

Eddy DK

Programmer Guide

Ver 2.0c

2008. 04. 02

 1-2

Revision History

Revision Date Document
Version Pages Description

Nov ,6 , 2007 2.0a All Initial release by shlee

Mar,19 , 2008 2.0b 9-4 Typo corrections by shlee

Apr, 02, 2008 2.0c All LemonIDE Windows by shlee

 I

Table of Contents

Chpater1. Introduction ...1-1

1.1 About this document...1-1

1.2 Who should read this document?...1-1

1.3 Document organization ..1-2

1.4 Eddy-DK Related Documents...1-3

1.5 Technical Support...1-4

Chpater2. Getting Started ..2-1

2.1 What can you do with Eddy-DK?..2-1

2.2 Eddy-DK Package Contents...2-2

2.3 Eddy-DK Board ..2-2

2.3.1 Locations of modules ... 2-2

2.3.2 Description on switches.. 2-3

2.3.3 Power and Communication Port... 2-4

2.3.4 LED Description ... 2-7

2.4 Hardware installation..2-10

2.4.1 Eddy-CPU Installation .. 2-10

2.4.2 Eddy-S1/PIN Installation..2-11

2.5 Features and functions of Eddy-DK..2-12

2.5.1 Eddy module Main Memory Map.. 2-13

2.5.2 Eddy Flash Memory Map.. 2-14

2.5.3 Eddy directory structure.. 2-14

2.5.4 Booting Eddy .. 2-14

Chpater3. Development environment ...3-1

3.1 Source code directory structure..3-1

3.2 Language ...3-2

3.3 Development environment ...3-2

3.4 Installing to Windows Host ...3-2

3.4.1 Installing Cygwin... 3-3

3.4.2 Configuring Windows Environment Variables... 3-4

3.4.3 Installing Toolchain ... 3-4

3.4.4 Installing Eddy DK Source.. 3-5

3.5 Installing to Linux Host ...3-6

3.5.1 Installing Toolchain ... 3-6

3.5.2 Installing Eddy DK Source.. 3-6

3.6 Removing Development Environment ..3-7

3.6.1 Removing Windows Development Environment .. 3-7

3.6.2 Removing Linux Development Environment .. 3-7

Chpater4. Compiling Application ..4-1

4.1 Source Code ..4-1

4.2 Writing a Makefile...4-3

 II

4.3 Compile ... 4-4

4.3.1 Compiling on Windows..4-4

4.3.2 Compiling on Linux..4-5

4.3.3 Compiling with LemonIDE...4-5

4.4 Uploading and executing an application via FTP... 4-5

Chpater5. Creating Firmware.. 5-1

5.1 How to create a firmware... 5-1

5.2 Firmware update via FTP server ... 5-4

Chpater6. Library Introduction ... 6-1

6.1 Introduction.. 6-1

6.2 Makefile ... 6-1

6.3 System functions ... 6-1

6.4 Eddy Environment Function .. 6-2

6.5 Serial functions .. 6-6

6.6 Ethernet functions.. 6-9

6.7 GPIO Functions ... 6-14

6.8 Debugging Function .. 6-16

Chpater7. Eddy Software... 7-1

7.1 Software Structure Diagram... 7-1

7.2 Main Applications... 7-2

7.2.1 eddy.c Application ...7-2

7.2.2 Pinetd.c Application...7-2

7.2.3 Other Applications...7-2

Chpater8. Handling HTML & CGI .. 8-1

8.1 WEB Configuration .. 8-1

8.2 Example HTML code ... 8-1

8.3 Example CGI Code.. 8-2

Chpater9. Appendix ... 9-1

9.1 System recovery.. 9-1

9.1.1 Installing TFTP in Linux environment ..9-1

9.1.2 Hardware Install and Recovery ...9-2

9.1.3 Solving problems during recovery...9-7

9.2 Product Specifications ... 9-8

9.3 Ordering information.. 9-9

 Chapter1. Introduction

Chpater1. Introduction

This chapter briefly explains about this manual and introduces the related documents and support.

1.1 About this document
This manual explains about how a programmer can develop a customized application for Eddy module and how

this application can be uploaded and executed on the module. To help programmers with this work, information on

Eddy's operating system and API functions for convenient source writing is supplied.

After reading this document, a programmer can write his or her own application and execute it on the module.

1.2 Who should read this document?
This document is designed for programmers who wish to develop a new application using Eddy-DK. It is strongly

recommended that the programmer read this document before starting any programming work. If you are an

administrator or an end user who just needs to apply the module into practical applications, you do not need to read

this document. User's Guide will be helpful in that case. This manual deals with the complete process of writing

source codes and making a firmware that can be uploaded and executed on Eddy module.

 1-1

Chapter1. Introduction

1.3 Document organization
Chapter 1. Introduction is a preface with general information and introductory notices.

Chapter 2. Getting Started gives brief information needed before starting programming work.

Chapter 3. Writing Application explains about the process of writing a customized application and related

work..

Chapter 4. Compiling Application deals with the process of compiling your application with Makefile.

Chapter 5. Creating Firmware helps you converting a compiled application into a firmware that can be

accepted by Eddy module.

Chapter 6. Library explains about the library and API functions you can use while programming and

application.

Chapter 7. Eddy Software shows how to implement simple TCP/IP and serial routines using example source

codes that are included in the development kit.

Chapter 8. Handling HTML & CGI provides a guide for integrating your own applications with Eddy's web

interface.

Chapter 9. Appendix provides programming notes and a list of default utilities.

 1-2

 Chapter1. Introduction

1.4 Eddy-DK Related Documents
The following table summarizes documents included in the Eddy-DK document set.

Table 1-1 Eddy-Serial DK Related Documents

Document Name Description

User Guide Integration, configuration, and management of Eddy for the
administrator

Programmer’s Guide

Programmer’s application development guide, including in-depth
approach to compiling, linking, and creating firmware
API reference is also included with a list of available functions
for customized application programming

Portview User Manual Guide for SystemBase device server management application Portview

COM Port Redirector User
Manual Guide for SystemBase COM Port Redirector

If you need brief information on Eddy or embedded device servers in general, please visit our corporate website at

http://www.sysbas.com/. You can view and/or download documents related to Eddy as well as latest software and

firmware updates. Available resources are as follows:

Document Name Description

Eddy Spec Sheet Specifications for Eddy products

Eddy White Paper
An introductory reading for anyone new to embedded device server.
Deals with background, history, market environment, and technology

Eddy Application Notes Application instruction of Eddy described with diagram and image.

All documents are updated promptly, so check for the recent document update. The contents in these documents are

subject to change without any notice in advance.

 1-3

http://www.sysbas.com/

Chapter1. Introduction

 1-4

1.5 Technical Support
There are three ways you can get a technical support from SystemBase.

First, visit our website http://www.sysbas.com/ and go to ‘Technical Support’ menu. There you can read FAQ and

ask your own question as well.

Second, you can e-mail our technical support team. The mail address is tech@sysbas.com. Any kind of inquiries,

requests, and comments are welcome.

Finally, you can call us at the customer center for immediate support. Our technical support team will kindly help

you get over with the problem.

The number to call is 82-2-855-0501 (Extension number 225). Do not forget to dial the extension number after

getting a welcome message.

Copyright 2007 SystemBase Co., Ltd. All rights reserved.

Homepage: http://www.sysbas.com/

Tel: +82-2-855-0501

Fax: +82-2-855-0580

1601, DaeRyung Post Tower 1, 212-8, Guro-dong, Guro-gu, Seoul, Korea

http://www.sysbas.com/
mailto:tech@sysbas.com
http://www.sysbas.com/

 Chapter 2. Getting Started

Chpater2. Getting Started

This chapter explains about packaging and installation, and discusses key features of Eddy-DK.

2.1 What can you do with Eddy-DK?

Eddy-DK is designed to help programmers to develop a customized application that can be applied to Eddy module

easier and faster. It has been a time-consuming and burdensome work to port an operating system and develop an

application on a new hardware. Eddy module and Software Development Kit makes this work easy.

Eddy-DK is different with other device servers in which it can run customized applications. Users can upload most

existing socket/serial communication applications that are running on the Linux environment. This openness allows

users to apply wide variety of functions into the module with relatively less restrictions.

Eddy-DK supports IDE (LemonIDE) and SDK environment to help programmers to execute their own applications

on the module. Programmers can easily write applications using the Linux environment, with the help of SDK and

example source codes. Cross-compiler running on the standard Linux environment helps your applications to run on

the Eddy module. Embedded Linux on Eddy can provide stable and rapid environment for your applications

 2-1

Chapter 2. Getting Started

2.2 Eddy-DK Package Contents
Eddy-DK includes Eddy module.

Eddy-DK package contains as follows. Make sure following contents are included in the Eddy Serial DK Package.

- 1EA, Eddy-DK board

- 2EA , Serial cable

- 1EA , LAN cable

- 1EA , Power adaptor

- 1EA, Jumper cable

- 1EA, 10Pin flat cable

- 1EA, 16Pin flat cable

- 1EA , CD (SystemBase SDK, LemonIDE, compile environment, utilities, manuals)

2.3 Eddy-DK Board

2.3.1 Locations of modules

1) Only ONE Eddy module can be loaded and tested with Eddy Serial DK at a time. Do not

load two or more modules simultaneously.

2) Ensure that the input power supply for Eddy Serial DK is 5.0 V with 400 mA(or higher).

NOTE

 2-2

 Chapter 2. Getting Started

2.3.2 Description on switches

Product Setting Switch

COM1 Select Switch

Reset Switch

2.3.2.1. Reset Switch

Reboots the system.

2.3.2.2. Product Setting Switch

This switch is used when Eddy-CPU is mounted on the development board.to determine its behavior.

Product setting switch can be adjusted to make Eddy-CPU mounted development board operate as Eddy-CPU,

Eddy-S1/PIN,Eddy-S1/DB9.

This feature is to provide usage of Debug port, Status LED and RJ45 port on the development board for easier

testing and debugging.

 Set as shown on the left and it will operate as Eddy-CPU.

 Set as shown on the left and it will operate as Eddy-S1/PIN.

 Set as shown on the left and it will operate as Eddy-S1/DB9.

 Set as shown on the left and it will operate as Eddy-S2M/PIN

 Set as shown on the left and it will operate as Eddy-DK-C .

 2-3

Chapter 2. Getting Started

(Eddy-DK-C mode is to provide RS422/485 testability to Eddy-CPU module. Eddy-CPU module within its logic

supports only RS232. In order to test Eddy-CPU on RS422/485 mode, mount Eddy-CPU to development board and set

Product Setting Switch to Eddy-DK-C.)

2.3.2.3. COM1 Select Switch

If you set Product Setting Switch to Eddy-DK-C model, you can use COM PORT 1 for RS232 and RS422/RS485.

Set Product Setting Switch to Eddy-DK-C, connect this jumper, and select RS422 or RS485 in web environment

setting. However you have to be careful because it will operate in RS232 regardless of the web environment setting

if the jumper is not connected.

This jumper allows you to use RS422/RS485 when the Product Setting Switch is set as Eddy-DK-C; if you set the

switch to other models do not connect this jumper.

