL_S_ON or TDDLL_S_ONLINE only. Otherwise
TDDLL_E_BAD_CONFIG is returned.

 The buffer configuration during COMMSTACK FlexRay controller states TDDLL_S_OFF,
TDDLL_S_ON and TDDLL_S_ONLINE strongly depend on hardware facilities. If some
reconfiguration option is not possible at the current COMMSTACK state because of some
hardware restrictions TDDLL_E_BAD_CONFIG is returned.

3.5.6.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

3.5.6.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_BAD_CONFIG Some precondition for initializing the FlexRay communication
buffer is not met.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

3.6 Status Information Services
Functions within this chapter are required for reading and activating the states of the COMMSTACK
FlexRay controller states and the FlexRay controller states as provided by the hardware.

Copyright DECOMSYS 2006. - 26 -

API Documentation

3.6.1 TDDLL_IsSync()

3.6.1.1 Synopsis

TDDLL_BooleanType TDDLL_IsSync(
TDDLL_CtrlIDXType nCtrlIDX
)

3.6.1.2 Semantics

This function returns whether the given controller is synchronized to a cluster or not.

NOTES: In case of any error while accessing the device this function returns TDDLL_FALSE.

3.6.1.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

3.6.1.4 Return Values

Value Description
TDDLL_TRUE The FlexRay controller is synchronized to a FlexRay cluster.

TDDLL_FALSE The FlexRay controller is not synchronized to a FlexRay cluster.

3.6.2 TDDLL_GetCtrlState()

3.6.2.1 Synopsis

TDDLL_CtrlStateType TDDLL_GetCtrlState(
TDDLL_CtrlIDXType nCtrlIDX
)

3.6.2.2 Semantics

This function returns the current active COMMSTACK FlexRay controller state.

NOTE: This function actually evaluates the current COMMSTACK state by requesting the FlexRay
controller state. So this function is able to perform automatic state transitions as described in the
state diagram.

HINT: the argument nCtrlIDX is ensured to be constant, TDDLL_GetCtrlState_Static() can be called
instead of TDDLL_GetCtrlState() which consumes less runtime, by saving one function call
overhead.

3.6.2.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

3.6.2.4 Return Values

Value Description

Copyright DECOMSYS 2006. - 27 -

API Documentation

state The actual COMMSTACK FlexRay controller state. See chapter
3.2.3 for possible values.

3.6.3 TDDLL_DoCtrlTransition()

3.6.3.1 Synopsis

TDDLL_CtrlStateType TDDLL_DoCtrlTransition(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_CtrlTransitionType nTransition
)

3.6.3.2 Semantics

This function triggers a COMMSTACK controller state machine transition and returns the current
active COMMSTACK FlexRay controller state after triggering the transition.

NOTES:

 This function actually evaluates the current COMMSTACK state by requesting the FlexRay
controller state. So this function is able to perform automatic state transitions as described in the
state diagram before triggering the requested.

 If a requested transition is not allowed in the current COMMSTACK FlexRay controller state, the
state machine doesn’t leave its current state.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_DoCtrlTranistion_Static() can be
called instead of TDDLL_DoCtrlTransition() which consumes less runtime, by saving one function
call overhead.

3.6.3.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nTransition The transition that should be triggered. See chapter 3.2.4 for
possible values.

3.6.3.4 Return Values

Value Description
state The actual COMMSTACK FlexRay controller state. See chapter

3.2.3 for possible values.

3.6.4 TDDLL_GetPOCStatus()

3.6.4.1 Synopsis

TDDLL_ReturnType TDDLL_GetPOCStatus(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_POCStatusType *pStatus
)

Copyright DECOMSYS 2006. - 28 -

API Documentation

3.6.4.2 Semantics

This function returns the actual POC status as defined by the FlexRay specification of the requested
FlexRay controller.

NOTES:

 It is always ensured that every element of the status structure will be written in case of positive
return code. In case of a negative return code the status structure is not ensured to be
consistent and must not be used therefore.

 FlexRay controllers that are not 100% compatible with the POC-status definition here, will map
their internal states to this type with the closest meaning states. In this case not all states will be
used.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_GetPOCStatus_Static() can be
called instead of TDDLL_GetPOCStatus() which consumes less runtime, by saving one function call
overhead.

3.6.4.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

pStatus Address the current POC status is written to.

3.6.4.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

3.7 Transmission Services
The transmission services mentioned in this chapter are required to perform a transmission on the
FlexRay network.

3.7.1 TDDLL_LookupTxFame()

3.7.1.1 Synopsis

TDDLL_FrameDscRefIDXType TDDLL_LookupTxFrame(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameIDType nFrameID,
TDDLL_ChannelIDXType nChannel,
TDDLL_CycleType nRepCycle,
TDDLL_CycleType nBaseCycle
)

Copyright DECOMSYS 2006. - 29 -

API Documentation

3.7.1.2 Semantics

This function returns a unique ID of the reception frame description structure identified by the
arguments given.

NOTE: The parameters given to this function must be constant expressions.

3.7.1.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameID The FlexRay frame identifier of the frame.

nChannel The FlexRay channel of the frame.

nRepCycle The cycle repetition value of the frame.

nBaseCycle The base cycle of the frame.

3.7.1.4 Return Values

Value Description
value Unique identifier of the frame description structure of the

transmission frame identified by the given arguments.

3.7.2 TDDLL_TX_FRAME_TRIGGERING ()

3.7.2.1 Synopsis

TDDLL_FrameDscRefIDXType TDDLL_TX_FRAME_TRIGGERING (
FrameTriggeringName
)

3.7.2.2 Semantics

This function returns a unique ID of the reception frame description structure identified by frame
triggering name given as argument.

NOTE: This is a function-like macro the argument has to be a string that maps exactly a frame-
triggering name as specified in the communication model.

3.7.2.3 Parameters

Value Description
FrameTriggeringName Name of the frame triggering to transmit.

3.7.2.4 Return Values

Value Description
Value Unique identifier of the frame description structure of the

transmission frame identified by the given arguments.

Copyright DECOMSYS 2006. - 30 -

API Documentation

3.7.3 TDDLL_TxFrameByID()

3.7.3.1 Synopsis

TDDLL_ReturnType TDDLL_TxFrameByID(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX,
const void *pData,
TDDLL_LengthType nLength
)

3.7.3.2 Semantics

This function transmits the payload data given within a particular FlexRay frame on a distinct
FlexRay controller. All parameters are passed as arguments. A transmission is carried out in
FlexRay controller state TDDLL_E_ONLINE only.

NOTES:

 There is always an even number of bytes transmitted on the FlexRay bus. If the payload length
nLength is odd, one byte extends the payload transmitted on the FlexRay bus. This byte stuffed
is set to TDDLL_PAYLOAD_PADDING_PATTERN.

 If a frame belongs to the static FlexRay segment, the payload length must be smaller than or
equal to the static payload length of the cluster configuration. In case the payload length passed
at the API is smaller than the static payload length of the cluster, the frame is filled with
TDDLL_PAYLOAD_PADDING_PATTERN up to the static payload length in case
TDDLL_STATIC_PAYLOAD_PADDING_PATTERN_SWITCH is defined. If
TDDLL_STATIC_PAYLOAD_PADDING_PATTERN_SWITCH is not defined, the frame is filled
with random data up to the static payload length. If a frame belongs to the dynamic FlexRay
segment, the payload length must not exceed the maximum payload length this distinct frame
was configured to.

 The data bytes are transmitted on the bus in the same order, as the bytes are located in
memory. The byte at address pData is transmitted first on the bus, the byte at pData + 1
second, and so on.

 There is no alignment restriction required for the data location pointed to by pData.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_TxFrameByID_Static() can be
called instead of TDDLL_TxFrameByID() which consumes less runtime, by saving one function call
overhead.

3.7.3.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame to be transmitted.

PData Pointer to the payload data to be transmitted within the frame.

nLength Length of the payload data in units of bytes to be transmitted.

In the static segment the number of bytes to be transmitted must
match the FlexRay static segment payload length of the cluster.

In the dynamic segment the payload length must not exceed the
maximum payload length the FlexRay controller is able to

Copyright DECOMSYS 2006. - 31 -

API Documentation

transmit with the buffer assigned to this frame.

Otherwise TDDLL_E_INVALID_IDX will be returned on both
cases.

3.7.3.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

TDDLL_E_OVERFLOW No resource for frame transmission (buffer) within the FlexRay
controller is available.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

3.7.4 TDDLL_CheckTxFrameByID()

3.7.4.1 Synopsis

TDDLL_ReturnType TDDLL_CheckTxFrameByID(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX
)

3.7.4.2 Semantics

This function checks whether a previously performed transmission request (see chapter 3.7.2) has
been already executed by the FlexRay controller or not. This operation is carried out in FlexRay
controller state TDDLL_E_ONLINE only.

NOTE: In case there was no frame requested for transmission before, TDDLL_E_OK is returned.

HINTS:

 In case of buffer pooling the buffer reserved for a frame transmission is released with this
function call if the frame was already delivered to the network.

 If the argument nCtrlIDX is ensured to be constant, TDDLL_CheckTxFrameByID_Static() can be
called instead of TDDLL_CheckTxFrameByID() which consumes less runtime, by saving one
function call overhead.

3.7.4.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame to be checked for
transmission.

Copyright DECOMSYS 2006. - 32 -

API Documentation

3.7.4.4 Return Values

Value Description
TDDLL_E_OK The frame has been transmitted.

TDDLL_E_TX_PENDING The frame is still pending for transmission.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

TDDLL_E_ACCESS Accessing the FlexRay CC failed.

3.7.5 TDDLL_AbortTxFrameByID()

3.7.5.1 Synopsis

TDDLL_ReturnType TDDLL_AbortTxFrameByID(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX
)

3.7.5.2 Semantics

This function aborts a previously performed transmission request (see chapter 3.7.2). This operation
is carried out in FlexRay controller state TDDLL_E_ONLINE only.

NOTES:

 In case the particular FlexRay controller used doesn’t support to abort a transmission request,
TDDLL_E_ACCESS is returned.

 In case there was no frame pending for transmission, TDDLL_E_OK is returned.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_AbortTxFrameByID_Static() can
be called instead of TDDLL_AbortTxFrameByID() which consumes less runtime, by saving one
function call overhead.

3.7.5.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame the transmission request
should be aborted of.

3.7.5.4 Return Values

Value Description
TDDLL_E_OK The frame has been transmitted.

TDDLL_E_ACCESS Error accessing the FlexRay controller (operation not permitted).

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

Copyright DECOMSYS 2006. - 33 -

API Documentation

3.7.6 TDDLL_FreeBufferPool()

3.7.6.1 Synopsis

TDDLL_ReturnType TDDLL_FreeBufferPool()

3.7.6.2 Semantics

This function releases buffers that were dynamically assigned for transmission but are not in use any
more and puts them back into the pool of available buffers. This function must be called periodically
if buffer pooling was selected during buffer assignment (alternatively
TDDLL_CheckTxFrameByID(), see chapter 3.7.4 can be called).

NOTE: This function should be called periodically in case buffer pooling is used to ensure buffers
are released from their temporary reservation (Alternatively TDDLL_CheckTxFrameByID() can be
used for this job).

3.7.6.3 Parameters

None.

3.7.6.4 Return Values

Value Description
Value Number of buffers that were freed to be available again.

3.8 Reception Services
The reception services mentioned in this chapter are required to perform a receive operations on the
FlexRay network.

3.8.1 TDDLL_LookupRxFrame()

3.8.1.1 Synopsis

TDDLL_FrameDscRefIDXType TDDLL_LookupRxFrame(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameIDType nFrameID,
TDDLL_ChannelIDXType nChannel,
TDDLL_CycleType nRepCycle,
TDDLL_CycleType nBaseCycle
)

3.8.1.2 Semantics

This function returns a unique ID of the reception frame description structure identified by the
arguments given.

NOTE: The parameters given to this function must be constant expressions.

3.8.1.3 Parameters

Value Description

Copyright DECOMSYS 2006. - 34 -

API Documentation

nCtrlIDX The FlexRay controller index of the controller this function should
be performed on.

nFrameID The FlexRay frame identifier of the frame.

nChannel The FlexRay channel of the frame.

nRepCycle The cycle repetition value of the frame.

nBaseCycle The base cycle of the frame.

3.8.1.4 Return Values

Value Description
Value Unique identifier of the frame description structure of the

reception frame identified by the given arguments.

3.8.2 TDDLL_RX_FRAME_TRIGGERING ()

3.8.2.1 Synopsis

TDDLL_FrameDscRefIDXType TDDLL_RX_FRAME_TRIGGERING (
FrameTriggeringName
)

3.8.2.2 Semantics

This function returns a unique ID of the reception frame description structure identified by frame
triggering name given as argument.

NOTE: This is a function-like macro. The argument has to be a string that maps exactly a frame-
triggering name as specified in the communication model.

3.8.2.3 Parameters

Value Description
FrameTriggeringName Name of the frame triggering to receive.

3.8.2.4 Return Values

Value Description
value Unique identifier of the frame description structure of the

transmission frame identified by the given arguments.

3.8.3 TDDLL_RxFrameByID()

3.8.3.1 Synopsis

TDDLL_ReturnType TDDLL_RxFrameByID(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX,
const void *pData,
TDDLL_LengthType nRxBufferLength,
TDDLL_LengthType *pnReceivedLength

Copyright DECOMSYS 2006. - 35 -

API Documentation

)

3.8.3.2 Semantics

This function receives a particular FlexRay frame on a distinct FlexRay controller. A reception is
carried out in FlexRay controller state TDDLL_E_ONLINE only.

NOTES:

 Only syntactically valid frames containing data are received with this API function.

 The data bytes are stored in memory in the same order the bytes were received on the FlexRay
bus. The byte at address pData was received first on the bus, the byte at pData + 1 second, and
so on.

 There is no alignment restriction required for the data location pointed to by pData.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_RxFrameByID_Static() can be
called instead of TDDLL_RxFrameByID() which consumes less runtime, by saving one function call
overhead.

