Maul Administrator's Guide

Maui 3.2 Last Updated May 16

Overview

The Maui Scheduler can be thought of as a policy engine which allows sites control over
when, where, and how resources such as processors, memory, and disk are allocated to jobs.
In addition to this control, it aso provides mechanisms which help to intelligently optimize
the use of these resources, monitor system performance, help diagnose problems, and
generally manage the system.

Table of Contents:
1.0 Philosophy and Goals of the Maui Scheduler

2.0 Installation and Initial Configuration
2.1 Building and Installing M aui
2.2 Initial Configuration
2.3 Initial Testing

3.0 Maui Basics
3.1 Layout of Maui Components
3.2 Scheduling Environment and Objects
3.3 Scheduling Iterations and Job Flow
3.4 Configuring the Scheduler

4.0 Maui Commands
4.1 Client Overview
4.2 Monitoring System Status
4.3 Managing Jobs
4.4 Managing Reservations
4.5 Configuring Policies
4.6 End User Commands
4.7 Miscellaneous Commands

5.0 Assigning Value - Job and Resour ce Prioritization
5.1 Job Priority
5.2 Node Allocation

6.0 Managing Fairness- Throttling Policies, Fairshare, and Allocation M anagement
6.1 Fairness Overview
6.2 Throttling Policies
6.3 Fairshare
6.4 Allocation M anagement

7.0 Controlling Resour ce Access - Reservations, Partitions, and QoS Facilities
7.1 Advance Reservations
7.2 Partitions
7.3 QoS Facilities

8.0 Optimizing Scheduling Behavior - Backfill, Node Sets, and Preemption
8.1 Optimization Overview
8.2 Backfill
8.3 Node Sets
8.4 Preemption

9.0 Evaluating System Performance - Statistics, Profiling, Testing, and Simulation
9.1 Maui Performance Evaluation Overview
9.2 Job and System Statistics
9.3 Profiling Current and Historical Usage
9.4 Testing New Versionsand Configurations
9.5 Answering 'What If?' Questions with the Simulator

10.0 Managing Shared Resources- SMP | ssues and Policies
10.1 Consumable Resour ce Handling
10.2 L oad Balancing Features

11.0 General Job Administration
11.1 Job Holds
11.2 Job Priority M anagement
11.3 Suspend/Resume Handling
11.4 Checkpoint/Restart Facilities

12.0 General Node Administration
12.1 Node L ocation (Partitions, Frames, Queues, etc.)
12.2 Node Attributes (Node Features, Speed, etc.)
12.3 Node Specific Policies (M axJobPer Node, etc.)

13.0 Resource Managers and I nterfaces
13.1 Resource Manager Overview
13.2 Resource Manager Configuration
13.3 Resource Manager Extensions

13.4 Adding Resource Manager | nterfaces

14.0 Trouble Shooting and System M aintenance
14.1 Internal Diagnostics
14.2 Logging Facilities
14.3 Using the M essage Buffer
14.4 Handling Eventswith the Notification Routine
14.5 Issueswith Client Commands
14.6 Tracking System Failures
14.7 Problemswith Individual Jobs

15.0 Improving User Effectiveness
15.1 User Feedback L oops
15.2 User Level Statistics
15.3 Enhancing Wallclock Limit Estimates
15.4 Providing Resour ce Availability I nformation
15.5 Job Start Time Estimates
15.6 Collecting Performance I nformation on Individual Jobs

16.0 Simulations
16.1 Simulation Overview
16.2 Resource Traces
16.3 Workload Traces
16.4 Simulation Specific Configuration

17.0 Miscellaneous
17.1 User Feedback

Appendices
Appendix A: Case Studies
Appendix B: Extension Interface
Appendix C: Adding New Algorithms
Appendix D: Adjusting Default Limits
Appendix E: Security Configuration
Appendix F: Parameters Overview
Appendix G: Commands Overview

Acknowledgements

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved;_lzl

http://supercluster.org/documentation/maui/acknowledgements.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

1.0 Philosophy

The goal of a scheduler in the broadest sense is to make users, administrators, and
managers happy. Users desire the ability to specify resources, obtain quick turnaround on
their jobs, and receive reliable allocation of resources. Administrators desire happy managers
and happy users. They also desire the ability to understand both the workload and the
resources available. Thisincludes current state, problems, and statistics as well as
information about what is happening under the covers. They need an extensive set of buttons
and knobs to both enable management enforced policies and tune the system to obtain desired
statistics.

S 1.1 Vaue of aBatch System

-/ 1.2 Philosophy and Goals of the Maui Scheduler

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

1.1 Value of a Batch System

Batch systems provide a mechanism for submitting, launching, and tracking jobs on a
shared resource. These services fullfil one of the magjor responsibilities of a batch system,
providing centralized access to distributed resources. This greatly smplifies the use of the
cluster's distributed resources allowing users a 'single system image' in terms of the
management of their jobs and the aggregate compute resources available. However, batch
systems must do much more than provide a global view of the cluster. Aswith many shared
systems, complexities arise when attempting to utilize compute resourcesin afair and
effective manner. These complexities can lead to poor performance and significant
inequalitiesin usage. With abatch system, a scheduler is assigned the job of determining,
when, where, and how jobs are run so as to maximize the output of the cluster. These
decisions are broken into three primary areas.

S 1.1.1 Traffic Control

-/ 1.1.2 Mission Policies

- 1.1.3 Optimizations

1.1.1 Traffic Control

A scheduler isresponsible for preventing jobs from interfering with each other. If jobsare
allowed to contend for resources, they will generally decrease the performance of the cluster,
delay the execution of these jobs, and possibly cause one or more of the jobsto fail. The
scheduler isresponsible for internally tracking and dedicating requested resources to a job,
thus preventing use of these resources by other jobs.

1.1.2 Mission Policies

When clusters or other HPC platforms are created, they are typically created for one or
more specific purposes. These purposes, or mission goals, often define various rules about
how the system should be used and who or what will be allowed to useit. To be effective, a
scheduler must provide a suite of policies which allow a site to map site mission policiesinto
scheduling behavior.

1.1.3 Optimizations

The compute power of acluster isalimited resource and over time, demand will inevitably
exceed supply. Intelligent scheduling decisions can significantly improve the effectiveness of
the cluster resulting in more jobs being run and quicker job turnaround. Subject to the
constraints of the traffic control and mission policies, it isthe job of the scheduler to use

whatever freedom is available to schedule jobs in such a manner so as to maximize cluster
performance.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Raerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

1.2 Philosophy and Goals of the Maui Scheduler

Managers desire maximum return on investment often meaning high system utilization and
the ability to deliver various qualities of service to various users and groups. They need to
understand how the available resources are being delivered to the various users over time and
need the ability to have the administrators tune ‘cycle delivery' to satisfy the current site
mission objectives.

How well a scheduler succeeds can only be determined if various metrics are established
and a means to measure these metrics are available. While statistics are important, their value
islimited unless optimal statistical values are also known for the current environment
including workload, resources, and policies. If one could determine that a site's typical
workload obtained an average queue time of 3 hours on a particular system, thiswould be a
good statistic. However, if one knew that through proper tuning, the system could deliver an
average queue time of 1.2 hours with minimal negative side effects, this would be valuable
knowledge.

The Maui Scheduler was devel oped with extensive feedback from users, administrators,
and managers. At itscore, itisatool designed to truly manage resources and provide
meaningful information about what is actually happening on the system. It was created to
satisfy real-world needs of a batch system administrator as he tries to balance the needs of
users, staff, and managers while trying to maintain his sanity.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

2.0 Installation

Maui installation consists of the following steps:

= 2.1 Maui Installation

= 2.2 Initial Maui Configuration
-

2.3 Testing

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reaerved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

2.1 Maui Installation

-~/ Building Maui
Toinstall Maui, untar the distribution file, enter the maui-<VERSION> directory, then run
configur e and make as shown in the exampl e below:

> gtar -xzvf maui-3.0.7.tar.gz
> cd maui -3.0.7

> ./configure

> make

' Ingtalling Maui (Optional)

When you are ready to use Maui in production, you may install it into the install directory
you have configured using make install

> nmake install

Note: Until theinstall step is performed, all Maui executables will be placed in
SMAUIHOMEDIR/bin. (i.e., maui-3.0.7/bin in the above example)

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

2.2 Initial Maui Configuration

After you install Maui, there are afew decisions which must be made and some
corresponding information which will need to be provided in the Maui configuration file,
maui.cfg. The configur e script automatically sets most of these parameters for you.
However, this document provides some additional information to allow further initial
configuration. If you are satisfied with the values specified in configur e then you can
probably skip this section. The parameters needed for proper initial startup include the
following:

- SERVERHOST

This specifies where Maui will run. It allows Maui client commands to locate the Maui
server. It must specify the fully qualified hosthame of the machine on which Maui will run.
(Example: SERVERHOST cw. psu. edu)

- SERVERPORT

This specifies the port on which the Maui server will listen for client connections. Unless
the default port of 40559 is unacceptable, this parameter need not be set. (Example:
SERVERPORT 50001)

- ADMIN1

Maui has 3 major levels of admin access. Users which are to be granted full control of all
Maui functions should be indicated by setting the ADMINL1 parameter. Thefirst user in this
list is considered the primary admin. It isthe ID under which Maui should aways run.

Maui will only run under the primary admin user id and will shut itself down otherwise. In
order for Maui to properly interact with both PBS and Loadleveler, it isimportant that the
primary Maui admin also be configured as a resource manager admin within each of those
systems. (Example: ADM N1 j oe charl es)

- RMTYPE[X]

Maui must be told which resource manager(s) to talk to. Maui currently has interfaces to
Loadleveler, Wiki, and PBS. To specify aresource manager, typically only the resource
manager type needs to be indicated using the keywords LL, WIKI, or PBS (Example:
RMIYPE[O] PBS). The array index in the parameter name allows more than one resource
manager to be specified. 1n these multiple resource manager situations, additional parameters
may need to be specified depending on the resource manager type. Some of the related
resource management parameters are listed below. Further information about each is
available in the parameters documentation.

RMPORT
RMSERVER

RMTY PE
RMAUTHTY PE
RMCONFIGFILE

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:l

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

2.3 Initial Maui Testing

Maui has been designed with a number of key features that allow testing to occur in ano
risk environment. These features allow you to safely run Maui in test mode even with your
old scheduler running be it an earlier version of Maui or even another scheduler. In test
mode, Maui will collect real time job and node information from your resource managers and
will act asif it were scheduling live. However, its ability to actually affect jobs (i.e., start,
modify, cancel, etc) will be disabled.

Central to Maui testing is the parameter SERVERMODE. This parameter allows
administrators to determine how Maui will run. The possible values for this parameter are
NORMAL, TEST, and SSMULATION. Aswould be expected, to request test mode
operation, the SERVERM ODE parameter must be set to TEST.

The ultimate goal of testing isto verify proper configuration and operation. Particularly,
the following can be checked:

o Maui possesses the minimal configuration required to start up.
« Maui can communicate with the resource manager(s).
« Maui isableto obtain full resource and job information from the resource manager(s).
o Maui isableto properly start anew job
Each of these areas are covered in greater detail below.

S 2.3.1 Minimal Configuration Required To Start Up

S 2.3.1.1 Simulation Mode

< 2312 Test Mode

J 2.3.1.3 Norma Mode

2.3.1 Minimal Configuration Required To Start Up

Maui must have a number of parameters specified in order to properly start up. There are
three main approaches to setting up Maui on anew system. These include the following:

2.3.1.1 Simulation Mode

Simulation mode is of value if you would simply like to test drive the scheduler
or when you have a stable production system and you wish to evaluate how or
even if the scheduler can improve your current scheduling environment.

Aninitial test drive simulation can be obtained via the following step:

> vi maui.cfg

(change'SERVERMODE NORMAL'to'SERVERMODE SIMULATION')
(add 'SIMRESOURCETRACEFILE traces/Resource.Tracel')
(add 'SIMWORKLOADTRACEFILE traces’/Workload.Tracel")

> maui &

NOTE: Insimulation mode, the scheduler does not background itself like it
doesin both TEST and NORMAL mode.

The sample workload and resource traces files allow the simulation to emul ate
a192 node IBM SP. Inthismode, all Maui commands can berun asif on a
normal system. The schedctl command can be used to advance the ssmulation

through time. The Simulation chapter describes the use of the simulator in
detail.

If you are familiar with Maui, you may wish to use the simulator to tune
scheduling policies for your own workload and system. The profiler tool can be

used to obtain both resource and workload traces and is described further in the
section 'Collecting Traces. Generally, at least a week's worth of workload
should be collected to make the results of the simulation statistically
meaningful. Once the traces are collected, the simulation can be started with
some initial policy settings. Typically, the scheduler is able to simulate between
10 and 100 minutes of wallclock time per second for medium to large systems.
As the simulation proceeds, various statistics can be monitored if desired. At
any point, the ssmulation can be ended and the statistics of interest recorded.
One or more policies can be modified, the simulation re-run, and the results
compared. Once you are satisfied

with the scheduling results, the scheduler can be run live with the tuned policies.

2.3.1.2 Test Mode

Test mode alows you to evaluate new versions of the scheduler ‘on the side'.
In test mode, the scheduler connects to the resource manager(s) and obtains live
resource and workload information. Using the policies specified in the maui.cfg
file, the test-mode Maui behaves identical to alive 'normal’ mode Maui except
the code to start, cancel, and pre-empt jobsis disabled. Thisalowsyou to
exercise all scheduler code paths and diagnose the scheduling state using the
various diagnostic client commands. The log output can aso be evaluated to see
If any unexpected states were entered. Test mode can also be used to locate
system problems which need to be corrected. Like simulation mode, this mode
can also be used to safely test drive the scheduler as well as obtain confidence
over time of the reliability of the software. Once satisfied, the scheduling mode
can be changed from TEST to NORMAL to begin live scheduling.

To set up Maui in test mode, use the following step:

> vi maui.cfg
(change 'SERVERMODE NORMAL' to 'SERVERMODE TEST")
> maui

Remember that Maui running in test mode will not interfere with your
production scheduler, beit Loadleveler, PBS, or even another version of
Maui.

NOTE: If you are running multiple versions of Maui, be they in simulation,
normal, or test mode, make certain that they each reside in different home
directories to prevent conflicts with config and log files, statistics,
checkpointing, and lock files. Also, each instance of Maui should run using a
different SERVERPORT parameter to avoid socket conflicts. Maui client

commands can be pointed to the proper Maui server by using the appropriate
command line arguments or by setting the environment variable
MAUIHOMEDIR.

2.3.1.3 Normal Mode

For the adventurous at heart (or if you ssmply have not yet been properly
burned by directly installing alarge, totally new, mission critical piece
of software) or if you are bringing up anew or development system, you may
wish to dive in and start the scheduler in NORMAL mode. This
admin manual and the accompanying man pages should introduce you to the
relevant issues and commands. To start the scheduler in NORMAL mode, take
the following step:

> nmaui

That should be all that is needed to get you started.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

3.0 Basic Maui Overview

= 3.1 Layout of Maui Components

- 3.2 Scheduling Environments and Objects

-~ 3.3 Job Flow

-/ 3.4 Confiquring the Scheduler

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

3.1 FileLayout

Maui isinitially unpacked into a ssmple one-deep directory structure as shown below.
Note that some of thefiles (i.e., log and statistics files) will be created as Maui is run.

$(MAUIHOMEDIR) maui.cfg (general config file containing information required
by both the Maui server and user interface clients)
| maui-private.cfg (config file containing private
information required by the Maui server only)
| fscfg (fairshare config file used in Maui 3.0.6 and

earlier)
| maui.ck (Maui checkpoint file)
| maui.pid (Maui 'lock’ file to prevent multiple instances)
| log (directory for Maui log files- REQUIRED BY
DEFAULT)

| maui.log (Maui log file)
| maui.log.1 (previous 'rolled' Maui log file)
| stats (directory for Maui statistics files- REQUIRED

BY DEFAULT)
| Maui statsfiles (in format
'stats.<YYYY> <MM> <DD>')
| Maui fairshare datafiles (in format
'FS.<EPOCHTIME>")
| tools (directory for local tools called by Maui -
OPTIONAL BY DEFAULT)
| traces (directory for Maui simulation tracefiles -
REQUIRED FOR SIMULATIONS)
| resource.tracel (sample resource tracefile)
| workload.tracel (sample workload tracefile)
| bin (directory for Maui executable files- REQUIRED
BY DEFAULT)
| maui (Maui scheduler executable)
| maui_client (Maui user interface client executable)
| profiler (tool used to analyze Maui statistics)
| src (directory for Maui source code files -
REQUIRED FOR BUILD)
| spool (directory for temporary Maui files- REQUIRED
FOR ADVANCED FEATURES)
| contrib (directory containing contributed code in the areas
of GUI's, algorithms, policies, etc)

$(MAUIINSTDIR) bin (directory for installed Maui executables)

http://supercluster.org/documentation/maui/fsconfig.html

| maui (Maui scheduler executable)
| maui_client (Maui user interface client executable)
| profiler (tool used to analyze Maui statistics)

/etc/maui.cfg (optional file. Thisfileisused to override default
'$(MAUIHOMEDIR)' settings. it should contain the string ' MAUIHOMEDIR
$(DIRECTORY)' to override the 'built-in' §MAUIHOMEDIR)' setting.

When Maui is configured viathe configur e script, the user is queried for the location of
the Maui home directory and this directory, §(MAUIHOMEDIR), is compiled in asthe
default MAUIHOMEDIR directory when Maui isbuilt. Unless specified otherwise, Maui
will look in this directory for its various config files. If you wish to run Maui out of a
different directory, you can override the default home directory setting by creating a
/etc/maui.cfg file containing the string MAUIHOMEDIR <DIRECTORY >', by setting the
environment variable' MAUIHOMEDIR', or by specifying the configfile explicitly using the
'-C' command line option on Maui and the Maui client commands.

When Maui isrun, it creates alog file, ‘'maui.log' in the log directory and creates a
statistics file in the stats directory with the naming convention 'stats.YYYY_MM _DD' (i.e,,
'stats.2000_09 20). Additionally, a checkpoint file, maui.ck and lock file maui.pid are
maintained in the Maui home directory.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

3.2 Scheduling Environment

- 3.2.1 Scheduling Objects

< 3211 Jobs
- 32.1.1.1 Requirement (or Req)

3.2.1.2 Nodes

3.2.1.3 Advance Reservations

3.2.1.4 Policies

3.2.1.5 Resources

3.2.1.6 Task

3.2.1.7 PE

L N L " "I .

3.2.1.8 Class (or Queue)

3.2.1 Scheduling Objects

Maui functions by manipulating five primary, elementary objects. These are jobs, nodes,
reservations, QOS structures, and policies. In addition to these, multiple minor el ementary
objects and composite objects are also utilized. These objects are also defined in the
scheduling dictionary.

3.2.1.1 Jabs

Job information is provided to the Maui scheduler from a resource manager
such as Loadleveler, PBS, Wiki, or LSF. Job attributes include ownership of the
job, job state, amount and type of resources required by the job, and awallclock
[imit, indicating how long the resources are required. A job consists of one or
more requirements each of which requests a number of resources of agiven
type. For example, ajob may consist of two requirements, the first asking for '1
IBM SP node with at least 512 MB of RAM' and the second asking for '24 IBM
SP nodes with at least 128 MB of RAM'. Each requirements consists of one or
more tasks where atask is defined as the minimal independent unit of resources.
By default, each task is equivalent to one processor. In SMP environments,
however, users may wish to tie one or more processors together with a certain
amount of memory and/or other resources.

http://supercluster.org/documentation/maui/3.2.1dictionary.html

3.2.1.1.1 Requirement (or Req)

A job requirement (or req) consists of arequest for asingle type
of resources. Each requirement consists of the following
components:

- Task Definition

A specification of the elementary resources which compose an
individual task.

- Resource Constraints

A specification of conditions which must be met in order for
resource matching to occur. Only resources from nodes which meet
all resource constraints may be allocated to the job reqg.

- Task Count

The number of task instances required by the req.
- Task List

The list of nodes on which the task instances have been located.
- Req Statistics

Statistics tracking resource utilization

3.2.1.2 Nodes

Asfar as Maui is concerned, anode is a collection of resources with a
particular set of associated attributes. In most cases, it fits nicely with the
canonical world view of anode such as a PC cluster node or an SP node. In
these cases, anode is defined as one or more CPU's, memory, and possibly other
compute resources such as local disk, swap, network adapters, software licenses,
etc. Additionally, this node will described by various attributes such as an
architecture type or operating system. Nodes rangein size from small
uniprocessor PC's to large SMP systems where a single node may consist of
hundreds of CPU's and massive amounts of memory.

Information about nodes is provided to the scheduler chiefly by the resource
manager. Attributesinclude node state, configured and available resources (i.e.,
processors, memory, swap, €tc.), run classes supported, etc.

3.2.1.3 Advance Reservations

An advance reservation is an object which dedicates a block of specific
resources for a particular use. Each reservation consists of alist of resources, an
access control list, and atime range for which this access control list will be

enforced. The reservation prevents the listed resources from being used in away
not described by the access control list during the time range specified. For
example, areservation could reserve 20 processors and 10 GB of memory for
users Bob and John from Friday 6:00 AM to Saturday 10:00 PM'. Maui uses
advance reservations extensively to manage backfill, guarantee resource
avallability for active jobs, allow service guarantees, support deadlines, and
enable metascheduling. Maui also supports both regularly recurring reservations
and the creation of dynamic one time reservations for special needs. Advance
reservations are described in detail in the advance reservation overview.

3.2.1.4 Policies

Policies are generally specified viaa config file and serve to control how and
when jobs start. Policies include job prioritization, fairness policies, fairshare
configuration policies, and scheduling policies.

3.2.1.5 Resources

Jobs, nodes, and reservations all deal with the abstract concept of a resource.
A resource in the Maui world is one of the following:

processors

Processors are specified with a simple count value.
memory

Real memory or 'RAM" is specified in megabytes (MB).
swap

Virtual memory or 'swap' is specified in megabytes (MB).
disk

Local disk is specified in megabytes (MB).

In addition to these elementary resource types, there are two higher level
resource concepts used within Maui. These are the task and the processor
equivalent, or PE.

3.2.1.6 Task

A task isacollection of elementary resources which must be allocated
together within asingle node. For example, atask may consist of one processor,
512MB or memory, and 2 GB of local disk. A key aspect of atask isthat the
resources associated with the task must be allocated as an atomic unit, without
spanning node boundaries. A task requesting 2 processors cannot be satisfied by
allocating 2 uniprocessor nodes, nor can atask requesting 1 processor and 1 GB
of memory be satisfied by allocating 1 processor on one node and memory on
another.

In Maui, when jobs or reservations request resources, they do so in terms of
tasks typically using atask count and atask definition. By default, atask maps
directly to a single processor within ajob and maps to afull node within
reservations. Inall cases, this default definition can be overridden by specifying
anew task definition.

Within both jobs and reservations, depending on task definition, it is possible
to have multiple tasks from the same job mapped to the same node. For
example, ajob requesting 4 tasks using the default task definition of 1 processor
per task, can be satisfied by two dual processor nodes.

3217 PE

The concept of the processor equivalent, or PE, arose out of the need to
translate multi-resource consumption requests into a scalar value. Itisnot an
elementary resource, but rather, a derived resource metric. Itisameasure of the
actual impact of a set of requested resources by ajob on the total resources
avallable system wide. It iscalculated as:

PE = MAX(ProcsRequest edByJob /
Tot al Confi gur edPr ocs,
Menor yRequest edByJob /
Tot al Confi guredMenory,
Di skRequest edByJob /
Tot al Confi gur edDi sk,
SwapRequest edByJob /
Tot al Confi guredSwap) * Tot al Confi guredProcs

For example, say ajob requested 20% of the total processors and 50% of
the total memory of a 128 processor MPP system. Only two such jobs could be
supported by this system. Thejob is essentially using 50% of all available
resources since the system can only be scheduled to its most constrained
resource, in this case memory. The processor equivalents for this job should be
50% of the processors, or PE = 64.

L et's make the calculation concrete with one further example. Assume a
homogeneous 100 node system with 4 processors and 1 GB of memory per
node. A job issubmitted requesting 2 processors and 768 MB of memory. The
PE for this job would be calculated as:

PE = MAX(2/ (100*4), 768/ (100*1024)) * (100*4) = 3.

This result makes sense since the job would be consuming 3/4 of the
memory on a4 processor node.

The calculation works equally well on homogeneous or heterogeneous
systems, uniprocessor or large way SMP systems.

3.2.1.8 Class (or Queue)

A class (or queue) isalogical container object which can be used to
implicitly or explicitly apply policiesto jobs. In most cases, aclassis defined
and configured within the resource manager and associated with one or more of
the following attributes or constraints:

Attribute |Description

Default Job Attributes A queue may be associated with ade;fault job duration,
default size, or default resource requirements

Host Constraints A gueue may constrain job execution to a particular set
of hosts
A gueue may constrain the attributes of jobs which may

Job Constraints submitted including setting limits such as max
wallclock time, minimum number of processors, etc.

. A gueue may constrain who may submit jobsinto it
Access LI based on user lists, group lists, etc.
. A queue may associate special privileges with jobs
Special Access including adjusted job priority.

As stated previously, most resource managers allow full class configuration
within the resource manager. Where additional class configuration is required,
the CLASSCFG parameter may be used.

Maui tracks class usage as a consumable resource allowing sites to limit the
number of jobs using a particular class. Thisis done by monitoring class
initiators which may be considered to be aticket to run in a particular class.

Any compute node may simultaneously support serveral types of classes and any
number of initiators of each type. By default, nodes will have a one-to-one
mapping between class initiators and configured processors. For every job task
run on the node, one class initiator of the appropriate type is consumed. For
example, a 3 processor job submitted to the class batch will consume three batch
classinitiators on the nodes whereiit is run.

Using queues as consumabl e resources allows sites to specify various policies
by adjusting the class initiator to node mapping. For example, a site running
serial jobs may want to allow a particular 8 processor node to run any
combination of batch and special jobs subject to the following constraints:

- only 8 jobs of any type allowed simultaneously
- no more than 4 special jobs allowed simultaneously

To enable this policy, the site may set the node's MAXJOB policy to 8 and
configure the node with 4 special classinitiators and 8 batch classinitiators.

Note that in virtually all cases jobs have a one-to-one correspondence between
processors requested and class initiators required. However, thisisnot a
requirement and, with special configuration sites may choose to associate job

tasks with arbitrary combinations of class initiator requirements.

In displaying classinitiator status, Maui signifies the type and number of class
initiators available using the format [<KCLASSNAME>:<CLASSCOUNT?>].
Thisis most commonly seen in the output of node status commands indicating
the number of configured and available classinitiators, or in job status
commands when displaying class initiator requirements.

Arbitrary Resource

Node can also be configured to support various ‘arbitrary resources. Information about
such resources can be specified using the NODECFG parameter. For example, a node may

be configured to have '256 MB RAM, 4 processors, 1 GB Swap, and 2 tape drives.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/documentation/maui/parameter.html#nodecfg
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

3.3 Scheduling Iterations and Job Flow

= 3.3.1 Scheduling lterations

= 3.3.1.1 Update State Information

3.3.1.2 Refresh Reservations

3.3.1.3 Schedule Reserved Jobs

3.3.1.4 Schedule Priority Jobs

3.3.1.5 Backfill Jobs

3.3.1.6 Update Statistics

3.3.1.7 Handle User Reguests

L C U O O O U

3.3.1.8 Perform Next Scheduling Cycle

- 332 Detailed Job Flow

.

3.3.2.1 Determine Basic Job Feasibility

3.3.2.2 Prioritize Jobs

3.3.2.3 Enforce Configured Throttling Policies

3.3.2.4 Determine Resource Availability

3.3.2.5 Allocate Resources to Job

3.3.2.6 Distribute Jobs Tasks Across Allocated Resources

L C OC O O L

3.3.2.7 Launch Job

3.3.1 Scheduling Iterations In any given scheduling iteration, many activities take place.
These are broken into the following major categories:

Update State Information
Refresh Reservations
Schedule Reserved Jobs
Schedule Priority Jobs
Backfill Jobs

Update Statistics
Handle User Requests

3.3.1.1 Update State Information

Each iteration, the scheduler contacts the resource manager(s) and requests up
to date information on compute resources, workload, and policy configuration.
On most systems, these calls are to a centralized resource manager daemon
which possesses all information.

3.3.1.2 Refresh Reservations

3.3.1.3 Schedule Reserved Jobs

3.3.1.4 SchedulePriority Jobs
In scheduling jobs, multiple steps occur.
3.3.1.5 Backfill Jobs

3.3.1.6 Update Statistics

3.3.1.7 Handle User Requests

User requestsinclude any call requesting state information, configuration
changes, or job or resource manipulation commands. These requests may come
in the form of user client calls, peer daemon calls, or process signals.

3.3.1.8 Perform Next Scheduling Cycle

Maui operates on a polling/event driven basis. When all scheduling activities
are complete, Maui will process user requests until a new resource manager
event isreceived or an internal event is generated. Resource manager events
include activities such as a new job submission or completion of an active job,
addition of new node resources, or changes in resource manager policies.
Internal events include admin 'schedul €' requests, reservation

activation/deactivation, or the expiration of the RMPOLLINTERVAL timer.

3.3.2 Detailed Job Flow
3.3.2.1 Determine Basic Job Feasibility

Thefirst step in scheduling is determining which jobs are feasible. This step
eliminates jobs which have job holds in place, invalid job states (i.e., Completed,
Not Queued, Defered, etc), or unsatisfied preconditions. Preconditions may
include stage-in files or completion of preliminary job steps.

3.3.2.2 Prioritize Jobs

With alist of feasible jobs created, the next step involves determining the
relative priority of all jobswithin that list. A priority for each job is calculated

based on job attributes such as job owner, job size, length of time the job has
been queued, and so forth.

3.3.2.3 Enforce Configured Throttling Policies

Any configured throttling policies are then applied constraining how many

jobs, nodes, processors, etc are allowed on a per credential basis. Jobs which
violate these policies are not considered for scheduling.

3.3.2.4 Determine Resour ce Availability

For each job, Maui attempts to locate the required compute resources needed
by the job. In order for a match to be made, the node must possess al node
attributes specified by the job and possess adequate avail able resources to meet
the TasksPerNode job constraint (Default TasksPerNodeis1) Normally, Maui
determine a node to have adequate resources if the resources are neither utilized
by nor dedicated to another job using the calculation

R.Available = R.Configured - MAX (R.Dedicated,R. Utilized).

The RESOURCEAVAILABILITYPOLICY parameter can be modified to
adjust this behavior.

3.3.2.5 Allocate Resourcesto Job

If adequate resources can be found for ajob, the node allocation policy isthen
applied to select the best set of resources. These alocation policies alow
selection criteria such as speed of node, type of reservations, or excess node
resources to be figured into the allocation decision to improve the performance
of the job and/or maximize the freedom of the scheduler in making future
scheduling decisions.

3.3.2.6 Distribute Jobs Tasks Across Allocated Resour ces

With the resources selected, Maui then maps job tasks to the actual resources.
This distribution of tasksistypically based on simple task distribution
algorithms such as round-robin or max blocking, but can also incorporate
parallel language library (i.e., MPI, PVM, etc) specific patterns used to minimize
Interprocesses communication overhead.

3.3.2.7 Launch Job

With the resources selected and task distribution mapped, the scheduler then
contacts the resource manager and informs it where and how to launch the job.
The resource manager then initiates the actual job executable.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved;_:l

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

3.4 Configuring the Scheduler

Maui is configured using the flat text configfile maui.cfg. In Maui 3.0.6 and earlier, an
optional configfile, fs.cfg, could also be specified to define fairshare and QoS configuration.
In more recent versions, this functionality is handled by the * CFG parameters within the
maui.cfg file.

All config files consist of simple '<PARAMETER> <VALUE>' pairs which are whitespace
delimited. Parameter names are not case sensitive but <VALUE> settings are. Some
parameters are array values and should be specified as '<PARAMETER>[<INDEX>]', i.e.,
'QOSCFG[hiprio] PRIORITY=1000" The <VALUE> settings may be integers, floats,
strings, or arrays of these. Some parameters can be specified as arrays and in such, index
values can be numeric or a phanumeric strings. If no array index is specified for an array
parameter, an index of '0' is assumed. See the parameters documentation for information on

specific parameters.

All config files are read when Maui is started up. Also, the schedctl -R command can be

used to reconfigure the scheduler at any time, forcing it to re-read all config files before
continuing. The command changeparam can be used to change individual parameter settings
at any time, i.e. 'changepar am LOG_EVEL 3'. Changes made by the changeparam
command are not persistent so will be overwritten the next time the config file values are
loaded. The current parameter settings can be viewed at any time using the showconfig

command.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

4.0 Maui Commands

= 4.1 Client Overview

4.2 Monitoring System Status

4.3 Managing Jobs

4.4 Managing Reservations

4.5 Configuring Policies

“ L LU L L

4.6 End User Commands

= 4.7 Miscellaneous Commands

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

4.1 Client Overview

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:l

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

4.2 Status Commands

Maui provides an array of commands to organize and present information about the current
state and historical statistics of the scheduler, jobs, resources, users, accounts, etc. Thetable
below presents the primary status commands and flags. The Command Overview lists al
available commands.

|Command |Flags |Description

: display job state, resource requirements, environment, constraints,
checkjob credentias, history, allocated resources, and resource utilization
checknode displ ay node state, resources, attributes, reservations, history, and

i statistics

diagnose |-j display summarized job information and any unexpected state
diagnose |-n display summarized node information and any unexpected state

, display various aspects of scheduling performance across a job
showgrid duration/job size matrix
show [-r]-i] jdgzglay various views of currently queued active, idle, and non-eligible
showstats |-f display historical fairshare usage on a per credential basis
showstats |-g display current and historical usage on a per group basis
showstats |-u display current and historical usage on a per user basis
showstats |-v display high level current and historical scheduling statistics

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

4.3 Job Management Commands

Maui shares job management tasks with the resource manager. Typically, the scheduler
only modifies scheduling relevant aspects of the job such as partition access, job priority,
charge account, hold state, etc. The table below covers the available job management
commands. The Command Overview lists all available commands.

|Command |Flags|Description

canceljob cancel existing job

cheoob | | oy llooeted resources, en respurce uilaation
diagnose |- display summarized job information and any unexpected state
releasehold|([-a] |remove job holds or defers

runjob start job immediately if possible

sethold set hold on job

setgos set/modify QoS of existing job

setspri adjust job/system priority of job

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

4.4 Reservation Management Commands

Maui exclusively controls and manages all advance reservation features including both
standing and administrative reservations. The table below covers the available reservation
management commands. The Command Overview lists all available commands.

|Command |Flags |Description

diagnose |-r display summarized reservation information and any unexpected state
releaseres remove reservations

setres immediately create an administrative reservation

showres display information regarding location and state of reservations

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

4.5 Policy/Config Management Commands

Maui alows dynamic modification of most scheduling parameters allowing new
scheduling policies, algorithms, constraints, and permissions to be set at any time. Changes
made via Maui client commands are temporary and will be overridden by values specified in
Maui config files the next time Maui is shutdown and restarted. The table below coversthe

available configuration management commands. The Command Overview lists all available
commands.

|ICommand |Flags|Description

changeparam immediately change parameter value

<chedctl control scheduling behavior (i.e., stop/start scheduling, recycle,
= shutdown, etc.)

showconfig display settings of all configuration parameters

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

4.6 End User Commands

While the mgjority of Maui commands are tailored for use by system administrators, a
number of commands are designed to extend the knowledge and capabilities of end users.
The table below covers the commands available to end users. The Command Overview lists
all available commands.

|Command |Flags|Description

canceljob cancel existing job

- display job state, resource requirements, environment, constraints,
checkjob credentias, history, allocated resources, and resource utilization
showhbf show resource availability for jobs with specific resource requirements
showq display detailed prioritized list of active and idle jobs
showstart show estimated start time of idle jobs
showstats show detailed usage statistics for users, groups, and accounts which the
- end user has accessto

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reﬁerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

4.7 Miscelaneous Commands

The table below covers a number of additional commands which do not fully fit in prior
categories. The Command Overview lists all available commands.

|Command IFlags |Description

resetstats | |reaet internal statistics

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

5.0 Assigning Value - Job and Resource Prioritization

= 5.1 Job Priority

= 5.2 Node Allocation

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

5.1 Job Prioritization

In general, prioritization is the process of determining which of many options best fulfills
overal goals. In the case of scheduling, asite will often have multiple, independent goals
which may include maximizing system utilization, giving preference to usersin specific
projects, or making certain that no job sitsin the queue for more than a given period of time.
The approach used by Maui in representing a multi-facetted set of site goalsisto assign
welghts to the various objectives so an overall value or priority can be associated with each
potential scheduling decision. With the jobs prioritized, the scheduler can roughly fulfill site
objectives by starting the jobs in priority order.

S 5.1.1 Priority Overview

5.1.2 Priority Components

5.1.3 Common Priority Usage

5.1.4 Prioritization Strateqgies

L L O O

5.1.5 Manual Priority Management

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R@erved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

5.1.1 Priority Overview

Maui's prioritization mechanism allows component and subcomponent weights to be
associated with many aspects of ajob so asto enable fine-grained control over this aspect of
scheduling. To alow thislevel of control, Maui uses asimple priority-weighting hierarchy
where the contribution of each priority subcomponent is calculated as

<COMPONENT WEIGHT>* <SUBCOMPONENT WEIGHT>* <PRIORITY
SUBCOMPONENT VALUE>

Each priority component contains one or more subcomponents as described in the Priority
Component Overview. For example, the Resource component consists of Node, Processor,

Memory, Swap, Disk, and PE subcomponents. While there are numerous priority
components and many more subcomponents, a site need only focus on and configure the
subset of components related to their particular priority needs. In actual usage, few sites use
more than a small fraction (usually 5 or less) of the available priority subcomponents. This
resultsin fairly straightforward priority configurations and tuning. By mixing and matching
priority weights, sites may generally obtain the desired job-start behavior. At any time, the
diagnose -p command can be issued to determine the impact of the current priority-weight
settingson idle jobs. Likewise, the command showgrid can assist the admin in evaluating

priority effectiveness on historical system usage metrics such as queue time or expansion
factor.

As mentioned above, ajob's priority is the weighted sum of its activated subcomponents.
By default, the value of all component and subcomponent weightsisset to 1 and O
respectively. The one exception isthe QUEUETIM E subcomponent weight which is set to
1. Thisresultsin atotal job priority equal to the period of time the job has been queued,
causing Maui to act asasimple FIFO. Once the summed component weight is determined,
this value is then bounded resulting in a priority ranging between 0 and MAX_PRIO_VAL
which is currently defined as 1000000000 (one billion). In no case will ajob obtain a priority
in excess of MAX _PRIO VAL through its priority subcomponent values.

Using the setspri command, site admins may adjust the base calculated job priority by
either assigning arelative priority adjust or an absolute system priority. A relative priority
adjustment will cause the base priority to be increased or decreased by a specified value.
Setting an absolute system priority, SPRIO, will cause the job to receive a priority equal to
MAX_PRIO_VAL + SPRIO, and thus guaranteed to be of higher value than any naturally
occurring job priority.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/documentation/maui/commands/diagnosepriority.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

5.1.2 Job Priority Factors

Maui allows jobsto be prioritized based on arange of job related factors. These factors are
broken down into atwo-level hierarchy of priority factors and subfactors each of which can
be independently assigned aweight. This approach provides the administrator with detailed
yet straightforward control of the job selection process. The table below highlights the
components and subcomponents which make up the total job priority.

|Component |SubComponent IMetric
CRED e
(job credentials) USER user specific priority (See USERCFG)
group specific priority (See
GROUP GROUPCFG)
account specific priority (SEE
ACCOUNT ACCOUNTCFG)
QOS QOS specific priority (See QOSCFEG)
class/queue specific priority (See
CLASS CLASSCFG)
FS user based historical usage (See
(fairshare usage) FSUSER Fairshare Overview)
ESGROUP group based hlst_orlcal usage (See
Fairshare Overview)
ESACCOUNT account based hl_stoncal usage (See
Fairshare Overview)
FSQOS QOS base historical usage (See Fairshare
Overview)
ESCLASS cl gss/queue base_ad historical usage (See
Fairshare Overview)
RES
(requested job NODE number of nodes requested
resources)
IPROC Inumber of processors requested
IMEM total real memory requested (in MB)
ISWAP total virtual memory requested (in MB)
IDISK total local disk requested (in MB)
IPS ltotal proc-seconds requested
IPE total processor-equivalent requested
IWALLTIME total walltime requested (in seconds)

(Scilr-\;;/nt sarvice levels) QUEUETIME time job has been queued (in minutes)
IXFACTOR Iminimum job expansion factor
BYPASS number of times job has been bypassed
by backfill

TARGET time until queuetime target is reached
|(target service levels) TARGETQUEUETIME (exponential)

distance to target expansion factor

TARGETXFACTOR (exponential)
USAGE
(consumed resources-- |[CONSUMED proc-seconds dedicated to date
active jobs only)
IREMAINING proc-seconds outstanding
IPERCENT percent of required walltime consumed

5.1.2.1 Credential (CRED) Component

The credential component allows a site to prioritize jobs based on political issues such as
the relative importance of certain groups or accounts. This allows direct political prioritiesto
be applied to jobs.

The priority calculation for the credential component is:

Priority += CREDWEI GHT * (

USERWEI GHT * J->U->Priority +
GROUPVEI GHT * J->G>Priority +
ACCOUNTVEI GHT * J->A->Priority +
QOSVEI GHT * J->Q>Priority +
CLASSVEI GHT * J->C->Priority)

All user, group, account, QoS, and class weights are specified by setting the PRIORITY
attribute of using the respective * CFG' parameter, namely, USERCFG, GROUPCFG,
ACCOUNTCFG, QOSCFG, and CLASSCFG.

For example, to set user and group priorities, the following might be used.

CREDWEI GHT 1

USERWEI GHT 1
GROUPWEI GHT 1

USERCFE j ohn] PRI ORI TY=2000
USERCFE paul] PRI ORI TY=- 1000

GROUPCFQ st af f] PRI ORI TY=10000

@Clas (or queue) priority may also be specified via the resource manager where supported
(i.e.,, PBS queue priorities). However, if Maui class priority values are also specified, the
resource manager priority values will be overwritten.

All priorities may be positive or negative.

5.1.2.2 Fairshare(FS) Component

Fairshare components allow a site to favor jobs based on short term historical usage. The
Fairshare Overview describes the configuration and use of Fairshare in detail.

After the brief reprieve from complexity found in the QOS factor, we come to the Fairshare
factor. Thisfactor isused to adjust ajob's priority based on the historical percentage system
utilization of the jobs user, group, account, or QOS. This allows you to 'steer’ the workload
toward a particular usage mix across user, group, account, and QOS dimensions. The
fairshare priority factor calculation is

Priority += FSWEIGHT * M N(FSCAP, (
FSUSERWEI GHT * Del taUser FSUsage +
FSGROUPWEI GHT * Del taG oupFSUsage +
FSACCOUNTWEI GHT * Del t aAccount FSUsage +
FSQOSVEI GHT * Del t aQOSFSUsage +
FSCLASSVEI GHT * Del taCl assFSUsage))

All *WEIGHT' parameters above are specified on a per partition basis in the maui.cfg
file. The'Delta* Usage' components represents the difference in actual fairshare usage from a
fairshare usage target. Actual fairshare usage is determined based on historical usage over
the timeframe specified in the fairshare configuration. The target usage can be either atarget,
floor, or ceiling value as specified in the fairshare config file. The fairshare documentation
coversthisin detail but an example should help obfuscate things completely. Consider the
following information associated with calculating the fairshare factor for job X.

Job X
User A
Group B
Account C
QOSD
ClassE

User A
Fairshare Target: 50.0
Current Fairshare Usage: 45.0

Group B
Fairshare Target: [NONE]
Current Fairshare Usage: 65.0

Account C

Fairshare Target: 25.0
Current Fairshare Usage: 35.0
QO0Ss3
Fairshare Target: 10.0+
Current Fairshare Usage: 25.0
ClassE
Fairshare Target: [NONE]

Current FairshareUsage: 20.0

PriorityWeights:
FSWEIGHT 100
FSUSERWEIGHT 10
FSGROUPWEIGHT 20
FSACCOUNTWEIGHT 30
FSQOSWEIGHT 40
FSCLASSWEIGHT 0

In this example, the Fairshare component cal culation would be as follows:

Priority += 100 * (
10* 5+
20* 0+
30* (-10) +
40* 0+
0*0)

User A is5% below histarget so fairshare increases the total fairshare factor accordingly.
Group B has no target so group fairshare usage isignored. Account C is above its 10% above
its fairshare usage target so this component decreases the job's total fairshare factor. QOS 3
is 15% over itstarget but the '+' in the target specification indicates that thisis a 'floor' target,
only influencing priority when fairshare usage drops below the target value. Thus, the QOS 3
fairshare usage delta does not influence the fairshare factor.

Fairshare is a great mechanism for influencing job turnaround time via priority to favor a
particular distribution of jobs. However, it isimportant to realize that fairshare can only
favor a particular distribution of jobs, it cannot forceit. If user X has afairshare target of
50% of the machine but does not submit enough jobs, no amount of priority favoring will get
user X's usage up to 50%. See the Fairshare Overview for more information.

5.1.2.3 Resource (RES) Component

Weighting jobs by the amount of resources requested allows a site to favor particular types
of jobs. Such prioritization may allow a site to better meet site mission objectives, improve
fairness, or even improve overall system utilization.

Resource based prioritization is valuable when you want to favor jobs based on the
resources requested. Thisisgood in three main scenarios; first, when you need to favor large
resource jobs because its part of your site's mission statement; second, when you want to
level the response time distribution across large and small jobs (small jobs are more easily
backfilled and thus generally have better turnaround time); and finally, when you want to
improve system utilization. What? Y es, system utilization actually increases as large
resource jobs are pushed to the front of the queue. This keeps the smaller jobs in the back
where they can be selected for backfill and thus increase overall system utilization. Itsalot
like the story about filling a cup with golf balls and sand. If you put the sand in first, it gets
in the way when you try to put in the golf balls. However, if you put in the golf ballsfirst, the
sand can easily be poured in around them completely filling the cup.

The calculation for determining the total resource priority factor is:
Priority += RESWEI GHT * M N(RESOURCECAP, (

NODEWEI GHT * Tot al NodesRequested +
PROCWEI GHT * Tot al Processor sRequested +
VEMAEI GHT * Tot al Menor yRequest ed +
SWAPWEI GHT * Tot al SwapRequested +

DI SKVWEI GHT * Tot al D skRequested +

PEWEI GHT * Tot al PERequest ed))

The sum of all weighted resources componentsis then multiplied by the RESWEIGHT
parameter and capped by the RESOURCECAP parameter. Memory, Swap, and Disk are all
measured in megabytes (MB). The final resource component, PE, represents 'Processor
Equivaents. Thiscomponent can be viewed as a processor-weighted maximum 'percentage
of total resources factor. For example, if ajob requested 25% of the processors and 50% of
the total memory on a 128 processor O2K system, it would have a PE value of MAX(25,50) *
128, or 64. The concept of PE's may be alittle awkward to grasp initialy but it isa highly
effective metric in shared resource systems.

5.1.2.4 Service (SERV) Component

The Service component essentially specifies which service metrics are of greatest value to
the site. Favoring one service subcomponent over another will generally cause that service
metric to improve.

51.24.1 QueueTime (QUEUETIME) Subcomponent

In the priority calculation, ajob's queue timeis a duration measured in minutes. Use of
this subcomponent tends to prioritize jobs in aFIFO order. Favoring queue time improves
gueue time based fairness metrics and is probably the most widely used single job priority
metric. Infact, under theinitial default configuration, thisisthe only priority subcomponent
enabled within Maui. It isimportant to note that within Maui, ajob's queue time is not
necessarily the amount of time since the job was submitted. The parameter

JOBPRIOACCRUALPOLICY dalowsasite to select how ajob will accrue queue time based
on meeting various throttling policies. Regardless of the policy used to determine ajob's
gueue time, this 'effective’ queue timeis used in the calculation of the QUEUETIME,
XFACTOR, TARGETQUEUETIME, and TARGETXFACTOR priority subcomponent
values.