2.3.3 Power and Communication Port

Power Jack

Debug Port

LAN Port

COM2 Port

COM1 Port

2.3.3.1. LAN Port
Lan Port automatically recognizes Cross/ Direct.(auto MDIX)

Pin Signal Description

1 TXD+ Transmit Data +

2 TXD- Transmit Data -

3 RXD+ Receive Data +

 2-4

 Chapter 2. Getting Started

6 RXD- Receive Data -

LED Description

Left Green Upon 100Base-TX link, it lights. When the data is sent or
received, it blinks.

Right Yellow Upon 10Base-T link, it lights. When the data is sent or received, it
blinks.

2.3.3.2. Serial Port

Figure 2-1 Serial port pin description

RS232
Pin Signal Description

1 DCD Data Carrier Detection (Input)

2 RXD Receive Data (Input)

3 TXD Transmit Data (Output)

4 DTR Data Terminal Ready (Output)

5 GND Ground

6 DSR Data Set Ready (input)

7 RTS Request to Send (Output)

8 CTS Clear to Send (Input)

9 RI Ring Indicator (Input)

RS422 Full Duplex

Pin Signal Description

2 RXD+ Receive differential data positive (Input)

3 TXD+ Transmit differential data positive (Output)

6 RXD- Receive differential data negative (input)

7 TXD- Transmit differential data negative (Output)

 RS485 Half Duplex

Pin Signal Description

3 TRX+ Transmit/Receive differential data positive

7 TRX- Transmit/Receive differential data negative

 2-5

Chapter 2. Getting Started

-When Eddy-CPU is mounted on the development board.
COM1 & COM2 function differs based on ‘Product Setting Switch’ settings.

When ‘Product Setting Switch’ is set to ‘Eddy-CPU’, COM1 & COM2 ports will operate as RS232 ports..
When ‘Product Setting Switch’ is set to ‘Eddy-S1/PIN’, only COM1 port can be used as RS/232.
When ‘Product Setting Switch’ is set to ‘Eddy-S1/DB9’, only COM1 port can be used as RS/232.
When ‘Product Setting Switch’ is set to ‘Eddy-DK-C, COM1 will operate as RS 422/485 port and COM2 as RS232 port.

- When Eddy-S1/PIN is mounted on the development board
Only COM1 port can be used as RS232 port regardless of ‘Product Setting Switch’ settings.

- When Eddy-S1/PIN-C is mounted on the development board
Only COM1 port can be used as RS422/485 port regardless of ‘Product Setting Switch’ settings.

2.3.3.3. Debug Port

You can check debug message or status information with debug port.

Please note that ‘Debug Port’can be used only when Eddy-CPU is mounted on the development

board. ‘Product Setting Switch’can be set to any mode.In other words, Debug Port will

operate as long as Eddy-CPU is mounted on the development board regardless of settings on

Product Setting switch.

Environment Setting
Debug port is configured as follows so user has to set his or her PC serial port connected to debug port as follows.

Speed : 115200 bps

Data bit : 8 bit

Parity bit : Non Parity

Stop bit : 1 bit

 2-6

 Chapter 2. Getting Started

2.3.3.4. Power Jack
Contact Polarity

Center +5VDC ± 5%(Min. 400mA)

Outer Ground

Figure 2-2 Power connector

2.3.4 LED Description

Power, Ready LED

Debug Port LED

COM2 Port LED

COM1 Port LED

GPIO LED

 2-7

Chapter 2. Getting Started

2.3.4.1. GPIO LED

GPIO ports provided by Eddy are maximum 16.

Not all Eddy modules provide GPIO port. Number of port can be limited or sometimes no port is provided at all due

to different characteristics of each module, such as using port for internal use.(Active High : 3.3V DC, Active Low :

0 V)

Input Output
Model

Ports Available port range Ports Available port range

Eddy-CPU
12 GPIO 5 ~16

GPIO 1~4 are used internally

16
GPIO 1 ~ 16

GPIO 1~4 are used internally to support RS422/485 and hence GPIO ports 5~16 is

available to the user

Eddy-DK-C

(When Eddy-CPU is mounted

and Product Setting Switch is

set to Eddy-DK-C)

12
GPIO 5 ~16

12
GPIO 5 ~16

GPIO 1~12 are used internally Eddy-S1/Pin,

Eddy-S1/Pin-C 4 GPIO 13 ~16 4 GPIO 13 ~16

Eddy-S1/DB9,

Eddy-S1/DB9-C
0 None 0 None

Eddy-S1/DB9-PoE,

Eddy-S1/DB9-PoE-C
0 None 0 None

Eddy-WS1-TTL,

Eddy-WS1-TTL-C
4 GPIO 13 ~16 4 GPIO 13 ~16

Eddy-WS1-PiN,

Eddy-WS1-PiN-C
4 GPIO 13 ~16 4 GPIO 13 ~16

Eddy-WS1-DB9,

Eddy-WS1-DB9-C
0 None 0 None

 2-8

 Chapter 2. Getting Started

2.3.4.2. Power, Ready LED

Ready LED: Indicates that the system is operating normally. (Normal: LED blinks)

Power LED: Indicates that the 5 V power is being supplied. (Supplying power: Red LED ON)

2.3.4.3. Debug Port LED

Debug Port Transmit LED: Shows transmission status of the Debug Port.

Debug Port Receive LED: Shows reception status of the Debug Port.

2.3.4.4. COM1 Port LED

COM1 Port Transmit LED: Shows transmission status of COM1 Port.

COM1 Port Receive LED: Shows reception status of COM1 Port.

2.3.4.5. COM2 Port LED

COM2 Port Transmit LED: Shows transmission status of COM2.

COM2 Port Receive LED: Shows reception status of COM2 Port.

 Debug Port LED, COM1 Port LED, COM2 Port LED is only supporting in Eddy-CPU and Eddy-DK-C

 2-9

Chapter 2. Getting Started

2.4 Hardware installation

2.4.1 Eddy-CPU Installation

Place Eddy CPU module firmly on to Eddy-DK board as shown above.

Connect LAN cable to the LAN port.

Connect DB9 serial cable to COM 1, COM2, and Debug Port.

Configure Product Setting Switch1 to Eddy-CPU mode (Please see 2.3.2.2. Product Setting Switch)

After checking that the input power is 5 V, supply the power to the Eddy-DK board.

Check the Power LED condition to make sure the operation is normal.

If Eddy CPU module is in initialized state, all GPIO LEDs should be ON. If all LEDs are not

ON, check and see whether GPIO and Product Setting Switch settings are set properly.

 2-10

 Chapter 2. Getting Started

2.4.2 Eddy-S1/PIN Installation

Place Eddy-S1/PIN module firmly on to Eddy-DK board as shown above.

Connect LAN cable to the LAN port of Eddy-S1/PIN.

Connect DB9 serial cable to COM 1.

Connect Jumper cable to COM1 Select Switch

After checking that the input power is 5 V, supply the power to the Eddy-DK board

Check the Power LED condition to make sure the operation is normal.

If Eddy CPU module is in initialized state, all of the GPIO13 to GPIO16 LEDs should be ON.

 2-11

Chapter 2. Getting Started

2.5 Features and functions of Eddy-DK
RS232/422/485 serial interface

Supports the RS232 serial interface that is most widely used in many industries.

Easy and quick system integration

Signal lines easily connectable via pin units.

Users can program and execute their own application in GUI environment using LemonIDE.

User programs can be made into firmware and executed.

DK and API provided

Libraries and APIs provided for easy use of Eddy hardware functions.

32-bit ARM9 CPU / 4MB Flash / 32MB SDRAM

Powerful 32-bit ARM9 CPU operating in 180 MHz with sufficient memory size for any application.

10/100Mbps LAN port

Simple & Easy Network Connectivity via stable LAN ports.

COM port redirection supported

Compatible with the serial port based control programs. TCP/IP programming is not necessary for new applications.

 2-12

 Chapter 2. Getting Started

2.5.1 Eddy module Main Memory Map

 2-13

Chapter 2. Getting Started

2.5.2 Eddy Flash Memory Map
Start address (size) Item Description

0x10000000 (4Kbyte) BootStrap Initialize hardware and calls bootloader
from flash memory to the RAM and
execute the bootloader.

0x10002000 (112Kbyte) Bootloader The Eddy boot loader is stored.

0x1001E000 (1.2Mbyte) Kernel Lemonix OS kernel is stored.
0x1012E000 (2.5MByte) Filesystem Various execution files are stored.
0x103AE000(384Kbyte) Configuration Information for system operating

environment is stored.

2.5.3 Eddy directory structure
The Eddy file system consists of the following directories:

Name Description Access authority

/bin, /sbin,
/lib, /etc

Executables and system utilities Read & Write

/dev Device file Read & Write

/tmp

Tmp file system area of 15M bytes. The size of this
area is flexible; when application run by Eddy
requires more memory, this area can be reduced.
We recommend user to use this area for uploading
file through FTP.

Read & Write

/usr Various program needed for the system and web
files Read & Write

/flash

This is flash area which stores files that have to be
remained even if the power is reset, such as
environment setting. This area provides 384 K
bytes.

Read & Write

The Eddy’s entire folders are open for read & write. All loaded files are deleted after reboot except the data stored in

/flash.

2.5.4 Booting Eddy
Eddy user manual provides a step-by-step guide for booting the module. Only Eddy-DK-related topics are

 2-14

 Chapter 2. Getting Started

explained in this guide.

Provide power supply to the Eddy module and connect via Telnet

Default IP address: 192.168.0.223

Open your telnet client and enter Eddy’s IP address to connect. You need to enter appropriate username and

password to login. Please note that this username and password is used as authentication method for Web as well.

This means if username or/and password has been modified from the telnet interface, modified values have to be

entered to connect to web, and vice versa.
Factory default username: eddy
Factory default password: 99999999

 2-15

Chapter 3. Development environment

Chpater3. Development environment

This chapter explains about the process of application programming and other important notes.

SDK’s directory structures are as follows.

Note

All material regarding Eddy including documentation, reference sources and utilities are periodically updated to

www.embeddedmodule.com without prior notice. Visit and download latest updates at this site.

3.1 Source code directory structure

 3-1

http://www.embeddedmodule.com/

Chapter 3. Development environment

 3-2

Firmware directory
Kernel image, file system image, and configuration image are stored.

Ramdisk directory
flash: Configuration information is stored.
root: Information for the file system is stored.

Tools directory

Tools used for creating image files is stored.

Src
Directory where source codes of the applications included in Eddy are stored..
Detailed description of src directory is at Chapter4. Compiling Application.
- Eddy-APPs : Source code of the application run by Eddy is stored.
- Other folders contain open sources needed by Eddy.

3.2 Language
Eddy-DK application has to be written with C language. All example source codes are written in C language. You

can program application with more than one file if you program with C language. If you are accustomed to

programming with ANSI C, Eddy application programming shouldn't be any problem.

3.3 Development environment
You need a Windows or Linux host system to use Eddy-DK.

Tested OS versions are as follows.

Windows Linux

Windows XP SP2

Windows 2000

Windows 2003

Red Hat 9.0

Fedora Core 4, 5, 6

SUSE Linux Enterprise Server 10.2

Ubuntu Linux 6.x, 7.x

Debian Linuv 4.0

CentOS 4.5

Asianux edition 3

3.4 Installing to Windows Host
This chapter will describe how to install Eddy development environment on a Windows host.

Explanation on this manual is based on Windows XP.