3.8.3.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame to be received.

pData Pointer the payload data received is written to.

nRxBufferLength Length of the buffer pData points to in units of bytes. There is
never more payload written to pData than specified by
nRxBufferLength.

pnReceivedLength Length of the payload actually received in units of bytes. If there
are more bytes received than the buffer is able to store
(nRxBufferLength), the payload data is truncated and the
truncated part is lost.

3.8.3.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

TDDLL_E_UNDERFLOW No valid frame was received.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

3.8.4 TDDLL_RxFIFOFrameByID()

3.8.4.1 Synopsis

TDDLL_ReturnType TDDLL_RxFIFOFrameByID(
TDDLL_CtrlIDXType nCtrlIDX,

Copyright DECOMSYS 2006. - 36 -

API Documentation

TDDLL_FrameIDType *pnFrameID,
TDDLL_ChannelIDXType *pnChannel,
TDDLL_CycleType *pnCycle,
void *pData,
TDDLL_LengthType * nRxBufferLength,
TDDLL_LengthType * pnReceivedLength
)

3.8.4.2 Semantics

This function fetches a frame from the FlexRay controller receive FIFO. A reception is carried out in
FlexRay controller state TDDLL_E_ONLINE only.

NOTES:

 Only syntactically valid frames containing data are received with this API function.

 The data bytes are stored in memory in the same order the bytes were received on the FlexRay
bus.The byte at address pData was received first on the bus, the byte at pData + 1 second, and
so on.

 There is no alignment restriction required for the data location pointed to by pData.

HINT: If the arguments nCtrlIDX and pFrameDsc are ensured to be constant,
TDDLL_RxFIFOFrame_Static() can be called instead of TDDLL_RxFIFOFrame() which consumes
less runtime, by saving one function call overhead.

3.8.4.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

pnFrameID Pointer to a storage location the frame identifier of the received
frame is written to.

pnChannel Pointer to a storage location the channel the frame was received
on is written to.

pnCycle Pointer to a storage location the cycle value the frame was
received in is written to.

pData Pointer the payload data received is written to.

nRxBufferLength Length of the buffer pData points to in units of bytes. There is
never more payload written to pData than specified by
nRxBufferLength.

pnReceivedLength Length of the payload actually received in units of bytes. If there
are more bytes received than the buffer is able to store
(nRxBufferLength), the payload data is truncated and the
truncated part lost.

3.8.4.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

Copyright DECOMSYS 2006. - 37 -

API Documentation

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

TDDLL_E_UNDERFLOW No valid frame was received by the FIFO.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

3.9 Queue Services
The queuing services can be used to decouple the strict synchronous access to the FlexRay
controllers from the applications by introducing software queues. The access functions to the
FlexRay controller via these software queues are described within this chapter.

3.9.1 TDDLL_FlushTxQueue()

3.9.1.1 Synopsis

TDDLL_ReturnType TDDLL_TxFrameByIDQueued(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX
)

3.9.1.2 Semantics

This function takes a frame out of a software queue and transmits it on a FlexRay controller. The
frame is put into the software queue with the function TDDLL_TxFrameByIDQueued() (see
chapter 3.9.3). This operation is carried out in FlexRay controller state TDDLL_E_ONLINE only.

3.9.1.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX unique ID that identifies the frame to be transmitted.

3.9.1.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

TDDLL_E_UNDERFLOW The queue is empty.

TDDLL_E_OVERFLOW The communication controller transmission resource (buffer) is
busy.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

Copyright DECOMSYS 2006. - 38 -

API Documentation

3.9.2 TDDLL_FillRxQueue()

3.9.2.1 Synopsis

TDDLL_ReturnType TDDLL_FillRxQueue (
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX
)

3.9.2.2 Semantics

This function received a frame from a FlexRay controller and puts it into a software queue. The
frame is fetched from the software queue with the function TDDLL_RxFrameByIDQueued() (see
chapter 3.9.4). This operation is carried out in FlexRay controller state TDDLL_E_ONLINE only.

3.9.2.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame to be received.

3.9.2.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

TDDLL_E_UNDERFLOW The FlexRay controller received no frame.

TDDLL_E_OVERFLOW The software queue is already filled.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

3.9.3 TDDLL_TxFrameByIDQueued()

3.9.3.1 Synopsis

TDDLL_ReturnType TDDLL_TxFrameByIDQueued(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX,
const void *pData,
TDDLL_LengthType nLength
)

Copyright DECOMSYS 2006. - 39 -

API Documentation

3.9.3.2 Semantics

This function puts payload data into a distinct frames software queue for transmission. The frame is
transmitted out of the software queue with the function TDDLL_FlushTxQueue() (see chapter
3.9.1). This operation is carried out in FlexRay controller state TDDLL_E_ONLINE only.

NOTES:

 There is always an even number of bytes transmitted on the FlexRay bus. If the payload length
nLength is odd, one byte extends the payload transmitted on the FlexRay bus. This byte stuffed
is set to TDDLL_PAYLOAD_PADDING_PATTERN.

 If a frame belongs to the static FlexRay segment, the payload length must be smaller than or
equal to the static payload length of the cluster configuration. In case the payload length passed
at the API is smaller than the static payload length of the cluster, the frame is filled with
TDDLL_PAYLOAD_PADDING_PATTERN up to the static payload length in case
TDDLL_STATIC_PAYLOAD_PADDING_PATTERN_SWITCH is defined. If
TDDLL_STATIC_PAYLOAD_PADDING_PATTERN_SWITCH is not defined, the frame is filled
with random data up to the static payload length. If a frame belongs to the dynamic FlexRay
segment, the payload length must not exceed the maximum payload length this distinct frame
was configured to.

 The data bytes are transmitted on the bus in the same order, as the bytes are located in
memory. The byte at address pData is transmitted first on the bus, the byte at pData + 1
second, and so on.

 There is no alignment restriction required for the data location pointed to by pData.

3.9.3.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame to be transmitted.

pData Pointer to the payload data to be transmitted within the frame.

nLength Length of the payload data in units of bytes to be transmitted.

3.9.3.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_OVERFLOW The queue is full.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

3.9.4 TDDLL_RxFrameByIDQueued()

3.9.4.1 Synopsis

TDDLL_ReturnType TDDLL_RxFrameByIDQueued(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX,
const void *pData,

Copyright DECOMSYS 2006. - 40 -

API Documentation

TDDLL_LengthType nRxBufferLength,
TDDLL_LengthType *pnReceivedLength
)

3.9.4.2 Semantics

This function receives a particular FlexRay frame out of a software queue. A reception is carried out
in FlexRay controller state TDDLL_E_ONLINE only. The frame is put into the software queue by
TDDLL_FillRxQueue().

NOTES:

 Only syntactically valid frames containing data are received with this API function.

 The data bytes are stored in memory in the same order the bytes were received on the FlexRay
bus.The byte at address pData was received first on the bus, the byte at pData + 1 second, and
so on.

 There is no alignment restriction required for the data location pointed to by pData.

3.9.4.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame to be received.

PData Pointer the payload data received is written to.

nRxBufferLength Length of the buffer pData points to in units of bytes. There is
never more payload written to pData than specified by
nRxBufferLength.

pnReceivedLength Length of the payload actually received in units of bytes. If there
are more bytes received than the buffer is able to store
(nRxBufferLength), the payload data is truncated and the
truncated part is lost.

3.9.4.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_UNDERFLOW The software queue is empty.

TDDLL_E_OFFLINE The COMMSTACK FlexRay controller state is not
TDDLL_E_ONLINE.

3.9.5 TDDLL_EmptyQueue()

3.9.5.1 Synopsis

TDDLL_ReturnType TDDLL_EmptyQueue (
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX
)

Copyright DECOMSYS 2006. - 41 -

API Documentation

3.9.5.2 Semantics

This function discards all entries from a software queue.

3.9.5.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame, whose queue entries should
be discarded.

3.9.5.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

3.10Time Services
Time services are used for reading time information out of the FlexRay controller configuration and
actual state.

3.10.1TDDLL_GetTime()

3.10.1.1Synopsis

TDDLL_ReturnType TDDLL_GetTime (
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_TickType *pClusterTime,
TDDLL_CycleType *pCommCycle
)

3.10.1.2Semantics

This function reads the actual time of the cluster a dedicated FlexRay controller is synchronized to.

NOTE: If some value different from TDDLL_E_OK is retuned, the output parameters pClusterTime
and pCommCycle are not written but left in their previous state.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_GetTime_Static() can be called
instead of TDDLL_GetTime() which consumes less runtime, by saving one function call overhead.

3.10.1.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

pClusterTime Pointer to a storage location the current communication cycle
offset in units of macroticks is written to.

pCommCycle Pointer to a storage location the current communication cycle
value is written to.

Copyright DECOMSYS 2006. - 42 -

API Documentation

3.10.1.4Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_NOT_SYNC The FlexRay controller is not synchronized to the cluster.

3.10.2TDDLL_GetCycleLength()

3.10.2.1Synopsis

TDDLL_ReturnType TDDLL_GetCycleLength (
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_TickType *pCommCycleLength
)

3.10.2.2Semantics

This function returns the actual communication cycle length a FlexRay controller has configured.

NOTE: If some value different from TDDLL_E_OK is retuned, the output parameter
pCommCycleLength is not written but left in its previous state.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_GetCycleLength_Static() can be
called instead of TDDLL_GetCycleLength() which consumes less runtime, by saving one function
call overhead.

3.10.2.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

pCommCycleLength Pointer to a storage location the current communication cycle
length in units of macroticks is written to.

3.10.2.4Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

3.10.3TDDLL_NSToMacroticks()

3.10.3.1Synopsis

TDDLL_TickType TDDLL_NSToMacroticks (
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_TimeType nTime
)

Copyright DECOMSYS 2006. - 43 -

API Documentation

3.10.3.2Semantics

This function calculates time in units of nanoseconds into time in units of macroticks (as configured
for a dedicated FlexRay controller).

NOTE: Please be aware that the value range of both units – macroticks and nanoseconds are
limited by the ranges of their datatypes. This function doesn’t check for occurring calculation
overflows!

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_NSToMacroticks_Static() can be
called instead of TDDLL_NSToMacroticks() which consumes less runtime, by saving one function
call overhead.

3.10.3.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nTime Time in units of nanoseconds.

3.10.3.4Return Values

Value Description
Value Time in units of macroticks.

3.10.4TDDLL_MacroticksToNS()

3.10.4.1Synopsis

TDDLL_TimeType TDDLL_MacroticksToNS (
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_TickType nTick
)

3.10.4.2Semantics

This function calculates time in units of macroticks into time in units of nanoseconds (as configured
for a dedicated FlexRay controller).

NOTE: Please be aware that the value range of both units – macroticks and nanoseconds are
limited by the ranges of their datatypes. This function doesn’t check for occurring calculation
overflows!

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_MacroticksToNS_Static() can be
called instead of TDDLL_MacroticksToNS() which consumes less runtime, by saving one function
call overhead.

3.10.4.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nTick Time in units of macroticks.

Copyright DECOMSYS 2006. - 44 -

API Documentation

3.10.4.4Return Values

Value Description
value Time in units of nanoseconds.

3.11Timer & Interrupt Services
The timer and interrupts services are required for configuring and administrating the FlexRay
controller’s interrupt resources.

3.11.1TDDLL_InterruptEnable()

3.11.1.1Synopsis

void TDDLL_InterruptEnable(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_InterruptSrcType nIntSrc
)

3.11.1.2Semantics

This function enables the interrupts selected by the sources passed as arguments.

NOTES:

 The global interrupt source TDDLL_BM_GLOBAL_INTERRUPT is a global interrupt
enable/disable switch, that is in serial connection to all the other interrupt lines (which are
parallel to each other). To work with interrupts the global interrupt source must be enabled.

 In case an interrupt source not supported on a particular FlexRay controller is selected (e.g.
TDDLL_BM_RELATIVE_TIMER_INTERRUPT on MFR4200) no operation is carried out for this
interrupt source.

HINTS:

 The interrupt status of each interrupt source is independent from the enable/disable state of the
corresponding interrupt source. The status might return an pending interrupt even if the interrupt
source is disabled. It is recommended to always clear the interrupt status before enabling an
interrupt source (to start operating in a consistent interrupt environment).

 If the argument nCtrlIDX is ensured to be constant, TDDLL_InterruptEnable_Static() can be
called instead of TDDLL_InterruptEnable() which consumes less runtime, by saving one function
call overhead.

3.11.1.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nIntSrc Interrupt sources that should be enabled.

3.11.1.4Return Values

None.

Copyright DECOMSYS 2006. - 45 -

API Documentation

3.11.2TDDLL_InterruptDisable()

3.11.2.1Synopsis

void TDDLL_InterruptDisable(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_InterruptSrcType nIntSrc
)

3.11.2.2Semantics

This function disables the interrupts selected by the sources passed as arguments.

NOTES:

 The global interrupt source TDDLL_BM_GLOBAL_INTERRUPT is a global interrupt
enable/disable switch, that is in serial connection to all the other interrupt lines (which are
parallel to each other).

 In case an interrupt source not supported on a particular FlexRay controller is selected (e.g.
TDDLL_BM_RELATIVE_TIMER_INTERRUPT on MFR4200) no operation is carried out for this
interrupt source.

HINTS:

 The interrupt status of each interrupt source is independent from the enable/disable state of the
corresponding interrupt source. The status might return an pending interrupt even if the interrupt
source is disabled.

 If the argument nCtrlIDX is ensured to be constant, TDDLL_InterruptDisable_Static() can be
called instead of TDDLL_InterruptDisable() which consumes less runtime, by saving one
function call overhead.

3.11.2.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nIntSrc Interrupt sources that should be disabled.

3.11.2.4Return Values

None.

3.11.3TDDLL_InterruptStatus()

3.11.3.1Synopsis

TDDLL_InterruptSrcType TDDLL_InterruptStatus(
TDDLL_CtrlIDXType nCtrlIDX
)

3.11.3.2Semantics

This function returns the status of all supported interrupt sources.