The need for adistinct effective queue time is necessitated by the fact that most sites have
pretty smart users and pretty smart users like to work the system, whatever system it happens
to be. A common practice at some long existent sites is for some users to submit alarge
number of jobs and then place them on hold. These jobs remain with ahold in place for an
extended period of time and when the user is ready to run ajob, the needed executable and
datafiles are linked into place and the hold released on one of these 'pre submitted' jobs. The
extended hold time guarantees that this job is now the highest priority job and will be the next
to run. The use of the JOBPRIOACCRUALPOLICY parameter can prevent this practice
aswell as preventing 'queue stuffers from doing similar things on a shorter time scale. These
‘queue stuffer' users submit hundreds of jobs at once so as to swamp the machine and hog use
of the available compute resources. This parameter prevents the user from gaining any
advantage from stuffing the queue by not allowing these jobs to accumulate any queue time
based priority until they meet certain idle and/or active Maui fairness policies. (i.e., max job
per user, max idle job per user, €etc.)

Asafina note, the parameter QUEUETIMEWEIGHT can be adjusted on a per QOS basis
using the QOSCFG parameter and the QTWEIGHT attribute. For example, the line
'QOSCF(speci al] QI'VEI GHT=5000" will cause jobs utilizing the QOS speci al to
have their queue time subcomponent weight increased by 5000.

5.1.2.4.2 Expansion Factor (XFACTOR) Subcomponent

The expansion factor subcomponent has an effect similar to the queue time factor but favors
shorter jobs based on their
requested wallclock run time. Inits canonica form, the expansion factor (XFactor) metricis
calculated as

XFACTOR = 1 + <QUEUETI ME> /| <EXECUTI ONTI VE>

However, a couple of aspects of this calculation make its use more difficult. First, the
length of time the job will actually run, 'Execution Time', is not actually known until the job
completes. All that is known is how much time the job requests. Secondly, as described in
the Queue Time Subcomponent section, Maui does not necessarily use the raw time since job

submission to determine 'QueueTime' so as to prevent various scheduler abuses.
Consequently, Maui uses the following modified equation:

XFACTOR = 1 + <EFFQUEUETI ME> / <WALLCLOCKLI M T>

In the equation above, EFFQUEUETI IVE is the effective queue time subject to the
JOBPRIOACCRUALPOLICY parameter and WALLCLOCKLI M T isthe user or system

specified job wallclock limit.

Using this equation, it can be seen that short running jobs will have an xfactor that will
grow much faster over time
than the xfactor associated with long running jobs. The table below demonstrates this
favoring of short running jobs.

\Job Queue Time |1 hour 2 hours 4 hours 8 hours |16 hours
XFactor for L hour |(1+1)/1 (2+1)/1= |(4+1)/1= |(8+1) /1= |(16+1)/1=
job =2.00 3.00 5.00 9.00 17.0
XFactor for 4hour |(L+4)/4 [2+4) /4= |(4+4)/4= ((8+4)/4= |(16+4)/4=
job =125 1.50 2.00 3.00 5.0

Since XFactor is calculated as aratio of two values, it is possible for this subcomponent to
be almost arbitrarily large potentially swamping the value of other priority subcomponents.
This can be addressed either by using the subcomponent cap XFCAP, or by using the
XFMINWCLIMIT parameter. If the later is used, the calculation for the xfactor
subcomponent value becomes:

XFACTOR = 1 + <EFFQUEUETI Me> /
MAX(<XFM NWCLI M T>, <WALLCLOCKLI M T>)

The use of the XSFMINWCLIMIT parameter allows a site to prevent very short jobs from
causing the Xfactor subcomponent to grow inordinately.

Some sites consider X Factor to be amore fair scheduling performance metric than queue
time. At these sites, job XFactor is given far more weight than job queue time when
calculating job priority and consequently, job XFactor distribution tends to be fairly level
across awide range of job durations. (i.e., A flat XFactor distribution of 1.0 would result in
aone minute job being queued on average one minute, while a 24 hour job would be queued
an average of 24 hours).

Like queue time, the effective X Factor subcomponent weight is the sum of two weights,
the XFWEIGHT parameter and the QOS specific XFWEIGHT setting. For example, the
line'QOSCF({ speci al] XFWElI GHT=5000" will cause jobs utilizing the QOS speci al
to have their expansion factor subcomponent weight increased by 5000.

5.1.2.4.3 Bypass(BYPASS) Subcomponent

The bypass factor is the forgotten stepchild of the priority subcomponent family. It was
originally introduced to prevent backfill based starvation. It isbased on the 'bypass count of
ajob where the bypass count is increased by one every time the job is 'bypassed’ by a lower
priority job via backfill. The calculation for this factor issimply. Over the years, the
anticipated backfill starvation has never been reported. The good newsisthat if it ever shows
up, Maui is ready!

5.1.25 Target Service (TARG) Component

The target factor component of priority takes into account job scheduling performance
targets. Currently, thisislimited to target expansion factor and target queuetime. Unlike the
expansion factor and queue time factors described earlier which increase gradually over time,
the target factor component is designed to grow exponentially as the target metric is
approached. Thisbehavior causes the scheduler to do essentially 'al in its power' to make
certain the scheduling targets are met.

The priority calculation for the target factor is:

Priority += TARGMEI GHT * (
QueueTi neConponent +
XFact or Conponent)

The queue time and expansion factor target are specified on a per QOS basis using the
'QOSXFTARGET' and 'QOSQTTARGET" parameters. The QueueTime and X Factor
component calculations are designed produce small values until the target value beginsto
approach at which point these components grow very rapidly. If the target is missed, these
component will remain high and continue to grow but will not grow exponentially.

5.1.2.6 Usage (USAGE) Component

(Under Construction)

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

5.1.3 Common Priority Usage

Sites vary wildly in the preferred manner of prioritizing jobs. Maui's scheduling hierarchy
allows sites to meet their job control needs without requiring them to adjust dozens of
parameters. Some sites may choose to utilize numerous subcomponents, others afew, and
still others are completely happy with the default FIFO behavior. Any subcomponent which
isnot of interest may be safely ignored.

To help clarify the use of priority weights, a brief example may help. Suppose asite
wished to maintain the FIFO behavior but also incorporate some credential based
prioritization to favor a special user. Particularly, the site would like the userjohn to receive a
higher initial priority than all other users. Configuring this behavior would require two steps.
First, the user credential subcomponent would need to be enabled and second, john would
need to have hisrelative priority specified. Take alook at the example maui.cfg:

USERVEI GHT 1
USERCFQF j ohn] PRI ORI TY=300

@ The'USER' priority subcomponent was enabled by setting the USERWEIGHT
parameter. In fact, the parameters used to specify the weights of al components and
subcomponents follow this same *WEIGHT' naming convention (i.e., RESWEIGHT,
TARGETQUEUETIMEWEIGHT, etc.).

The second part of the example involved specifying the actual user priority for the user
john. Thiswas accomplished using the USERCFG parameter. Why was the priority 300
selected and not some other value? Isthisvalue arbitrary? Asin any priority system, actual
priority values are meaningless, only relative values are important. In this case, we are
required to balance user priorities with the default queue time based priorities. Since
gueuetime priority is measured in minutes queued (see table above), the user priority of 300
will make ajob by user john on par with ajob submitted 5 minutes earlier by another user.

Is this what the site wants? Maybe, maybe not. The honest truth is that most sites are not
completely certain what they want in prioritization at the onset. Most often, prioritizationisa
tuning process where an initial stab is made and adjustments are then made over time.

Unless you are an exceptionally stable site, prioritization is also not a matter of getting it
right. Cluster resources evolve, the workload evolves, and even site policies evolve, resulting
in changing priority needs over time. Anecdotal evidence indicates that most sites establish a
relatively stable priority policy within afew iterations and make only occasional adjustments
to priority weights from that point on.

Letslook at one more example. A site wantsto do the following:

- favor jobsin the low, medium, and high QOS's so they will run in QOS order
- balance job expansion factor
- usejob queue timeto prevent jobs from starving

The sample maui.cfg is listed below:

QOSVEI GHT 1

XFACTORVEI GHT 1
QUEUETI NEVEI GHT 10
TARGETQUEUETI MEVEI GHT 1

QOSCFG | ow] PRI ORI TY=1000
QOSCFG nedi unj PRI ORI TY=10000
QOSCFd hi gh] PRI ORI TY=10000

USERCFGE DEFAULT] QITARGET=4: 00: 00

Thisexampleis abit more complicated but is more typical of the needs of many sites. The
desired QOS weightings are established by enabling the QOS subfactor using the
QOSWEIGHT parameter while the various QOS priorities are specified using QOSCFG.

XFACTORWEIGHT isthen set as this subcomponent tends to establish a balanced
distribution of expansion factors across all jobs. Next, the queuetime component is used to
gradually raise the priority of all jobs based on the length of time they have been queued.
Note that in this case, QUEUETIMEWEIGHT was explicitly set to 10, overriding its
default value of 1. Finally, the TARGETQUEUETIMEWEIGHT parameter isused in
conjunction with the USERCFG line to specify a queue time target of 4 hours.

Assume now that the site decided that it liked this priority mix but they had a problem with
users ‘cheating' by submitting large numbers very short jobs. They would do this because
very short jobs would tend to have rapidly growing xfactor values and would consequently
quickly jump to the head of the queue. In this case, a'factor cap' would be appropriate.
These caps allow a site to say | would like this priority factor to contribute to ajob's priority
but only within adefined range. This prevents certain priority factors from swamping others.
Caps can be applied to either priority components or subcomponents and are specified using
the '<COMPONENTNAME>CAP parameter (i.e., QUEUETIMECAP, RESCAP,
SERVCAP, etc.) Note that both component and subcomponent caps apply to the
'pre-weighted' value as in the following equation:

Priority =

C1VEI GHT * M N(C1CAP, SUM
S11IVEI GHT * M N(S11CAP, S11S)
S12VEI GHT * M N(S12CAP, S12S)
L))+

C2VEI GHT * M N(C2CAP, SUM
S21VEI GHT * M N(S21CAP, S215)
S22VEEI GHT * M N(S22CAP, S22S) +

L)) o+

+ +

+

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reaerved;_:l

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

5.1.4 Prioritization Strategies

Each component or subcomponent may be used to accomplish different objectives.
WALLTIME can be used to favor (or disfavor) jobs based on their duration. Likewise,
ACCOUNT can be used to favor jobs associated with a particular project while
QUEUETIME can be used to favor those jobs which have been waiting the longest.

- QueueTime

- Expansion Factor
- Resource

- Fairshare

- Cred

- Target Metrics

Each priority factor group may contain one or more subfactors. For example, the Resource
factor consists of Node, Processor, Memory, Swap, Disk, and PE components. Figure <X>
shows the current priority breakdown. From the figure, it is quickly apparent that the
prioritization problem isfairly 'nasty’ due to the fact that every site needsto prioritize a bit
differently. Fortunately, there has not yet been a site that has desired to use more than a
fraction of these priority factors, thus greatly simplifying the job priority tuning issue. When
calculating a priority, the various priority factors are summed and then bounded between O
and MAX_PRIO_VAL whichis currently defined as 100000000 (one billion).

Each priority factor isreviewed in detail below. The command 'diagnose -p' is designed to
assist in visualizing the priority distribution resulting from the current job priority
configuration. Also, the showgrid command will help indicate the impact of the current
priority settings on scheduler service distributions.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/documentation/maui/commands/diagnosepriority.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

5.1.5 Manual Job Priority Adjustment

Batch administrator's regularly find a need to adjust the calculated priority of ajob to meet
current needs. Current needs often are broken into two categories.

A) The need to run an admin test job as soon as possible
B) The need to pacify an irate user

Under Maui, the setspri command can be used to handle these issues in one of two ways.

This command allows the specification of either arelative priority adjustment, or the
specification of aabsolute priority. Using absolute priority specification, administrators can
set ajob priority which is guaranteed to be higher than any calculated value. Where
Maui-calculated job priorities are in the range of 0 to 1 billion, system admin assigned
absolute priorities start at 1 billion and go up. Issuing the command 'setspri <PRIO>
<JOBID>', for example, will assign a priority of ‘1 billion + <PRIO>' to the job. Thus,
'setspri 5 job.1294' with set the priority of job 'job.1294' to 1000000005.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

5.2 Node Allocation

While job prioritization allows a site to determine which job to run, node allocation
policies allow asite to specify how available resources should be allocated to each job. The
algorithm used is specified by the parameter NODEALLOCATIONPOLICY. Thereare
multiple node allocation policies to choose from allowing selection based on reservation
constraints, node configuration, available resource constraints, and other issues. The
following algorithms are available and described in detail below: FIRSTAVAILABLE,
LASTAVAILABLE, MACHINEPRIO, CPULOAD, MINRESOURCE, CONTIGUOUS,
MAXBALANCE, FASTEST, and LOCAL. Additional load allocation polices such as may
be enabled through extension libraries such as G2. Documentation for the extension library
of interest should be consulted.

= 5.2.1 Node Allocation Overview

= 5.2.2 Resource Based Algorithms

< 5221 CPULOAD

5.2.2.2 FIRSTAVAILABLE

5.2.2.3 LASTAVAILABLE

5.2.2.4 MACHINEPRIO

5.2.2.5 MINRESOURCE

5.2.2.6 CONTIGUOUS

5.2.2.7 MAXBALANCE

L C U O O O U

5.2.2.8 FASTEST

< 5229 LOCAL

- 5.2.3 Time Based Algorithms

= 5.2.4 Localy Defined Algorithms

5.2.1 Node Allocation Overview
Node allocation isimportant in the following situations:
- heterogeneous system

If the available compute resources have differing configurations, and a subset of the
submitted jobs cannot run on all of the nodes, then allocation decisions can significantly
affect scheduling performance. For example, a system may be comprised of two nodes, A
and B, which areidentical in all respects except for RAM, possessing 256MB and 1GB of
RAM respectively. Two single processor jobs, X and Y, are submitted, one requesting at
least 512 MB of RAM, the other, at least 128 MB. The scheduler could run job X on node A
in which case job Y would be blocked until job X completes. A more intelligent approach
may be to allocate node B to job X because it has the fewest available resources yet il
meets the constraints. Thisis somewhat of a'bestfit' approach in the configured resource
dimension and is essentially what is done by the ' MINRESOURCE' algorithm.

- shared node system

Shared node systems are most often involve SMP nodes although this is not mandatory.
Regardless, when sharing the resources of a given node amongst tasks from more than one
job, resource contention and fragmentation issues arise.

Most current systems still do not do avery good job of logically partitioning the
resources (i.e., CPU, Memory, network bandwidth, etc.) available on a given node.
Consequently contention often arises between tasks of independent jobs on the node. This
can result in aslowdown for all jobs involved which can have significant ramifications if
large way parallel jobs are involved.

On large way SMP systems (i.e., > 32 processors/node), job packing can result in
intra-node fragmentation. For example, again take two nodes, A and B each with 64
processors. Assume they are currently loaded with various jobs and have 24 and 12
processors free respectively. Two jobs are submitted, Job X requesting 10 processors, and
job Y requesting 20 processors. Job X can start on either node but starting it on node A will
prevent job Y from running. An agorithm to handle intra-node fragmentation is pretty
straightforward for a single resource case, but what happens when jobs request a combination
of processors, memory, and local disk. Determining the correct node suddenly gets
significantly more difficult. Algorithms to handle these type of issues are currently available
in the G2 extension library.

- reservation based systems

A reservation based system adds the time dimension into the node allocation decision.
With reservations, node resources must be viewed in atype of two dimension 'node-time'
space. Allocating nodes to jobs fragments this node-time space and makes it more difficult to
schedule jobs in the remaining, more constrained node-time slots. Allocation decisions
should be made in such away as top minimize this fragmentation and maximize the
schedulers ability to continue to start jobs in existing slots. See the figure to hopefully
remove a small amount of the incoherency contained in the above sentences. In thisfigure,

Job A and job B are already running. A reservation, X, has been created some time in the
future. Assumethat job A is2 hourslong and job B is 3 hourslong. Again, two new single
processor jobs are submitted, C and D; job C requires 3 hours of compute time while job D
requires 5 hours. Either job will just fit in the free space located above Job A or inthe free
space located below job B. If job Cis placed above Job A, job D, requiring 5 hours of time
will be prevented from running by the presence of reservation X. However, if job Cis placed
below job B, job D can still start immediately above Job A Hopefully this canned example
demonstrates the importance of time based , -

reservation information in making node
allocation decisions, both at the time of
starting jobs, and at the time of creating
reservations. The impact of time based
issues grows significantly with the number
of reservations in place on a given system.
The LASTAVAILABLE algorithm works
on this premise, locating resources which
have the smallest space between the end of a
job under consideration and the start of a future reservation.

Nodes

- non-flat network system

On systems where network connections do not resemble aflat 'all-to-all' topology, the
placement of tasks may present a significant impact on the performance of communication
intensive parallel jobs. If latencies and bandwidth of the network between any two nodes
vary significantly, the node allocation algorithm should attempt to pack tasks of a given job
as close to each other as possible to minimize the impact of these bandwidth and latency
differences.

5.2.2 Resource Based Algorithms

Maui contains a number of allocation algorithms which address some of the needs
described above. Additional 'homegrown' allocation algorithms may also be created and
interfaced into the Maui scheduling system. The current suite of algorithms is described
below.

5221 CPULOAD

Nodes are selected which have the maximum amount of available, unused
cpu power, i.e. <#of CPU's> - <CPU load>. Good agorithm for timesharing
node systems. This algorithm is only applied to jobs starting immediately. For
the purpose of future reservations, the MINRESOURCE a gorithm is used.

5.2.22 FIRSTAVAILABLE

Simplefirst come, first server algorithm where nodes are allocated in the
order they are presented by the resource manager. Thisisavery smple, and
very fast algorithm.

5223 LASTAVAILABLE

Algorithm which selects resources so as to minimize the amount of time
after the job and before the the trailing reservation. Thisalgorithmisa'best fit
in time' agorithm which minimizes the impact of reservation based node-time
fragmentation. It isuseful in systems where alarge number of reservations (job,
standing, or administrative) arein place.

5.2.24 MACHINEPRIO

This algorithm allows a site to specify the priority of various static and
dynamic aspects of compute nodes and allocate them accordingly. Itisin
essence aflexible version of the M INRESOURCE algorithm.

5.2.25 MINRESOURCE

This algorithm priorities nodes according to the configured resources on
each node. Those nodes with the fewest configured resources which still meet
the job's resource constraints are selected.

5.2.26 CONTIGUOUS

This algorithm will allocate nodes in contiguous (linear) blocks as required
by the Compag RM S system.

5.2.27 MAXBALANCE

This algorithm will attempt to allocate the most 'balanced' set of nodes
possible to ajob. In most cases, but not all, the metric for balance of the nodes
iIsnode speed. Thus, if possible, nodes with identical speeds will be allocated to
thejob. If identical speed nodes cannot be found, the algorithm will allocate the
set of nodes with the minimum node speed 'span’ or range.

5.2.2.8 FASTEST

This algorithm will select nodesin 'fastest node first' order. Nodeswill be
selected by node speed if specified. If node speed is not specified, nodes will be
selected by processor speed. If neither is specified, nodes will be selected in a
random order.

5229 LOCAL
Thiswill call thelocally created 'contrib’ node allocation algorithm.
Seealso
N/A.

5.2.3 TimeBased Algorithms

Under Construction

5.2.4 Locally Defined Algorithms

Under Construction

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

6.0 Managing Fairness - Throttling Policies, Fairshare, and
Allocation Management

= 6.1 Fairness Overview

= 6.2 Throttling Policies

= 6.3 Fairshare

= 6.4 Allocation Management

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R%ervedL_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

6.1 Fairness Overview

The concept of fairness varies widely from person to person and site to site. To some it
implies giving all users equal accessto compute resources. However, more complicated
concepts incorporating historical resource usage, political issues, and job value are equally
valid. While no scheduler can handle al possible definitions of what fair means, Maui
provides some flexible tools that help with most common fairness management definitions
and needs. Particularly, fairness under Maui may be addressed by any combination of the
facilities described in the table below.

Facility

IDescription

[Example

Thottling Policies

Specify limits on exactly
what resources can be
used at any given instant.

USERCF{ j ohn] MAXJ OB=3
GROUPCFE DEFAULT] MAXPROC=64
GROUPCF(st af f]

MAXPROC=128

(alow j ohn toonly run 3 jobs at atime.
Allow the group st af f to utilize up to
128 total processors and all other groups
to utilize up to 64 processors.)

Specify what is most
important to the
scheduler. Using Service
based priority factors can

SERWAEI GHT 1
QUEUET!I MEVEEI GHT 10

historical resource usage.

Job Prioritization alow asiteto balance job (cause jobs to increasein priority by 10
turnaround time, points for every minute they remain in
expansion factor, or other |i,q queue.)
scheduling performance
metrics.

USERCFJ st eve]
FSTARGET=25. 0+
' FSWEI GHT 1
S_pe_ufy usagetargetsto [FSUSERWEI GHT 10
Fairshare I|rr_1|ts resource access or . :
Farsnare adjust priority based on |(enable priority based fairshare and

specify afairshare target for user st eve
such that hisjob's will be favored in an
attempt to keep hisjob's utilizing at least
25.0% of delivered compute cycles.)

Allocation
M anagement

Specify long term,
credential-based resource
usage limits.

BANKTYPE (QBANK
BANKSERVER server. sys. net

(enable the QBank allocation
management system. Within the
allocation manager, project or account
based allocations may be configured.
These allocations may, for example,
allow project X to utilize up to 100,000
processor-hours per quarter, provide
various QoS sensitive charge rates, share
allocation access, €tc.)

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

6.2 Throttling Policies

Maui possesses a number of policies which allow an administrator to control the flow of
jobs through the system. These throttling policies work asfilters allowing or disallowing a
job to be considered for scheduling by specifying limits regarding system usage for any given
moment. These policies may be specified as global or specific constraints specified on a per
user, group, account, QOS, or class basis.

S 6.2.1 Fairnessvia Throttling Policies

- 6.2.1.1 Basic Fairness Policies

S 6.2.1.2 Multi-Dimension Fairness Policies

J 6.2.2 Override Limits

' 6.2.3 Idle Job Limits

- 6.2.4 Hard and Soft Limits

6.2.1 Fairnessvia Throttling Policies

Significant improvementsin the flexibility of throttling policies were introduced in Maui
3.0.7. Those sites using versions prior to this should consult the Maui 3.0.6 style throttling

policy configuration documentation. At ahigh level, Maui allows resource usage limitsto
be specified for in three primary dimensions:

6.2.1.1 Basic FairnessPolicies

- Active Job Limits (Constrains the total cumulative resource available to active
jobs at agiven time)

- Idle Job Limits (Constrainsthe total cumulative resources availableto idle
jobs at agiven time)

- System Job Limits (Constrains the maximum resource requirements of any
single job)

These limits can be applied to any job credential (user, group, account, QOS,
and class), or on a system-wide basis. Additionally, QoS's may be configured to
allow limit overrides to any particular policy. For ajob to run, it must meet all
policy limits. Limits are applied using the * CFG' set of parameters, particularly,
USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and
SYSTEMCEFG. Limits are specified by associating the desired limit to the

individual or default object. The usage limits currently supported by Maui listed

http://supercluster.org/documentation/maui/throttling306.html
http://supercluster.org/documentation/maui/throttling306.html

in the table below.

INAME

[UNITS

|DESCRI PTION

|EXAM PLE

MAXJOB

of jobs

Limits the number of
jobs a credential may
have active (Starting
or Running) at any
given time.

MAXJOB=8

MAXPROC

of processors

Limits the total
number of dedicated
processors which can
be allocated by active
jobs at any given
time.

MAXPROC=32

MAXPS

<# of processors> *
<walltime>

Limits the number of
outstanding
processor-seconds a
credential may have
alocated at any
given time. For
example, if auser has
a4 processor job
which will complete
in1 hour and a2
processor job which
will completein 6
hours, hehas'4* 1*
3600+ 2* 6* 3600
=16 * 3600
outstanding
processor-seconds.
The outstanding
processor-second
usage of each
credential is updated
each scheduling
iteration, decreasing
asjob's approach
their completion

time.

MAXPS=720000

MAXPE

of processor
equivalents

Limits the total
number of dedicated
processor-equivalents
which can be
allocated by active
jobs at any given
time.

MAXPE=128

MAXWC

job duration
[[[DDD:]HH:]MM:]SS

Limits the number of
outstanding seconds
acredential may
have associated with
active jobs. It
behavesidentically
to the MAXPS limit
above only lacking
the processor
weighting. Like
MAXPS, the
outstanding second
usage of each
credential isalso
updated each
scheduling iteration.

MAXWC=72:00:00

MAXNODE

of nodes

limits the total
number of compute
nodes which can be
in use by active jobs
at any given time.

MAXNODE=64

MAXMEM

total memory in MB

Limits the total
amount of dedicated
memory (in MB)
which can be
alocated by a
credential's active
jobs at any given
time.

MAXMEM=2048

The example below demonstrates a simple limit specification.

USERCFQ DEFAULT]
USERCFQ j ohn]

MAXJ OB=4
MAXJ OB=8

This example will allow user john to run up to 8 jobs while all other users may
only run up to 4.

Simultaneous limits of different types may be applied per credential and
multiple types of credential may have limits specified. The next example
demonstrates this mixing of limits and is a bit more complicated .

USERCFJ st eve] MAXJOB=2 MAXNODE=30
GROUPCF(st af f] MAXJ OB=5

CLASSCFJ DEFAULT] MAXNODE=16

CLASSCF(J bat ch] MAXNODE=32

This configuration may potentially apply multiple limitsto asinglejob. User
steve limits will cause that jobs submitted under his user 1D will be constrained
so that he may only run up to 2 simultaneous jobs with an aggregate node
consumption of 30 nodes. However, if he submits ajob to aclass other than
batch, he may be limited further. Only 16 total nodes may be used
simultaneously by jobs running in any given class with the exception of the class
batch. If steve submitted ajob to run in the class interactive for example, and
there were jobs already running in this class using a total of 14 nodes, hisjob
would be blocked unless it requested 2 or fewer nodes by the default limit of 16
nodes per class.

6.2.1.2 Multi-Dimension Fair ness Policies

Multi-dimensional fairness policies allow a site to specify policies based on
combinations of job credentials. A common example might be setting a
maximum number of jobs allowed per queue per user or atotal number of
processors per group per QoS. Aswith basic fairness policies, multi-dimension
policies are specified using the * CFG parameters. Early versions of Maui 3.2
enabled the following multi-dimensional fairness policies:

MAXJOB[Class,User]
MAXNODE[Class,User]
MAXPROC[Class,User]

These limits would be specified in the following manner:

CLASSCFE X] MAXJOBPERUSER=<LI M T>
CLASSCFE X]| MAXNODEPERUSER=<LI M T>
CLASSCFE X]| MAXPROCPERUSER=<LI M T>

L ater versions of Maui will allow more generalized use of these limits using
the following syntax:

{<01>}CFG[<0OID1>] MAX{<A1>}[[<O02>[:<OID2>]]]=<LIMIT>
Where

O1lisone of the following objects: USER, GROUP, ACCOUNT, QOS, or
CLASS

Alisone of the following attributes: JOB, PROC, PS, PE, WC, NODE, or
MEM

O2 isone of the following objects: USER, GROUP, ACCOUNT, QOS, or
CLASS

If OID2 is specified, the limit is applied only to that object instance.
Otherwise, the limit is applied to all appropriate objects by default.

The following examples may clarify:
CLASSCF(bat ch] MAXJ0B=3 MAXNODE[USER] =8

Allow class bat ch to run up the 3 ssmultaneous jobs. Allow any user to use
up to 8 total nodes within classbat ch.

CLASSCF(fast] MAXPROC] USER: st eve] =3
MAXPROC[USER: bob] =4

Allow users st eve and bob to use up to 3 and 4 total processors respectively
within classf ast .

See Also:
N/A

6.2.2 OverrideLimits

Like all job credentials, the QOS object may be also be associated with resource usage
limits. However, this credential can also be given specia override limits which supersede the
limits of other credentials. Override limits are applied by preceding the limit specification
with the letter 'O'. The configuration below provides an example of this.

USERCFJ st eve] MAXJOB=2 MAXNODE=30
GROUPCF(st af f] MAXJ OB=5

CLASSCFJE DEFAULT] MAXNCDE=16

CLASSCFJ bat ch] MAXNODE=32

QOSCF(J hi pri o] MAXJOB=3 OVAXNODE=64

This configuration isidentical to the line above with the exception of the final QOSCFG
line. Thisline doestwo things

- Only 3 highprio jobs may run simultaneously
- highprio QOS jobs may run with up to 64 nodes per credential ignoring other
credential MAXNODE limits.

Given the above configuration, assume ajob was now submitted with the credentials, user

steve, group staff, class batch, and QOS hiprio.

Thisjob will be allowed to start so long as running it does not lead to any of the following
conditions:

- total nodes used by user steve jobs do not exceed 64.

- total active jobs associated with user steve does not exceed 2.

- total active jobs associated with group staff does not exceed 5.
- total nodes dedicated to class batch jobs do not exceed 64.

- total active jobs associated with QOS hiprio does not exceed 3.

While the above example is abit complicated for actual use at most sites, similar
combinations may be needed to enforce site policies on many larger systems.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

6.3 FairShare

< 6.3.1 Overview

S 6.3.2 FairShare Parameters

S 6.3.3 Using Fairshare Information

6.3.1 Overview

Fairshare is a mechanism which allows historical resource utilization information to be
incorporated into job feasibility and priority decisions. Maui's fairshare implementation
allows site administrators to set system utilization targets for users, groups, accounts, classes,
and QOS levels. Administrators can also specify the timeframe over which resource
utilization is evaluated in determining whether or not the goal isbeing reached. This
timeframe isindicated by configuring parameters specifying the number and length of
fairshare windows which are evaluated to determine historical resource usage. Fairshare
targets can then be specified for those credentials (i.e., user, group, class, etc) which
administrators wish to have affected by thisinformation.

6.3.2 Fairshare Parameters

Fairshareis configured at two levels. First, at a system level, configuration is required to
determine how fairshare usage information is to be collected and processed. Secondly, some
configuration is required on a per credential basis to determine how this fairshare information
affects particular jobs. The system level parameters are listed below:

FSINTERVAL - specifies the timeframe covered by each fairshare window.

FSDEPTH - specifies the number of windows to be evaluated when determining
current fairshare utilization.

FSDECAY - specifies the decay factor to be applied to fairshare windows.

FSPOLICY - specifies the metric to use when tracking fairshare usage (if set to
NONE, fairshare information will not be used for either job prioritization or job feasibility
evaluation)

FSCONFIGFILE - specifiesthe name of the file which contains the per user, group,
account, and QOS fairshare configuration. (fs.cfg by default)

In earlier versions of Maui (Maui 3.0.6 and earlier) fairshare configuration information was
specified viathe fs.cfg file. In Maui 3.0.7 and higher, although use of the fs.cfg fileis still

supported, it is recommended that the * CFG suite of parameters (ACCOUNTCFG,
CLASSCFG, GROUPCFG, QOSCFG, and USERCFG) be used. Both approaches allow

http://supercluster.org/documentation/maui/fsconfig.html

specification of per user, group, account, and QOS fairshare in terms of target limits and
target types.

As Maui runs, it records how available resources are being utilized. Each iteration
(RMPOLLINTERVAL seconds) it updates fairshare resource utilization statistics. Currently,
resource utilization is measured in accordance with the ESPOLICY parameter allowing

various aspects of resource consumption information to be tracked. This parameter allows
selection of both the types of resources to be tracked and the method of tracking. It provides
the option of tracking usage by dedicated or consumed resources, where dedicated usage
tracks what the scheduler assigns to the job while consumed usage tracks what the job
actually uses. An example may clarify this. Assume a4 processor job isrunning a parallel
'lbin/sleep’ for 15 minutes. It will have a dedicated fairshare usage of 1 proc-hour but a
consumed fairshare usage of essentially nothing since it did not consume anything. Most
often, dedicated fairshare usage is used on dedicated resource platforms while consumed
tracking is used in shared SMP environments.

Using the selected fairshare usage metric, Maui continues to update the current fairshare
window until it reaches a fairshare window boundary, at which point it rolls the fairshare
window and begins updating the new window. The information for each window is stored in
itsown file located in the Maui statistics directory. Each fileis named 'FS.<EPOCHTIME>'
where <EPOCHTIME> is the time the new fairshare window became active. Each window
contains utilization information for each entity as well asfor total usage. A sample fairshare
datafileis shown below:

Fairshare Data File (Duration: 172800 Seconds) Starting:
Fri Aug 18 18:00: 00

User USERA 150000. 000
User USERB 150000. 000
User USERC 200000. 000
User USERD 100000. 000
G oup GROUPA 350000. 000
G oup GROUPB 250000. 000
Account ACCTA 300000. 000
Account ACCTB 200000. 000
Account ACCTC 100000. 000
003) 0 50000. 000

003 1 450000. 000
Qs 2 100000. 000
TOTAL 600000. 00

Note that the total processor hours consumed in thistime interval is 600,000 processor
seconds. Since every job in this example scenario had a user, group, account, and QOS
assigned to it, the sum of the usage of all members of each category should equal the total
usage value (i.e., USERA + USERB + ... + USERD = GROUPA + GROUPB = ACCTA + ...

+ ACCTC=QOS0 + ... + QOS2 = TOTAL)

When Maui needs to determine current fairshare usage for a particular entity, it performsa
‘decay-weighted' average the usage information for that entity contained in the FSDEPTH
most recent windows. For example, assume the entity of interest is user John and the
following parameters are set,

FSI NTERVAL 12: 00: 00
FSDEPTH 4
FSDECAY 0.5

and thefairshar e data files contain the following usage amountsfor the entity of
interest:

John[0] 60. 0
Tot al [O] 110.0
John[1] 0.0

Total [1] 125.0
John[2] 10.0
Tot al [2] 100.0
John[3] 50.0
Tot al [3] 150.0

The current fairshare usage for user John would calculated as follows:

Usage= (60+ 51 * 0+ .502* 10 + 53 * 50) / (110 + .5 1* 125 + .52+ 100 +
5°3*150)

Note that the current fairshare usage is relative to the actual resources delivered by the
system over the timeframe evaluated, not the resources available or configured during that
time.

When configuring fairshare, it isimportant to determine the proper timeframe that should
be considered. Many sites choose one to two weeks to be the total timeframe covered (i.e.,
FSDEPTH * FSINTERVAL) but any reasonable timeframe should work. How this
timeframe is broken up between the number and length of windows is a matter of preference,
just note that more windows means that the decay factor will make aged data less significant
more quickly.

@ Historical fairshare datais organized into a number of data files, each file containing
the information for alength of time as specified by the FSINTERV AL parameter. Although
FSDEPTH, FSINTERVAL, and FSDECAY can be freely and dynamically modified, such
changes may result in unexpected fairshare status for a period of time as the fairshare data
fileswith the old FSINTERVAL setting are rolled out.

6.3.3 Using Fairshare Information

With the mechanism used to determine current fairshare usage explained above, we can
now move on that actually using thisinformation. As mentioned in the fairshare overview,
fairshare information primarily used in determining the fairshare priority factor. This factor
isactually calculated by determining the difference between the actual fairshare usage of an
entity and a specified target usage.

See Also:

The'diagnose -f' command was created to allow diagnosis and monitoring of the
fairsharefacility.

Fair Share Prioritization vs Hard Fair Shar e Enfor cement

FSENFORCEMENT

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/documentation/maui/commands/diagnosefairshare.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

6.4 Allocation Management

Overview

An allocations manager (also known as an allocations bank or cpu bank) is a software
system which manages resource allocations where a resource allocation grants ajob aright to
use a particular amount of resources. Thisis not the right place for afull alocations manager
overview but a brief review may point out the value in using such a system.

An allocations manager functions much like abank in that it provides aform a currency
which allows jobs to run on an HPC system. The owners of the resource
(cluster/supercomputer) determine how they want the system to be used (often viaan
allocations committee) over a particular timeframe, often a month, quarter, or year. To
enforce their decisions, they distribute allocations to various projects via various accounts and
assign each account an account manager. These allocations can be for use particular
machines or globally usable. They can also have activation and expiration dates associated
with them. All transaction information istypically stored in a database or directory server
allowing extensive statistical and allocation tracking.

Each account manager determines how the allocations are made available to individual
users within his project. Allocation manager managers such as PNNL's QBank allow the
account manager to dedicate portions of the overall alocation to individual users, specify
some of allocations as 'shared' by all users, and hold some of the allocations in reserve for
later use.

When using an allocations manager each job must be associated with an account. To
accomplish this with minimal user impact, the all ocation manager could be set up to handle
default accounts on a per user basis. However, asis often the case, some users may be active
on more than one project and thus have access to more than one account. In these situations,
amechanism, such as ajob command file keyword, should be provided to allow a user to
specify which account should be associated with the job.

The amount of each job's allocation ‘charge' is directly associated with the amount of
resources used (i.e. processors) by that job and the amount of time it was used for.
Optionally, the allocation manager can also be configured to charge accounts varying
amounts based on the QOS desired by the job, the type of compute resources used, and/or the
time when the resources were used (both in terms of time of day and day of week).

The allocations manager interface provides near real-time allocations management, giving
agreat deal of flexibility and control over how available compute resources are used over the
medium and long term and works hand in hand with other job management features such as
Maui's throttling policies and fairshare mechanism.

Configuring Maui

http://www.emsl.pnl.gov:2080/docs/mscf/qbank-2.8

Maui interfaces with the allocations manager if the parameter BANKTY PE is specified.
Maui currently interfaces to QBank, and RES, and can also dump allocation manager
interface interaction to aflat file for post processing using the type 'FILE'. Depending on the
allocation manager type selected, it may also be necessary to specify how to contact the
allocation manager using the parameters BANKSERVER and BANKPORT. When an
alocations bank is enabled in thisway, Maui will check with the bank before starting any
job. For alocation tracking to work, however, each job must specify an account to charge or
the bank must be set up to handle default accounts on a per user basis.

Under this configuration, when Maui decides to start ajaob, it contacts the bank and
requests an allocation reservation, or lien be placed on the associated account. This
allocation reservation is equivalent to the total amount of allocation which could be
consumed by the job (based on the job's wallclock limit) and is used to prevent the possibility
of allocation oversubscription. Maui then starts the job. When the job completes, Maui
debits the amount of allocation actually consumed by the job from the job's account and then
rel eases the allocation reservation or lien.

These steps transpire ‘under the covers and should be undetectable by outside users. Only
when an account has insufficient allocations to run arequested job will the presence of the
allocation bank be noticed. If desired, an account may be specified which is to be used when
ajob's primary account is out of allocations. This account, specified using the parameter
BANKFALLBACKACCOUNT is often associated with alow QOS privilege set and priority

and often is configured to only run when no other jobs are present.

Reservations can also be configured to be chargeable. One of the big hesitations have with
dedicating resources to a particular group isthat if the resources are not used by that group,
they go idle and are wasted. By configuration areservation to be chargeable, sites can charge
every idle cycle of the reservation to a particular project. When the reservation isin use, the
consumed resources will be associated with the account of the job using the resources. When
the resources are idle, the resources will be charged to the reservation's charge account. In
the case of standing reservations, this account is specified using the parameter
SRCHARGEACCOUNT. In the case of administrative reservations, this account is specified

viaacommand line flag to the setres command.

Maui will only interface to the alocations bank when running in 'NORMAL' mode.
However, this behavior can be overridden by setting the environment variable
'MAUIBANKTEST" to any value. With thisvariable set, Maui will attempt to interface to the
bank in both SIMULATION and TEST mode.

The allocation manager interface allows you to charge accounts in a number of different
ways. Some sites may wish to charge for all jobs run through a system regardless of whether
or not the job completed successfully. Sites may also want to charge based on differing usage
metrics, such as walltime dedicated or processors actually utilized. Maui supports the
following charge policies specified via the parameter BANKCHARGEPOLICY :

DEBITALLWC (charge for al jobs regardiess of job completion state
using processor weighted wallclock time dedicated as the usage metric)

DEBITSUCCESSFULWC (charge only for jobs which successfully complete using
processor weighted wallclock time dedicated as the usage metric)

DEBITSUCCESSFULCPU (charge only for jobs which successfully complete using
CPU time as the usage metric)

DEBITSUCCESSFULPE (chargeonly for jobswhich successfully complete using
PE weighted wallclock time dedicated asthe usage metric)

NOTE: On systemswherejob wallclock limits are specified, jobswhich exceed their
wallclock limitsand are subsequently cancelled by the scheduler or resour ce manager
will be considered as having successfully completed asfar ascharging is concerned,
even though the resource manager may report these jobs as having been 'removed’ or
‘cancelled'.

Seealso BANKTIMEOUT and BANKDEFERJOBONFAILURE.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved. :]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.0 Controlling Resour ce Access - Reservations, Partitions, and QoS
Facilities

= 7.1 Advance Reservations

= 7.2 Partitions

</ 7.3 QoS Facilities

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reaerved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.1 Advance Reservations
Reservation Overview

An advance reservation is the mechanism by which Maui guarantees the availability of a
set of resources at a particular time. Every reservation consists of 3 major components, alist
of resources, atimeframe, and an access control list. It isthe job of the scheduler to make
certain that the access control list is not violated during the reservation'slifetime (i.e., its
timeframe) on the resources listed. For example, areservation may specify that node002 is
reserved for user Tom on Friday. The scheduler will thus be constrained to make certain that
only Tom's jobs can use node002 at any time on Friday. Advance reservation technology
enables many features including backfill, deadline based scheduling, QOS support, and meta
scheduling.

S 7.1.1 Reservations Overview

7.1.2 Administrative Reservations

7.1.3 Standing Reservations

7.1.4 Reservation Policies

L L O O

7.1.5 Configuring and Managing Reservations

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R@erved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.1.1 Reservation Overview

Every reservation consists of 3 major components, a set of resources, atimeframe, and an
access control list. Additionally, areservation may also have a number of optional attributes
controlling its behavior and interaction with other aspects of scheduling. All reservation
attributes are described below.

7.1.1.1 Resources

Under Maui, the resources specified for areservation are specified by way of
atask description. Conceptually, atask can be thought of as an atomic, or
indivisible, collection of resources. The resources may include processors,
memory, swap, local disk, etc. For example, a single task may consist of one
processor, 2 GB of memory, and 10 GB of local disk. A reservation consists of
one or more tasks. In attempting to locate the resources required for a particular
reservation, Maui will examine all feasible resources and locate the needed
resources in groups specified by the task description. An example may help
clarify this concept:

Reservation A requires 4 tasks. Each task is defined as 1 processor and 1 GB
of memory.

Node X has 2 processors and 3 GB of memory available
Node Y has 2 processors and 1 GB of memory available
Node Z has 2 processors and 2 GB of memory available

In attempting to collect the resources needed for the reservation, Maui would
examine each node in turn. Maui finds that Node X can support 2 of the 4 tasks
needed by reserving 2 processors and 2 GB of memory, leaving 1 GB of
memory unreserved. Analysisof Node Y showsthat it can only support 1 task
reserving 1 processor and 1 GB of memory, leaving 1 processor unreserved.
Note that the unreserved memory on Node X cannot be combined with the
unreserved processor on Node Y to satisfy the needs of another task because a
task requires all resources to be located on the same node. Finally, analysisfinds
that node Z can support 2 tasks, fully reserving all of its resources.

Both reservations and jobs use the concept of atask description in specifying
how resources should be allocated. It isimportant to note that although a task
description is used to allocate resources to a reservation, this description does
not in any way constrain the use of those resources by ajob. Inthe above
example, ajob requesting resources simply sees 4 processors and 4 GB of
memory availablein reservation A. If the job has access to the reserved
resources and the resources meet the other requirements of the job, the job could
utilize these resources according to its own task description and needs,

Currently, the resources which can be associated with reservations include

processors, memory, swap, local disk, initiator classes, and any number of
arbitrary resources. Arbitrary resources may include peripherals such as tape
drives, software licenses, or any other site specific resource.

7.1.1.2 TimeFrame

Associated with each reservation is atimeframe. This specifies when the
resources will be reserved or dedicated to jobs which meet the reservation's
ACL. Thetimeframe ssimply consists of a start time and an end time. When
configuring areservation, this information may be specified as a start time
together with either an end time or a duration.

7.1.1.3 AccessControl List

A reservation's access control list specifies which jobs can use a reservation.
Only jobs which meet one or more of areservation's access criteria are allowed
to use the reserved resources during the reservation timeframe. Currently, the
reservation access criteriainclude the following: users, groups, accounts,
classes, QOS, and job duration.

7.1.1.4 Job to Reservation Mapping

While areservation's ACL will alow particular jobs to utilize reserved
resources, it does not force any job to utilize these resources. With each job,
Maui attempts to locate the best possible combination of available resources
whether these are reserved or unreserved. For example, in the figure below, note
that job X, which meets access criteria for both reservation A and B, allocates a
portion of its resources from each reservation and the remainder from resources
outside of both reservations.

Although by default, A
reservations make

resources available to jobs
which meet particular
criteria, Maui can be
configured to constrain
jobsto only run within
accessible reservations.
This can be requested by
the user on ajob by job
basis using aresource
manager extension flag or can be enabled administratively viaa QoS flag. For
example, assume two reservations were created as shown below.

> setres -g staff -d 8:00:00 'node[1-4]"

reservation 'staff.1" created on 4 nodes
> setres -u john tasks==

reservation 'john.1l" created on two nodes

If the user j ohn, who happened to also be a member of the group st af f,
wanted to force hisjob to run within a particular reservation, he could do so
using the FL AGS resource manager extension. Specificaly, in the case of a
PBS jab, the following submission would force the job to run within the
staff. 1 reservation.

> gqsub -1 nodes=1,wal |l tinme=1:00:00 -W
Xx=FLAGS: ADVRES: staff.1 testjob.cnd

Note that for thisto work, PBS will need to have resource manager extensions
enabled as described in the PBS Resource Manager Extension Overview. If the
user simply wants the job to run on reserved resources but does not care which,
he could submit the job with

>qsub -1 nodes=1,wal |l tine=1: 00: 00 - W x=FLAGS: ADVRES
testj ob. cnd

To enable job to reservation mapping via QoS, the QoS flag
'USERRESERVED' should be set in asimilar manner.

7.1.1.5 Reservation Specification

There are two main types of reservations which sitestypically deal with. The
first, administrative reservations, are typically one time reservations created for
special purposes and projects. These reservations are created using the setres

command. These reservations provide an integrated mechanism to allow
graceful management of unexpected system maintenance, temporary projects,
and time critical demonstrations. This command allows an administrator to
select a particular set of resources or just specify the quantity of resources
needed. For example an administrator could use a regular expression to request
areservation be created on the nodes 'blue0[1-9]' or could simply request that the
reservation locate the needed resources by specifying a quantity based request
such as ' TASKS==20".

The second type of reservation is called a standing reservation. It isof use
when there is arecurring need for a particular type of resource distribution. For
example, asite could use a standing reservation to reserve a subset of its
compute resources for quick turnaround jobs during business hours on Monday
thru Friday. Standing reservations are created and configured by specifying

http://supercluster.org/documentation/maui/13.3.1pbsrmextensions.html

parameters in the maui.cfg file. The Standing Reservation Overview provides
more information about configuring and using these reservations.

7.1.1.6 Reservation Behavior

As mentioned above, a given reservation may have one or more access
criteria. A job can utilize the reserved resourcesiif it meets at |east one of these
access criteria. It is possible to 'stack’ multiple reservations on the same node.

In such asituation, ajob can only utilize the given node if it meets at least access
criteria of each active reservation on the node.

7.1.1.7 Other Reservation Attributes

Charge Account - Allows areservation to charge for resources which are
dedicated to the reservation but not used by any job.

See dso:
N/A

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.1.2 Administrative Reservations

Administrative reservations behave much like standing reservations but are generally
created to address non-periodic, ‘one time' issues. All admin reservations are created using the
setres command and are persistent until they expire or are removed using the rel easeres

command.

See dlso: Reservation Overview, Backfill

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.1.3 Standing Reservations

Standing reservations build upon the capabilities of advance reservationsto enable asite to
enforce advanced usage policiesin an efficient manner. Standing reservations provide a
superset of the capabilities typically found in a batch queuing system's class or queue
architecture. For example, queues can be used to allow only particular types of jobs access to
certain compute resources. Also, some batch systems allow these queues to configured so
that they only allow this access during certain times of the day or week. Standing
reservations allow these same capabilities but with greater flexibility and efficiency thanis
typically found in anormal queue management system.