In order to use Eddy’s integrated development environment, LemonIDE, refer to “LemonIDE_User_Guide” for

detailed instructions.

Chapter 3. Development environment

3.4.1 Installing Cygwin
In order to execute LemonIDE on Windows hosts, libraries from Linux system is required.

Cygwin is a virtual Linux program which enables Linux environment to be compatible on Windows hosts and

LemonIDE requires Cygwin to be running on Windows host for proper operations.

Run Setup.exe from SDK/Windows/Cygwin directory of the CD which is provided with Eddy DK and follow the

instructions below.

Select directory which Cygwin is
installed.
Set root directory to c:\cygwin”

Select directory where Cygwin
install package is located.
Set directory to DK CD’s
“SDK\Windows\cygwin

Select package to install.
As shown on the left, install “Devil”
package only. Click Default on the
left and will change to install.

 3-3

Chapter 3. Development environment

 3-4

Cygwin package being installed.

Finish setup once Cygwin installation is
completed.

3.4.2 Configuring Windows Environment Variables
Path will be added in order to reference required Eddy libraries in Windows environment.

Select Desktop My Computer Right click Properties Advanced Environment Variables. Select Path

from System Variable and add the following line.

;c:\cygwin\bin

3.4.3 Installing Toolchain
Toolchain compiles source codes written in Windows environment in order that it is compatible and executable on

its target, Eddy. Toolchain install file, “toolchain-windows-arm-411.tgz”, can be found under SDK/Windows folder

in Eddy DK’s CD. Copy this file to “C:”, C drive’s root directory, and unzip the file by executing Windows

command line program “CMD” as shown below.

Toolchain will be installed to “c:\cygwin\opt\lemonix\cdt”.

Chapter 3. Development environment

Note that command is case sensitive.

3.4.4 Installing Eddy DK Source
Eddy DK Source will be installed. DK Source file, “eddy_DK_2xx.tar.gz”, can be found under SDK folder in Eddy

DK’s CD. Copy this file to “C:”, C drive’s root directory, and unzip the file by executing Windows command line

program “CMD” as shown below.

DK Source will be installed to c:\eddy_DK_2xx”.

Note that command is case sensitive.

 3-5

Chapter 3. Development environment

 3-6

3.5 Installing to Linux Host
This chapter will describe how to install Eddy development environment on a Linux host.

Explanation on this manual is based on Fedora Core 5.

In order to use Eddy’s integrated development environment, LemonIDE, refer to “LemonIDE_User_Guide” for

detailed instructions.

3.5.1 Installing Toolchain
Toolchain compiles source codes written in Linux environment in order that it is compatible and executable on its

target, Eddy. Toolchain install file, “lemonide_linux_10x.tar.gz”, can be found under SDK/linux folder in Eddy

DK’s CD. Toolchain will be installed to /opt/lemonix.

Note that command is case sensitive.

Note Carry out all install procedures with super user privileges.

Example below assumes that CDROM is mounted on /mnt/cdrom

If CDROM is mounted on a different location, path displayed below will bear difference.

3.5.2 Installing Eddy DK Source
Install Eddy DK’s entire source. Eddy DK Source file, “eddy_DK_2xx.tar.gz”, can be found under SDK/linux

folder in Eddy DK’s CD.

Install Eddy DK Source as shown below. An eddy_DK_2xx folder will be created after installation.

Unzip the file and Eddy_DK_2xx folder will be created and installation is completed. Below displays contents of

Eddy_DK_2xx folder.

cd /

tar -zxvf /mnt/cdrom/SDK/linux/lemonide*.tar.gz -C /

pwd

/home/shlee

tar -zxvf eddy_DK_2*.tar.gz

Chapter 3. Development environment

3.6 Removing Development Environment
Development Environment can be removed by simply deleting the folder where installed files are located.

3.6.1 Removing Windows Development Environment
Remove folders where DK Source and Cywin is installed to remove Eddy Development Environment.

3.6.2 Removing Linux Development Environment

Total 32

drwxr-xr-x 6 shlee work 4096 Nov 26 14:43 .

drwxrwxr-- 26 shlee work 4096 Nov 30 21:25 ..

drwxr-xr-x 4 shlee work 4096 Noc 26 14:46 src

-rwxr-xr-x 1 shlee work 2822 Nov 26 14:43 Env.sh

-rwxr-xr-x 1 shlee work 171 Nov 26 14:43 Make.check

drwxr-xr-x 2 shlee work 4096 Nov 29 17:50 firmware

drwxr-xr-x 5 shlee work 4096 Nov 29 17:50 ramdisk

drwxr-xr-x 4 shlee work 4096 Nov 26 14:47 tool

rm – rf eddy_DK_xx ; Removal of Eddy DK Source

rm -rf /opt/lemonix ; Removal of Eddy ToolChain

[root@localhost eddy-DK_2xx]# ls -al

 3-7

Chapter4. Compiling Application

Chpater4. Compiling Application

4.1 Source Code
This manual will use a sample source code that's included in the Eddy- DK to introduce compile process.

Program sources introduced here are actual codes that are used in Eddy. However some sources are not provided for

the security reasons.

Provided program sources can be categorized into Open Source and Eddy-oriented Application Source.

Open Sources are as follows.
Folder name Description

busybox-1.5.0 Linux Utility containing basic command used in shell

dropbear-0.50 SSH (Secure Shell) server

gdbserver Remote debugging program used in LemonIDE.

Source code is not provided; only executable files are provided.

mtd-util Management program for mtd area

openssl-0.9.7c OpenSSL library, one kind of SSL

matrixssl-1-8-3 Matrixssl program, one kind of SSL

thttpd-2.25b HTTP server

vsftpd-2.0.5/ FTP server

ddns-1.8 DDNS server

ethtool-6 Test program for Ethernet based network

netkit-ftp-0.18 ftp client

target-agent Program which upload and execute user program in accordance

with LemonIDE. Source code is not provided.

ucd-snmp-3.6.2 SNMP program

 4-1

 Chapter4. Compiling Application

 4-2

When you want to make new application program, we recommend you to refer to the files in the Eddy_APPs folder.

In this chapter we will explain with Eddy_APPs directory.

Source files inside Eddy_APPs are as follows.

File name Description

def.c Eddy environment setting program

eddy.c Program which is first run after booting Eddy. This program makes Eddy to operate as it

is configured in environment setting.

pinetd.c Program which is at the highest hierarchy of Eddy; this executes and monitors the

programs of lower hierarchy.

tcp_client.c Program which connects to the server and exchange data between the serial port and the

socket.

tcp_server.c Program which waits for the socket connection and exchange data between the serial

port and the socket.

upgrade.c Program for firmware updating

ddns_agent.c Program which gives Eddy IP information to DDNS server

detect.c Program which work together with portview’s detector. Refer to the portview manual.

loopback.c Loopback test program for the serial port.

portview.c Agent of Portview, which is a NMS program for windows, provided by SystemBase.

tcp_broadcast.c This supports maximum of five client connection with multi TCP server function, and

broadcast serial data to all client.

tcp_multiplex.c This supports maximum of five client connection with multi TCP server function, and

transfer serial data to each client.

udp.c UDP server and client program which exchange data between UDP socket and the serial

port.

gpio.c Example program for GPIO port

rt-test.c Test program for Delay Time

/include Directory containing header files needed for applications.

/SB_APIs Directory containing library provided by Eddy

/web Directory containing CGI source and htm code of web run at Eddy

Chapter4. Compiling Application

4.2 Writing a Makefile
In order to compile an application, Makefile should be created or modified and all compile information should be

correctly defined.

The following shows a Makefile of the sample program at /src/Eddy_APPs/.

The figure below shows part where the environment setting values needed at compiling process are configured. It

contains environment values needed when running Make command. When the user wants to compile, add the name

at “TARGET” inside red box marked below.

For example, you can add Hello_World.

First you can make Hello_World.c as follows.

CROSS = /opt/lemonix/cdt/bin/arm-linux-
LDFLAGS += -L/opt/lemonix/cdt/lib -L/opt/lemonix/cdt/bin
IFLAGS += -I/opt/lemonix/cdt/include -I./include
CFLAGS = -O2 -g -Wall -Wno-nonnull
DEST = ../../ramdisk/root/sbin
DEST_ETC = ../../ramdisk/root/etc

CC = $(CROSS)gcc
STRIP = $(CROSS)strip
AR = $(CROSS)ar

TARGET = Hello_World ddns_agent udp def pinetd tcp_server tcp_client
tcp_multiplex tcp_broadcast detect portview upgrade eddy loopback rt-test
LIBS = -lrt SB_APIs/SB_APIs.a

1 #include <stdio.h>
2
3 int main()
4 {
5 printf("hello world !!!\n");
6 return 0;
7 }
8

 4-3

 Chapter4. Compiling Application

 4-4

The figure below shows part that is executed when running make command.

It shows that Hello_World is added also as an example.

Next shows part that is executed when running make clean command and make release command.
Make clean command deletes object files inside the current folder.
Make release command moves executable files to where it is set as DEST in environment setting.

4.3 Compile
Written source codes will be compiled to work on Eddy.

4.3.1 Compiling on Windows
Compiling on Windows environment is simple. Type in “make” command through cmd(command prompt) in

directory where Makefile is located. As shown below, if successfully compiled, execution file named Hello_World

will be created. Of course, as this file was cross-compiled, it can not run on Windows environment. Upload this file

to Eddy with a FTP to execute this file on Eddy, (Files uploaded with FTPs are not permanently saved on Eddy.).

This will be further explained on next chapter, Chpater 5 Creating Firmware.

clean:
 rm *.bak *.o

release:

cp -f $(TARGET) $(DEST)
cp -f sb_default_config $(DEST_ETC)

all : $(TARGET)

udp : udp.o
 rm -f $@
 $(CC) $(CFLAGS) $(LDFLAGS) $(IFLAGS) -o $@ $ $@.o $(LIBS)
 $(STRIP) $@

def : def.o
 rm -f $@
 $(CC) $(CFLAGS) $(LDFLAGS) $(IFLAGS) -o $@ $ $@.o $(LIBS)
 $(STRIP) $@

Hello_World : Hello_World.o
 Rm -f $@
 $(CC) $(CFLAGS) $(LDFLAGS) $(IFLAGS) -o $@ $ $@.o
 $(STRIP) $@

Chapter4. Compiling Application

C:\eddy_DK_2xx[\src/Eddy_APPs> ls

Hello_world SB_APIs def.c eddy kt.c pinetd portview.o tcp_client.c

tcp_client tcp_multiplex.o . . .

C:\eddy_DK_2xx[\src/Eddy_APPs> make hello_world

/opt/lemonix/cdt/bin/arm-linux-gcc -O2 -g -Wall -Wno-nonnull -c -o Hello_World.o Hello_World.c

/opt/lemonix/cdt/bin/arm-linux-gcc -L/opt/lemonix/cdt/lib -L/opt/lemonix/cdt/bin Hello_World.o -o Hello_World

C:\eddy_DK_2xx[\src/Eddy_APPs>

4.3.2 Compiling on Linux
To compile a source file on Linux environment, type in “make” command in directory where Makefile is located.