NOTES:

Copyright DECOMSYS 2006. - 46 -

API Documentation

 The global interrupt source TDDLL_BM_GLOBAL_INTERRUPT is implemented as an global
interrupt enable/disable switch only and hence doesn’t own an interrupt status. A 0-bit will be
returned always at the global interrupt status flag.

 In case an interrupt source not supported on a particular FlexRay controller is selected (e.g.
TDDLL_BM_RELATIVE_TIMER_INTERRUPT on MFR4200) no operation is carried out for this
interrupt source.

HINTS:

 The interrupt status of each interrupt source is independent from the enable/disable state of the
corresponding interrupt source. The status might return an pending interrupt even if the interrupt
source is disabled.

 If the argument nCtrlIDX is ensured to be constant, TDDLL_InterruptStatus_Static() can be
called instead of TDDLL_InterruptStatus() which consumes less runtime, by saving one function
call overhead.

3.11.3.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

3.11.3.4Return Values

Value Description
Value Status of all supported interrupts as a bitmask. A bit “1” indicates

that an interrupt is pending, a bit “0” indicates that no interrupt
occurred.

3.11.4TDDLL_InterruptResetStatus()

3.11.4.1Synopsis

void TDDLL_InterruptResetStatus(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_InterruptSrcType nIntSrc
)

3.11.4.2Semantics

This function resets the pending status of the interrupts selected by the sources passed as
arguments.

NOTES:

 The global interrupt source TDDLL_BM_GLOBAL_INTERRUPT is implemented as an global
interrupt enable/disable switch only and hence doesn’t own an interrupt status.

 In case an interrupt source not supported on a particular FlexRay controller is selected (e.g.
TDDLL_BM_RELATIVE_TIMER_INTERRUPT on MFR4200) no operation is carried out for this
interrupt source.

HINTS:

 The interrupt sources are selected by a bitmask that can be combined by a bitwise OR to
operate on several interrupt sources at a single function call.

Copyright DECOMSYS 2006. - 47 -

API Documentation

 If the argument nCtrlIDX is ensured to be constant, TDDLL_InterruptResetStatus_Static() can be
called instead of TDDLL_InterruptResetStatus() which consumes less runtime, by saving one
function call overhead.

3.11.4.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nIntSrc Pending interrupts stati that should be reset.

3.11.4.4Return Values

None.

3.11.5TDDLL_SetTimerAbs()

3.11.5.1Synopsis

TDDLL_ReturnType TDDLL_SetTimerAbs(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_TickType nMacroTick,
TDDLL_CycleType nRepCycle,
TDDLL_CycleType nBaseCycle
)

3.11.5.2Semantics

This function configures the absolute timer of a FlexRay controller.

NOTE: The absolute timer always works in continuous mode.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_SetTimerAbs_Static() can be
called instead of TDDLLSetTimerAbs() which consumes less runtime, by saving one function call
overhead.

3.11.5.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nMacroTick Communication cycle offset the timer should elapse in units of
macroticks.

nRepCycle Communication cycle repetition value the timer should elapse.

nBaseCycle Base communication cycle the absolute timer should elapse.

3.11.5.4Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

Copyright DECOMSYS 2006. - 48 -

API Documentation

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

3.11.6TDDLL_SetTimerRel()

3.11.6.1Synopsis

TDDLL_ReturnType TDDLL_SetTimerRel(
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_TickType nMacroTick
)

3.11.6.2Semantics

This function configures the relative timer of a FlexRay controller.

NOTES:

 In case the particular FlexRay controller doesn’t support a relative timer, TDDLL_E_ACCESS is
returned.

 The relative timer always works in continuous mode.

HINT: If the argument nCtrlIDX is ensured to be constant, TDDLL_SetTimerRel_Static() can be
called instead of TDDLL_SetTimerRel() which consumes less runtime, by saving one function call
overhead.

3.11.6.3Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nMacroTick Communication cycle offset the timer should elapse in units of
macroticks.

3.11.6.4Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

TDDLL_E_ACCESS Some device specific error occurred when accessing the FlexRay
communication controller.

Copyright DECOMSYS 2006. - 49 -

CC Type Specific Extensions

4 CC Type Specific Extensions
This chapter describes FlexRay CC implementation specific extensions that are supported by
special purpose API functions that are available in a generic style. Additionally CC implementation
specific datatypes are described in this chapter.

4.1 Freescale MFR4200

4.1.1 Datatypes

4.1.1.1 TDDLL_MFR4200_CtrlStateInfoType

This compound datatype holds the FlexRay controller COMMSTACK state administrative
information required per Freescale MFR4200 FlexRay controller.

This datatype is required for static volatile memory allocation within the COMMSTACK configuration
and COMMSTACK internal functionality but it is not required at the COMMSTACK user API.

Member Description
TDDLL_CtrlStateType
nCtrlState

This member holds the COMMSTACK FlexRay controller
state.

uint16 sISRsave This member saves the enable/disable state for all
interrupt sources when emulating the global interrupt
enable/disable switch.

uint8
sGlobalInterruptEnable

This member saves the state of the global interrupt
enable/disable switch.

4.1.1.2 TDDLL_MFR4200_CtrlListType

This compound datatype holds the FlexRay controller hardware mapping information for a Freescale
MFR4200 FlexRay controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
FCAL_MFR4200_CtrlHandleType
nCtrlHandle

This member holds the hardware access port information
to the Freescale MFR4200 FlexRay controller.

void (*PctrlReset)(void) This member holds pointer to a routine that performs a
hardware platform dependent hard-reset on the Freescale
MFR4200 FlexRay controller. If there is no way for
performing the hardware reset by software this field must
contain NULL.

4.1.1.3 TDDLL_CHI_MFR4200_CommandType

This compound datatype holds a register configuration value for a Freescale MFR4200 FlexRay
controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Copyright DECOMSYS 2006. - 50 -

CC Type Specific Extensions

Member Description
uint16 nCHIOffset This member holds a FlexRay controller register address

offset. The offset is calculated from the base CHI address
of a Freescale MFR4200 FlexRay controller.

uint16 nCHIValue This member holds the value to be written in the Freescale
MFR4200 FlexRay controller register identified by the
member nCHIOffset.

4.1.2 Extensions

There are no extensions specific to MFR4200 COMMSTACK implementation.

4.2 Bosch ERAY

4.2.1 Datatypes

4.2.1.1 TDDLL_ERAY10_CtrlStateInfoType

This compound datatype holds the FlexRay controller COMMSTACK state administrative
information required per Bosch ERAY-based FlexRay controller.

This datatype is required for static volatile memory allocation within the COMMSTACK configuration
and COMMSTACK internal functionality but it is not required at the COMMSTACK user API.

Member Description
TDDLL_CtrlStateType
nCtrlState

This member holds the COMMSTACK FlexRay controller
state.

uint16 sISRsave This member saves the enable/disable state for all
interrupt sources when emulating the global interrupt
enable/disable switch.

uint8
sGlobalInterruptEnable

This member saves the state of the global interrupt
enable/disable switch.

4.2.1.2 TDDLL_ERAY10_CtrlListType

This compound datatype holds the FlexRay controller hardware mapping information for a Bosch
ERAY based FlexRay controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
FCAL_ERAY10_CtrlHandleType
nCtrlHandle

This member holds the hardware access port information
to the Bosch ERAY-based FlexRay controller.

void (*PctrlReset)(void) This member holds pointer to a routine that performs a
hardware platform dependent hard-reset on the Bosch
ERAY-based FlexRay controller. If there is no way for
performing the hardware reset by software this field must
contain NULL.

Copyright DECOMSYS 2006. - 51 -

CC Type Specific Extensions

4.2.1.3 TDDLL_CHI_ERAY10_CommandType

This compound datatype holds a register configuration value for a Bosch ERAY-based FlexRay
controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
uint16 nCHIOffset This member holds a FlexRay controller register address

offset. The offset is calculated from the base CHI address
of a Bosch ERAY-based FlexRay controller.

uint32 nCHIValue This member holds the value to be written in the Bosch
ERAY-based FlexRay controller register identified by the
member nCHIOffset.

4.2.1.4 TDDLL_ERAY10_FrameDsc_ExtendedConfigType

This compound datatype contains extended information that is required to configure the buffer of an
ERAY-based FlexRay controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
uint32 nWRHS3 This member holds the WRHS3 register value of an

ERAY-based FlexRay controller buffer.

4.2.2 Extensions

There are no extensions specific to ERAY COMMSTACK implementation.

4.3 Freescale MFR4300

4.3.1 Datatypes

4.3.1.1 TDDLL_MFR4300_CtrlStateInfoType

This compound datatype holds the FlexRay controller COMMSTACK state administrative
information required per Freescale MFR4300 FlexRay controller.

This datatype is required for static volatile memory allocation within the COMMSTACK configuration
and COMMSTACK internal functionality but it is not required at the COMMSTACK user API.

Member Description
TDDLL_CtrlStateType
nCtrlState

This member holds the COMMSTACK FlexRay controller
state.

uint16 sISRsave This member saves the enable/disable state for all
interrupt sources when emulating the global interrupt
enable/disable switch.

uint8
sGlobalInterruptEnable

This member saves the state of the global interrupt
enable/disable switch.

Copyright DECOMSYS 2006. - 52 -

CC Type Specific Extensions

4.3.1.2 TDDLL_MFR4300_CtrlListType

This compound datatype holds the FlexRay controller hardware mapping information for a Freescale
MFR4300 FlexRay controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
FCAL_MFR4300_CtrlHandleType
nCtrlHandle

This member holds the hardware access port information
to the Freescale MFR4300 FlexRay controller (access to
the controller’s internal registers).

FCAL_MFR4300_CtrlHandleType
nCtrlHandle_DMA

This member holds the hardware access port information
to the Freescale MFR4300 FlexRay controller (access to
the data stored in message buffers).

void (*PctrlReset)(void) This member holds pointer to a routine that performs a
hardware platform dependent hard-reset on the Freescale
MFR4300 FlexRay controller. If there is no way for
performing the hardware reset by software this field must
contain NULL.

4.3.1.3 TDDLL_CHI_MFR4300_CommandType

This compound datatype holds a register configuration value for a Freescale MFR4300 FlexRay
controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
uint32 nCHIOffset This member holds a FlexRay controller register address

offset. The offset is calculated from the base CHI address
of a Freescale MFR4300 FlexRay controller.

uint16 nCHIValue This member holds the value to be written in the Freescale
MFR4300 FlexRay controller register identified by the
member nCHIOffset.

1.1.1 TDDLL_MFR4300_FrameDsc_ExtendedConfigType

This compound datatype contains extended information that is required to configure the buffer of a
MFR4300 FlexRay controller.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
uint32
nMessageBufferConfiguration

This member holds some information on a message buffer
configuration (message buffer index on the System
Memory side and offset to the message buffer data)

4.3.2 Extensions

There are no extensions specific to MFR4300 COMMSTACK implementation.

Copyright DECOMSYS 2006. - 53 -

CC Type Specific Extensions

4.4 Philips Rev1 FlexRay CC (SJA2510)

4.4.1 Datatypes

4.4.1.1 TDDLL_PHIP1_SlotControlType

This enumerator is used to represent the Philips FlexRay controller Rev 1 (as used within the
SJA2510 MCU) SCL mode.

Value Description
TDDLL_SLOTMODE_RX The slot is used to receive data.

TDDLL_SLOTMODE_TX The slot is used to transmit data.

TDDLL_SLOTMODE_IGNORE The slot is not used anymore.

4.4.1.2 TDDLL_PHIP1_CtrlStateInfoType

This compound datatype holds the FlexRay controller COMMSTACK state administrative
information required per Philips Rev1 FlexRay controller as contained in the SJA2510 MCU.

This datatype is required for static volatile memory allocation within the COMMSTACK configuration
and COMMSTACK internal functionality but it is not required at the COMMSTACK user API.

Member Description
TDDLL_CtrlStateType
nCtrlState

This member holds the COMMSTACK FlexRay controller
state.

uint16 SCLAIdx Index into memory allocated for SCL channel A where the
SCL channel A for the dedicated FlexRay Controller
starts. As long as a single FlexRay CC is used, this index
will be 0.

uint16 SCLBIdx Index into memory allocated for SCL channel B where the
SCL channel B for the dedicated FlexRay Controller
starts. As long as a single FlexRay CC is used, this index
will be 0.

uint16 BCLIdx Index into memory allocated for BCL where the BCL for
the dedicated FlexRay Controller starts. As long as a
single FlexRay CC is used, this index will be 0.

uint16 BDLIdx Index into memory allocated for BDL where the BDL for
the dedicated FlexRay Controller starts. As long as a
single FlexRay CC is used, this index will be 0.

uint32 sISRsave This member saves the enable/disable state for all
interrupt sources when emulating the global interrupt
enable/disable switch.

uint8
sGlobalInterruptEnable

This member saves the state of the global interrupt
enable/disable switch.

4.4.1.3 TDDLL_PHIP1_CtrlListType

This compound datatype holds the FlexRay controller hardware mapping information for a Philips
Rev1 FlexRay controller as contained in the SJA2510 MCU.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
Copyright DECOMSYS 2006. - 54 -

CC Type Specific Extensions

FCAL_PHIP1_CtrlHandleType
nCtrlHandle

This member holds the hardware access port information
to the Philips Rev1 FlexRay controller as contained in the
SJA2510 MCU (access to the controller’s internal
registers).

4.4.1.4 TDDLL_CHI_PHIP1_CommandType

This compound datatype holds a register configuration value for a Philips Rev1 FlexRay controller
as contained in the SJA2510 MCU.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
uint16 nCHIOffset This member holds a FlexRay controller register address

offset. The offset is calculated from the base CHI address
of a Philips Rev1 FlexRay controller as contained in the
SJA2510 MCU.

uint16 nCHIValue This member holds the value to be written in the Philips
Rev1 FlexRay controller (as contained in the SJA2510
MCU) register identified by the member nCHIOffset.