Standing Reservations provide a mechanism by which a site can dedicate a particular block
of resources for aspecia use on aregular daily or weekly basis. For example, node X could
be dedicated to running jobs only from users in the accounting group every Friday from 4 to
10 PM. Seethe Reservation Overview for more information about the use of reservations.
The Managing Reservations section provides a detailed explanation of the concepts and steps
involved in the creation and configuration of standing reservations.

A standing reservation is a powerful means of
Controlling Access to Resources
Controlling Turnaround

see the following parameters for more information: SRNAME SRRESOURCES SRDAY S
SRFLAGS SRSTARTTIME SRENDTIME SRWSTARTTIME SRWENDTIME SRDEPTH
SRTASKCOUNT SRHOSTLIST SRTPN SRUSERLIST SRGROUPLIST
SRACCOUNTLIST SRQOSLIST SRCLASSLIST SRMAXTIME SRTIMELOGIC
SRPARTITION SRACCESS

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/documentation/maui/7.1.1resoverview
http://supercluster.org/documentation/maui/7.1.5managingreservations
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.1.4 Reservation Policies

In addition to standing and administrative reservations, Maui can also create priority
reservations. These reservations are used to allow the benefits of out-of-order execution
(such asis available with backfill) without the side effect of job starvation. Starvation can

occur in any system where the potential exists for ajob to be overlooked by the scheduler for
an indefinate period. In the case of backfill, small jobs may continue to be run on available
resources as they become available while alarge job sitsin the queue never able to find
enough nodes available simultaneously to run on. To avoid such situations, priority
reservations are created for high priority jobs which cannot run immediately. When making
these reservations, the scheduler determines the earliest time the job could start, and then
reserves these resources for use by thisjob at that future time.

By default, only the highest priority job will receive a priority reservation. However, this
behavior is configurable viathe RESERVATIONDEPTH policy. Maui's default behavior of
only reserving the highest priority job allows backfill to be used in aform known as liberal
backfill. Thisliberal backfill tends to maximize system utilization and minimize overall
average job turnaround time. However, it does lead to the potential of some lower priority
jobs being indirectly delayed and may lead to greater variance in job turnaround time. The
RESERVATIONDEPTH parameter can be set to avery large value, essentially enabling
what is called conservative backfill where every job which cannot run is given areservation.
Most sites prefer the liberal backfill approach associated with the default
RESERVATIONDEPTH of 1 or select adlightly higher value. It isimportant to note that to
prevent starvation in conjunction with reservations, monotonically increasing priority factors
such as queuetime or job xfactor should be enabled. Seethe Prioritization Overview for more

information on priority factors.

Another important consequence of backfill and reservation depth isits affect on job
priority. In Maui, all jobs are prioritized. Backfill allows jobs to be run out of order and thus,
to some extent, job priority to beignored. This effect, known as 'priority dilution' can cause
many site policies implemented via Maui prioritization policies to be ineffective. Setting the
RESERVATIONDEPTH parameter to a higher value will give job priority ‘'more teeth' at
the cost of dlightly lower system utilization. This lower utilization results from the
constraints of these additional reservations, decreasing the scheduler's freedom and its ability
to find additional optimizing schedules. Anecdotal evidence indicates that these utilization
losses are fairly minor, rarely exceeding 8%.

In addition to RESERVATIONDEPTH, sites also have the ability to control how
reservations are maintained. Maui's dynamic job prioritization alows sitesto prioritize jobs
so that their priority order can change over time. It is possible that one job can be at the top
of the priority queue for atime, and then get bypassed by another job submitted later. The
parameter RESERVATIONPOLICY allows a site to determine what how existing

reservations should be handled when new reservations are made. The value HIGHEST will

cause that all jobs which have ever received a priority reservation will maintain that
reservation until they run even if other jobs later bypass them in priority value. The value
CURRENTHIGHEST will cause that only the current top <RESERVATIONDEPTH>
priority jobs will receive reservations. If ajob had areservation but has been bypassed in
priority by another job so that it no longer qualifies as being amongst the top
<RESERVATIONDEPTH> jobs, it will lose itsreservation. Finaly, the value NEVER
indicates that no priority reservations will be made.

QOS based reservation depths can be enabled viathe RESERVATIONQOSLIST
parameter. This parameter allows varying reservation depths to be associated with different
sets of job QoS's. For example, the following configuration will create two reservation depth
groupings:

RESERVATI ONDEPTH[0] 8
RESERVATI ONQOSLI ST[0] hi ghprio interactive debug

RESERVATI ONDEPTH 1] 2
RESERVATI ONQOSLI ST[1] bat ch

This example will cause that the top 8 jobs belonging to the aggregate group of hi ghpri o,
I nteractive, anddebug QoS jobswill receive priority reservations. Additionally, the
top 2 bat ch QoS jobswill aso receive priority reservations. Use of thisfeature allows sites
to maintain high throughput for important jobs by guaranteeing the a significant proportion of
these jobs are making progress towards starting through use of the priority reservation.

A final reservation policy isin place to handle a number of real-world issues. Occasionally
when a reservation becomes active and ajob attempts to start, various resource manager race
conditions or corrupt state situations will prevent the job from starting. By default, Maui
assumes the resource manager is corrupt, releases the reservation, and attempts to re-create
the reservation after a short timeout. However, in the interval between the reservation release
and the re-creation timeout, other priority reservations may allocate the newly available
resources, reserving them before the original reservation gets an opportunity to reallocate
them. Thus, when the original job reservation is re-established, its original resource may be
unavailable and the resulting new reservation may be delayed several hours from the earlier
start time. The parameter RESERVATIONRETYTIME alows a site that is experiencing
frequent resource manager race conditions and/or corruption situations to tell Maui to hold on
to the reserved resource for a period of time in an attempt to allow the resource manager to
correct its state.

See dlso: Reservation Overview, Backfill

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.1.5 Configuring and Managing Reservations
All reservations, whether they be administrative or standing, possess many similar traits.
7.1.5.1 Reservation Attributes

All reservations possess a timeframe of activity, an access control list, and a
list of resourcesto be reserved. Additionally, reservations may also possess a
number of extension flags which modify the behavior of the reservation.

7.15.1.1 Start/End Time

All reservations possess a start and an end time which define the
reservation's 'active' time. During this active time, the resources
within the reservation may only be used as specified by the
reservation ACL. This active time may be specified as either a
start/end pair or a start/duration pair. Reservations exist and are
visible from the time they are created until the active time ends at
which point they are automatically removed.

7.1.5.1.2 AccessControl List (ACL)

For areservation to be useful, it must be able to limit who or
what can access the resources it has reserved. Thisis handled by
way of an access control list, or ACL.

7.1.5.1.3 Resources

When specifying which resources to reserve, the administrator
has a number of options. These options alow control over how
many resources are reserved and where they arereserved at. The
following reservation attributes allow the administrator to define
resources

Task Description

A key concept of reservationsistheideaof atask. Maui usesthe

task concept extensively for itsjob and reservation management. A
task is simply an atomic collection of resources, such as processors,
memory, or local disk, which must be found on the same node. For
example, if atask requires 4 processors and 2 GB of memory, Maui
must find all processors AND memory on the same node; it cannot

allocate 3 processors and 1 GB on one node and 1 processor and 1

GB of memory on another node to satisfy thistask. Tasks constrain
how Maui must collect resources for use in a standing reservation,

however, they do not constrain the way in which Maui makes these
cumulative resources available to jobs. A job can use the resources

covered by an accessible reservation in whatever way it needs. If
reservation X allocated 6 tasks with 2 processors and 512 MB of
memory each, it could support job Y which requires 10 tasks of 1
processor and 128 MB of memory or job Z which requires 2 tasks
of 4 processorsand 1 GM of memory each. The task constraints
used to acquire a reservation's resources are completely transparent
to ajob requesting use of these resources.

Task Count

Using the task description, the task count attribute defines how
many tasks must be collected to satisfy the reservation request. To
create areservation, atask count and/or a hostlist must be specified

Hostlist

A hostlist constrains the set of resource which are availableto a
reservation. If no task count is specified, the reservation will
attempt to reserve one task on each of the listed resources. If atask
count is specified which requests fewer resources than listed in the
hostlist, Maui will reserve only <TASKCOUNT> tasks from the
hostlist nodes. If ataskcount is specified which requests more
resources than listed in the hostlist, Maui will reserve the hostlist
nodes first and then seek additional resources outside of thislist.

7.1.5.1.4 Flags

Reservation flags alow specification of special reservation
attributes or behaviors. The following flags are supported:

IFlag Name IDescription

reservation will only allow access to jobs which
meet reservation ACL's and explicitly request
the resources of this reservation using the job
ADVRES flag

[PREEMPTEE [N/A
[BESTEFFORT [N/A

BYNAME

7.1.5.2 Configuring Standing Reservations

Standing reservations allow resources to be dedicated for particular uses at a
regular time of day and/or time of week. Thereis extensive applicability of
standing reservations for everything from daily dedicated job runsto improved
use of resources on weekends. All standing reservation attributes are specified
via parameters. An overview of standing reservation capabilitiesis included
below followed by a series of examples.

7.1.5.2.1 Standing Reservation Overview A standing
reservation is similar to a normal administrative reservation in that
it also places an access control list on a specified set of resources.
Resources are specified on a per-task basis and currently include
processors, local disk, real memory, and swap. The access control
list supported for standing reservations includes users, groups,
accounts, job classes, and QOS levels. Standing reservations can be
configured to be permanent or periodic on adaily or weekly basis
and can accept adaily or weekly start and end time. Regardless of
whether a standing reservation recurs on adaily or weekly basis,
standing reservations are enforced using a series of reservations,
extending a number of periodsinto the future as controlled by the
SRDEPTH parameter.

For example, the following configuration will create a standing
reservation for 6 processors and 3 GB of memory for use by the
interactive class during business hours.

SRNANVE[0] i nteractive
SRTASKCOUNT[0] 6
SRRESOURCES[0] PROCS=1; MEM=512

SRPER! OD] 0] DAY

SRDAYS] 0] MON TUE WED THU FRI
SRSTARTTI ME[0] 9: 00: 00

SRENDTI ME] 0] 17: 00: 00

SRCLASSLI ST[0] interactive

In Maui 3.2.0 or later, this could be accomplished using the
SRCFG parameter as in the example below:

SRCFJ i nteractive] STARTTI ME=9: 00: 00
ENDTI ME=17: 00: 00

SRCFJ i nteractive] PERI OD=DAY

DAYS=MON, TUE, VEED, THU, FRI

SRCFJ i nteracti ve] TASKCOUNT=6
RESOURCES=PRCCS: 1; MEM 512

SRCFJ i nteractive] CLASSLI ST=interactive

L et's examine the new parameters one at atime. SRNAME
simply gives the standing reservation a name for reference by Maui
commands. It isnot required but makes administration a bit easier.
SRTASKCOUNT alocated in units called 'tasks where atask isa

collection of resources which must be allocated together on asingle
node. The next parameter, SRRESOURCES, indicates what
resources must be included in each task. In this case, Maui must
locate and reserve 1 processor and 512 MB of memory together on
the same node for each task requested. SRPERIOD states that this
reservation is periodic on adaily basis with the actual days of the
week which the standing reservation should be enabled specified
using SRDAYS. Thetime of day during which the requested tasks
are to be reserved are specified using SRSTARTTIME and
SRENDTIME. Findly, the SRCLASSLIST parameter is used to
indicate that jobs requesting the classi nt er act i ve should be
allowed to use this reservation.

7.1.5.2.2 Specifying Reservation Resour ces

Thisisalot of new information to digest. Not all of the
parameters are needed in all cases. For example, by default,
SRRESOURCES s set to PROCS=- 1 which indicates that each
task should reserve all of the processors on the node on whichiitis
located. This, in essence, creates a one task equals one node
mapping. In many cases, particularly for all uniprocessor systems,
this default behavior is probably easiest to work with. However,
when SMP systems are thrown into the mix, SRRESOURCES
provides a powerful means of specifying an exact,
multi-dimensional resource set.

An examination of the parameters documentation will show that
the default value of SRPERIOD isDAYS. Thus, specifying this
parameter in the example above was unnecessary. It was used only
to introduce this parameter and indicate that other options exist
beyond daily standing reservations.

Hopefully, the next few examples will further clarify the use of
standing reservations while expanding on some of the intricacies
surrounding their use. Note that the above example did not specify
where the needed six tasks were to be located. If thisinformationis
not specified, Maui will attempt to locate the needed resources
anywhere it can find them. The reservation will essentially float to
nodes where the needed resources can be found.

L et's assume you actually wanted to constrain this reservation to
aparticular set of resources. In this case, the parameter
SRHOSTLIST can be used to specify which nodes can be used for

the reservation. The following example will do this.

SRNANVE[0] I nteractive

SRHOSTLI ST[0] node003 node004 node005
node011l node0l1l2 node052

SRTASKCOUNT]J 0] 6

SRRESCURCES] 0] PROCS=1; MEM=512

SRDAYS[0] MON TUE WED THU FRI
SRSTARTTI Mg[0] 9: 00: 00

SRENDTI VE[0] 17:00: 00

SRCLASSLI ST[0] I nteractive

The exampleis now abit more complex. Note that we added a
non-contiguous list of nodes where the standing reservation can
locate the needed resources using the SRHOSTL I ST parameter. It
Isimportant to note that the fact that there is a one to one mapping
between SRTASKCOUNT and the hostsin SRHOSTLIST does
not necessarily mean that Maui will place one task on each host. If,
for example, node011 and node012 were 2 processor SMP nodes
with 1 GB of memory, Maui could locate 2 tasks on each of these
nodes leaving only two more tasks to be placed. (Maui will place
tasks on nodes according to the policy specified with the
NODEALLOCATIONPOLICY parameter.) If the hostlist provides

more resources than what is required by the reservation as specified
viaSRTASKCOUNT, Maui will ssmply select the needed
resources within the set of nodes listed.

If SRHOSTLIST is specified but SRTASKCOUNT is not,
Maui will pack as many tasks asit can onto ALL of thelisted
nodes. For example,

SRNAME[1] debug

SRHOSTLI ST[1] node001 node002 node003
node004

SRUSERLI ST[1] hel pdesk

SRGROUPLI ST[1] operati ons sysadm n
SRPERI OO 1] | NFI NI TY

This standing reservation appears much simpler. Since
SRRESOURCES s not specified, it will allocate all processors on
each of the nodeslisted in SRHOSTLIST. Sinceastart and end
time are not specified, the reservation will bein force al day long.
Since SRDAY Sis not specified, the reservation will be enabled
every day of the week.

Ok, here come a couple of curve balls. First, note that standing
reservation 1, 'debug’, has two access parameters set,

SRUSERLIST, and SRGROUPLIST. Reservations can be accessed
by any one of the access lists specified. In this case, either user
'helpdesk’ or any member of the groups ‘operations’ or ‘sysadmin’
can use these resources. While accessis granted to the logical 'OR'
of accesslists specified within a standing reservation, accessis only
granted to the logical AND of access lists across different standing
reservations. Come again? Compare standing reservations

I nt eracti ve and debug in the examples above. Note that they
both can allocate nodesnode003 and node004. Assume that
node003 had both of these reservations in place simultaneously and
ajob attempted to access this node during business hours when
standing reservationi nt er act i ve wasactive. Thejob could
only use the doubly reserved resourcesif it requested the run class

i nt eracti veAND it met the constraints of reservation debug
(i.e., was submitted by user 'hel pdesk' or by amember of the
group oper at i ons or sysadm n).

7.1.5.2.3 Reservation Stacking

To make thingsjust alittle more confusing, Maui will not stack
reservations unlessit hasto. If adequate resources exist, it can
allocate reserved resources side by side in asingle SMP node rather
than on top of each other. Take the case of a 16 processor SMP
node with two 8 processor standing reservations. Eight of the
processors on this node will be allocated to the first reservation, and
eight to the next. Any configuration is possible. The 16 processor
nodes can aso have 4 processors reserved for user 'John’, 10
processors reserved for group 'Staff’, with the remaining 2
processors available for use by any job.

Stacking reservationsis not usually required but some sites
choose to do it to enforce elaborate policies. Thereisno problem
with doing so so long as you can keep things straight. It really is
not too difficult a concept, just takes alittle getting used to. Seethe
'Reservation Overview' section for a more detailed description of
reservation use and constraints. | am working on extending
reservation ACL'sto allow cleaner arbitrary ACL list support but
there are some significant scheduling performance hits associated
with completely general ACL support.

Now for another example. As mentioned earlier, by default Maui
enforces standing reservations by creating a number of reservations
where the number created is controlled by the SRDEPTH
parameter. When Maui starts up, and again each night at midnight,
Maui updates its periodic, non-floating standing reservations. By
default, SRDEPTH is set to 2, meaning when Maui starts up, it will
create two 24 hour reservations covering two days worth of time,

(i.e. areservation for today and one for tomorrow.) At midnight,
today's reservation will be expired and removed, tomorrow's
reservation will become today's and Maui will create anew
reservation for the next day. Maui continues creating reservations
in the future as time continues its incessant march forward.
Everything's great, resources are always reserved as needed when
today rollsaround. Then what'sthis SRDEPTH parameter for?
This parameter remedies a situation which might occur when ajob
Is submitted and cannot run immediately because the system is
completely backlogged with jobs. In such acase, available
resources may not exist for two days out and Maui will reserve
them for thisjob. When midnight arrives, Maui attemptsto roll its
standing reservations but here a problem arises! Thisjob has now
allocated the resources needed for the standing reservation two days
out! Maui cannot reserve the resources for the standing reservation
because they are already claimed by the job. The standing
reservation reserves what it can but it is now smaller than it should
be or possibly even empty.

If astanding reservation is smaller than it should be, Maui will
attempt to add resources every iteration until it isfully populated.
However, in the case of thisjob, it is not going to let go of the
resources it has and the standing reservation is out of luck. The
SRDEPTH parameter allows a site to create standing reservations
deep into the future allowing them to claim the resources first and
preventing this problem. If partial standing reservations are
detected on a system, it may be an indication that the SRDEPTH
parameter should be increased.

In the example above, the SRPERIOD parameter is set to
INFINITY. With this setting, a single, permanent standing
reservation is created and the issues of resource contention do not
exist. While this eliminates the contention issue, infinite length
standing reservations cannot be made periodic.

Onefinal example. It was claimed earlier that access lists within
areservation are OR'd together to determine reservation access.
However, this rule has one notable exception triggered by use of the
parameter SRMAXTIME. This parameter controls the length of
time ajob can use the resources in a standing reservation. This
access mechanism can be AND'd or OR'd to the cumulative set of
all other access lists as specified by the SRTIMEL OGIC parameter.

Consider the following example configuration:

SRNANVE[0] short pool
SRTASKCOUNT] 0] 32

SRPER!I ODJ 0] WEEK
SRWSTARTTI ME[0] 1: 08: 00: 00
SRVWENDTI ME] 0] 5:17: 00: 00

SRFEATURES] 0] | ar genenory
SRMAXTI ME[0] 1: 00: 00

SRTI MELOA ([0] AND

SRQOSLI ST[0] hi gh | ow speci al -

SRACCOUNTLI ST[O] !projectX !projectyY

The term final example probably made it sound like we were just
about finished, didn't it? Sowhy arethere 1, 2, 3, ... 7 new
parameters in this example? Our apologies, we figure only the die
hards are reading at this point! In anutshell, this specification asks
for 32 tasks which tranglate to 32 nodes. SRPERIOD states that
this reservation is periodic on aweekly basis while the parameters
SRWSTARTTIME and SRWENDTIME specify the week offsets
when thisreservation isto start and end. Inthis case, the
reservation starts on Monday at 8:00 AM and runs until Friday at
5:00 PM. Thereservation isenforced as a series of weekly
reservations which only cover the specified timeframe. The
SRFEATURES parameter indicates that each of these nodes must

have the node feature | ar genenor y configured.

As described above, SRM AXTIME indicates that jobs using this
reservation can only useit for one hour. What does this mean? It
means the job and the reservation can only overlap for one hour.
Clearly jobs requiring an hour or less of wallclock time meet this
constraint. However, so does a four hour job that starts on Monday
at 5:00 AM or a 12 hour job which starts on Friday at 4:00 PM.
Also, notethe SRTIMEL OGIC setting. Itissetto AND. This
means that jobs must not only meet the SRMAXTIME access
constraint but must also meet one or more of the other access
constraints. In this example, the job can use thisreservation if it
can utilize the access specified via SRQOSLIST or
SRACCOUNTLIST, i.e., itisassigned aQOS of hi gh, | ow, or
speci al , or the submitter of the job has an account which
satisfiesthe! pr oj ect Xand! pr oj ect Y criteria(More on this
below). NOTE: Seethe QOS Overview for more info about QOS

configuration and usage

7.15.2.4 Affinity

One aspect of reservations that has not yet been discussed is
something called reservation affinity. By default, jobs gravitate
towards reservations in a behavior known as positive affinity. This

allows jobs to run on the most constrained resources leaving other,
unreserved resources free for use by other jobs which may not be
able to access the reserved resources. Normally thisisadesired
behavior. However, sometimes, it is desirable to reserve resources
for use asalast resort, ie use the reserved resources only when
there are no other resources available. This'last resort' behavior is
known as 'negative affinity’. Note the'-' (dash or negative sign)
following the'speci al 'inthe SRQOSLIST valuesabove. This
isnot atypo, rather it indicates that QOS 'speci al ' should be
granted access to this reservation but should be assigned negative
affinity. Thus, the SRQOSL | ST parameter specifies that QOS

hi gh and | ow should be granted access with positive affinity (use
the reservation first where possible) and QOS speci al granted
access with negative affinity (use the reservation only when no
other resources are available). Affinity statusis granted on a per
access object basis rather than a per access list basis and always
defaults to positive affinity. In addition to negative affinity, neutral
affinity can aso be specified using the '=' character, ie

'SRQOSLI ST[0] normal = hi gh debug= | ow".

In addition to affinity, ACL's may also be of different types. Note
the SRACCOUNTLIST valuesin the previous example. They are
preceded with an exclamation point, or NOT symbol. This
indicates that all jobs with accounts other than pr oj ect X and
proj ect Y meet the account ACL. Notethat if a !<X> value (ie
"IprojectX’) appearsin an ACL line, that ACL is satisfied by any
object not explicitly listed by aNOT entry. Also, if an object
matches aNOT entry, the associated job is excluded from the
reservation even if it meets other ACL requirements. For example,
a QOS 3 job requesting account 'pr oj ect X' will be denied access
to the reservation even though the job QOS matches the QOS
ACL. Notethat the ability to specify ‘'NOT' ACLsisonly
enabled in Maui 3.0.7 and higher.

7.1.5.2.5 Resource Allocation Behavior

As mentioned above, standing reservations can operate in one of
two modes, floating, or non-floating (essentially node-locked). A
floating reservation is created when aSRTASK COUNT is
specified and SRHOSTLI ST is either not specified or specified
with more resources than are needed to fulfill the
SRTASKCOUNT requirement. If areservation is non-floating,
Maui will alocate all resources specified by the SRHOSTLIST
parameter regardless of node state, job load, or even the presence of
other standing reservations. Maui interprets the request for a
non-floating reservation as stating, 'l want areservation on these
exact nodes, no matter what!'

If areservation is configured to be floating, Maui takes a more
relaxed stand, searching through all possible nodes to find resources
meeting standing reservation constraints. Only ldle, Running, or
Busy node will be considered and further, only considered if no
reservation conflict is detected. The parameter SRACCESS can be

used to modify this behavior dightly and allow the reservation to
allocate resources even if reservation conflicts exist.

Other standing reservation parameters not covered here include
SRPARTITION and SRCHARGEACCOUNT. These parameters

are described in some detail in the Maui parameters documentation.

7.1.5.3 Configuring Administrative Reservations

A default reservation, with no ACL, istermed a SYSTEM reservation. It
blocks access to all jobs because it possesses an empty access control list. Itis
often useful when performing administrative tasks but cannot be used for
enforcing resource usage policies.

(Under construction)
See Also:
N/A

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.2 Partitions

Partitions are alogical construct which divide available resources. By default, a given job
may only utilize resources within a single partition and any resource (i.e., compute node) may
only be associated with asingle partition. In general, partitions are organized along physical
or political boundaries. For example, acluster may consist of 256 nodes containing four 64
port switches. This cluster may receive excellent interprocess communication speeds for
parallel job tasks located within the same switch but sub-stellar performance for tasks which
span switches. To handle this, the site may choose to create four partitions, allowing jobsto
run within any of the four partitions but not span them.

While partitions do have value, it isimportant to note that within Maui, the standing
reservation facility provides significantly improved flexibility and should be used in the vast
majority of cases where partitions are required under other resource management systems.
Standing reservations provide time flexibility, improved access control features, and more
extended resource specification options. Also, another Maui facility called Node sets allows
intelligent aggregation of resources to improve per job node allocation decisions. In cases
where system partitioning is considered for such reasons, node sets may be able to provide a
better solution.

Still, one key advantage of partitions over standing reservations and node sets is the ability
to specify partition specific policies, limits, priorities, and scheduling algorithms although
thisfeatureisrarely required. An example of this need may be a cluster consisting of 48
nodes owned by the Astronomy Department and 16 nodes owned by the Mathematics
Department. Each department may be willing to allow sharing of resources but wants to
specify how their partition will be used. As mentioned earlier, many of Maui's scheduling
policies may be specified on a per partition basis allowing each department to control the
scheduling goals within their partition.

The partition associated with each node must be specified as indicated in the Node
L ocation section. With this done, partition access lists may be specified on a per job or per
QOS basisto constrain which resources ajob may have accessto (See the QOS Overview for
more information). By default, QOS's and jobs allow global partition access.

If no partition is specified, Maui creates a single partition named 'DEFAULT" into which
all resources are placed. In addition to the DEFAULT partition, a pseudo-partition named
'[ALL]"is created which contains the aggregate resources of all partitions. NOTE: While
DEFAULT isareal partition containing all resources not explicitly assigned to another
partition, the [ALL] partition is only a convenience construct and is not areal partition; thus it
cannot be requested by jobs or included in configuration ACL's.

-/ 7.2.1 Defining Partitions

S 7.2.2 Managing Partition Access

) 7.2.3 Requesting Partitions

~/ 7.2.4 Miscellaneous Partition Issues

7.2.1 Defining Partitions

Node to partition mappings are established using the NODECFG parameter in Maui 3.0.7
and higher as shown in the example below.

NODECF{ node001] PARTI TI ON=ast r onony
NODECF{H node002] PARTI TlI ON=ast r onony

NCDECEQ node049] PARTI TI ON=nat h

In earlier versions of Maui, node to partition mappings were handled in the machine config
file (machine.cfg) using the PARTITION keyword as in the example below.

node001 PARTI TI ON=ast r onony
node002 PARTI TI ON=ast r onony

node049 PARTI TI ON=nat h

However, if using partitions, it isHIGHLY recommended that Maui 3.0.7 or higher be
used.

7.2.2 Managing Partition Access

Determining who can use which partition is specified using the * CFG parameters
(USERCFG, GROUPCFG, ACCOUNTCFG, QOSCFG, CLASSCFG, and SY STEMCFG).
These parameters allow both a partition access list and default partition to be selected on a
credential or system wide basis using the PLIST and PDEF keywords. By default, the access
associated with any given job isthe 'logical or' of all partition access lists assigned to the job's
credentials. Assume a site with two partitions, general, and test. The site management would
like everybody to use the general partition by default. However, one user, steve, needs to
perform the majority of hiswork on the test partition. Two special groups, staff and mgmt
will also need access to use the test partition from time to time but will perform most of their
work in the general partition. The example configuration below will enable the needed user

http://supercluster.org/documentation/maui/parameters.cfg#qoscfg

and group access and defaults for this site.

USERCF{J DEFAULT] PLI ST=gener al

USERCF(st eve] PLI ST=gener al : t est PDEF=t est
GROUPCFJ st aff] PLI ST=gener al : t est PDEF=gener al
GROUPCFJ ngnt | PLI ST=gener al : t est PDEF=gener al

Note that the DEFAULT user has no default partition specified. If only asingle partitionis
provided in the access list, it will be selected as the default partition.

In Maui 3.0.6 and earlier, partition access would be controlled using the following stanza
in the fairshare config file (fs.cfg)

USER DEFAULT PLI ST=gener al

USER: st eve PLI ST=gener al : t est PDEF=t est
GROUP: staff PLI ST=general : t est PDEF=gener al
GROUP: ngnt PLI ST=gener al : t est PDEF=gener al

7.2.3 Requesting Partitions

Users may request to use any partition they have accessto on aper job basis. Thisis
accomplished using the resource manager extensions since most native batch systems do not
support the partition concept. For example, on aPBS system, ajob submitted by a member
of the group staff could request that the job run in the test partition by adding the line '#PBS
-W x=PARTITION:test' to the command file. See the resource manager extension overview

for more information on configuring and utilizing resource manager extensions.

7.2.4 Miscellaneous Partition I ssues

Special jobs may be allowed to span the resources of multiple partitionsif desired by
associating the job with a QOS which has the flag 'SPAN' set. (See the QOSCFG parameter)

A brief caution, use of partitions has been quite limited in recent years as other, more
effective approaches are selected for site scheduling policies. Consequently, some aspects of
partitions have received only minor testing. Still note that partitions are fully supported and
any problem found will be rectified.

See Also:
N/A

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

7.3 Quality of Service (QoS) Facilities

- 7.3.1 Q0S Overview

- 7.3.2 Q0S Enabled Privileges

S 7.3.2.1 Special Prioritization

~ 7.3.2.2 Service Access and Constraints

S 7.3.2.3 Policy Exemptions

S 7.3.3 Managing QoS Access

7.3.1 QoS Overview

The QOS facility allows a site to give specia treatment to various classes of jobs, users,
groups, etc. Each QOS object can be thought of a container of special privileges ranging
from fairness policy exemptions, to special job prioritization, to special functionality access.
Each QOS object also has an extensive access list of users, groups, and account which can
access these privileges.

Sites can configure various QOS's each with its own set of priorities, policy exemptions,
and special resource access settings. They can then configure user, group, account, and class
access to these QOS's. A given job will have a default QOS and may have accessto several
additional QOS's. When the job is submitted, the submittor may request a specific QOS (see
the User's Manual for information on specifying job QOS for the resource manager of
interest) or just allow the default QOS to be used. Once ajob is submitted, a user may adjust
the QOS of hisjob's at any time using the 'setgos command. The setqgos command will only
allow the user to modify the QOS of hisjobs and only change the QOS to a QOS that this
user has accessto. Maui administrators may change the QOS of any job to any value.

Jobs are currently granted access to a QOS privileges by configuring QDEF (QOS Default)
or QLIST (QOS Access List) settingsin the fs.cfg file. A job may access a particular QOS if
that QOS islisted in the system default configuration QDEF or QLIST, or if the QOSis
specified in the QDEF or QLIST of a user, group, account, or class associated with that job.

The 'diagnose -Q' command can be used to obtain information about the current QOS
configuration.

7.3.2 QoS Enabled Privileges
The privileges enabled via QoS settings may be broken into one of the following categories

http://supercluster.org/documentation/maui/commands/diagnoseqos.html

Special Prioritization

Service Access and Constraints

Override Policies and Policy Exemptions
All privileges are managed viathe QOSCFG parameter.

7.3.2.1 Special Prioritization

|Attribute Name |Description

[FSTARGET

IPRIORITY |Assign priority to all jobs requesting particular QoS

[QTTARGET
[QTWEIGHT
[XFTARGET
[XFWEIGHT

Example:

QOSCFJ geo] PRI ORI TY=10000

7.3.2.2 Service Access and Constraints

The QoS facility can ne used to enable specia service and/or disable default
services. All services are enabled/disabled by setting the QoS FL AG attribute.

IFlag Name

IDescription

DEDICATED

jobs should not share compute resources with
any other job. These jobswill only run on
nodes which are idle and will not allow other
jobs to use resources on alocated nodes even if
additional resources are available.

INOBF

ljob cannot be considered for backfilled

NORESERVATION

job should never reserve resources regardless of
priority

job may be preempted by higher priority

PREEMPTEE PREEMPTOR jobs

PREEMPTOR job may preempt lower priority PREEMPTEE
jobs

RESERVEALWAYS job should create resource reservation regardless

of job priority

jobs can preempt restartable jobs by essentially
RESTARTPREEMPT requeueing them if this allows the QOSjob to
start earlier

job may only utilize resources within accessible
reservations. If <RESID> is specified, job may
only utilize resources within the specified
reservation.

USERESERVED[:<RESID>]

Example:
QOSCFJ hi pri o] FLAGS=NOBF. PREEMPTEE
Example 2:

QOSCFF chem b] FLAGS=USERESERVED:. chem stry

7.3.2.3 Policy Exemptions

Individual QoS's may be assigned override policies which will set new policy
limits regardless of user, group, account, or queue limits. Particularly, the
following policies may be overridden:

MAXJOB
MAXPROC
MAXNODE

Example:
QOSCFE staff] MAXJIOB=48

In addition to overriding policies, QoS's may also be used to allow particular
jobs to ignore policies by setting the QoS FLAG attribute

QOSFlags

IGNJOBPERUSER
IGNPROCPERUSER
IGNPSPERUSER
IGNJOBQUEUEDPERUSER
|IGNJOBPERGROUP

| GNPROCPERGROUP

| GNPSPERGROUP

IGNJOBQUEUEDPERGROUP
IGNJOBPERACCOUNT
IGNPROCPERACCOUNT
IGNPSPERACCOUNT
IGNJOBQUEUEDPERACCOUNT
IGNSY SMAXPROC
IGNSYSMAXTIME

IGNSY SMAXPS

IGNSRMAXTIME

jobs should ignore standing reservation MAXTIME constraints
IGNUSER

jobs should ignore al user throttling policies
IGNGROUP

jobs should ignore al group throttling policies
IGNACCOUNT

jobs should ignore all account throttling policies
IGNSY STEM

jobs should ignore al system throttling policies
IGNALL

jobs should ignore al user, group, and account throttling policies
Example

QOSCF({ express] FLAGS=I GNSYSTEM

7.3.3 Managing QoS Access

Managing which jobs can access which privileges is handled viathe QOSCFG parameter.
Specifically, this parameter alows the specification of a access control list based on ajob's
user, group, account, and queue credentials. To enable QoS access, the QLI ST and/or
QDEF attributes of the appropriate user, group, account, or queue should be specified using
the parameters USERCFG, GROUPCFG, ACCOUNTCEFG, and CLASSCFG respectively.

Example:

USERCF{ | ohn] (QDEF=geo QLI ST=geo, chem st af f
CGROUPCF({ syst ens] QDEF=devel opnent
CLASSCF({ bat ch] QDEF=nor mal

See dso:
N/A

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

8.0 Optimizing Scheduling Behavior - Backfill, Node Sets, and
Preemption

= 8.1 Optimization Overview

< 8.2 Backfill
- 8.3 Node Sets

= 8.4 Preemption

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R%ervedL_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

8.1 Optimization Overview

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

8.2 Backfill

' 8.2.1 Backfill Overview

' 8.2.2 Backfill Algorithm

-/ 8.2.3 Confiquring Backfill

8.2.1 Backfill Overview

Backfill is a scheduling optimization which allows a scheduler to make better use of
available resources by running jobs out of order. When Maui schedules, it prioritizes the jobs
in the queue according to a number of factors and then orders the jobs into a'highest priority
first' sorted list. It starts the jobs one by one stepping through the priority list until it reaches
ajob which it cannot start. Because all jobs and reservations possess a start time and a
wallclock limit, Maui can determine the completion time of al jobsin the queue.
Consequently, Maui can also determine the earliest the needed resources will become
available for the highest priority job to start.

Backfill operates based on this'earliest job start’ information. Because Maui knows the
earliest the highest priority job can start, and which resources it will need at that time, it can
also determine which jobs can be started without delaying thisjob. Enabling backfill allows
the scheduler to start other, lower-priority jobs so long as they do not delay the highest
priority job. If Backfill isenabled, Maui, 'protects the highest priority job's start time by
creating a job reservation to reserve the needed resources at the appropriate time. Maui then
can any job which not not interfere with this reservation.

Backfill offers significant scheduler performance improvement. In atypical large system,
enabling backfill will increase system utilization by around 20% and improve turnaround
time by an even greater amount. Because of the way it works, essentialy filling in holesin
node space, backfill tends to favor smaller and shorter running jobs more than larger and
longer running ones. It is common to see over 90% of these small and short jobs backfilled.
Consequently, siteswill see marked improvement in the level of service delivered to the
small, short jobs and only moderate to no improvement for the larger, long ones.

The question arises, is backfill apurely good feature. Doesn't there have to be a trade-off
some where? Doesn't there have to be adark side? Well, there are afew drawbacks to using
backfill but they are fairly minor. First of al, because backfill locates jobs to run scattered
throughout the idle job queue, it tends to diminish the influence of the job prioritization asite
has chosen and thus may negate any desired workload steering attempts through this
prioritization. Secondly, although the start time of the highest priority job is protected by a
reservation, what is to prevent the third priority job from starting early and possibly delaying
the start of the second priority job? Ahh, aproblem. Actually, onethat is easily handled as

will be described | ater.

The third problem is actually alittle more subtle. Consider the following scenario
involving the 2 processor cluster shown in figure 1. Job A has a4 hour wallclock limit and
requires 1 processor. It started 1 hour ago and will reach its wallclock limit in 3 more hours.
Job B isthe highest priority idle job and requires 2 processors for 1 hour. Job C isthe next
highest priority job and requires 1 processor for 2 hours. Maui examines the jobs and
correctly determines that job A must finish in 2 hours and thus, the earliest job B can start is
in 2 hours. Maui also determines that job C can start and finish in less than this amount of
time. Consequently, Maui startsjob C on theidle processor. One hour later, job A completes
early. Apparently, the user overestimated the amount of time hisjob would need by afew
hours. Since job B is now the highest priority job, it should be able to run. However, job C,
alower priority job was started an hour ago and the resources needed for job B are not
available. Maui re-evaluates job B's reservation and determines that it can be slid forward an
hour. Attime 3, job B starts.

Ok, now the post-game show. Job A is happy because it ran to completion. Job C is happy
because it got to start immediately. Job B is sort of happy because it got to run 1 hour sooner
than it originally wastold it could. However, if backfill was not enabled, job B would have
been ableto run 2 hours earlier. Not abig deal, usually. However, the scenario described
above actually occursfairly frequently. Thisis because the user estimates for how long their
jobswill takeis generally very bad. Job wallclock estimate accuracy, or wallclock accuracy,
is defined as the ratio of wall time required to actually run the job divided by the wall time
requested for the job. Wallclock accuracy varies from site to site but the site average is rarely
better than 40%. Because the quality of the walltime estimate provided by the user is so low,
job reservations for high priority jobs are often later than they need to be.

S0, is backfill worth it? The short answer is absolutely. The longer answer is
a...b...s..o...l...u...t...e..l...y. Although there do exist some minor drawbacks
with backfill, its net performance impact on a site's workload is very positive. Itslike the
phrase '‘arising tide liftsa ships. Although afew of the highest priority jobs may get minorly
and temporarily delayed, they probably got to their position as highest priority as soon as they
did because jobs in front of them got to run earlier due to backfill. Studies have shown that
only avery small fraction of jobs are truly delayed and when they are, it is only by afraction
of their total queuetime. At the sametime, many jobs are started significantly earlier than
would have occurred without backfill. Regarding the other problems described, 'don't vorry,
ve have vays of handling dem.'

8.2.2 Backfill Algorithm

The agorithm behind Maui backfill scheduling is mostly straightforward although there
are anumber of issues and parameters of which you should be aware. First of all, Maui
makes two backfill scheduling passes. For each pass, Maui selects alist of jobs which are
eligible for backfill. On the first pass, only those jobs which meet the constraints of the 'soft'
fairness throttling policies are considered and scheduled. The second pass expands this list of

jobs to include those which meet the 'hard' (Iess constrained) fairness throttling policies.

The second important concept regarding Maui backfill is the concept of backfill windows.
The figure below shows a simple batch environment containing two running jobs and a
reservation for athird job. The present timeis represented by the leftmost end of the box
with the future moving to the right. The light grey boxes represent currently idle nodes which
are eligible for backfill. For this example, lets assume that the space represented covers 8
nodes and a 2 hour timeframe. To determine backfill windows, Maui analyzes the idle nodes
essentially looking for 'largest node-time rectangles. It determines that there are two backfill
windows. The first window, Window 1, consists of 4 nodes which are available for only one
hour (because some of the nodes are blocked by the reservation for job C). The second
window contains only one node but has no time limit because this node is not blocked by the
reservation for job C. It isimportant to note that these backfill windows overlap.

Once the backfill .)
windowshavebeen | Backfill Windows
determined, Maui begins
to traversethem. The
current behavior isto
traverse these windows
‘widest window first'
(i.e., most nodesto
fewest nodes) Aseach
backfill window is
evaluated, Maui applies
the backfill algorithm
specified by the
BACKFILLPOLICY
parameter, be it

<«— Nodes —

I

FIRSTFIT, BESTFIT, Time —» |
etc.
Assuming the Backfillable| Nodes

BESTFIT algorithmis
applied, the following
steps are taken.

1) Thelist of feasible Window 1
backfill jobsisfiltered,

selecting only those
which will actualy fitin
the current backfill
window.

2) The'degree of fit' of
each job is determined
based on the
SCHEDULINGCRITERIA parameter (ie, processors, seconds, processor-seconds, etc)

(ie, if processors is selected, the job which requests the most processors will have the

best fit)
3) Thejob with the best fit is started.
4) While backfill jobs and idle resources remain, repeat step 1.

Other backfill policies behave in agenerally similar manner. The parameters
documentation can provide further details.

One final important note. By default, Maui reserves only the highest priority job resulting
inavery 'liberal' and aggressive backfill. This reservation guarantees that backfilled jobs will
not delay the highest priority job, athough they may delay the second highest priority job!
(Actually, due to wallclock inaccuracies, it is possible the the highest priority job may
actually get dlightly delayed as well but we won't go into that!) The parameter
RESERVATIONDEPTH controls how conservativel/liberal the backfill policy is. This
parameter controls how deep down the priority queue to make reservations. While increasing
this parameter will improve guarantees that priority jobs will not be bypassed, it reduces the
freedom of the scheduler to backfill resulting in somewhat lower system utilization. The
value of the trade-offs often need to be determined on a site by site basis.

8.2.3 Configuring Backfill

Backfill is enabled in Maui by specifying the BACKFILLPOLICY parameter. By default,

backfill is enabled in Maui using the FIRSTFIT algorithm. However, this parameter can also
be set to BESTFIT, GREEDY, or NONE. The number of reservations can also be controlled
using RESERVATIONDEPTH[<X>] This depth can be distributed across job QOS levels

using RESERVATIONQOSLIST[<X>].

See also:

Parameters BACKFILLDEPTHand BACKFILLMETRIC
Reservation Policy Overview.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

8.3 Node Set Overview

While backfill improves the scheduler's performance, thisis only half the battle. The
efficiency of acluster, in terms of actual work accomplished, is afunction of both scheduling
performance and individual job efficiency. In many clusters, job efficiency can vary from
node to node as well as with the node mix allocated. Most parallel jobs written in popular
languages such as MPI or PVM do not internally load balance their workload and thus run
only asfast as the slowest node allocated. Consequently, these jobs run most effectively on
homogeneous sets of nodes. However, while many clusters start out as homogeneous, they
quickly evolve as new generations of compute nodes are integrated into the system. Research
has shown that this integration, while improving scheduling performance due to increased
scheduler selection, can actually decrease average job efficiency.

A feature called node sets allows jobs to request sets of common resources without
specifying exactly what resources are required. Node set policy can be specified globally or
on a per-job basis and can be based on node processor speed, memory, network interfaces, or
locally defined node attributes. In addition to their use in forcing jobs onto homogeneous
nodes, these policies may also be used to guide jobs to one or more types of nodes on which a
particular job performs best, similar to job preferences available in other systems. For
example, an /O intensive job may run best on a certain range of processor speeds, running
slower on slower nodes, while wasting cycles on faster nodes. A job may specify
ANY OF:PROCSPEED:450,500,650 to request nodes in the range of 450 to 650 MHz.
Alternatively, if asimple procspeed-homogeneous node set is desired, ONEOF:PROCSPEED
may be specified. On the other hand, a communication sensitive job may request a network
based node set with the configuration ONEOF.NETWORK :via,myrinet,ethernet, in which
case Maui will first attempt to locate adequate nodes where all nodes contain via network
interfaces. If such aset cannot be found, Maui will look for sets of nodes containing the
other specified network interfaces. In highly heterogeneous clusters, the use of node sets
have been found to improve job throughput by 10 to 15%.

Node sets can be requested on a system wide or per job basis. System wide configuration
isaccomplished viathe 'NODESET*' parameters while per job specification occurs viathe
resource manager extensions. In all cases, node sets are a dynamic construct, created on a per

job basis and built only of nodes which meet all of the jobs requirements.

As an example, let's assume alarge site possessed a Myrinet based interconnect and
wished to, whenever possible, alocate nodes within Myrinet switch boundaries. To
accomplish this, they could assign node attributes to each node indicating which switch it was
associated with (ie, switchA, switchB, etc) and then use the following system wide node set
configuration:

NODESETPQOLI CY ONEOF
NODESETATTRI BUTE FEATURE

NODESETDELAY 0: 00: 00
NODESETLI ST swtchA switchB switchC switchD

The NODESETPOLICY parameter tells Maui to allocate nodes within a single attribute
set. Setting NODESETATTRIBUTE to FEATURE specifies that the node sets are to be
constructed along node feature boundaries. The next parameter, NODESETDELAY,
indicates that Maui should not delay the start time of ajob if the desired node set is not
available but adequate idle resources exist outside of the set. Setting this parameter to zero
basically tells Maui to attempt to use anode set if it isavailable, but if not, run the job as soon
as possible anyway. Finally, the NODESETLIST value of 'switchA switchB..." tells Maui to
only use node sets based on the listed feature values. Thisis necessary since siteswill often
use node features for many purposes and the resulting node sets would be of little use for
switch proximity if they were generated based on irrelevant node features indicating things
such as processor speed or node architecture.

On occasion, sites may wish to allow aless strict interpretation of nodes sets. In particular,
many sites seek to enforce amore liberal PROCSPEED based node set policy, where almost
balanced node allocations are allowed but wildly varying node allocations are not. In such
cases, the parameter NODESETTOL ERANCE may be used. This parameter alows

specification of the percentage difference between the fastest and slowest node which can be
within a nodeset using the following calculation:

(Speed.Max - Speed.Min) / Speed.Min <= NODESETTOL ERANCE

Thus setting NODESETTOL ERANCE to 0.5 would alow the fastest node in a particular
node set to be up to 50% faster than the slowest node in that set. With a 0.5 setting, ajob
may allocate a mix of 500 and 750 MHz nodes but not a mix of 500 and 900 MHz nodes.
Currently, tolerances are only supported when the NODESETATTRIBUTE parameter is set
to PROCSPEED. The MAXBALANCE node allocation algorithm is often used in

conjunction with tolerance based node sets.

When resources are available in more than one resource set, the
NODESETPRIORITYTY PE parameter allows control over how the 'best’ resource set is

selected. Legal valuesfor this parameter are described in the table below.

Priority Type IDescription Details

select the smallest minimizes fragmentation of larger resource
BESTFIT :
resource set possible |sets.
only supported when NODESETATTRI BUTE
is set to PROCSPEED. Selectsthe fastest
possible nodes for the job.

select the resource set

BESTRESOURCEL 51t the 'bet’ nodes

select the resource set
which will result in the

Only supported when NODESETATTRI BUTE

resource set possible

?Qﬂg%wgegﬂng _ lisset to PROCSPEED and
MINLOSS internal job load .NG_DESETTC]_E.RANC‘E is>0. Th'IS algorlthm
- : is highly useful in environments with mixed
balancing is available. :
: speed compute nodes and a non |oad-balancing
(assumes parallel jobs
parallel workload.
only run asfast asthe
slowest allocated node)
WORSTEIT select the largest minimizes the creation of small resource set

fragments but fragments larger resource sets.

On aper job basis, each user can specify the equivalent of all parameters except
NODESETDELAY. Asmentioned previoudly, thisis accomplished using the resource

manager extensions.

See also:
N/A.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

8.4 Preemption Policies (enabled in Maui 3.0.7 and above)

Many sites possess workloads of varying importance. While it may be critical that some
jobs obtain resources immediately, other jobs are less turnaround time sensitive but have an
insatiable hunger for compute cycles, consuming every available cycle for years on end.
These latter jobs often have turnaround times on the order of weeks or months. The concept
of cycle stealing, popularized by systems such as Condor, handles such situations well and
enables systems to run low priority, preemptible jobs whenever something more pressing is
not running. These other systems are often employed on compute farms of desktops where
the jobs must vacate anytime interactive system use is detected.