As shown below, if successfully compiled, execution file named Hello_World will be created. Of course, as this file

was cross-compiled, it can not run on Linux environment. Upload this file to Eddy with a FTP to execute this file on

Eddy, (Files uploaded with FTPs are not permanently saved on Eddy.). This will be further explained on next

chapter, Chpater 5 Creating Firmware.

[shlee@localhost Eddy_APPs]$make

/opt/lemonix/cdt/bin/arm-linux-gcc -O2 -g -Wall -Wno-nonnull -c -o Hello_World.o Hello_World.c

/opt/lemonix/cdt/bin/arm-linux-gcc -L/opt/lemonix/cdt/lib -L/opt/lemonix/cdt/bin Hello_World.o -o Hello_World

[shlee@localhost Eddy_APPs]$ ls

Hello_World* SB_APIs/ def.c* eddy* kt.c pinetd* portview.o server*

tcp_client* tcp_multiplex.o tcps* upgrade* . . .

4.3.3 Compiling with LemonIDE
LemonIDE is an IDE(Integrated Development Environment) based on Eclipse platform and provides an

intuitive GUI interface. LemonIDE can be used in both Windows and Linux environments. Source coding,

compile, remote debugging and creating a firmware image can all be carried out with LemonIDE. Refer to

“LemonIDE_User_Guide” for detailed information on LemonIDE.

4.4 Uploading and executing an application via FTP
In order to execute user's application on the Eddy, you can create a firmware and write it on the Eddy’s flash

memory. This is not a good idea for the frequent debugging purpose since it's a time consuming process. Therefore,

during the development process, it is better to simply upload your application to the RAM file system through FTP

Server. The uploaded file will run directly on the module, making it a simple and quick solution for the frequent

 4-5

 Chapter4. Compiling Application

 4-6

debugging. But when Eddy is reset or restarted, the program will be lost. In order to permanently store the program,

you have to create a firmware.

Power on Eddy and connect via Telnet. (See Eddy User Guide for details)

Now connect via FTP to upload sample program to Eddy.

ID and password used for connecting to Eddy’s ftp server are same as ones used for telnet connection.

The following example shows how the application 'Hello_World' is uploaded on to /tmp directory on Eddy.

Please make sure that the transfer mode is set as binary. Use “put <filename>” command for uploading.

Below example displays how to access and upload a program to Eddy using an FTP on Linux environment.

On Windows, use FTP in cmd(command prompt) to upload a program.

When the transfer is finished you can see the files at telnet terminal.

Uploaded files needs execute permission in order to run.

You can do so by issuing ‘chmod’ command

After changing to executable mode, run “./Hello_World”.

Eddy login: eddy

Password: 99999999

cd /tmp ; after connection, move to /tmp

[shlee@localhost Eddy_APPs]$ ftp 192.168.0.223

Name (192.168.0.223:shlee): eddy

331 Please specify the password.

Password:

230 Login successful.

ftp> cd /tmp

ftp> bin

ftp> put Hello_World

8914 bytes sent in 0.00027 seconds (3.3e+04 Kbytes/s)

ftp> bye

[shlee@localhost Eddy_APPs]$

Chapter4. Compiling Application

./Hello_World

hello world !!!

ls

Hello_World login.id thttpd.log login.pw

thttpd.pid utmp . . .

chmod 777 Hello_World

ls

Hello_World login.id thttpd.log login.pw

thttpd.pid utmp . . .

 4-7

Chapter 5. Creating Firmware

Chpater5. Creating Firmware

In the previous chapter we explained how to make and compile application program with sample program. This

chapter introduces methods to create a firmware that permanently saves the application into the Eddy module.

5.1 How to create a firmware
Firmware image can be created in Eddy_DK_2xx/ramdisk folder.

Makefile in Eddy_DK_2xx/ramdisk can be altered so that execution file is added to release part to using “Make

release” command, or execution file can be copied to ramdisk/root/sbin using cp command.

Copy the execution file to Eddy_DK_2xx/ramdisk/root/sbin.

Below displays “Hello_World” sample program copied to Eddy_DK_2xx/ramdisk/root/sbin.

이

제

상

[shlee@localhost sbin]$ ls

Hello_World com_redirect* fdisk@ halt@ ifconfig@ insmod@ loopback* mdev@ pinetd*

reboot@ setconsole@ swapon@ tae* tcp_server* vconfig@ def* freeramdisk@ hdparm@

ifdown@ klogd@ losetup@ mkswap@ pivot_root@ rmmod@ start-stop-daemon@

switch_root@ tcp_broadcast* udhcpc@ detect* fsck@ help@ ifup@ kt* lsmod@

modprobe@ portview*

[shlee@localhost sbin]$ pwd

/home/eddy_project/Eddy-DK_20a/ramdisk/root/sbin

[shlee@localhost sbin]$

[shlee@localhost Eddy-DK_20a]$ cd ramdisk/root/sbin/

Env.sh* Make.check* firmware/ ramdisk/ src/ tool/

[shlee@localhost Eddy-DK_20a]$ ls

 5-1

Chapter 5. Creating Firmware

 5-2

To create a firmware image, move to Eddy_DK_2xx/ramdisk to make changes on Makefile.

Makefile resides under “Ramdisk”(/DK Source/ Ramdisk) which is registered as a project.

Version information, amount of Ramdisk to be used, application information to be copied can be configured in

Makefile. Following is Makefile provided in DK.

Note

DK Source is distributed in Linux compatible format.

Thus some commands in Makefile may not be recognized in Windows environment. In such cases, add .exe

to unrecognized utilities in Makefile as shown below.

 ../tool/genext2fs ../tool/genext2fs.exe

../tool/mkimage ../tool/mkimage.exe

../tool/mkfs.jffs2 ../tool/mkfs.jffs2.exe

IMAGE=ramdisk

FW_NAME = eddy-fs-20a.bin Firmware image name and version info.

CONFIG_NAME = eddy-cf-20a.bin Default operating environment info. of Eddy

FIRMWARE_DIR = ../firmware Directory to save firmware image to be created

Check environments

#include ../Make.check

config:

 @echo -n "Checking ramdisk skeleton files..."

 @if [! -f "$(ROOT_FS_SKEL)"] ; then \

 echo "fail"; \

 exit 0;\

 fi

 @echo "ok"; \

install:

 #@echo "Making ramdisk image..."

 #$(TOOL) -b 8192 -d root -D device_table.txt ramdisk

 #../tool/genext2fs -U -b 5110 -d root -D device_table.txt ramdisk

 #../tool/genext2fs -U -b 7158 -d root -D device_table.txt ramdisk

 #../tool/mkcramfs -q -D device_table.txt root ramdisk

 ../tool/genext2fs.exe -U -b 10240 -d root -D device_table.txt ramdisk Configures ramdisk

size to 10,240 K and register device of Eddy/dev, referring to Device_table.txt..

 gzip -vf9 ramdisk

Chapter 5. Creating Firmware

 test -f ramdisk.gz

 ../tool/mkimage.exe -A arm -O linux -T ramdisk -C gzip -a 0 -e 0 -n $(FW_NAME) -d ./ramdisk.gz

$(FW_NAME)

 test -f $(FW_NAME)

 mv $(FW_NAME) $(FIRMWARE_DIR)/

cfg:

 ../tool/mkfs.jffs2.exe -q -l -o $(CONFIG_NAME) -d flash -p – f Create image of Eddy’s

initial execution configuration file residing under Flash folder.

 test -f $(CONFIG_NAME)

 mv $(CONFIG_NAME) $(FIRMWARE_DIR)/

release: Register application to be copied to Eddy so it can be copied to proper directory

 cp -f ../src/busybox-1.5.0/busybox root/bin

 cp -f ../src/dropbear-0.50/dropbear root/usr/local/sbin

 cp -f ../src/dropbear-0.50/dropbearkey root/usr/local/sbin

 cp -f ../src/ethtool-6/ethtool root/usr/local/sbin

 cp -f ../src/thttpd-2.25b/thttpd root/usr/local/sbin

 cp -f ../src/ucd-snmp-3.6.2/agent/snmpd root/usr/local/sbin

 cp -f ../src/ucd-snmp-3.6.2/agent/snmpd.conf root/etc

 cp -f ../src/netkit-ftp-0.18/ftp/ftp root/usr/local/bin

 .

Makefile options are as follows.

Make release ; copy module in release to ramdisk area

Make cfg ; create firmware image of Eddy enviromental files in ramdisk/flash

Make install ; create a firmware image of Eddy’s Filesystem

If changes to Makefile are complete, use “make install” command to create firmware image.

Firmware will be created in “FIRMWARE_DIR” directory defined in Makefile.

On Windows, use cmd(command prompt) to carry out procedures explained on Linux.

 5-3

Chapter 5. Creating Firmware

 5-4

[shlee@localhost ramdisk]$ make install

#@echo "Making ramdisk image..."

../tool/genext2fs -U -b 10240 -d root -D device_table.txt ramdisk

gzip -vf9 ramdisk

ramdisk: 79.9% -- replaced with ramdisk.gz

test -f ramdisk.gz

../tool/mkimage -A arm -O linux -T ramdisk -C gzip -a 0 -e 0 -n eddy-fs-20a.bin -d ./ramdisk.gz eddy-fs-

20a.bin

Image Name: eddy-fs-20a.bin

Created: Thu Nov 1 13:39:02 2007

Image Type: ARM Linux RAMDisk Image (gzip compressed)

Data Size: 2104223 Bytes = 2054.91 kB = 2.01 MB

Load Address: 0x00000000

Entry Point: 0x00000000

test -f eddy-fs-20a.bin

cp eddy-fs-20a.bin ../firmware/

[shlee@localhost ramdisk]$ cd ../firmware/

[shlee@localhost firmware]$ ls

eddy-fs-20a.bin

[shlee@localhost firmware]$

As shown in the picture above, a new firmware file “eddy-fs-20a.bin” has been created. Now you have to upload the

firmware image to Eddy via Web or FTP, save it to Eddy’s flash memory, and reset Eddy. Then Eddy will run with

uploaded firmware settings.

5.2 Firmware update via FTP server
Upload created firmware file to Eddy and save it in Flash Memory.

Firmware upgrade can be carried out by 1) through a FTP, 2) through a Web browser and 3) through a bootload.

Upgrading firmware procedures through a Web browser is described in “Eddy-Serial-User_Guide”. And upgrading

firmware procedures through bootload is described in “9.1 System Recovery” of this manual.

This chapter will introduce upload method using a FTP.

On Windows, FTP can be used in cmd(command prompt) to carry out upload process.

Upload the created firmware eddy-fs-20a.bin to the /tmp directory of Eddy, using an FTP. (See Chapter 4.4 for more

information)

Chapter 5. Creating Firmware

[shlee@localhost firmware]$ ftp 192.168.0.223

Connected to 192.168.0.223.

Name (192.168.0.223:shlee): eddy

331 Please specify the password.

Password:

230 Login successful.

ftp> cd /tmp

250 Directory successfully changed.

ftp> bin

200 Switching to Binary mode.

ftp> put eddy-fs-20a.bin

local: eddy-fs-20a.bin remote: eddy-fs-20a.bin

227 Entering Passive Mode (192,168,0,223,195,50)

150 Ok to send data.

226 File receive OK.

2104287 bytes sent in 0.47 seconds (4.3e+03 Kbytes/s)

ftp> by

221 Goodbye.

[shlee@localhost firmware]$

Use Telnet to check eddy-fs-20a.bin is in the /tmp directory.