1.1.2 TDDLL_PHIP1_FrameDsc_ExtendedConfigType

This compound datatype contains extended information that is required to configure the buffer of a
Philips Rev1 FlexRay controller as contained in the SJA2510 MCU

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
uint16 SCLEIdx This is the index into the SCL used for the particular

FlexRay frame the frame is assigned to.

uint16 BDLEIdx This is the index into the BDL used for the particular
FlexRay frame the frame is assigned to.

1.1.3 TDDLL_PHIP1_RegisterType

This compound datatype contains extended information that is required to configure a Philips Rev1
FlexRay controller as contained in the SJA2510 MCU

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
const
TDDLL_CHI_PHIP1_CommandType
*pCHICommands

Pointer to an array of CHI initialization values.

const
TDDLL_PHIP1_VirtualRegisterType
*pCHC_SCL_A

This member holds the pointer for SCL channel A
initialization values. In case global configuration switch
TDDLL_PHIP1_CONSTANT_SCL is enabled this
table will be used immediately. In case it is NULL no
channel A SCL is available.

const
TDDLL_PHIP1_VirtualRegisterType

This member holds the pointer for SCL channel B
initialization values. In case global configuration switch
TDDLL_PHIP1_CONSTANT_SCL is enabled this

Copyright DECOMSYS 2006. - 55 -

CC Type Specific Extensions

*pCHC_SCL_B table will be used immediately. In case it is NULL no
channel B SCL is available.

const
TDDLL_PHIP1_VirtualRegisterType
*pCHC_BCL

This member holds the pointer for BCL initialization
values. This table is copied into RAM during CC
initialization. In case it is NULL no BCL is available.

const
TDDLL_PHIP1_VirtualRegisterType
*pCHC_BDL

This member holds the pointer for BDL initialization
values. This table is copied into RAM during CC
initialization. In case it is NULL no BDL is available.

const uint32 *pFrameBuffer_A This member holds the pointer for FrameBuffer
channel A space. If it is NULL no initialization table is
available - buffer space will be initialized with 0 in this
case.

const uint32 *pFrameBuffer_B This member holds the pointer for FrameBuffer
channel B space. If it is NULL no initialization table is
available - buffer space will be initialized with 0 in this
case.

uint32 NumCHC_FrameBuffer_A This member holds the size of FrameBuffer channel A
space in units of 32bit words.

uint32 NumCHC_FrameBuffer_B This member holds the size of FrameBuffer channel B
space in units of 32bit words.

uint16 NumCHICommands This member holds the number of entries within the
CHI register initialization list.

uint16 NumCHC_SCL_A This member holds the number of SCL elements for
Channel A.

uint16 NumCHC_SCL_B This member holds the number of SCL elements for
Channel B.

uint16 NumCHC_BCL This member holds the number of BCL elements.

uint16 NumCHC_BDL This member holds the number of BDL elements.

4.4.1.5 TDDLL_PHIP1_VirtualRegisterType

This compound datatype holds a virtual register list element as used in lists SCL channel A, SCL
channel B, BCL and BDL for a Philips Rev1 FlexRay controller as contained in the SJA2510 MCU.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Member Description
uint32 Register1 This is the first register within an virtual register list

element. Since this datatype is used for different virtual
registers, there was an abstract member name choosen.

uint32 Register2 This is the second register within an virtual register list
element. Since this datatype is used for different virtual
registers, there was an abstract member name choosen.

4.4.1.6 TDDLL_PHIP1_FrameBufferType

This compound datatype holds the framebuffer header part used in a Philips Rev1 FlexRay
controller as contained in the SJA2510 MCU.

This datatype is required within the COMMSTACK configuration and COMMSTACK internal
functionality only but it is not required at the COMMSTACK user API.

Copyright DECOMSYS 2006. - 56 -

CC Type Specific Extensions

Member Description
uint32 Status This member holds the message buffer status bit virtual

register.

uint32 HeaderPart1 This member holds the message buffer header part1
virtual register.

uint32 HeaderPart2 This member holds the message buffer header part2
virtual register

uint32 aPayload[1] This member holds the first payload virtual register word.

4.4.2 Extensions

COMMSTACK implementation for PHIP1 FlexRay controller provides one additional API function,
which is available for this FlexRay CC COMMSTACK implementation only.

4.4.2.1 TDDLL_SetSlotControl_PHIP1()

4.4.2.1.1 Synopsis

TDDLL_ReturnType TDDLL_SetSlotControl_PHIP1 (
TDDLL_CtrlIDXType nCtrlIDX,
TDDLL_FrameDscRefIDXType nFrameDscRefIDX,
TDDLL_PHIP1_SlotControlType nSlotType
)

4.4.2.1.2 Semantics

This function changes the operation mode of a FlexRay buffer identified by nFrameDscRefIDX into
mode specified by nSlotType on FlexRay Controller nCtrlIDX. This Function operates
immediately on the SCL element bitfield “Control” used by the dedicated FlexRay frame.

4.4.2.1.3 Parameters

Value Description
nCtrlIDX The FlexRay controller index of the controller this function should

be performed on.

nFrameDscRefIDX Unique ID that identifies the frame to be controlled.

nSlotType Type (Ignore, Rx, Tx) the FlexRay slot should be set to.

4.4.2.1.4 Return Values

Value Description
TDDLL_E_OK The function was successfully finished.

TDDLL_E_INVALID_IDX The given input parameter or some basic configuration is invalid.

Copyright DECOMSYS 2006. - 57 -

DESIGNER PRO Integration

5 DESIGNER PRO Integration
The COMMSTACK API is based on application dependent configuration data, which must exist for
any application. The configuration data are represented by C source code and mainly consists of
data structures used for initializing the FlexRay hardware and on the other hand for supporting the
message exchange over the FlexRay communication system. As in general the manually creation of
these configuration data is quite a complex task, there is convenient code generator support for this
purpose. This tool support is implemented with DECOMSYS::DESIGNER PRO.

The following sections give instructions on how DESIGNER PRO can be used to generate the
COMMSTACK configuration for an application and how this data is utilized by the application later
on.

5.1 Use Case Assumption
As a basis for the documentation the following use case is assumed: There is an application
consisting of 2 ECUs interconnected via a FlexRay network. The FlexRay network consists of two
communication channels. For fault tolerant reasons all nodes are connected to both FlexRay
channels.

Figure 4 illustrates the previous described hardware setup.

ECU 1
(TestNode1)

ECU 2
(TestNode2)

FlexRay FlexRay

Channel B

Channel A

Figure 4: Assuemd Hardware Setup

ECU 1 sends in slot 39 and slot 111 on both channels, ECU 2 receives all frames sent by ECU 1.
ECU 2 sends in slot 64 and slot 120 on both channels. ECU 1 receives all frames sent by ECU 2.

Figure 5 illustrates the previous described communication setup.

Copyright DECOMSYS 2006. - 58 -

DESIGNER PRO Integration

FlexRay

Identifier 39, Slot A

FlexRay

Identifier 120, Slot B

Identifier 111, Slot A

ECU 2
(TestNode2)

ECU 1
(TestNode1)

Identifier 64, Slot B

Identifier 39, Slot B

Identifier 111, Slot B

Identifier 120, Slot A

Identifier 64, Slot A

Figure 5: Assumed Communication Setup

5.2 Generating the COMMSTACK Configuration

5.2.1 Assumption

The description assumes that a Binary Object Repository file (BOR file) is available, containing a
valid FlexRay cluster definition for the above depicted application setup (that has either been
created with DESIGNER PRO, or imported via FIBEX or XCDEF importer into the DESIGNER PRO)
and that all prior configuration steps to the COMMSTACK configuration generation have been
applied.

5.2.2 Invocation of the Driver Configuration Plug-In

The required tool for the COMMSTACK configuration is the Driver Configuration Plug-in of
DESIGNER PRO. The GUI window of this tool can be invoked by opening the Driver Config section
in the OPERATION menu of DESIGNER PRO and by clicking the COMMSTACK item in it. Figure 6
shows the opened Driver Config operation menu of DESIGNER PRO, Figure 7 depicts the initial
appearance of the Driver Configuration GUI window.

Figure 6: DESIGNER PRO Operation Menu

Copyright DECOMSYS 2006. - 59 -

DESIGNER PRO Integration

Figure 7: Driver Configuration Window

5.2.3 Selector Panel

The popup menus ECU, MCU and CC are used to select a distinct communication controller in order
to display and to manipulate its configuration data.

5.2.4 Communication Assignment Grid

The Communication Assignment Grid seen in Figure 7 reflects the initial configuration corresponding
to the assumed setup introduced in section 5.1 (and from which the COMMSTACK configuration
generation starts off).

The Communication Assignment Grid shows information on the exchanged frames among the ECUs
of the cluster from the point of view of TestNode1Controller (TestNode1Controller is the name for
the FlexRay controller hosted by TestNode1 ECU). The grid shows all message frames, sent and
received by the controller.

Each line of the Communication Assignment Grid refers to a distinct frame and summarizes several
frame attributes. The following table gives some explanation on the seen frame attributes.

Column Description
Frame Triggering A frame triggering is a FlexRay frame which is uniquely identified

by the channel (CH), slot, base cycle (BC) and cycle repetition
(CR)

Frame Short name of the frame.

RX/TX (Type) Specifies whether the frame is a receive (RX) or a transmit (TX)
frame.

CH (Channel) Specifies on which physical FlexRay channel the frame is sent.

Copyright DECOMSYS 2006. - 60 -

DESIGNER PRO Integration

Slot Specifies the FlexRay slot used for the frame transmission.

BC (Base Cycle) Specifies the base communication cycle (0..63), in which the
frame is sent the first time.

CR (Cycle Repetition) Specifies the sending repetition of the frame in units of
communication cycles (1..64). (Counting starts at BC + 1. It must
be satisfied that BC + CR <= 64.)

Slot Offset Specifies the offset of frame in the communication cycle in units of
µs.

Service Denotes the “owner” of the frame. For example it is possible that
the frame is owned by the NM, TP, FlexCOM, or seen in Figure 7,
by the application itself.

Buffer Shows the assigned physical FlexRay message buffer, or the
assigned buffer pool respective.

BA Report (Buffer
Assignment Report)

Reports information on the buffer assignment configuration. To
see a report the mouse must be dragged over the appropriate grid
cell. If the configuration contains errors, it displays a red sign, if
everything is ok, a green sign.

Communication Task In case the frame is owned by the FlexCOM service, this column
shows the assigned communication task.

CT Report
(Communicaiton Task
Report)

Reports information on the communication task assignment
configuration. To see a report the mouse must be dragged over
the appropriate cell. If the configuration contains errors, it displays
a red sign, if everything is ok, a green sign.

TX CC Shows the sending communication controller of the frame.

RX CC Shows the receiving communication controller of the frame.

Figure 8: Frame Attributes

NOTES:

 For the use of the COMMSTACK message API (in order to uniquely identify a frame), the
controller interface must be considered additionally. This is the cause why the COMMSTACK
message API takes the controller interface in the parameter list (see later in this chapter).

 The red signs in the BA Report column indicate that there is no buffer assignment done yet.

5.2.5 Assigning Queues

Additionally, each frame configured for reception or transmission can be equipped with a software
queue, which enables the usage of COMMSTACK queuing API functions (chapter 3.9).

The depth of each queue can be configured for each distinct frame. A queue depth with size 0
disables queuing for the dedicated Frame-triggering. No memory will be required in this case.

For using the feature one has to go deep into the DESIGNER Pro internal database view. Open the
Entity-View and open the Type Selector “Frame Triggering Receiver Channel-Port” or “Frame
Triggering Transmitter Channel-Port” depending whether you want to apply the queue to a receive-
or transmission frame triggering. Select the frame triggering you want to apply the queue to, and
enter the appropriate queue depth into field “Rx Queue Depth” / “Tx Queue Depth” as shown in
Figure 9.

Copyright DECOMSYS 2006. - 61 -

DESIGNER PRO Integration

Figure 9: Queue Depth Configuration

5.2.6 Advanced Configuration Panel

In the Advanced Configuration panel of the Driver Configuration window the user has the ability for
the advanced setup of the considered target service. (As this documentation is focused on the
COMMSTACK itself and not on the services that are based on it, the configuration of NM, TP and
FlexCOM are not discussed closer.)

5.2.6.1 Communication Controller Registers

As already described earlier in this chapter, the Driver Configuration Plug-In of DESIGNER PRO
generates initialization code for the FlexRay controllers. In particular, this initialization code consists
of register settings for the communication controllers.

Usually the DESIGNER PRO calculates the register values (independent of the cluster settings, the
message schedule and the used controller derivate). With the CC Registers feature the user has the
ability to influence the calculated register values. Figure 10 shows the appearance of the selected
CC Registers tab.

Figure 10: CC Registers Tab

When pressing the Edit button, the Entity View opens in edit mode with communication controller
selected in the Selector Panel of the Driver Configuration window. After changing any register values
with the Entity View the Validate button can be pressed to check the modified parameters.

Copyright DECOMSYS 2006. - 62 -

DESIGNER PRO Integration

NOTE: This feature is useful in particular for the advanced configuration of the communication
controllers.

5.2.6.2 Automatic Buffer Assignment

To enable the controller to receive and transmit the defined frames, the physical FlexRay message
buffers must be configured accordingly. This developing step is also named as Buffer Assignment.
There is the possibility to let the DESIGNER PRO to do the buffer assignment automatically by using
the Automatic Buffer Assignment feature. This function can be executed by clicking on the Generate
button in the Auto BA tab (Advanced Configuration section) of the Driver Configuration dialog. Figure
11 shows a screenshot of the focused Auto BA tab.

Figure 11: Auto BA Tab

The above step must be repeated for each communication controller of an ECU and for all the ECUs
to be configured. On success all defined frames get a physical FlexRay buffer assigned. Thereafter,
the Communication Assignment grid of the considered controller has the appearance depicted in
Figure 12. It can be seen, that the Buffer column is filled up with indices (which map to the physical
FlexRay message buffers). The success of the operation can bee seen additionally on the deleted
error report signs in the BA Report column (please compare Figure 7).