Maui's QoS-based preemption system allows a dedicated, non-interactive cluster to be used
in much the sameway. Certain QoS's may be marked with the flag PREEMPTOR, others
with the flag PREEM PTEE. With this configuration, low priority, preemptee jobs can be
started whenever idle resources are available. These jobswill be allowed to run until a
preemptor job arrives, at which point the preemptee job will
be checkpointed if possible and vacated. This allows near immediate resource access for the
preemptor job.

Using this approach, a cluster can maintain near 100% system utilization while still
delivering excellent
turnaround time to the jobs of greatest value.

Use of the preemption system need not be limited to controlling low priority jobs. Other
uses include optimistic scheduling and development job support.

Example:
QOSCFJ hi gh] FLAGS=PREEMPTOR

QOSCF(ned)]
QOSCFE | ow] FLAGS=PREEMPTEE

See Also: N/A .

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

9.0 Evaluating System Performance - Statistics, Profiling, Testing,
and Simulation

= 9.1 Maui Performance Evaluation Overview

< 9.2 Job and System Statistics

= 9.3 Profiling Current and Historical Usage

= 9.4 Testing New Versions and Configurations

- 9.5 Answering 'What If? Questions with the Simulator

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

9.1 Maui Performance Evaluation Overview

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

9.2 Job and System Statistics

Maui maintains a large number of statistics and provides several commands to allow easy
access to and helpful consolidation of thisinformation. These statistics are of three primary

types:

921 Rea Time Statistics

S 9.2.2 Profiling Historical Usage

J 9.2.3 FairShare Usage Statistics

90.2.1 Real Time Statistics Maui providesrea time statistical information about
how the machine is running from a scheduling point of view. The showstats commandsis
actually a suite of commands providing detailed information on an overall scheduling basis as
well as a per user, group, account and node basis. This command getsits information fromin
memory statistics which are loaded at scheduler start time from the scheduler checkpoint file.
(See the Checkpoint Overview for more information) This checkpoint file is updated from

time to time and when the scheduler is shutdown allowing statistics to be collected over an
extended timeframe. At any time, real time statistics can be reset using the resetstats

command.

In addition to the showstats command, the showgrid command also obtains its information
from the in memory stats and checkpoint file. This command display a processor-time based
matrix of scheduling performance for awide variety of metrics. Information such as backfill
effectiveness or average job queue time can be determined on a job size/duration basis. See
the showgrid command documentation for more information.

9.2.2 Profiling Historical Usage

Historical usage information can be obtained for a specific timeframe, class of jobs, and/or
portion of resources using the profiler command. This command operates on the detailed job
trace information recorded at the completion of each job. These traces are stored in the
directory pointed to by the STATDIR parameter which defaults to
$(MAUIHOMEDIR)/stats. Within this directory, statistics files are maintained using the
format WAV MV DD_YYYY (i.e, Mon_Jul_16 2001) with jobs traces being recorded in the
file associated with the day the job completed. Each job trace is white space delimited flat
text and may be viewed directly with any text reader.

When profiling statistics, stat files covering the time frame of interest should be aggregated
into asinglefile. Thisfile can be passed to the profiler command along with a number of
configuration flags controlling what data should be processed and how it should be display.

http://supercluster.org/documentation/maui/trace.html
http://supercluster.org/documentation/maui/trace.html

Command line flags allow specification of constraints such as earliest start date, or latest
completion date. Flags can aso be used to evaluate only jobs associated with specific users,
groups, accounts, or QOS'ss. Further, it is possible to specify that only jobs run on certain
nodes be processed. Because the trace files are flat text, smple UNIX text processing tools
such as awk, sed, or grep can be used to create more elaborate filters should they be needed.

The output of the profiler command provides extensive detailed information about what
jobs ran and what level of scheduling service they received. The profiler command
documentation should be consulted for more information.

0.2.3 FairShare Usage Statistics Regardiess of whether of not fairshare is
enabled, detailed credential based fairshare statistics are maintained. Like job traces, these
statistics are stored in the directory pointed to by the STATDIR parameter. Fairshare stats
are maintained in a separate statistics file using the format FS.<EPOCHTIME> (i.e.,
FS.982713600) with onefile created per fairshare window. (See the Fairshare Overview for
more information) These files are also flat text and record credential based usage statistics.
Information from these files can be seen viathe diagnose -f command.

See Also:

Simulation Overview

SMP Aspects

Fairness Policies
Prioritization
Resour ce Allocation
Policies

Shared vs Dedicated

SMP nodes are often used to run jobs which do not use all available resources on that
node. How Maui handles these unused resources is controlled by the parameter
NODEACCESSPOLICY. If thisparameter is set to SHARED, Maui will allow tasks of other

jobs to use the resources. If this parameter is set to DEDICATED, Maui will mark these
resources unavailable for use by other jobs.

Reservations

Diagnosing System Behavior/Problems

Maui provides a number of commands for diagnosing system behavior. Schedulingina
complicated task and oftentimes a scheduler will behave exactly as you said, which may not
be exactly what you want! Diagnosing thus includes both looking for system failures as well

http://supercluster.org/documentation/maui/commands/diagnosefairshare.html

as determining current functioning system behavior. Quite often, problems may be corrected
through configuration changes which more accurately reflect asite's desires.

When diagnosing system problems, the diagnose command may become your best friend.

This command provides detailed information about scheduler state and also performs alarge
number of internal sanity checks presenting problems it finds as warning messages.

Currently, the diagnose command provide in depth analysis of the following objects and
subsystems

|Obj ect/Subsystem [Diagnose Flag|Use

|Account -a shows detailed account configuration information

. shows detailed fairshare configuration information as
FairShare -f :
| well as current fairshare usage

|Frame -m shows detailed frame information

|Group -9 shows detailed group information

Job 4 sho_vvs detailed job information. Reports on corrupt job
attributes, unexpected states, and excessive job failures
shows detailed node information. Reportson

Node -n unexpected node states and resource allocation
conditions.

|Partition -t shows detailed partition information

Priority - shpws detailed job priorjty informgti on including
priority factor contributionsto all idle jobs

|QOS -Q shows detailed QOS information

Queue -q indicates why ineligible jobs or not allowed to run
shows detailed reservation information. Reports on

Reservation -r reservation corruption of unexpected reservation
conditions

|User -u shows detailed user information

Additionally, the checkjob and checknode routines provide detailed infor mation and
sanity checking on individual jobs and nodes respectively.

Using Maui Logsfor Troubleshooting

Maui logging is extremely useful in determining the cause of a problem. Where other
systems may be cursed for not providing adequate logging to diagnose a problem, M aui
may be cursed for the opposite reason. If thelogging level isconfigured too high, huge
volumes of log output may berecorded, potentially obscuring the problemsin aflood of
data. Intelligent sear ching, combined with the use of the LOGLEVEL and
LOGFACILITY parameterscan mine out the needed information. Key information

associated with various problemsis generally marked with the keywords WARNING,
ALERT, or ERROR. SeethelL ogging Overview for further information.

http://supercluster.org/documentation/maui/commands/diagnosefairshare.html
http://supercluster.org/documentation/maui/commands/diagnosejob.html
http://supercluster.org/documentation/maui/commands/diagnosepriority.html
http://supercluster.org/documentation/maui/commands/diagnosequeue.html
http://supercluster.org/documentation/maui/commands/diagnosereservations.html

Using a Debugger

If other methods do not resolve the problem, the use of a debugger can provide
missing information. While output recorded in the Maui logs can specify which routine
isfailing, the debugger can actually locate the very sour ce of the problem. Log
information can help you pinpoint exactly which section of code needsto be examined
and which dataissuspicious. Historically, combining log infor mation with debugger
flexibility have made locating and correcting Maui bugs arelatively quick and
straightforward process.

To use adebugger, you can either attach to arunning Maui processor start Maui
under thedebugger. Starting Maui under a debugger requiresthat the MAUIDEBUG
environment variable be set to the value'yes to prevent Maui from daemonizing and
backgrounding itself. Thefollowing example shows a typical debugging start up using
gdb.

> export MAUI DEBUG=yes
> cd <MAUI HOVEDI R>/ src
> gdb ../ bin/mui

> b QOSInitialize

>

The gdb debugger hasthe ability to specify conditional breakpoints which make
debugging much easier. For debuggerswhich do not have such capabilities, the
"TRAP*' parameters are of value allowing breakpointsto be set which only trigger
when specific routines are processing particular nodes, jobsor reservations. Seethe
TRAPNODE, TRAPJOB, TRAPRES, and TRAPFUNCTION parametersfor more

information.

Controlling behavior after a'crash’
Setting 'CRASHM ODE!

See also:
Troubleshooting I ndividual Jobs.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

9.3 Profiling Current and Historical Usage

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

9.4 Testing New Versionsand Configurations

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

9.5 Answering 'What 1f?' Questions with the Simulator

Under Construction, see 16.0 Simulations.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

10.0 Managing Shared Resources- SMP | ssues and Policies

= 10.1 Consumable Resource Handling

- 10.2 Load Balancing Features

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

10.1 Consumable Resource Handling

Maui is designed to inherently handle consumable resources. Nodes possess resources,
and workload (jobs) consume resources. Maui tracks any number of consumable resources
on a per node and per jobs basis. Work is under way to allow ‘floating' per system resources
to be handled aswell. When ajob is started on a set of nodes, Maui tracks how much of each
available resource must be dedicated to the tasks of the job. This allows Maui to prevent per
node oversubscription of any resource, be it CPU, memory, swap, local disk, etc.

Recent enhancementsto Loadleveler (version 2.2 and above) finally provide aresource
manager capable of exercising thislong latent capability. These changes allow a user to
specify per task consumable resources and per node available resources. For example, ajob
may be submitted requiring 20 tasks, with 2 CPUs and 256 MB per task. Thus, Maui would
allow anode with 1 GB of Memory and 16 processorsto allow run 4 of these tasks because 4
tasks would consume all of the available memory. Consumable resources allow more
intelligent allocation of resources allowing better management of shared node resources.

No steps are required to enable this capability, simply configure the underlying resource
manager to support it and Maui will pick up this configuration.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

10.2 Load Balancing Features

Under Construction

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reﬂerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

11.0 General Job Administration

< 111 JobHolds

<~ 11.2 Job Priority Management

= 11.3 Suspend/Resume Handling

-/ 11.4 Checkpoint/Restart Facilities

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

11.1 Job Holds
Holds and Deferred Jobs

A job hold is a mechanism by which ajob is placed in a state where it isnot eligible to
be run. Maui supportsjob holds applied by users, admins, and even resource managers.
These holds can be seen in the output of the showq and checkjob commands. A job with a
hold placed on it cannot be run until the hold isremoved. If ahold is placed on ajob viathe
resource manager, this hold must be released by the resource manager provided command
(i.e., llhold for Loadleveler, or ghold for PBS).

Maui supports two other types of holds. Thefirst isatemporary hold known as a
‘defer'. A job isdeferred if the scheduler determinesthat it cannot run. This can be because it
asks for resources which do not currently exist, does not have allocations to run, is rejected
by the resource manager, repeatedly fails after start up, etc. Each time ajob gets deferred, it
will stay that way, unable to run for a period of time specified by the DEFERTIME
parameter. If ajob appears with a state of deferred, it indicates one of the previously
mentioned failures has occurred. Details regarding the failure are available by issuing the
‘checkjob <JOBID>' command. Once the time specified by DEFERTIME has elapsed, the
job is automatically released and the scheduler again attempts to schedule it. The 'defer’
mechanism can be disabled by setting DEFERTIME to '0". To release ajob from the defer
state, issue 'releasehold -a <JOBID>'.

The second 'Maui-specific' type of hold isknown as a'batch’ hold. A batch hold isonly
applied by the scheduler and is only applied after a serious or repeated job failure. If ajob
has been deferred and released DEFERCOUNT times, Maui will placeit in abatch hold. It
will remain in this hold until a scheduler admin examines it and takes appropriate action.
Like the defer state, the causes of a batch hold can be determined via checkjob and the hold

can be released viarel easehold.

Like most schedulers, Maui supports the concept of ajob hold. Actually, Maui supports
four distinct types of holds, user holds, system holds, batch holds, and defer holds. Each of
these holds effectively block ajob, preventing it from running, until the hold is removed.

User Holds

User holds are very straightforward. Many, if not most, resource managers provide
interfaces by which users can place a hold on their own job which basically tells the
scheduler not to run the job while the hold isin place. The user may utilize this capability
because the job's datais not yet ready, or he wants to be present when the job runs so asto
monitor results. Such user holds are created by, and under the control of a non-privileged and
may be removed at any time by that user. Aswould be expected, users can only place holds
on their jobs. Jobswith a user hold in place will have aMaui state of Hold or UserHold
depending on the resource manager being used.

System Holds

The second category of hold isthe system hold. Thishold is put in place by a system
administrator either manually or by way of an automated tool. Aswith all holds, thejob is
not allowed to run so long asthishold isin place. A batch administrator can place and
rel ease system holds on any job regardless of job ownership. However, unlike a user hold, a
normal user cannot release a system hold even on his own jobs. System holds are often used
during system maintenance and to prevent particular jobs from running in accordance with
current system needs. Jobs with a system hold in place will have aMaui state of Hold or
SystemHold depending on the resource manager being used.

Batch Holds

Batch holds constitute the third category of job holds. These holds are placed on ajob by
the scheduler itself when it determines that a job cannot run. The reasons for this vary but
can be displayed by issuing the ‘checkjob <JOBID>' command. Some of the possible

reasons are listed below:

No Resources - thejob requests resources of atype or amount that do not exist on
the system

System Limits - thejobislarger or longer than what is alowed by the specified
system policies

Bank Failure - theadlocations bank is experiencing failures

No Allocations - thejob requests use of an account which is out of allocations and no
fallback account has been specified

RM Reject - the resource manager refuses to start the job

RM Failure - the resource manager is experiencing failures

Policy Violation - thejob violates certain throttling policies preventing it from running

now and in the future
No QOS Access - thejob does not have access to the QOS level it requests

Jobs which are placed in a batch hold will show up within Maui in the state BatchHold.
Job Defer

In most cases, ajob violating these policies will not be placed into a batch hold
immediately. Rather, it will be deferred. The parameter DEFERTIME indicates how long it
will be deferred. At thistime, it will be allowed back into the idle queue and again
considered for scheduling. If it again isunable to run at that time or at any time in the future,
it isagain deferred for the timeframe specified by DEFERTIME. A job will be released and
deferred up to DEFERCOUNT times at which point the scheduler places a batch hold on the

job and waits for a system administrator to determine the correct course of action. Deferred
jobs will have aMaui state of Deferred. Aswith jobsin the BatchHold state, the reason the
job was deferred can be determined by use of the checkjob command.

At any time, ajob can be released from any hold or deferred state using the 'releasehol d'

command. The Maui logs should provide detailed information about the cause of any batch
hold or job deferral.

NOTE: Asof Maui 3.0.7, the reason ajob is deferred or placed in a batch hold is stored in
memory but is not checkpointed. Thusthisinfo isavailable only until Maui isrecycled at
which point the checkjob command will no longer display this 'reason’ info.

(under construction)

Controlling Backfill Reservation Behavior
Reservation Thresholds
Reservation Depth
Resource Allocation Method
First Available
Min Resource
Last Available
WallClock Limit
Allowing jobs to exceed wallclock limit
MAXJOBOVERRUN
Using Machine Speed for WallClock limit scaling
USEMACHINESPEED
Controlling Node Access
NODEACCESSPOLICY

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

11.2 Job Priority Management

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

11.3 Suspend/Resume Handling

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

11.4 Checkpoint/Restart Facilities

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

12.0 General Node Administration

Since Maui interoperates with a number of resource managers of varying capabilities, it
must possess a somewhat redundant set of mechanisms for specifying node attribute,
location, and policy information. Maui determines a node's configuration through one or
more of the following approaches:

- Direct resource manager specification

Some node attribute may be directly specified through the resource manager. For example,
Loadleveler allows a site to assign a'MachineSpeed' value to each node. |If the site chooses
to specify this value within the Loadleveler configuration, Maui will obtain thisinfo viathe
Loadleveler scheduling API and use it in scheduling decisions. The list of node attributes
supported in this manner varies from resource manager to resource manager and should be
determined by consulting resource manager documentation.

- Trandation of resource manager specified ‘'opaque’ attributes

Many resource managers support the concept of opaque node attributes, allowing a site to
assign arbitrary stringsto anode. These strings are opague in the sense that the resource
manager passes them along to the scheduler without assigning any meaning to them. Nodes
possessing these opaque attributes can then be requested by various jobs. Using certain Maui
parameters, sites can assign a meaning within Maui to these opague node attributes and
extract specific node information. For example, setting the parameter
'FEATUREPROCSPEEDHEADER xps will cause a node with the opaque string 'xps950' to

be a assigned a processor speed of 950 MHz within Maui.

- Default node attributes

Some default node attributes can be assigned on aframe or partition basis. Unless
explicitly specified otherwise, nodes within the particular node or partition will be assigned
these default attribute values. See the Partition Overview for more information.

- Direct maui parameter specification

Maui also provides a parameter named NODECFG which allows direct specification of

virtually all node attributes supported via other mechanisms and also provides a number of
additional attributes not found elsewhere. For example, a site may wish to specify something
like the following:

NODECFE node031] MAXJOB=2 PROCSPEED=600 PARTI TI ON=snal |

@ These approaches may be mixed and matched according to the site'slocal needs.

Precedence for the approaches generally follows the order listed above in cases where
conflicting node configuration information is specified through one or more mechanisms.

= 12.1 Node L ocation (Partitions, Frames, Queues, etc.)

- 12.2 Node Attributes (Node Features, Speed, etc.)

<~ 12.3 Node Specific Policies (MaxJobPerNode, etc.)

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

12.1 Node L ocation

Nodes can be assigned three types of location information based on partitions, frames,
and/or queues.

1211 Partitions

< 1212 Frames

- 12.1.3 Queues

J 12.1.3.1 OpenPBS Queue to Node Mapping

12.1.1 Partitions

Thefirst form of location assignment, the partition, allows nodes to be grouped according
to physical resource constraints or policy needs. By default, jobs are not allowed to span
more than one partition so partition boundaries are often valuable if a underlying network
topology make certain resource allocations undesirable. Additionally, per-partition policies
can be specified to grant control over how scheduling is handled on a partition by partition
basis. See the Partition Overview for more information.

12.1.2 Frames

Frame based |ocation information is orthogonal to the partition based configuration and is
mainly an organizational construct. In general frame based location usage, anode is assigned
both aframe and a slot number. This approach has descended from the IBM SP2
organizational approach in which aframe can contain any number of slots but typically
contains between 1 and 64. Using the frame and slot number combo, individual compute
nodes can be grouped and displayed in a more ordered manner in certain Maui commands
(i.e., showstate). Currently, frame information can only be specified directly by the system
viathe SDR interface on SP2/Loadleveler systems. In all other systems, thisinformation
must be manually specified viathe NODECFG parameter.

Example:

maui . cfg

NODECF{J node024] FRAME=1 SLOT=1
NODECF{J node025] FRAME=1 SLOT=2
NODECF{ node026] FRAME=2 SLOT=1 PARTI Tl ON=speci al

When specifying node and frame information, slot values must be in the range of 1 to 32
(limited to 1 to 16 in Maui 3.0 and earlier). and frames must be in the range of 1 to 64.

12.1.3 Queues

Some resource managers allow queues (or classes) to be defined and then associated with a
subset of available compute resources. With such systems, such as Loadleveler or PBSPro,
these queue to node mappings are automatically detected. On resource managers which do
not provide this service, Maui provides aternative mechanisms for enabling this feature.

12.1.3.1 OpenPBS Queueto Node Mapping

Under OpenPBS, queue to node mapping can be accomplished setting the
queueacl _host s parameter to the mapping hostlist desired within PBS.
Further, theacl _host enabl e parameter should be set to Fal se. NOTE:
Settingacl _host s and then settingacl _host _enabl e to Tr ue will
constrain the list of hosts from which jobs may be submitted to the queue. Prior
to Maui 3.0.7p3, queue to node mapping was only enabled when
acl _host _enabl e wassetto Tr ue, thus, for these versions, theacl _host
list should always include all submission hosts.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

12.2 Node Attributes

Nodes can possess a large number of attributes describing their configuration. The
majority of these attributes such as operating system or configured network interfaces can
only be specified by the direct resource manager interface. However, the number and detail
of node attributes varies widely from resource manager to resource manager. Sites often have
interest in making scheduling decisions based on scheduling attributes not directly supplied
by the resource manager. Configurable node attributes are listed below.

NODETYPE

The NODETY PE attribute is most commonly used in conjunction with an allocation
management system such as QBank. In these cases, each node is assigned a node type and
within the allocation management system, each node type is assigned a charge rate. For
example, a site may wish to charge users more for using large memory nodes and may assign
anode type of 'BIGMEM' to these nodes. The allocation management system would then
charge a premium rate for jobs using BIGMEM nodes. (See the Allocation Manager

Overview for more information.)

Node types are specified as simple strings. |If no node type is explicitly set, the node will
possess the default node type of [DEFAULT]'. Node type information can be specified
directly using NODECFG or through use of the FEATURENODETY PEHEADER parameter.

Example:

maui . cfg

NODECF(J node024] NODETYPE=BI GVEM

PROCSPEED

Knowing a node's processor speed can help the scheduler improve intra-job efficiencies by
allocating nodes of similar speeds together. This helps reduce losses due to poor internal job
load balancing. Maui's Node Set scheduling policies allow a site to control processor speed

based allocation behavior.

Processor speed information is specified in MHz and can be indicated directly using
NODECFG or through use of the FEATUREPROCSPEEDHEADER parameter.

SPEED

A node's speed is very similar to its procspeed but is specified as arelative value. In
genera use, the speed of a base node is determined and assigned a speed of 1.0. A node that
1S 50% faster would be assigned a value of 1.5 while a slower node may receive avaue
which is proportionally less than 1.0. Node speeds do not have to be directly proportional to
processor speeds and may take into account factors such as memory size or networking
interface. Generally, node speed information is used to determine proper wallclock limit and
CPU time scaling adjustments.

Node speed information is specified as a unitless floating point ratio and can be specified
through the resource manager or with the NODECFG parameter.

@ The SPEED specification must be in the range of 0.01 to 100.0.

FEATURES

Not all resource managers allow specification of opaque node features. For these systems,
the NODECFG parameter can be used to directly assign alist of node features to individual

nodes.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

12.3 Node Specific Policies

Specification of node policiesisfairly limited within Maui mainly because the demand for
such policiesislimited. These policies allow a site to specify on a node by node basis what
the node will and will not support. Node policies may be applied to specific nodes or applied
system wide using the specification 'NODECFE DEFAULT] . ..' Notethat these policies
were introduced over time so not all policies are supported in all versions.

MAXJOB (Maui 3.0.7 and higher)

This policy constrains the number of total independent jobs a given node may run
simultaneously. It can only be specified viathe NODECFG parameter.

MAXJOBPERUSER (Mauii 3.0.7 and higher)

This policy constrains the number of total independent jobs a given node may run
simultaneously associated with any single user. Like MAXJOB, it can only be specified via
the NODECFG parameter.

MAXLOAD (Maui 3.2.2 and higher)

MAXLOAD constrains the CPU load the node will support as opposed to the number of
jobs. If the node's load exceeds the MAXL OAD limit and the NODELOADPOLICY

parameter is set to ADJUSTSTATE , the node will be marked busy. Under Maui 3.0, the
max load policy could be applied system wide using the parameter NODEMAXLOAD.

@ Node policies are used strictly as constraints. |f anodeis defined as having asingle
processor or the NODEACCESSPOLICY isset to DEDICATED, and aMAXJOB policy of
3 is specified, Maui will probably not run more than one job per node. A node's configured
processors must be specified so that multiple jobs may run and then the M AXJOB policy
will be effective. The number of configured processors per node is specified on aresource
manager specific basis. PBS, for example, allows this to be adjusted by setting the number of
virtual processors, 'np' per node in the PBS 'nodes file.

Example:

maui . cfg

NODECFJ node024] MAXJOB=4 MAXJOBPERUSER=2
NODECF{H node025] MAXJOB=2

NCDECFJ node026] MAXJOBPERUSER=1

NODECFJ DEFAULT] MAXLOAD=2.5

Also See:
<N/A>

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R%erved;_:l

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

13.0 Resource Managersand Interfaces

= 13.1 Resource Manager Overview

- 13.2 Resource Manager Configuration

= 13.3 Resource Manager Extensions

= 13.4 Adding Resource Manager Interfaces

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

13.1 Resource Manager Overview

Maui requires the services of aresource manager in order to properly function. This
resource manager provides information about the state of compute resources (nodes) and
workload (jobs). Maui also depends on the resource manager to manage jobs, instructing it
when to start and/or cancel jobs.

Maui can be configured to manage one or more resource managers simultaneously, even
resource managers of different types. However, migration of jobs from one resource manager
to another is not currently allowed meaning jobs submitted onto one resource manager cannot
run on the resources of another.

S 13.1.1 Scheduler/Resource Manager | nteractions

S 13.1.1.1 Resource Manager Commands

J 13.1.1.2 Resource Manager Flow

S 13.1.2 Resource Manager Specific Details (Limitations/Special Features)

13.1.1 Scheduler/Resource Manager Interactions Maui interacts with
all resource managersin the same basic format. Interfaces are created to translate Maui
concepts regarding workload and resources into native resource manager objects, attributes,
and commands.

Information on creation a new scheduler resource manager interface can be found in the
Adding New Resource Manager Interfaces section.

13.1.1.1 Resource Manager Commands

In the ssmplest configuration, Maui interacts with the resource manager using
the four primary functions listed below:

GETJOBINFO

Collect detailed state and requirement information about idle, running, and
recently completed jobs.

GETNODEINFO
Collect detailed state information about idle, busy, and defined nodes.
STARTJOB

Immediately start a specific job on a particular set of nodes.
CANCELJOB
Immediately cancel a specific job regardless of job state.

Using these four simple commands, Maui enables nearly its entire suite of
scheduling functions. More detailed information about resource manager
specific requirements and semantics for each of these commands can be found in
the specific resource manager overviews. (LL, PBS, or WIKI).

In addition to these base commands, other commands are required to support
advanced features such a dynamic job support, suspend/resume, gang
scheduling, and scheduler initiated checkpoint/restart.

13.1.1.2 Resource Manager Flow

Early versions of Maui (i.e., Maui 3.0.x) interacted with resource managersin
avery basic manner stepping through a serial sequence of steps each scheduling
iteration. These steps are outlined below:

1. load global resource information
load node specific information (optional)
load job information
load queue information (optional)
cancel jobs which violate policies
start jobs in accordance with available resources and policy constraints
handle user commands
. repeat
Each step would complete before the next step started. As systems continued
to grow in size and complexity however, it became apparent that the serial model
described above would not work. Three primary motivations drove the effort to

replace the serial model with a concurrent threaded approach. These motivations
were reliability, concurrency, and responsiveness.

Reliability

© N O~ WD

A number of the resource managers Maui interfaces to were unreliable to
some extent. Thisresulted in calls to resource management API's with exitted or
crashed taking the entire scheduler with them. Use of athreaded approach
would cause only the calling thread to fail allowing the master scheduling thread
to recover. Additionally, a number of resource manager calls would hang
indefinately, locking up the scheduler. These hangs could likewise be detected
by the master scheduling thread and handled appropriately in a threaded
environment.

Concurrency

http://supercluster.org/documentation/maui/wiki

As resource managers grew in size, the duration of each API global query call
grew proportionally. Particularly, queries which required contact with each node
individually became excessive as systems grew into the thousands of nodes. A
threaded interface allowed the scheduler to concurrently issue multiple node
queries resulting in much quicker aggregate RM query times.

Responsiveness

Finally, in the non-threaded serial approach, the user interface was blocked
while the scheduler updated various aspects of its workload, resource, and queue
state. In athreaded model, the scheduler could continue to respond to queries
and other commands even while fresh resource manager state information was
being loaded resulting in much shorter average response times for user
commands.

Under the threaded interface, all resource manager information is loaded and
processed while the user interface is still active. Average aggregate resource
manager APl query times are tracked and new RM updates are launched so that
the RM query will complete before the next scheduling iteration should start.
Where needed, the loading process uses a pool of worker threads to issue large
numbers of node specific information queries concurrently to accelerate this
process. The master thread continues to respond to user commands until all
needed resource manager information is loaded and either a scheduling relevant
event has occurred or the scheduling iteration time has arrived. At this point, the
updated information is integrated into Maui's state information and scheduling is
performed.

13.1.2 Resource Manager Specific Details (Limitations/Special
Features)

(Under Construction)

LL/LL2
PBS
Wiki

Synchronizing Conflicting Information
Maui does not trust resource manager. All node and job information is rel oaded
on each iteration. Discrepancies are logged and handled where possible.
NodeSyncDeadline/JobSyncDeadline overview.

Purging Stale Information
Thread
See Also:

http://supercluster.org/documentation/maui/wikiinterface.html

Resource Manager Configuration, Resource Manager Extensions

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R%erved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

13.2 Resource Manager Configuration

The type of resource manager to interface to is specified using the RMTY PE parameter.

This parameter takes an argument of the form <RMTY PE>[:<RM SUBTY PE>]. Currently,
the following resource manager types are supported:

LL2 - Loadleveler version 2.1 and 2.2
PBS - OpenPBSand PBSPro (all versions)
WIKI - Text based API used by LRM, YRM, BProc, and other resource managers

SGE - Sun's Grid Engine Resource Manger

The RMSUBTY PE option is currently only used to support Compag's RMS resource
manager in conjunction with PBS. In this case, the value PBS: RMS should be specified. As
noted above, Maui can support more than one resource manager simultaneously.
Consequently, all resource manager parameters are specified as arrays. For example, to
interface to the Loadleveler scheduling API, one would specify

RMTYPE[0] LL2

See the Parameters Overview for more information about parameter specification.

In addition to RMTY PE, other parameters allow further control of the schedul er/resource
manager interface. Theseinclude RMNAME, RMPORT, RMHOST, RMTIMEOUT,
RMAUTHTYPE, RMCONFIGFILE, and RMNMPORT.

The RMNAME parameter alows a site to associate a name with a particular resource
manager so as to simplify tracking of thisinterface within Maui. To date, most sites have
chosen to setup only one resource manager per scheduler making this parameter largely
unnecessary. RMHOST and RMPORT allow specification of where the resource manager
islocated. These parameters need only to be specified for resource managers using the WIKI
interface or with PBS when communication with a non-default server isrequired. In all other
cases, the resource manager is automatically located.

The maximum amount of time Maui will wait on a resource manager call can be controlled
by the RMTIMEOQUT parameter which defaults to 30 seconds. Only rarely will this
parameter need to be changed. RMAUTHTY PE allows specification of how security over
the schedul er/resource manager interface isto be handled. Currently, only the WIKI interface
Is affected by this parameter. The allowed values are documented in the RMAUTHTY PE

parameter description.

Another RM-specific parameter is RM CONFIGFI L E, which specifies the location of the

resource manager's primary config file and is used when detailed resource manager
information not available via the scheduling interface isrequired. It is currently only used
with the Loadleveler interface and needs to only be specified when using Maui
meta-scheduling capabilities.

http://supercluster.org/documentation/maui/wiki

Finaly, the RMNMPORT allows specification of the resource manager's node manager

port and is only required when this port has been set to a non-default value. It is currently
only used within PBS to allow MOM specific information to be gathered and utilized by
Maui.

13.1.2 Scheduler/Resource Manager Interactions

In the ssmplest configuration, Maui interacts with the resource manager using the four
primary functions listed below:

GETJOBINFO

Collect detailed state and requirement information about idle, running, and recently
completed jobs.

GETNODEINFO

Collect detailed state information about idle, busy, and defined nodes.
STARTJOB

Immediately start a specific job on a particular set of nodes.
CANCELJOB

Immediately cancel a specific job regardless of job state.

Using these four simple commands, Maui enables nearly its entire suite of scheduling
functions. More detailed information about resource manager specific requirements and
semantics for each of these commands can be found in the specific resource manager
overviews. (LL, PBS, or WIKI).

In addition to these base commands, other commands are required to support advanced
features such a dynamic job support, suspend/resume, gang scheduling, and scheduler
initiated checkpoint restart. More information about these commands will be forthcoming.

Information on creation a new scheduler resource manager interface can be found in the
Adding New Resource Manager Interfaces section.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/documentation/maui/wiki
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

13.3 Resource Manager Extensions

All resource managers are not created equal. Thereisawide range in what capabilities are available from system to system. Additionally,
thereisalarge body of functionality which many if not all resource managers have no concept of. A good example of thisisjob QoS. Since
most resource managers do not have a concept of quality of service, they do not provide a mechanism for users to specify this information.

In many cases, Maui is able to add capabilities at aglobal level. However, anumber of features require a'per job' specification. Resource
manager extensions allow this information to be associated with the job.

How thisis done varies with the resource manager. Both Loadleveler and Wiki allow the specification of acomment field. (In

Loadleveler, specified as'#@ onment =" <X>" ") PBS does not support this ability by default but is extendible viathe'-W' flag. (seethe
PBS Resource Manager Extension Overview)

Using the resource manager specific method, the following job extensions are currently available:

Name Format Sgﬁgn Description [Example
IACCESSM ODE |one of DEDICATED or SHARED ISHARED | |ACCESSMODE: DEDI CATED
dedicated
DMEM <INTEGER> 0 memory per (DVEM 512
task in MB
one or more of the following comma associates
separated keywords VaOUS
FLAGS ADVRESY[:RESID], RESTARTABLE, |[[NONE] flags with FLAGS: ADVRES
PREEMPTEE, PREEMPTOR, the job
NOQUEUE

http://supercluster.org/documentation/maui/13.3.1pbsrmextensions.html

HOSTLIST

commaddimited list of hosthames

[NONE]

indicates a
exact set,
superset, or
subset of
nodes on
which the
job must
run

HOSTLI ST: nodeA, nodeB, nodeE

NODESET

<SETTYPE><SETATTR>[:<SETLIST>]

[NONE]

specifies
nodeset
constraints
for job
resource
alocation.
(Seethe
NodeSet
Overview
for more
information)

NODESET: ONEOF: PROCSPEED: 350, 400, 450

PARTITION

<STRING>[:<STRING>]...

[NONE]

specifiesthe
partition (or
partitions)
in which the
job must
run.

NOTE: the
job must
have access
to this
partition
based on
system wide
or credential
based
partition

PARTI Tl ON: mat h: geol ogy

(The job must only run in the mat h partition or the
geol ogy partition)

| | | |access|ists. |

|QOS |<STRING> IINONE] | |QCS: hi ghprio
Indicates
whether or
not the
scheduler
should
QUEUEJOB |one of FALSE or TRUE TRUE qube‘ijfe the | qUEUEI OB: FALSE
resources
are not
availableto
run the job
immediately
[SGE [WINDOWCOUNT>:<DISPLAYNAME> [NONE] | [SGE: 8: pi nky
|SID |<STRING> I[NONE] | ISI D:sil ver A
TPN [<INTEGER> 0 | TPN: 4
TRL [<INTEGER>[<INTEGER>]... 0 | TRL: 2, 4, 8, 16

If more than one extension is required in a given job, extensions can be concatenated with a semicolon separator using the format
'<SATTR>: <VALUE>[; <ATTR>: <VALUE>] . . ."

See the following examples:

Example 1

Loadl evel er command file
#@oment =" HOSTLI ST: nodel, node2; QCS: speci al ; SID: si |l ver A"

Job must run on nodesnodel and node?2 using the QoS speci al . Thejob is aso associated with the systemid si | ver A alowing the
silver daemon to monitor and control the job.

Example 2

PBS command file

PBS - W X=" NOCDESET=0ONECF: NETWORK; DVEM 64"

Job will have resources all ocated subject to network based nodeset constraints. Further, each task will dedicate 64 MB of memory.

Example 3

gsub -l nodes=4,walltime=1:00:00 -W x="FLAGS:ADVRES;john.1"

Job will be forced to run withinthej ohn. 1 reservation.
See Also:

Resource Manager Overview

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Rwerved.i:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

13.4 Adding New Resource Manager Interfaces

Maui currently interfaces with about 6 different resource manager systems. Some of these
interact through a resource manager specific interface (ie, OpenPBS/PBSProc, Loadleveler)
while others interact through a simple text based interfaces known as Wiki. (see the Wiki
Overview). For most resource managers, either route is possible depending on whereit is
easiest to focus development effort. Use of Wiki generally requires modifications on the
resource manager side while creation of a new resource manager specific Maui interface
would require more changes to Maui mods. If ascheduling APl already exists within the
resource manager, creation a a resource manager specific Maui interface is often selected.

Regardless of the interface approach selected, adding support for a new resource manager is
typically astraight forward process for about 95% of all supported features. The final 5% of
features usually requires a bit more effort as each resource manager has a number of
distinctive and unigue concepts which must be addressed.

S 13.4.1 Resource Manager Specific Interfaces

< 13.4.2 Wiki Interface

13.4.1 Resource Manager Specific I nterfaces

If the resource manger specific interface is desired, then typically a scheduling AP
library/header file combo isrequired. (i.e., for PBS, libpbs.a +
pbs ifl.h, etc.) Thisresource manager provided API provides calls which can be linked into
Maui to obtain the 'raw' resource manager data including both jobs and compute nodes.
Additionally, this API should provide policy information about the resource manager
configuration if it is desired that such policies be specified via the resource manager rather
than the scheduler and that Maui know of and respect these policies. The new
'‘<X>Interface.c' module would be responsible for loading information from the resource
manager, translating this information, and then popul ating the appropriate Maui data
structures. The existing L L Interface.c, PBSlI nterface.c and Wikil nterface.c modules
provide templates indicating how to do this.

Thefirst step in this process is defining the new resource manager type. Thisis
accomplished by modifying maui_struct.h and maui_global.h header filesto define the new
RMTY PE parameter value. With this defined, the RMInterface.c module must be modified
to call the appropriate resource manager specific calls which will eventually be created within
the '<X>Interface,c' module. This processis quite easy and involves merely extending
existing resource manager specific case statements within the general resource manager calls.

The vast majority of the development effort in entailed in creating the resource manager

http://supercluster.org/documentation/maui/wiki
http://supercluster.org/documentation/maui/wiki

specific data collection and job management calls. These calls populate Maui data structures,
and are responsible for passing Maui scheduling commands on to the resource manager. The
base commands are GetJobs, GetNodes, StartJob, and CancelJob but if the resource manager
support is available, extended functionality can be enabled by creating commands to
suspend/resume jobs, checkpoint/restart jobs, and/or alow support of dynamic jobs.

If the resource manager provides aform of event driven scheduling interface, thiswill also
need to be enabled. The PBSInterface.c module provides atemplate for enabling such an
interface within the PBSProcessEvent() call.

13.4.2 Wiki Interface

The Wiki interface is agood alternative if the resource manager does not already support
some form of existing scheduling API. For the most part, use of this API requires the same
amount of effort as creating a resource manager specific interface but development effort
focussed within the resource manager. Since Wiki is already defined as a resource manager
type, no modifications are required within Maui. Additionally, no resource manager specific
library or header fileisrequired. However, within the resource manager, internal job and
node objects and attributes must be manipulated and placed within Wiki based interface
concepts as defined in the Wiki Overview. Additionally, resource manager parameters must

be created to allow a site to configure this interface appropriately.

Efforts are currently underway to create anew XML based interface with an improved
transport and security model. Thisinterface will also add support for more flexible resource
and workload descriptions as well as resource manager specific policy configuration. Itis
expected that thisinterface will be available in mid 2002.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/documentation/maui/wiki
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

14.0 Trouble Shooting and System Maintenance

- 14.1 Interna Diagnostics

14.2 Loqgging Facilities

14.3 Using the M essage Buffer

14.4 Handling Events with the Notification Routine

14.5 |Issueswith Client Commands

L O O O U

14.6 Tracking System Failures

.

14.7 Problems with Individual Jobs

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

14.1 Internal Diagnostics

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

14.2 Logging Overview

The Maui Scheduler provides the ability to produce detailed logging of all of its activities.
The LOGFILE and/or LOGDIR parameters within the maui.cfg file specify the destination of
thislogging information. Logging information will be written in the file
<MAUIHOMEDIR>/<LOGDIR><LOGFILE> unless <LOGDIR> or <LOGFILE> is
specified using an absolute path. If the log file is not specified or pointsto an invalid file, al
logging information is directed to STDERR. However, because of the sheer volume of
information that can be logged, it is not recommended that this be done while in production.
By default, LOGDIR and LOGFILE are set to 'log’ and 'maui.log' respectively, resulting in
scheduler logs being written to <M AUIHOM EDI R>/log/maui.log.

The parameter LOGFILEMAXSIZE determines how large the log file is allowed to
become beforeitisrolled and is set to 10 MB by default. When the log file reaches this
specified size, the log fileisrolled. The parameter LOGFIL EROLLDEPTH will control the
number of old logs maintained and defaultsto 1. Rolled log files will have a numeric suffix
appended indicating their order.

The parameter LOGLEVEL controls the verbosity of the information. Currently,

LOGLEVEL values between 0 and 9 are used to control the amount of information logged,
with O being the most terse, logging only the most server problems detected, while 9 isthe
most verbose, commenting on just about everything. The amount of information provided at
each log level is approximately an order of magnitude greater than what is provided at the log
level immediately below it. A LOGLEVEL of 2 will record virtually al critical messages,
while alog level of 4 will provide general information describing all actions taken by the
scheduler. If aproblem is detected, you may wish to increase the LOGLEVEL value to get
more details. However, doing so will cause the logs to roll faster and will also cause alot of
possibly unrelated information to clutter up the logs. Also be aware of the fact that high
LOGLEVEL vaueswill result in large volumes of possibly unnecessary file 1/O to occur on
the scheduling machine. Consequently, it is not recommended that high LOGLEVEL vaues
be used unless tracking a problem or similar circumstances warrant the 1/0O cost. NOTE: If
high log levels are desired for an extended period of time and your Maui home directory is
located on a network filesystem, performance may be improved by moving your log directory
to alocal file system using the 'LOGDIR' parameter.

A final log related parameter isLOGFACILITY. This parameter can be used to focus

logging on a subset of scheduler activities. This parameter is specified asalist of one or more
scheduling facilities as listed in the parameters documentation.

The logging that occursis of five mgor types, subroutine information, status information,
scheduler warnings, scheduler alerts, and scheduler errors. These are described in detail
below:

1.Subroutine Infor mation. Each subroutine is logged, along with all printable parameters.
Major subroutines are logged at lower LOGLEVELs while all subroutines are logged at
higher LOGLEVELSs. Example:

CheckPolicies(fr4n01.923.0,2,Reason)

2.Status Infor mation. Information about internal statusislogged at all LOGLEVELSs.
Critical internal statusisindicated at low LOGLEVELswhile less critical and voluminous
status information is logged at higher LOGLEVELSs. Example:

INFO: Job fr4n01.923.0 Rejected (Max User Jobs)
INFO: Job[25] 'fr4n01.923.0' Rejected (MaxJobPerUser Policy Failure)

3.Scheduler War nings. Warnings are logged when the scheduler detects an unexpected
value or receives an unexpected result from a system call or subroutine. They are not
necessarily indicative of problems and are not catastrophic to the scheduler. Example:

WARNING: cannot open fairshare data file '/home/loadl/maui/stats/FS.87000'

4.Scheduler Alerts. Alerts are logged when the scheduler detects events of an unexpected
nature which may indicate problemsin other systems or in objects. They are typically of a
more severe nature than are warnings and possibly should be brought to the attention of
scheduler administrators. Example:

ALERT: job 'fr5n02.202.0' cannot run. deferring job for 360 Seconds

5.Schedulers Errors. Errors are logged when the scheduler detects problems of a nature of
which it is not prepared to deal. It will try to back out and recover as best it can, but will not
necessarily succeed. Errors should definitely be be monitored by administrators. Example:

ERROR: cannot connect to Loadleveler API

On aregular basis, use the command grep -E "WARNING|ALERT|ERROR" maui.log to
get alisting of the problems the scheduler is detecting. On a production system working
normally, thislist should usually turn up empty. The messages are usually self-explanatory
but if not, viewing the log can give context to the message.

If aproblem is occurring early when starting the Maui Scheduler (before the configuration
fileisread) maui can be started up using the-L LOGLEVEL flag. If thisisthefirst flag on
the command line, then the LOGLEVEL is set to the specified level immediately before any
setup processing is done and additional logging will be recorded.

If problems are detected in the use of one of the client commands, the client command can
be re-issued with the -L <LOGLEVEL> command line arg specified. Thisargument causes
debug information to be logged to STDERR as the client command is running. Again,
<LOGLEVEL> valuesfrom0to 9 are
supported.

In addition to the log file, the Maui Scheduler reports all eventsit determinesto be critical
to the UNIX syslog facility viathe ‘daemon’ facility using priorities ranging from 'INFO' to

'ERROR'. Thislogging is not affected by LOGLEVEL. In addition to errors and critical
events, all user commands that affect the state of the jobs, nodes, or the scheduler are also
logged via syslog.

The logging information is extremely helpful in diagnosing problems, but it can also be
useful if you are ssimply trying to become familiar with the "flow" of the scheduler. The
scheduler can be run with alow LOGLEVEL vaue at first to show the highest level
functions. This shows high-level data and control flow. Increasing the LOGLEVEL increases
the number of functions displayed as familiarity with the scheduler flow grows.

The LOGLEVEL can be changed "on-the-fly" by use of the changeparam command, or by

modifying the maui.cfg file and sending the scheduler process a SIGHUP. Also, if the
scheduler appears to be "hung" or is not properly responding, the LOGLEVEL can be
incremented by one by sending a SIGUSRL signal to the scheduler process. Repeated
SIGUSRL1 signals will continue to increase the LOGLEVEL. The SIGUSR2 signal can be
used to decrement the LOGLEVEL by one.

If an unexpected problem does occur, save the log file asit is often very helpful inisolating
and correcting the problem.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

14.3 Using the M essage Buffer

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

14.4 Handling Eventswith the Notification Routine

Maui possesses a primitive event management system through the use of the notify
program. The program is called each time an event of interest occurs. Currently, most
events are associated with failures of some sort but use of this facility need not be limited in
thisway. The NOTIFICATIONPROGRAM parameter allows a site to specify the name of

the program to run. This program is most often locally developed and designed to take action
based on the event which has occurred. The location of the notification program may be
specified as arelative or absolute path. If arelative path is specified, Maui will ook for the
notification relative to the $(M AUIHOM EDIR)/tools directory. In all cases, Maui will
verify the existence of the notification program at start up and will disableit if it cannot be
found or is not executable.

The notification program's action may include steps such as reporting the event via email,
adjusting scheduling parameters, rebooting a node, or even recycling the scheduler.

For most events, the notification program is called with commandline argumentsin a
simple <EVENTTY PE>: <MESSAGE> format. The following event types are currently
enabled:

[Event Type |Format IDescription

Maui cannot
successfully
communicate with the
bank due to reasons
such as connection
fallures, bank
corruption, or parsing
fallures
Anactivejobisinan
unexpected state or
has one or more
alocated nodes which
are in unexpected
states

A job hold has been
placed on ajob

A job has exceeded
itswallclock limit

BANKFAILURE <MESSAGE>

JOBCORRUPTION <MESSAGE>

JOBHOLD <MESSAGE>

JOBWCVIOLATION <MESSAGE>

Reservation
RESERVATIONCORRUPTION |<MESSAGE> corruption has been
detected

<RESNAME> <RESTY PE>
<NAME> <PRESENTTIME> |A new reservation has

RESERVATIONCREATED MSTARTTIME> <ENDTIME> |been created

<NODECOUNT>
<RESNAME> <RESTY PE>
<PRESENTTIME> A reservation has
RESERVATIONDESTROYED | oA RTTIME> <ENDTIME> |been destroyed
<NODECOUNT>
Theinterface to the
RMFAILURE <MESSAGE> resource manager has

failed

Perhaps the most valuable use of the notify program stems from the fact that additional
notifications can be easily inserted into Maui to handle site specific issues. To do this, locate
the proper block routine, specify the correct conditional statement, and add a call to the
routine notify(<M ESSAGE>);

See Also:
N/A

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

14.5 Issueswith Client Commands
Client Overview:

Maui clients are implemented as symbolic links to the executable maui_client. When a
maui client command is run, the client executable determines the name under which it isrun
and behaves accordingly. At the time Maui was configured, a home directory was specified.
The Maui client will attempt to open the config file maui.cfg in this home directory on the
node where the client command is executed. This means that the home directory specified at
configure time must be available on all hosts where the maui client commands will be
executed. This also means that a maui.cfg file must be available in this directory. When the
clients open thisfile, they will try to load the MAUISERVER and MAUIPORT parameters
to determine how to contact the Maui server.