Use “upgrade eddy-fs-20a.bin” command to update the firmware.

upgrade eddy-fs-20a.bin

FileSystem Erase ... 2388341 Bytes

FileSystem Write ... eddy-fs-20a.bin, 2388341 Bytes

...

Flash Write OK

...

Flash Verify OK

Update Complete

please reboot the system!

eddy-fs-20a.bin

ls eddy-fs-20a.bin

/tmp

pwd

 5-5

Chapter 5. Creating Firmware

 5-6

In order for the updated firmware to take effect, you need to reboot the module.

After rebooting you can see sample program running as shown below.

 hello world !!!

./Hello_World

hwclock modprobe swapon

cd /sbin

ls

Hello_World ifconfig nameif switch_root

com_redirect ifdown pinetd sysctl

…

Eddy login: eddy

Password:

 Chapter 6. Library

Chpater6. Library Introduction

This chapter introduces useful libraries and API functions that are applicable with Eddy-Serial DK.

6.1 Introduction
All the functions introduced in this chapter are all APIs included in SB_APIs.a of /src/Eddy_APPs/SB_APIs

directory. You also need to mention this library in the Makefile. All sample source codes accompanied with Eddy-

DK use this library, and you can see the source codes and Makefile for more information.

6.2 Makefile
Library is in /src/Eddy_APPs/SB_APIs/ directory, as a form of SB_API.a.

You need to specify in the Makefile in order to use this library, so please refer to the Makefile inside

/src/Eddy_APPs/ folder.

6.3 System functions
Timer and delay functions needed for making application program.

SB_SetPriority

Function Specifies priority level of task.

Format Void SB_SetPriority (int Priority_Level);

Parameter Priority_level Low (1) ~ High (99)

Returns None

Notice Configures the priority level of task execution to the system.
The lowest level is 1, whereas the highest level is 99.
It is recommended to set level below 50; when a certain task’s level is set
above 50, that task will be executed prior to others, possibly affecting other
tasks’ operation.

SB_GetTick

 6-1

 Chapter 6. Library

 6-2

Function Returns time measured after Eddy has been booted in msec.

Format Unsigned long SB_GetTick (Void);

Parameter None

Returns 0 ~ 4,294,967,295

Notice Returned value is system tick counter in msec unit.
After it reaches the maximum value 0xffffffff of unsigned long type, it
starts from zero again – which is about period of 50 days.

SB_msleep

Function Delays in msec unit.

Format void SB_msleep (int msec);

Parameter msec Configure delay time in msec unit.
Returns none
Notice Precisely delays in msec unit.

SB_AliveTime

Function Returns time measured after Eddy has been booted in day, hour, minute,
and second.

Format void SB_AliveTime (int *day, int *hour, int *min, int *sec);

Parameter *day
*hour
*min
*sec

Days Eddy has been operationg (0 ~)
Hour (0 ~ 23)
Minute (0 ~ 59)
Second (0 ~ 59)

Returns None
Notice

6.4 Eddy Environment Function
Environment functions related with Eddy File System which gives information such as Eddy’s version, environment

configuration, version, etc.

SB_GetModel

 Chapter 6. Library

Function Reads model type of Eddy.

Format int SB_GetModel (Void));

Parameter None

Returns 0x00 ~ 0x1f Eddy’s model number
 0x1f

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x1e

EDDY_CPU
EDDY_S1_PIN
EDDY_S1_PIN_C
EDDY_S1_DB9
EDDY_S1_DB9_C
EDDY_S1_POE
EDDY_S1_POE_C
EDDY_S2_M
EDDY_S2_M
EDDY_WS1_TTL
EDDY_WS1_TTL_C
EDDY_WS1_PIN
EDDY_WS1_PIN_C
EDDY_WS1_DB9
EDDY_WS1_DB9_C
EDDY_DK

Notice Eddy provides various models with CPU module. It returns 0x1f when the
user id developing hardware to mount Eddy-CPU, whereas it returns model
number when the user is using model provided by SystemBase.
(Please refer to src/include/sb_define.h)

SB_GetVersion

Function Reads version of O/S, file system, and bootloader ported to Eddy in string
type.

Format void SB_GetVersion (int type, char *version);

Parameter type Specifies version the function will read.
‘B’: Eddy’s bootloader version
‘K’: Eddy’s O/S version
‘F’: Eddy’s file system version

 Version Pointer where version information string will be stored.
Returns None
Notice Version information will be read like “1.0a.”

BootLoader and O/S will be provided by SystemBase; therefore these cannot
be changed. In case file system is programmed by the user, the version can
be set by the user.

 6-3

 Chapter 6. Library

 6-4

When the parameter type other than ‘B’ ,’K’, ‘F’ are called, the function will
return “0.00” as version information.

SB_ReadConfig

Function Reads Eddy’s operating environment configuration file.

Format void SB_ReadConfig (char *FileName, Struct SB_CONFIG *cfg);

Parameter FileName File name including the path file is located.
/etc/sb_config,
/etc/sb_default_config
/flash/sb_config

 *cfg Point of the buffer where the environment configuration
file is read and saved.

Returns None
Notice Environment configuration file managed by Eddy is located at /etc, /flash.

“/etc/sb_config” file is temporary environment configuration file where the
modified configuration is applied when the configuration is changed via web
or telnet. Every eddy application will refer to this file for the operation.
“/etc/sb_default_config” is configuration file used for Eddy’s factory default
configuration which will be applied to Eddy’s environment configuration
when factory default command from web or telnet is given.
“/Flash/sb_config” is changed to “/etc/sb_config” when the configuration is
changed via web or telnet. This file stores modified information even when
the Eddy’s power is reset, and helps Eddy to operate as configured by Eddy
reading this information when Eddy is first booted.
(Please see /Eddy_APPs/include/sb_config.h)

SB_WriteConfig

Function Saves Eddy’s operating environment configuration information into file.

Format void SB_WriteConfig (char *FileName, Struct SB_CONFIG *cfg);

Parameter FileName File name including path where the saved file will be
located at
/etc/sb_config,
/flash/sb_config

 *cfg Struct buffer point which stores the environment
configuration information to be saved

Returns None
Notice

 Chapter 6. Library

SB_GetSharedMemory

Function Reads pointer of registered shared memory.

Format void *SB_GetSharedMemory (int Key_ID, int Buffer_Size);

Parameter Key_ID
Buffer_Size

ID of registered shared menory
Size of shared memory used

Returns *buffer_address Memory address of shared memory
 Returns -1 upon failure.
Notice Portview is Windows application developed by SystemBase which can

remotely monitor Eddy’s operating condition. In contrast, SNMP server,
which provides basically same function as Portview, is industry’s standard
monitoring protocol S/W developed by 3Com, Cysco, etc. and sold in
hundreds of thousands of U.S. dollars.
To be compatible with both of the applications, each application in Eddy uses
shared memory to store information and send the information to Portview and
SNMP.

 Note that PortView and SNMP Agent has to be set in the environment
configuration.

SB_SetSharedMemory

Function Requests shared memory to be used and read memory pointer.

Format void *SB_SetSharedMemory (int Key_ID, int Buffer_Size);

Parameter Key_ID
Buffer_Size

ID of shared memory to be registered
Size of shared memory to be used

Returns *buffer_address Memory address of shared memory
 Returns -1 upon failure.
Notice In Eddy this function is used for PortView and SNMP agent.

User can use this function to access shared memory for other purpose.

SB_SetReadyLed

Function Contols Ready LED.

Format void *SB_SetReadyLed (int OnOff);

Parameter OnOff 0: Turn off Ready LED.
 1: Turn on Ready LED.

 6-5

 Chapter 6. Library

 6-6

Returns None
Notice Contols Ready LED mounted at each Eddy model.

6.5 Serial functions
These functions are used to handle internal serial port and UART.

SB_OpenSerial

Function Opens serial port.

Format int SB_OpenSerial (int Port_No);

Parameter Port_No

Serial port number
0: First serial port
1: Second serial port
(Only available for Eddy-CPU, Eddy-DK)

Returns -1 ~ N Opened serial port handle
-1: Open error
N: Opened serial port handle

Notice Eddy provides maximum two serial ports; however for normal model where
Eddy-CPU is mounted, Eddy only provides one serial port.
DK board has two on-board serial ports. User can use both of the serial
ports if the user sets DIP switch on DK board to make it recognized as
Eddy-CPU or Eddy-DK.

SB_InitSerial

Function Initialize data communication configuration of serial port.

Format Void SB_InitSerial (int Handle, char Speed, char LCR, char Flow);

Parameter Handle Serial port handle acquired from OpenSerial
 Speed Baud rade

 Chapter 6. Library

0 : 150 BPS,
2 : 600 BPS
4 : 2400 BPS
6 : 9600 BPS
8 : 38400 BPS
10 : 115200 BPS
12 : 460800 BPS

1 : 300 BPS
3 : 1200 BPS:
5 : 4800 BPS
7 : 19200 BPS
9 : 57600 BPS
11 : 230400 BPS
13 : 921600 BPS

 LCR X X P P S D D (8 bis binary)
P P : Parity Bits
 0 0 : None, 0 1 : Odd, 1 0, 1 1: Even
S : Stop Bits
 0 : 1 bits, 1 : 2 bits
D D : Data Bits
 0 0 : 5 bits, 0 1 : 6 bits
 1 0 : 7 bits, 1 1 : 8 bits

 FlowControl Types of flow control
0: no flow control
1: RTS/CTS flow control
2: Xon/Xoff flow contorl

Returns None
Notice

SB_SetSerialInterface

Function Configures interface type of serial port.

Format Void SB_SetSerialInterface (int Interface);

Parameter Interface Interface ID of RS422/RS485
: RS422 (point to Point)
: RS422 (MultiDrop)
: RS485 (None_Echo)
4. : RS485 (Echo)

Returns None
Notice This function is needed only for serial model named “-C”, that is RS-

422/486 combo model; it is not needed when the user is developing
new hardware using Eddy-CPU.
DK board has two on-board serial ports. User can use the first serial
port for either RS422 or RS485 if the user sets DIP switch on DK board
to make it recognized as Eddy-DK.

SB_SendSerial

 6-7

 Chapter 6. Library

 6-8

Function Send data to the serial port.

Format Void SB_SendSerial (int handle, char *data, int length);

Parameter handle Handle which opened serial port or socket
 data Pointer of the data to be sent
 length Length of the data to be sent
Returns None
Notice When the transmit buffer is full, this function will retry up to 10 time in

20 msec period; it will return after transmission is completed.

SB_ReadSerial

Function Reads data from the serial port.

Format int SB_ReadSerial (int handle, char *data, int length, int wait_msec);

Parameter handle Handle which opened the serial port.
 data Buffer pointer where the read data will be saved.
 length Size(length) of the buffer memory
 wait_msec Time it will wait for next data reception from reading

receive buffer
Returns 0 ~ n Size of the read data
Notice When wait_msec is set to 0 this function will only read data from serial

receive buffer; when set larger than 0, it will read data from serial
receive buffer, wait for time specified in msec unit, and then continue
reading data from serial port as one packet.
The maximum size of the data is same as buffer’s size, i.e. length. You
can use value obtained from SB_GetDelaySerial function or value
manually calculated for wait_msec.