Figure 12: Communication Assignment – assigend Buffers

5.2.6.3 Minimize Buffer Consumption

If this option is checked, DECOMSYS::DESINGER PRO attempts to assign the same buffer to
multiple frame triggerings. By that way, the consumption of the buffer use is reduced.

For this optimization it must be satisfied that the frame triggerings, sharing the same buffer have the
same values for the type (RX/TX), slot and the channel assigned, but different values for the base
cycle and cycle repetition, so that conflicts in accessing the different frames via this single buffer are
avoided.

Copyright DECOMSYS 2006. - 63 -

DESIGNER PRO Integration

5.2.6.4 Manual Buffer Assignment

Beside the Automatic Buffer Assignment feature, DECOMSYS::DESINGER PRO offers the
possibility for the manual buffer assignment. This function includes the assignment of buffer pools.

For this feature, first it is necessary to define the buffer pool (which consists of a single buffer in the
simplest case) in the Manual BA tab of the Driver Configuration dialog.

The definition of the buffer pool can be done by:

 Adding a name for the pool: Enter the pool name in the Name field and pressing Create.

 Adding the pool members: Click on the Pool cell in the buffer information grid beneath the
Manual BA tab of the buffer you want to add and select the target pool (name) from the
appearing combobox.

Figure 13 shows an example for the definition of a buffer pool (MyBufferPool).

Figure 13: Manual BA Tab

The next step consist of assigning the defined buffer pools to frame triggerings. Hereby the name for
the buffer pool must be entered in the Multiple Buffer (Pool) Assignment combobox, then the
multiple frame triggerings selected in the Communication Assignment grid (by pressing the CTRL
botton on the keyboard and selecting the appropriate lines in the Communication Assignment grid)
and last, the button Assign be pressed.

5.2.6.5 Code Generation

When the buffer assignment step is finished, it can be proceeded with generating the configuration
files for an ECU. This operation can also be done in the Advanced Configuration section of the
Driver Config window, in tab Code Generation. First, the output path for the files must be set. The
setting can be performed by calling the output directory selection dialog by clicking the button Code
Output Path… in the Advanced Configuration section. After clicking this button, a standard windows
file open dialog appaers, with which the user can set the output directory. When the directory is set
the files can be generated into it. This function can be executed by clicking the Generate Code
button in the Code Generation tab. Figure 14 shows the Advanced Configuration section of the
Driver Config window. (NOTE: The Code Output Path... button can be found right on the bottom of
the Driver Config dialog and can bee seen in Figure 7.)

Figure 14: Code Generation Tab
Copyright DECOMSYS 2006. - 64 -

DESIGNER PRO Integration

The code generation procedure should produce the following files in the output diectory:

File Name Description
dcsCstFr_<MCU_Name>1_Cfg.h Contains pre-processor definitions, which maps

generic COMMSTACK API functions to FlexRay
controller specific ones.

dcsCstFr_<MCU_Name>_Cfg.c Contains initialization code for the FlexRay
controller(s) and data structures describing the
used FlexRay frames (i.e., holding the assigned
physical message buffer index).

dcsCstFr_<MCU_Name>_Memory_Cfg.c Contains data structures providing memory for the
queued reception and transmission of messages
and code for administrating the queues.

The above depicted source code files must be included with the application build process for the
owning ECU, which normally compiles the remaining COMMSTACK files, the ECU application
source files, and the generated ECU configuration files to objects that are in turn linked to the
executable for the target.

5.2.6.6 Generate All Function

With this feature the user has the ability to generate all COMMSTACK configuration files for all
ECUs in a single step (provided the output directories for all ECUs have been set).

The function can be activated by clicking the “Generate All…” button, which can be seen in the
Driver Configuration window depicted in Figure 7.

5.3 Applying the COMMSTACK Configuration
This section gives some examples on the implementation of the message functions on basis of the
generated COMMSTACK configuration and from the point of view of ECU 1 (TestNode1).

5.3.1 Example for sending a frame using the TDDLL_TxFrameByID() and
TDDLL_LookupTxFrame() COMMSTACK API functions

The following code illustrates the use of TDDLL_TxFrameByID() and TDDLL_LookupTxFrame()
COMMSTACK API functions to transmit the frame, which is configured by the first line of the
Communication Assignment grid in Figure 12. For calling the function the configuration parameters
Slot (39), Channel (A), Cycle Repetition (1), and Base Cycle (0) are required.

In summary, the code for sending the considered frame has the following appearance:
{

TDDLL_ReturnType nStatus;
const char aTxMsg[PAYLOADLENGTH] = "Example 1";

nStatus = TDDLL_TxFrameByID(
0,
TDDLL_LookupTxFrame(0, 39, TDDLL_CHA, 1, 0),

1 <MCU_Name> is the placeholder for the actual MCU name and is expanded on code generation.
Copyright DECOMSYS 2006. - 65 -

DESIGNER PRO Integration

aTxMsg,
PAYLOAD_LENGTH

);
}
The first parameter of TDDLL_TxFrameByID() and TDDLL_LookupTxFrame() gives the interface
number the FlexRay controller is mapped to.

aTxMsg is the temporary message buffer containing the data for transmission. In the shown
example this is “Example 1”.

PAYLOAD_LENGTH specifies the frame length.

On success the function returns TDDLL_E_OK.

5.3.2 Example for sending a frame using the TDDLL_TxFrameByID() and
TDDLL_TX_FRAME_TRIGGERING() COMMSTACK API functions

The following code illustrates the use of TDDLL_TxFrameByID() and
TDDLL_TX_FRAME_TRIGGERING() COMMSTACK API functions to transmit the frame, which is
configured by the first line of the Communication Assignment grid in Figure 12. For calling the
function the configuration parameter Frame Triggering (ft0_ID39) is required.

In summary, the code for sending the considered frame has the following appearance:
{

TDDLL_ReturnType nStatus;
const char aTxMsg[PAYLOADLENGTH] = "Example 1";

nStatus = TDDLL_TxFrameByID(
0,
TDDLL_TX_FRAME_TRIGGERING(ft0_ID39),
aTxMsg,
PAYLOAD_LENGTH

);
}
The first parameter of TDDLL_TxFrameByID() gives the interface number the FlexRay controller is
mapped to.

aTxMsg is the temporary message buffer containing the data for transmission. In the shown
example this is “Example 1”.

PAYLOAD_LENGTH specifies the frame length.

On success the function returns TDDLL_E_OK.

5.3.3 Example for receiving a frame using TDDLL_RxFrameByID() and
TDDLL_LookupRxFrame() COMMSTACK API functions

The following code illustrates the use of TDDLL_RxFrameByID() and TDDLL_LookupRxFrame()
COMMSTACK API functions to receive the frame, which is configured by the sixth line of the
Communication Assignment grid in Figure 12. For calling the function the configuration parameters
Slot (64), Channel (A), Cycle Repetition (1), and Base Cycle (0) are required.

In summary, the code for receiving the considered frame has the following appearance:
Copyright DECOMSYS 2006. - 66 -

DESIGNER PRO Integration

{
TDDLL_ReturnType nStatus;
TDDLL_LengthType nLength;
const char aRxMsg[PAYLOAD_LENGTH];

nStatus = TDDLL_RxFrameByID(
0,
TDDLL_LookupRxFrame(0, 64, TDDLL_CHA, 1, 0),
&aRxMsg[0],
PAYLOAD_LENGTH,
&nLength

);
}
The first parameter of TDDLL_RxFrameByID() and TDDLL_LookupRxFrame() gives the interface
the FlexRay controller is mapped to.

aRxMsg is the temporary message buffer for receiving the frame data.

nLength is the length of the frame actually received

PAYLOAD_LENGTH gives the buffer size the frame is written to.

On success the function returns TDDLL_E_OK.

5.3.4 Example for receiving a frame using the TDDLL_RxFrameByID() and
TDDLL_RX_FRAME_TRIGGERING() COMMSTACK API functions

The following code illustrates the use of TDDLL_RxFrameByID() and
TDDLL_RX_FRAME_TRIGGERING() COMMSTACK API functions to receive the frame, which is
configured by the sixth line of the Communication Assignment grid in Figure 12. For calling the
function the configuration parameter Frame Triggering (ft0_ID64) is required.

In summary, the code for sending the considered frame has the following appearance:
{

TDDLL_ReturnType nStatus;
TDDLL_LengthType nLength;
const char aRxMsg[PAYLOAD_LENGTH];

nStatus = TDDLL_RxFrameByID(
0,
TDDLL_RX_FRAME_TRIGGERING(ft0_ID64),
& aRxMsg [0],
PAYLOAD_LENGTH,
&nLength

);
}

Copyright DECOMSYS 2006. - 67 -

DESIGNER PRO Integration

The first parameter of TDDLL_RxFrameByID() gives the interface number to which the FlexRay
controller is mapped to.

aRxMsg is the temporary message buffer for receiving the frame data.

nLength is the length of the frame actually received

PAYLOAD_LENGTH gives the buffer size the frame is written to.

On success the function returns TDDLL_E_OK.

Copyright DECOMSYS 2006. - 68 -

COMMSTACK Configuration

6 COMMSTACK Configuration
The COMMSTACK design is focused on flexibility. The COMMSTACK philosophy is to provide
mechanisms that don’t limit the user to any specific use case, but offers the full range of applicability
in the COMMSTACK function domain. To enable this feature the COMMSTACK provides a high
degree of configurability, which has to be provided for operation. The binding method of the
configuration options is carefully selected to meet the performance and application requirements.

There are three different binding methods used for the COMMSTACK configuration:

• Pre-Compile configuration

• Post-Compile configuration

• Runtime configuration

Pre-Compile configuration has impacts on the COMMSTACK compilation process. Using compiler
switches this kind of configuration influences the COMMSTACK object code. This kind of
configuration is used for enabling/disabling specific COMMSTACK features and setting the main
hardware access properties of the COMMSTACK.

In Post-Compile configuration, the configuration doesn’t affect the COMMSTACK binary data, but
the configuration data must be present at link-time. Certain constant tables that affect the runtime
behavior of the COMMSTACK must be provided during linking process. This kind of configuration is
used for small hardware adaptations (memory mapping, reset configuration), which enables a
COMMSTACK library to be used flexible on a certain hardware design without recompilation.

Runtime configuration must be available at latest before COMMSTACK usage at runtime. The
application configuration, which affects the runtime communication behavior of the COMMSTACK, is
configured this way. This means that also any other process than the build-process like RAM-
download or flashprogramming can be enabled to load the COMMSTACK application configuration.

In this chapter the COMMSTACK file structure is described as well as the configuration files to edit
for target customization.

6.1 COMMSTACK File Structure
The COMMSTACK consists of a root directory that contains all source files and header files. For
structural reasons the COMMSTACK contains two sub-modules that are each implemented as
macros or inline functions (depending on your compiler’s capabilities). These sub-modules improve
the ease of COMMSTACK porting by providing COMMSTACK internal abstraction, while obtaining
as much performance as possible.

The following directories are contained the root directory:

• “include” – containing public interface header files
Public interface header files offer an interface to other software layers or the application.

• “src” – containing source files and private header files
Private header files are included only in the respective software layer where they reside.
They are primary necessary for a clean software structure and consistency reasons.

• “MAL” – containing private Memory Access Library.
The MAL COMMSTACK private library provides generic mechanisms for accessing memory
and swapping bytes on a dedicated hardware configuration.

Copyright DECOMSYS 2006. - 69 -

COMMSTACK Configuration

• “FCAL” – containing private FlexRay Controller Access Layer.
The FCAL COMMSTACK private layer provides mechanisms for accessing memory
mapped FlexRay controllers.

Each of these subdirectories (“include” and “src”) may contain one subdirectory per supported
hardware target architecture, however they may contain additional subdirectories. The architecture
dependent subdirectories are prefixed with “arch”. Additionall subdirectories for FlexRay CC specific
implementations might be present, named by the COMMSTACK FlexRay CC name in uppercase
letters (e.g. ERAY10, MFR4200, MFR4300).

When building the COMMSTACK ensure that you pass all include directories and their respective
subdirectories (include, include/arch-…, include/MFR4200, include/ERAY10,
include/MFR4300…) mentioned before to the compilers include path. Also the source
path containing COMMSTACK private header-files (src, src/ERAY10, src/MFR4200,
src/MFR4300 …) should be added to the compilers include path.

Below, the COMMSTACK source code product file-structure as delivered for an example target
architecture called dcsnodearm-generic is shown.
dcsCstFr COMMSTACK root directory
└doc COMMSTACK documentation
MAL
├include MAL macro library main header-files
|└generic MAL macro library CPU dependent implementations.
|
FCAL
├include FCAL macro library main header-files
|├ERAY10 FCAL macro library ERAY access implementations
|├MFR4200 FCAL macro library MFR4200 access implementations
|└MFR4300 FCAL macro library MFR4300 access implementations
|
include COMMSTACK interface header-files
├arch-dcsnodearm-generic COMMSTACK configuration files for example architecture
|
src COMMSTACK CC independent source code
├Cfg
|└arch-dcsnodearm-generic COMMSTACK configuration files for example architecture
├ERAY10 COMMSTACK ERAY implementation source code
├MFR4200 COMMSTACK MFR4200 implementation source code
└MFR4300 COMMSTACK MFR4300 implementation source code

6.2 COMMSTACK Feature Configuration
Certain COMMSTACK features can be enabled/disabled using compiler switches. These switches
have immediate impact on the COMMSTACK compilation process. Disabled features are removed
from the compilation process, which optimizes memory and execution time consumption.

Copyright DECOMSYS 2006. - 70 -

COMMSTACK Configuration

The COMMSTACK feature configuration is of type Pre-Compile configuration. Modifying these
switches requires having a source code COMMSTACK distribution.

6.2.1 COMMSTACK Feature Switches

All COMMSTACK feature switches are implemented in the header-file dcsCstFr_Cfg.h.

All switches operate on a switch defined/undefined basis. This means that a feature is enables as
soon as a key macro mapping to that feature is defined.