NOTE: The home directory value specified at configure time can be overridden by
creating an /etc/maui.cfg file or by setting the' MAUIHOMEDIR' environment variable.

Once the client has determined where the Maui server islocated, it creates a message, adds
an encrypted checksum, and sends the message to the server. Note that the Maui client and
Maui server must use the same secret checksum seed for thisto work. When the Maui server
receives the client request and verifies the checksum, it processes the command and returns a

reply.
Diagnosing Client Problems:

The easiest way to determine where client failures are occuring is to utilize built in maui
logging. Ontheclient side, usethe'-L' flag. For example,

> showg -L9

NOTE: Maui 3.0.6 and earlier specified the desired client side logging level using the '-D'
flag (i.e, showg -D 9)

Thiswill dump out a plethora of information about loading the configfile, connecting to the
maui server, sending arequest, and receiving aresponse. Wading through this information
amost always will reveal the source of the problem. If it does not, the next step isto look at
the maui server sidelogs. The easiest way to do thisisto use the following steps:

> schedctl -s

(stop Maui scheduling so that the only activity is handling maui client requests)
> changeparam LOG.EVEL 7

(set the logging level to 'very verbose')
> tail -f log/maui.log | nore

(tail the maui.log activity)

(In another window)
> showg
The maui.log file should record the client request and any reasons it was rejected.

If these steps do not reveal the source of the problem, the next step may be to check the
mailing list archives, post a question to the mauiusers list, or contact Maui support.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/mailman/mauiusers
mailto:mauiusers@supercluster.org
mailto:support@supercluster.org
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

14.6 Tracking System Failures

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

14.7 Problemswith Individual Jobs

To determine why a particular job will not start, there are several commands which can be
helpful.

checkjob -v

Checkjob will evaluate the ability of ajob to start immediately. Tests include resource
access, node state, job constraints (ie, startdate, taskspernode, QOS, etc). Additionally,
command line flags may be specified to provide further information.

-l <POLICYLEVEL> // evaluate impact of throttling policies on job feasibility
-n<NODENAME> // evaluate resource access on specific node
-r <KRESERVATION_LIST> // evaluate access to specified reservations

checknode
Display detailed status of node

diagnose -]

Display high level summary of job attributes and perform sanity check on job
attributes/state.

diagnose -q

Display various reasons job is considered 'blocked' or 'non-queued'.
showbf -v

Determine general resource availability subject to specified constraints.
See also:

Diagnosing System Behavior/Problems

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/documentation/maui/commands/diagnosejob.html
http://supercluster.org/documentation/maui/commands/diagnosequeue.html
http://supercluster.org/documentation/maui/troubleshooting.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

15.0 Improving User Effectiveness

S L

>

15.1 User Feedback Loops

15.2 User Level Statistics

15.3 Enhancing Wallclock Limit Estimates

15.4 Providing Resource Availability |nformation

15.5 Job Start Time Estimates

15.6 Collecting Performance Information on Individual Jobs

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

15.1 User Feedback Loops

In evaluating a given system, it isinteresting to note that almost invariably, real world
systems outperform simulated systems. Even when all policies, reservations, workload, and
resource distributions are fully captured and emulated. What is it about real world usage that
Is not emulated viaa simulation? The answer is the 'user feedback' loop, the impact of users
making decisions to optimize their level of service based on real time information.

A user feedback loop is created any time information is provided to a user which modifies
his job submission or job management behavior. Asin amarket economy, the cumulative
effect of many users taking steps to improve their individual scheduling performance results
in better job packing, lower queue time, and better system utilization overall. Because this
behavior is beneficial to the system at large, system admins and management should
encourage this behavior and provide the best possible information to them.

There are two primary types of information which help users make improved decisions.
Cluster wide resource availability information and per job resource utilization information.

15.1.1 Improving Job Size/Duration Requests

Maui provides a number of informational commands which help users make improved job
management decisions based on real-time cluster wide resource availability information.
These commands include showbf, showgrid, and showq. Using these commands, a user can
determine what resources are available, and what job configurations statistically receive the
best scheduling performance.

15.1.2 Improving Resource Requirement Specification

A job's resource requirement specification tells the scheduler what type of compute nodes
are required to run the job. These requirements may state that a certain amount of memory is
required per node or that a node have a minimum processor speed. At many sites, users will
determine the resource requirements needed to run an initial job. Then, for the next several
years, they will use the same basic batch command file to run all of their remaining jobs even
though the resource requirements of their subsequent jobs may be very different from their
initial run. Users often do not update their batch command files even though these constraints
may be unnecessarily limiting the resources available to their jobs for two reasons: 1) users
do not know how much their performance will improve if better information were provided.
2) users do not no exactly what resources their jobs are utilizing and are afraid to lower their
job's resource requirements since doing so might cause their job to fail.

To help with determining accurate per job resource utilization information, Maui provides
the FEEDBACKPROGRAM facility. Thistool allows sites to send detailed resource

utilization information back to users viaemail, to storeit in a centralized database for report
preparation, or use it in other ways to help usersrefine their batch jobs.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

15.2 User Leve Statistics

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

15.3 Enhancing Wallclock Limit Estimates

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

15.4 Providing Resource Availability Information

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

15.5 Job Start Time Estimates

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

15.6 Collecting Perfor mance | nformation on Individual Jobs

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

16.0 Simulations

= 16.1 Simulation Overview

- 16.2 Resource Traces

= 16.3 Workload Traces

= 16.4 Simulation Specific Configuration

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

16.1 Simulation Overview
16.1.1 Test Drive

If you want to see what the scheduler is capable of, the ssmulated test driveis probably
your best bet. Thisallowsyou to safely play with arbitrary configurations and issue
otherwise 'dangerous commandswithout fear of losing your job! ;) In order torun a
simulation, you need a simulated machine (defined by aresourcetracefile) and a
simulated set of jobs (defined by a workload tracefile). Rather than discussing the
advantages of this approach in gory detail up front, let'sjust get started and discuss
things along the way.

| ssue the following commands:

> vi maui.cfg
(change'SERVERMODE NORMAL' to'SERVERMODE SIMULATION')

(add 'SIMRESOURCETRACEFILE traces/Resource.Tracel')
(add 'SIMWORKLOADTRACEFILE traces’Workload.Tracel')
(add 'SIMSTOPITERATION 1Y)

the steps above specified that the scheduler should do the following:
#1) Runin'Simulation' moderather than in 'Normal' or live mode.
#2) Obtain information about the smulated compute resourcesin the
file'tracessResource.Tracel'.

3) Obtain information about thejobsto berun in simulation in the
file'tracessWorkload.Tracel'

#4) Load thejob and nodeinfo, start whatever jobs can be started on
thenodes, and then wait for user commands. Do not advance

simulated time until instructed to do so.

> maui &

give the scheduler a few secondsto warm up and then look at the
#list of jobscurrently in the queue. (To obtain afull description

of each of the commands used below, please see the command's man
page.)

> show(

Thiscommand breaksthejobsin the queueinto three groups, 'Active
#]jobswhich are currently running, 'l dle' jobswhich can run as soon
#astherequired resources become available, and 'Non Queued' jobs
#which arecurrently ineligible to be run because they violate some

configured policy.

http://supercluster.org/documentation/maui/trace.html#resourcetrace
http://supercluster.org/documentation/maui/trace.html#workloadtrace

By default, the simulator initially submits 100 jobs from the
#workload tracefile, "Workload.Tracel'. Looking at the'showq'
output, it can be seen that the ssimulator was ableto start 11 of
#thesejobson the 195 nodes described in the resource tracefile,
#'Resource.Tracel'.

L ook at therunningjobs more closely.
> show(-r

Theoutput issorted by job completion time. We can seethat the
#first job will completein 5 minutes,

Look at theinitial statisticsto see how well the scheduler is
doing.

> showstats

#Look at theline'Current Active/Total Procs to see current system
utilization.

Deter mine the amount of time associated with each ssmulated time
step.

> showconfig | grep RMPOLLINTERVAL

Thisvalueis specified in seconds. Thus each time we advancethe

simulator forward one step, we advance the ssmulation clock forward
thismany seconds. 'showconfig' can be used to seethe current
#value of all configurable parameters. Advancethe simulator forward
one step.

> schedctl -S

'schedctl' allows you to step forward any number of stepsor to step
#forward to a particular iteration number. You can determine what
#iteration you are currently on using the 'showstats command's'-Vv'
#flag.

> showstats -v

Theline'statisticsfor iteration <X>' specifiestheiteration you
#arecurrently on. You should now beon iteration 2. Thismeans

simulation time has now advanced forward <RMPOLLINTERVAL > seconds.
use 'showq -r' to verify this change.

> showq -r

Note that thefirst job will now completein 4 minutesrather than
5 minutes because we have just advanced 'now' by one minute. Itis
#important to note that when the smulated jobs wer e created both the

#]ob'swallclock limit and itsactual run timewererecorded. The
#wallclock timetimeis specified by the user indicating his best

estimate for an upper bound on how long thejob will run. Therun
#timeishow long thejob actually ran before completing and
#releasing itsallocated resources. For example, ajob with a
#wallclock limit of 1 hour will be given the need resour cesfor up to
an hour but may completein only 20 minutes.

Theoutput of 'showq -r' showswhen thejob will completeif it runs
up toits specified wallclock limit. In the ssimulation, jobs actually

complete when their recorded 'runtime’ isreached. Let'slook at
#thisjob more closaly.

> checkjob fr8n01.804.0

We can weethat thisjob hasawallclock limit of 5 minutesand
#requires5nodes. We can also see exactly which nodes have been
allocated to thisjob. Thereisalot of additional infor mation

which the 'checkjob' man page describesin more detail.

Let'sadvance the simulation another step.

> schedct| -S

L ook at the queue again to seeif anything has happened.

> show(-r

#No surprises. Everything isoneminute closer to completion.
> schedctl -S

> show(-r

Job 'fr8n01.804.0" is still 2 minutes away from completing as

expected but notice that both jobs'fr8n01.191.0' and
#'fr8n01.189.0' have completed early. Although they had almost 24
hoursremaining of wallclock limit, they terminated. In reality,
#they probably failed on the real world system wherethetracefile
#was being created. Their completion freed up 40 processor s which
the scheduler was ableto immediately use by starting two more
#]obs.

Let'slook again at the system statistics.
> showstats

Notethat afew morefieldsarefilled in now that some jobs have
completed providing information on which to gener ate statistics.

Advance the scheduler 2 more steps.

> schedctl -S 2|

#The'2l' argument indicatesthat the scheduler should advance'2'
stepsand that it should (1)gnore user input until it getsthere.

Thispreventsthe possibility of obtaining 'showq' output from
#iteration 5rather than iteration 6.

> showq -r

1t lookslikethe 5 processor job completed as expected while

another 20 processor job completed early. The scheduler was able
#to start another 20 processor job and five serial jobsto again

utilize all idleresources. Don't worry, thisisnot a'stacked'
#trace, designed to make the Maui scheduler appear omniscient.
#We havejust gotten lucky so far and have the advantage of a deep
default queue of idlejobs. Thingswill get wor se!

#Let'slook at theidleworkload more closely.
> show(-i

Thisoutput islisted in priority order. We can seethat we have
#alot of jobsfrom asmall group of users, many larger jobsand a
few remaining easily backfillable jobs.

let'sstep awaysthrough time. To speed up thesimulation, let's
decrease the default LOGLEVEL to avoid unnecessary logging.

> changeparam LOGLEVEL 0

#'changeparam' can be used to immediately change the value of any
parameter. The changeisonly madeto the currently running Maui
and isnot propagated to the config file. Changes can also be made
by modifying the config file and restarting the scheduler or
#issuing 'schedctl -R" which for cesthe scheduler to basically
#recycleitself.

Let'sstop at an even number, iteration 60.

> schedctl -s 60l

#The'-s flagindicatesthat the scheduler should 'stop at' the
gpecified iteration.

> showstats -v

Thiscommand may hang a while asthe scheduler smulatesup to
#iteration 60.

The output of thiscommand shows usthe 21 jobs have now completed.

Currently, only 191 of the 195 nodes are busy. Letsfind out why
#the4 nodesareidle.

#First look at theidlejobs.
> show(-i

The output shows usthat there are a number of single processor
#jobswhich require between 10 hoursand over aday of time. Lets
look at one of these jobs more closely.

> checkjob fr 1n04.2008.0

#I1f ajob isnot running, checkjob will try to deter mine why it
#isn't. At the bottom of the command output you will seealine
#labeled 'Reection Reasons. It statesthat of the 195 nodes

#in the system, thejob could not run on 191 of them because they

werein thewrong state (i.e., busy running other jobs) and 4 nodes
could not be used because the configured memory on the node did
not meet the jobsrequirements. Looking at the 'checkjob’ output
further, we seethat thisjob requested nodeswith '>=512' MB of
#RAM installed.

Let'sverify that theidle nodes do not have enough memory
configured.

> diagnose-n | grep -eldle-e Name

The grep getsthe command header and the ldlenodeslisted. All
#idle nodes have only 256 M B of memory installed and cannot be
allocated to thisjob. The'diagnose’ command can be used with

variousflagsto obtain detailed information about jobs, nodes,

reservations, policies, partitions, etc. Thecommand also

performsa number of sanity checks on the data provided and will
present war ning messages if discrepancies ar e detected.

Let'sseeif the other single processor jobs cannot run for the
same r eason.

>diagnose-j |grep ldle|grep™ 1"

The grep above selects single processor Idlejobs. The 14th
#indicates that most single processor jobs currently in the queue
#require'>=256' MB of RAM, but afew donot. Let'sexaminejob
#'fr8n01.1154.0'

> checkjob fr8n01.1154.0

Thergection reasonsfor thisjob indicate that the four idle
processor s cannot be used dueto 'ReserveTime'. Thisindicates

#that the processorsareidle but that they have a reservation
#in place that will start beforethe job being checked could
complete. Let'slook at one of the nodes.

> checknode fr10n09

The output of thiscommand shows that whilethe nodeisidle,
#it hasareservation in place that will start in alittle over

#23 hours. (All idlejobswhich did not require'>=512' MB
#required over aday to complete.) It lookslikethereis

nothing that can start right now and we will haveto live with
four idle nodes,

Let'slook at the reservation which is blocking the start of
our single processor jobs.

> showres

This command shows all reservations currently on the system.

Noticethat all running jobs have areservation in place. Also,
#thereisonereservation for an idlejob (Indicated by the'l'
#inthe'S, or 'State' column) Thisisthereservation that is

blocking our serial jobs. Thisreservation was actually created
by the backfill scheduler for the highest priority idlejob as

away to prevent starvation while lower priority jobswere being
backfilled. (Thebackfill documentation describesthe

mechanics of the backfill scheduling morefully.)

Let'sseewhich nodesare part of theidlejob reservation.
> showres -n fr8n01.963.0

All of our four idle nodesareincluded in thisreservation.
It appearsthat everything isfunctioning properly.

Let'sstep further forward in time.
> schedctl -s 1001
> showstats -v

#We now know that the scheduler is scheduling efficiently. So
#far, system utilization asreported by 'showstats-v' looks
#very good. Oneof the next questionsis'isit scheduling
#fairly? Thisisavery subjective question. Let'slook at
#theuser and group statsto seeif thereare any glaring

problems.

> showstats-u

Let'spretend we need to now take down the entire system for
maintenance on Thursday from 2to 10 PM. To do thiswe would
create areservation.

> setres-S
Let's shutdown the scheduler and call it a day.
> schedctl -k

Using sampletraces
Collecting traces
using Maui
Under standing and manipulating wor kload traces
Under standing and manipulating resour ce traces
Running ssimulation 'sweeps
The'stats.sim' file
(Isnot erased at the start of each simulation run. It must be
manually cleared or moved if statisticsare not to be
concatenated)
Using the profiler tool
(profiler man page)

S 16.1 Simulation Overview

S 16.2 Resource Traces

J 16.3 Workload Traces

S 16.4 Simulation Specific Configuration

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

16.2 Resource Traces

Resource traces fully describe all scheduling relevant aspects of a batch system's compute
resources. In most cases, each resource trace describes a single compute node providing
information about configured resources, node location, supported classes and queues, etc. Each
resource trace consists of asingle line composed of 21 whitespace delimited fields. Each fieldis
described in detail in the table below.

Field Name ::r:‘zlgx Data For mat Default Value Details
Resource one of currently the only legal valueis
Type 1 COMPUTENODE COMPUTENGDE COMPUTENODE
when AVAILABLE,
DEFINED, or DRAINED is
one of specified, node will start in the
AVAILABLE, state Idle, Down, or Drained
EventType 12 \nepiNED, or |INONE] respectively.

DRAINED NOTE: node state can be
modified using the nodect!
command.

EventTime [3 |<EPOCHTIME> |1 time event occurred. (currently
ignored)
for COMPUTENODE
Resource ID (4 <STRING> N/A resources, this should be the
name of the node.
Resource name of resource manager
Manager |5 |<STRING> [NONE] . > manag
resource is associated with
Name
Configured amount of virtual memory (in
Swap 6 <INTEGER> 1 MB) configured on node
. amount of real memory (in
ﬁc;r:]lc?rured 7 <INTEGER> 1 MB) configured on node (i.e.
y RAM)
Configured amount of local disk (in MB)
Disk 8 <INTEGER> 1 on node available to batch jobs
Configured 9 <INTEGER> 1 num_ber of processors
Processors configured on node
Resource number of frame containin
Frame 10 |<INTEGER> 1 g
L . node (SP2 only)
ocation

http://supercluster.org/documentation/maui/commands/nodectl.html

Resource :
Slot 11 |<INTEGER> 1 B'“rr:‘o%eé E’;Ff,g ztrflra)me siot used
Location y y
Resource
Sot Use 12 |<INTEGER> 1 Number of frame slots used by
C node (SP2 only)

ount
Node
Operating |13 |<STRING> [NONE] node operating system
System
Node .

: 14 |<STRING> [NONE] node architecture
Architecture
Configured square bracket delimited list of
Node 15 |<STRING> [NONE] node features/attributes (ie,
Features '[amd][s1200]")
: square bracket delimited list of
Configured . .
16 |<STRING> [batch:1] CLASSNAME:CLASSCOUNT

Run Classes pairs
Configured square bracket delimited list of
Network 17 |<STRING> [NONE] configured network adapters
Adapters (ie, Tatm][fddi][ethernet]')
Relative
Resource (18 |<DOUBLE> 1.0 relative machine speed value
Speed
RESERVED
FIELD 1 19 |<STRING> [NONE] [NONE]
RESERVED
FIELD 2 20 |[<STRING> [NONE] [NONE]
RESERVED
FIELD 3 21 |[<STRING> [NONE] [NONE]

NOTE: if no applicable value is specified, the exact string '[NONE]" should be entered.

Sample Resource Trace:

'COVPUTENCDE AVAI LABLE O cl uster008 PBS1 423132 256 7140 2 -1

-1 1 LINUX62 AthlonK7 [s950][conput €]
[ethernet][atn] 1.67

[NONE]

[NONE]

[bat ch: 2]
[NONE]

Copyright © 2000-2002 Super cluster Research and Development Group All Rights Reﬁervedl_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

16.3 Workload Traces

Workload traces fully describe all scheduling relevant aspects of batch jobs including resources requested and utilized, time of all
major scheduling event (i.e., submission time, start time, etc), the job credentials used, and the job execution environment. Each job
trace is composed of asingle line consisting of 44 whitespace delimited fields as shown in the table below.

= 16.3.1 Workload Trace Format

= 16.3.2 Creating New Workload Traces

16.3.1 Workload Trace Format

Field Name ::r;jgx Data Format Default Value |Details
[NO . .
JoblD 1 <STRING> DEFAULT] Name of job, must be unique
Nodes Number of nodes requested (0 = no node request
Requested 2 <INTEGER> 0 count specified)
Tasks
Requested 3 <INTEGER> 1 Number of tasks requested
[NO e
User Name (4 <STRING> DEFAULT] Name of user submitting job
[NO . e
Group Name |5 <STRING> DEFAULT] Primary group of user submitting job
\(Yi:fl ock 6 <INTEGER> 1 Maximum allowed job duration in seconds
Job
Completion |7 <STRING> Completed One of Completed, Removed, NotRun
State
Required Class/queue required by job specified as square
o 8 <STRING> [DEFAULT:1] [bracket list of <QUEUE>[:<QUEUE INSTANCE>]
Class .) i
requirements. (ie, [batch:1])
.Is.liJ rtr)]r:wﬂ on g <INTEGER> 0 Epoch time when job was submitted
Di spatch 10 |<INTEGER> 0 Epoch_tl me when scheduler requested job begin
Time executing
. Epoch time when job began executing (NOTE:
Start Time |11 |<INTEGER> 0 usualy identical to ‘Dispetch Time)
_(I;ionr?epletlon 12 [<INTEGER> 0 Epoch time when job completed execution
Required
Network 13 |<STRING> [NONE] Name of required network adapter if specified
Adapter
Required
Node 14 |<STRING> [NONE] Required node architecture if specified
Architecture
Required
Node . . . -
Operating 15 |<STRING> [NONE] Required node operating system if specified
System
Required
Node 16 loneof >, >=, = <= < o Companson for determining compliance with
Memory required node memory
Comparison

Required

Amount of required configured RAM (in MB) on

Node 17 |<INTEGER> 0

Memory each node

Eiﬁg E.eld « |18 oneof > >= = <= < o Comparison for determining compliance with

Comparison A - required node disk

Required 19 |<INTEGER> 0 Amount of required configured local disk (in MB) on

Node Disk each node

Eg%l:; red 20 |<STRING> [NONE] square bracket enclosed list of node features required

Attributes by job if specified (ie '[fast][ethernet]")

System

Queue 21 [<INTEGER> 0 Epoch time when job met all fairness policies

Time
Number of tasks actually allocated to job (NOTE: in

kS 4 22 |[<INTEGER> ;ngJKESSTED> most cases, this field is identical to field #3, Tasks
Requested)

-Frfijs"ﬁ'gr 23 |<INTEGER> 1 Number of Tasks Per Node required by job or '-1' if

Node no requirement specified
QOS requested/delivered using the format

QOS 24 |<STRING>[:<STRING>] [NONE] <QOS REQUESTED>[:<QOS DELIVERED>] (ie,
‘hipriority:bottomfeeder’)

. square bracket delimited list of job attributes (i.e.,

JobFlags 25 |<STRING>[:<STRING>]... [NONE] [BACKFIL L][BENCHMARK][PREEMPTEE])

ﬁ‘gﬁ?gm 26 |[<STRING> [NONE] Name of account associated with job if specified

Executable (27 |[<STRING> [NONE] Name of job executable if specified
Resource manager specific list of job attributes if

Comment 28 |<STRING> [NONE] specified. See the Resource Manager Extension
Overview for more info.

Bypass i Number of time job was bypassed by lower priority

Count 29 |<INTEGER> 1 obs via backfill or -1' if not specified

%(t)itl:izéonds 30 |<DOUBLE> 0 Number of processor seconds actually utilized by job

[Ii’larar'[rl]'gon 31 |<STRING> [DEFAULT] [Name of partition in which job ran

Dedicated

Processors (32 [<INTEGER> 1 Number of processors required per task

per Task

Dedicated

Memory per |33 <INTEGER> 0 Amount of RAM (in MB) required per task

Task

Dedicated

Disk per 34 [<INTEGER> 0 Amount of local disk (in MB) required per task

Task

Dedicated

Swap per 35 [<INTEGER> 0 Amount of virtual memory (in MB) required per task

Task

Start Date |36 |<INTEGER> 0 Epoch time indicating earliest time job can start
Epoch time indicating latest time by which job must

EndDate |37 |<INTEGER> 0 complete

Allocated colon delimited list of hosts allocated to job (i.e.,

Host List 38 |<STRING>[:<STRING>]... [NONE] node001:node004) NOTE: In Maui 3.0, thisfield
only lists the job's master host.

Resource

Manager 39 |<STRING> [NONE] Name of resource manager if specified

Name

List of hosts required by job. (if taskcount > #hosts,
scheduler must use these nodes in addition to others,
if taskcount < #host, scheduler must select needed
hosts from thislist)

Required

Host Mak |40 [<STRING>[<STRING>]... [NONE]

Reservation (41 |[<STRING> [NONE] Name of reservation required by job if specified

Set constraints required by node in the form
<SetConstraint>:<SetType>[:<SetList>] where
SetConstraint is one of ONEOF, FIRSTOF, or

get@cription 42 |<STRING>:<STRING>[:<STRING>] [NONE] ANY OF, SetTypeisone of PROCSPEED,
FEATURE, or NETWORK, and SetList isan
optiona colon delimited list of alowed set attributes,
(i.e. 'ONEOF:PROCSPEED:350:450:500")

Application Name of application simulator module and associated

Simulator |43 |<STRING>[:<STRING>] [NONE] configuration data (i.e.,

Data 'HSM:IN=infile.txt: 140000;0UT=outfile.txt:500000")

EIIIEE?_%RYED 44 <STRING> [NONE] RESERVED FOR FUTURE USE

NOTE: if no applicable valueis specified, the exact string TNONE]" should be entered.

Sample Workload Trace:

'SP02. 2343.0 20 20 570 519 86400 Rermoved [batch:1] 887343658 889585185
889585185 889585411 ethernet R6000 AIX43 >= 256 >= 0 [NONE] 889584538 20 0 O
2 0 test.cnd 1001 6 678.08 0 1 0O O O O O [NONE] O [NONE| [NONE] [NONE]
[NONE] [NONE]'

16.3.2 Creating New Workload Traces

Because workload traces and workload statistics utilize the same format, there are trace fields which provide information that is
valuable to a statstical analysis of historical system performance but not necessary for the execution of a simulation.

Particularly, in the area of time based fields, there exists an opportunity to overspecify. Which time based fields are important
depend on the setting the the JOBSUBMISSIONPOLICY parameter.

|[JOBSUBMISSIONPOLICY Value Critical Time Based Fidds
WallClock Limit
Submission Time
NORMAL StartTime
Completion Time
CONSTANTJOBDEPTH \étv:lrl%%%k Limit
CONSTANTPSDEPTH _ _
Completion Time

NOTE 1: Dispatch Time should aways be identical to Start Time

NOTE 2: Indll cases, the difference of '‘Completion Time - Start Time' is used to determine actual job run time.

NOTE 3: System Queue Time and Proc-Seconds Utilized are only used for statistics gathering purposes and will not alter the
behavior of the simulation.

NOTE 4: Inall cases, relative time values are important, i.e., Start Time must be greater than or equal to Submission Time and less
than Completion Time.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Rmved.*:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

16.4 Simulation Specific Configuration

Under Construction

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

17.0 Miscellaneous Features
RESDEPTH

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

17.1 Feedback Script

The 'Feedback Script' facility allows a site to provide job performance information to
users at job completion time. When ajob completes, the program pointed to by the
FEEDBACKPROGRAM parameter is called with a number of command line arguments.
The site isresponsible for creating a program capable of processing and acting upon the
contents of the command line. The command line arguments passed are afollows

- job name

- user name

- user emall

- final job state

- QOS requested

- epoch time job was submitted

- epoch timejob started

- epoch time job completed

- job XFactor

- jobwallclock limit

- processors requested

- memory requested

- average per task cpu load

- maximum per task cpu load

- average per task memory usage
- maximum per task memory usage

For many sites, the feedback script is useful as a means of letting user's know that accuracy
of their wallclock limit estimate, as well as the cpu efficiency, and memory usage pattern of
their job. The feedback script may be used as a mechanism to do any of the following:

- email usersregarding statistics of all completed jobs

- email usersonly when certain criteria are met (ie. "Dear John, you submitted job X
requesting 128MB of memory per task. It actualy utilized 253 MB of memory per task
potentially wreaking havoc with the entire system! Please improve your resource usage
estimates in future jobs!™)

- update system databases

- take system actions based on job compl etion statistics

NOTE: some of these fields may be set to zero if the underlying OS/Resource Manager
does not support the necessary data collection.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

Appendix A Case Studies

A.1l Casel: Mixed Parallel/Serial Heter ogeneous Cluster

A.2 Case2. Partitioned Timesharing Cluster

A.3 Case 3. Development O2K

A.4 Case4. Standard Production SP2

A5 Caseb5: Multi-Queue Cluster with QOS and Charge Rates

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reﬁerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

A.1 Case Study: Mixed Parallel/Serial
Homogeneous Cluster

Overview:

A multi-user site wishesto control the distribution of compute cycles while minimizing job
turnaround time and maximizing overall system utilization.

Resour ces:.

Compute Nodes: 64 2 way SMP Linux based nodes, each with 512 MB of RAM and
16 GB local scratch space
Resource Manager: OpenPBS 2.3

Network: 100 MB switched ethernet
Workload:
Job Size: range in size from 1 to 32 processors with approximately the following

guartile job frequency distribution
1-2,3-8,9-24,and 25 - 32 nodes.

Job Length: jobs range in length from 1 to 24 hours

Job Owners: job are submitted from 6 major groups consisting of atotal of about 50
users

NOTES: During prime time hours, the majority of jobs submitted are smaller,

short running devel opment jobs where users are testing out new code and new data sets. The
owners of these jobs are often unable to proceed with their work until ajob they have
submitted completes. Many of these jobs are interactive in nature. Throughout the day,
large, longer running production workload is also submitted but these jobs do not have
comparable turnaround time pressure.

Constraints: (Must do)

The groups 'Meteorology' and 'Statistics should receive approximately 45 and 35% of the
total delivered cycles respectively. Nodes cannot be shared amongst tasks from different
jobs.

Goals: (Should do)

The system should attempt to minimize turnaround time during primetime hours (Mon -
Fri, 8:00 AM to 5:00 PM) and maximize system utilization during all other times. System

mai ntenance should be efficiently scheduled around

Analysis:

The network topology is flat and and nodes are homogeneous. This makeslife
significantly ssmpler. The focus for this site is controlling distribution of compute cycles
without negatively impacting overall system turnaround and utilization. Currently, the best
mechanism for doing thisis Fairshare. This feature can be used to adjust the priority of jobs
to favor/disfavor jobs based on fairshare targets and historical usage. In essence, thisfeature
improves the turnaround time of the jobs not meeting their fairshare target at the expense of
those that are. Depending on the criticality of the delivered cycle distribution constraints, this
site might also wish to consider an allocations bank such as PNNL's QBank which enables

more stringent control over the amount of resources which can be delivered to various users.

To manage the primetime job turnaround constraints, a standing reservation would

probably be the best approach. A standing reservation can be used to set aside a subset of the
nodes for quick turnaround jobs. This reservation can be configured with atime based access
point to allow only jobs which will complete within some time X to utilize these resources.
The reservation has advantages over atypica queue based solution in this case in that these
quick turnaround jobs can be run anywhere resources are available, either inside, or outside
the reservation, or even crossing reservation boundaries. The site does not have any hard
constraints about what is acceptable turnaround time so the best approach would probably be
to analyze the site's workload under a number of configurations using the simulator and

observe the corresponding scheduling behavior.

For general optimization, there are a number of scheduling aspects to consider, scheduling
algorithm, reservation policies, node allocation policies, and job prioritization. It isamost
always agood ideato utilize the scheduler's backfill capability since this has atendency to
Increase average system utilization and decrease average turnaround time in a surprisingly
fair manner. It doestend to favor somewhat small and short jobs over others which is exactly
what this site desires. Reservation policies are often best |eft alone unless rare starvation
issues arise or quality of service policies are desired. Node allocation policies are effectively
meaningless since the system is homogeneous. The final scheduling aspect, job
prioritization, can play asignificant role in meeting site goals. To maximize overall system
utilization, maintaining a significant Resource priority factor will favor large resource
(processor) jobs, pushing them to the front of the queue. Large jobs, though often only a
small portion of asite'sjob count, regularly account for the majority of asite's delivered
compute cycles. To minimize job turnaround, the XFactor priority factor will favor short
running jobs. Finally, in order for fairshare to be effective, asignificant Fairshare priority
factor must be included.

Configuration:

For this scenario, a resource manager configuration consisting of a single, global
queue/class with no constraints would allow Maui the maximum flexibility and opportunities

http://www.emsl.pnl.gov:2080/docs/mscf/qbank-2.8

for optimization.

The following Maui configuration would be agood initial stab.

reserve 16 processors during prinetinme for jobs requiring
| ess than 2 hours to conplete

SRNAME[0] f ast

SRTASKCOUNT] 0] 16

SRDAYS] 0] MON TUE WED THU FRI
SRSTARTTI Mg[0] 8: 00: 00

SRENDTI VE[0] 17:00: 00

SRMAXTI ME[0] 2: 00: 00

prioritize jobs for Fairshare, XFactor, and Resources

RESOURCEVEI GHT 20
XFACTORWEI GHT 100
FAl RSHAREWEI GHT 100

di sabl e SMP node sharing
NODEACCESSPOLI CY DEDI CATED

G oup: Meterol ogy FSTARGET=45
G oup: Statistics FSTARGET=35

Monitoring:

The command 'diagnose -f' will allow you to monitor the effectiveness of the fairshare
component of your job prioritization. Adjusting the Fairshare priority factor up/or down will
make fairshare more/less effective. Note that a tradeoff must occur between fairshare and
other goals managed viajob prioritization. 'diagnose -p' will help you analyze the priority
distributions of the currently idle jobs. The 'showgrid AVGXFACTOR' command will
provide a good indication of average job turnaround while the 'profiler' command will give an
excellent analysis of longer term historical performance statistics.

Conclusions:

Any priority configuration will need to be tuned over time because the effect of priority
weights is highly dependent upon the site specific workload. Additionally, the priority
weights themselves are part of afeedback loop which adjust the site workload. However,

most sites quickly stabilize and significant priority tuning is unnecessary after afew days.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

A.2 Case Study: Semi-Partitioned
Heterogeneous Cluster Dedicated to Parallel
and Time-sharing Serial Jobs

Overview:

A site possessing a mixture of uniprocessor and dual processor nodes desires to dedicate a
subset of nodes to time-sharing serial jobs, a subset to parallel batch jobs, and provide a set of
nodes to be used as 'overflow'.

Resour ces:

Compute Nodes: Group A: 16 uniprocessor Linux based nodes, each with 128 MB
of RAM and 1 GB local scratch space
Group B: 8 2way SMP Linux based nodes, each with 256 MB
of RAM and 4 GB local scratch space
Group C: 8 uniprocessor Linux based nodes, each with 192
MB of RAM and 2 GB local scratch space

Resource Manager: OpenPBS 2.3

Network: 100 MB switched ethernet
Workload:
Job Size: range in size from 1 to 32 processors with approximately the following

guartile job frequency distribution
1-2,3-8,9-24, and 25 - 32 nodes.

Job Length: jobs range in length from 1 to 24 hours

Job Owners: job are submitted from 6 major groups consisting of atotal of about 50
users

NOTES: During prime time hours, the majority of jobs submitted are smaller,

short running development jobs where users are testing out new code and new data sets. The
owners of these jobs are often unable to proceed with their work until ajob they have
submitted completes. Many of these jobs are interactive in nature. Throughout the day,
large, longer running production workload is also submitted but these jobs do not have
comparable turnaround time pressure.

Constraints: (Must do)

Nodesin Group A must run only parallel jobs. Nodesin Group B must only run serial
jobs, with up to 4 serial jobs per node. Nodesin Group C must not be used unless a job
cannot locate resources el sewhere.

Goals: (Should do)
The scheduler should attempt to intelligently load balance the timesharing nodes.

Analysis:

Asin Case Study 1, The network topology is flat and and nodes are homogeneous within
each group. Theonly tricky part of this configuration isthe 'overflow' group. The easiest
configuration isto create two PBS queues, serial and parallel, with appropriate min and max
node counts as desired. By default, Maui interprets the PBS 'exclusive hostlist' queue
attribute as constraining jobs in the queue to run only on the nodes contained in the hostlist.
We can take advantage of this behavior to assign nodesin Group A and Group C to the queue
‘paralel’ while the nodesin Group B and Group C are assigned to the queue 'serid’ (The
same can be done with classesif using Loadleveler) Maui will incorporate this queue
information when making scheduling decisions.

The next step isto make the scheduler use the 'overflow' nodes of group C only as alast
resort. Thiscan be accomplished using a negative affinity standing reservation. This
configuration will tell the scheduler that these nodes can be used, but should only be used if it
cannot find compute resources el sewhere.

Thefinal step, load balancing, is accomplished in two parts. First, the nodesin group B
must be configured to allow up to 4 serial jobsto run at atime. Thisis best accomplished
using the PBS 'virtual nodes feature. To load balance, smply select the CPULOAD

allocation agorithm in Maui. Thisalgorithm will instruct Maui to schedule the job based on
which node has the most available, unused idle CPU time.

Configuration:
This site requires both resource manager and scheduler configuration.

The following Maui configuration would be needed.

reserve 'overflow processors

SRNAME[0] overfl ow

SRHOSTLI ST[0] cnO[1- 8] # host nane regul ar
expr essi on

SRCLASSLI ST[0] parallel- batch- # use mnus signto
I ndi cate negative affinity

ALLOCATI ONPOLI CY CPULOAD
all ow SMP node sharing
NODEACCESSPOLI CY SHARED

set queue serial resources_max. nodeccount =1
set queue serial acl_hosts=an0l1+an02+...anl16+cn01+cn02+...cn08
set queue serial acl_host _enabl e=true

set queue parallel resources_m n.nodecount =2
set queue parall el

acl _hosts=bn01+bn02+. .. bn08+cn01+cn02+...cn08
set queue parallel acl_host_enabl e=true

bn01 np=4
bn01 np=4

Monitoring:

Conclusions:

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

A.3 Case Study: Development O2K

Overview:
A 64 proc O2K system needs to be scheduled with a significant 'background' load.
Resour ces:

Compute Nodes: 64 processor, 32 GB O2K system
Resource Manager: OpenPBS 2.3

Network: Internal SGI network
Workload:
Job Size: range in size from 1 to 32 processors.
Job Length: jobs range in length from 15 minutes to 48 hours.
Job Owners: various
NOTES: Thisis alogin/development machine meaning at any given time, there

may be a significant load originating with jobs/processes outside of the resource manager's
view or control. The major scheduling relevant impact of thisisin the area of cpu load and
real memory consumption.

Constraints: (Must do)

The scheduler must run the machine at maximum capacity without overcommitting either
memory or processors. A significant and variable background load exists from jobs
submitted outside of the resource manager's view or control. The scheduler must track and
account for this load and allow space for some variability and growth of this load over time.
The scheduler should aso 'kill' any job which violates its requested resource all ocation and
notify the associated user of this violation.

Goals: (Should do)

The scheduler should maximize the throughput associated with the queued jobs while
avoiding starvation as a secondary concern.

Analysis:

The background load causes many problems in any mixed batch/interactive environment.
One problem which will occur results from the fact that a situation may arise in which the
highest priority batch job cannot run. Maui can make areservation for this highest priority
job but because their are no constraints on the background load, Maui cannot determine when
this background load will drop enough to allow thisjob to run. By default, it optimistically
attempts a reservation for the next scheduling iteration, perhaps 1 minute out. The problemis

that this reservation now exists one minute out and when Maui attempts to backfill, it can
only consider jobs which request |ess than one minute or which can fit 'beside’ this high
priority job. The next iteration, Maui still cannot run the job because the background load
has not dropped and again creates a new reservation for one minute out.

The background load has basically turned batch scheduling into an exercise in ‘resource
scavenging'. If the priority job reservation were not there, other smaller queued jobs might be
able to run. Thusto maximize the 'scavenging' effect, the scheduler should be configured to
allow this high priority job 'first dibs on all available resources but prevent it from reserving
these resources if it cannot run immediately.

Configuration:
The configuration needs to accomplish several main objectives including:

- track the background load to prevent oversubscription

- favor small, short jobs to maximize job turnaround

- prevent blocked high priority jobs from creating reservations

- interface to an alocation manager to charge for all resource usage based on utilized
CPU time

- cancel jobs which exceed specified resource limits

- notify users of job cancellation due to resource utilization limit violations

The following Maui config file should work.

allow jobs to share node
NODEACCESSPOLI CY SHARED

track background | oad
NODELQADPQOLI CY ADJUSTPROCS
NODEUNTRACKEDLOADFACTOR 1.2

favor short jobs, disfavor |arge jobs
QUEUETI MEVEI GAT O

RESOURCEVEI GHT -10

PROCWVEI GHT 128

VEMAEI GHT 1

XFACTOR 1000

disable priority reservations for the default QOS
QOSFLAGS] 0] NORESERVATI ON

debit by CPU

BANKTYPE QBANK

BANKSERVER devel opl

BANKPORT 2334

BANKCHARGEMODE DEBI TSUCCESSFULLCPU

kill resource hogs
RESOQURCEUTI LI ZATI ONPOLI CY ALWAYS
RESOURCEUTI LI ZATI ONACTI ON CANCEL

notify user of job events

NOTI FYSCRI PT tool s/ notify. pl

Monitoring:

The most difficult aspects of this environment are properly ‘reserving' space for the
untracked 'background' load. Since thisload is outside the viewing/control of the
schedul er/resource manager, there are no constraints on what it can do. It could instant grow
and overwhelm the machine, or just as easily disappear. The parameter
'NODEUNTRACKEDLOADFACTOR' provides 'slack’ for this background load to grow and
shrink. However, since there is now control over the load, the effectiveness of this parameter
will depend on the statistical behavior of thisload. The greater the value, the more slack
provided, the less likely the system isto be overcommitted; however, alarger value also
means more resources are in this 'reserve’ which are unavailable for scheduling. The right
solution isto migrate the users over to the batch system or provide them with a constrained
resource 'box' to play in, either through a processor partition, another system, or viaalogical
software system. The value in the 'box' isthat it prevents this unpredictable background load
from wreaking havoc with an otherwise sane dedicated resource reservation system. Maui
can reserve resource for jobs according to al info currently available. However the
unpredictable nature of the background load may mean those resources are not available
when they should be resulting in cancelled reservations and the inability to enforce site
policies and priorities.

The second aspect of this environment which must be monitored is the trade-off between
high job throughput and job starvation. The 'locally greedy' approach of favoring the
smallest, shortest jobs will have a negative effect on larger and longer jobs. The large, long
jobs which have been queued for some time can be pushed to the front of the queue by
increasing the QUEUETIMEWEIGHT factor until a satisfactory balance is achieved.

Conclusions:

Mixed batch/non-batch systems are very, very nasty. :)

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

A.4 Case Study: Standard Production SP
(Under Construction)

Overview:

An 8 node, 32 processor heterogeneous SP2 system isto be scheduled in a shared node
manner.

Resour ces:.

Compute Nodes: 8 node, 32 processor, 24 GB SP2 system
Resource Manager: Loadleveler

Network: IBM High Performance Switch (essentially All-to-All connected)
Workload:

Job Size: range in size from 1 to 16 processors.

Job Length: jobs range in length from 15 minutes to 48 hours.

Job Owners: various

Constraints: (Must do)
Goals: (Should do)
Analysis:
Configuration:
Monitoring:

Conclusions;

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&erved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

A.5 Case Study: Multi-Queue Cluster with QOS
and Charge Rates

Overview:

A 160 node, uniprocessor Linux cluster isto be used to support various organizations within
an enterprise. The ability to receive improved job turnaround time in exchange for a higher
chargerateisrequired. A portion of the system must be reserved for small development jobs at
all times.

Resour ces:

Compute Nodes: 128 800 MHz uniprocessor nodes w/512 MB each, running Linux 2.4
32 1.2 GHz uniprocessor nodes w/2 GB each, running Linux 2.4

Resource Manager: OpenPBS 2.3

Network: 100 MB ethernet
Workload:
Job Size: rangein size from 1 to 80 processors.
Job Length: jobs range in length from 15 minutes to 24 hours.
Job Owners: various

Constraints: (Must do)

The management desires the following queue structure:

QueueNane Nodes MaxWal | Ti me Priority Char geRat e
Test <=16 00: 30: 00 100 1x
Seri al 1 2:00: 00 10 1x
Seri al -Long 1 24:00: 00 10 2X
Shor t 2-16 4:00: 00 10 1x
Short-Long 2-16 24:00: 00 10 2X
Med 17- 64 8: 00: 00 20 1x
Med- Long 17- 64 24:00: 00 20 2X
Lar ge 65- 80 24:00: 00 50 2X
Lar geMem 1 8:00: 00 10 4X

For charging, management has decided to charge by job walltime since the nodes will not be
shared. Management has also dictated that 16 of the uniprocessor nodes should be dedicated to
running small jobs requiring 16 or fewer nodes. Management has also decided that it would like
to allow only serial jobsto run on the large memory nodes and would like to charge these jobs at
arate of 4x. There are no constraints on the remaining nodes.

Goals: (Should do)

This site has goals which are focused more on a supplying a straightforward queue
environment to the end users than on maximizing the scheduling performance of the system.
The Maui configuration has the primary purpose of faithfully reproducing the queue constraints
above while maintaining reasonabl e scheduling performance in the process.

Analysis:

Since we are using PBS as the resource manager, this should be a pretty straightforward
process. It will involve setting up an alocations manager (to handle charging), configuring
gueue priorities, and creating a system reservation to manage the 16 processors dedicated to
small jobs, and another for managing the large memory nodes.

Configuration:

Thissite hasalot going on. Therewill be several aspects of configuration, however, they are
not too difficult individually.

First, the queue structure. The best place to handle thisis viathe PBS configuration. Fire up
'‘gmgr' and set up the nine queues described above. PBS supports the node and walltime
constraints as well as the queue priorities. (Maui will pick up and honor queue priorities
configured within PBS. Alternatively, you can aso specify these priorities directly within the
Maui ‘'fs.cfg' file for resource managers which do not support this capability.) We will be using
QBank to handle all allocations and so, will want to configure the the 'per class charge rates
there. (Note: QBank 2.9 or higher isrequired for per class charge rate support.)

Now, two reservations are needed. Thefirst reservation will be for the 16 small memory
nodes. It should only allow node access to jobs requesting up to 16 processors. In this
environment, thisis probably most easily accomplished with areservation class ACL containing
the queues which alow 1 - 16 node jobs.

Monitoring:

Conclusions;

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

Appendix B: Extension Interface

Maui supports an extension interface which allows external librariesto be linked to the
Maui server. Thisinterface provides these libraries with full accessto and control over all
Maui objects and data. It also allows this library the ability to use or override most major
Maui functions.

The purpose of thislibrary isto alow the development and use of extension modules, or
plug-ins, similar to those available for web browsers. One such library, G2, currently extends
many core Maui capabilitiesin the areas of resource management, resource allocation, and
scheduling.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/projects/g2
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

Appendix C: Adding New Algorithms
with the '‘Local’ Interface

(Under Construction)

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

Appendix D: Adjusting Defaulting

Limits

Maui is distributed in a configuration capable of supporting multiple architectures and
systems ranging from afew processorsto several thousand processors. However, in spite of
itsflexibility, it still contains a number of archaic static structures defined in header files.

These structures limit the default number of jobs, reservations, nodes, etc, which Maui can
handle and are set to values which provide a reasonable compromise between capability and
memory consumption for most sites. However, many sites desire to increase some of these
settings to extend functionality, or decrease them to save consumed memory. The most
common parameters are listed below and can be adjusted by simply modifying the
appropriate #define and rebuilding Maui.

M ax

in Maui 3.0.6 and earlier)

3.0.6 and
earlier)

Par ameter L ocation Default Tested Description
total number of
distinct node
attributes (PBS

MAXMATTR (MAXATTR |, 128 512 fnode

e attributes/L L
node features)
Maui can track
total number of

MAX_MCLASS msched-common.h|16 g |distinctjob
classes/queues
available

4096 2(34%3926 in maximum total

(512in MaLi number of
MAX_ MJOB maui.h Maui 305 idle/active jobs

3.0.5and and Maui can see and

earlier) carlier) process

1560 maximum

(1032in number of
MAX_MNODE (MAX_NODE msched-common.h |Maui 8192 compute nodes

Maui can see and
process

MAX_MPARTITION
(MAX_PARTITION in Maui
3.0 and earlier)

maui.h

16

maximum
number of
partitions
supported

MAX_MQOS

maui.h

128

128

total number of
distinct QOS
objects available
to jobs

MAX_MRES DEPTH

maui.h

256

256

total number of
distinct
reservations
allowed per node

MAX_SRESERVATION

maui.h

128

256

total number of
distinct standing
reservations
available

MAX_MTASK (MAX_TASK
in Maui 3.2.0 and earlier)

msched-common.h

1560

10000

total number of
tasks allowed per
job

Maui currently possesses hooks to allow sites to create local algorithms for handling site
specific needsin several areas. The 'contrib' directory contains a number of sample 'local’
algorithms for various purposes. The 'Local.c’ module incorporates the algorithm of interest
into the main code. The following scheduling areas are currently handled viathe 'Local.c’

hooks.