SB_GetMsr

Function Reads MSR register value from serial port

Format Char SB_GetMsr (int handle);

Parameter handle Handle which opened the serial port.
Returns

Value

MSR Register 값
Bit 7 6 5 4 3 2 1 0
Bit0: CTS change
Bit1: DSR change
Bit2: RI change
Bit3: DCD change
Bit4: CTS (0:Low, 1:High)
Bit5: DSR (0:Low, 1:High)

 Chapter 6. Library

Bit6: RI (0:Low, 1:High)
Bit7: DCD (0:Low, 1:High)

Notice

SB_SetRts

Function Controls RTS signal line of the serial port.

Format Void SB_SetRts (int handle, int value);

handle Handle which opened the serial port.
Parameter Value

0: off Set RTS signal to low.
1: on Set RTS signal to high.

Returns None
Notice

SB_SetDtr

Function Controls DTR signal line of the serial port.

Format Void SB_SetDtr (int handle, int value);

handle Handle which opened the serial port.
Parameter Value

0: off Set DTR signal to low.
1: on Set DTR signal to high.

Returns None
Notice

SB_GetDelaySerial

Function Calculate and return input delay time for three bytes data with given serial
communication speed in msec unit.

Format Void SB_GetDelaySerial (int bps);

Parameter Bps Serial communication speed
Returns int Input delay time

Notice
This function can be used to calculate wait_msec of SB_ReadSerial
function.
When the communication speed is faster than 230400 bps, this function will
return 1 since Eddy’s minimum delay is 1 msec.

6.6 Ethernet functions
These functions deal with the network-related information of Eddy.

These functions are optimized socket API for Eddy, and user can use other API for development by using his or her

 6-9

 Chapter 6. Library

 6-10

own POSIX compatible standard socket API.

SB_GetIp

Function Reads IP address assigned to Eddy.

Format Unsigned int SB_GetIp (char *interface);

Parameter Interface Network interface name.
“eth0” for Eddy Serial model
“eth1” for Eddy WiFi model.

Returns Unsigned int Read IP address and returns in unsigned int type.
Notice Note that it returns operating IP address, not the IP address configured in

Eddy. When Eddy is operating as a DHCP Client, this function read network
IP address assigned from DHCP server.
Please see below for transforming IP address into string type.
struct in_addr addr;
addr.s_addr = SB_GetIp ();
printf ("IP Address : %s ", inet_ntoa(addr));

SB_GetMask

Function Reads subnet mask address assigned to Eddy.

Format Unsigned int SB_GetMack (char *interface);

Parameter Interface Interface name to be read
“eth0” for Eddy Serial model
“eth1” for Eddy WiFi model

Returns Unsigned int Returns mask address in unsigned int type
Notice Please see SB_GetIp also

SB_GetGateway

Function Reads gate address assigned to Eddy.

Format Unsigned int SB_SetGeteway(void);

Parameter None
Returns Unsinged int Returns gate address in unsigned int type
Notice Please see SB_GetIp also

 Chapter 6. Library

SB_ConnectTcp

Function Make connection to the server specified as TCP socket.

Format Int SB_ConnectTcp (char *IP_Address, int Socket_No, int Wait_Sec,
Int Tx_Size, int Rx_Size);

Parameter IP_Address IP address to connect in string type
 Socket_No

Wait_Sec
Tx_Size
Rx_Size

Socket number of the server to connect
Wait time for connection (in second)
Tx buffer size of the socket (in K bytes)
Rx buffer size of the socket (in K bytes)

Returns -1 ~ N Handle number of the connected socket
-1: Connection failure
N: Handle number of the connected socket

Notice If the connection is not made when this function is called, it will try to re-
connect for time specified in wait_sec and return.
Tx,Rx_Size are size of the socket buffer size. These can be set from 1 to
64.
If it is set to number smaller than 1, size will 4kbytes as default; number
larger than 64 will set size of the buffer to 64kbytes as default.

SB_ListenTcp

Function Wait for connection to TCP socket

Format Int SB_ListenTcp (int Socket_No, Int Tx_Size, int Rx_Size);

Parameter Socket_No
Tx_Bytes
Rx_Bytes

TCP socket number to wait for connection
Tx buffer size of the socket (in K bytes)
Rx buffer size of the socket (in K bytes)

Returns -1 ~ N Handle number of the TCP socket waiting for
connection
-1: Socket connection waiting failure
N: Handle number of the TCP socket waiting for
connection

Notice As a non-blocking function, this function requests connection and returns
without waiting for connection. SB_AcceptTcp will handle waiting for
connection.
Tx,Rx_Size are size of the socket buffer size. These can be set from 1 to
64.
If it is set to number smaller than 1, size will 4kbytes as default; number
larger than 64 will set size of the buffer to 64kbytes as default.

SB_AcceptTcp

 6-11

 Chapter 6. Library

 6-12

Function Waits for network connection of TCP socket handle.

Format Int SB_AcceptTcp (int Socket_No, int wait_msec);

Parameter Socket_No

wait_msec

TCP socket handle number to wait for connection.
(Return value of SB_ListenTcp)
Connection standby time (in msec)

Returns -1 ~ N New handle number of connected TCP socket.
-1: Socket error
0: Waiting for connection
N: New handle number of connected TCP socket.

Notice When new handle number is given after connection is made, previous
handle that has been waiting will be closed inside this function.

SB_AcceptTcpMulti

Function Grants network multiple connection of TCP socket handle waiting for

connection.
Format Int SB_AcceptTcpMulti (int Socket_No, int wait_msec);

Parameter Socket_No

wait_msec

TCP socket handle number waiting for connection.
(Return value of SB_ListenTcp)
Connection standby time (in msec)

Returns -1 ~ N New handle number of connected TCP socket.
-1: Socket error
0: Waiting for connection
N: New handle number of connected TCP socket.

Notice When new handle number is given after connection is made, it will not close
previous handle waiting for connection, granting maximum of 1024 socket
connection.

SB_ReadTcp

Function Read data from connected TCP socket.

Format Int SB_ReadTcp (int Handle, char *Buffer, int Buffer_Size);

Parameter Handle
Buffer
Buffer_Size

Handle number of connected TCP socket
Buffer point where packet data to be read will be saved
Size of the buffer to save

Returns -1 ~ N Size of the data read.
-1: Socket error

 Chapter 6. Library

0: No data was read
N: Length of the data read

Notice When return code is -1, it means the connection is lost with the client so user
has to close TCP socket handle.

SB_CloseTcp

Function Close TCP socket handle.

Format Int SB_CloseTcp (int Handle);

Parameter Handle TCP socket handle number to close
Returns None
Notice This function shuts down socket handle to finish communication and

closes.

SB_BindUdp

Function Binds UDP socket.

Format Int SB_BindUdp (int Socket_No);

Parameter Socket_No UDP socket number to bind
Returns Handle Handle number bound to UDP socket
 -1: Bind failure

N: Handle number bound to UDP socket
Notice

SB_ReadUdp

Function Reads data transmitted to UDP socket bound in network.

Format Int SB_ReadUdp (int Handle, char *Buffer, int Buffer_Size);

Parameter Handle
Buffer
Buffer_Size

Handle number bound to UDP socket
Buffer point where packet data to be read will be saved
Size of the buffer to save

Returns -1 ~ N Size of the data read.
-1: Socket error
0: No data was read
N: Length of the data read

Notice When client sends data to bound UDP socket, this function remembers
client’s IP address and socket number for SB_SendUdpServer to use.

 6-13

 Chapter 6. Library

 6-14

SB_SendUdpServer

Function Transmits data to UDP socket. (Server mode)

Format Int SB_SendUdpServer (int Handle, char *Buffer, int Data_Size);

Parameter Handle
Buffer
Data_Size

Handle number bound to UDP socket
Buffer point where packet data to be sent is saved
Size of the buffer to send

Returns None
Notice This function can be called after confirming client’s network information

by sending data to UDP socket bound to Eddy from network; that is, user
has to call SB_ReadUdp first.
When data transmission has to be made first, user has to use
SB_SendUdpClient function.

SB_SendUdpClient

Function Transmit data to UDP socket (Client mode)

Format Int SB_SendUdpClient (int Handle, char *Buffer, int Data_Size,
Char *IP_Address, int Socket_No);

Parameter Handle
Buffer
Data_Size
IP_Address
Socket_No

Handle number bound to UDP socket.
Buffer point where packet data to be sent is saved.
Size of the buffer to send.
IP address to send data to.
Socket number to send data to.

Returns None
Notice This function can be used when user already knows destination network

information to send data to using UDP socket.
When data transmission has to be made first, user has to use
SB_SendUdpClient function..

6.7 GPIO Functions
The following functions are used to control maximum 16 different GPIO ports that have been installed.

Using each GPIO port user can sense 3.3V voltage or control output.

SB_SetGpioMode

Function Configures data communication direction of GPIO port.

 Chapter 6. Library

Format void SB_SetGpioMode (int GpioNo, int Mode);

Parameter GpioNo GPIO port number (0 ~ 15)
 Mode Input/output direction

0 : Input (Senses 3.3V input voltage)
1 : Output (Controls 3.3V output voltage)

Returns None
Notice There are maximum of 16 GPIO ports provided by Eddy.

Number of GPIO ports varies according to the model.
Eddy-CPU provides 16 GPIO, whereas Eddy-S1/Pin provides 4, and none
from others.

SB_SetGpioValue

Function Drives 3.3V output to specified GPIO port.

Format Void SB_Set_GpioValue (int GpioNo, int value);

Parameter GpioNo GPIO port number
 value GPIO configuration value

0 : low (Stop driving 3.3 V to output)
1 : high (Drive 3.3V to output)

Returns None
Notice I/O mode (direction) of GPIO port specified in GpioNo has to be in output

mode.

SB_GetGpioMode

Function Reads I/O mode setting of specified GPIO port.

Format int SB_GetGpioMode (int GpioNo);

Parameter GpioNo GPIO port number
Returns 0, 1 GPIO mode value read

0: input (Configured as input mode)
1: Output (Configured as output mode)

Notice

SB_GetGpioValue

Function Reads current status of specified GPIO port.

Format int SB_GetGpioValue (int GpioNo);

Parameter GpioNo GPIO port number

 6-15

 Chapter 6. Library

 6-16

Returns 0, 1 GPIO value read
0 : low (3.3V is not present at the port)
1 : high (3.3V is present at the port)

Notice I/O mode (direction) of GPIO port specified in GpioNo has to be in input
mode.

6.8 Debugging Function
Eddy can debug operating condition of each application via Telnet in real time.

The following functions are used to print debug log message to Telnet window when SB_DEBUG of each

application is set ON.

SB_LogDataPrint

Function Print each byte of data in hex or ascii code.

Format void SB_LogDataPrint (char *RTx, char *buff, int data_len);

Parameter *RTx Description message of data
 *Buff

Data_len
Buffer address of data to be printed is saved/
Size of data.

Returns None
Notice Prints messages to telnet which logged in first.