Enabling feature TDDLL_FEATURE_1_SWITCH would be implemented by setting the following
source code line into file dcsCstFr_Cfg.h:

#define TDDLL_FEATURE_1_SWITCH
Disabling feature TDDLL_FEATURE_1_SWITCH is implemented by either leaving this line
completely out of the file or setting the following source code line into file dcsCstFr_Cfg.h:

#undef TDDLL_FEATURE_1_SWITCH
The following table describes all available features that can be activated/deceived using pre-compile
switches:

Switch Name Description
TDDLL_STATE_CHECK_SWITCH This switch enables the synchronization of the

COMMSTACK state at each API function invocation with
the FlexRay CC. This switch should be always enabled if
you do don’t have very special knowledge about the
COMMSTACK implementation.

TDDLL_ARGUMENT_CHECK_SWITCH This switch enables an argument check of the validity of
arguments given to COMMSTACK API functions.
Enabling this switch could help debugging during the
development phase.

TDDLL_QUEUEING_SWITCH This switch enables the build process of the queuing API
functions listed below:
TDDLL_RxFrameByIDQueued()
TDDLL_TxFrameByIDQueued()
TDDLL_FlushTxQueue()
TDDLL_FillRxQueue()
TDDLL_EmptyQueue()

TDDLL_BUFFERPOOLING_SWITCH This switch enables the buffer pooling mechanism that
enables the dynamic buffer assignment over a range of
dynamic FlexRay frames. If this switch is disabled the
application configuration must not use this feature.

TDDLL_FIFO_SWITCH This switch includes the FIFO reception API function
(TDDLL_RxFrameByFIFO()) into the COMMSTACK
build process.

TDDLL_INTERRUPTS_SWITCH This switch includes the following interrupt handling API
functions into the COMMSTACK build process:
TDDLL_InterruptStatus()
TDDLL_InterruptResetStatus()
TDDLL_InterruptEnable()
TDDLL_InterruptDisable()

TDDLL_ABSOLUTE_TIMER_SWITCH This switch includes the absolute timer API function

Copyright DECOMSYS 2006. - 71 -

COMMSTACK Configuration

(TDDLL_SetTimerAbs()) into the COMMSTACK build
process.

TDDLL_RELATIVE_TIMER_SWITCH This switch includes the relative timer API function
(TDDLL_SetTimerRel()) into the COMMSTACK build
process.

TDDLL_POC_STATUS_SWITCH This switch includes the POC status API function
(TDDLL_GetPOCStatus()) into the COMMSTACK build
process.

TDDLL_STATIC_PAYLOAD_
PADDING_PATTERN_SWITCH

In case a frame shorter than the application schedule
configured static payload length should be transmitted
from a COMMSTACK transmission API function, this
switch enables to fill the remaining bytes of the frame with
a fill-pattern defined in macro
TDDLL_PAYLOAD_PADDING_PATTERN within the
COMMSTACK configuration file dcsCstFr_Cfg.h.

TDDLL_SINGLE_CC_TYPE_OPTIMIZ
ATION

Since COMMSTACK transmission API functions operate on the per-byte frame length but FlexRay
requires 16-bit words (resulting in an even number of bytes) to be transmitted, the value
defined in COMMSTACK macro TDDLL_PAYLOAD_PADDING_PATTERN is used for filling
the last byte in case an odd number of bytes should be transmitted.

6.3 COMMSTACK Target Hardware Configuration

Most COMMSTACK target hardware configuration options can be modified in COMMSTACK source
code distributions only since these settings affect the COMMSTACK compilation process.
Address mapping and reset configuration of the COMMSTACK is done in a post-compile
configuration file (dcsCstFr_CtrlHW_Cfg.c) that can be modified in COMMSTACK
library distributions also.

The COMMSTACK is designed to enable porting to a different hardware by modifying some very
low-level hardware specific files. The objective of this chapter is to give a quick introduction on how
to adapt the COMMSTACK to your target hardware.

Additionally the provided example adaptations (for memory mapped FlexRay controller access only)
are described. This chapter gives a comprehensive description on the all hardware related settings
and explains how they must be adopted for the new target hardware.

6.3.1 Compiler specific function implementations

The COMMSTACK sub-modules MAL and FCAL provide C-syntax API implementations that provide
some required functionality and work on most C-compilers. For different compiler capabilities there
are several alternative implementations provided, which can be identified by their different filename
postfixes “inline”, “noinline” and “macro” (e.g. dcsMAL_generic_swap_inline.h,
dcsMAL_generic_swap_macro.h, dcsMAL_generic_swap_noinline.h).

In general the proposed solution is the “inline” implementation variant. If your compiler doesn’t
support the “inline” keyword consult the manual whether inline functions are supported by some
other compiler-specific mechanism or not. If function inlining is supported by some different compiler
Copyright DECOMSYS 2006. - 72 -

COMMSTACK Configuration

syntax of you compiler “customCompiler” use the provided ”inline” implementation as a template,
modify it according to your compiler’s inline syntax and provide a compiler specific implementation
(e.g. copy dcsMAL_generic_swap_inline.h to dcsMAL_customCompiler_swap_inline.h)
matching your compiler’s syntax.

Some compilers that automatically perform inlining on static functions and remove not used static
functions during optimization from the target binary but don’t support any syntactical function inlining
might also accept the “noinline” implementation variant.

Finally a pure macro implementation “macro” is provided. According to poor performance
and potential data consistency problems this implementation should not be used in
production code.

In case several alternative MAL/FCAL implementations are provided (“inline”,”noinline”,”macro”) the
DECOMSYS recommended implementation is “inline”.

Don’t use the function implementation variant “macro” in production code.

6.3.2 CPU Memory Access Configuration

The MAL layer contains a library of macros that provide C-syntax capabilities for the COMMSTACK
implementation.

These capabilities are:

• aligned/unaligned [volatile] 32/16/8-bit read/write access

• byte-swapping for 16/32-bit words

If your hardware architecture provides distinct assembler operations for byte swapping or memory
access the compiler doesn’t support, the generic implementations might be replaced by
inline assembler operations for performance reasons.

The COMMSTACK memory access configuration is of type pre-compile configuration.

In the COMMSTACK main configuration file dcsCstFr_Cfg.h two macros that select the correct
COMMSTACK behavior for the selected target hardware architecture have to be defined.

Macro _TDDLL_HEADER_FILE_DCSMAL_SWAP_ selects the byte-swapping implementation. The
following options are provided by the default COMMSTACK product:

swap implementation Description
dcsMAL_generic_swap_inline.h “inline” implementation variant (see chapter 6.3.1) of

byte-swapping functionality.

dcsMAL_generic_swap_noinline.h “noinline” implementation variant (see chapter 6.3.1)
of byte-swapping functionality.

dcsMAL_generic_swap_macro.h “macro” implementation variant (see chapter 6.3.1) of
byte-swapping functionality.

Macro _TDDLL_HEADER_FILE_DCSMAL_ALIGNMENT_ selects the alignment restrictions of the
target hardware architecture the COMMSTACK is executed on. An alignment restriction on memory
accesses requires (in general) that the address an memory access occurs must be divisible by the
access size with no remainder (addr%sizeof(access) == 0). In case of an access restriction
the COMMSTACK memory access function option “forbid_unaligned” is provided. In case the target

Copyright DECOMSYS 2006. - 73 -

COMMSTACK Configuration

architecture requires no alignment restrictions (addr%sizeof(access) != 0) the access function
provided by option “allow_unaligned” shall be used.

The following options are provided by the default COMMSTACK product:

alignment restriction
implementation

Description

<dcsMAL_generic_rw_allow_
unaligned.h>

Implementation variant for target architectures that allow
unaligned memory accesses.

<dcsMAL_generic_rw_forbid_
unaligned_be_inline.h>

“inline” implementation variant (see chapter 6.3.1) for big
endian target architectures that require aligned memory
access.

<dcsMAL_generic_rw_forbid_
unaligned_be_noinline.h>

“noinline” implementation variant (see chapter 6.3.1) for
big endian target architectures that require aligned
memory access.

<dcsMAL_generic_rw_forbid_
unaligned_be_macro.h>

“macro” implementation variant (see chapter 6.3.1) for big
endian target architectures that require aligned memory
access.

<dcsMAL_generic_rw_forbid_
unaligned_le_inline.h>

“inline” implementation variant (see chapter 6.3.1) for little
endian target architectures that require aligned memory
access.

<dcsMAL_generic_rw_forbid_
unaligned_le_noinline.h>

“noinline” implementation variant (see chapter 6.3.1) for
little endian target architectures that require aligned
memory access.

<dcsMAL_generic_rw_forbid_
unaligned_le_macro.h>

“macro” implementation variant (see chapter 6.3.1) for
little endian target architectures that require aligned
memory access.

For practical usage of the memory access configuration see the following example taken from the
file dcsCstFr_Cfg.h of the COMMSTACK product target architecture configuration for target
dcsnodearm_generic:
…
/* SWAP macros selection configuration */
#define _TDDLL_HEADER_FILE_DCSMAL_SWAP_ \
 <dcsMAL_generic_swap_inline.h>

/* memory access restriction configuration */
#define _TDDLL_HEADER_FILE_DCSMAL_ALIGNMENT_ \
 <dcsMAL_generic_rw_forbid_unaligned_le_inline.h>
…

6.3.3 FlexRay CC Access Configuration

The COMMSTACK product is prepared to connect different FlexRay CC via a parallel interface
(memory mapped I/O) to a wide range of CPUs. There are three important properties that have to be
considered when connecting a CPU memory mapped to a FlexRay CC:

• Endianess of the CPU

• Databus connection (bit width, byte crossing)
Copyright DECOMSYS 2006. - 74 -

COMMSTACK Configuration

• Endianess of the FlexRay CC

According to these properties several system configuration combinations might be possible. The
connection type to be used has to be configured in the COMMSTACK main configuration file
dcsCstFr_Cfg.h using switches _TDDLL_HEADER_FILE_<CC_Type>_ACCESS_ where
<CC_Type> is one of the supported FlexRay Controllers (see the following chapters).

If only a single FlexRay CC type is required, the access switches as described above should be
removed completely for not required FlexRay CC types. This allows enabling the compiler
switch TDDLL_SINGLE_CC_TYPE_OPTIMIZATION in file dcsCstFr_Cfg.h that
completely removes the overhead of CC type evaluation at runtime. This saves code
memory as well as execution time.

6.3.3.1 MFR4200 access configuration

MFR4200 FlexRay CC access configuration has to be done setting the compiler switch
_TDDLL_HEADER_FILE_MFR4200_ACCESS_ in file dcsCstFr_Cfg.h to one of the following
values:

MFR4200 access option Description
<dcsCstFr_FCAL_mfr4200_mmap
_access_be.h>

See Figure 15 for a detailed description.

<dcsCstFr_FCAL_mfr4200_mmap
_access_le_straight.h>

See Figure 16 for a detailed description.

<dcsCstFr_FCAL_mfr4200_mmap
_access_le_swapped.h>

See Figure 17 for a detailed description.

This configuration item takes into account, that the data representation of CPU and the FlexRay
communication controller might be different. There are three common methods for connecting a 16-
bit communication controller, depending on the data bus connection and the data representation of
the host CPU. The following examples show the supported connections to a memory-mapped 16-bit
MFR4200 communication controller (CC) with big endian data representation. In the following
figures we assume the host CPU and the CC having the same notation regarding the bit numbering
(lsb=D0, msb=D15).

CPU
(Big Endian)

MFR4200 CC
(Big Endian)

D0 - D0

D15 - D15

D7 - D7

D8 - D8

Figure 15: CPU (BE) – straight connection- CC (BE)

If both data bus participants have the same data representation, obviously there should be a 1:1
connection. The more complex case occurs if the data representation differs. Let’s assume the CPU
is a little endian (LE) device.

Copyright DECOMSYS 2006. - 75 -

COMMSTACK Configuration

CPU
(Little Endian)

MFR4200 CC
(Big Endian)

D0 - D0

D15 - D15

D7 - D7

D8 - D8

Figure 16: CPU (LE) – straight connection – CC (BE)

One solution to the data bus interface would be a bitwise 1:1 connection, which offers transparency
for 16-bit data accesses. But if 16-bit data will be read into the CPU memory and interpreted as 8-bit
data array (e.g. a string) the byte-access will end up in a mess.

CPU
(Little Endian)

MFR4200 CC
(Big Endian)

D8 - D0

D7 - D15

D15 - D7

D0 - D8

Figure 17: CPU (LE) – swapped connection – CC (BE)

Another solution would be to do the byte swapping by the data bus connection, which offers
transparency to 8-bit array accesses but 16-bit units have to be swapped back again.
No matter what hardware connection chosen, the COMMSTACK offers the solution for all three
types of connections between a CPU and a MFR4200 FlexRay CC.

If no MFR4200 CC support is required within the COMMSTACK the switch
_TDDLL_HEADER_FILE_MFR4200_ACCESS_ should be completely removed from file
dcsCstFr_Cfg.h.

6.3.3.2 ERAY10 access configuration

Please note that the ERAY10 FlexRay CC IP doesn’t specify any endianess on the databus
interface. Instead customer specifc interfaces must be provided which can implement as
well a little endian databus-interface semantic as well as a big endian datrabus-interface
semantic. The COMMSTACK is prepared to cover most ERAY10 access variants for little
endian ERAY10 databus interface implementations. Please consult DECOMSYS if you
need a solution provided for ERAY10 implementations offering a big endian databus-
interface.

Copyright DECOMSYS 2006. - 76 -

COMMSTACK Configuration

ERAY10 FlexRay CC access configuration has to be done setting the compiler switch
_TDDLL_HEADER_FILE_ERAY10_ACCESS_ in file dcsCstFr_Cfg.h to one of the following
values:

ERAY10 access option Description
<dcsCstFr_FCAL_eray10_mmap_
access32_le_straight.h>

See Figure 18 for a detailed description.

<dcsCstFr_FCAL_eray10_mmap_
access32_be_straight32.h>

See Figure 19 for a detailed description.

<dcsCstFr_FCAL_eray10_mmap_
access32_be_straight16.h>

See Figure 20 for a detailed description.