L ocal Job Attributes

L ocal Node Allocation Policies
Local Job Priorities

L ocal Fairness Policies

Overview of Major Maui Structures (Under Construction)

Nodes
mnode t

Jobs
mjob _t

Reservations
mres t

Partitions
mpart_t

QOS
mgos _t

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:l

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

Appendix E: Security

E.1 Security Configuration

Maui provides access control mechanismsto limit how the scheduling environment is
managed. The primary means of accomplishing thisisthrough limiting the users and
hosts which aretrusted and have accessto privileged commands and data.

With regardsto users, Maui breaks accessinto threedistinct levels.
E.1.1 Leve 1 Maui Admin (Administrator Access)

A level 1 Maui Admin has global accessto information and unlimited control over
scheduling operations. Heisallowed to control scheduler configuration, policies, jobs,
reservations, and all scheduling functions. Heisalso granted accessto all available
statistics and state information. Level 1 adminsare specified usingthe ADMIN1

parameter.
E.1.2 Leve 2 Maui Admin (Operator Access)

Level 2 Maui Admins are specified usingthe ADMIN2 parameter. Theuserslisted

under thisparameter areallowed to changeall job attributes and are granted accessto
all informational M aui commands.

E.1.3 Level 3Maui Admin (Help Desk Access)

Level 3administratorsusersa specified viathe ADMIN3 parameter. They are

allowed accessto all informational Maui commands. They cannot change scheduler or
job attributes.

E.1.4 Admininstrative Hosts

If specified, the ADMINHOST parameter allows a site to specify a subset of trusted

hosts. All administrative commands (level 1-3) will be rgected unlessthey arereceived
from one of the hosts listed.

E.2 Interface Security

Aspart of the U.S Department of Energy SSS Initiative, Maui interface security is
being enhanced to allow full encryption of data and GSI-like security.

I f these mechanisms are not enabled, Maui also provides a ssmple 'secret checksum'
based security model. Under thismodel, each client request is packaged with the client
ID, atimestamp, and a checksum of the entirerequest generated using a secret site

selected key (checksum seed). Thiskey isselected when the Maui configurescriptisrun
and may beregenerated at any time by rerunning configure and rebuilding Maui.

E.2.1 Interface Development Notes

Details about the checksum generation algorithm can be found in the Socket Protocol
Description document.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved. :]

http://supercluster.org/documentation/maui/wiki/socket.html
http://supercluster.org/documentation/maui/wiki/socket.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

Appendix F: Maui Parameters

See the Parameters Overview in the Maui Admin Manual for further information about specifying parameters.

scheduler or job attributes.
Valid values include user names
or the keyword 'ALL".

Name Format Default Value Description Example
list of zero or more space delimited specifies account specific ACCOUNTCFQ pr oj ect X| MAXJOB=50
<ATTR>=<VALUE> pairswhere <ATTR> attributes. Seetheflag QDEF=hi ghpri o
ACCOUNTCFG[<ACCOUNTID>] |sone of thefallowing: NONE overview for a description of : -
[I |PRIORITY, FSTARGET, QLIST, QDEF, [[NONE] legal flag values (up to 50 jobs submitted under the account 1D
PLIST, PDEF, FLAGS, or afairness policy NOTE: Only availablein Maui [P' 0J €Ct Xwill be allowed to execute simultaneously
specification. 3.0.7 and higher. and will be assigned the QOS hi ghpr i o by default.)
specifies the priority weight to
be applied to the account
ACCOUNTFSWEIGHT <INTEGER> 0 fai ﬁﬁz\rlefactor. (SeelIJ:ai rshare [ACCOUNTFSVEI GHT 10
Priority Factor)
specifies the priority weight to
be applied to the specified
ACCOUNTWEIGHT <INTEGER> 0 account priority. (See ACCOUNTWEI GHT 100
Credential Priority Factor)
users listed under the parameter
ADMINL are allowed to
perform any scheduling
function. They have full control |ADM N1 maui user steve scott jenny
over the scheduler and access to))
o all data. Thefirst user listedin |(al userslisted have full accessto Maui control
ADMIN1 space delimited list of user names root the ADMINT user list is commands and maui data. Maui must be started by
considered to be the ‘primary and run under the 'mauiuser' user id since mauiuser is
admin' and is the 1D under the primary admin.
which maui must be started and
run. Valid valuesinclude user
names or the keyword 'ALL".
users listed under the parameter
ADMINZ are allowed to change (ADM N2 j ack kar en
al job attributes and are granted | - o)
ADMIN2 space delimited list of user names [NONE] accessto al informational Maui |(jack and karen can modify jobs, i.e., ‘canceljob,
commands. Valid values setqos, setspri, etc.) and can run all Maui information
include user names or the commands).
keyword 'ALL".
users listed under the parameter
ADMINS3 are allowed access to
al informational maui ADM N3 ops
ADMIN3 space delimited list of user names [NONE] commands. They cannot change (user ops can run al informational command such as

‘checkjob’ or checknode')

http://supercluster.org/documentation/maui/jobflagoverview.html
http://supercluster.org/documentation/maui/jobflagoverview.html

specifies the number idle jobs to
evaluate for backfill. The
backfill algorithm will evaluate

BACKFI LLDEPTH 128

BACKFILLDEPTH <INTEGER> 0 (no limit) the top <X> priority jobsfor |(evaluate only the top 128 highest priority idle jobs for
scheduling. By defauilt, all jobs |consideration for backfill)
are evaluated.
specifies the criteria used by the
one of the following PROCS, backfill algorithm to determine
BACKFILLMETRIC PROCSECONDS, SECONDS, PE, or PROCS the 'best' jobs to backfill. Only |BACKFI LLMETRIC ~ PROCSECONDS
PESECONDS applicable when using BESTFIT
or GREEDY backfill algorithms
BACKFEILLPOLICY one of thefollowing: FIRSTFIT, FIRSTEIT specifies what backfill algorithm BACKE! LLPOL| CY BESTEI T

BESTFIT, GREEDY, or NONE

will be used

BANKCHARGEPOLICY

oneof DEBITALLWC,
DEBITSUCCESSFULWC,
DEBITSUCCESSFULCPU, or
DEBITSUCCESSFUL PE

DEBITSUCCESSFULWC

specifies how Maui should
‘charge’ a completed job against
an allocation manager. Seethe
Allocation Manager Overview

for details.

BANKCHARGEPCLI CY DEBI TALLWC

(Maui will charge an account for the resources
dedicated to ajob regardless of how well the job uses
these resources and regardless of whether or not the
job completes successfully.)

specifies whether or not Maui

BANK DEFERJOBONFAILURE ON or OFF OFF should defer jobs if the BANKDEFERJOBONFAI LURE ~ ON
allocation bank isfailing
BANKFALLBACKACCOUNT <STRING> [NONE] account to use if specified BANKFALLBACKACCOUNT bot t onf eeder
account is out of allocations
BANKPORT <INTEGER> 40560 port to use to contact allocation |y poRT 40555
manager bank
name of host on which
BANKSERVER <STRING>. [NONE] allocation manager bank service |BANKSERVER zephyr 1
resides
number of seconds Maui will
BANKTIMEOUT <INTEGER> 9 wait before timing out on abank [BANKTI MEOQUT ~ 00: 00: 30
connection
BANKTYPE one of QBANK, RESD, o FILE [NONE] Epaﬁﬁftﬁge‘e typeof location | \\kTyPE GBANK
specifies the weight to be
BYPASSWEIGHT <INTEGER> 0 applied to ajob's backfill bypass | gy prsoye g 5000
count when determining ajob's
priority
specifies how ‘salel checkpoint |CHECKPOl NTEXPT RATI ONTI ME 11 00: 00: 00
CHECKPOINTEXPIRATIONTIME [[[DD:]JHH:]MM:]SS INFINITY data can be beforeit isignored (Expire checkpoint data which has been stale for over
and purged. one day)
(ebsol lative) of CHECKPO NTFI LE /var/adm maui / maui . ck
. name solute or relative) o
CHECKPOINTFILE <STRING> mavi.ck the Mauii checkpoint file. (Maintain the Mavi checkpoint filein the file
specified)
_ _ ~ [CHECKPQ NTI NTERVAL 00: 15: 00
CHECKPOINTINTERVAL [[[DD:]HH:IMM:]SS 00:05:00 time between automatic Maui

checkpoints

(Maui should checkpoint state information every 15

minutes)

CLASSCFG[<CLASSID>]

list of zero or more space delimited
<ATTR>=<VALUE> pairswhere <ATTR>
is one of the following:

PRIORITY, FSTARGET, QLIST, QDEF,
PLIST, PDEF, FLAGS, or afairness policy
specification.

[NONE]

specifies class specific
atributes. Seetheflag
overview for adescription of
legal flag values.

NOTE: Only availablein Maui
3.0.7 and higher.

CLASSCF({ bat ch] MAXJ0B=50
QDEF=hi ghprio
(up to 50 jobs submitted to the class bat ch will be

alowed to execute simultaneously and will be assigned
the QOS hi ghpr i o by default.)

CLASSWEIGHT

<INTEGER>

specifies the weight to be
applied to the class priority of
each job (See Cred Factor)

CLASSVEI GAT 10

CLIENTKEY[<X>]

<INTEGER>

[NONE]

specifies the session key which
Maui will use to communicate
with the named peer daemon.
NOTE: this parameter may only
be specified in the
maui-private.cfg config file)

CLI ENTKEY[si | ver B] 0x3325584

(Maui will use the session key 0x3325584 for
encrypting and decrypting messages communicated
fromsi | ver B)

CLIENTTIMEOUT

[[[DD:]HH:]MM:]SS

00:00:30

time which Maui client
commands will wait for a
response from the Maui server
(NOTE: may also be specified
as an environment variable)

CLI ENTTI MEQUT 00: 15: 00

(Maui clientswill wait up to 15 minutes for aresponse
from the server before timing out)

CREDWEIGHT

<INTEGER>

specifies the credential
component weight (See Cred
Factor) NOTE: this parameter
was named
DIRECTSPECWEIGHT prior to
Maui 3.0.7.

CREDVEI GHT 2

DEFAULTCLASSLIST

space delimited list of one or more
<STRING>'s

[NONE]

specifies the default classes
supported on each node for RM
systems which do not provide
thisinformation

DEFAULTCLASSLI ST serial parallel

DEFERCOUNT

<INTEGER>

24

specifies the number of timesa
job can be deferred before it will
be placed in batch hold.

DEFERCOUNT 12

DEFERSTARTCOUNT

<INTEGER>

specifies number of time ajob
will be allowed to fail inits start
attempts before being deferred.

DEFERSTARTCOUNT 3

DEFERTIME

[[[DD:]JHH:]MM:]SS

1:00:00

specifies amount of time ajob
will be held in the deferred state
before being released back to
the Idle job queue

DEFERSTARTTI ME 0: 05: 00

DIRECTSPECWEIGHT

<INTEGER>

specifies the credential
component weight (See Cred
Factor) NOTE: this parameter
has been renamed
CREDWEIGHT in Maui 3.0.7
and higher.

DI RECTSPECWEI GHT 2

DISKWEIGHT

<INTEGER>

specifies the priority weight to
be applied to the amount of
dedicated disk space required
per task by ajob (in MB)

RESVEI GHT 10
DI SKWEI GHT 100

(if ajob requires 12 tasks and 512 MB per task of
dedicated local disk space, Maui will increase thejob's
priority by 10* 100 * 12 * 512)

http://supercluster.org/documentation/maui/jobflagoverview.html
http://supercluster.org/documentation/maui/jobflagoverview.html

one or more of the following values (space

specifies flags which control

DISPLAYFLAGS delimited) [NONE] how maui client commandswill [DI SPLAYFLAGS NODECENTRI C
NODECENTRIC display various information
DOWNNCDEDELAYTI ME 1: 00: 00
default time an unavailable node
DOWNNODEDELAYTIME* [[[DD:]HH:]MM:]SS 24:00:00 (Down or Drain) is marked (Maui will assume ‘down’ nodes will be available 1
unavailable hour after they go down unless a system reservation is
placed on the node)
specifies whether or not Maui
ENFORCERESOURCEL IMITS one of the following: ON or OFF OFF igg;?fgg&g&hg‘d&% ENFORCERESOURCELI M TS~ ON
usage.
FEATURENCDETYPEHEADER xnt
spec!fiesthe header. ueed 1o Maui will interpret all node features with the leading
FEATURENODETYPEHEADER <STRING> [NONE] fg;ﬂ:é’s”(‘i’geﬁﬂxaggf PBS (Smng xnt as anodetype specification - as used by
node attributes). QBank and other allocation managers, and assign the
associated value to the node. i.e., xntFast)
specifies the header used to FEATUREPARTI TI ONHEADER xpt
FEATUREPARTITIONHEADER <STRING> [NONE] fg;ﬂ:é’s”(?geLpﬁtgt%r;gz:‘g%% (Maui will interpret all node features with the leading
\ & string xpt as a partition specification and assign the
node attributes). associated value to the node. i.e., xptGold)
specifies the header used to
extract node processor speed via
node features (i.e., LL features
or PBS node attributes). NOTE; |FEATUREPROCSPEEDHEADER xps
FEATUREPROCSPEEDHEADER <STRING> [NONE] Adding atrailing'$ character | \1aji will interpret all node features with the leading
will specifies that only features |qring x ps as a processor speed specification and
with atrailing number be assign the associated value to the node. i.e., xps950)
interpreted. For example, the
header 'sp$' will match 'sp450'
but not 'sport'
specifies the name of the
program to berun at the FEEDBACKPROGRAM / var / maui / f b. pl
FEEDBACKPROGRAM <STRING> [NONE] Pttt mreitl " |V will run the specified program a the completion
attempt to locate this program in [of each job.)
the 'tools' subdirectory.
specifies the weight assigned to
FSACCOUNTWEIGHT <INTEGER> 0 e f‘;‘;‘;}‘;‘;‘éﬁ’ﬁ%ﬁgﬂ} o |FSACCOUNTVEI GHT 10
priority
FSCAP 10.0
specifieﬁthg rrllaximum dllowed Maui will not allow ajob's pre-weighted fairshare
FSCAP <DOUBLE> 0(NO CAP) \;;?;v?/;%h?égtf) swoa f:omponent o excoeel 100,
component ie, Prlorlty = FSWEIGHT *
MIN(FSCAP,FSFACTOR) + ...)
FSCONFIGFILE <STRING> fs.cfg
FSDECAY <DOUBLE> 10
FSDEPTH <INTEGER> 7
FSGROUPWEIGHT <INTEGER> 0 |FSGRQJPV\EI GHT 4

specifies the length of each

FSI NTERVAL 12: 00: 00

FSINTERVAL [[[DD:]HHIMM:]SS 24:00:00 fairshare ‘window' (track fairshare usage in 12 hour blocks)
specifies the unit of tracking
fairshare Usage. FSPOLI CY DEDI CATEDPES
FSPOLICY one of the following: DEDICATEDPS, [NONE] (?e%:i;:eg;r%grr?egn ds o))
DEDICATEDPES DEDICATEDPES fracks g (Maui will t_rack fairshare usage by dedicated
; A process-equivalent seconds)
dedicated processor-equivalent
seconds
specifies the priority weight
FSQOSWEIGHT <INTEGER> 0 assigned to the QOS fairshare
subcomponent
specifies the priority weight
FSUSERWEIGHT <INTEGER> 0 assigned to the user fairshare FSUSERVEI GHT 8
subfactor.
specifies the priority weight
FSWEIGHT <INTEGER> 0 assigned to the summation of FSWEI GHT 500
the fairshare subfactors
list of zero or more space delimited specifies group specific GROUPCFQ st af f] MAXJOB=50
<ATTR>=<VALUE> pairswhere <ATTR> atributes. Seethe flag QDEF=hi ghpri o
isone of the following: overview for adescription of
GROUPCFG[<GROUPID>] PRIORITY, FSTARgGET, QLIST, QDEF, [NONE] legal flag values. P (up to 50 jobs submitted by members of the group
PLIST, PDEF, FLAGS, or afairness policy NOTE: Only availablein Maui (St af f will be allowed to execute simultaneously and
specification. 3.0.7 and higher. will be assigned the QOS hi ghpri o by default.)
specifies the priority weight
GROUPWEIGHT <INTEGER> 0 assigned to the specified group |GROUPWEI GHT 20
priority (See Direct Spec Factor)
length of time ajob isallowed
toremainin a'starting' state. If
a'started' job does not transition [J OBMAXSTARTTI ME 2: 00: 00
JOBMAXSTARTTIME [[[DD:]HH:]MM:]SS -1 (NO LIMIT) to arunning state within this (jobs may attempt to start for up to 2 hours before
amount of time, the scheduler being cancelled by Maui)
will cancel thejob, believing a
system failure has occurred.
amount of time Maui will allow |JOBMAXOVERRUN 1: 00: 00
JOBMAXOVERRUN [[[DD:]JHH:]MM:]SS 0 ajob to exceed itswallclock (allow jobs to exceed their wallclock limit by up to 1
limit before it is terminated hour)
specifies additional constraints
on how compute nodes are to be
selected. EXACTNODE
indicates that Maui should select
as many nodes as requested
evenif it could pack multiple ~ [J OBNODEMATCHPOLI CY EXACTNODE
JOBNODEMATCHPOL ICY zero or more of the following: [NONE] tasks onto the same node. (In aPBS job with resource specification

EXACTNODE or EXACTPROC

EXACTPROC indicates that
Maui should select only nodes
with exactly the number of
processors configured as are
requested per node even if nodes
with excess processors are
available.

'nodes=<x>:ppn=<y>', Maui will allocate exactly <y>
task on each of <x> distinct nodes.)

http://supercluster.org/documentation/maui/jobflagoverview.html
http://supercluster.org/documentation/maui/jobflagoverview.html

JOBPRIOACCRUALPOLICY

one of thefollowing: ALWAYS,
FULLPOLICY, QUEUEPOLICY

QUEUEPOLICY

specifies how the dynamic
aspects of ajob's priority will be
adjusted. ALWAY S indicates
that the job will accrue
queuetime based priority from
thetimeit is submitted.
FULLPOLICY indicatesthat it
will accrue priority only when it
meets al queue AND run
policies. QUEUEPOLICY
indicates that it will accrue
priority so long asit satisfies
various queue policies, i.e.
MAXJOBQUEUED.

JOBPRI OACCRUALPOLI CY QUEUEPOLI CY

(Maui will adjust the job's dynamic priority
subcomponents, i.e., QUEUETIME, XFACTOR, and
TARGETQUEUETIME, etc. each iteration that the job
satisfies the associated 'QUEUE' palicies such as
MAXJOBQUEUED.)

JOBSIZEPOLICY

<N/A>

[NONE]

<N/A>

<N/A>

JOBSYNCTIME

[[[DD:]JHH:]MM:]:SS

00:10:00

specifies the length of time after
which Maui will sync up ajob's
expected state with an
unexpected reported state.
IMPORTANT NOTE: Maui
will not allow ajob to run as
long asits expected state does
not match the state reported by
the resource manager. NOTE:
this parameter is named
JOBSYNCDEADLINE in Maui
3.0.5and earlier

JOBSYNCTI ME 00: 01: 00

LOGDIR

<STRING>

specifies the directory in which
log fileswill be maintained. If
specified as arelative path,
LOGDIR will berelative to
$(MAUIHOMEDIR) (see

Logging Overview)

LOGDIR /tnp

(Maui will record its log files directly into the/ t mp
directory)

LOGFACILITY

colon delimited list of one or more of the
following: fCORE, fSCHED, fSOCK,
ful, fLL, fSDR, fCONFIG, fSTAT, fSIM,
fSTRUCT, fFS, fCKPT, fBANK, fRM,
fPBS, fWIKI, fALL

fALL

specifies which types of events

to log (see Logging Overview)

LOGFACILITY fRMfPBS

(Maui will log only events involving general resource
manager or PBS interface activities.)

LOGFILE

<STRING>

maui.log

name of the maui log file. This
fileis maintained in the
directory pointed to by
<LOGDIR> unless
<LOGFILE> is an absolute path

(see Logaing Overview)

LOGFI LE naui . test. | og

(Log information will be written to thefile
maui . t est . | og located in the directory pointed to
by the LOGDIR parameter)

LOGFILEMAXSIZE

<INTEGER>

10000000

maximum alowed size (in
bytes) the log file before it will
be 'rolled' (see Logging
Overview)

LOGFI LEMAXSI ZE 50000000

(Log fileswill be rolled when they reach 50 MB in
size)

LOGFILEROLLDEPTH

<INTEGER>

number of old log filesto
maintain (i.e., when full,
maui.log will be renamed
maui.log.1, maui.log.1 will be
renamed maui.log.2, ... NOTE:
Only availablein Maui 3.0.5
and higher. (see Logging
Overview)

LOGFI LEROLLDEPTH 5

(Maui will maintain the last 5 log files.)

LOGLEVEL

<INTEGER> (0-9)

specifies the verbosity of Maui
logging where 9 is the most
verbose (NOTE: each logging
level is approximately an order
of magnitude more verbose than
the previous level) (see Logging

Overview)

MAXJOBPERUSER

<INTEGER>[,<INTEGER>]

0 (No Limit)

maximum number of active jobs
alowed at any giventime. See
note for Maui 3.0 versions.

MAXJOBQUEUEDPERUSER

<INTEGER>[,<INTEGER>]

0 (No Limit)

maximum number of idle jobs
which can be considered for
scheduling and which can
acquire 'system queue time' for
increasing job priority. See note
for Maui 3.0 versions.

MAXNODEPERUSER

<INTEGER>[,<INTEGER>]

0 (No Limit)

maximum allowed total PE
count which can be dedicated at
any giventime. See note for
Maui 3.0 versions.

MAXPEPERUSER

<INTEGER>[<INTEGER>]

0 (No Limit)

maximum allowed total PE
count which can be dedicated at
any giventime. See note for
Maui 3.0 versions.

MAXPROCPERUSER

<INTEGER>[,<INTEGER>]

0 (No Limit)

maximum allowed total
processors which can be
dedicated at any givetime. See
note for Maui 3.0 versions.

MAXPSPERUSER

<INTEGER>[<INTEGER>]

0 (No Limit)

maximum allowed sum of
outstanding dedicated
processor-second obligations of
al activejobs. See note for
Maui 3.0 versions.

MAXWCPERUSER

[[[DD:]JHH:]IMM:]SY[,[[[DD:]HH:]MM:]SS]

0 (No Limit)

maximum allowed sum of
outstanding walltime limits of
all activejobs. NOTE: only
availablein Maui 3.2 and
higher.

LOGLEVEL 4

(Maui will write all Maui log messages with a
threshold of 4 or lower to the 'maui.log’ file)

MEMWEIGHT[X]

<INTEGER>

specifies the coefficient to be
multiplied by ajob's MEM
(dedicated memory in MB)
factor

RESVEI GHT[0] 10
MEMAEI GHT[0] 1000

(each job's priority will be increased by 10 * 1000 * its
MEM factor)

http://supercluster.org/documentation/maui/policynote-3.0.html
http://supercluster.org/documentation/maui/policynote-3.0.html
http://supercluster.org/documentation/maui/policynote-3.0.html
http://supercluster.org/documentation/maui/policynote-3.0.html
http://supercluster.org/documentation/maui/policynote-3.0.html
http://supercluster.org/documentation/maui/policynote-3.0.html

NODEACCESSPOLICY

one of the following: DEDICATED,
SHARED, or SINGLEUSER

DEDICATED

specifies whether or not Maui
will allow node resources to be
shared or dedicated by
independent jobs

NODEACCESSPCLI CY SHARED

(Maui will alow resources on anode to be used by
more than one job)

NODEALLOCATIONPOLICY

one of the following: FIRSTAVAILABLE,
LASTAVAILABLE, MINRESOURCE,
CPULOAD, MACHINEPRIO, LOCAL,
CONTIGUOUS, MAXBALANCE, or
FASTEST

LASTAVAILABLE

specifies how Maui should
allocate available resources to
jobs. (Seethe Node Allocation
section of the Admin manual for
more information)

NODEALLOCATI ONPOLI CY M NRESOURCE

(Maui will apply the node allocation policy
'MINRESOURCE ! to al jobs by default)

list of space delimited <ATTR>=<VALUE>
pairs where <ATTR> is one of the
following:

specifies node-specific attributes
for the node indicated in the
array field. Seethe Node

NODECFJ nodeA] MAXJOB=2 SPEED=1. 2

NODECFG[X] ACCESS, MAXJOB, [NONE] Configuration Overview for (Maui will only only two simultaneous jobs to run on
MAXJOBPERUSER, MAXLOAD, more information. NOTE: this node 'nodgA’ and will assign arelative machine speed
FRAME, SLOT, SPEED, PROCSPEED, parameter is enabled in Maui [0f 1.2 to thisnode:)
PARTITION, NODETYPE, FEATURES 3.0.7 and higher.
length of time Maui will assume
down, drained (offline), or NODEDOWNSTATEDELAYTI ME 0: 30: 00
corrupt nodes will remain (Maui will assume down, drained, and corrupt nodes
unavailable for schedulingif & - |are not available for scheduling for at least 30 minutes
NODEDOWNSTATEDELAYTIME |[[DD:]HH:]MM:]SS 0:00:00 system reservation is not from the current time. Thus, these nodes will never be
explicitly created for thenode. |4 ocated to starting jobs. Also, these nodes will only
NOTE: This parameter is be available for reservations starting more than 30
enabled in Mavi 3.0.7 and minutes in the future.)
higher.
specifiesif anode's load affects
its state or its available
processors. ADJUSTSTATE
tells Maui to mark the node busy
when MAXLOAD isreached.
f the followi ADJUSTSTATE AI?:IJUSTR?a?)ICS s to tt?e LOADPALTCY - ADJUSTSTATE
one of the following: or node's available procs to be
NODEL OADPOLICY ADJUS‘[PROCSQ ADJUSTSTATE equivalent to P (Maui will mark anode busy if its measured load
MI N(Configurajprocs - exceedsits MAXLOAD setti ng)
DedicatedProcs,MaxLoad -
CurrentLoad) NOTE:
NODELOADPOLICY only
affectsanodeif MAXLOAD
has been set.
specifies that maximum load on
aidle of running node. If the NODEMAXLCAD 0.75
NODEMAXLOAD <DOUBLE> 0.0 node's load reaches or exceeds (Maui will adjust the state of al Idle and Running
this value, Maui will mark the | nodes with aload >= .75 to the state ‘Busy’)
node 'busy’
specifies the number of NODEPOLLFREQUENCY 5
NODEPOL L FREQUENCY <INTEGER> 0 (Poll Always) scheduling iterations between

scheduler initiated node

manager queries.

(Maui will update node manager based information

every 5 scheduling iterations)

one of FEATURE, NETWORK, or

specifies the type of node
attribute by which node set
boundaries will be established.

NODESETATTRI BUTE PROCSPEED

NODESETATTRIBUTE PROCSPEED [NONE] NOTE: enabled in Maui 3.0.7 |(Maui will create node sets containing nodes with

and higher. (See Node Set €ommon processor speeds)

Overview)

specifies the length of time

Maui will delay ajob if

adeﬁ;ﬁe i;"e reoucesare INCDESETDELAY 0: 00: 00

L. : . available but not adequate

NODESETDELAY [[[DD:JHH:IMM:]SS 0:00:00 resources within node set (Maui will create node sets containing nodes with

consgtraints. NOTE: enabled in [common processor speeds)

Maui 3.0.7 and higher. (See

Node Set Overview)

specifies the list of node NCDESETPCLI CY ONECF

attribute values which will be |[NODESETATTRI BUTE FEATUEE A

considered for establishing node [NODESETLI ST swi tchA switchB
NODESETLIST <STRING> [NONE] wts NOTE: erebled in Mot - Co

3 0'7 d hi .h See Node Set (Maui will allocate nodes to jobs either using only

0. F-and higner. (See Node Set nodes with the 'switchA' feature or using only nodes

Overview) with the 'switchB' feature.)

specifies how nodes will be

allocated to the job from the NCDESETPCLI CY ONECF
NODESETPOLICY one of ONEOF, FIRSTOF, or ANYOF |[NONE] various node set generted. SETATTRI BUTE NET

’ ’ N(S-LE:h enablszcé "G I\(/jlauslef.OJ (Maui will create node sets containing nodes with

an '_g er. (See Node Set common network interfaces)

Overview)

specifies how resource sets will

e Saected when more than one INCDESETPRI ORI TYTYPE BESTRESOURCE

easbleresourcecancanbé INODESETATTRI BUTE PROCSPEED
NODESETPRIORITYTYPE grgsﬁsggggéévoiﬂggss MINLOSS found. NOTE: This parameter

 Or isavailablein Maui 3.0.7and |(Maui will select the resource set containing the fastest

higher. (See Node Set nodes available)

Overview)

specifies the tolerance for

selection of mixed processor

speed nodes. A tolerance of X

alows arange of processorsto

be selected subject to the

constraint

) NODESETATTRI BUTE PROCSPEED

(Speed.Max - Speed.Min) / NODESETTOLERANCE 0. 5

NODESETTOLERANCE <FLOAT> 0.0 (Exact match only) Speed.Min <= X

NOTE: Tolerancesare only
applicable when
NODESETFEATURE is set to
PROCSPEED. This parameter
isavailablein Maui 3.0.7 and
higher.

(See Node Set Overview)

(Maui will only alocate nodes with up to a 50%
procspeed difference.)

specifies the length of time after
which Maui will sync up a
node's expected state with an
unexpected reported state.
IMPORTANT NOTE: Maui

will not start new jobs on anode

NODESYNCTIME [[[DD:]HH:]MM:]SS 00:10:00 with an expected state which NODESYNCTI ME 1: 00: 00
does not match the state
reported by the resource
manager. NOTE: this parameter
isnamed
NODESYNCDEADLINE in
Maui 3.0.5 and earlier.
specifies the weight which will
be applied to ajob's requested
node count before thisvalueis
added to the job's cumulative
priority. NOTE: thisweight
currently only applieswhen a
NODEWEIGHT <INTEGER> 0 nodecount is specified by the ~ |NODEWEI GHT 1000
user job. If thejob only
specifies tasks or processors, ho
node factor will be applied to
thejob'stotal priority. (This
will berectified in future
versions.)
specifies the name of the NOTI El CATI ONPROGRAM
NOTIFICATIONPROGRAM <STRING> [NONE] program to handle all t 0ol s/ not i f vie. ol
notification call-outs yme. p
specifies the coefficient to be EEE\?\EFIG?THE)O] 10 100
PEWEIGHT[X] <INTEGER> 0 multiplied by ajob'sPE L]
(processor equivalent) priority |each job's priority will be increased by 10* 100 * its
factor PE factor)
specifies the maximum number PLOTM NPROC 1
of processors re_questec_l by jobs |p oTMAXPROC 1024
PLOTMAXPROC <INTEGER> 512 to be displayed in matrix outputs
(as displayed by the showgrid or |(each matrix output will display datain rowsfor jobs
profiler commands) requesting between 1 and 1024 processors)
specifies the maximum duration Ell:gM NT: ﬁ (134080080
PLOTMAXTIME [[[DD:]HH:IMM:]SS 68:00:00 gaisgtsst?agﬁgpslp;yaé’dew‘t&mx _ o _
. i (each matrix output will display datain columns for
showgrid or profiler commands) ;o requesting between 1 and 64 hours of run time)
specifies the minimum number (b oTM NPROC 1
of processors re_qu&sted_ by jobs |p oTMAXPROC 1024
PLOTMINPROC <INTEGER> 1 to be displayed in matrix outputs

(as displayed by the showgrid or

profiler commands)

(each matrix output will display datain rowsfor jobs
requesting between 1 and 1024 processors)

specifies the minimum duration
of jobsto be displayed in matrix

PLOTM NTI ME 1: 00: 00
PLOTVAXTI ME 64: 00: 00

PLOTMINTIME [[[DD:]HH:]MM:]SS 00:02:00 ,
outputs (as displ f.iyed by the (each matrix output will display datain columns for
showgrid or profiler commands) ;o requesting between 1 and 64 hours of run time)
specifies the number of rows ~ |PLOTM NPRCC 1
into which the range of PLOTMAXPROC 1024
processors requested per job will [PLOTPROCSCALE 10
PLOTPROCSCALE <INTEGER> 9 be d|_V|ded when dISp| ayedin (each matrix output will display job data divided into
matrix outputs (as d'.Spl ayedby 110 rowswhich are evenly spaced geometrically
the showgrid or profiler covering the range of jobs requesting between 1 and
commands) 1024 processors)
PLOTM NTI ME 2: 00: 00
specifies the number of columns [PLOTMAXTI ME 32: 00: 00
into which the range of job PLOTTI MESCALE 5
PLOTTIMESCALE <INTEGER> 11 gyraltl or;yvlll gte .dIVISted \tNhen (each matrix output will display job datadivided into 5
d!spl ! od Ibn Th rgq(outpu ds (as columns which are evenly spaced geometrically
|sp.ay y the showgrid or covering the range of jobs requesting between 2 and 32
profiler commands) hours, i.e., display columnsfor 2, 4, 8, 16, and 32
hours of walltime)
one of the following: specifies how preemptible jobs PREEMPTI ONPOLI CY CHECKPO NT
PREEMPTIONPOLICY REQUEUE, SUSPEND, CHECK POINT REQUEUE V,\\/III” bggr;emztﬁd (F]Avallableln (jobsthat areto be preempted will be checkpointed and
aui 3.2.2 and higher) restarted at alater time)
specifies the coefficient to be
PROCWEIGHTI[X] <INTEGER> 0 multiplied by ajob'srequested |[PROCWEI GHT ~ 2500
processor count priority factor
The amount of time Maui will
keep ajob or node record for an
object no longer reported by the
resource manager. Useful when .
using a resource manager which PURGETI ME 00: 05: 00
PURGETIME [[[DD:JHH:]MM:]SS 0 ‘drops’ information about anode |\ ai will maintain ajob or node record for 5 minutes
orjobduetointerna after the last update regarding that object received
failuresNOTE: InMaui 320 |from the resource manager.)
an higher, this parameter is
superseded by
JOBPURGETIME and
NODEPURGETIME
specifies QOS specific
. - attributes. Seetheflag
list of zero or more space delimited . - CFQ conmer ci al PRI ORI TY=1000
<ATTR>=<VALUE> pairswhere <ATTR> overview for a description of SS(3 o§:4 NAproc]s=go
is one of the following: legal ﬂ‘?‘g values.) o o _ _
QOSCFG[<QOSID>] PRIORITY, FSTARGET, QTWEIGHT, |[NONE] NOTE: Availablein Maui 3.0.6 |(Maui will increase the priority of jobs using QOS

QTTARGET, XFWEIGHT, XFTARGET,
PLIST, PDEF, FLAGS, or afairness policy
specification.

and higher. QOSCFG
supersedes QOSNAME,
QOSPRIORITY,
QOSFLAGS, and other '‘QOS*'
parameters.

commercial, and will allow up to 4 simultaneous QOS
commercial jobs with up to 80 total allocated
processors.)

http://supercluster.org/documentation/maui/jobflagoverview.html
http://supercluster.org/documentation/maui/jobflagoverview.html

specifies which node features
must be present on resources
allocated to jobs of the

QOSFEATURES[2] wi de interactive

QOSFEATURES[X] one or more node feature values or [ANY] [[ANY] i X (jobs with 2 QOS value of 2 may only run on nodes
associated QOS. This parameter |yith the feature ‘wide' AND the feature 'interactive
takes a QOS name as an array)
index.

one or more of the following (space
delimited)
IGNJOBPERUSER, IGNPROCPERUSER,
IGNNODEPERUSER, IGNPSPERUSER,
IGNJOBQUEUEDPERUSER,
IGNJOBPERGROUP,
|GNPROCPERGROUP, specifies the attributes of the
O opEReROYE corresponding QOS value See FLAGS[1] ADVRES | GNVAXJOBPERUSER
|GNJOBQUEUEDPERGROUP, the Admin Manual QOS s [1]
QOSFLAGSIX] T [NONE] Overview section for details |(jobswith aQOS value of 1 must run in an advance
|GNPSPERACCOUNT ' (NOTE: some flags are only reservation and can ignore the MAXJOBPERUSER
' i oli
IGNJOBQUEUEDPERACCOUNT, supported under Maui 31and |POIIY)
IGNSY SMAXPROC, IGNSY SMAXTIME, |ater)
IGNSY SMAXPS, IGNSRMAXTIME,
IGNUSER, IGNGROUP, IGNACCOUNT,
IGNSY STEM, IGNALL, PREEMPT,
DEDICATED, RESERVEALWAYS,
USERESERVED, NOBF,
NORESERVATION, RESTARTPREEMPT
specifiesthe priority associated |QOSPRI ORI TY[2] 1000

QOSPRIORITY[X] <INTEGER> 0 with this QOS (NOTE: only
used in Maui 3.0.x) (set the priority of QOS 2 to 1000)
specifies the target job

QOSQTTARGET[X] [[[DD:]HH:]MM:]SS [NONE] queuetime associated with this |QOSQTTARGET 2: 00: 00
QOS
specifies the 'per QOS' queue

QOSQTWEIGHT[X] <INTEGER> 0 time priority weight QsQIVEr G 5

QUSVIET GHT[3] 10
specifies the expansion factor QUSXFTARGET[3] 5.0
QOSXFTARGET[X] <DOUBLE> [NONE] target }JSEd in ajob's 'Tr_:\rget (jobs requesting a QOS of 3 will have their priority
Factor" priority calculation grow exponentially as the job's minimum expansion
factor approaches 5.0)
XFVEI GHT[0] 100
specifies the weight which will - |QOSXFWEI GHT[2] 1000
OSXFWEIGHT[X <INTEGER> 0 be added to the base b LS ~
Q [X] XFWEIGHT for all jobsusing |(obs using QOS2 will have a X FWEIGHT of 1100
QOS'X' while jobs using other QOS's will have an
XFWEIGHT of 100)
QUEUETI MECAP[0] 10000
specifies the maximum allowed QUEUET! MEVEI GHT[0] 10
QUEUETIMECAP[X] <DOUBLE> 0 (NO CAP) pre-weighted queuetime priority

factor.

(ajob that has been queued for 40 minutes will have its
queuetime priority factor calculated as 'Priority =

QUEUETIMEWEIGHT * MIN(10000,40)")

QUEUETIMEWEIGHT[X]

<INTEGER>

specifies multiplier applied to a
job's queue time (in minutes) to
determine the job's queuetime
priority factor

QUEUETI MEVEI GHT[0] 20

(ajob that has been queued for 4:20:00 will have a
queuetime priority factor of 20 * 260)

RESCTLPOLICY

one of the following:
ADMINONLY, ANY

ADMINONLY

specifies who can create admin
reservations (Available in Maui
3.2 and higher)

RESCTLPCLI CY ANY

(any valid user can create an arbitrary admin
reservation)

RESDEPTH

<INTEGER>

24

specifies the maximum number
of reservations which can be on
any single node. IMPORTANT
NOTE: on large way SMP
systems, this value often must
be increased. To be on the safe
side, this value should be
approximately twice the average
sum of admin, standing, and job
reservations present.

RESDEPTH 64

RESERVATIONDEPTHI[X]

<INTEGER>

specifies how many priority
reservations are allowed in the
associated reservation stack

RESERVATI ONDEPTH[0] 4
RESERVATI ONQOSLI ST[0] 1 3 5

(jobswith QOS valuesof 1, 3, or 5 can have a
cumulative total of up to 4 priority reservations)

RESERVATIONPOLICY

one of the following:

CURRENTHIGHEST, HIGHEST,

NEVER

CURRENTHIGHEST

specifies how Maui reservations
will be handled. (See also
RESERVATIONDEPTH)

RESERVATI ONPCLI CY CURRENTHI GHEST
RESERVATI ONDEPTH 2

(Maui will maintain reservations for only the two
currently highest priority jobs)

specifies which QOS levels have

RESERVATI ONDEPTH[0] 4
RESERVATI ONQOSLI ST[0] 1 3 5

RESERVATIONQOSLIST[X] one or more QOS values or [ALL] [ALL] access to the associated
reservation stack (jobswith QOS values of 1, 3, or 5 can have a
cumulative total of up to 4 priority reservations)
Period of time Maui will
continue to attempt to start ajob
RESERVATIONRETRYTIME[X] [[[DD:]JHH:]MM:]SS 0 in areservation when job start
failures are detected due to
resource manager corruption
RESOURCECAP[0] 1000
specifies the maximum allowed |(Thetotal resource priority factor component of ajob's
RESOURCECAP[X] <DOUBLE> 0 (NO CAP) pre-weighted job resource priority will not be allowed to exceed 1000, i.e.,

priority factor

'Priority = RESWEIGHT *
MIN(RESOURCECAP,<RESOURCEFACTOR>) +
)

RESOURCEAVAILABILITYPOLICY

<POLICY>[:<RESOURCETPYE>] ...

where

POLICY isoneof COMBINED,
DEDICATED, or UTILIZED
and

RESOURCETY PE is one of
PROC, MEM, SWAP, or DISK

XxXXxXCOMBINED

specifies how Maui will
evaluate resource availability on
aper resource basis

RESOURCEAVAI LABI LI TYPCLI CY
DEDI CATED: PROCS COVBI NED: MEM

(Maui will ignore resource utilization information in
locating available processors for jobs but will use both
dedicated and utilized memory information in
determining memory availability)

RESOURCELIMITPOLICY

<POLICY>:<ACTION>:<RESOURCE>
[:<RESOURCE>]...

where POLICY isoneof ALWAYS,
EXTENDEDVIOLATION, or
BLOCKEDWORKLOADONLY

where ACTION isoneof CANCEL,
REQUEUE, or SUSPEND

where RESOURCE is one or more of
PROC, DISK, SWAP, or MEM

no limit enforcement

specifies how the scheduler
should handle job which utilize
more resources than they
request. NOTE: Only available
in Maui 3.2 and higher.

RESOURCELI M TPOLI CY ALWAYS: CANCEL: MEM

(Maui will cancel al jobs which exceed their requested
memory limits.)

RESVEI GHT[0] 5

o MEMORYWEI GHTT 0] 10
all resource priority components |PROCWE! GHT[0] 100
are multiplied by this value SWAPWE| GHTJ[0] 0
RESWEIGHT[X] <INTEGER> 0 before being added to the total |RESOURCECAP[O] 2000
job priority.
(the job priority resource factor will be calculated as
MIN(2000,5* (10 * JobMemory + 100 * JobProc)))
one of CHECKSUM . PK1 . or specifies the security protocol to RVAUTHTYPE[0] CHECKSUM
RMAUTHTYPE[X] SECUREPORT ! ' CHECKSUM beusedin schedul_er-r_@ource (The scheduler will require a secure checksum
manager communication. associated with each resource manager message)
i . RWNAME[0] Devd uster
specifies name of resource
RMNAME[X] <STRING> <X> manager <X> (resource manager '0' will be referred to as
'DevCluster' in maui command output and maui 1ogs)
specifies a non-default RM node |RVMNMPORT] 0] 13001
RMNM PORTI[X] <INTEGER> (any valid port number) | Tanager through which

extended node attribute
information may be obtained

(Maui will contact the node manager |ocated on each
compute node at port 13001)

specifiesinterval between RM

RVPCLLI NTERVAL 60

RMPOLLINTERVAL [[[DD:]HH:]MM:]SS 00:01:00 " (Maui will refresh its resource manager information
polls every 60 seconds. NOTE: this parameter specifiesthe
global poll interval for al resource managers)
specifies the port on which Maui |RMTYPE[0] PBS
should contact the associated RVHOST[0] cws
RMPORTIX] <INTEGER> 0 resource manager. Thevalue'0" |RVPORT[0] 20001
specifies to use the appropriate o
default port for the resource (Maui will attempt to contact the PBS server daemon
manager type selected. on host cws, port 20001)
specifies the host on which
Maui should contact the RMTYPE[0] LL2
associated resource manager. RVHOST] 0]
An empty value specifiesto use [RMPORT[0] 0
RMSERVER[X] <HOSTNAME> [NONE] the default hostname for the

resource manager selected.
NOTE: this parameter is
renamed RMHOST in Maui
3.0.6 and higher.

(Maui will attempt to contact the Loadleveler version 2
Negotiator daemon on the default host and port, as
specified in the LL config files)

seconds maui will wait for a

RMTT MEQUT[1] 30

RMTIMEOUT[X] <INTEGER> 15 response from the associated |(Maui will wait 30 seconds to receive aresponse from
resource manager. resource manager '1' before timing out and giving up.
Maui will try again on the next iteration.)
RMIYPE[0] PBS
RVHOST[0] clusterl
ecifies type of resource RVPORT[0] 15003
<RMTYPE>[:<RMSUBTY PE>] where e e el uilboont by RMIYPE[1] PES
<RMTYPE isone of thefollowing: LL, ; i RVHOST[1] cl uster?2
RMTYPE[X] PBS. or WIK | and <RMSUBTYPE> i LL Maui. NOTE: for RMTYPE
TS and < > Isone WIKI, RMAUTHTYPE must [RMPORT[1] 15004
o ,
be set to CHECK SUM. (Maui will interface to two different PBS resource
managers, one located on server clusterl at port 15003
and one located on server cluster2 at port 15004)
hostname of machine on which |SERVERHOST ger oni np. scc. edu
SERVERHOST <HOSTNAME> [NONE] maui will run. NOTE: this (Maui will execute on the host
parameter MUST be specified. ger oni mo. scc. edu)
one of the following; specifies how Maui interacts
SERVERMODE) NORMAL with the outside world. See SERVERMODE SI MULATI ON
NORMAL, TEST, or SMULATION <Testing> for more information
specifies the name the scheduler
SERVERNAME <STRING> <SERVERHOST> will usetorefer toitsalf in-— |gep epNAVE maui A
communication with peer
daemons
Hich il _ |SERVERPORT 30003
. port on which maui will open its
SERVERPORT <INTEGER> (range: 1-64000) 40559 user interface socket (Maui will listen for client socket connections on port
30003)
if TRUE, the scheduler will end || MAUTOSHUTDOWN ON
simulations when the active
SIMAUTOSHUTDOWN <BOOLEAN> TRUE queue and idle queue become |(The scheduler simulation will end as soon asthere are
empty no jobs running and no idle jobs which could run)
specifies whether to increase or
SIMCPUSCAL INGPERCENT <INTEGER> 100 (no scaling) decrease the runtime and

wallclock limit of eachjobin
the workload tracefile.