The message include Eddy’s tick counter of 1msec unit and printed in
following form.
SB_LogDataPrint (“Send”, “\t12345\n”, 8);
[191020202] Send 8 = 08,1,2,3,4,5,0d,0a
-------------- ------- ------ -----------------------
Tick Counter RTx data_Len buff
Debugging of each application in Eddy can be configured as follows by using
Def command. (Please see def.c)
def po <1/2/all> debug <on/off>

SB_LogMsgPrint

Function Prints in the same format as Printf.

Format void SB_LogMsgPrint (const char *Format, . . .);

Parameter *Format Format of Printf
Returns None
Notice Prints messages to telnet which logged in first.

The message include Eddy’s tick counter of 1msec unit and printed in
following form.
SB_LogMsgPrint (“%s means Real-Time\n”, “Eddy”);
[191020202] Eddy means Real-Tile
Debugging of each application in Eddy can be configured as follows by using

 Chapter 6. Library

 6-17

Def command. (Please see def.c)
def po <1/2/all> debug <on/off>

 Chapter 7. Eddy Software

Chpater7. Eddy Software

This chapter explains software structure ported to Eddy-DK.

Source codes for all application except Com_redirect, gdbserver, tae, SB_APIs library are disclosed. These codes

may be used as development guide when programming one’s own firmware.

7.1 Software Structure Diagram
Eddy.c is the first program that is executed upon boot up. Environment configuration information configured either

by web or def.c is then read. All provided Eddy applications were developed by using libraries explained in Chapter

6.

 7-1

 Chapter 7. Eddy Software

 7-2

7.2 Main Applications
eddy.c and pinetd.c are introduced in this chapter. These two programs play the most important role in Eddy.

Other applications can be divided into applications that are run and monitored by pinetd.c and applications that are

manually run by users. Please see “4.1 Source Code” for simple functional description of each application.

7.2.1 eddy.c Application
Program run at first after Eddy is booted, this reads sb.config which is environment file saved at /flash.

When environment file is not present at /flash, it will use /etc/sb_default_config file to reset environment

configuration to factory setting.

This also copies environment configuration file of /flash to /etc directory so each application can refer to it.

This initializes network with configuration information of Sb_config file, and runs various daemon program.

7.2.2 Pinetd.c Application
Daemon program in the highest hierarchy of program run by Eddy.c, this checks model of Eddy and configures

system environment according to the characteristics of each model.

This reads Sb_config environment file to run and monitor each program.

This periodically monitors Eddy’s operating status and blinks readyLed so that user can check the status.

This also periodically monitors reset switch to read user’s request for reset of factory reset.

7.2.3 Other Applications
The following shows applications run according to the protocol of each serial port defined in Sb_config.

Tcp_server, tcp_client, com_redirect, tcp_broadcast, tcp_multiplex, udp (udp_server/client)

The following shows applications run to handle external network service regardless of serial ports.

Portview, detect, ddns_agent

The following shows application which user can manually run by connecting via telnet.

 Def, upgrade, loopback,

 Chapter 8. Handling HTML & CGI

Chpater8. Handling HTML & CGI

This chapter describes the HTML documents and CGI modules that are used for configuration. Provided CGI

source and HTML documents are used by Eddy’s default firmware. Take a look at these sources and modify them as

you want.

8.1 WEB Configuration
HTML sources run by Eddy are located at src/Eddy_APPs/web/htdocs.

CGI sources supporting information needed by HTML is located at src/Eddy_APPs/web/cgi.

getagent.c

This reads environment configuration file of /etc/sb_config and transfers configuration value to HTML page to

show configuration information with browser.

setagent.c

This reads configuration value modified by user in HTML page and saves to configuration file of /etc/sb_config.

8.2 Example HTML code
The following example is part of main.html source.

For users cannot program using variables as they would do in C language, HTML processes by using symbols

linked with CGI to receive value as shown below.

Shown in red are symbol link which transfers value from getagent.c.

(network.html source abstract)

<tr bgcolor="#FFFFFF">
<td class="content">IP Address</td>
<td class="content"><input type="text" size="16" maxlength="16" name="N_IP" value="[v,n_ip]" >

<tr bgcolor="#FFFFFF">
<td class="content">Subnet Mask</td>
<td class="content"><input type="text" size="16" maxlength="16" name="N_MASK" value="[v,n_mask]"

>

<tr bgcolor="#FFFFFF">
<td class="content">Gateway</td>
<td class="content"><input type="text" size="16" maxlength="16" name="N_GW" value="[v,n_gw]" >

<tr bgcolor="#FFFFFF">
<td class="content">DNS</td>

 8-1

 Chapter 8. Handling HTML & CGI

 8-2

<td class="content"><input type="text" size="16" maxlength="16" name="N_DNS" value="[v,n_dns]" >

<tr bgcolor="#FFFFFF">
<td class="content">Telnet Service</td>
<td class="content"><select name="N_TELNET">

<option [v, n_telnet_di] value="0">Disable</option>
<option [v, n_telnet_en] value="1">Enable</option>

</select>

<tr bgcolor="#FFFFFF">
<td class="content">Telnet Service</td>
<td class="content"><select name="N_WEB">

<option [v, n_web_di] value="0">Disable</option>
<option [v, n_web_en] value="1">Enable</option>

</select>

As shown above there are name and value part for each record to link with CGI.
Name stores information modified by user in HTHM so that it can save modified value when the user click

on submit button at the lower part of HTML page. Value reads value to getagent.c to display on HTML page
and lets user to modify the value she or he wants.

8.3 Example CGI Code
Eddy-Serial DK has two CGI programs: getagent.cgi and setagent.cgi.

“getagent.c” reads /etc/sb_config file to HTML document to display configuration information, and “setagent.c”

saves user-modified information from HTML document back to /etc/sb_config file and ultimately saves to

flash/sb_config so the user-modified environment configuration information is stored even if Eddy is reset.

The following example shows processing part of getagent.c to display configuration value HTML page of example

above.

[Source abstract]

 if (cgiFormStringNoNewlines("N_IP", buff, 16) == cgiFormNotFound)

 {

 sprintf(buff, "%d.%d.%d.%d",cfg.system.ip[0], cfg.system.ip[1],cfg.system.ip[2],cfg.system.ip[3]);

listPutf(list, "n_ip", buff);

 }

 else

 listPutf(list, "n_ip", buff);

 if (cgiFormStringNoNewlines("N_MASK", buff, 16) == cgiFormNotFound)

 {

sprintf(buff, "%d.%d.%d.%d",cfg.system.mask[0], cfg.system.mask[1],

cfg.system.mask[2],cfg.system.mask[3]);

 listPutf(list, "n_mask", buff);

 Chapter 8. Handling HTML & CGI

 }

 else

 listPutf(list, "n_mask", buff);

 if (cgiFormStringNoNewlines("N_GW", buff, 16) == cgiFormNotFound)

 {

 sprintf(buff, "%d.%d.%d.%d", cfg.system.gateway[0], cfg.system.gateway[1],

cfg.system.gateway[2],cfg.system.gateway[3]);

 listPutf(list, "n_gw", buff);

 }

 else

 listPutf(list, "n_gw", buff);

if (cgiFormStringNoNewlines("N_DNS", buff, 16) == cgiFormNotFound)

{

sprintf(buff, "%d.%d.%d.%d",cfg.system.dns[0], cfg.system.dns[1],

cfg.system.dns[2],cfg.system.dns[3]);

listPutf(list, "n_dns", buff);

}

else

listPutf(list, "n_dns", buff);

cgiFormInteger("N_TELNET", &value, cfg.system.telnet_server);

if (value == 1)

{

listPutf(list, "n_telnet_di", "");

 listPutf(list, "n_telnet_en", "selected");

}

else

{

listPutf(list, "n_telnet_di", "selected");

listPutf(list, "n_telnet_en", "");

}

cgiFormInteger("N_WEB", &value, cfg.system.web_server);

if (value == 1)

{

listPutf(list, "n_web_di", "");

listPutf(list, "n_web_en", "selected");

 }

 8-3

 Chapter 8. Handling HTML & CGI

 8-4

 else

 {

listPutf(list, "n_web_di", "selected");

listPutf(list, "n_web_en", "");

 }

The following shows processing part of setagent.c to save user-modified configuration value when the user clicks on

“submit” button on HTML page.

[Source abstract]

value2 = cgiFormStringNoNewlines("N_IP", buff, 16);

if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.ip);

value2 = cgiFormStringNoNewlines("N_MASK", buff, 16);

if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.mask);

value2 = cgiFormStringNoNewlines("N_GW", buff, 16);

if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.gateway);

value2 = cgiFormStringNoNewlines("N_DNS", buff, 16);

if (value2 != cgiFormEmpty) convert_address (buff, cfg.system.dns);

cgiFormInteger("N_TELNET", &value, cfg.system.telnet_server);

cfg.system.telnet_server = value;

cgiFormInteger("N_WEB", &value, cfg.system.web_server);

cfg.system.web_server = value;

 Chapter 9. Appendix

Chpater9. Appendix

This chapter explains how to recover Eddy when flash of Eddy is damaged and it cannot be booted.

9.1 System recovery
Even if the flash in the user area has been damaged, it does not affect system booting. But if the system continuously

reboots due to user program failure, or if the system is inaccessible as a result of wrong IP setting, you have to

change the system to factory default status.

You can reload firmware from bootloader to change the system to default status. In order to do this, TFTP server has

to be installed at the computer with Linux environment.
 Warning

Once the bootloader is damaged, it cannot be recovered. Therefore user should not use
command other than ones provided from manual.

9.1.1 Installing TFTP in Linux environment

The following explains how to recover system with bootloader in Fedora core 5 operating system.

If you are using other operating system, you will need tftp-server and xinetd daemon compatible with that operating

system.

First check to make sure tftp-server is installed.

If you don’t install tftp-server, you should install.

After install tftp-server, move provided firmware (firmware folder in SDK folder) to tftpboot folder(usually /tftpboot

folder in Fedora core 5).

 9-1

 Chapter 9. Appendix

 9-2

9.1.2 Hardware Install and Recovery

Connect LAN port of computer and that of DK board using LAN cable.
Connect debug port and computer’s serial cable using serial cross cable and use minicom to connect to
computer’s serial port. Configure computer’s serial port setting to 115200 bps, 8 data bit, No parity, 1 stop
bit and power on Eddy DK.

After power on the following messages will be printed to minicom.
When these are printed, press enter to enter into bootloader. The below image shows status after entering
bootloader.

You can recover by copying OS, firmware, and config image to flash memory in bootloader.

To upgrade OS, firmware, and config image file, you have to configure Eddy’s virtual IP address and TFTP server’s

IP address in bootloader.

You can use “printenv” command to check the current configuration of Eddy and TFTP server’s IP address

configured in bootloader.

U-Boot 1.2.0 (Oct 3 2007 - 17:07:46)

DRAM: 32 MB

SST : 39VF3201

Flash: 4 MB

In: serial

Out: serial

Err: serial

End of Autonegotiation

Hit any key to stop autoboot: 0

U-Boot>

 Chapter 9. Appendix

위의 이미지 중 붉은 색으로 표시된 부분이 펌웨어 버전 정보이다. 이 두 버전 정보가 일치 하지

않는 다면

다음의 과정을 통해서 일치 시킨다.