This configuration item takes into account, that the data representation of CPU and the FlexRay
communication controller might be different. There are several common methods for connecting a
32-bit communication controller, depending on the data bus width, the data bus connection and the
data representation of the host CPU. The following examples show the supported connections to a
memory-mapped 32-bit ERAY10 communication controller (CC) with little endian data
representation at the databus interface. In the following figures we assume the host CPU and the
CC having the same notation regarding the bit numbering (lsb=D0, msb=D31). The following figures
present the supported data bus connection patterns.

CPU
(Little Endian)

ERAY CC
(Little Endian)

D31 - D31

D24 - D24

D23 - D23

D16 - D16

D15 - D15

D8 - D8

D7 - D7

D0 - D0

Figure 18: CPU (LE) - 32/16-bit straight connection - CC (LE)

Figure 18 shows the connection of a little endian CPU to an ERAY CC with a 16-bit or 32-bit data
bus 1:1 connection.

CPU
(Big Endian)

ERAY CC
(Little Endian)

D31 - D31

D24 - D24

D23 - D23

D16 - D16

D15 - D15

D8 - D8

D7 - D7

D0 - D0

Figure 19: CPU (BE) - 32-bit straight connection - CC(LE)

Copyright DECOMSYS 2006. - 77 -

COMMSTACK Configuration

Figure 19 shows the connection of a big endian CPU to an ERAY CC with a 32-bit data bus 1:1
connection.

CPU
(Big Endian)

ERAY CC
(Little Endian)

D15 - D15

D8 - D8

D7 - D7

D0 - D0

Figure 20: CPU (BE) - 16-bit straight connection - CC (LE)

Figure 20 shows the connection of a big endian CPU to an ERAY CC with a 16-bit data bus 1:1
connection.

If no ERAY10 CC support is required within the COMMSTACK the switch
_TDDLL_HEADER_FILE_ERAY10_ACCESS_ should be completely removed from file
dcsCstFr_Cfg.h.

6.3.3.3 MFR4300 access configuration

MFR4300 FlexRay CC access configuration has to be done setting the compiler switch
_TDDLL_HEADER_FILE_MFR4300_ACCESS_ in file dcsCstFr_Cfg.h to one of the following
values:

MFR4300 access option Description
<dcsCstFr_FCAL_mfr4300_mmap
_access_be.h>

See Figure 21 for a detailed description.

<dcsCstFr_FCAL_mfr4300_mmap
_access_le_straight.h>

See Figure 22 for a detailed description.

<dcsCstFr_FCAL_mfr4300_mmap
_access_le_swapped.h>

See Figure 23 for a detailed description.

This configuration item takes into account, that the data representation of CPU and the FlexRay
communication controller might be different. There are three common methods for connecting a 16-
bit communication controller, depending on the data bus connection and the data representation of
the host CPU. The following examples show the supported connections to a memory-mapped 16-bit
MFR4300 communication controller (CC) with big endian data representation. In the following
figures we assume the host CPU and the CC having the same notation regarding the bit numbering
(lsb=D0, msb=D15).

Copyright DECOMSYS 2006. - 78 -

COMMSTACK Configuration

CPU
(Big Endian)

MFR4300 CC
(Big Endian)

D0 - D0

D15 - D15

D7 - D7

D8 - D8

Figure 21: CPU (BE) – straight connection- CC (BE)

If both data bus participants have the same data representation, obviously there should be a 1:1
connection. The more complex case occurs if the data representation differs. Let’s assume the CPU
is a little endian (LE) device.

CPU
(Little Endian)

MFR4300 CC
(Big Endian)

D0 - D0

D15 - D15

D7 - D7

D8 - D8

Figure 22: CPU (LE) – straight connection – CC (BE)

One solution to the data bus interface would be a bitwise 1:1 connection, which offers transparency
for 16-bit data accesses. But if 16-bit data will be read into the CPU memory and interpreted as 8-bit
data array (e.g. a string) the byte-access will end up in a mess.

CPU
(Little Endian)

MFR4300 CC
(Big Endian)

D8 - D0

D7 - D15

D15 - D7

D0 - D8

Figure 23: CPU (LE) – swapped connection – CC (BE)

Another solution would be to do the byte swapping by the data bus connection, which offers
transparency to 8-bit array accesses but 16-bit units have to be swapped back again.

Copyright DECOMSYS 2006. - 79 -

COMMSTACK Configuration

No matter what hardware connection chosen, the COMMSTACK offers the solution for all three
types of connections between a CPU and a MFR4200 FlexRay CC.

If no MFR4300 CC support is required within the COMMSTACK the switch
_TDDLL_HEADER_FILE_MFR4300_ACCESS_ should be completely removed from file
dcsCstFr_Cfg.h.

6.3.3.4 PHIP1 access configuration

MFR4300 FlexRay CC access configuration has to be done setting the compiler switch
_TDDLL_HEADER_FILE_PHIP1_ACCESS_ in file dcsCstFr_Cfg.h.

Since the Philips FlexRay Controller Rev1 is supported in combination with a single MCU right now
(SJA2510) there is also a single configuration option that describes the connection schema.:

PHIP1 access option Description
<dcsCstFr_FCAL_phip1_mmap_a
ccess32_le_straight.h>

Only PHIP1 FlexRay access configuration available.

6.3.4 FlexRay CC Mapping Configuration

The mapping from FlexRay CC indices given at the COMMSTACK API to real hardware devices is
done in a Post-Compile configuration style. This enables to configure a COMMSTACK delivered as
library to be adapted to a wide range of hardware adaptations on a specific hardware platform.

These configuration modifications have to be done in the configuration file
dcsCstFr_CtrlHW_Cfg.c. In general this file has to be adapted to a hardware a COMMSTACK is
used on and must be linked to every application using the COMMSTACK.

The following configuration options can be modified in this file:

• number of FlexRay CC provided by the hardware

• mapping from API CC index to CC hardware type

• mapping a dedicated FlexRay CC to a memory base address

• supplying a dedicated FlexRay CC with a hardware reset mechanism

First of all an array has to be created that maps FlexRay CC indices as used at the COMMSTACK
API to FlexRay controller types. Please note that the FlexRay CC indices should follow a closed
index range from 0 to the number of FlexRay CCs –1 for optimal resource utilization:
const TDDLL_CtrlMappingType TDDLL_CtrlMapping[2] =
{
 {
 TDDLL_CTRL_TYPE_MFR4200, /* FlexRay CC type of CC index 0 */
 0, /* first MFR4200 in type specific list */
 },
 {
 TDDLL_CTRL_TYPE_ERAY10, /* FlexRay CC type of CC index 1 */
 0, /* first ERAY10 in type specific list */
 },
};
const TDDLL_CtrlIDXType TDDLL_NumCtrl = 2; /* number of FlexRay CCs */
In the example above the FlexRay CC with index 0 maps to an MFR4200 FlexRay CC type and
FlexRay CC with index 1 to an ERAY10 FlexRay CC type implementation. The number of FlexRay
controllers as connected to the target hardware must be stored in the constant variable

Copyright DECOMSYS 2006. - 80 -

COMMSTACK Configuration

TDDLL_NumCtrl. As we will see soon each CC type has an own list, mapping the devices to
hardware resources. The second parameter in the example above is the index into the device
specific hardware resource list, which is described next.
extern void CC0_ResetFunction(void);

const TDDLL_MFR4200_Ctrl_List[1] =
{
 {
 (FCAL_MFR4200_CtrlHandleType) 0x80001800, /* CC base address */
 CC0_ResetFunction /* CC reset function */
 }
};
const TDDLL_CtrlIDXType TDDLL_MFR4200_NumCtrl = 1;
TDDLL_MFR4200_CtrlStateInfoType TDDLL_MFR4200_CtrlStateList[1];
With this example the first (and only) MFR4200 FlexRay CC is mapped to the memory base address
0x80001800. The hardware reset is provided by an external function (CC0_ResetFunction()),
which must be registered for this device. The absolute number of MFR4200 FlexRay CCs is defined
in the constant variable TDDLL_MFR4200_NumCtrl.
const TDDLL_ERAY10_Ctrl_List[1] =
{
 {
 (FCAL_ERAY10_CtrlHandleType) 0x80002800, /* CC base address */
 NULL /* CC reset function */
 }
};
const TDDLL_CtrlIDXType TDDLL_ERAY10_NumCtrl = 1;
TDDLL_ERAY10_CtrlStateInfoType TDDLL_ERAY10_CtrlStateList[1];
The one (and only) ERAY10 FlexRay CC is mapped to the memory base address 0x80002800.
There is no hardware reset provided for the ERAY10 FlexRay controller. Therefore the reset function
pointer has to be set to NULL. The absolute number of ERAY10 FlexRay CCs is defined in the
constant variable TDDLL_ERAY10_NumCtrl.
Please be aware that there is also some RAM required to store the actual COMMSTACK state for
each FlexRay CC used. Therefore an array (the array-size equals to the number of FlexRay CCs of
the corresponding type) owning the state variable has to be allocated for each FlexRay CC type.
The symbols allocating that memory are named TDDLL_MFR4200_CtrlStateList and
TDDLL_ERAY10_CtrlStateList respectively.

Copyright DECOMSYS 2006. - 81 -

Document Information
Date Version Author Changes
30.05.2005 0.1.0 Markus Eggenbauer Initial version, created based on doxygen output
22.06.2005 0.2.0 Markus Eggenbauer Updated according to final source code version
11.07.2005 0.9.0 Michael Ziehensack Finalized for preliminary release version (format, spell

check, …)
18.08.2005 0.9.1 Markus Eggenbauer Fixed minor mistypings.

Added API function TDDLL_IsSync.
Changed FrameID-based API functions.
Changed version information from 1.4.0 to 1.6

18.08.2005 0.9.2 Markus Eggenbauer Added some chapter headings for structural design.
06.09.2005 0.9.3 Gerald Freiberger Added description on COMMSTACK application

configuration with DESIGNER PRO.
Added index.
General updates.

24.10.2005 1.6.0 Markus Eggenbauer Added section COMMSTACK configuration.
Changed versioning according to COMMSTACk
versioning system.

6.12.2005 1.6.1 Markus Eggenbauer Added notes about MFR4300 implementation and
configuration. Implemented review remarks from FHOL.

31.12.2006 1.6.2 Markus Eggenbauer Added notes about PHIP1 implementation and
configuration.

27.2.2006 1.6.4 Markus Eggenbauer -) Moved document source to OpenOffice.
28.2.2006 1.6.5 Markus Eggenbauer -) Added “Abort” transition from state “Config” to state

“Off”.
13.3.2006 1.6.6 Markus Eggenbauer -) Added return code TDDLL_E_ACCESS to API function

TDDLL_CheckTxFraemByID().
24.3.2006 1.8.0 Markus Eggenbauer Document Update to COMMSTACK 1.8.

7 Index
B

Basic datatypes · 11
S

Specific datatypes · 12
T

TDDLL_AbortTxFrameByID() · 21, 33
TDDLL_APIListType · 20
TDDLL_BooleanType · 12, 17, 27
TDDLL_BufferIDXType · 14, 20, 25
TDDLL_ChannelIDXType · 14, 22, 29, 34, 37
TDDLL_CheckTxFrameByID() · 21, 32, 34
TDDLL_CHI_ERAY10_CommandType · 19, 52
TDDLL_CHI_MFR4200_CommandType · 19
TDDLL_CHI_MFR4300_CommandType · 53
TDDLL_CHI_PHIP1_CommandType · 55
TDDLL_ConfigAllBuffers() · 26
TDDLL_ConfigBuffer() · 20, 25
TDDLL_ConfigType · 20, 24
TDDLL_CtrlDscType · 19, 20
TDDLL_CtrlIDXType · 14, 20, 21, 22, 23, 24, 25,

26, 27, 28, 29, 31, 32, 33, 34, 35, 36, 38, 39, 40,
41, 42, 43, 44, 45, 46, 47, 48, 49, 57

TDDLL_CtrlInit() · 20, 24
TDDLL_CtrlMappingType · 22
TDDLL_CtrlStateType · 12, 20, 21, 27, 28, 50, 51,

52, 54
TDDLL_CtrlTransitionType · 13, 21, 28
TDDLL_CtrlTypesType · 14, 22
TDDLL_CycleType · 14, 21, 22, 29, 34, 37, 42, 48
TDDLL_EmptyQueue() · 41
TDDLL_ERAY10_CtrlListType · 22, 51
TDDLL_ERAY10_CtrlStateInfoType · 51
TDDLL_ErrorModeType · 16
TDDLL_FillRxQueue() · 39, 41, 57
TDDLL_FlushTxQueue() · 38, 40
TDDLL_FrameDscRefIDXType · 14, 21, 29, 30,

31, 32, 33, 34, 35, 38, 39, 40, 41, 57
TDDLL_FrameDscType · 17, 19, 20, 25
TDDLL_FrameIDType · 14, 22, 29, 34, 37
TDDLL_FreeBufferPool() · 34
TDDLL_GetCtrlState() · 8, 9, 10, 21, 27
TDDLL_GetCycleLength() · 21, 43
TDDLL_GetNumCtrl() · 23
TDDLL_GetPOCStatus() · 21, 28, 29
TDDLL_GetTime() · 21, 42
TDDLL_Init() · 8, 9, 23
TDDLL_Interrupt SourceType · 15
TDDLL_InterruptDisable() · 21, 46
TDDLL_InterruptEnable() · 21, 45
TDDLL_InterruptResetStatus() · 21, 47, 48

TDDLL_InterruptStatus() · 21, 46, 47
TDDLL_IsSync() · 27
TDDLL_LengthType · 14, 21, 22, 31, 35, 37, 39,

41
TDDLL_LookupRxFrame() · 18, 34, 66, 67
TDDLL_LookupTxFame() · 29
TDDLL_MacroticksToNS() · 44
TDDLL_MFR4200_CtrlListType · 22, 50
TDDLL_MFR4200_CtrlStateInfoType · 50
TDDLL_MFR4300_CtrlListType · 53
TDDLL_MFR4300_CtrlStateInfoType · 52
TDDLL_NSToMacroticks() · 43, 44
TDDLL_PHIP1_CtrlListType · 54
TDDLL_PHIP1_CtrlStateInfoType · 54
TDDLL_PHIP1_FrameDsc_ExtendedConfigType