SIMDEFAULTJOBFLAGS

zero or more of the following:
ADVRES, HOSTLIST, RESTARTABLE,
PREEMPTEE, DEDICATED,

[NONE]

cause Maui to force the
specified job flags on al jobs
supplied in the workload trace

SI MDEFAULTJOBFLAGS DEDI CATED
(Maui will set the'DEDICATED' job flag on al jobs

PREEMPTOR file loaded from the workload trace file)
iteration on which aMaui
SIMEXITITERATION <INTEGER> 0 (no exit iteration) simulation will create a SI MEXI TI TERATI ON 36000

simulation summary and exit.

zero or more of the following:

controls how Maui handles trace

SI MFLAGS | GNHOSTLI ST

SIMFLAGS IGNHOSTLIST, IGNCLASS, IGNQOS, |[NONE] i i Maui will ignore hostlist information specified in the
IGNMODE, IGNFEATURES based information \(Norkmad tragcef”e) *
zero or more of the following: S e SI M GNOREJOBFLAGS DEDI CATED
ADVRES, HOSTLIST, RESTARTABLE, cause Maui to ignore specified

SIMIGNOREJOBFLAGS [NONE] job flagsif supplied in the

PREEMPTEE, DEDICATED,
PREEMPTOR

workload tracefile

(Maui will ignore the ' DEDICATED' job flag if
specified in any job trace)

specifies how many jobs the

SIM NI TI ALQUEUEDEPTH 64
SI MIOBSUBM SSI ONPOLI CY
CONSTANTJOBDEPTH

SIMINITIALQUEUEDEPTH <INTEGER> 16 simulator will initially placein (Maui will initially place 64 idle jobs in the queue and
theidle job queue because of the specified queue policy, will attempt to
maintain this many jobsin the idle queue throughout
the duration of the simulation)
specifies how the simulator will
submit new jobsinto theidle
gueue. (NORMAL mode causes
jobs to be submitted at the time
one of the following:][ﬁceorggd NI ET”AGN%E’S"E tprﬁ S| MJOBSUBM SSI ONPOLI CY NORVAL
SIMJOBSUBMISSIONPOLICY CN:SE'\SATA,\ALI\,ITCI%I\SSILZTPAFII\]-ITJOBDEPTH' or |[CONSTANTJOBDEPTH and’ CONSTANTPSDEPTH (Mal.“ W.i” subm.it.job.swith the relativetimg
attempt to maintain an idle distribution specified in the workload trace file.)
queue of
<SIMINITIALQUEUEDEPTH>
jobs and procseconds
respectively)
specifies whether or not maui
one of the following: will filter nodes based on
SIMNODECONFIGURATION UNIFORM or NORMAL NORMAL resource configuration while
running asimulation
specifies the maximum number
SIMNODECOUNT <INTEGER> 0 (no limit) of nodes maui will load from the
simulation resource file
specifies the file from which
maui will obtainnode SI MRESOURCETRACEFI LE traces/ nodes. 1
information when running in o) o
SIMRESOURCETRACEFILE <STRING> traces/resource.trace smulation mode. Maui will ~ |(Maui will obtain node traces when running in
attempt to locate the file relative [Simulation mode from the .
to <MAUIHOMEDIR> unless |[<MAUIHOMEDIR>/ t r aces/ nodes. 1 file)
specified as an absolute path
specifies the random delay
added to the RM command base [S! MRVRANDOVDELAY 5
SIMRMRANDOMDELAY <INTEGER> 0 delay accumulated when making (Maui will add arandom delay of between 0 and 5
any resource manager call in- |saconds to the simulated time delay of all RM calls)
simulation mode
specifies on which scheduling |S] MSTOPI TERATI ON 1
. . iteration a maui simulation will
SIMSTOPITERATION <INTEGER> 0 (no stop iteration) stop and was for acommand to |(Maui should stop after the first iteration of simulated
resume scheduling scheduling and wait for admin commands)
determines wall time speedup. SIMITMERATIO 10
SIMTIMERATIO <INTEGER> 0 (no time ratio) Simulated Maui time will (Maui simulation time will advance 10 times faster

advance <SIMTIMERATIO> *
faster than real wall time.

than real world wall time. For example, in 1 hour,
Maui will process 10 hours of simulated workload)

SIMWORKLOADTRACEFILE

<STRING>

traces/workload.trace

specifies the file from which
maui will obtain job information
when running in simulation
mode. Maui will attempt to
locate thefile relative to
<MAUIHOMEDIR> unless
specified as an absolute path

SI MADRKLOADTRACEFI LE traces/jobs. 2

(Maui will obtain job traces when running in
simulation mode from the
<MAUIHOMEDIR>/traceg/jobs.2 file)

If set to SHARED, allowsa
standing reservation to utilize
resources aready allocated to
other non-job reservations.

SRACCESS] 2] SHARED

- Standing reservation '2' may access resources
SRACCESS[X] DEDICATED or SHARED DEDICATED Other\Nl_se, th&_ee other éllocatedgto existing standi% nd administrative
reservations will blqck resource | ey ati ons)
access. (See Managing
Reservations)
Spedf-i;f eéhat jobstwith the " SRACCOUNTLI ST[1] ops st af f
. . i nts m
SRACCOUNTLIST[X] list of valid account names [NONE] f‘gﬁrc& C":‘;]‘g.“n eé Wﬁ{“ﬁhi: (jobs using the account ops or st af f are granted
reservation access to the resources in standing reservation '1')
specifies the account towhich |SRCHARGEACCOUNT[1] st eve
. maui will ch, lidl |
SRCHARGEACCOUNT[X] any valid accountname [NONE] Wiatl;lin the?’ei?\?a?li ond(si(z:ayt?]? (Maui will charge al idle cycles within reservations
allocation bank) supporting standing reservation 1 to user 'steve')
one or more of the following
<ATTR>=<VALUE> pairs
ACCOUNTLIST
CHARGEACCOUNT
CLASSLIST
DAYS
DEPTH
ENDTIME
FLAGS
GROUPLIST
HOSTL I ST SRCF({ fast] STARTTI ME=9: 00: 00 ENDTI ME=15: 00: 00
JOBATTRLIST specifies attributes of a standing |SRSEQ fast] HOSTLI ST=node0| 1-4] $ o
NODEFEATURES reservation. Availablein Maui | o Son SO ow
SRCFG[X] PARTITION [NONE] 3.2 and higher. See Managing |(Maui will create a standing reservation running from
PERIOD Reservations for details. 9:00 AM to 3:00 PM on nodes 1 through 4 accessible
PRIORITY - by jobs with QOS high or low.)
PROCLIMIT
QOSLIST
RESOURCES
STARTTIME
TASKCOUNT
TASKLIMIT
TIMELIMIT
TPN
USERLIST
WENDTIME

WSTARTTIME

specifies that jobs requiring any
of these classes may use the

SRCLASSLI ST[2] interactive

SRCLASSLIST[X] list of valid class names [NONE] . >Y o= |(maui will alow all jobs requiring any of the classes
resources contained within this - |jisteq access to the resources reserved by standing
reservation reservation '2')
one or more of the following (space .
delimited) specifies which days of the SRDAYS[1] Mon Tue Wed Thu Fri
SRDAY S[X] Mon Tue Wed Thu Fri Sat Sun [ALL] week the standing reservation (standing reservation ‘1’ will be active on Monday thru
or will be active Friday)
[ALL]
specifies the number of standing SRDEPTH 1] 7
SRDEPTHI[X] <INTEGER> 2 reservations which will be (specifies that standing reservations will be created for
created (one per day) standing reservation '1' for today, and the next 6 days)
STSTARTTI ME[2] 8: 00: 00
specifies the time of day the SRENDTI ME[2] 17: 00: 00
SRENDTIME[X] [[HH:IMM:]SS 24:00:00 standing reservation becomes
inactive (standing reservation '2' is active from 8:00 AM until
5:00 PM)
specifies the required node SRFEATURES[3] wi de f ddi
SRFEATURES[X] space delimited list of node features [NONE] features for nodes which will be (all nodes used in the standing reservation must have
part of the standing reservation - |th the 'wide' and 'fddi* node attributes)
colon delimited list of zero or more of the
following flags:
SINGLEUSE* , , , SRFLAGS[1] BYNAME
BYNAME specifes special reservation o
SRFLAGS PREEM PTEE* [NONE] attributes. See Managing (Jobs may only access the resources within this
SLIDEFORWARD* Reservations for details. r&eer\llation if they explicitly request the reservation 'by
FORCE name
(only enabled in Maui 3.2 and later)
SRGROUPLI ST[1] staff ops speci al
specifies the groups which will SRCLASSLI ST[1] interactive
SRGROUPLIST[X] one or more space delimited group names |[ALL] be allowed access to this (Maui will allow jobs with the listed group ID's or
standing reservation which request the job class 'interactive' to use the
resources covered by standing reservation 1.)
specifies the set of host from
which Maui can search for SRHOSTLI ST[3] node001 node002 node003
resources to satisfy the SRRESOURCES[3] PROCS=2; MEME512
reservation. If SRTASKCOUNT[3] 2
SRHOSTLIST[X] one or more space delimited host names [ALL] SRTASKCOUNT isaso

specified, only
<SRTASKCOUNT> tasks will
bereserved. Otherwise, all
hosts listed will be reserved.

(Maui will reserve 2 tasks - with 2 processors and 512
MB each, using resources located on node001,
node002, and/or node003)

SRMAXTIME[X]

[[[DD:]JHH:]MM:]SS

-1 (no time based access)

specifies the maximum allowed
overlap between athe standing
reservation and ajob requesting
resource access

SRVMAXTI ME[6] 1:00: 00

(Maui will alow jobs to access up to one hour of
resources in standing reservation 6)

SRNAME[X]

<STRING>

[NONE]

specifies name of standing
reservation <xX>

SRNAME[1] interactive

(The name of standing reservation '1' is 'interactive’)

specifies the partition in which

SRPARTI TION[0] OLD

SRPARTITION[X] <STRING> [ALL] the standing reservation should (only select resource for standing reservation 0 in

be created partition 'OL D)
o " SRPERI OD[1] VEEK

SRPERIOD[X] one of DAY, WEEK, or INFINITY DAY Spedfiesthe pertodlaity of the _ _ _
standing reservation (each standing reservation covers a one week period)
specifies that jobs with the listed [SRQOSLI ST[1] 1 3 4 5

SRQOSLIST[X] zero or more valid QOS names [NONE] QOS names can access the (maui will allow jobs using QOS 1, 3, 4, and 5 to use
reserved resources the reserved resources)
specifies what resources
constitute a single standing
reservation task. (each task
must be able to obtain all of its

S st (Al ol Soporied | |SRRESOURCES[1] PROCS=1; MEME512
semicolon delimited <ATTR>=<VALUE> [PROCS=-1 (All processors
SRRESOURCES[X] (All p resources currently include the

pairs

available on node)

following:

PROCS (number of processors)
MEM (real memory in MB)
DISK (local disk in MB)
SWAP (virtual memory in MB)

(each standing reservation task will reserve one
processor and 512 MB of real memory)

specifies the time of day the

SRSTARTTI ME[1] 08: 00: 00
SRENDTI ME[1]~ 17: 00: 00

SRSTARTTIME[X] [[HH:]IMM:]SS 00:00:00 standing reservation becomes
active (standing reservation '1' is active from 8:00 AM until
5:00 PM)
SRRESOURCES] 2] PROCS=1; MEM=256
ifiesh asks hould SRTASKCOUNT[2] 16
ecifies how m sshou
SRTASKCOUNTI[X] <INTEGER> 0 Epe reserved for t?(/e reservation |(standing reservation '2' will reserve 16 tasks worth of
resources, in this case, 16 procs and 4 GB of rea
memory)
specifies how SRMAXTIME
access status will be combined
with other standing reservation
access methods to determine job
access. If SRTIMELOGIC s
set to OR, ajob is granted SRMVAXTI MVE[5] 1: 00: 00
access to the reserved resources |[SRUSERLI ST[5] carol charles
T SRTI MELOJ ([5] AND
SRTIMELOGIC[X] AND or OR OR If it meets the MAXTIME sl

criteria or any other access
criteria(i.e.,, SRUSERLIST) If
SRTIMELOGIC isset to AND,
ajob isgranted access to the
reserved resources only if it
meets the MAXTIME criteria
and at least on other access
criteria

(Maui will alow jobs from users carol and charlesto
use up to one hour of resources in standing reservation
5)

SRTPN[X]

<INTEGER>

0 (no TPN constraint)

specifies the minimum number
of tasks per node which must be
available on eligible nodes.

SRTPN[2] 4
SRRESOURCES[2] PROCS=2; MEM=256

(Maui must locate at least 4 tasks on each node that is
to be part of the reservation. That is, each node
included in standing reservation '2' must have at least 8
processors and 1 GB of memory available)

specifies which users have

SRUSERLI ST[1] bob joe nary

SRUSERLIST[X] space delimited list of users [NONE] access to the resources reserved (users bob, joe and mary can all access the resources
by this reservation reserved within this reservation)
o SRSTARTTI ME[1] 1:08: 00: 00
specifies the week offset at SRENDTI ME[1] 5: 17: 00: 00
SRWENDTIME[X] [[[DD:]HH:IMM:]SS 7:00:00:00 which the stand reservation
should end (standing reservation '1' will run from Monday 8:00
AM to Friday 5:00 PM)
N SRSTARTTI ME[1] 1: 08: 00: 00
specifies the week offset at SRENDTI ME[1] 5:17: 00: 00
SRWSTARTTIME[X] [[[DD:]JHH:]MM:]SS 0:00:00:00 which the standing reservation
should start (standing reservation '1' will run from Monday 8:00
AM to Friday 5:00 PM)
specifies the directory in which
STATDIR <STRING> stats Maui statisticswill be STATDIR /var/adm maui/stats
maintained
list of zero or more space delimited specifies system-wide default o])
<ATTR>=<VALUE> pairs where <ATTR> attributes. Seethe SYSCFG PLI ST=Parti tionl QDEF=hi ghprio
isone of the following: Attribute/Flag Overview for by default. all iobswill have access to partition
SYSCRG PRIORITY, FSTARGET, QLIST, QDEF, [NONE] more information. fsgrti ti 6nljand will usethe QOS hipghpri 0)
PLIST, PDEF, FLAGS, or afairness policy NOTE: Only availablein Maui
specification. 3.0.7 and higher.
specifies the priority weight
SWAPWEIGHT <INTEGER> 0 assigned to the virtual memory |SWAPWEI GHT 10
request of ajob
specifies the walltime for jobs SYSTEMDEFAULTJOBWALLTI ME 1: 00: 00: 00
SYSTEMDEFAULTJOBWALLTIME ([[[DD:]JHH:]IMM:]SS 10:00:00:00 which do not explicitly set this (Maui will assign awallclock limit of 1 day to jobs
value which do not explicitly specify awallclock limit)
specifies the maximum number SYSTEMVAXJOBPRCC 256
SYSTEMMAXPROCPERJOB <INTEGER> -1 (NOLIMIT) of processors that can be (Maui will reject jobs requesting more than 256
requested by any singlejob Processors)
SYSTEMVAXJ OBPROCSECOND 86400
specifies the maximum number | \14;i will reject jobs requesting more than 86400
SYSTEMMAXPROCSECONDPERJOB |<INTEGER> -1 (NO LIMIT) of proc-seconds that can be procs seconds. i.e., 64 processors * 30 minutes will be
requested by any single job rejected, while a 2 processor * 12 hour job will be
alowed to run)
specifies the maximum amount SYSTEMVAXJOBWALLTI ME 1: 00: 00: 00
SYSTEMMAXJOBWALLTIME [[[DD:]HH:IMM:]SS -1 (NOLIMIT) of wallclock time that can be (Maui will reject jobs requesting more than one day of
requested by any single job walltime)
specifies the weight to be
TARGWEIGHT <INTEGER> 0 applied to ajob's queuetime and |- \peeTyEl GHT - 1000

expansion factor target
components

http://supercluster.org/documentation/maui/jobflagoverview.html

specifies how job tasks should

TASKDI STRI BUTI ONPCLI CY DEFAULT

TASKDISTRIBUTIONPOLICY oneof DEFAULT or LOCAL DEFAULT be mapped to allocated) -)
resources. (Maui should use standard task distribution algorithms)
specifies the functionsto be TRAPFUNCTI ON

TRAPFUNCTION <STRING> [NONE] trapped Updat eNodelUt i | i zati on| Get NodeSResTi ne

TRAPJOB <STRING> [NONE] specifiesthe jobsto betrapped |TRAPJOB buf fy. 0023. 0

TRAPNODE <STRING> [NONE] specifies the nodes to be trapped |TRAPNODE node001| node004| node005

TRAPRES <STRING> [NONE] ﬂoa%gd%the reservationstobe | -paopes i nteract i ve. 0. 1
specifies the weight assigned to

USAGEWEIGHT <INTEGER> 0 the percent and total job usage |USAGEVEI GHT 100
subfactors

USAGEPERCENTWEIGHT <INTEGER>
specifies whether or not job USENMACHI NESPEED ON
wallclock limits should be ; TN i .00

USEMACHINESPEED ON or OFF OFF . (job <X> specifying awallclock limit of 1:00:00
scaled by the machine speed of |,q1d be given only 40 minutesto run if started on a
the node(s) they are running on. |ode with a machine speed of 1.5)

list of zero or more space delimited specifies user specific] _)

<ATTR>=<VALUE> pairswhere <ATTR> attributes. Seetheflag USERCFQ j ohn] MAXJOB=50 QDEF=hi ghprio

is one of the following: overview for a description of i i i i
USERCFG[<USERID>] [NONE] =t = (up to 50 jobs submitted under the user ID j ohn will

PRIORITY, FSTARGET, QLIST, QDEF, legal flagvalues. e allowed to exectte simultaneously and will be

PLIST, PDEF, FLAGS, or afairness policy NOTE: Only availablein Maui |assigned the QOS hi ghpr i o by default.)

specification. 3.0.7 and higher.

specifies the weight assigned to

USERWEIGHT <INTEGER> 0 the specified user priority (see [USERWEI GHT 100
Credential Priority Factor)
specifies whether or not job
prioritization should be based on
the time the job has been
digibletorun, i.e, idle and USESYSTEMQUEUETI ME OFF
meets all faimess policies (ON) |the queuetime and expansion factor components of a

USESYSTEMQUEUETIME ON or OFF OFF or thetime the job has beenidle ;qtys priority will be calculated based on the length of
(OFF). NOTE: InMaui 308 ltime the job has been in the idle state.)
and higher, this parameter has | (see QUEUETIMEFACTOR for more info)
been superseded by the
JOBPRIOACCRUALPOLICY
parameter.
specifies the maximum total
pre-weighted contribution to job
priority which can be XFCAP 10000

XFCAP <DOUBLE> 0 (NO CAP) contributed by the expans on (Mauii will not allow ajob's pre-weighted X Factor
factor component. Thisvalueis | ity component to exceed the value 10000)
specified as an absolute priority
value, not as a percent.

o -] XFM NWCLI M T 0: 01: 00
specifies the minimum job ob o] h] ¢ walldlock i
L] wallclock limit that will be obs requesting less than one minute of wallclock time
XFMINWCLIMIT [[[DD:]HH:IMM:]SS -1(NOLIMIT) will betreated asif their wallclock limit was set to one

considered in job expansion
factor priority calculations

minute when determining expansion factor for priority
calculations)

http://supercluster.org/documentation/maui/jobflagoverview.html
http://supercluster.org/documentation/maui/jobflagoverview.html

XFWEIGHT

<INTEGER>

specifies the weight to be
applied to ajob's minimum
expansion factor beforeit is
added to the job's cumulative
priority

XFWEI GHT 1000

(Maui will multiply ajob's XFactor value by 1000 and
then add this value to its total priority

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights RservedLD

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

Appendix G: Commands Overview

|Command |Description

canceljob |cancel job

changeparam (change in memory parameter setting

checkjob provide detailed status report for specified job

checknode |provide detailed status report for specified node

provide diagnostic report for various aspects of resources, workload, and

diagnose scheduling

mjobctl control and modify job

mnodectl control and modify nodes

mprof profile historical system performance

releasehold |release job defers and holds

rel easeres rel ease reservations

resetstats reset scheduler statistics

runjob force ajob to run immediately

schedctl manage scheduler activity

sethold set job holds

setqos modify job QOS settings

setres set an admin/user reservation

setspri adjust system priority of jobs

showbf show backfill window - show resources available for immediate use

showconfig |show current scheduler configuration

showaqrid show various tables of scheduling/system performance

showq show queued jobs

showres show existing reservations

showstart show estimates of when job can/will start

showstate show current state of resources

showstats |show usage statistics

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&erved;_:l

http://supercluster.org/documentation/maui/a.gmjobctl.html
http://supercluster.org/documentation/maui/a.gmnodectl.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

G.1: canceljob

canceljob JOB [JOB] ... [-h]

Purpose

Cancels the specified job(s).

Permissions

This command can be run by any Maui Scheduler Administrator and the owner of the job.
Parameters

JOB Job name you want to cancel.

Flags
-h Show help for this command.

Description

Thecancel j ob command is used to selectively cancel the specified job(s) (active, idle, or
non-gueued) from the queue.

Example 1

% cancel job -h

Shows help for this command.

Example 2

% cancel job fr1n04.981.0

Cancelsjob 981 running on Frame 1, Node 04.

Related Commands

This command is equivalent to the LoadLeveler | | cancel command.

Y ou can find job numbers with the showg command.

Default File L ocation

/ u/ 'l oadl / maui / bi n/ cancel j ob

Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

changeparam

Overview:

The changeparam command is used to dynamically change the value of any parameter
which can be specified in the maui . cf g file. The changes take affect at the beginning of the
next scheduling iteration. They are not persistent, only lasting until Maui is shutdown.

Format:
changeparam <PARAMETER> <VALUE>

<PARAMETER> isany valid Maui parameter
<VALUE> isany valid value for <PARAMETER>

Flags:
[NONE]
Access:
This command can be run by any user with 'ADMIN1" authority.
Example:
Set Maui's LOGLEVEL to 6 for the current run:
> changeparam LOGLEVEL 6

parameter s changed

Example:
Set Maui's ADMIN1 userlist to 'sys mike peter’
> changeparam ADMIN1 sys mike peter

parameter s changed

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

checkjob

checkjob [ARGS] <JOBID>

Purpose

Display detailed job state information and diagnostic output for specified job.

Per missions

This command can be run by any Maui admininstrator. Additionally, valid users may use
this command to obtain information about their own jobs.

Args Details
-A provide output in the form of parsable Attribute-Value pairs
-h display command usage help

check job start eligibility subject to specified throttling policy level.

- <POLICYLEVEL> o) | ey LEVEL > can be one of HARD, SOFT, or OFF

-r <RESID> check job access to specified reservation
-V display verbose job state and dligibility information
Description

This command allows any Maui administrator to check the detailed status and resources
requirements of ajob. Additionally, this command performs numerous diagnostic checks and
determinesif and where the could potentially run. Diagnostic checks include policy
violations (See the Throttling Policy Overview for details), reservation constraints, and job to
resource mapping. If ajob cannot run, atext reason is provided along with a summary of
how many nodes are and are not available. If the-v flag is specified, a node by node
summary of resource availability will be displayed for idle jobs.

If ajob cannot run, one of the following reasons will be given:

|Reason |Description
ljob has hold in place lone or more job holds are currently in place
linsufficient idle procs

adequate idle processors are available but these do not

idle procs do not meet requirements meet job requirements

http://supercluster.org/documentation/maui/mauiadmin#fairness

start date not reached

the future

job has specified a minimum 'start date' which is still in

lexpected state isnot idle

ljob isin an unexpected state

|stateis not idle

ljobisnot intheidle state

|dependency is not met

ljob depends on another job reaching a certain state

rejected by policy

|j ob start is prevented by athrottling policy

If ajob cannot run on a particular node, one of the following 'per node' reasons will be

given:

IClass INode does not allow required job class/queue
ICPU INode does not possess required processors

Disk INode does not possess required local disk
|Features INode does not possess required node features
IMemory INode does not possess required real memory
INetwor k INode does not possess required network interface
State INode is not Idle or Running

The checkjob command displays the following job attributes:

|Attribute \Value IDescription
Account <STRING> J!\(l)f;l)me of account associated with
Length of time job actually ran.
Actual Run Time [[[[DD:]HH:]MM:]SS NOTE: Thisinfoonly display in
simulation mode.
|Arch I<STRING> INode architecture required by job
[<CLASSNAME> <CLASS ~ [lameof classqueue required by
Class job and number of classinitiators
COUNT>] :
required per task.
Dedicated
Resources Per Task <XXX>
Disk <INTEGER> Amo_unt of local disk required by
job (in MB)
|Exec Size I<INTEGER> |Size of job executable (in MB)
|Executable I<STRING> IName of job executable
Square bracket delimited list of . .
Features <STRING>S Node features required by job
Group <STRING> Nf':lm(_e of UNIX group associated
with job

Holds Zero of more of User, System, and [Types of job holds currently
Batch applied to job
Image Size I<INTEGER> |Size of job data (in MB)
Memory <INTEGER> g\erpﬁggtetzli‘r:el\ilgemory required
Network <STRING> 'lI)'))//?sbof network adapter required
|Nodecount]<| NTEGER> |Number of nodes required by job
Opsys <STRING> J!\(I)ct;de operating system required by
Partition Mask ALIT or colon delimited list of List of partitions the job has access
partitions to
Number of processor-equivalents
PE <FLOAT> requested by job
Q0S <STRING> jC())ll;al ity of Service associated with
. Time job was submitted to
QueueTime <TIME> resource management system
StartCount <INTEGER> Q;Te%e{);fwtl'a”l‘f“’b has been
|StartPriority I<INTEGER> |Start priority of job
|State |One of Idle, Starting, Running, etc |Current Job State
|Total Tasks I<INTEGER> INumber of tasks requested by job
|User I<STRING> IName of user submitting job
Wall Time: [[[DD:]HH:]MM:]SS ';uen”r%tr?g"f time job has been
\WallTimeLimit: [[[[DD:]HH:]MM:]SS IMaximum walltime allowed to job
In the above table, fields marked with an asterisk (*) are only displayed when set or when the -v flag is
specified.
Examples
Example 1

> checkj ob -v job05
checking job job05

State: ldle (User:
Wal Il Time: 0:00:00 (Limt:

Subm ssion Tine: Mn Mar

Total Tasks: 2

john Goup: staff

Account: [NONE])

6: 00: 00)

2 06:34:04

Req[0] TaskCount: 2 Partition: ALL

Net wor k: hps_user Menory >= 0 Disk >= 0 Features: [NO\E]
Opsys: Al X43 Arch: R6000 dass: [batch 1]

ExecSi ze: 0 |nmgeSize: 0

Dedi cat ed Resources Per Task: Procs: 1

NodeCount: O

I VD: [NONE] Executable: cnd

QOS: [DEFAULT] Bypass: 0 StartCount: O

Partition Mask: ALL

Hol ds: Bat ch

batch hold reason: Admn

PE: 2.00 StartPriority: 1

job cannot run (job has hold in place)

job cannot run (insufficient idle procs: 0 available)

Note that the example job cannot be started for two different reasons.

« It hasabatch hold in place.
e There arenoidleresources currently available

See also:
diagnose -| - display additional detailed information regarding jobs

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/documentation/maui/commands/diagnosejobs.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

checknode

checknode NODE [-h]

Purpose

Displays state information and statistics for the specified node.
Permissions

This command can be run by any Maui Scheduler Administrator.
Parameters

NODE Node name you want to check.

Flags
-h Help for this command.

Description

This command shows detailed state information and statistics for nodes that run jobs (those running LoadL_st art d).
NOTE
This command returns an error message if it is run against a scheduling node (one running schedd).

The following information is returned by this command:
Disk Disk space available
Memory Memory available
Swap Swap space available
State Node state
Opsys Operating system
Arch Architecture
Adapters Network adapters available
Features Featuresavailable
Classes Classes available
Frame IBM SP frame number associated with node
Node IBM SP node number associated with node
StateTime Time node has been in current state in HH:MM:SS notation
Downtime Displayed only if downtime is scheduled
Load CPU Load (Berkley one-minute load average)
TotalTime Total time node has been detected since statistics initialization expressed in HH:MM:SS notation

UpTime Total time node has been in an available (Non-Down) state since statistics initialization expressed in
HH:MM:SS notation (percent of time up: UpTime/Total Time)

BusyTime Total time node has been busy (allocated to active jobs) since statistics initialization expressed in
HH:MM:SS notation (percent of time busy: BusyTime/Total Time)

After displaying thisinformation, some analysisis performed and any unusual conditions are reported.
Example

% checknode fr26nl10

Checki ng Node fr26n10. mhpcc. edu

D sk (KB): 2076 Menory (MB): 512 Swap (KB): 470772
St at e: Down Qpsys: Al X41 Arch: R6000
Adapters: [ethernet]

Features: [Thin][Dedi cat ed]

Cl asses: [batch][nedi um

Frame: 26 Node: 10

StateTine: Node has been in current state for 5:02:23

DownTi me: (-26844 Seconds/-7.46 Hours) Thu Sep 4 09:00:00

Load: 0. 009

Tot al Ti nme: 30:18:29 UpTi ne: 23:28:51 (77.47% BusyTi ne: 19: 21: 46 (63.89%

Related Commands

Further information about node status can be found using the showst at e command.

Y ou can determine scheduling nodes with the LoadLeveler | | st at us command (nodes that have Avai | inthe
Schedd column).

Default File Location
{ u/ | oadl / maui / bi n/ checknode
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

diagnose (Under Construction)

Overview:

The 'diagnose’ command is used to display information about various aspects of scheduling
and the results of internal diagnostic tests

Format:
di agnose [-a [<ACCOUNTI D>]] /| Di agnose Accounts
[-f] /| Di agnose Fairshare
[-g [<GROUPI D>]] /| Di agnose G oups
[-] [<JOBID>]] /| Di agnose Job
[-m] /1 Di agnose Franes
[-n [-t <PARTITION>] [<NODEID>]] // Di agnose
Nodes
[-p [-t <PARTITION>]] /1 Diagnose Priority
[-g [-1 <PO.ICYLEVEL>]] /| Di agnose Job Queue
[-Q] /| Di agnose QOS
Configuration
[-r] /1 Di agnose
Reservati ons
[-t] /1 Di agnose
Partitions
[-u [<USERI D>]] /| Di agnose Users

Flags:
-a Show detailed information about accounts
-f Show detailed information about fairshare configuration and status
-] Show detailed information about jobs

Example:

> diagnose -r

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/documentation/maui/commands/diagnoseaccounts.html
http://supercluster.org/documentation/maui/commands/diagnosefairshare.html
http://supercluster.org/documentation/maui/commands/diagnosegroups.html
http://supercluster.org/documentation/maui/commands/diagnosejobs.html
http://supercluster.org/documentation/maui/commands/diagnosenodes.html
http://supercluster.org/documentation/maui/commands/diagnosepriority.html
http://supercluster.org/documentation/maui/commands/diagnosequeue.html
http://supercluster.org/documentation/maui/commands/diagnoseqos.html
http://supercluster.org/documentation/maui/commands/diagnosereservations.html
http://supercluster.org/documentation/maui/commands/diagnosepartition.html
http://supercluster.org/documentation/maui/commands/diagnoseuser.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

profiler

XXX INFO NOT YET AVAILABLE

Purpose

XXX

Permissions

This command can be run by any Maui Scheduler Administrator.

Parameters

Flags

Description

Example

Related Commands
Default File L ocation

/ u/'l oadl / bgs/ bi n/
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

releasehold

releasehold [-h|-a]-b] JOBEXP

Purpose

Release hold on specified job(s).

Permissions

This command can be run by any Maui Scheduler Administrator.
Parameters

JOBEXP Job expression of job(s) to release.

Flags
-a Release al types of holds (user, system, batch) for specified job(s).
-b Release batch hold from specified job(s).

-h Help for this command.

Description

This command allows you to release batch holds or all holds (system, user, and batch) on
specified jobs. Any number of jobs may be released with this command.

Example 1

> rel easehold -b fr17n02. 1072.0
Batch hold rel eased on all specified jobs

In this example, a batch hold was released from this one job.
Example 2

> rel easehold -a fr17n02.1072.0 fr15n03. 1017.0
Al'l holds released on all specified jobs

In this example, all holds were released from these two jobs.

Related Commands

Y ou can place ahold on ajob using the set hol d command.

Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reﬂerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

releaseres

releaseres[ARGUMENTS] <RESERVATION D> [<RESERVATION ID]...
ARGUMENTS:
[-h] /| USAGE HELP

Purpose

Release existing reservation.

Access

Users can use this command to release any reservation they own. Level 1 and level 2 Maui
administrators may use this command to release any reservation.
This command can be run by any user.

Parameters

RESERVATION ID Name of reservation to release.

Flags

-h Help for this command.

Description

This command allows Maui Scheduler Administratorsto release any user, group, account,
job, or system reservation. Users are allowed to release reservations on jobs they own. Note
that releasing areservation on an active job has no effect since the reservation will be
automatically recreated.

Example
Release two existing reservations.

% rel easeres system 1l bob. 2

rel eased User reservation 'system 1’
rel eased User reservation 'bob. 2

Related Commands

Y ou can view reservations with the showr es command.
Y ou can set areservation using theset r es command.

Notes

See the Reservation document for more information.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

resetstats

resetstats [-h]

Purpose

Resets statistics to start-up state.

Permissions

This command can be run by any Maui Scheduler Administrator.
Parameters

None.

Flags

-h Help for this command.

Description

This command resets all internally-stored Maui Scheduler statisticsto the initial start-up state
as of the time the command was executed.

Example

% resetstats

Statistics Reset at tine Wed Feb 25 23:24:55 1998

Related Commands

None.

Default File L ocation

[u/l oadl /maui / bin/resetstats
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

runjob

runjob [ARGS] <JOBID>
Purpose

Immediately run the specified job.

Permissions

This command can be run by any Maui administrator.

Parameters
JOBID Name of thejob to run.

Args Description

Clear job parameters from previous runs (used to clear PBS

¢ neednodes attribute after PBS job launch failure)

-f Attempt to force the job to run, ignoring throttling policies

-h Help for this command.

-n <NODEL [ST> Attempt to start the job using the specified nodelist where nodenames

are comma or colon delimited

-p <PARTITION> Attempt to start the job in the specified partition

-S Attempt to suspend the job
X Attempt to force the job to run, ignoring throttling policies, QoS
constaints, and reservations
Description

This command will attempt to immediately start a job.

Example

> runjob cluster. 231
job cluster.231 successfully started

This example attempts to run job cluster.231.

See Also:

cancel | ob - cancel ajob.
checkj ob - show detailed status of ajob.
showg - list queued jobs.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved;_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

schedctl

Overview:

The 'schedctl' command controls various aspects of scheduling behavior. It isused to
manage scheduling activity, kill the scheduler, and create resource trace files.

Format:
schedctl { -k |-n|-r [<RESUMETIME>] |{ -s|-S} [<ITERATION>] }

Flags:
-k
shutdown the scheduler at the completion of the current scheduling iteration
-n
dump anode table trace to <STDOUT> (for use in simulations)
-r [<RESUMETIME>]
resume scheduling in <RESUMETIME> seconds or immediately if not specified
-s[<ITERATION>]

suspend scheduling at iteration <ITERATION> or at the completion of the current
scheduling iteration if not specified. If <ITERATION> isfollowed by the letter 'I', maui will
not process client requests until this iteration is reached.

-S[<ITERATION>]

suspend scheduling in <ITERATION> more iterations or in one more iteration if not
specified. If <ITERATION> isfollowed by the letter 'I', maui will not process client requests
until <ITERATION> more scheduling iterations have been completed.

Example:
Shut maui down
> schedctl| -k

maui shutdown

Example:
Stop maui scheduling
> schedctl -s

maui will stop scheduling immediately

Example:
Resume maui scheduling
> schedctl -r

maui will resume scheduling immediately

Example:

Stop maui scheduling in 100 more iterations. Specify that maui should not respond to client
requests until that point is reached.

> schedctl -S 100l

maui will stop schedulingin 100 iterations

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

sethold

sethold [-b | -h] JOB [JOB] [JOB] ...

Purpose

Set hold on specified job(s).

Permissions

This command can be run by any Maui Scheduler Administrator.
Parameters

JOB Job number of job to hold.

Flags

-b Set abatch hold. Typically, only the scheduler places batch holds. Thisflag allows an
administrator to manually set a batch hold.

-h Help for this command.

Description
This command allows you to place a hold upon specified jobs.
Example

% sethold -b fr17n02. 1072.0 fr15n03. 1017.0

Batch Hold Placed on Al Specified Jobs

In this example, a batch hold was placed on job fr17n02.1072.0 and job fr15n03.1017.0.
Related Commands

Release holds with ther el easehol d command.

Default File L ocation
/[u/ |l oadl / maui / bi n/ set hol d

Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved;_lzl

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

setqos

setqos[-h] QOS JOB
Purpose
Set Quality Of Service for a specified job.
Permissions
This command can be run by any user.
Parameters

JOB Job number.

QOS Quality Of Servicelevel. Rangeis O (lowest) to 8 (highest). Jobs default to a QOS
level of O, unless the user, group, or account has a different value specified in the
fairshare configuration file (f s. cf g). Users are allowed to set the QOS for their
own jobs in the range of 0 to the maximum value allowed by the user, group, and/or
account which owns the job.

Flags

-h Help for this command.

Description

This command allows you to set the Quality Of Service (QOS) level for aspecified job. Users
are allowed to use this command to change the QOS of their own jobs.

Example

% setqos 3 fr28nl13.1198.0

Job QOS Adj usted

This example sets the Quality Of Service to avalue of 3 for job number fr28n13.1198.0.
Related Commands
None.

Default File L ocation

/ u/ | oadl / maui / bi n/ set gos
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved;_:

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

setres

setres [ARGUMENTS] <RESOURCE_EXPRESSION>
ARGUMENTS:

[-a<ACCOUNT_LIST>]

[-c<CHARGE_SPEC>]

[-d <DURATION>]

[-e<ENDTIME>]

[-f <FEATURE_LIST>]*

[-g<GROUP_LIST>]

[-h] Il USAGE HELP
[-n <NAME>]

[-p <PARTITION>]

[- <QUEUE_LIST>]*// (ie CLASS LIST)
[-Q <QOSLIST>]

[-r <RESOURCE_DESCRIPTION>]

[-S<STARTTIME>]

[-U<USER_LIST>]

[- X <FLAGS>]

* NOTE: only availablein Maui 3.2 and higher.
Purpose

Reserve resources for use by jobs with particular credentials or attributes.
Access

This command can be run by level 1 and level 2 Maui administrators.

Parameters

IName Format IDefault

IDescription

ACCOUNT _LIST |[<STRING>[:<STRING>]... [NONE]

list of
accounts
that will be
alowed
access to the
reserved
resources

CHARGE_SPEC

<ACCOUNT>[,<GROUP>[,<USER>]]

[NONE]

specifies
which
credentials
will be
accountable
for unused
resources
dedicated to
the
reservation

CLASS LIST

<STRING>[:<STRING>]...

[NONE]

list of
classes that
will be
alowed
access to the
reserved
resource

DURATION

[[[DD:]HH:]MM:]SS

[[[DD:]HH:]MM:]SS

duration of
the
reservation
(not needed
if
ENDTIME
IS specified)

ENDTIME

[HH[:MM[:SS]]][_MO[/DD[/YY]]]
or
+[[[DD:]JHH:]MM:]SS

[INFINITY]

absolute or
relative time
reservation
will end (not
required if
Duration
specified)

FEATURE_LIST

<STRING>[:<STRING>]...

[NONE]

list of node
features
which must
be possessed
by the
reserved
resources

FLAGS

<STRING>[:<STRING>]...

[NONE]

list of
reservation
flags (See
Managing
Reservations

for details)

GROUP LIST

<STRING>[:<STRING>]...

[NONE]

list of
groups that
will be
alowed
access to the
reserved
resources

NAME

<STRING>

name set to first
name listed in ACL
or SYSTEMIif no
ACL specified

name for
new
reservation

PARTITION

<STRING>

[ANY]

partition in
which
resources
must be
located

QOS LIST

<STRING>[:<STRING>]...

[NONE]

list of QOS's
that will be
alowed
access to the
reserved
resource

RESOURCE_
DESCRIPTION

colon delimited list of zer or more of
the following <ATTR>=<VALUE>
pairs

PROCS=<INTEGER>
MEM=<INTEGER>

DI SK=<INTEGER>
SWAP=<INTEGER>

PROCS=-1

specifies the
resources to
be reserved
per task. (-1
indicates all
resources on
node)

RESOURCE_
EXPRESSION

ALL

or

TASKS{==>=} <TASKCOUNT>
or

Required Field. No
Default

specifiesthe
tasks to
reserve.
ALL
indicates all
resources
available
should be
reserved.
NOTE: if
ALL ora
host
expression
Is specified,
Maui will
apply the
reservation

<HOST REGEX>

regardless of
existing
reservations
and
exclusitivity
Issues. If
TASKS is
used, Maui
will only
alocate
accessible
resources.

STARTTIME

[HH[:MM[:SS]]][_ MO[/DD[/YY]]]
or
+[[[DD:]JHH:]MM:]SS

[NOW]

absolute or
relative time
reservation
will start

USER_LIST

<STRING>[:<STRING>]...

[NONE]

list of users
that will be
alowed
access to the
reserved
resources

Description

The setres command allows an arbitrary block of resources to be reserved for use by jobs
which meet the specifed access constraints. The timeframe covered by the reservation can be
specified on either an absolute or relative basis. Only jobs with credentials listed in the
reservation ACL (i.e., USERLIST, GROUPLIST,...) can utilize the reserved resources.
However, these jobs still have the freedom to utilize resources outside of the reservation. The
reservation will be assigned a name derived from the ACL specified. If no reservation ACL is
specified, the reservation is created as a system reservation and no jobs will be allowed access to
the resources during the specified timeframe (valuable for system maintenance, etc). Seethe
Reservation Overview for more information.

Reservations can be viewed using the showres command and can be released using the

rel easeres command.

Example 1

Reserve two nodes for use by users john and mary for a period of 8 hours starting in 24 hours

% setres -u john:mary -s +24:00:00 -d 8:00:00 TASKS==2
reservation 'john.1'

node001: 1
node005: 1

created on 2 nodes (2 tasks)

Example 2

Schedule a system wide reservation to allow a system maintenance on Jun 20, 8:00 AM until
Jun 22, 5:00 PM.

% setres -s 8:00:00_06/20 -e 17:00:00_06/22 ALL
reservation 'systeml' created on 8 nodes (8 tasks)

node001:
node002:
node003:
node004:
node005:
node006:
node007:
node008:

RPRRPRRPRRRRR

Example 3

Reserve one processor and 512 MB of memory on nodes node003 through node 006 for
members of the group staff and jobs in the interactive class

% setres -r PROCS=1:MEM=512 -g staff -l interactive 'node00[3-6]'
reservation 'staff.1" created on 4 nodes (4 tasks)

node003: 1
node004: 1
node005: 1
node006: 1

Related Commands

Use the showres command to view reservations.
Use the rel easeres command to rel ease reservations.
Use the diagnose -r command to analyze and present detailed information about reservations.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reaerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

setspri

setspri PRIORITY [-r] JOB
Purpose
Set or remove and absolute or relative system priority on a specified job.
Permissions
This command can be run by any Maui Scheduler Administrator.
Parameters

JOB Name of job.

PRIORITY System priority level. By default, this priority is an absolute priority overriding
the policy generated priority value. Rangeis O to clear, 1 for lowest, 1000 for
highest. If the'-r' flag is specified, the system priority is relative, adding or
subtracting the specified value from the policy generated priority. If arelative
priority is specified, any value in the range +/- 1000000000 is acceptable.

Flags
-h Help for this command.
-r Set relative system priority on job.

Description

This command allows you to set or remove a system priority level for a specified job. Any
job with a system priority level set is guaranteed a higher priority than jobs without a system
priority. Jobs with higher system priority settings have priority over jobs with lower system
priority settings.

Example 1

% setspri 10 fr13n03.24.0

Job System Priority Adjusted

In this example, a system priority of 10 is set for job fr13n03.24.0.

Example 2

% setspri 0 fr13n03.24.0

Job System Priority Adjusted

In this example, system priority is cleared for job fr13n03.24.0.
Example 3

> setspri -r 100000 job. 00001

Job System Priority Adjusted

In this example, the job's priority will be increased by 100000 over the value determine by
configured priority policy.

Related Commands
Usethecheckj ob command to check the system priority level, if any, for agiven job.
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

showbf

showbf
[-A] // show information accessible by (A)ny user, group, or account
[-a ACCOUNT]
[-c CLASSY
[-d DURATION]
[-f FEATURELIST]
[-g GROUP]
[-h]
[-m ['MEMCMP] MEMORY']
[-n NODECOUNT]
[-p PARTITION]
[-q QOS|
[-u USER]
[-v] /l VERBOSE

Purpose

Shows what resources are available for immediate use. NOTE: if specific information is not specified, showbf will
return information for the user and group running but with global access for other fields. For example, if -q <QOS>' is
not specified, Maui will return backfill information for ajob which could magically access all QOS based resources (ie,
resources covered by reservations with a QOS based ACL), if -c <CLASS>' is not specifed, it will return the info for
resources accessible to any class.

Permissions

This command can be run by any user.

Parameters
ACCOUNT Account name.
CLASS Class/queue required.

DURATION Time duration specified as the number of seconds or in [DD:]HH:MM:SS notation.
FEATURELIST Colon separated list of node features required.

GROUP Specify particular group.

MEMCMP Memory comparison used with the -m flag. Valid signs are >, >=, ==, <=, and <.

MEMORY Specifies the amount of required real memory configured on the node, (in MB), used with the -m
flag.

NODECOUNT Specify number of nodes for inquiry with -n flag.
PARTITION Specify partition to check with -p flag.

QOS Specify QOS to check with -q flag.

USER Specify particular user to check with -u flag.
PARTITION Specify partition to check with -p flag.

Flags

-A Show backfill information for al users, groups, and accounts. By default, showbf uses the default user, group,
and account 1D of the user issuing the showbf command.

-a Show backfill information only for specified account.
-d Show backfill information for specified duration.

-g Show backfill information only for specified group.
-h Help for this command.

-m Allows user to specify the memory requirements for the backfill nodes of interest. It isimportant to note that if
the optional MEMCMP and MEMORY parameters are used, they MUST be enclosed in single ticks (') to avoid
interpretation by the shell. For example, enter showbf -m ' ==256" to request nodes with 256 MB memory.

-n Show backfill information for a specified number of nodes. That is, this flag can be used to force showbf to
display only windows larger than a specified size.

-p Show backfill information for the specified partition.
-q Show information for the specified QOS.

-u Show backfill information only for specified user.

Description

This command can be used by any user to find out how many processors are available for immediate use on the
system. It is anticipated that users will use this information to submit jobs that meet these criteria and thus obtain quick
job turnaround times. This command incorporates down time, reservations, and node state information in determining
the available backfill window.

Example 1

% showbf
backFill w ndow (user: 'john' group: 'staff' partition: ALL) Mon Feb 16 08:28: 54

partition FAST:
9 procs available for 4:54:18

partition SLON
34 procs avail able for 10:25: 30
26 procs available for 7:00:19
1 proc available with no tinmelimt

In this example, ajob requiring up to 34 processors could be submitted for immediate execution in partition 2 as long
asit required less than 10 hours, 25 minutes. Likewise, jobs requiring up to 26 processors that complete in less than 7
hours could aso run in partition SLOW. A single-processor job with arbitrary wallclock limits could also runin this
partition.

In this example, the window is specifically for user j ohn in group st af f . Thisinformation isimportant because
processors can be reserved for particular users and groups, thus causing backfill windows to be different for each
person. Backfill window information for a non-default user, group, and/or account can be displayed using the - u,

- g, and - a flags, respectively. A backfill window with global user, group, and account access can be displayed using
the - Aflag.

Example 2
% showbf -r 16 -d 3:00: 00

backFill w ndow (user: 'john' group: 'staff' partition: ALL) Mon Feb 16 08:28: 54

partition ALL:
33 procs available with no tinme limt

In this example, the output verifies that a backfill window exists for jobs requiring a 3 hour runtime and at least 16
processors. Specifying job duration is of value when time based accessis assigned to reservations (i.e., using
SRMAXTIME)

Example 3
% showbf -m'>128'
backfill w ndow (user: 'john' group: 'staff' partition: ALL) Thu Jun 18 16:03: 04

no procs avail abl e

In this example, a backfill window is requested consisting for available processors located only on nodes with over
128 MB of memory. Unfortunately, in the example, no processors are available which meet this criteria at the present
time. :(

Related Commands
Use the showg command to show jobs in the various queues.
Usethedi agnose command to show the partitions.

Notes

See the Backfill document for more information.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Research and Development Group All Rights Reservedi_:]

http://supercluster.org/documentation/maui/backfill.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

showconfig

showconfig [-v] [-h]
Purpose

View the current configurable parameters of the Maui Scheduler.

Permissions

This command can berun by alevel 1, 2, or 3 Maui administrator.

Parameters

None.

Flags
-h Help for this command.

-v This optional flag turns on verbose mode, which shows al possible Maui Scheduler
parameters and their current settings. If this flag is not used, this command operates in
context-sensitive terse mode, which shows only relevant parameter settings.

Description

The showconfig command shows the current scheduler version and the settings of all 'in
memory' parameters. These parameters are set viainternal defaults, command line
arguments, environment variable settings, parameters in the maui.cfg file, and viathe
changeparam command. Because of the many sources of configuration settings, the output
may differ from the contents of the maui.cfg file. The output is such that it can be saved and
used as the contents of the maui.cfg fileif desired.