To change Eddy’s temporary IP address and TFTP server’s IP address proceed as follows.

netmask=255.255.255.0

ipaddr=192.168.0.223

serverip=192.168.0.220

FileSystem_Size=0

FileSystem_Version=20a

Config_Version=20a

bootargs=root=/dev/ram rw console=ttyS0,115200,mem=32M

bootcmd=cp.b ${OS_FLASH} ${OS_SDRAM} 0x110000; cp.b ${FileSystem_FLASH}

${FileSystem_SDRAM} 0x280000; bootm ${OS_SDRAM} ${FileSystem_SDRAM}

bootdelay=1

baudrate=115200

ethaddr=00:05:F4:11:22:33

Config_Size=10000

stdin=serial

stdout=serial

stderr=serial

OS_Size==20000000

filesize=1f0f07

fileaddr=20000000

OS_SDRAM=0x20000000

FileSystem_SDRAM=0x20500000

Bootstrap_Version=20a

bootloader_Version=20a

OS_Version=20a

Bootstrap_END=0x10000FFF

bootloader_END=0x1001DFFF

BootEnv_END=0x10001FFF

OS_END=0x1012DFFF

FileSystem_END=0x103ADFFF

Config_END=0x103FFFFF

Download_SDRAM=0x20000000

bootloader_FLASH=0x10002000

BootEnv_FLASH=0x10001000

OS_FLASH=0x1001E000

FileSystem_FLASH=0x1012E000

Config_FLASH=0x103AE000

U-Boot> printenv

Bootstrap_FLASH=0x10000000

 9-3

 Chapter 9. Appendix

 9-4

Once the IP information is confirmed start recovery.

install bootloader <name of bootloader firmware> ; When recovering bootloader area

install os <name of OS firmware> ; When recovering OS area

install fs <name of File System firmware> ; When recovering File System area

install config <name of Congif firmware> ; When recovering Config area

When recovering Config area, MAC address assigned to Eddy is lost. Therefore you must connect via telnet and use

def command to change MAC address to one assigned to Eddy(See the label attached to the product) after

recovering config area.

Proceed as follows and it will recover by downloading image file from TFTP server configured.

The next shows OS recovery procedure.

U-Boot> setenv serverip <TFTP server IP address>

U-Boot> setenv ipaddr <Eddy IP address>

U-Boot>

U-Boot> install os eddy-os-20a.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-os-20a.bin'.

Load address: 0x20000000

Loading:###

done

Bytes transferred = 1112284 (10f8dc hex)

Erasing

sector ...

.......done

Erased 272 sectors

Copy to Flash... .done

Un-Protected 1 sectors

Erasing Flash...Erasing sector .done

Erased 1 sectors

Writing to Flash... .done

Protected 1 sectors

 Chapter 9. Appendix

The next shows file system recovery procedure.

Configuration recovery

U-Boot> install fs eddy-fs-20a.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-fs-20a.bin'.

Load address: 0x20000000

Loading:###

##

##

######done

Bytes transferred = 2035463 (1f0f07 hex)

Erasing

sector ...

... done

Erased 640 sectors

Copy to Flash...

Un-Protected 1 sectors

Erasing Flash...Erasing sector done

Erased 1 sectors

Writing to Flash... Flash not Erased

Protected 1 sectors

U-Boot> install config eddy-cf-20a.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-cf-20a.bin'.

Load address: 0x20000000

Loading: ############

done

Bytes transferred = 65536 (10000 hex)

Erasing sector ..done

Erased 82 sectors

Copy to Flash... .done

Un-Protected 1 sectors

Erasing Flash...Erasing sector .done

Erased 1 sectors

Writing to Flash... .done

Protected 1 sectors

U-Boot>

 9-5

 Chapter 9. Appendix

 9-6

Once the recovery is done, use “boot” command start booting.

Registering Mac address

Once it has been recovered, login screen is displayed. Now type in ID and password as you would access to telnet.

Then register deleted Mac address. Input command for Mac address is “def mac xx:xx:xx:xx:xx:xx”

It can be saved by “def save” command. Reboot after saving

Mac address is printed at the label attached on top of the product.

The following shows example of Mac address “00:01:02:03:04:05”.

Recovery will be done by following above steps. Should there have been any problem during recovery, see the next

page.

U-Boot> boot

Booting image at 20000000 ...

 Image Name: eddy-os-20a.img

 Image Type: ARM Linux Kernel Image (uncompressed)

 Data Size: 1112220 Bytes = 1.1 MB

 Load Address: 20008000

 Entry Point: 20008000

 Verifying Checksum ... OK

OK

Loading Ramdisk Image at 20500000 ...

Welcome to the Eddy development environment.

Eddy login: eddy
Password:
def mac 00:01:02:03:04:05
def save
def view
Flash Write Successfully
def view
============< Welcome to Eddy Configuration Manager >==============
BootLoader Version : 2.0a
Kernel Version : 2.0a
Fimeware Version : 2.0a

Device Type : Eddy-CPU
Device Name : Eddy
Username : eddy
Password : 99999999
MAC Address : 00:05:f4:7a:11:04
Network Line : Static IP
 :
 :
===
reboot

 Chapter 9. Appendix

9.1.3 Solving problems during recovery

When recovery is not proceeded with message shown above, check LAN connection and confirm the IP

address of tftp-server PC is configured as 192.168.0.220. (This server IP address is just example, so it

can be differ with user tftp-server PC IP address)

When recovery is not proceeded with message shown above, check firmware version information or

name is correct. Shown in the red box above has to be same with firmware name of PC with tftp-server

installed.

When recovery is not proceeded with message shown above, it means there is product with same MAC

address or IP in the network. Check whether there are other Eddy products in the same network.

U-Boot> install os eddy-os-20a.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-os-20a.bin'.

Load address: 0x20000000

Loading: *

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-fs-123.bin'.

Load address: 0x20000000

Loading: *

TFTP error: 'File not found' (1)

Starting again

U-Boot> install os eddy-os-20a.bin

TFTP from server 192.168.0.220; our IP address is 192.168.0.223

Filename 'eddy-os-20a.bin'.

Load address: 0x20000000

Loading: TT#TTT#

U-Boot> install fs eddy-fs-123.bin

 9-7

 Chapter 9. Appendix

 9-8

9.2 Product Specifications

Item Classification Specification

Network LAN port 10/100Mbps RJ-45 Port * 1

LED

GPIO LED (Active High : 3.3V DC, Active Low : 0 V)
4 (Eddy-S1/Pin)
16(Eddy-CPU)
Status LED

Power input 5V DC (400mA or higher)

Power
consumption

400mA / 2 W

Size 115 * 125 mm

Hardware

Weight 100g (without Eddy module mounted)

Port
1 (Eddy-S1/Pin)
2 (Eddy-CPU)

Interface Selectable RS232/RS422/RS485

Speed Max 921.6 Kbps
Serial

Signal lines TX, RX, DTR, DSR, CTS, RTS, DCD

Overvoltage
protection

15KV Surge Protection for all signals
Serial

UART Uses internal UART of CPU

Operating
temperature

0 ~ 50˚C

Storage
Temperature

-20 ~ 80˚C
Environment

Humidity 5 ~ 95% Non-Condensing

Certification

CE Class A,
FCC Class A,
RoHS
compliant

 Chapter 9. Appendix

 9-9

9.3 Ordering information
The purchase order information for Eddy-Serial products is as follows.

Product Name Description

Eddy-CPU Programmable embedded CPU module

Eddy-S1/PIN
RS232 pin header interface

3.3 ~ 5V input voltage

Eddy-S1/PIN-C
RS422/485 pin header interface

3.3 ~ 5V input voltage

Eddy-S1/DB9
RS232 DB9 interface

5V input voltage

Eddy-S1/DB9-C
RS422/485 DB9 interface

5V input voltage

Eddy-S1/DB9-PoE
RS232 DB9 interface

5V(power jack) input voltage or PoE

Eddy-S1/DB9-PoE-C
RS422/485 DB9 interface

5V(power jack) input voltage or PoE

Eddy-DK Development Kit for Eddy-Serial module CPU,S1/Pin

The purchase order information for Eddy-Memory products is as follows.

Product Name Description

Eddy-S2M/PIN
2 x RS232 pin header interface, USB Host, MMC

3.3 ~ 5V input voltage

Eddy-S2M/PIN-C
2 x RS422/485 pin header interface, USB Host, MMC

3.3 ~ 5V input voltage

	Eddy DK
	Chpater1. Introduction
	Chpater2. Getting Started
	2.1 What can you do with Eddy-DK?
	2.2 Eddy-DK Package Contents
	2.3 Eddy-DK Board
	Locations of modules
	2.3.2 Description on switches
	2.3.2.1. Reset Switch
	2.3.2.2. Product Setting Switch
	2.3.2.3. COM1 Select Switch

	2.3.3 Power and Communication Port
	2.3.3.1. LAN Port
	2.3.3.2. Serial Port
	2.3.3.3. Debug Port
	2.3.3.4. Power Jack

	2.3.4 LED Description
	2.3.4.1. GPIO LED
	2.3.4.2. Power, Ready LED
	Debug Port LED
	2.3.4.4. COM1 Port LED
	2.3.4.5. COM2 Port LED

	2.4 Hardware installation
	2.4.1 Eddy-CPU Installation
	2.4.2 Eddy-S1/PIN Installation
	2.5.1 Eddy module Main Memory Map
	2.5.2 Eddy Flash Memory Map
	2.5.3 Eddy directory structure
	2.5.4 Booting Eddy

	Chpater3. Development environment
	3.1 Source code directory structure
	3.2 Language
	3.3 Development environment
	3.4 Installing to Windows Host
	3.4.1 Installing Cygwin
	3.4.2 Configuring Windows Environment Variables
	3.4.3 Installing Toolchain
	3.4.4 Installing Eddy DK Source

	3.5 Installing to Linux Host
	3.5.1 Installing Toolchain
	3.5.2 Installing Eddy DK Source

	3.6 Removing Development Environment
	3.6.1 Removing Windows Development Environment
	3.6.2 Removing Linux Development Environment

	Chpater4. Compiling Application
	4.1 Source Code
	4.2 Writing a Makefile
	4.3 Compile
	4.3.1 Compiling on Windows
	4.3.2 Compiling on Linux
	4.3.3 Compiling with LemonIDE

	4.4 Uploading and executing an application via FTP

	Chpater5. Creating Firmware
	5.1 How to create a firmware
	5.2 Firmware update via FTP server

	Chpater6. Library Introduction
	6.1 Introduction
	6.2 Makefile
	6.3 System functions
	6.4 Eddy Environment Function
	6.5 Serial functions
	6.6 Ethernet functions
	6.7 GPIO Functions
	6.8 Debugging Function

	Chpater7. Eddy Software
	7.1 Software Structure Diagram
	7.2 Main Applications
	7.2.1 eddy.c Application
	7.2.2 Pinetd.c Application
	7.2.3 Other Applications

	Chpater8. Handling HTML & CGI
	8.1 WEB Configuration
	8.2 Example HTML code
	8.3 Example CGI Code

	Chpater9. Appendix
	9.1 System recovery
	9.1.1 Installing TFTP in Linux environment
	9.1.2 Hardware Install and Recovery
	9.1.3 Solving problems during recovery

	9.2 Product Specifications
	9.3 Ordering information