· 55
TDDLL_POCStateType · 15, 17
TDDLL_POCStatusType · 17, 21, 28
TDDLL_PoolDscType · 18, 19
TDDLL_QueueDscType · 18
TDDLL_ReturnType · 12, 20, 21, 22, 23, 24, 25,

26, 28, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42,
43, 48, 49, 57, 65, 66, 67

TDDLL_RX_FRAME_TRIGGERING () · 35
TDDLL_RxFIFOFrameByID() · 36
TDDLL_RxFrameByID() · 21, 35, 36, 66, 67, 68
TDDLL_RxFrameByIDQueued() · 18, 39, 40
TDDLL_SetConfig() · 24
TDDLL_SetTimerAbs() · 22, 48
TDDLL_SetTimerRel() · 22, 49
TDDLL_SlotModeType · 15
TDDLL_StartupStateType · 16
TDDLL_TickType · 15, 21, 22, 42, 43, 44, 48, 49
TDDLL_TimeType · 15, 43, 44
TDDLL_TX_FRAME_TRIGGERING () · 30
TDDLL_TxFrameByID() · 21, 31, 65, 66
TDDLL_TxFrameByIDQueued() · 18, 38, 39

 TDDLL_PHIP1_FrameBufferType · 56
 TDDLL_PHIP1_RegisterType · 55
 TDDLL_PHIP1_SlotControlType · 54
 TDDLL_PHIP1_VirtualRegisterType · 56

	Table of Contents
	1Introduction
	1.1Overview
	1.2Glossary

	2Architecture
	2.1COMMSTACK Design
	2.2State Model

	3API Documentation
	3.1Basic Datatypes
	3.1.1uint8
	3.1.2uint16
	3.1.3uint32
	3.1.4uint8_least
	3.1.5uint16_least
	3.1.6uint32_least
	3.1.7sint8
	3.1.8sint16
	3.1.9sint32

	3.2Specific Datatypes
	3.2.1TDDLL_BooleanType
	3.2.2TDDLL_ReturnType
	3.2.3TDDLL_CtrlStateType
	3.2.4TDDLL_CtrlTransitionType
	3.2.5TDDLL_CtrlTypesType
	3.2.6TDDLL_FrameDscRefIDXType
	3.2.7TDDLL_CtrlIDXType
	3.2.8TDDLL_FrameIDType
	3.2.9TDDLL_ChannelIDXType
	3.2.10TDDLL_CycleType
	3.2.11TDDLL_LengthType
	3.2.12TDDLL_BufferIDXType
	3.2.13TDDLL_TickType
	3.2.14TDDLL_TimeType
	3.2.15TDDLL_Interrupt SourceType
	3.2.16TDDLL_POCStateType
	3.2.17TDDLL_SlotModeType
	3.2.18TDDLL_ErrorModeType
	3.2.19TDDLL_WakeupStatusType
	3.2.20TDDLL_StartupStateType

	3.3Structure Data Types
	3.3.1TDDLL_POCStatusType
	3.3.2TDDLL_FrameDscType
	3.3.3TDDLL_QueueDscType
	3.3.4TDDLL_PoolDscType
	3.3.5TDDLL_CtrlDscType
	3.3.6TDDLL_ConfigType
	3.3.7TDDLL_APIListType
	3.3.8TDDLL_CtrlMappingType

	3.4Basic Constants
	3.4.1NULL

	3.5Initialization & Configuration Services
	3.5.1TDDLL_Init()
	3.5.1.1Synopsis
	3.5.1.2Semantics
	3.5.1.3Parameters
	3.5.1.4Return Values

	3.5.2TDDLL_GetNumCtrl()
	3.5.2.1Synopsis
	3.5.2.2Semantics
	3.5.2.3Parameters
	3.5.2.4Return Values

	3.5.3TDDLL_SetConfig()
	3.5.3.1Synopsis
	3.5.3.2Semantics
	3.5.3.3Parameters
	3.5.3.4Return Values

	3.5.4TDDLL_CtrlInit()
	3.5.4.1Synopsis
	3.5.4.2Semantics
	3.5.4.3Parameters
	3.5.4.4Return Values

	3.5.5TDDLL_ConfigBuffer()
	3.5.5.1Synopsis
	3.5.5.2Semantics
	3.5.5.3Parameters
	3.5.5.4Return Values

	3.5.6TDDLL_ConfigAllBuffers()
	3.5.6.1Synopsis
	3.5.6.2Semantics
	3.5.6.3Parameters
	3.5.6.4Return Values

	3.6Status Information Services
	3.6.1TDDLL_IsSync()
	3.6.1.1Synopsis
	3.6.1.2Semantics
	3.6.1.3Parameters
	3.6.1.4Return Values

	3.6.2TDDLL_GetCtrlState()
	3.6.2.1Synopsis
	3.6.2.2Semantics
	3.6.2.3Parameters
	3.6.2.4Return Values

	3.6.3TDDLL_DoCtrlTransition()
	3.6.3.1Synopsis
	3.6.3.2Semantics
	3.6.3.3Parameters
	3.6.3.4Return Values

	3.6.4TDDLL_GetPOCStatus()
	3.6.4.1Synopsis
	3.6.4.2Semantics
	3.6.4.3Parameters
	3.6.4.4Return Values

	3.7Transmission Services
	3.7.1TDDLL_LookupTxFame()
	3.7.1.1Synopsis
	3.7.1.2Semantics
	3.7.1.3Parameters
	3.7.1.4Return Values

	3.7.2TDDLL_TX_FRAME_TRIGGERING ()
	3.7.2.1Synopsis
	3.7.2.2Semantics
	3.7.2.3Parameters
	3.7.2.4Return Values

	3.7.3TDDLL_TxFrameByID()
	3.7.3.1Synopsis
	3.7.3.2Semantics
	3.7.3.3Parameters
	3.7.3.4Return Values

	3.7.4TDDLL_CheckTxFrameByID()
	3.7.4.1Synopsis
	3.7.4.2Semantics
	3.7.4.3Parameters
	3.7.4.4Return Values

	3.7.5TDDLL_AbortTxFrameByID()
	3.7.5.1Synopsis
	3.7.5.2Semantics
	3.7.5.3Parameters
	3.7.5.4Return Values

	3.7.6TDDLL_FreeBufferPool()
	3.7.6.1Synopsis
	3.7.6.2Semantics
	3.7.6.3Parameters
	3.7.6.4Return Values

	3.8Reception Services
	3.8.1TDDLL_LookupRxFrame()
	3.8.1.1Synopsis
	3.8.1.2Semantics
	3.8.1.3Parameters
	3.8.1.4Return Values

	3.8.2TDDLL_RX_FRAME_TRIGGERING ()
	3.8.2.1Synopsis
	3.8.2.2Semantics
	3.8.2.3Parameters
	3.8.2.4Return Values

	3.8.3TDDLL_RxFrameByID()
	3.8.3.1Synopsis
	3.8.3.2Semantics
	3.8.3.3Parameters
	3.8.3.4Return Values

	3.8.4TDDLL_RxFIFOFrameByID()
	3.8.4.1Synopsis
	3.8.4.2Semantics
	3.8.4.3Parameters
	3.8.4.4Return Values

	3.9Queue Services
	3.9.1TDDLL_FlushTxQueue()
	3.9.1.1Synopsis
	3.9.1.2Semantics
	3.9.1.3Parameters
	3.9.1.4Return Values

	3.9.2TDDLL_FillRxQueue()
	3.9.2.1Synopsis
	3.9.2.2Semantics
	3.9.2.3Parameters
	3.9.2.4Return Values

	3.9.3TDDLL_TxFrameByIDQueued()
	3.9.3.1Synopsis
	3.9.3.2Semantics
	3.9.3.3Parameters
	3.9.3.4Return Values

	3.9.4TDDLL_RxFrameByIDQueued()
	3.9.4.1Synopsis
	3.9.4.2Semantics
	3.9.4.3Parameters
	3.9.4.4Return Values

	3.9.5TDDLL_EmptyQueue()
	3.9.5.1Synopsis
	3.9.5.2Semantics
	3.9.5.3Parameters
	3.9.5.4Return Values

	3.10Time Services
	3.10.1TDDLL_GetTime()
	3.10.1.1Synopsis
	3.10.1.2Semantics
	3.10.1.3Parameters
	3.10.1.4Return Values

	3.10.2TDDLL_GetCycleLength()
	3.10.2.1Synopsis
	3.10.2.2Semantics
	3.10.2.3Parameters
	3.10.2.4Return Values

	3.10.3TDDLL_NSToMacroticks()
	3.10.3.1Synopsis
	3.10.3.2Semantics
	3.10.3.3Parameters
	3.10.3.4Return Values

	3.10.4TDDLL_MacroticksToNS()
	3.10.4.1Synopsis
	3.10.4.2Semantics
	3.10.4.3Parameters
	3.10.4.4Return Values

	3.11Timer & Interrupt Services
	3.11.1TDDLL_InterruptEnable()
	3.11.1.1Synopsis
	3.11.1.2Semantics
	3.11.1.3Parameters
	3.11.1.4Return Values

	3.11.2TDDLL_InterruptDisable()
	3.11.2.1Synopsis
	3.11.2.2Semantics
	3.11.2.3Parameters
	3.11.2.4Return Values

	3.11.3TDDLL_InterruptStatus()
	3.11.3.1Synopsis
	3.11.3.2Semantics
	3.11.3.3Parameters
	3.11.3.4Return Values

	3.11.4TDDLL_InterruptResetStatus()
	3.11.4.1Synopsis
	3.11.4.2Semantics
	3.11.4.3Parameters
	3.11.4.4Return Values

	3.11.5TDDLL_SetTimerAbs()
	3.11.5.1Synopsis
	3.11.5.2Semantics
	3.11.5.3Parameters
	3.11.5.4Return Values

	3.11.6TDDLL_SetTimerRel()
	3.11.6.1Synopsis
	3.11.6.2Semantics
	3.11.6.3Parameters
	3.11.6.4Return Values

	4CC Type Specific Extensions
	4.1Freescale MFR4200
	4.1.1Datatypes
	4.1.1.1TDDLL_MFR4200_CtrlStateInfoType
	4.1.1.2TDDLL_MFR4200_CtrlListType
	4.1.1.3TDDLL_CHI_MFR4200_CommandType

	4.1.2Extensions

	4.2Bosch ERAY
	4.2.1Datatypes
	4.2.1.1TDDLL_ERAY10_CtrlStateInfoType
	4.2.1.2TDDLL_ERAY10_CtrlListType
	4.2.1.3TDDLL_CHI_ERAY10_CommandType
	4.2.1.4TDDLL_ERAY10_FrameDsc_ExtendedConfigType

	4.2.2Extensions

	4.3Freescale MFR4300
	4.3.1Datatypes
	4.3.1.1TDDLL_MFR4300_CtrlStateInfoType
	4.3.1.2TDDLL_MFR4300_CtrlListType
	4.3.1.3TDDLL_CHI_MFR4300_CommandType
	1.1.1TDDLL_MFR4300_FrameDsc_ExtendedConfigType

	4.3.2Extensions

	4.4Philips Rev1 FlexRay CC (SJA2510)
	4.4.1Datatypes
	4.4.1.1TDDLL_PHIP1_SlotControlType
	4.4.1.2TDDLL_PHIP1_CtrlStateInfoType
	4.4.1.3TDDLL_PHIP1_CtrlListType
	4.4.1.4TDDLL_CHI_PHIP1_CommandType
	1.1.2TDDLL_PHIP1_FrameDsc_ExtendedConfigType
	1.1.3TDDLL_PHIP1_RegisterType
	4.4.1.5TDDLL_PHIP1_VirtualRegisterType
	4.4.1.6TDDLL_PHIP1_FrameBufferType

	4.4.2Extensions
	4.4.2.1TDDLL_SetSlotControl_PHIP1()
	4.4.2.1.1Synopsis
	4.4.2.1.2Semantics
	4.4.2.1.3Parameters
	4.4.2.1.4Return Values

	5DESIGNER PRO Integration
	5.1Use Case Assumption
	5.2Generating the COMMSTACK Configuration
	5.2.1Assumption
	5.2.2Invocation of the Driver Configuration Plug-In
	5.2.3Selector Panel
	5.2.4Communication Assignment Grid
	5.2.5Assigning Queues
	5.2.6Advanced Configuration Panel
	5.2.6.1Communication Controller Registers
	5.2.6.2Automatic Buffer Assignment
	5.2.6.3Minimize Buffer Consumption
	5.2.6.4Manual Buffer Assignment
	5.2.6.5Code Generation
	5.2.6.6Generate All Function

	5.3Applying the COMMSTACK Configuration
	5.3.1Example for sending a frame using the TDDLL_TxFrameByID() and TDDLL_LookupTxFrame() COMMSTACK API functions
	5.3.2Example for sending a frame using the TDDLL_TxFrameByID() and TDDLL_TX_FRAME_TRIGGERING() COMMSTACK API functions
	5.3.3Example for receiving a frame using TDDLL_RxFrameByID() and TDDLL_LookupRxFrame() COMMSTACK API functions
	5.3.4Example for receiving a frame using the TDDLL_RxFrameByID() and TDDLL_RX_FRAME_TRIGGERING() COMMSTACK API functions

	6COMMSTACK Configuration
	6.1COMMSTACK File Structure
	6.2COMMSTACK Feature Configuration
	6.2.1COMMSTACK Feature Switches

	6.3COMMSTACK Target Hardware Configuration
	6.3.1Compiler specific function implementations
	6.3.2CPU Memory Access Configuration
	6.3.3FlexRay CC Access Configuration
	6.3.3.1MFR4200 access configuration
	6.3.3.2ERAY10 access configuration
	6.3.3.3MFR4300 access configuration
	6.3.3.4PHIP1 access configuration

	6.3.4FlexRay CC Mapping Configuration

	Document Information
	7Index