Example
> showconfig
maui schedul er version 3.0.2.0 (PID: 11080)

BACKFI LLPOLI CY FI RSTFI T
BACKFI LLMETRI C NCDES

ALLOCATI ONPQLI CY M NRESOURCE
RESERVATI ONPOLI CY CURRENTHI GHEST

IMPORTANT NOTE: the showconfig flag without the '-v' flag does not show the settings
of all parameters. It does show all major parameters and all parameters which arein effect
and have been set to non-default values. However, it hides other rarely used parameters and
those which currently have no effect or are set to default values. To show the settings of all
parameters, use the '-v' (verbose) flag. Thiswill provide an extended output. Thisoutput is
often best used in conjunction with the 'grep' command as the output can be voluminous.

Related Commands

Usethe changepar amcommand to change the various Maui Scheduler parameters.

Notes

See the Parameters document for details about configurable parameters.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&eerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

showgrid

showgrid STATISTICTYPE [-h]
Pur pose
Shows table of various scheduler statistics.
Permissions
This command can be run by any Maui Scheduler Administrator.
Parameters
STATISTICTYPE Vauesfor this parameter:

AVGBYPASS Average bypass count. Includes summary of job-weighted expansion bypass and total
samples.

AVGQTIME Average queue time. Includes summary of job-weighted queue time and total
samples.

AVGXFACTOR Average expansion factor. Includes summary of job-weighted expansion factor,
node-wei ghted expansion factor, node-second-wei ghted expansion factor, and total
number of samples.

BFCOUNT Number of jobs backfilled. Includes summary of job-weighted backfill job percent
and total samples.

BFNHRUN Number of node-hours backfilled. Includes summary of job-weighted backfill
node-second percentage and total samples.

JOBCOUNT Number of jobs. Includes summary of total jobs and total samples.

JOBEFFICIENCY Job efficiency. Includes summary of job-weighted job efficiency percent and total
samples.

MAXBYPASS Maximum bypass count. Includes summary of overall maximum bypass and total
samples.

MAXXFACTOR Maximum expansion factor. Includes summary of overall maximum expansion factor
and total samples.

NHREQUEST Node-hours requested. Includes summary of total node-hours requested and total
samples.

NHRUN Node-hours run. Includes summary of total node-hours run and total samples.

QOSDELIVERED Quality of service delivered. Includes summary of job-weighted quality of service
success rate and total samples.

WCACCURACY Wall clock accuracy. Includes summary of overall wall clock accuracy and total
samples.

NOTE
The STATISTICTYPE parameter value must be entered in uppercase characters.

Flags
-h Help for this command.

Description

This command displays a table of the selected Maui Scheduler statistics, such as expansion factor, bypass count, jobs,
node-hours, wall clock accuracy, and backfill information.

Example
% showgri d AVGXFACTOR

Average XFactor Gid

[NODES][00:02:00][00:04:00][00:08:00][00:16:00][00:32:00][01:04:00][02:08:00][
04:16:00][08:32:00][17:04:00][34:08:00][TOTAL]
[[

[1 [-------- 10 ---e-- 1L ---e- 1] -------- 1L ------- 1L - QRS 10
-------- I | BT TR R § SEEEEEEEE
[2 1] == [o-mmee [o-mmeee 1L e 1L -mmee [o-emeeee IL--meee 10
-------- O | e | B TRl | BEEEEEEEE
[4 1] -------- INEEETTEEE [TOEEETEEEE ITREEEETEEE IREEETTEEE [TREEETREEE Il 1.00 1]
-------- 10 112 2][--------][--------_][1.10 3]

8 [-------- 1 ------ - 10 ------- 1 - 1L ----e- 1l 1.00 2][1.24
2[--s-- 1L --meee 1L o-mee [115 4]

16 1[-------- [o-mmee J[o-mmeee [--meeee [-mmee J[101 2[-------- 10
-------- [------- [-==---=-][--------][101 2]
[32][-------- 10 ---e- 1L ---e- 1] -------- 1L ------- 1L 1L ---eee 10
-------- I | BT AT R R | SEEEEEEEE,
[64 [-------- 1 ----e- 1 ---e- 1] -------- 1 ------- QTS I REEEEEEEE 10
-------- N | e | Bl | AEEEEEEEE
[128][-------- [o-meeee [-meeee- 1L --meee 1L -meee [o-emeeee 1L--meee 10
-------- R | e | B R RIS [IR EEEES
[256][-------- 1L ---e- 1L e 1] -------- 1L -------- 1L ---ee- QRS 10
-------- I | T TR R § S EEEEEE
[TTOT][-------- [e [- [-emmmee- [-][101 2][1.00 3][1.24
2][112 2][-------- L -meee]
Job Weighted X Factor: 1.0888
Node Wi ghted X Factor: 1.1147
NS Wi ghted X Factor: 1.1900
Total Sanpl es: 9

The showgr i d command returns a table with data for the specified STASTICTYPE parameter. The left-most column shows the
maximum number of nodes required by the jobs shown in the other columns. The column heads indicate the maximum wall
clock time (in HH:MM:: SS notation) requested by the jobs shown in the columns. The data returned in the table varies by the
STATISTICTYPE requested. For table entries with one number, it is of the data requested. For table entries with two numbers,
the left number is the data requested and the right number is the number of jobs used to calculate the average. Table entries that
contain only dashes (-------) indicate no job has completed that matches the profile associated for thisinquiry. The bottom row
shows the totals for each column. Following each table is a summary, which varies by the STATISTICTYPE requested.

This particular example shows the average expansion factor grid. Each table entry indicates two pieces of information -- the
average expansion factor for al jobs that meet this slot's profile and the number of jobs that were used to calculate this average.
For example, the XFactors of two jobs were averaged to obtain an average X Factor of 1.24 for jobs requiring over 2 hours 8
minutes, but not more than 4 hours 16 minutes and between 5 and 8 nodes. Totals along the bottom provide overall X Factor
averages weighted by job, node, and node-seconds.

Related Commands

None.

Default File L ocation

/u/'l oadl / maui / bi n/ showgri d
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R&nervedl_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

showq

showq [-i | -r] [-p PARTITION] [-h]

Purpose

Shows information about running, idle, and non-queued jobs.

Permissions

This command can be run by any user. However, the -i and -r flags can only be used by Maui Scheduler Administrators.
Parameters

PARTITION Partition number that you wish to inspect.

Flags
-h Help for this command.
- Used by Maui Scheduler Administrators to display idle jobs only.
-p Inspect partition specified with PARTITION parameter.
-r Used by Maui Scheduler Administratorsto display running jobs only.

Description

Since LoadLeveler is not actually scheduling jobs, the job ordering it displaysis no longer valid. The showg command displays
the actual job ordering under the Maui Scheduler. When used without flags, this command displays al jobsin active, idle, and
non-gqueued states.

Example 1
% showg
ACTIVE JOBS--------------------

JOBNAME USERNAME STATE PROC REMAI NI NG STARTTI ME
fr28n13. 709. 0 dsheppar Runni ng 1 0:55:09 Fri Aug 29 13:27:36
fr28n07. 2303. 0 dsheppar Runni ng 1 0:55:10 Fri Aug 29 13:27:37
fr17n08. 1349. 0 dsheppar Runni ng 1 1:02:29 Fri Aug 29 13:34:56
fr28n15. 4355. 0 dsheppar Runni ng 1 1:03: 08 Fri Aug 29 13:35:35
fr28n05. 2098. 0 ebyl aska Runni ng 16 1:25:17 Fri Aug 29 11:57:45
fr28n05. 2095. 0 kossi Runni ng 1 1:26:24 Fri Aug 29 03:58:51
fr28n13.683.0 Xzt ang Runni ng 8 2:23:01 Thu Aug 28 17:52:08
fr28n15.4354.0 noorejt Runni ng 16 3:41: 06 Fri Aug 29 12:18:33
fr17n08.1341.0 mukho Runni ng 8 3:41:48 Thu Aug 28 18:24:15
fr17n05.1393.0 zhong Runni ng 8 4:01:47 Fri Aug 29 04:39:14
fr28n05. 2097. 0 zhong Runni ng 8 4:50: 03 Fri Aug 29 05:27:30
fr28nll. 3080.0 nmukho Runni ng 8 5:12:21 Thu Aug 28 19:54:48
fr28n13.682.0 wengel Runni ng 32 5:23:51 Thu Aug 28 19:56:58
fr28n05.2064.0 vertex Runni ng 1 6:29:55 Thu Aug 28 23:02: 22
fr28nl1l.3037.0 vertex Runni ng 1 6:29:55 Thu Aug 28 23:02: 22
fr28n09. 26.0 ranpi Runni ng 1 8:37:27 Thu Aug 28 11:09:54
fr17n08. 1328.0 vertex Runni ng 1 9:29:49 Fri Aug 29 02:02:16
fri17n10. 1467.0 kossi Runni ng 1 10: 27:10 Fri Aug 29 12:59: 37
fr28n09. 49. 0 hol dzkom Runni ng 8 13:13:08 Fri Aug 29 11:45:35
fr17n07.1498.0 j park Starting 16 14:10:05 Fri Aug 29 04:42:32
fr17n05.1384.0 zhong Runni ng 8 18:45:27 Fri Aug 29 14:22:54
fr28n07.2300.0 jinenez Runni ng 16 18:54:12 Fri Aug 29 09:26: 39
fr17n09.529.0 vertex Runni ng 1 19:03:49 Fri Aug 29 11:36:16
fr28n01. 1851.0 vertex Runni ng 1 19:09:49 Fri Aug 29 11:42:16
fri7nll.1380.0 vertex Runni ng 1 19:41:22 Fri Aug 29 12:13:49
fr17nl6.1533.0 vertex Runni ng 1 20:04:32 Fri Aug 29 12:36:59
fr17n06.1502.0 vertex Runni ng 1 20:16:24 Fri Aug 29 12:48:51

fr17n10. 1466.0 wengel Runni ng 32 20:24:04 Fri Aug 29 10:58:11
fr28nl13.701.0 kudo Runni ng 8 20:25:46 Fri Aug 29 10:58:13
fr28n03.1689.0 vertex Runni ng 1 20:50: 31 Fri Aug 29 13:22:58
fr28n13.631.0 vertex Runni ng 1 21:17:40 Fri Aug 29 13:50:07
fr28n13.708.0 yshi Runni ng 8 22:49:10 Fri Aug 29 13:21:37
fr17n05.1395.0 yshi Runni ng 8 23:36:36 Fri Aug 29 14:09:03
fr17nll. 1388. 0 j shoenak Runni ng 24 23:51:10 Fri Aug 29 14:23:37
fr28n07.2304.0 rich001 Runni ng 1 26:09:44 Fri Aug 29 13:42:11
fr28nll. 3091.0 r ampi Runni ng 1 26:57:00 Fri Aug 29 05:29:27
36 Active Jobs 251 of 254 Processors Active (Efficiency: 98. 82)
IDLE JOBS----------------------
JOBNAME USERNAME STATE PROC CPULIMT QUEUETI ME
fr28n03. 1718. ozturan e 64 :16:40 Thu Aug 28 22:25:48
fr17n03. 1430. j ason e 128 :00: 00 Wed Aug 27 00:56: 49

fr17n08. 1331.
fr17n15. 1393.
fr17n09. 534.
fr28n13. 697. j park
fr17n07. 1499. j park

0

0

0 j ason

0

0

0

0
fr17n06. 1517.0 cholik

0

0

0

0

0

0

0

noraiti
kdeacon

: Wed Aug 27 00: 56: 21
:20: 00 Fri Aug 29 09:58:56
:00:00 Fri Aug 29 04:38:48

24:00: 00 Fri Aug 29 03:44:45

24:00:00 Fri Aug 29 04:42:31

: Fri Aug 29 06:45: 46

oo
®D®D®D®DD
el o
PRRPONN
OO N ©®
N
IS PWNNO
o o
o o
o o
o o

fr28n13. 706. noor ej t e 16 5:55:00 Fri Aug 29 10:53:53
fr17nl6. 1550. noor ej t e 16 7:55:00 Fri Aug 29 10:53:54
fr17nl2. 1528. 0 ebyl aska e 16 3:59:59 Fri Aug 29 12:11:30
fr28n15. 4356. 0 dsheppar e 16 3:00: 00 Fri Aug 29 14:01:42

fr28n09. 50. 0 dsheppar e 16 3:00: 00 Fri Aug 29 14:01:59
fr28n09. 51. zhong e 8 13:55:00 Fri Aug 29 14:07:16
fr17nl6. 1551. j acob e 4 4:00:00 Fri Aug 29 12:51:19
15 1 dl e Job(s)
NON- QUEUED JOBS----------------

JOBNAME USERNAME STATE PROC CPULIMT QUEUETI ME
fri17n02. 1476.0 vertex Idle 1 22:00: 00 Thu Aug 28 23:48:16
fr17n05.1392.0 vertex SystenHol d 1 22:00: 00 Thu Aug 28 23:49:51
fr17n10. 1449.0 vertex Idle 1 22:00: 00 Tue Aug 26 23:49:51
fr28n03.1674.0 maxi a User Hol d 8 23:56: 00 Mon Aug 25 16:22:10
fr28n05. 1581. 0 si dt User Hol d 1 1:00: 00 Sun Jul 27 12:46: 17
fr28n05.2092.0 vertex Idle 1 22:00: 00 Thu Aug 28 23:48:40

fr28n13. 705. 2 gi gi Not Queued 32 15:58:00 Fri Aug 29 10:49:01

fr28n13. 705. 3 gi gi Not Queued 32 13:58:00 Fri Aug 29 10:49:01
fr17n08. 1349. 7 dsheppar BatchHol d 1 2:00:00 Fri Aug 29 13:34:44
fr28n15. 4355. 1 dsheppar Idle 1 2:00:00 Fri Aug 29 13:35:04
fr28n15. 4355. 2 dsheppar Def err ed 1 2:00:00 Fri Aug 29 13:35:04
fr28nl15. 4355. 3 dsheppar Idle 1 2:00:00 Fri Aug 29 13:35:04

Total Jobs: 63 Active Jobs: 36 Idl e Jobs: 15 Non- Queued Jobs: 12

The output of this command is divided into three parts, Active Jobs, Idle Jobs, and Non-Queued Jobs.

Active jobs are those that are Running or Starting and consuming CPU resources. Displayed are the job name, the job's owner,
and the job state. Also displayed are the number of processors allocated to the job, the amount of time remaining until the job
completes (given in HH:MM:SS notation), and the time the job started. All active jobs are sorted in "Earliest Completion Time
First" order.

Idle Jobs are those that are queued and eligible to be scheduled. They are dl in the Idle job state and do not violate any fairness
policies or have any job holdsin place. The jobsin the Idle section display the same information as the Active Jobs section
except that the wall clock CPULIMIT is specified rather than job time REMAINING, and job QUEUETIME is displayed rather
than job STARTTIME. Thejobs in this section are ordered by job priority. Jobsin this queue are considered eligible for both
scheduling and backfilling.

Non-Queued jobs are those that are ineligible to be run or queued. Jobs listed here could be in a number of states for the
following reasons:

Idle Job violates afairness policy. Usedi agnose - for more information.
UserHold A LoadLeveler User Hold isin place.
SystemHold A LoadLeveler System Hold isin place.

BatchHold

Deferred

NotQueued

not available in the system or because LoadL eveler has repeatedly failed in attempts to start the job).

specified number of attempts. This hold is automatically removed after a short period of time).

A summary of the job queue's statusiis provided at the end of the output.

Example 2

% showq -r

23 Jobs

JobNane

fr28n13. 709.
fr28n07. 2303.
fr17n08. 1349.
fr28n15. 4355.
fr28n05. 2098.
fr28n05. 2095.

fr28n13. 683.
fr28n15. 4354,
fr17n08. 1341.
fr28n05. 2097.

fr28n13. 682.
fr17n08. 1328.
fr17n10. 1467.
fr28n07. 2300.

fr17n09. 529.
fr28n01. 1851.
fr17n10. 1466.

fr28n13. 701.

fr28n13. 631.
fr17n05. 1395.
fri17nll. 1388.
fr28n07. 2304.
fr28n1l. 3091.

251 of

)
Q

Effic XFacto

[e¥eNeloNoNoloNololoNololoNofoloNooloRo oo Ra)
VOV OVOOVXOVOVOOVDIOVOOVDOOOVO0DOVOO0O0O0DOVIOVDIOODON O
PRPNONNRPWORRPRRPOWOWRNWRRPRWORNRE

©

©

o

©
PRrPRPORRENNRERENRRERRERRPRRERRERERERE
OCODROONNOOROUIRPOONOOWOOOO

254 Processors Active

Thefields are as follows:

JobName

S
Pa

Effic
XFactor

Q

User
Group
Nodes

Name of running job.

Job Stete. Either "R" for Running or "S" for Starting.

Partition in which job is running.

CPU efficiency of job.
Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit
Quality Of Service specified for job.

User owning job.

Primary group of job owner.

r

User

dsheppar
dsheppar
dsheppar
dsheppar
ebyl aska
kossi
xzt ang
nmoor ej t
nmukho
zhong
wengel
vertex
kossi

j i menez
vertex
vertex
wengel
kudo
vertex
yshi

j shoemak
ri ch001

r anpi

[ejeojojojojojojojofojojojojojojofojofoololoNo g

(Efficiency:

Number of processors being used by the job.

G oup

daf
daf
daf
daf
dnavy
daf
daf
daf
dnavy
govt
uni v
uni v
daf
dnavy
uni v
uni v
uni v
daf
uni v
uni v
daf
daf
uni v

98. 82)

Nodes

w = w = = o
PRPRORONRPRRORRPNOOODORORNR LR

N

Fri
Fri
Fri
Fri
Fri
Fri
Thu
Fri
Thu
Fri
Thu
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri
Fri

Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug
Aug

Remaining Timethejob hasuntil it has reached itswall clock limit. Time specified in HH:MM:SS notation.

StartTime Time job started running.

Jobisin the LoadLeveler state NQ (indicating the job's controlling scheduling daemon in unavailable).

A Maui Scheduler Defer Hold isin place (atemporary hold used when ajob has been unable to start after a

A Maui Scheduler Batch Hold isin place (used when the job cannot be run because the requested resources are

StartTi ne

After displaying the running jobs, a summary is provided indicating the number of jobs, the number of allocated processors, and
the system utilization.

Example 3

% showg -i

JobNane Priority XrFactor Q User G oup Nodes WCLi mi t d ass
Syst emQueueTi me

fr28n03. 1718. 0* 97615272 59.0 O ozturan govt 64 0: 16: 40 batch Thu Aug 28

22:25: 48
fr17n03. 1430. 0 125372 11.0 O j ason asp 128 2:00: 00 medi um Thu Aug 28

18: 29: 26
fr28n13.634.0 125365 11.0 O j ason asp 128 2:00: 00 medi um Thu Aug 28

18: 30: 04
fr28n09.32.0 118071 7.0 0 noraiti uni v 128 3:20: 00 batch Thu Aug 28

18: 32: 58
fr17n15.1393.0 110712 2.4 0 noraiti uni v 128 3:20: 00 batch Fri Aug 29

09: 58: 56
fri17n09.534.0 68841 10.9 O kdeacon pdc 64 1: 00: 00 batch Fri Aug 29

04: 38: 48
fr28n13.697.0 21102 1.4 0 j park dnavy 16 24:00:00 batch Fri Aug 29

03: 44: 45
fr17n07.1499. 0 20906 1.4 0 j park dnavy 16 24:00:00 batch Fri Aug 29

04:42: 31
fri7n06. 1517.0 20604 1.3 0 chol ik uni v 16 24:00:00 batch Fri Aug 29

06: 45: 46
fr28n13. 706. 0 20180 1.6 O nmoor ej t daf 16 5:55: 00 batch Fri Aug 29

10: 53: 53
fr17nl6. 1550. 0 20024 1.5 0 noor ej t daf 16 7:55: 00 batch Fri Aug 29

10: 53: 54
fri7nl2. 1528.0 19916 1.6 0 ebylaska dnavy 16 3:59:59 batch Fri Aug 29

12:11: 30
fr28n09.50.0 19097 1.2 0 dsheppar daf 16 3:00: 00 batch Fri Aug 29

14:01: 59
fr28n09.51.0 12547 1.0 O zhong govt 8 13:55:00 batch Fri Aug 29

14:07: 16
fri7nl6. 1551.0 9390 1.0 O j acob uni v 4 4:00: 00 batch Fri Aug 29

14:22: 09

Jobs: 15 Total BackLog: 6434 Node Hours (25.33 Hours)

Thefields are as follows:

JobName Name of job.

Priority Calculated job priority.

XFactor Current expansion factor of job, where XFactor = (QueueTime + WallClockLimit) / WallClockLimit
Q Quality Of Service specified for job.

User User owning job.

Group Primary group of job owner.

Nodes Minimum number of processors required to run job.

WCLimit Wall clock limit specified for job. Time specified in HH:MM:SS notation.

Class Class requested by job.

SystemQueueTime Time job was admitted into the system queue.

An asterisk at the end of ajob (job fr28n03.1718.0* in this example€) indicates that the job has ajob reservation created for it.
The details of this reservation can be displayed using the checkj ob command.

After displaying the job listing, the command summarizes the workload in the idle queue and indicates the total workload
backlog in node-hours. The value in parenthesis indicates the minimum amount of time required to run this workload using the
currently available nodes on the system.

Related Commands

Use the showbf command to see how many nodes are available for use.
Usethedi agnose command to show the partitions.

Usethecheckj ob command to check the status of a particular jab.

Default File L ocation
/u/ | oadl / maui / bi n/ showg
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Rwerved.il:'

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

showres

showres [ARGS] [<RESID>]

Purpose: show detailed reservation information

Argument Description

-g show 'grep'-able output with nodename on every line
-h show usage help
-n display information regarding all nodes reserved by <RESID>
-0 display al reservations which overlap <RESID> in time
-r display reservation timeframes in relative time mode
-S display summary reservation information
show verbose output. If used with the '-n' flag, the command will display all
-V reservations found on nodes contained in <RESID>. Otherwise, it will show

long reservation start dates including the reservation year.

Parameter Description
RESID ID of reservation of interest - optional
Access

This command can be run by any Maui administrator, or by any valid user if the parameter RESCTLPOLICY isset
to ANY.

Description

This command displays al reservations currently in place within the Maui Scheduler. The default behavior isto
display reservations on a reservation-by-reservation basis.

Example 1

> showr es
Reservations

Type ReservationlD S Start End Duration Nodes StartTine
Job fr4n01.902.0 S -0:02: 00 0: 08: 00 0: 10: 00 16 Sat Dec 14 08:29:09
Job fr5n11.176.0 S -0:01: 00 1:59: 00 2:00: 00 8 Sat Dec 14 08:30:09
Job fr5n11.177.0 S -0:01: 00 0: 02: 20 0: 03: 20 1 Sat Dec 14 08:30:09
Job frs5n12.179.0 S -0:00: 30 1:59: 30 2:00: 00 3 Sat Dec 14 08:30:39
Job fr5n12.180.0 S -0:00: 30 0:29: 30 0: 30: 00 4 Sat Dec 14 08:30:39
Job fr5n13.155.0 S 0: 00: 00 2:00: 00 2:00: 00 4 Sat Dec 14 08:31:09
Group daf#0 - 10: 00: 00 I NFINITY I NFI NI TY 16 Sat Dec 14 18:31:09
User | oadl #0 0: 00: 00 30: 00: 00 30: 00: 00 16 Sat Dec 14 08:31:09
System SYSTEM{O 20: 00: 00 30: 00: 00 10: 00: 00 40 Sun Dec 15 04:31:09

25 Reservations Located

This example shows all reservations on the system. The fields are as follows:

Type Reservation Type. Thiswill be one of the following: Job, User, Group, Account, or System.

ReservationID Thisisthe name of the reservation. Job reservation names are identical to the job name. User,
Group, or Account reservations are the user, group, or account name followed by a number. System
reservations are given the name SY STEM followed by a number.

S State. Thisfield isvalid only for job reservations. It indicates whether the job is (S)tarting,
(R)unning, or (l)dle.

Start Relative start time of the reservation. Timeis displayed in HH:MM:SS notation and isrelative to
the present time.

End Relative end time of the reservation. Timeis displayed in HH:MM:SS notation and isrelative to
the present time. Reservation that will not complete in 1,000 hours are marked with the keyword
INFINITY.

Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1,000 hours are
marked with the keyword INFINITY .

Nodes Number of nodes involved in reservation.

StartTime Time Reservation became active.

Example 2

> showres -n
Reservations on Sat Dec 14 08:31:09

NodeNane Type Reservationl D JobState Start Durati on
StartTine

fri0nll. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08:29: 09
fr26n01. mhpcc. edu Job fr4n02. 126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08:29: 09
fr5n09. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6: 00: 00 Sat Dec 14

08:29: 09
System SYSTEM#O N A 20:00:00 10:00:00 Sun Dec 15

04: 31: 09
fr18n15. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08: 29: 09
fr20n02. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08: 29: 09
User | oadl #0 N A 0: 00: 00 30: 00: 00 Sat Dec 14

08: 31: 09
Group daf #0 NA 10:00:00 INFINITE Sat Dec 14

18: 31: 09
fr20n15. mhpcc. edu Job fr4an02.126.0 Starting -0:02: 00 6: 00: 00 Sat Dec 14

08:29: 09
User | oadl #0 N A 0:00: 00 30:00: 00 Sat Dec 14

08: 31: 09
G oup daf #0 N A 10:00: 00 INFINITE Sat Dec 14

18: 31: 09
fr26n1l. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08: 29: 09
fri17nll. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08: 29: 09
fr25n12. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08: 29: 09
fr26n16. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08: 29: 09
fr5n12. mhpcc. edu Job fr4n02. 126.0 Starting -0:02: 00 6:00: 00 Sat Dec 14

08:29: 09
System SYSTEMEO NA 20:00:00 10:00:00 Sun Dec 15

04: 31: 09
fr5n15. mhpcc. edu Job fr4n02.126.0 Starting -0:02: 00 6: 00: 00 Sat Dec 14

08: 29: 09

This example shows reservations for nodes. The fields are as follows:

NodeName Node on which reservation is placed.
Type Reservation Type. Thiswill be one of the following: Job, User, Group, Account, or System.

ReservationID Thisisthe name of the reservation. Job reservation names are identical to the job name. User,
Group, or Account reservations are the user, group, or account name followed by a number. System
reservations are given the name SY STEM followed by a number.

JobState Thisfield isvalid only for job reservations. It indicates the state of the job associated with the
reservation.
Start Relative start time of the reservation. Timeis displayed in HH:MM:SS notation and isrelative to
the present time.
Duration Duration of the reservation in HH:MM:SS notation. Reservations lasting more than 1000 hours are
marked with the keyword INFINITY .
StartTime Time Reservation became active.
Example 3

> showres fr35n08. 3360.0
Reservati ons

Type ReservationlD S Start End Duration Nodes StartTine

Job fr35n08.3360.0 S -8:24:06 15:35: 54 24:00: 00 16 Thu Mar 5 03:08:38

1 reservation | ocated
In this example, information for a specific reservation (job) is displayed.

See Also:

set r es - create new reservations.

r el easer es - release existing reservations.

di agnose -r - diagnose/view the state of existing reservations.
Reservation Overview - description of reservations and their use.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reﬁerved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

showstart

showstart [-h] <JOBID>
Purpose
Display the earliest possible start and completion times for a specified job.
Permissions
This command can be run by any user.
Parameters
JOBID Job to be checked
Flags

-h Help for this command.

Description

This command displays the earliest possible start time of ajob. If the job already possesses
areservation, the start time of this reservation will be reported. If no such reservation exists,
this command will determine the earliest time a reservation would be created assuming this
job was highest priority. If thisjob does not have areservation and it is not highest priority,
the value of returned information may be limited.

Example
>showstart j ob001

job Job001 requires 2 procs for 0:33:20

Earliest start is in 1: 40: 00 on Thu Jan 1 01:16:40
Earliest Conpletion is in 2:13:20 on Thu Jan 1 01:50:00
Best Partition: DEFAULT

Related Commands

checkjob, showres

Notes

Since the information provided by thisjob isonly highly accurate if the job is highest
priority or if the job has areservation, sites wishing to make decisions based on this

information may want to consider using the RESERVATIONDEPTH parameter to increase
the number of priority based reservations. This can be set so that most, or even all idle jobs
receive priority reservations and make the results of this command generally useful. The only
caution of this approach isthat increasing the RESERVATIONDEPTH parameter more
tightly constrains the decisions of the scheduler and may resulting in slightly lower system
utilization (typically less than 8% reduction).

Copyright © 2000-2002 Supercluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/documentation/maui/parameters.html#reservationdepth
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

showstate

showstate [-h]

Purpose

Summarizes the state of the system.

Permissions

This command can be run by any Maui Scheduler Administrator.
Parameters

None.

Flags

-h Shows help for this command.

Description

This command provides a summary of the state of the system. It displays alist of al active jobs and a text-based map of
the status of all nodes and the jobs they are servicing. Simple diagnostic tests are also performed and any problems found
are reported.

Example

% showst at e

BQS Summary on Tue May 20 21:18:08 1997

JobNanme Nodes WCLimt JobSt at e

(A fri7nll. 942.0 16 600 Runni ng
(B) fr15n09.1097.0 32 14100 Starting
(O fr17n01.942.0 8 6900 Runni ng
(D) fr13n03. 24.0 8 28800 Starting
(E) fr15n13.1018.0 8 28800 Starting
(F) fri17n05.953.0 8 86400 Runni ng
(G fri15n09.1103.0 1 86340 Runni ng
(H fri3nll. 28.0 1 86400 Runni ng
(n) fr14n09.21.0 24 86400 Starting

Usage Sumary: 9 Active Jobs 106 Active Nodes

(O] [O][O][O][O][O][O][O][O][1][1][2][1]([1][1][1]

(021310410516l [7][81[O][01[11[2][3]1[4][5][6]
Frame 2: XOOOOKKOIOOOKXXXX] T[A[CI[T[A[C[C[A
Frame s 101010 10 10 JIeA 0 e 10yt 10 10 10 11 1
Frame 4 [10010 10 10 J0A D I000 10 10 10E L 101][10E]
Frame St [FIL ITEC 0 10 JORICFILRICYID 10 T0EL 1[E[E
Frame 6 [JOIILVITEILEID JOVICVIE JOVITRILETLNILET[T][F]
Fr ane 70 [1)K IXXX) XXX] XXX B] XXX T XXX[] XXX] #] XXX
Frame S I N A A A A AR A AR A A AR A RS N
Frame 010301010 10 10 tRr@r 1AL TEFE 1Al
Frame 122 [AILILIIAID T TTAIAIT TIATATAL 11 10 11]
Fr ane 13: [D] XXX] XK XK TXXX T XXX] XXX 1] XXX |] XXX
Frame 14: [D] XXX 1] XXX] XXX D] XXX[] XXX H] XXX] XXX] XXX
Fr ane 15: [b] XXX[b] XXX[b] XXX[b] XXX D] XXX[b] XXX[b] XXX[b] XXX
Fr ane 16: [b] XXX] XXX[b] XXX[] XXX b] XXX b] XXX[] XXX[b] XXX
Frame i OO0 A0 10 A0 0 10 10 10 10 10 10 10 10 10 11]
Frame 21: [] XXX b] XXX[b] XXX[] XXX[b] XXX[b] XXX[b] XXX[b] XXX

Fr ane 22: [b] XXX b] XXX[b] XXX[] XXX[b] XXX[] XXX[b] XXX[b] XXX
Fr ame 27: [b] XXX[b] XXX[] XXX[b] XXX[b] XXX[b] XXX[b] XXX[b] XXX
Fr ame 28: [G XXX] XXX[O] XXX[] XXX[D] XXX[D] XXX[D] XXX[] XXX
Fr ame 29: [AIICTIATATAL 11Al [T XXRXHKIIXIIIKHIIIHKKXXKX

Key: XXX: Unknown [*]:Down w Job [#]:Down [']:ldle wJob []:Idle [@:Busy w No Job [!]: Drained
Key: [a]:(Any lower case letter indicates an idle node that is assigned to a job)

Check Menory on Node fr3n07
Check Menory on Node fr4n06
Check Menory on Node fr4n09

Active Job[1] fr15n09. 1097.0 (Starting) Has Node fr7n09 Allocated which is in state 'Idle'

Active Job[1] fr15n09. 1097.0 (Starting) Has Node fr15n01 Allocated which is in state 'Idle'
Active Job[1] fr15n09. 1097.0 (Starting) Has Node fr15n03 Allocated which is in state 'Idle'
Active Job[1] fr15n09.1097.0 (Starting) Has Node fr15n05 Allocated which is in state 'Idle’
Active Job[1] fr15n09. 1097.0 (Starting) Has Node fr15n07 Allocated which is in state 'Idle'

Node fr11n08 is Busy but Has No Job Schedul ed

In this example, nine active jobs are running on the system. Each job listed in the top of the output is associated with a
letter. For example, job fr17n11.942.0 is associated with the letter "A." Thisletter can now be used to determine where the
jobis currently running. By looking at the system "map," it can be found that job fr17n11.942.0 (job "A") is running on
nodes fr2n10, fr2n13, fr2n16, fr3n06 ...

The key at the bottom of the system map can be used to determine unusual node states. For example, fr7nl5iscurrently in
the state down.

After the key, a series of warning messages may be displayed indicating possible system problems. In this case, warning
message indicate that there are memory problems on three nodes, fr3n07, fr4n06, and fr4n09. Also, warning messages
indicate that job fr15n09.1097.0 is having difficulty starting. Node fr11n08 isin state BUSY but has no job assigned to it.
(It possibly has a runaway job running on it.)

Related Commands

None.

Default File L ocation

/u/l oadl / maui / bi n/ showst at e
Notes

None.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights Reserved:_:]

http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

showstats

showstats[FLAGS]
Purpose
Show resource usage statistics
Access
This command can be run by any Maui level 1, 2, or 3 Administrator.
Parameters
[NONE]
Flags

NOTE: thiscommand supports all generic maui command flags

IFlag |Description
-a[<ACCOUNTID>] |display account statistics
-g [<GROUPID>] display group statistics
-n [<NODEID>] display node statistics

-S display summary information. NOTE: only valid with the'-n’ flag
-S |display general scheduler statistics

-u [<USERID>] display user statistics

-V display verbose information

Description

This command shows various accounting statistics for the system. Historical statistics cover the timeframe from the most
recent execution of the resetstats command.

Example 1

% showstats -a
Account Statistics Initialized Tue Aug 26 14:32: 39

|----- Running ------ I Conpl et ed
Account Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF MaxXF
AvgQH Effic WCAcc
137651 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00 0.77 8.15
5.21 90.70 34.69
462212 11 63 855.27 43 7.35 6028 14.76 3448.4 20.45 6.25 0.71 5.40
3.14 98.64 40.83
462213 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25 0.37 4.88
0.52 82.01 24.14
005810 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 ----- 1.53 14.81
0.42 98.73 28.40
175436 0 0 0. 00 12 2.05 6013 14.72 958.6 5.69 2.50 1.78 8.61
5.60 83.64 17.04
000102 0 0 0. 00 1 0.17 64 0.16 5.1 0.03 ----- 10.85 10.85
10.77 27.90 7.40
000023 0 0 0. 00 1 0.17 12 0.03 0.2 0.00 ----- 0.04 0.04

0.19 21.21 1.20

http://supercluster.org/documentation/maui/a.ggeneralcmdline.html

This example shows a statistical listing of all active accounts. The top line (Account Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.

The statistical output is divided into two categories, Running and Completed. Running statistics include information about
jobs that are currently running. Completed statistics are compiled using historical information from both running and
completed jobs.

Thefields are as follows:

Account Account Number.

Jobs Number of running jobs.
Procs Number of processors allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs compl eted.

% Percentage of total jobs that were completed by account.

PHReg* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by account.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are calcul ated
by multiplying the number of allocated procs by the length of time the procs were alocated, regardless of
the job's CPU usage.

% Percentage of total proc-hours dedicated that were dedicated by account.

FSTgt Fairshare target. An account's fairshare target is specifiedinthef s. cf g file. This value should be
compared to the account's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's X Factor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.
AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time used by
the job by the node-hours allocated to the job.

WCAcc* Averagewall clock accuracy for jobs completed. Wall clock accuracy is calculated by dividing ajob's
actual run time by its specified wall clock limit.

* These fields are empty until an account has completed at |east one job.

Example 2

% showstats -g
Group Statistics Initialized Tue Aug 26 14:32: 39

| ----- Running ------ I e Conpl et ed
GroupNare d D Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF MaxXF
AvgQH Effic WCAcc
univ 214 16 92 1394.52 229 39.15 18486 45.26 7003.5 41.54 40.00 0.77 8.15
5.21 90.70 34.69
daf 204 11 63 855. 27 43 7.35 6028 14.76 3448.4 20.45 6.25 0.71 5.40
3.14 98.64 40.83
dnavy 207 6 72 728.12 90 15.38 5974 14.63 3170.7 18.81 6.25 0. 37 4.88
0.52 82.01 24.14

govt 232 3 24 220.72 77 13.16 2537 6.21 1526.6 9.06 ----- 1.53 14.81

0.42 98.73 28.40
asp 227 0 0 0. 00 12 2.05 6013 14.72 958.6 5.69 2.50 1.78 8.61

5.60 83.64 17.04
derim 229 0 0 0.00 74 12.65 669 1.64 352.5 2.09 ----- 0.50 1.93

0.51 96.03 32.60
dchall 274 0 0 0.00 3 0.51 447 1.10 169.2 1.00 25.00 0.52 0. 88

2.49 95.82 33.67

nih 239 0 0 0.00 17 2.91 170 0.42 148.1 0.88 ----- 0.95 1.83
0.14 97.59 84.31
darnmy 205 0 0 0.00 31 5.30 366 0.90 53.9 0.32 6.25 0.14 0.59
0.07 81.33 12.73
syst ens 80 0 0 0.00 6 1.03 67 0.16 22. 4 0.13 ----- 4.07 8. 49
1.23 28.68 37.34
pdc 252 0 0 0.00 1 0.17 64 0.16 5.1 0.03 ----- 10.85 10.85
10. 77 27.90 7.40
staf f 1 0 0 0.00 1 0.17 12 0. 03 0.2 0.00 ----- 0. 04 0. 04

0.19 21.21 1.20

This example shows a statistical listing of all active groups. The top line (Group Statistics Initialized...) of the output
indicates the beginning of the timeframe covered by the displayed statistics.

The statistical output is divided into two categories, Running and Completed. Running statistics include information about
jobs that are currently running. Completed statistics are compiled using historical information from both running and
completed jobs.

Thefields are as follows;

GroupName Name of group.

GID Group ID of group.
Jobs Number of running jobs.
Procs Number of procs allocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs completed.

% Percentage of total jobs that were completed by group.

PHReg* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by group.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are calcul ated

by multiplying the number of allocated procs by the length of time the procs were allocated, regardless of
the job's CPU usage.

% Percentage of total proce-hours dedicated that were dedicated by group.

FSTgt Fairsharetarget. A group's fairshare target is specified inthef s. cf g file. Thisvalue should be compared
to the group's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's XFactor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxX F* Highest expansion factor received by jobs compl eted.
AvgQH* Average queue time (in hours) of jobs.

Effic Averagejob efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time used
by the job by the node-hours allocated to the job.

WCAcc* Average wall clock accuracy for jobs completed. Wall clock accuracy is calculated by dividing ajob's
actual run time by its specified wall clock limit.

* These fields are empty until a group has completed at least one job.

Example 3

% showstats -n -S
Menory Requi rement Breakdown:

Menory Nodes Percent Initial NH Percent NodeHours Percent
64 8 2.78 9799 794.92 1232 100.00

128 144 50. 00 9162 41. 29 22190 100.00

256 32 11. 11 20290 411. 47 4931 100. 00
512 96 33. 33 5080 34. 34 14793 100. 00
1024 8 2.78 48 3. 89 1232 100. 00
2048 0 0. 00 0 0.00 0 0. 00
TOTAL 288 100. 00 44381 100. 00 44381 100. 00

Node Statistics

Sunmary: 8 64MB Nodes 99. 26% Avai | 79.18% Busy (Current: 100.00% Avail 100. 00% Busy)
Sunmary: 144 128VB Nodes 98. 99% Avai | 75.92% Busy (Current: 100.00% Avail 100. 00% Busy)
Sunmary: 32 256MB Nodes 97. 69% Avai | 85.66% Busy (Current: 100.00% Avail 100. 00% Busy)
Sunmmary: 96 512MB Nodes 96. 12% Avai | 82.92% Busy (Current: 98.96% Avai l 94. 79% Busy)
Sunmary: 8 1024MB Nodes 99. 87% Avai | 81.77% Busy (Current: 100.00% Avai | 75. 00% Busy)
System Summary: 288 Nodes 97.92% Avai | 79.59% Busy (Current: 99.65% Avai l 97. 57% Busy)

This example shows a statistical listing of nodes and memory. Memory Requirement Breakdown portion shows
information about the current workload profile. In this example, the system monitored is a heterogeneous environment
consisting of eight 64 MB (RAM) nodes, 144 128 MB nodes, etc., with atotal of 288 nodes. The third column indicates
the percentage of total nodes that meet this memory criteria. For example, the eight 64 MB nodes make up 2.78% of the
288 total nodes in the system.

Theidle job queue monitored in this example consists of numerous jobs consisting of atotal of 44,381 node-hours of
work. The node-hour workload of jobs that have specific node memory requirements are assigned to the corresponding
memory class. If no specific memory requirement is specified, the job's node-hours are assigned to the lowest memory
class, in this case, the 64 MB nodes.

Example 4

% showst at s

Maui running for 22:01:00 stats initialized on Mon Mar 26 17:43: 34
Eligible/ldl e Jobs: 15/ 45 (33.333%
Active Jobs: 42

Successful / Conpl et ed Jobs: 873/ 875 (99. 7%
Avg/ Max QTi me (Hours): 2.71/4.50

Avg/ Max XFactor: 1.03/4.79

Dedi cat ed/ Total ProcHours: 4353. 55/ 4782. 10 (91.038%
Current Activel/ Total Procs: 183/ 192 (95.312%
Avg Wal | d ock Accuracy: 43. 25%

Avg Job Proc Efficiency: 98. 17%

Est/ Avg Backl og (Hours): 34.5/41. 8

This example shows a concise summary of the system scheduling state. Note that showst at s andshowst ats -s are
equivalent.

Thefirst line of output indicates the number of scheduling iterations performed by the current scheduling process,
followed by the time the scheduler started. The second line indicates the amount of time the Maui Scheduler has been
scheduling in HH:M M :SS notation followed by the statistics initialization time.

Thefields are as follows:

Active Jobs Number of jobs currently active (Running or Starting).

Eligible Jobs Number of jobsin the system gueue (jobs that are considered when scheduling).

Idle Jobs Number of jobs both in and out of the system queue that are in the LoadLeveler Idle state.
Completed Jobs Number of jobs completed since statistics wereinitialized.

Successful Jobs Jobs that completed successfully without abnormal termination.

XFactor Average expansion factor of all completed jobs.

Max X Factor Maximum expansion factor of completed jobs.
Max Bypass Maximum bypass of completed jobs.
Available ProcHours Total proc-hours available to the scheduler.

Dedicated ProcHours Total proc-hours made available to jobs.

Effic Scheduling efficiency (DedicatedProcHours/ Available ProcHours).
Min Efficiency Minimum scheduling efficiency obtained since scheduler was started.
Iteration Iteration on which the minimum scheduling efficiency occurred.
Available Procs Number of procs currently available.
Busy Procs Number of procs currently busy.
Effic Current system efficiency (BusyProcs/AvailableProcs).
WallClock Accuracy Average wall clock accuracy of completed jobs (job-weighted average).
Job Efficiency Average job efficiency (UtilizedTime/ DedicatedTime).
Est Backlog Estimated backlog of queued work in hours.
Avg Backlog Average backlog of queued work in hours.

Example 5

% showstats -u
User Statistics Initialized Tue Aug 26 14:32:39

[----- Running ------ R R R T Conpl et ed

User Nane Ul D Jobs Procs ProcHours Jobs % PHReq % PHDed % FSTgt AvgXF MaxXF
AvgQH Effic WCAcc

noorejt 2617 1 16 58. 80 2 0.34 221 0.54 1896.6 11.25 ----- 1.02 1.04
0.14 99.52 100.00
zhong 1767 3 24 220.72 20 3.42 2306 5.65 1511.3 8.96 ----- 0.71 0. 96
0.49 99.37 67.48
lui 2467 0 0 0. 00 16 2.74 1970 4.82 1505.1 8.93 ----- 1.02 6. 33
0.25 98.96 57.72
evans 3092 0 0 0.00 62 10.60 4960 12.14 1464.3 8. 69 5.0 0.62 1.64
5.04 87.64 30.62
wengel 2430 2 64 824.90 1 0.17 767 1.88 630.3 3.74 ----- 0.18 0.18
4.26 99.63 0.40
nukho 2961 2 16 71.06 6 1.03 776 1.90 563.5 3.34 ----- 0.31 0. 82
0.20 93.15 30.28
jimenez 1449 1 16 302. 29 2 0.34 768 1.88 458.3 2.72 ----- 0. 80 0.98
2.31 97.99 70.30
neff 3194 0 0 0.00 74 12.65 669 1.64 352.5 2.09 10.0 0.50 1.93
0.51 96.03 32.60
cholik 1303 0 0 0.00 2 0.34 552 1.35 281.9 1.67 ----- 1.72 3.07
25.35 99.69 66.70
j shoemak 2508 1 24 572. 22 1 0.17 576 1.41 229.1 1.36 ----- 0.55 0.55
3.74 99.20 39.20
kudo 2324 1 8 163. 35 6 1.03 1152 2.82 211.1 1.25 ----- 0.12 0.34
1.54 96.77 5. 67
xztang 1835 1 8 18.99 ---- ------ ai-em oo 176. 3 1.05 10.0 ------ ------
------ 99.62 ------
feller 1880 0 0 0. 00 17 2.91 170 0.42 148.1 0.88 ----- 0.95 1.83
0.14 97.59 84.31
maxi a 2936 0 0 0.00 1 0.17 191 0.47 129.1 0.77 7.5 0. 88 0. 88
4.49 99.84 69.10
kt gnov71l 2838 0 0 0.00 1 0.17 192 0. 47 95.5 0.57 ----- 0.53 0.53

0.34 90.07 51.20

This example shows a statistical listing of all active users. The top line (User Statistics Initialized...) of the output indicates
the timeframe covered by the displayed statistics.

The statistical output is divided into two statistics categories, Running and Completed. Running statistics include
information about jobs that are currently running. Completed statistics are compiled using historical information from both
running and completed jobs.

Thefields are as follows:

UserName Name of user.

uiD User ID of user.
Jobs Number of running jobs.
Procs Number of procs alocated to running jobs.

ProcHours Number of proc-hours required to complete running jobs.

Jobs* Number of jobs compl eted.

% Percentage of total jobs that were completed by user.

PHReq* Total proc-hours requested by completed jobs.

% Percentage of total proc-hours requested by completed jobs that were requested by user.

PHDed Total proc-hours dedicated to active and completed jobs. The proc-hours dedicated to a job are calcul ated
by multiplying the number of allocated procs by the length of time the procs were allocated, regardless of
the job's CPU usage.

% Percentage of total prochours dedicated that were dedicated by user.

FSTgt Fairshare target. A user'sfairsharetarget is specifiedinthef s. cf g file. Thisvalue should be compared to
the user's node-hour dedicated percentage to determine if the target is being met.

AvgXF* Average expansion factor for jobs completed. A job's X Factor (expansion factor) is calculated by the
following formula: (QueuedTime + RunTime) / WallClockLimit.

MaxXF* Highest expansion factor received by jobs completed.
AvgQH* Average queue time (in hours) of jobs.

Effic Average job efficiency. Job efficiency is calculated by dividing the actual node-hours of CPU time used by
the job by the node-hours allocated to the job.

WCAcc* Averagewall clock accuracy for jobs completed. Wall clock accuracy is calculated by dividing ajob's
actual run time by its specified wall clock limit.

* These fields are empty until a user has completed at |east one job.
Related Commands
Usether eset st at s command to re-initialize statistics.

Notes
See the Statistics document for more details about scheduler statistics.

© Copyright 1998, Maui High Performance Computing Center. All rights reserved.

Copyright © 2000-2002 Super cluster Resear ch and Development Group All Rights R@erved:_:]

http://supercluster.org/documentation/maui/statistics.html
http://supercluster.org/
http://clusterresources.com/
http://sourceforge.net/

